1
|
Porras-Rivera G, Górski K, Colin N. Behavioral biomarkers in fishes: A non-lethal approach to assess the effects of chemical pollution on freshwater ecosystems. ENVIRONMENTAL RESEARCH 2024; 260:119607. [PMID: 39002628 DOI: 10.1016/j.envres.2024.119607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The expansion of the human population and the escalating use of chemical products pose a considerable threat to aquatic biodiversity. Consequently, there is an imperative need for the implementation of non-lethal, cost-effective, and easily deployable biomonitoring tools. In this context, fish and their behavior as biomarkers have gained prominence in monitoring of freshwater ecosystems. The aim of this study was to assess the state of art in the use of behavioral biomarkers in ecotoxicology, emphasizing their role as informative tools for global environmental monitoring. Through a systematic literature search, ninety-two articles focusing on the evaluation of behavioral changes in freshwater fish in response to pollution were identified. The most prevalent keywords were "behavior" (7%) and "zebrafish" (6%). Experiments were conducted in countries with expansive territories, such as the United States (18%) and Brazil (17%). Exotic species were primarily employed (58%), with Danio rerio (26%) being the most frequently studied species. Among pollutants, pesticides (32%) and medicines (25%) were the most frequently studied, while locomotion (38%) and social behaviors (18%) were the most frequently evaluated behaviors. Across these studies, authors consistently reported significant changes in the behavior of fish exposed to contaminants, including decreased swimming speed and compromised feeding efficiency. The review findings affirm that evaluating behavioral biomarkers in freshwater fish offers an informative, non-lethal, cost-effective, and easily implementable approach to understanding pollution impacts on freshwater ecosystems. Although few studies on behavioral biomarkers were available to date, the number has rapidly increased in recent years. Furthermore, a variety of novel approaches and study models are being included. Research into behavioral biomarkers is crucial for understanding and managing environmental risks in freshwater ecosystems. Nevertheless, further studies are needed to enhance our understanding of behavioral toxicity indicators, considering factors such as life stage, sex, and breeding season in the tested species.
Collapse
Affiliation(s)
- Geraldine Porras-Rivera
- Doctorado en Ciencias Mención Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Konrad Górski
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Facultad de Ciencias, Universidad Católica de La Santísima Concepción, Concepción, 4030000, Chile
| | - Nicole Colin
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Programa Austral Patagonia, Universidad Austral de Chile, Valdivia, 5090000, Chile.
| |
Collapse
|
2
|
C V R Silva D, Silva GC, Siqueira-Silva DH, Bazzan T, Silva HTL, Silva MCR, Bérgamo AL, Freitas JVR, Porfírio AEP, Pelegrini GH, Araújo CVM. A multi-evidence approach in an Amazonian river based on land use, water quality, histopathological effects and habitat selection behavior in fish. CHEMOSPHERE 2024; 361:142492. [PMID: 38830469 DOI: 10.1016/j.chemosphere.2024.142492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
The Amazon rivers constitute the largest river basin in the world, with a high level of biodiversity. The Tocantins River is one of the most important rivers in this region, which has been impacted by different land uses. The objective of this study was to carry out a multi-evidence analysis focusing on the water quality of the Tocantins River, close to the municipality of Marabá-PA. We analyzed forest cover and water quality and, using the model organism Danio rerio, performed toxicity tests for histopathological effects, as well as the habitat selection approach by exposing fish to different river water samples in a multi-compartment device. The results showed that the studied area has already lost almost 30% of its forests in recent decades. Regarding water quality, the upstream (C1) and downstream (C5) points are the least impacted. On the other hand, the other points (C2-C4), closer to the city, greater input of pollutants was detected. Fish exposed to water samples from the most impacted sites showed several oedemas and hyperplastic cells in the gills. Regarding habitat selection behavior, there was a marked avoidance by samples with the highest contamination load. The results of this study lead to the understanding of the potential negative effects of human activities on local Amazonian biodiversity, since the potential toxicity of the environment, in conjunction with changes in the habitat selection process, could lead to a decline in populations of aquatic organisms, altering the environmental balance.
Collapse
Affiliation(s)
- Daniel C V R Silva
- Postgraduate Program in Environment and Water Resources (POSMARH), Federal University of Itajubá (Unifei), Itajubá 37500-903, Minas Gerais, Brazil; Institute of Exact Sciences, Federal University of Southern and Southeastern Pará (Unifesspa), Marabá 68507-590, Pará, Brazil.
| | - Gilmar C Silva
- Postgraduate Program in Environmental Technology, Fluminense Federal University (UFF), Volta Redonda 27255-125, Rio de Janeiro, Brazil
| | - Diógenes H Siqueira-Silva
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty, Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil
| | - Thiago Bazzan
- Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos 12227-900, São Paulo, Brazil
| | - Hadda T L Silva
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty, Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil
| | - Maria C R Silva
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty, Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil
| | - Alessandro L Bérgamo
- Natural Resources Institute (IRN), Federal University of Itajubá (Unifei), Itajubá 37500-903, Minas Gerais, Brazil
| | - João Vitor R Freitas
- Natural Resources Institute (IRN), Federal University of Itajubá (Unifei), Itajubá 37500-903, Minas Gerais, Brazil
| | - Ana E P Porfírio
- Natural Resources Institute (IRN), Federal University of Itajubá (Unifei), Itajubá 37500-903, Minas Gerais, Brazil
| | - Guilherme H Pelegrini
- Natural Resources Institute (IRN), Federal University of Itajubá (Unifei), Itajubá 37500-903, Minas Gerais, Brazil
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
3
|
Venâncio C, Ribeiro R, Lopes I. Pre-exposure to seawater or chloride salts influences the avoidance-selection behavior of zebrafish larvae in a conductivity gradient. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122126. [PMID: 37390916 DOI: 10.1016/j.envpol.2023.122126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
The risk assessment of freshwater salinization is constructed around standard assays and using sodium chloride (NaCl), neglecting that the stressor is most likely a complex mixture of ions and the possibility of prior contact with it, triggering acclimation mechanisms in the freshwater biota. To date, as far as we are aware of, no information has been generated integrating both acclimation and avoidance behavior in the context of salinization, that may allow these risk assessments upgrading. Accordingly, 6-days-old Danio rerio larvae were selected to perform 12-h avoidance assays in a non-confined 6-compartment linear system to simulate conductivity gradients using seawater (SW) and the chloride salts MgCl2, KCl, and CaCl2. Salinity gradients were established from conductivities known to cause 50% egg mortality in a 96-h exposure (LC50,96h,embryo). The triggering of acclimation processes, which could influence organisms' avoidance-selection under the conductivity gradients, was also studied using larvae pre-exposed to lethal levels of each salt or SW. Median avoidance conductivities after a 12-h of exposure (AC50,12h), and the Population Immediate Decline (PID) were computed. All non-pre-exposed larvae were able to detect and flee from conductivities corresponding to the LC50,96h,embryo, selecting compartments with lower conductivities, except for KCl. The AC50,12h and LC50,96h overlapped for MgCl2 and CaCl2, though the former is considered as more sensitive as it was obtained in 12 h of exposure. The AC50,12h for SW was 1.83-fold lower than the LC50,96h, thus, reinforcing the higher sensitivity of the parameter ACx and its adequacy for risk assessment frameworks. The PID, at low conductivities, was solely explained by the avoidance behavior of non-pre-exposed larvae. Larvae pre-exposed to lethal levels of salt or SW were found to select higher conductivities, except for MgCl2. Results indicated that avoidance-selection assays are ecologically relevant and sensitive tools to be used in risk assessment processes. Stressor pre-exposure influenced organisms' avoidance-selection behavior under conductivity gradients, suggesting that under salinization events organisms may acclimate, remaining in altered habitats.
Collapse
Affiliation(s)
- Cátia Venâncio
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Rui Ribeiro
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Isabel Lopes
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
4
|
de Mello ME, França FM, Vieira E, Bach EE, Marcantônio AS, Ferreira CM. Atrazine contaminated sites and bullfrog tadpoles: evasive trends and biochemical consequences. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:344-356. [PMID: 36964299 DOI: 10.1007/s10646-023-02644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Atrazine (ATZ) is one of the most used active principles in agricultural systems. This pesticide has the ability to easily accumulate in terrestrial and aquatic environments, causing impacts with chronic adverse effects. Avoidance tests are tests that seek to assess the concentration from which a given organism escapes, that is, migrates to another habitat. They are being used as a modality of innovative and minimally invasive ecotoxicological tests. Our objective was to evaluate the sensitivity and possible toxic effects of ATZ in bullfrog tadpoles (Lithobates catesbeianus), through avoidance tests and oxidative stress analyses. We performed the behavioral avoidance test lasting 12 h, with observations every 60 min in a linear multi-compartment system with seven compartments. Each compartment corresponded to a concentration: negative control, 1, 2, 20, 200, 2000, 20,000 µg L-1. After the selection of habitat, organisms were forcedly maintained in the chosen concentrations for 48 h and then, metabolic effects were measured assessing the blood plasma amino acid profile and liver protein degradation. We also determined the effective concentrations of ATZ tested at 0 h and 48 h. The results showed that there was an effect of the treatment on the distribution of tadpoles, but not on the hours or on the combined effect (interaction). The biochemical analyses also showed a concentration-dependent relationship which caused significant toxic effects even in a short period of time. In conclusion, these frogs were able to avoid places with high concentrations of ATZ in the first hours of exposure, which suggests that in the natural environment these animals can migrate or avoid areas contaminated by this herbicide; however, depending on the selected concentration, serious biochemical consequences can occur.
Collapse
Affiliation(s)
| | | | - Eliane Vieira
- Biological Institute - APTA - SAA, São Paulo, SP, Brazil
| | - Erna E Bach
- Biological Institute - APTA - SAA, São Paulo, SP, Brazil
| | | | | |
Collapse
|
5
|
Saifullah S, Margus A, Kankare M, Lindström L. Repeated exposure of fluazinam fungicides affects gene expression profiles yet carries no costs on a nontarget pest. INSECT SCIENCE 2022; 29:1373-1386. [PMID: 35143114 PMCID: PMC9790412 DOI: 10.1111/1744-7917.13013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/30/2021] [Accepted: 01/23/2022] [Indexed: 05/31/2023]
Abstract
Fungicides are used to control pathogenic fungi of crop species, but they have also been shown to alter behavioral, life history and fitness related traits of nontarget insects. Here, we tested the fungicide effects on feeding behavior, survival and physiology of the nontarget pest insect, the Colorado potato beetle (CPB) (Leptinotarsa decemlineata). Feeding behavior was studied by a choice test of adult beetles, which were allowed to choose between a control and a fungicide (fluazinam) treated potato leaf. Larval survival was recorded after 24 and 72 h exposure to control and fungicide-treated leaves with 2 different concentrations. The adults did not show fungicide avoidance behavior. Similarly, survival of the larvae was not affected by the exposure to fungicides. Finally, to understand the effects of fungicides at the physiological level (gene expression), we tested whether the larval exposure to fungicide alter the expression of 5 metabolic pathway and stress associated genes. Highest concentration and 72-h exposure caused upregulation of 1 cytochrome P450 (CYP9Z14v2) and 1 insecticide resistance gene (Ldace1), whereas metabolic detoxification gene (Ugt1) was downregulated. At 24-h exposure, highest concentration caused downregulation of another common detoxification gene (Gs), while both exposure times to lowest concentration caused upregulation of the Hsp70 stress tolerance gene. Despite these overall effects, there was a considerable amount of variation among different families in the gene expression levels. Even though the behavioral effects of the fungicide treatments were minor, the expression level differences of the studied genes indicate changes on the metabolic detoxifications and stress-related pathways.
Collapse
Affiliation(s)
- Shahed Saifullah
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Aigi Margus
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Maaria Kankare
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Leena Lindström
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
6
|
Umeokeke HC, Amaeze HN, Ehiguese FO, Ogunfeitimi OO, Soriwei ET, Labinjo SA. Dichlorvos and Paraquat induced avoidance responses in tadpoles (Amietophrynus regularis reuss, 1833) and their contribution to population decline. Environ Anal Health Toxicol 2022; 37:e2022017-0. [PMID: 35878925 PMCID: PMC9314201 DOI: 10.5620/eaht.2022017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022] Open
Abstract
Pesticides notwithstanding their benefits in agriculture pose threats to non-target fauna such as amphibians. This study examined the avoidance responses of tadpoles of the African common toad, <i>Amietophrynus regularis</i>, exposed to Dichlorvos and Paraquat under a non-forced multi-compartmented exposure system (NFS) and estimated the Population Immediate Decline (PID) by integrating avoidance and lethal responses. The NFS was designed to allow the free movement of tadpoles across six compartments in order to elucidate the ability of aquatic organisms to detect and potentially avoid contaminated environments at will. The tadpoles (n=3 per compartment/concentration; 18 per system) were exposed to gradients of Dichlorvos (0, 0.3, 0.5, 0.7, 1.0 and 2.0 mg/L) and Paraquat (0, 1.0, 5.0, 10.0, 15.0, and 20.0 mg/L) in quadruplicates with their distribution recorded every 20 mins for 3 h. 48 h acute toxicity tests under forced exposure system (FS) was performed using the same range of concentrations. Acute toxicity (48 h) response in the FS tests was dose dependent with LC<sub>50</sub> values of 0.79 mg/L and 6.46 mg/L recorded for Dichlorvos and Paraquat, respectively. The mean percentage distribution of tadpoles recorded for Dichlorvos and Paraquat was about 11% and 0% in the highest concentrations (2.0 and 20.0 mg/L) to 58% and 69% in compartments with no contaminants (control), respectively. PID was primarily driven by avoidance responses rather than mortality. These findings are of conservation interest as it elucidates the potential of both pesticides to impair local distribution of amphibians and cause biodiversity loss.
Collapse
Affiliation(s)
- Hilary C. Umeokeke
- Ecotoxicology Laboratory, Ecotoxicology and Conservation Unit, Department of Zoology, University of Lagos, Akoka-Yaba, Lagos,
Nigeria
- Correspondence:
| | - Henry N. Amaeze
- Ecotoxicology Laboratory, Ecotoxicology and Conservation Unit, Department of Zoology, University of Lagos, Akoka-Yaba, Lagos,
Nigeria
| | - Friday O. Ehiguese
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cadiz, República Saharaui s/n, 11510, Puerto Real, Cadiz,
Spain
| | - Olusola O. Ogunfeitimi
- Ecotoxicology Laboratory, Ecotoxicology and Conservation Unit, Department of Zoology, University of Lagos, Akoka-Yaba, Lagos,
Nigeria
| | - Evelyn T. Soriwei
- Ecotoxicology Laboratory, Ecotoxicology and Conservation Unit, Department of Zoology, University of Lagos, Akoka-Yaba, Lagos,
Nigeria
| | - Suuru A. Labinjo
- Ecotoxicology Laboratory, Ecotoxicology and Conservation Unit, Department of Zoology, University of Lagos, Akoka-Yaba, Lagos,
Nigeria
| |
Collapse
|
7
|
Mello JLDAS, Colombo V, Gorni GR, Corbi JJ. Effects of pyrimethanil fungicide on Chironomidae community structure. AN ACAD BRAS CIENC 2021; 93:e20200860. [PMID: 34550199 DOI: 10.1590/0001-3765202120200860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/16/2021] [Indexed: 11/22/2022] Open
Abstract
The use of agrochemicals in agriculture may impact aquatic ecosystems, particularly influencing the stream insect communities. Among aquatic insects, the family Chironomidae is the most abundant and species-diverse insect group found in freshwater ecosystems. However, in the southern hemisphere, studies with Chironomidae are still sparse, compared to Europe and North America. The present study evaluates the responses of Chironomidae species (Insecta: Diptera) to pyrimethanil fungicide in a mesocosm experiment. Water contamination and chironomid community were monitored over 10 months. After five months of monitoring, the pyrimethanil fungicide was completely degraded and there was a statistically significant increase in the Margalef Richness and Shannon-Wiener Index (H') in the control units when compared with the contaminated mesocosms (p = 0.003). Our results point out that the utilization of agrochemicals can be a harmful factor influencing negatively the Chironomidae populations. This finding has key implications for insect conservation strategies and ecological management environments.
Collapse
Affiliation(s)
- José Leonardo DA Silva Mello
- Universidade de São Paulo, Departamento de Hidráulica e Saneamento, Escola de Engenharia de São Carlos (EESC), Av. Trabalhador Sãocarlense, 400, 13566-590 São Carlos, SP, Brazil
| | - Vanessa Colombo
- Universidade de São Paulo, Departamento de Hidráulica e Saneamento, Escola de Engenharia de São Carlos (EESC), Av. Trabalhador Sãocarlense, 400, 13566-590 São Carlos, SP, Brazil.,Universidade de Araraquara, Programa de Pós-Graduação em Desenvolvimento Territorial e Meio Ambiente, Rua Carlos Gomes, 1338, Centro, 14801-340 Araraquara, SP, Brazil
| | - Guilherme Rossi Gorni
- Universidade de São Paulo, Departamento de Hidráulica e Saneamento, Escola de Engenharia de São Carlos (EESC), Av. Trabalhador Sãocarlense, 400, 13566-590 São Carlos, SP, Brazil.,Universidade de Araraquara, Programa de Pós-Graduação em Desenvolvimento Territorial e Meio Ambiente, Rua Carlos Gomes, 1338, Centro, 14801-340 Araraquara, SP, Brazil
| | - Juliano J Corbi
- Universidade de São Paulo, Departamento de Hidráulica e Saneamento, Escola de Engenharia de São Carlos (EESC), Av. Trabalhador Sãocarlense, 400, 13566-590 São Carlos, SP, Brazil
| |
Collapse
|
8
|
Könemann S, Meyer S, Betz A, Županič A, Vom Berg C. Sub-Lethal Peak Exposure to Insecticides Triggers Olfaction-Mediated Avoidance in Zebrafish Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11835-11847. [PMID: 34398619 DOI: 10.1021/acs.est.1c01792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In agricultural areas, insecticides inevitably reach water bodies via leaching or run-off. While designed to be neurotoxic to insects, insecticides have adverse effects on a multitude of organisms due to the high conservation of the nervous system among phyla. To estimate the ecological effects of insecticides, it is important to investigate their impact on non-target organisms such as fish. Using zebrafish as the model, we investigated how different classes of insecticides influence fish behavior and uncovered neuronal underpinnings of the associated behavioral changes, providing an unprecedented insight into the perception of these chemicals by fish. We observed that zebrafish larvae avoid diazinon and imidacloprid while showing no response to other insecticides with the same mode of action. Moreover, ablation of olfaction abolished the aversive responses, indicating that fish smelled the insecticides. Assessment of neuronal activity in 289 brain regions showed that hypothalamic areas involved in stress response were among the regions with the largest changes, indicating that the observed behavioral response resembles reactions to stimuli that threaten homeostasis, such as changes in water chemistry. Our results contribute to the understanding of the environmental impact of insecticide exposure and can help refine acute toxicity assessment.
Collapse
Affiliation(s)
- Sarah Könemann
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- École Polytechnique Fédérale de Lausanne, EPFL, Route Cantonale, 1015 Lausanne, Switzerland
| | - Stéphanie Meyer
- École Polytechnique Fédérale de Lausanne, EPFL, Route Cantonale, 1015 Lausanne, Switzerland
| | - Alexander Betz
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Anže Županič
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Colette Vom Berg
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
9
|
Assessment of Advanced Oxidation Processes Using Zebrafish in a Non-Forced Exposure System: A Proof of Concept. Processes (Basel) 2021. [DOI: 10.3390/pr9050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Water bodies and aquatic ecosystems are threatened by discharges of industrial waters. Ecotoxicological effects of components occurring in untreated and treated wastewaters are often not considered. The use of a linear, multi-compartmented, non-forced, static system constructed with PET bottles is proposed for the quality assessment of treated waters, to deal with such limitations. Two synthetic waters, one simulating wastewater from the textile industry and the other one simulating wastewater from the cassava starch industry, were prepared and treated by homogeneous Fenton process and heterogeneous photocatalysis, respectively. Untreated and treated synthetic waters and their dilutions were placed into compartments of the non-forced exposure system, in which zebrafish (Danio rerio), the indicator organism, could select the environment of its preference. Basic physical–chemical and chemical parameters of untreated and treated synthetic waters were measured. The preference and avoidance responses allowed verification of whether or not the quality of the water was improved due to the treatment. The results of these assays can be a complement to conventional parameters of water quality.
Collapse
|
10
|
Moreira RA, Araújo CVM, Junio da Silva Pinto T, Menezes da Silva LC, Goulart BV, Viana NP, Montagner CC, Fernandes MN, Gaeta Espindola EL. Fipronil and 2,4-D effects on tropical fish: Could avoidance response be explained by changes in swimming behavior and neurotransmission impairments? CHEMOSPHERE 2021; 263:127972. [PMID: 32822938 DOI: 10.1016/j.chemosphere.2020.127972] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Brazil is the largest producer of sugarcane, a crop largely dependent on chemical control for its maintenance. The insecticide fipronil and herbicide 2,4-D stand out among the most commonly used pesticides and, therefore, environmental consequences are a matter of concern. The present study aimed to investigate the toxicity mechanisms of Regent® 800 WG (a.i. fipronil) and DMA® 806 BR (a.i. 2,4-D) pesticides using forced and non-forced exposures through an integrative approach: firstly, to assess whether contamination by fipronil and 2,4-D can trigger the avoidance behavior of the fish Danio rerio (zebrafish) and Hyphessobrycon eques (serpae tetra or mato-grosso). Additionally, the effects on fish were analyzed considering the swimming behavior together with a biomarker of neurotoxicity, the activity of acetylcholinesterase (AChE). In avoidance tests with pesticide gradients, D. rerio avoided the highest concentrations of the two compounds and H. eques avoided only the highest concentration of 2,4-D. The swimming behavior (distance moved) was reduced and AChE was inhibited when D. rerio was exposed to fipronil. The 2,4-D affected the swimming (maximum speed) of H. eques, but AChE was not altered. Avoidance response seemed not to have been affected by possible effects of contaminants on swimming behavior and Ache activity. This study showed the importance of knowing the avoidance capacity, swimming behavior and neurotoxic effects of pesticides on fish in an integrated and realistic context of exposure in environments contaminated with pesticides and can be useful as ecologically relevant tools for ecological risk assessment.
Collapse
Affiliation(s)
- Raquel Aparecida Moreira
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil.
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Thandy Junio da Silva Pinto
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Laís Conceição Menezes da Silva
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Natália Prudêncio Viana
- Physiological Sciences Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Marisa Narciso Fernandes
- Physiological Sciences Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Evaldo Luiz Gaeta Espindola
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| |
Collapse
|
11
|
Jacob RS, Araújo CVM, Santos LVDS, Moreira VR, Lebron YAR, Lange LC. The environmental risks of pharmaceuticals beyond traditional toxic effects: Chemical differences that can repel or entrap aquatic organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115902. [PMID: 33160736 DOI: 10.1016/j.envpol.2020.115902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
The aim of the present study was to assess the risks of four different pharmaceutical active compounds (PhACs; diazepam, metformin, omeprazole and simvastatin). Acute and chronic toxicities were studied using the bacterium Aliivibrio fischeri and the microalgae Pseudokirchneriella subcapitata; while the repellency and attractiveness were assessed by avoidance tests with juvenile Cypirinus carpio using a multi-compartmented exposure system. Omeprazole was found to be an acutely toxic drug (EC50: 0.015 mg/L), while the other PhACs, except simvastatin, showed some chronic toxicity. Regarding avoidance, simvastatin and omeprazole induced an escape response for 50% of the fish population at 0.032 and 0.144 mg/L, respectively; contrarily, diazepam was attractive, even at lethal concentrations, representing a dangerous trap for organisms. The toxicity of the PhACs seemed not to be directly related to their repellency; and the mode of action seems to determine the repellency or attractiveness of the chemicals. Contamination by PhACs is of concern due to the environmental disturbance they might cause, either due to their acute and chronic toxicity (at the individual level), repellency (at the ecosystem level: loss of local biodiversity) or attraction to potentially lethal levels.
Collapse
Affiliation(s)
- Raquel Sampaio Jacob
- Sanitation and Environmental Engineering Department, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil; Civil Engineering Department, Pontifical Catholic University of Minas Gerais, ZIP 30.535-901, Belo Horizonte, MG, Brazil.
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC). Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Lucilaine Valéria de Souza Santos
- Sanitation and Environmental Engineering Department, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil; Chemical Engineering Department - Pontifical Catholic University of Minas Gerais, ZIP 30.535-901, Belo Horizonte, MG, Brazil
| | - Victor Rezende Moreira
- Sanitation and Environmental Engineering Department, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil
| | - Yuri Abner Rocha Lebron
- Sanitation and Environmental Engineering Department, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil
| | - Liséte Celina Lange
- Sanitation and Environmental Engineering Department, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil
| |
Collapse
|
12
|
Araújo CVM, Laissaoui A, Silva DCVR, Ramos-Rodríguez E, González-Ortegón E, Espíndola ELG, Baldó F, Mena F, Parra G, Blasco J, López-Doval J, Sendra M, Banni M, Islam MA, Moreno-Garrido I. Not Only Toxic but Repellent: What Can Organisms' Responses Tell Us about Contamination and What Are the Ecological Consequences When They Flee from an Environment? TOXICS 2020; 8:E118. [PMID: 33322739 PMCID: PMC7768353 DOI: 10.3390/toxics8040118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 01/04/2023]
Abstract
The ability of aquatic organisms to sense the surrounding environment chemically and interpret such signals correctly is crucial for their ecological niche and survival. Although it is an oversimplification of the ecological interactions, we could consider that a significant part of the decisions taken by organisms are, to some extent, chemically driven. Accordingly, chemical contamination might interfere in the way organisms behave and interact with the environment. Just as any environmental factor, contamination can make a habitat less attractive or even unsuitable to accommodate life, conditioning to some degree the decision of organisms to stay in, or move from, an ecosystem. If we consider that contamination is not always spatially homogeneous and that many organisms can avoid it, the ability of contaminants to repel organisms should also be of concern. Thus, in this critical review, we have discussed the dual role of contamination: toxicity (disruption of the physiological and behavioral homeostasis) vs. repellency (contamination-driven changes in spatial distribution/habitat selection). The discussion is centered on methodologies (forced exposure against non-forced multi-compartmented exposure systems) and conceptual improvements (individual stress due to the toxic effects caused by a continuous exposure against contamination-driven spatial distribution). Finally, we propose an approach in which Stress and Landscape Ecology could be integrated with each other to improve our understanding of the threat contaminants represent to aquatic ecosystems.
Collapse
Affiliation(s)
- Cristiano V. M. Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Puerto Real, 11519 Cadiz, Spain; (E.G.-O.); (J.B.); (I.M.-G.)
| | - Abdelmourhit Laissaoui
- National Centre for Nuclear Energy, Science and Technology, BP 1381, Rabat RP 10001, Morocco;
| | - Daniel C. V. R. Silva
- Institute of Xingu Studies, Federal University of Southern and Southeastern Pará, São Félix do Xingu, PA 68507-590, Brazil;
| | - Eloisa Ramos-Rodríguez
- Department of Ecology and Institute of Water Research, University of Granada, 18010 Granada, Spain;
| | - Enrique González-Ortegón
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Puerto Real, 11519 Cadiz, Spain; (E.G.-O.); (J.B.); (I.M.-G.)
| | - Evaldo L. G. Espíndola
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP 13.560-970, Brazil;
| | - Francisco Baldó
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Cádiz, 11006 Cádiz, Spain;
| | - Freylan Mena
- Regional Institute for Studies on Toxic Substances (IRET), Universidad Nacional, 86-3000 Heredia, Costa Rica;
| | - Gema Parra
- Animal Biology, Plant Biology and Ecology Department, University of Jaén, 23071 Jaén, Spain;
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Puerto Real, 11519 Cadiz, Spain; (E.G.-O.); (J.B.); (I.M.-G.)
| | - Julio López-Doval
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, 17003 Girona, Spain;
- Faculty of Sciences, University of Girona, Campus de Montilivi, 17003 Girona, Spain
| | - Marta Sendra
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain;
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, 1349-017 Chott-Mariem, Tunisia;
| | - Mohammed Ariful Islam
- Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh;
| | - Ignacio Moreno-Garrido
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Puerto Real, 11519 Cadiz, Spain; (E.G.-O.); (J.B.); (I.M.-G.)
| |
Collapse
|
13
|
Venâncio C, Ribeiro R, Lopes I. Active emigration from climate change-caused seawater intrusion into freshwater habitats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113805. [PMID: 31883492 DOI: 10.1016/j.envpol.2019.113805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Ecological risk assessment associated with seawater intrusions has been supported on the determination of lethal/sublethal effects following standard protocols that force exposure neglecting the ability of mobile organisms to spatially avoid salinized environments. Thus, this work aimed at assessing active emigration from climate change-caused seawater intrusion into freshwater habitats. To specific objectives were delineated: first, to compute median 12-h avoidance conductivities (AC50,12h) for freshwater species, and second, to compare it with literature data (LC50,48 or 96h, EC50,6 or 21d) to assess the relevance of the inclusion of stressor-driven emigration into risk assessment frameworks. Four standard test species, representing a broad range of ecological niches - Daphnia magna, Heterocypris incongruens, Danio rerio and Xenopus laevis - were selected. The salt NaCl was used as a surrogate of natural seawater to create the saline gradient, which was established in a 7-compartment system. At each specific LC50, 48 or 96h, the proportion of avoiders were well above 50%, ranging from 71 to 94%. At each LC50, considering also avoiders, populations would decline by 85-97%. Furthermore, for D. magna and X. laevis it was noticed that at the lowest conductivities eliciting mortality, the avoidance already exceeded 50%. The results showed that the emigration from salinity-disturbed habitats exists and that can even be more sensitive than standard endpoints. Looking solely to standard endpoints involving forced exposure may greatly underestimate the risk of local population extinction, because habitat function can be severely disrupted, with subsequent stressor-driven emigration, before any adverse physiological effects at the organism level. Thus, the present study highlights the need to include non-forced exposure testing into ecological risk assessment, namely of salinity-menaced costal freshwaters.
Collapse
Affiliation(s)
- C Venâncio
- CFE-Centre for Functional Ecology - Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - R Ribeiro
- CFE-Centre for Functional Ecology - Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - I Lopes
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
14
|
Araújo CVM, Pontes JRS, Blasco J. Might the interspecies interaction between fish and shrimps change the pattern of their avoidance response to contamination? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109757. [PMID: 31606638 DOI: 10.1016/j.ecoenv.2019.109757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Contamination seems to exert a crucial role in the spatial distribution of some organisms, such as shrimps and fish. Both, especially the freshwater fish Danio rerio and the shrimp Atyaephyra desmarestii, have been tested experimentally for their avoidance response and have showed the ability to escape from toxic effects. As the behavior of avoiding or not the contamination might be altered in the presence of other factors, the aim of the current study was to verify whether the avoidance response of both species, when exposed jointly (multispecies tests), to a copper gradient is different from the avoidance response observed in monospecies tests. The avoidance was assessed in a multi-compartmented exposure system, in which a copper gradient was simulated. Organisms were tested individually and together. Both species avoided potentially toxic copper concentrations; however, shrimps were slightly more sensitive in the monospecies tests: AC50 (avoidance concentration for 50% of the population) of 60 (53-68) μg/L for the zebrafish and 50 (45-56) μg/L for the shrimp. In the multispecies tests, the sensitivity pattern changed: the avoidance response by the fish [AC50: 30 (14-46) μg/L] was greater than by the shrimps [AC50: 70 (22-141) μg/L]. Although the AC50 values are in the same order of magnitude, a slight trend to change the avoidance pattern was observed in the shrimps during multispecies test: the avoidance was lower and time-delayed. This behavioral change could be linked to the stress caused by the zebrafish sharing the space with the shrimps, perhaps increasing the territorialism of the fish, or a delay in the shrimps detecting the risk of contamination.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain.
| | - João Rodolfo S Pontes
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain; Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
15
|
Araújo CVM, Pontes JRS, Blasco J. Does the previous exposure to copper alter the pattern of avoidance by zebrafish in a copper gradient scenario? Hypothesis of time-delayed avoidance due to pre-acclimation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133703. [PMID: 31394324 DOI: 10.1016/j.scitotenv.2019.133703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
The traditional ecotoxicity assays (forced exposure) tend to use organisms that are cultured under controlled conditions or that come from undisturbed ecosystems, with no (or negligible) previous contact with contamination. The same occurs in the non-forced approach, in which organisms are exposed to a contamination gradient and can move between different concentrations choosing the less toxic one. Considering that organisms inhabiting contaminated ecosystems tend to be gradually exposed to contamination, an abrupt exposure from uncontaminated conditions to a contaminated environment might present two problems: lack of ecological relevance to a scenario where the contamination occurs gradually and a magnification of the toxicity due to the sudden change in the environmental conditions. Therefore, a key question should be addressed: might a previous exposure to contamination reduce the organisms' perception of the danger of a contaminant (hypothesis of time-delayed avoidance due to pre-acclimation-TDADP), altering their avoidance response pattern? We tested the avoidance of zebrafish (Danio rerio: ±2 months old) populations when exposed to a copper gradient (0-400 μg/L). The populations differed according to the period (24 h and 7 and 30 days) in which they were acclimated to copper (ca. 400 μg/L). The avoidance in the 2 h experiments changed as a consequence of the acclimation period. In the population that was not previously acclimated, 40% of the fish moved to the less contaminated compartment and only 6.7% stayed in the most contaminated one; for the other populations those values were, respectively, 31 and 11% (24 h-acclimation), 28 and 26% (7 day-acclimation) and 19 and 27% (30 day-acclimation). An abrupt exposure to a contaminant might overestimate the response if this is analyzed in the short-term. When the avoidance tests were prolonged to 24 h, the avoidance tended to reach similar values to those of the non-acclimated population, thus supporting our TDADP hypothesis.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cádiz, Spain.
| | - João Rodolfo S Pontes
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cádiz, Spain; Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
16
|
Araújo CVM, Gómez L, Silva DCVR, Pintado-Herrera MG, Lara-Martín PA, Hampel M, Blasco J. Risk of triclosan based on avoidance by the shrimp Palaemon varians in a heterogeneous contamination scenario: How sensitive is this approach? CHEMOSPHERE 2019; 235:126-135. [PMID: 31255752 DOI: 10.1016/j.chemosphere.2019.06.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/04/2019] [Accepted: 06/19/2019] [Indexed: 05/06/2023]
Abstract
As the exposure of organisms to contaminants can provoke harmful effects, some organisms try to avoid a continuous exposure by using different strategies. The aim of the current study was to assess the ability of the shrimp Palaemon varians to detect a triclosan gradient and escape to less contaminated areas. Two multi-compartmented exposure systems (the linear system and the HeMHAS-Heterogeneous Multi-Habitat Assay System) were used and then results were compared. Finally, it was aimed how sensitive the avoidance response is by comparing it with other endpoints through a sensitivity profile by biological groups and the species sensitive distribution. The distribution of the shrimps along the triclosan gradient was dependent on the concentrations, not exceeding 3% for 54 μg/L in the linear system and 7% for 81 μg/L in the HeMHAS; 25% of organisms preferred the compartment with the lowest concentrations in both systems. Half of the population seems to avoid concentrations around 40-50 μg/L. The triclosan concentration that might start (threshold) to trigger an important avoidance (around 20%) was estimated to be of 18 μg/L. The profile of sensitivity to triclosan showed that avoidance by shrimps was less sensitive than microalgae growth and avoidance by guppy; however, it might occur even at concentrations considered safe for more than 95% of the species. In summary, (i) the HeMHAS proved to be a suitable system to simulate heterogeneous contamination scenarios, (ii) triclosan triggered the avoidance response in P. varians, and (iii) the avoidance was very sensitive compared to other ecotoxicological responses.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain.
| | - Livia Gómez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain; Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510, Puerto Real, Spain
| | - Daniel C V R Silva
- Institute of Xingu Studies, Federal University of Southern and Southeastern Pará, São Félix do Xingu, Pará, Brazil
| | - Marina G Pintado-Herrera
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510, Puerto Real, Spain
| | - Pablo A Lara-Martín
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510, Puerto Real, Spain
| | - Miriam Hampel
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510, Puerto Real, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
17
|
Ehiguese FO, Fernandez MDCC, Lara-Martín PA, Martín-Díaz ML, Araújo CVM. Avoidance behaviour of the shrimp Palaemon varians regarding a contaminant gradient of galaxolide and tonalide in seawater. CHEMOSPHERE 2019; 232:113-120. [PMID: 31152895 DOI: 10.1016/j.chemosphere.2019.05.196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
The musk fragrances galaxolide (HHCB) and tonalide (AHTN) are compounds of emerging concern that have been found in various environmental compartments. The present study addressed the ability of HHCB and AHTN to elicit the avoidance response in the estuarine shrimp Palaemon varians and to predict the population immediate decline (PID) of P. varians when exposed to HHCB and AHTN by integrating both avoidance (non-forced exposure) and lethality (forced exposure) responses. The avoidance response was tested in a non-forced multi-compartmented static system, in which the shrimps could move freely among the compartments with different concentrations. The shrimps (n = 3 shrimps per compartment/concentration; 18 shrimps per system) were exposed to a gradient (0, 0.005, 0.05, 0.5, 5 and 50 μg/L) of both substances and their positions were checked at every 20 min for a 3 h period. The results from 24-h forced exposure showed no dose-response relationship and the highest percentage mortality was 17% for HHCB at 0.005 and 0.5 μg/L. In the 3-h non-forced exposure to a gradient of HHCB and AHTN, significant concentration-dependent spatial avoidance was observed for both substances. The shrimps avoided the lowest concentration of HHCB and AHTN (0.005 μg/L) by 15% and 16%. The avoidance increased significantly (p < 0.005) to a 61% and 57%, respectively, for the highest concentration (50 μg/L). The population immediate decline was driven by the avoidance behaviour of the shrimps rather than mortality. These results indicated that the aversiveness of HHCB and AHTN might have serious consequences for habitat selection processes by organisms.
Collapse
Affiliation(s)
- Friday Ojie Ehiguese
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cadiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain.
| | - María Del Carmen Corada Fernandez
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cadiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain
| | - Pablo A Lara-Martín
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cadiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain
| | - M Laura Martín-Díaz
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cadiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
18
|
van der Linden P, Shinn C, Moreira-Santos M, Oehlmann J, Ribeiro R, Müller R. Aquatic mesocosms exposed to a fungicide in warm and cold temperate European climate zones: Long-term macroinvertebrate response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:133-142. [PMID: 31103651 DOI: 10.1016/j.scitotenv.2019.05.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
At present, the European Union legislation facilitates the use of similar pesticides among European Member States, thereby assuming that biodiversity and ecosystems have equal sensitivities to contaminants throughout the whole of Europe. However, with this assumption, fundamental environmental and biological differences between climatic zones are being ignored in Environmental Risk Assessment. Such differences may strongly influence the behaviour of contaminants, their effects on biodiversity and on the natural functioning of ecosystems. Furthermore, toxicity testing in European ecoregions other than cold-temperate has largely depended on standardized tests using cold-temperate species and conditions, which may lead to a false estimation of risks to organisms from other ecoregions. The present study aim was to determine the response of freshwater macroinvertebrate communities to the fungicide pyrimethanil by conducting aquatic mesocosm experiments in two different ecoregions with different climates: cold-temperate (Frankfurt, Germany) and warm-temperate (Coimbra, Portugal). The results indicate that the community in the cold-temperate climate was more sensitive to the fungicide in comparison to the warm-temperate community. This difference was most likely related to a different rate of fungicide disappearance, which was slower in the colder climate. Based upon our results we discuss important implications for improving Environmental Risk Assessment across climate zones and under present-day global climate change scenarios.
Collapse
Affiliation(s)
- P van der Linden
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal.
| | - C Shinn
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - M Moreira-Santos
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - J Oehlmann
- Goethe University, Department Aquatic Ecotoxicology, Max von Laue straße 13, Frankfurt 60438, Germany
| | - R Ribeiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - R Müller
- Goethe University, Institute of Occupational Social and Environmental Medicine, Theodor Stern Kai 7, Frankfurt 60590, Germany; Institute of Tropical Medicine, Nationalestraat 155, Antwerp 2000, Belgium
| |
Collapse
|
19
|
Müller R, Shinn C, Waldvogel AM, Oehlmann J, Ribeiro R, Moreira-Santos M. Long-term effects of the fungicide pyrimethanil on aquatic primary producers in macrophyte-dominated outdoor mesocosms in two European ecoregions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:982-994. [PMID: 30790766 DOI: 10.1016/j.scitotenv.2019.02.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
Even though empirical data supporting sound ecoregion-specific ecotoxicological evaluations are still scarce, the differences of environmental (including climatic) conditions in specific ecoregions are already currently being regulated for environmental risk assessment of pesticides in Europe. To shed new light on the ecotoxicological effects of pesticides on aquatic communities across ecoregions, the model pollutant pyrimethanil (fungicide) was tested in an outdoor mesocosm study with macrophyte-dominated communities in the European "South" (Portugal) and "Centre" (Germany) regulatory zones. Phytoplankton indicators monitored over 12 months indicated a low risk of the fungicide (0.73 or 0.77 mg pyrimethanil L-1, single application) to phytoplankton functioning; as expected since exposure simulated worst-case scenarios. However, the growth of key structural macroalgae and macrophytes was affected by the fungicide and negative effects occurred, especially in the Central zone experiment. Such effects were not detected earlier than approximately nine months post single pyrimethanil application. The presence or absence of such extremely long-lasting/delayed pyrimethanil effects depended on species, competitive situation, and ecoregion-specific physico-chemical environment. The present findings suggest that a better understanding of both direct and indirect effects of fungicide pollution on aquatic flora in two European ecoregions helps to consolidate the environmental risk assessment of pesticides in specific regulatory zones.
Collapse
Affiliation(s)
- Ruth Müller
- Goethe University Frankfurt am Main, Institute of Occupational, Social and Environmental Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium.
| | - Cândida Shinn
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ann-Marie Waldvogel
- Biodiversity and Climate Research Centre, Department Climate and Adaptation, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany.
| | - Jӧrg Oehlmann
- Goethe-University Frankfurt am Main, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| | - Rui Ribeiro
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Matilde Moreira-Santos
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| |
Collapse
|
20
|
Islam MA, Blasco J, Araújo CVM. Spatial avoidance, inhibition of recolonization and population isolation in zebrafish (Danio rerio) caused by copper exposure under a non-forced approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:504-511. [PMID: 30414580 DOI: 10.1016/j.scitotenv.2018.10.375] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
Aquatic ecosystems receive run-off and discharges from different sources that lead to the accumulation of contaminants such as copper. Besides producing lethal and sub-lethal effects, copper has shown to be aversive to zebrafish (Danio rerio) by triggering avoidance response. The primary aim of the present study was to evaluate how a copper gradient could affect the spatial distribution of D. rerio by triggering avoidance, preventing recolonization and isolating populations. Secondly, to what extent the food availability in a previously avoided environment could make it a less aversive environment was assessed. A non-forced, multi-compartmented exposure system with a copper gradient (0-300 μg·L-1), through which fish could move, was used for the avoidance and recolonization assays. To test the effect of copper on population isolation, two uncontaminated connected zones were separated by a chemical barrier with a copper concentration of 90 μg·L-1 (a concentration producing an avoidance of 50% - AC50). Zebrafish avoided copper and the 2 h-AC50 was 90.8 μg·L-1. The recolonization was in accordance with avoidance and the relationship ACx/RC100-x (RC: recolonization concentration) was around 2.5. When food was provided in the highest copper concentration, the recolonization pattern was altered, although the distribution of the fish was not statistically different from the scenario without food. The chemical barrier formed by copper (90 μg·L-1) impaired the migratory potential of the fish population by 41.3%; when food was provided in the last compartment, no statistically significant trend of fish moving towards that concentration was observed. Copper might act as an environmental disruptor by triggering spatial avoidance, preventing recolonization and isolating populations in zebrafish. The present study allows simultaneously including three ecological concepts to ecotoxicological studies that have received little attention: habitat selection, recolonization and habitat chemical fragmentation.
Collapse
Affiliation(s)
- Mohammed Ariful Islam
- Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh; Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510 Puerto Real, Cadiz, Spain.
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510 Puerto Real, Cadiz, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
21
|
Araújo CVM, González-Ortegón E, Pintado-Herrera MG, Biel-Maeso M, Lara-Martín PA, Tovar-Sánchez A, Blasco J. Disturbance of ecological habitat distribution driven by a chemical barrier of domestic and agricultural discharges: An experimental approach to test habitat fragmentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2820-2829. [PMID: 30463135 DOI: 10.1016/j.scitotenv.2018.10.200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 06/09/2023]
Abstract
Contamination is an important factor for determining the pattern of habitat selection by organisms. Since many organisms are able to move from contaminated to more favorable habitats, we aimed to: (i) verify if the contamination along the river Guadalete (Spain) could generate a chemical barrier, restricting the displacement of freshwater shrimps (Atyaephyra desmarestii) and (ii) discriminate the role of the contaminants concerning the preference response by the shrimps. A. desmarestii was experimentally tested in a multi-compartmented, non-forced exposure system, simulating the spatial arrangement of the samples just like their distribution in the environment. Water and sediment samples were chemically characterized by analyses of 98 chemical compounds and 19 inorganic elements. Shrimps selected the less contaminated water and sediment samples, with two marked preference patterns: (i) upstream displacement avoiding the sample located at the point of pollutant discharges and those samples downstream from this point and (ii) fragmentation of the population with spatial isolation of the upstream and downstream populations. The preference was related to the avoidance of artificial sweeteners, flame retardants, fragrances, PAHs, PCBs, pesticides, UV filters and some inorganic elements. The threat of contamination was related to its potential to isolate populations due to the chemical fragmentation of their habitat.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cadiz, Spain.
| | - Enrique González-Ortegón
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cadiz, Spain; CEIMAR International Campus of Excellence of the Sea, Spain
| | - Marina G Pintado-Herrera
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510 Puerto Real, Spain
| | - Miriam Biel-Maeso
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510 Puerto Real, Spain
| | - Pablo A Lara-Martín
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510 Puerto Real, Spain
| | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cadiz, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
22
|
Araújo CVM, Blasco J. Spatial avoidance as a response to contamination by aquatic organisms in nonforced, multicompartmented exposure systems: A complementary approach to the behavioral response. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:312-320. [PMID: 30444292 DOI: 10.1002/etc.4310] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/12/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
The idea that the hazard of contaminants is exclusively related to their toxic effects does not consider the fact that some organisms can avoid contamination, preventing toxicity. Although inferences about avoidance are made in most behavioral ecotoxicology studies, assessment of the real spatial displacement (organisms moving toward another habitat to escape contamination) is difficult due to the type of exposure (confined and mandatory) used in the bioassays: a forced exposure approach. A complementary approach using nonforced exposure systems to assess how contaminants affect the spatial distribution of organisms in a bicompartmented (toxic or nontoxic) environment has long been described. Recently, this nonforced approach has been developed to include a multi compartmented system in which different samples can be simultaneously tested. The aim of the present review was to describe the importance of the nonforced, multicompartmented exposure approach to simulate a gradient or patches of contamination, to describe the 2 main exposure systems, and to highlight the ecological relevance of including spatial avoidance and habitat preference in ecotoxicological studies. The multicompartmentalization of the system makes it possible to simulate more complex scenarios and therefore include new ecological concepts in bioassays. We also contrasted spatial avoidance in the nonforced exposure systems with the behavioral endpoints measured under other exposure systems. Finally, we showed that the nonforced, multicompartmented exposure approach makes it possible 1) to improve environmental risk assessments by adding the dispersion pattern of organisms in a multihabitat scenario, and 2) to integrate ecological concepts such as recolonization of recovering habitats, loss of habitat connectivity, habitat fragmentation, and contamination-driven metapopulation, which have received limited attention in ecotoxicological studies. Environ Toxicol Chem 2019;38:312-320. © 2018 SETAC.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia, Cádiz, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia, Cádiz, Spain
| |
Collapse
|
23
|
Araújo CVM, Moreira-Santos M, Ribeiro R. Stressor-driven emigration and recolonisation patterns in disturbed habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:884-889. [PMID: 29960225 DOI: 10.1016/j.scitotenv.2018.06.264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Although essential to conservation, little is known about how stress intensity can provoke emigration from disturbed habitats and allow recolonisation of those same environments. To demonstrate the applicability of laboratory experiments, we tested two hypotheses empirically using zebrafish response to artificially polluted environments that exhibited a linear gradient of stressor (acid mine drainage) levels. We hypothesized that emigration is distance-independent but time-correlated (spacelessness hypothesis). Additionally, we hypothesized that stressor-driven emigration could predict the extent of population growth in recovering habitats (avoidance-recolonisation hypothesis). For example, if half the organisms emigrate at a given stressor level, then the remainder should be able to recolonise a habitat experiencing the same stressor intensity. Comparisons of the small-scale experiment with a larger-scale simulation suggested that controlled laboratory results can be extrapolated to field populations (although time to perceive the contamination gradient may pose differential individual effects) because AC50 (median avoidance concentration) values of an acid mine drainage sample (AMD) were not statistically different when fish were exposed to the same gradient in 3-m long [0.50% (0.43-0.57)] or 30-m long [0.73% (0.30-2.2)] systems. Regarding the avoidance-recolonisation hypothesis, the number of recolonisers was inversely proportional to the number of avoiders (ACx = RC100-x). In particular, the similar distribution of fish along the 0-3% AMD gradient in both avoidance and recolonisation experiments resulted in identical AC50 and RC50 values: 0.55% (0.34-0.87) and 0.55% (0.45-0.67) AMD, respectively. The inclusion of avoidance and recolonisation responses in the environmental risk assessments provides a novel perspective of risk based on the emigration of organisms and contributes to the understanding and prediction of biological invasions and ecosystem recovery after restoration.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, 11510 Puerto Real, Spain.
| | - Matilde Moreira-Santos
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Rui Ribeiro
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| |
Collapse
|
24
|
Silva DCVR, Araújo CVM, Marassi RJ, Cardoso-Silva S, Neto MB, Silva GC, Ribeiro R, Silva FT, Paiva TCB, Pompêo MLM. Influence of interspecific interactions on avoidance response to contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:824-831. [PMID: 29925054 DOI: 10.1016/j.scitotenv.2018.06.127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/02/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
An increasing number of studies have shown the ability of organisms to escape from toxic effects due to contamination, by moving spatially towards less contaminated habitats. However, this issue has been investigated in monospecific scenarios, without considering possible interactions between species during the contamination avoidance process. It is widely known that the spatial distribution of one species can be affected by another one, in different ways. Therefore, the main question addressed in the present study was as follows: Might interspecific interaction between the freshwater fish Danio rerio (zebrafish) and Poecilia reticulata (guppy) change their behavior patterns in terms of avoidance in the presence of a copper gradient? Zebrafish and guppies exposed to a copper gradient were tested for avoidance responses in a free-choice, non-forced, static, multi-compartmented exposure system, using two distinct approaches: (1) monospecific tests, in which only one species was exposed to the copper gradient, at two different population densities; and (2) multispecific tests, in which both species were tested simultaneously. In the control (with no copper) monospecific tests, both species were randomly distributed; however, in the control multispecific test, P. reticulata tended to aggregate. In the monospecific tests with a copper gradient, both species avoided copper in a similar way, with AC50 (concentration triggering avoidance in 50% of the exposed population) values between 15 and 18 μg·L-1, irrespective of the population density. However, in the multispecific tests, P. reticulata displaced D. rerio to previously avoided copper levels, consequently increasing the AC50 of D. rerio to 75 μg·L-1. This study shows the importance of understanding the interactions among species in contaminated areas, and the way that one species can prevent the avoidance behavior of another.
Collapse
Affiliation(s)
- Daniel C V R Silva
- Department of Ecology, University of São Paulo, São Paulo, Brazil; Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil.
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Rodrigo J Marassi
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil; Department of Exact Sciences, School of Metallurgical and Industrial Engineering, UFF, Volta Redonda, Rio de Janeiro, Brazil
| | - Sheila Cardoso-Silva
- Environmental Sciences Program, São Paulo State University - UNESP, Sorocaba campus, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, SP, 18087-180, Brazil
| | - Morun B Neto
- Department of Basic and Environmental Sciences, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Gilmar C Silva
- Department of Exact Sciences, School of Metallurgical and Industrial Engineering, UFF, Volta Redonda, Rio de Janeiro, Brazil
| | - Rui Ribeiro
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Flávio T Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Teresa C B Paiva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | | |
Collapse
|
25
|
Silva DCVR, Araújo CVM, França FM, Neto MB, Paiva TCB, Silva FT, Pompêo MLM. Bisphenol risk in fish exposed to a contamination gradient: Triggering of spatial avoidance. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:1-6. [PMID: 29407796 DOI: 10.1016/j.aquatox.2018.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/18/2017] [Accepted: 01/24/2018] [Indexed: 06/07/2023]
Abstract
Bisphenol A (BPA) is an emerging contaminant widely used in various industrial products. Sublethal toxicity of BPA on aquatic organisms is expected to occur at a concentration of around 500 μg L-1, which is much higher than environmentally realistic concentrations found in water bodies (up to 0.41 μg L-1). However, there is no information concerning how a BPA contamination gradient could affect the spatial displacement of organisms. We hypothesized that fish might be able to detect an environmentally realistic BPA contamination gradient and avoid potential toxic effects due to continuous exposure. Therefore, the objectives of this work were: (i) to determine if BPA could trigger an avoidance response in the freshwater fish Poecilia reticulata; (ii) to assess whether BPA-driven avoidance occurs at environmentally relevant concentrations; and (iii) to estimate the population immediate decline (PID) at the local scale, considering avoidance and mortality as endpoints. Avoidance experiments were performed in a seven-compartment non-forced exposure system, in which a BPA contamination gradient was simulated. The results indicated that BPA triggered avoidance in P. reticulata. In a traditional forced acute toxicity test, lethal effects in 50% of the population occurred at a BPA concentration of 1660 μg L-1, while in the non-forced system with a BPA concentration gradient, avoidance of 50% of the population occurred at a concentration four orders of magnitude lower (0.20 μg L-1). At environmentally relevant BPA concentrations, PID was mainly determined by the avoidance response. Avoidance in P. reticulata populations is expected to occur at BPA concentrations below those that cause sublethal effects on fish and are considered safe by international agencies (≤1 μg L-1). The approach used in the present study represents a valuable tool for use in environmental risk assessment strategies, providing a novel and ecologically relevant response that is complementary to traditional ecotoxicological tests.
Collapse
Affiliation(s)
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cadiz, Spain
| | | | - Morun B Neto
- Department of Basic and Environmental Sciences, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Teresa C B Paiva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Flávio T Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | | |
Collapse
|
26
|
Araújo CVM, Griffith DM, Vera-Vera V, Jentzsch PV, Cervera L, Nieto-Ariza B, Salvatierra D, Erazo S, Jaramillo R, Ramos LA, Moreira-Santos M, Ribeiro R. A novel approach to assessing environmental disturbance based on habitat selection by zebra fish as a model organism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:906-915. [PMID: 29734636 DOI: 10.1016/j.scitotenv.2017.11.170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 06/08/2023]
Abstract
Aquatic ecotoxicity assays used to assess ecological risk assume that organisms living in a contaminated habitat are forcedly exposed to the contamination. This assumption neglects the ability of organisms to detect and avoid contamination by moving towards less disturbed habitats, as long as connectivity exists. In fluvial systems, many environmental parameters vary spatially and thus condition organisms' habitat selection. We assessed the preference of zebra fish (Danio rerio) when exposed to water samples from two western Ecuadorian rivers with apparently distinct disturbance levels: Pescadillo River (highly disturbed) and Oro River (moderately disturbed). Using a non-forced exposure system in which water samples from each river were arranged according to their spatial sequence in the field and connected to allow individuals to move freely among samples, we assayed habitat selection by D. rerio to assess environmental disturbance in the two rivers. Fish exposed to Pescadillo River samples preferred downstream samples near the confluence zone with the Oro River. Fish exposed to Oro River samples preferred upstream waters. When exposed to samples from both rivers simultaneously, fish exhibited the same pattern of habitat selection by preferring the Oro River samples. Given that the rivers are connected, preference for the Oro River enabled us to predict a depression in fish populations in the Pescadillo River. Although these findings indicate higher disturbance levels in the Pescadillo River, none of the physical-chemical variables measured was significantly correlated with the preference pattern towards the Oro River. Non-linear spatial patterns of habitat preference suggest that other environmental parameters like urban or agricultural contaminants play an important role in the model organism's habitat selection in these rivers. The non-forced exposure system represents a habitat selection-based approach that can serve as a valuable tool to unravel the factors that dictate organisms' spatial distribution in connected ecosystems.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cádiz, Spain; Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - Daniel M Griffith
- Central Department of Research (DCI), Ecuadorian Aquatic Ecotoxicology (ECUACTOX) Group, Universidad Laica Eloy Alfaro de Manabí (ULEAM), Manta, Ecuador; Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja (UTPL), Loja, Ecuador
| | - Victoria Vera-Vera
- Central Department of Research (DCI), Ecuadorian Aquatic Ecotoxicology (ECUACTOX) Group, Universidad Laica Eloy Alfaro de Manabí (ULEAM), Manta, Ecuador
| | - Paul Vargas Jentzsch
- Departamento de Ciencias Nucleares, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, EC170525 Quito, Ecuador
| | - Laura Cervera
- Central Department of Research (DCI), Ecuadorian Aquatic Ecotoxicology (ECUACTOX) Group, Universidad Laica Eloy Alfaro de Manabí (ULEAM), Manta, Ecuador
| | - Beatriz Nieto-Ariza
- Central Department of Research (DCI), Ecuadorian Aquatic Ecotoxicology (ECUACTOX) Group, Universidad Laica Eloy Alfaro de Manabí (ULEAM), Manta, Ecuador
| | - David Salvatierra
- Central Department of Research (DCI), Ecuadorian Aquatic Ecotoxicology (ECUACTOX) Group, Universidad Laica Eloy Alfaro de Manabí (ULEAM), Manta, Ecuador
| | - Santiago Erazo
- Central Department of Research (DCI), Ecuadorian Aquatic Ecotoxicology (ECUACTOX) Group, Universidad Laica Eloy Alfaro de Manabí (ULEAM), Manta, Ecuador
| | - Rusbel Jaramillo
- Ecuadorian Agency for Quality Assurance in Agriculture, Agrocalidad, EC170184 Tumbaco, Ecuador
| | - Luis A Ramos
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Universidad Tecnológica Equinoccial, EC171029 Quito, Ecuador
| | - Matilde Moreira-Santos
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Rui Ribeiro
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
27
|
Araújo CVM, Silva DCVR, Gomes LET, Acayaba RD, Montagner CC, Moreira-Santos M, Ribeiro R, Pompêo MLM. Habitat fragmentation caused by contaminants: Atrazine as a chemical barrier isolating fish populations. CHEMOSPHERE 2018; 193:24-31. [PMID: 29126062 DOI: 10.1016/j.chemosphere.2017.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/20/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Information on how atrazine can affect the spatial distribution of organisms is non-existent. As this effect has been observed for some other contaminants, we hypothesized that atrazine-containing leachates/discharges could trigger spatial avoidance by the fish Poecilia reticulata and form a chemical barrier isolating upstream and downstream populations. Firstly, guppies were exposed to an atrazine gradient in a non-forced exposure system, in which organisms moved freely among the concentrations, to assess their ability to avoid atrazine. Secondly, a chemical barrier formed by atrazine, separating two clean habitats (extremities of the non-forced system), was simulated to assess whether the presence of the contaminant could prevent guppies from migrating to the other side of the system. Fish were able to avoid atrazine contamination at environmentally relevant concentrations (0.02 μg L-1), below those described to cause sub-lethal effects. The AC50 (atrazine concentration causing avoidance to 50% of the population) was 0.065 μg L-1. The chemical barrier formed by atrazine at 150 μg L-1 (concentration that should produce an avoidance around 82%) caused a reduction in the migratory potential of the fish by 47%; while the chemical barrier at 1058 μg L-1 (concentration that produces torpidity) caused a reduction in the migratory potential of the fish by 91%. Contamination by atrazine, besides driving the spatial distribution of fish populations, has potential to act as a chemical barrier by isolating fish populations. This study includes a novel approach to be integrated in environmental risk assessment schemes to assess high-tier contamination effects such as habitat fragmentation and population displacement and isolation.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510 Puerto Real, Cádiz, Spain.
| | - Daniel C V R Silva
- Department of Ecology, University of São Paulo, São Paulo, Brazil; Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Luiz E T Gomes
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil; Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Raphael D Acayaba
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Cassiana C Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Matilde Moreira-Santos
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Rui Ribeiro
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | | |
Collapse
|
28
|
Silva DCVR, Araújo CVM, López-Doval JC, Neto MB, Silva FT, Paiva TCB, Pompêo MLM. Potential effects of triclosan on spatial displacement and local population decline of the fish Poecilia reticulata using a non-forced system. CHEMOSPHERE 2017; 184:329-336. [PMID: 28605703 DOI: 10.1016/j.chemosphere.2017.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/12/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
Triclosan (TCS) is an emerging contaminant of concern in environmental studies due to its potential adverse effects on fish behavior. Since avoidance has been shown to be a relevant behavioral endpoint, our aims were: (i) to determine if TCS is able to trigger an avoidance response in Poecilia reticulata; (ii) to predict the population immediate decline (PID) caused by TCS exposure, by integrating lethality and avoidance responses; and (iii) to verify the overestimation of risk when mortality is assessed under forced exposure. Fish were exposed to TCS in a forced exposure system, to assess mortality, and to a TCS gradient in a non-forced exposure (NFE) system. Two NFE scenarios were simulated: (#1) a spatially permanent gradient, including low and high concentrations; and (#2) a scenario with high concentrations, simulating a local discharge. The fish avoided TCS concentrations as low as 0.2 μg L-1 (avoidance of 22%). The AC50 obtained from scenario #1 (8.04 μg L-1) was about 15 times more sensitive than that from scenario #2 (118.4 μg L-1). In general, up to the highest concentration tested (2000 μg L-1), the PID was determined by the avoidance. Mortality from the forced exposure was overestimated (48 h-LC50 of 1650 mg L-1), relative to the NFE. The reduced mortality in a non-forced environment does not imply a lower effect, because part of the population is expected to disappear by moving towards favorable environments. TCS is a potential environmental disturber, since at environmentally relevant concentrations (<2 μg L-1) it could cause a decline in the fish population.
Collapse
Affiliation(s)
- Daniel C V R Silva
- Department of Ecology, University of São Paulo, São Paulo, Brazil; Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil.
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| | | | - Morun B Neto
- Department of Basic and Environmental Sciences, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Flávio T Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Teresa C B Paiva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | | |
Collapse
|
29
|
Araújo CVM, Rodríguez ENV, Salvatierra D, Cedeño-Macias LA, Vera-Vera VC, Moreira-Santos M, Ribeiro R. Attractiveness of food and avoidance from contamination as conflicting stimuli to habitat selection by fish. CHEMOSPHERE 2016; 163:177-183. [PMID: 27526061 DOI: 10.1016/j.chemosphere.2016.08.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/07/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Habitat selection by fish is the outcome of a choice between different stimuli. Typically, the presence of food tends to attract organisms, while contamination triggers an avoidance response to prevent toxic effects. Given that both food and contaminants are not homogeneously distributed in the environment and that food can be available in contaminated zones, a key question has been put forward in the present study: does a higher availability of food in contaminated areas interfere in the avoidance response to contaminants regardless of the contamination level? Tilapia fry (Oreochromis sp.; 2.5-3.0 cm and 0.5-0.8 g) were exposed to two different effluent samples, diluted along a free-choice, non-forced exposure system simulating a contamination gradient. Initially, avoidance to the effluents was checked during a one hour exposure. Afterwards, food was added to the system so that the availability of food increased with the increase in the level of contamination, and the avoidance response to contamination was checked during another hour. Results clearly showed a concentration-dependent avoidance response for both effluents during the first hour (i.e., with no food). However, in presence of the food, the avoidance pattern was altered: organisms were propelled to intermittently move towards contaminated areas where food availability was higher. The incursions were taken regardless of the potential risk linked to the toxic effects. In conclusion, even when the risk of toxicity was imminent, tilapia fry were more intensively stimulated by the attractiveness of the food than by repulsion to the contamination.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; Central Department of Research (DCI), Ecuadorian Aquatic Ecotoxicology (ECUACTOX) Group, Universidad Laica Eloy Alfaro de Manabí (ULEAM), Ciudadela Universitaria, vía San Mateo, Manta, Ecuador.
| | - Elizabeth N V Rodríguez
- Central Department of Research (DCI), Ecuadorian Aquatic Ecotoxicology (ECUACTOX) Group, Universidad Laica Eloy Alfaro de Manabí (ULEAM), Ciudadela Universitaria, vía San Mateo, Manta, Ecuador
| | - David Salvatierra
- Central Department of Research (DCI), Ecuadorian Aquatic Ecotoxicology (ECUACTOX) Group, Universidad Laica Eloy Alfaro de Manabí (ULEAM), Ciudadela Universitaria, vía San Mateo, Manta, Ecuador
| | - Luis A Cedeño-Macias
- Central Department of Research (DCI), Ecuadorian Aquatic Ecotoxicology (ECUACTOX) Group, Universidad Laica Eloy Alfaro de Manabí (ULEAM), Ciudadela Universitaria, vía San Mateo, Manta, Ecuador
| | - Victoria C Vera-Vera
- Central Department of Research (DCI), Ecuadorian Aquatic Ecotoxicology (ECUACTOX) Group, Universidad Laica Eloy Alfaro de Manabí (ULEAM), Ciudadela Universitaria, vía San Mateo, Manta, Ecuador
| | - Matilde Moreira-Santos
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Rui Ribeiro
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
30
|
Araújo CVM, Moreira-Santos M, Ribeiro R. Active and passive spatial avoidance by aquatic organisms from environmental stressors: A complementary perspective and a critical review. ENVIRONMENT INTERNATIONAL 2016; 92-93:405-15. [PMID: 27148899 DOI: 10.1016/j.envint.2016.04.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 04/06/2016] [Accepted: 04/20/2016] [Indexed: 05/20/2023]
Abstract
Spatial avoidance is a mechanism by which many organisms prevent their exposure to environmental stressors, namely chemical contaminants. Numerous studies on active avoidance and drift by aquatic organisms, as well as the main approaches used to measure both responses, were reviewed. We put forward a particular recommendation regarding methodological approaches: active avoidance should preferably be evaluated under a dilution gradient in a multi-compartmented system instead of in a bi-compartmented system. Available data on spatial avoidance from contamination indicate that emigration can occur at even lower contaminant concentrations than sub-individual noxious effects (assessed with the traditional forced-exposure assays), challenging the widely accepted paradigm in ecotoxicology that contaminant-driven adverse consequences at the population level result from a time delayed cascade of sequentially linked biochemical, cellular, physiological, and finally whole organism deleterious effects. Therefore, contaminants should not be viewed solely as potential toxicants at the individual level, but also as potential disturbers of habitats, by making the latter, at least partially, unsuited to accommodate life. Also, exposure to contamination is needed to trigger avoidance, but uptake is not mandatory, which demands the concept of exposure to be expanded, to include also the mere perception of the stressor. Since emigration eventually leads to local population extinction, and thus to severe implications for ecosystem structure and functioning, we then recommend that avoidance data be incorporated in environmental risk assessment schemes.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; Central Department of Research (DCI), Ecuadorian Aquatic Ecotoxicology (ECUACTOX) Group, Universidad Laica Eloy Alfaro de Manabí (ULEAM), Ciudadela Universitaria, vía San Mateo, Manta, Ecuador..
| | - Matilde Moreira-Santos
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Rui Ribeiro
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
31
|
Tierney KB. Chemical avoidance responses of fishes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:228-241. [PMID: 26970365 DOI: 10.1016/j.aquatox.2016.02.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 02/05/2016] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
The hydrosphere is a repository for all of our waste and mistakes, be they sewage, garbage, process-affected waters, runoff, and gases. For fish living in environments receiving undesirable inputs, moving away seems an obvious way to avoid harm. While this should occur, there are numerous examples where it will not. The inability to avoid harmful environments may lead to sensory impairments that in turn limit the ability to avoid other dangers or locate benefits. For avoidance to occur, the danger must first be perceived, which may not happen if the fish is 'blinded' in some capacity. Second, the danger must be recognized for what it is, which may also not happen if the fish is cognitively confused or impaired. Third, it is possible that the fish may not be able to leave the area, or worse, learns to prefer a toxic environment. Concerning generating regulations around avoidance, there are two possibilities: that an avoidance threshold be used to set guidelines for effluent release with the intention of driving fishes away; the second is to set a contaminant concentration that would not affect the avoidance or attraction responses to other cues. With the complexities of the modern world in which we release diverse pollutants, from light to municipal effluents full of 1000s of chemicals, to the diversity present in ecosystems, it is impossible to have avoidance data on every stimulus-species combination. Nevertheless, we may be able to use existing avoidance response data to predict the likelihood of avoidance of untested stimuli. Where we cannot, this review includes a framework that can be used to direct new research. This review is intended to collate existing avoidance response data, provide a framework for making decisions in the absence of data, and suggest studies that would facilitate the prediction of risk to fish health in environments receiving intentional and unintentional human-based chemical inputs.
Collapse
Affiliation(s)
- Keith B Tierney
- Department of Biological Sciences, University of Alberta, T6 G 2E9, Canada.
| |
Collapse
|
32
|
Bernabò I, Guardia A, Macirella R, Sesti S, Crescente A, Brunelli E. Effects of long-term exposure to two fungicides, pyrimethanil and tebuconazole, on survival and life history traits of Italian tree frog (Hyla intermedia). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 172:56-66. [PMID: 26771902 DOI: 10.1016/j.aquatox.2015.12.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/14/2015] [Accepted: 12/26/2015] [Indexed: 06/05/2023]
Abstract
Over the last few years, the hazards associated with the extensive use of fungicides have become an issue of great concern but, at present, the effects of these substances on amphibians remain poorly understood. The goal of the present study was to assess the effects of two commonly used fungicides, tebuconazole and pyrimethanil, on Italian Tree Frog (Hyla intermedia), a species frequently found in agricultural areas. Tadpoles were exposed to fungicides from developmental Gosner stage 25 (GS 25) to completion of metamorphosis (GS 46) and the whole exposure period lasted 78 days. For both tested fungicides we used two concentrations (5 and 50μg/L) that are comparable to those detected in surface waters, near agricultural fields. A variety of sublethal effects-on growth, development, behavior, and physiology-may be used for evaluating alterations induced by pollutants in amphibians. We estimated whether pyrimethanil and tebuconazole exposure impacted on H. intermedia life history traits. For this purpose, survival, growth, development, initiation of metamorphosis, success and size at metamorphosis, time to metamorphosis, and frequency of morphological abnormalities were evaluated. We showed, for all considered endpoints, that the exposure to tebuconazole exerts more harmful effects on H. intermedia than does exposure to pyrimethanil. Before the onset of metamorphic climax we showed, for both fungicides, that the low concentrations (5μg/L) induced significantly greater effects than the higher ones (50μg/L) on survival and deformity incidence. During the metamorphic climax, a complete reversal of this nonlinear trend takes place, and the percentage of animals initiating metamorphosis was reduced in fungicide-exposed groups in a concentration-dependent manner. Furthermore, a strong correlation emerged between fungicide exposure and the incidence of morphological abnormalities such as tail malformations, scoliosis, edema, mouth and limb deformities. Exposure to tested fungicides also caused a reduction in developmental rates just prior to the onset of metamorphic climax, which translated to a significant delay in timing of metamorphosis. We detected a drastic decrease in the success at metamorphosis in all exposed groups, compared to control group (86.25%). In fact, the percentage of survived larvae to GS 46, in the high and low concentrations, respectively, was only 22.5% and 36.25% in tebuconazole-exposed groups and 43.75% (50μg/L) and 56.25% (5μg/L) in pyrimethanil-exposed groups. Our findings underscore the hazardous properties of these two fungicides for non-target species in the context of ecotoxicological risk assessment. No published studies have addressed the long-term effects of tebuconazole and pyrimethanil on amphibians. To date, this is one of only a few studies documenting the effects of fungicide exposure over the whole larval development.
Collapse
Affiliation(s)
- Ilaria Bernabò
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende (Cosenza), Italy
| | - Antonello Guardia
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende (Cosenza), Italy
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende (Cosenza), Italy
| | - Settimio Sesti
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende (Cosenza), Italy
| | - Antonio Crescente
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende (Cosenza), Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende (Cosenza), Italy.
| |
Collapse
|
33
|
Araújo CVM, Cedeño-Macías LA, Vera-Vera VC, Salvatierra D, Rodríguez ENV, Zambrano U, Kuri S. Predicting the effects of copper on local population decline of 2 marine organisms, cobia fish and whiteleg shrimp, based on avoidance response. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:405-410. [PMID: 26250074 DOI: 10.1002/etc.3192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/25/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
The present study focuses on avoidance response to predict population decline of the marine fish Rachycentron canadum (cobia) and larvae of the estuarine shrimp Litopenaeus vannamei (whiteleg shrimp). Avoidance of approximately 60% was recorded for the cobia fry exposed to 1.0 mg Cu/L, 1.60 mg Cu/L, and 1.80 mg Cu/L. For the shrimp larvae, avoidance was approximately 80% for all Cu concentrations. The population decline of cobia fry was conditioned by avoidance in lower concentrations. However, in higher concentrations mortality begins to play an important role. The displacement toward uncontaminated habitats might determine shrimp population decline. A Cu-contaminated environment can determine the habitat selection of both species and, therefore, their local population decline.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Central Department of Research, Ecuadorian Aquatic Ecotoxicology group, Universidad Laica Eloy Alfaro de Manabí, Manta, Ecuador
- Centre of Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Luís A Cedeño-Macías
- Central Department of Research, Ecuadorian Aquatic Ecotoxicology group, Universidad Laica Eloy Alfaro de Manabí, Manta, Ecuador
| | - Victoria C Vera-Vera
- Central Department of Research, Ecuadorian Aquatic Ecotoxicology group, Universidad Laica Eloy Alfaro de Manabí, Manta, Ecuador
| | - David Salvatierra
- Central Department of Research, Ecuadorian Aquatic Ecotoxicology group, Universidad Laica Eloy Alfaro de Manabí, Manta, Ecuador
| | - Elizabeth N V Rodríguez
- Central Department of Research, Ecuadorian Aquatic Ecotoxicology group, Universidad Laica Eloy Alfaro de Manabí, Manta, Ecuador
| | | | - Samir Kuri
- Ocean Farm, Punta Blanca, Manta, Ecuador
| |
Collapse
|
34
|
Shinn C, Delello-Schneider D, Mendes LB, Sanchez AL, Müller R, Espíndola ELG, Araújo CVM. Immediate and mid-term effects of pyrimethanil toxicity on microalgae by simulating an episodic contamination. CHEMOSPHERE 2015; 120:407-413. [PMID: 25216469 DOI: 10.1016/j.chemosphere.2014.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/19/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
Since pesticides can represent a threat for non-target aquatic communities, including microalgae, we looked at the effects of the fungicide pyrimethanil on the growth of the freshwater green microalgae Selenastrum capricornutum. Additionally, attenuation of the toxicity of pyrimethanil due to its dissipation in the water was assessed. Pyrimethanil-contaminated samples were taken from outdoor mesocosms one (1.4 mg L(-1) of pyrimethanil) and ten (0.78 mg L(-1) of pyrimethanil) days after pyrimethanil application. Different dilutions were prepared using both nutrient-rich culture medium (LC Oligo) and non-contaminated mesocosm samples, and cell growth inhibition was assessed. Reference mesocosm samples were also diluted with LC Oligo in order to verify how the nutrient concentration in the LC Oligo could improve cell growth. Comparing cell growth of population exposed to pyrimethanil-treated sample taken at day 1 with cells growing in reference sample and LC Oligo, the growth inhibition was 80% (± 6.5) and 95% (± 2.0), respectively. The toxicity of samples taken from contaminated mesocosms at day 10 was attenuated to 34% (± 15) (when compared with reference sample) and 88% (± 3.0) (when compared with LC Oligo), as pyrimethanil concentrations in the mesocosms decreased. In conclusion, (i) pyrimethanil can be an environmental disturber for the microalgae; (ii) the toxicity of pyrimethanil in water was reduced almost 2.4 times (when compared with the reference sample) at as short a period as 10d if assuming that pesticide entrance is not continuous; (iii) toxicity of an environmental sample could be underestimated if the sample/medium used in dilution presents different nutrient levels.
Collapse
Affiliation(s)
- Cândida Shinn
- IMAR-Instituto do Mar & MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal; Escuela de Ciencias Agrícolas y Ambientales, Pontificia Universidad Católica del Ecuador - Sede Ibarra, Ibarra, Ecuador.
| | | | - Lucas B Mendes
- Center for Water Resources and Applied Ecology, University of São Paulo, São Carlos, Brazil
| | - André L Sanchez
- Center for Water Resources and Applied Ecology, University of São Paulo, São Carlos, Brazil
| | - Ruth Müller
- Biodiversity and Climate Research Centre (BiK-F), Department Climate and Adaptation, Frankfurt, Germany
| | - Evaldo L G Espíndola
- Center for Water Resources and Applied Ecology, University of São Paulo, São Carlos, Brazil
| | - Cristiano V M Araújo
- IMAR-Instituto do Mar & MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal; Central Department of Research, Universidad Laica Eloy Alfaro of Manabí (ULEAM), Ciudadela Universitaria, vía San Mateo, Manta, Ecuador
| |
Collapse
|
35
|
Araújo CVM, Shinn C, Vasconcelos AM, Ribeiro R, Espíndola ELG. Preference and avoidance responses by tadpoles: the fungicide pyrimethanil as a habitat disturber. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:851-860. [PMID: 24652239 DOI: 10.1007/s10646-014-1225-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
Tadpoles of two amphibian species, the neotropical anuran Leptodactylus latrans and the North American bullfrog Lithobates catesbeianus, were used in experiments to assess their preferred spatial distribution along habitat gradients and, thus, to what extent contamination by the fungicide pyrimethanil could trigger active spatial avoidance. The tadpoles were tested in a non-confined multi-compartment static system with a pyrimethanil contamination gradient through which organisms could move freely. Two samples, with and without (reference) pyrimethanil contamination, taken from outdoor mesocosms, were assayed. Tadpoles showed to be able to detect and move to the most favorable environment by preferring compartments containing reference mesocosm water. Pyrimethanil concentrations from 0.2 to 1.4 mg L(-1) were below lethal levels, but acted as habitat disturber since spatial avoidance was triggered. Avoiders of L. latrans reached almost 50 % at 1.4 mg L(-1). The present data reinforces the hypothesis regarding the risk of plant protection products to act, not only as toxicants, but also as habitat disturber, potentially leading to avoidance-driven population decline of amphibians.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- IMAR-Instituto do Mar, Department of Life Sciences, University of Coimbra, Apartado 3046, 3001-401, Coimbra, Portugal,
| | | | | | | | | |
Collapse
|