1
|
Du J, Xu J, Luo Y, Li X, Zhao L, Liu S, Jia X, Wang Z, Ge L, Cui K, Ga Y, Zhu M, Ji T, Huang Z, Xia X. High-Throughput Monitoring of 323 Pharmaceuticals and Personal Care Products (PPCPs) and Pesticides in Surface Water for Environmental Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:11275-11285. [PMID: 40425320 DOI: 10.1021/acs.est.5c05363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
The ubiquity of pharmaceuticals and personal care products (PPCPs) and pesticides in aquatic environments has raised significant ecological concerns due to their potential to disrupt aquatic ecosystems. This study presents a high-throughput ultraperformance liquid chromatography-tandem mass spectrometry method without sample enrichment to monitor 323 PPCPs and pesticides in the surface water of the Jingmi Water Diversion Canal in Beijing, China. One hundred and three PPCPs and pesticides were detected, with the highest detection frequency observed for antibiotics, which constituted 25.2% of the total detections. Notably, the average concentrations of detected PPCPs and pesticides were significantly higher in the winter (69.0 ng/L) than in the summer (42.1 ng/L). Spatial characterization indicated higher concentrations of PPCPs and pesticides in urban areas compared with suburban areas, with carbendazim, caffeine, atrazine, and diazepam being the most frequently detected compounds. The ecological risk assessment based on risk quotient values identified moderate to high risks for aquatic organisms, particularly in urban areas and during winter. These findings highlight the necessity for improved wastewater treatment technologies and continuous environmental monitoring to protect aquatic ecosystems from the adverse effects of PPCPs and pesticides.
Collapse
Affiliation(s)
- Jingjing Du
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jian Xu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Luo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaowei Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Liang Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Saiwa Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xi Jia
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhinan Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lirui Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kexin Cui
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yu Ga
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mengxuan Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tianrun Ji
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zelong Huang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xi Xia
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Jiao H, Cui M, Yuan S, Dong B, Xu Z. Carbon nanomaterials for co-removal of antibiotics and heavy metals from water systems: An overview. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137566. [PMID: 39952121 DOI: 10.1016/j.jhazmat.2025.137566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Pollution resulting from the combination of antibiotics and heavy metals (HMs) poses a significant threat to human health and the natural environment. Adsorption is a promising technique for removing antibiotics and HMs owing to its low cost, simple procedures, and high adsorption capacity. In recent years, various novel carbon nanomaterials have been developed, demonstrating outstanding performance in simultaneously removing antibiotics and HMs. This work presents a comprehensive review of carbon nanomaterials (i.e., carbon nanotubes, graphene, resins, and other nanocomposites) for the co-removal of antibiotics and HMs in water systems. The mechanisms influencing the simultaneous removal of antibiotics and HMs include the bridging effect, electrostatic shielding, competition, and spatial site-blocking effects. These mechanisms can promote, inhibit, or have no impact on the adsorption capacity for antibiotics or HMs. Additionally, environmental factors such as pH, inorganic ions, natural organic matter, and microplastics affect the adsorption efficiency. This review also covers adsorbent regeneration and cost estimation. On the laboratory scale, the cost of the adsorption process primarily depends on the chemical and energy costs of adsorbent production. Our assessment highlights that the carbon-nanomaterial-mediated simultaneous removal of antibiotics and HMs warrants comprehensive consideration from both economic and environmental perspectives.
Collapse
Affiliation(s)
- Huiting Jiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Mengke Cui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, PR China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
3
|
Tuts L, Heyndrickx M, Becue I, Boon N, De Maesschalck P, Rasschaert G. Tracking antibiotics and antibiotic-resistant E. coli in the aquatic environment linked to agriculture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126265. [PMID: 40252751 DOI: 10.1016/j.envpol.2025.126265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
The application of manure to fertilize agricultural land is associated with the introduction of antibiotic residues and bacteria, including antibiotic-resistant bacteria, which can reach surface water through runoff and drainage and groundwater through leaching from the soil. This was investigated by sampling 50 surface water locations (before and after fertilization) and 50 groundwater wells for the presence of antibiotic residues and the presence of antibiotic-resistant bacteria. For the latter, Escherichia coli and extended-spectrum β-lactamase (ESBL) producing E. coli were used as indicators and profiled for antibiotic resistance. The presence of a wide range of antibiotic residues, though at low concentrations (0.01-10 μg/L), in freshwater ecosystems highlights the extensive spread of these substances. Only 16 % of the samples were consistently free of antibiotic residues throughout both sampling periods. Notably, the frequent occurrence of sulfonamides and lincomycin in surface waters raises concerns as their concentrations occasionally exceed the predicted no-effect levels for antimicrobial resistance selection. Maximum concentrations were reported at 8.83 μg/L and 1.60 μg/L for sulfamethoxazole and lincomycin, respectively. Additionally, resistance patterns in E. coli indicate increased resistance to sulfamethoxazole following the fertilization period, suggesting that the application of manure on fields contributes to a rise in antibiotic resistance from 20 % to 48 %. Although antibiotic contamination in groundwater is less prevalent, antibiotic resistance remains widespread. In particular, ESBL-producing E. coli exhibit heightened resistance levels, not limited to β-lactam antibiotics. The detection of resistance to critical last-resort antibiotics such as carbapenems and colistin further emphasizes the urgency of addressing antibiotic resistance in environmental contexts. This study highlights the need for continued monitoring and the implementation of legislation to reduce antibiotic pollution and tackle resistance in aquatic ecosystems.
Collapse
Affiliation(s)
- Laurens Tuts
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, Merelbeke-Melle, 9090, Belgium; Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Frieda Saeysstraat 1, 9052, Ghent, Belgium.
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, Merelbeke-Melle, 9090, Belgium; Ghent University, Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology and Zoological Medicine, Salisburylaan 133, Merelbeke-Melle, 9820, Belgium.
| | - Ilse Becue
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, Merelbeke-Melle, 9090, Belgium.
| | - Nico Boon
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Frieda Saeysstraat 1, 9052, Ghent, Belgium.
| | | | - Geertrui Rasschaert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, Merelbeke-Melle, 9090, Belgium.
| |
Collapse
|
4
|
Singh H, Bagra K, Dixit S, Singh AK, Singh G. Association of infrastructure and operations with antibiotic resistance potential in the dairy environment in India. Prev Vet Med 2025; 239:106497. [PMID: 40056564 DOI: 10.1016/j.prevetmed.2025.106497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 02/12/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
The dairy industry in developing countries is often associated with inappropriate use of antibiotics and the subsequent contamination of the environment with co-selectors of antibiotic resistance. However, the specific factors in dairy farm environments that influence antibiotic resistance levels and the subsequent exposure risks to farm workers are unknown. We examined the link between the infrastructure and operations of the dairy farm and the antibiotic resistance potential in India, which is the highest producer and consumer of dairy products globally. We sampled sixteen dairy farms in the Dehradun district, India, that varied in their herd size, infrastructure, and operational features during winter, summer, and monsoon. We collected samples of dung, manure, wastewater, manure-amended, and control soil from these farms. We quantified six antibiotic resistance genes (ARGs) (sul1, sul2, parC, mcr5, ermF, and tetW), an integron integrase gene cassette (intI1), and 16S rRNA gene copies as an indicator for total bacterial count. We observed that the infrastructure and the operations of the dairy farms were significantly associated with antibiotic resistance potential in the dairy environment. For example, with increased ventilation and exposure to external weather, the levels of sul2 (x͂=10-1.63) and parC (x͂=10-4.24) in manure increased. When farmers administered antibiotics without veterinary consultation, the relative levels of intI1 (x͂=10-2.36), sul2 (x͂=10-1.58), and tetW (x͂=10-3.04) in manure were lower than the cases where professional advice was sought. Small-scale farms had lower relative ARG levels than medium- and large-scale farms, except for mcr5 (x͂=10-3.98) in wastewater. In different sample types, the relative ARG levels trended as manure-amended soil (x͂=10-2.34) > wastewater (x͂=10-2.90)> manure (x͂=10-3.39)> dung (x͂=10-2.54). ARGs correlated with the marker for horizontal gene transfer, intI1, which exacerbates overall antibiotic resistance levels. Exposure assessment showed that the agriculture farm workers working in manure-amended agriculture farms are exposed to higher antibiotic resistance potential than dairy farm workers, who manually handle dung. Our study showed that the link between the dairy infrastructure (ventilation and floor type) and operations (scale of operation and veterinary consultation) and the antibiotic resistance potential in the dairy farm environment was statistically significant. This knowledge paves the way for designing interventions that can minimize the antibiotic resistance potential on dairy farms and in affected environments and thus reduce the public health burden of antibiotic-resistant infections in the dairy industry and dairy workers in India.
Collapse
Affiliation(s)
- Harshita Singh
- Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India.
| | - Kenyum Bagra
- Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India.
| | - Sourabh Dixit
- Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India.
| | - Awanish Kumar Singh
- College of Veterinary and Animal Science, G.B. Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar 263145, India.
| | - Gargi Singh
- Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India.
| |
Collapse
|
5
|
Huang W, Focker M, van der Fels-Klerx HJ. Modeling antimicrobial fate in the circular food system. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2025. [PMID: 40400225 DOI: 10.1111/risa.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 05/23/2025]
Abstract
The livestock sector plays a critical role in the circular food production system, but excessive use of antimicrobials (AMs) in livestock farming can lead to AM residue contamination in human food. CirFSafe, a model framework was developed to predict the fate of five different AMs in a primary circular food production system, comprising mixed farms with arable (maize) and animal (bovine) components. Two bovine exposure scenarios to AMs were simulated: annual constant exposure and a one-off exposure in the first year of circularity. Over a 5-year timeframe, model predictions suggest that fertilizing soil with animal manure and feeding animals with maize grown in the same soil are unlikely to cause AM residues in milk or meat exceeding European regulatory limits. Nevertheless, the distinct residual patterns of different AMs across the system underscore the need for precautionary monitoring, particularly for the routine use of flumequine (FLU) and doxycycline (DOX), which exhibits a greater tendency to transfer into food products.
Collapse
Affiliation(s)
- Weixin Huang
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Marlous Focker
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - H J van der Fels-Klerx
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
6
|
Chohra H, Lee KA, Choe H, Cho JY, Kantharaj V, Cheong MS, Kim YN, Lee YB. Dose-Dependent Physiological Response to Transient Bioaccumulation of Tetracycline in Kimchi Cabbage ( Brassica campestris L.). Antibiotics (Basel) 2025; 14:501. [PMID: 40426567 PMCID: PMC12108208 DOI: 10.3390/antibiotics14050501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 05/01/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Globally, antibiotic contamination has become an emerging issue in agricultural lands. The presence of antibiotic residues in farmlands, especially through the application of manure fertilizers containing veterinary antibiotics, e.g., tetracycline (TC), can cause severe toxicity, which inhibits crop growth and performance, subsequently threatening human health via consumption of contaminated products. This study was conducted to evaluate the phytotoxicity of TC on Kimchi cabbage (Brassica campestris L.) during seed germination, seedling, and vegetative growth stages, along with its physiological responses and bioaccumulation under TC stress. METHODS The responses of cabbage plants to TC stress were assessed through a germination test and a pot experiment, conducted for three days and six weeks, respectively, under different doses of TC (0, 5, 10, 25, and 50 mg/L). RESULTS As a result of the germination test, higher TC doses (25 and 50 mg/L) tended to delay seed germination, but all treatments achieved a 100% germination percentage by Day 3 after sowing. Eight days after sowing, the length of shoots and roots of seedlings exhibited a TC dose-dependent decline, specifically under 50 mg TC/L, showing a considerable decrease of 24% and 77%, respectively, compared to control. Similar results were observed in the plants transitioning from the seedling to vegetative stages in the pot experiment. Four and six weeks after sowing, the 50 mg TC/L dose showed the strongest phytotoxicity in cabbage plants with physiological parameters, such as the maximum photosystem II quantum yield (Fv/Fm), pigment content (chlorophyll and carotenoid), biomass, and leaf number, significantly reduced by 26 to 60% compared to control. Interestingly, at lower TC doses (5 and 10 mg/L), a hormesis effect was observed in the phenotype and biomass of the plants. In addition, the degree of TC accumulation in the plants was highly dose-dependent at Week 4 and Week 6, but a temporal decline in TC accumulation was noted between these time points in all TC treatments. This phenomenon might affect the value of the bio-concentration factor (BCF) as an indicator of the plant's tendency to uptake TC. That is, in Week 6, the dose-dependent reduction in BCF for TC in the plants was likely attributed to a dilution effect caused by plant biomass increase or a degradation mechanism within the plant. CONCLUSIONS Overall, our findings suggest that tetracycline toxicity induces seed germination delay and influences seedling elongation and photosynthetic functions, ultimately impairing crop growth and performance. Also, the antibiotic dynamics related to accumulation and degradation in plants were identified. These results will not only suggest the toxicity threshold of TC for cabbage but also provide insights into effective soil management strategies for food production safety and agroecosystem sustainability in antibiotic-contaminated soils.
Collapse
Affiliation(s)
- Hadjer Chohra
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.C.)
| | - Keum-Ah Lee
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea; (K.-A.L.)
| | - Hyeonji Choe
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.C.)
| | - Ju Young Cho
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.C.)
| | - Vimalraj Kantharaj
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea; (K.-A.L.)
| | - Mi Sun Cheong
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea; (K.-A.L.)
| | - Young-Nam Kim
- Department of Crop Science, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Yong Bok Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.C.)
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea; (K.-A.L.)
| |
Collapse
|
7
|
Li F, Chen L, Su Z, Zheng Y, Cao F, Yang W, Wen D. Historical distribution and multi-dimensional environmental risk assessments of antibiotics in coastal sediments affected by land-based human activities. MARINE POLLUTION BULLETIN 2025; 214:117731. [PMID: 40009894 DOI: 10.1016/j.marpolbul.2025.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/29/2024] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Coastal sediment cores provide important records of land-based antibiotics' deposition. This study examined sediment cores from the Hangzhou Bay, East China Sea, dating back to 1980-2020 using 210Pbex. The 40-year analysis revealed a mismatch between sediment depth and age. Wastewater treatment facilities have significantly reduced antibiotics discharge into the sea. We identified 27 antibiotics, with enrofloxacin (ERFX) and nadifloxacin (NDFX) exhibiting the highest average concentrations of 84.9 and 83.4 ng/g, respectively. Quinolones (QNs) were prominent, displaying strong co-occurrence and similar distribution patterns shaped by comparable soil-water distribution coefficient (Kd). QNs correlated positively with total antibiotic concentration, serving as indicators. We proposed a multi-dimensional risk assessment of antibiotics, encompassing ecological and antimicrobial resistance (AMR) risks, complementing each other. The assessment revealed antibiotics with distinct risks: sulfacetamide (SCM) and clindamycin (CLIN) exhibited high ecological risks, while ERFX, ciprofloxacin (CFX), norfloxacin (NFX), gatifloxacin (GTFX), moxifloxacin (MXFX), and marbofloxacin (MBFX) presented high AMR risks.
Collapse
Affiliation(s)
- Feifei Li
- School of Environment, Tsinghua University, Beijing, China
| | - Lyujun Chen
- School of Environment, Tsinghua University, Beijing, China
| | - Zhiguo Su
- School of Environment, Tsinghua University, Beijing, China
| | - Yuhan Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Feng Cao
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Wendy Yang
- Faculty of Science, University of British Columbia, Vancouver, Canada
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
8
|
Martinho G, Gomes A, Santos P, Ramos M. Evaluation of a specific system of extended producer responsibility for veterinary medicines packaging waste. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2025:734242X251326270. [PMID: 40146937 DOI: 10.1177/0734242x251326270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
In Portugal, packaging products for veterinary medicines (VM) are subjected to the extended producer responsibility (EPR) scheme coordinated by a Producer Responsibility Organisation (PRO), responsible for the management of both human and VM packaging waste. Despite an 80% recycling target for VM packaging waste, recent years have consistently shown performance below this level. However, there is no compositional data on VM packaging waste in scientific literature, hindering effective problem diagnosis and solution proposals. So, this research proposes a protocol to characterise VM packaging waste entering and leaving a sorting centre and presents the corresponding results. Of the 822.1 kg entering the centre, glass is the predominant material (66.7%, in weight). Often, glass has rubber and metal attached, but this is not recognised as a constraint on recyclability by the glass recycling industry. Biohazardous VM waste was found in the containers dedicated to pharmacologic VM waste, raising a challenge. To evaluate alignment with the principles of circularity, opportunities for waste reduction were assessed but found to be limited by stringent VM regulations. Nevertheless, the potential for recycling could be enhanced through adjustments to the sorting procedures. Moreover, future research should prioritise biohazard risks and operational aspects of recyclability. In addition, discussion and potential reconsideration of recycling rate targets for this waste category are recommended.
Collapse
Affiliation(s)
- Graça Martinho
- MARE - Marine and Environmental Sciences Centre, Associate Laboratory ARNET - Aquatic Research Network, Portugal
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Ana Gomes
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Pedro Santos
- MARE - Marine and Environmental Sciences Centre, Associate Laboratory ARNET - Aquatic Research Network, Portugal
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Mário Ramos
- MARE - Marine and Environmental Sciences Centre, Associate Laboratory ARNET - Aquatic Research Network, Portugal
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
9
|
Jin H, Dai Y, Ruan Y, Chen B, Zhang M, Yu B, Xu J, Yang K, Hou J, Lin D. Underestimated Cumulative Intake Risk of Veterinary Antibiotics Across Multiple Matrices within a Coupled Breeding-Cropping Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6512-6521. [PMID: 40047542 DOI: 10.1021/acs.jafc.4c11415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The coupled breeding-cropping model has been increasingly applied in organic agriculture due to its high resource efficiency; however, the environmental risks of veterinary antibiotics within the solid-liquid-biological system remain unclear. This study focused on a typical poultry-crop system and investigated the migration patterns of enrofloxacin (ENX), ciprofloxacin (CIP), oxytetracycline (OTC), doxycycline (DOX), and florfenicol (FF) in manure, drain, paddy soil, and agricultural products. A strong source-sink relationship was established, with paddy soil identified as the primary reservoir, retaining over 40.1% of the total emissions. The migration behavior of antibiotics in the soil-rice system was primarily influenced by their organic carbon-normalized distribution coefficients, ionization forms, and soil organic carbon contents. Importantly, the cumulative risk of the five antibiotics was 1.4-828 times higher, exceeding risk thresholds by 13.9-fold. These findings emphasize the underestimated cumulative risks of mixed antibiotic use in agroecosystems.
Collapse
Affiliation(s)
- Hui Jin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yunbu Dai
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yuyu Ruan
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Bingning Chen
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Mei Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Bingzhi Yu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
10
|
Alam M, Basir MS, Sultan MB, Murshed MF, Hossain S, Anik AH. Ecological footprint of ionophores in livestock production: Environmental pathways and effects. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70052. [PMID: 40056089 DOI: 10.1002/wer.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/12/2025] [Accepted: 02/25/2025] [Indexed: 05/13/2025]
Abstract
Ionophores, a class of animal antibiotics, are widely used in intensive livestock farming to enhance feed efficiency and control coccidiosis. These compounds, known for their ability to transport cations across biological membranes, are crucial in maintaining cellular homeostasis. However, their extensive use raises environmental and human health concerns. This manuscript offers a comprehensive review of ionophores in livestock production, highlighting their environmental impact and potential to contribute to antimicrobial resistance (AMR). It emphasizes the fate and transport of ionophores in various environmental matrices, providing a holistic framework for assessing ecological risks. The study calls for improved management practices like enhanced waste management through anaerobic digestion, and composting is essential. Establishing Maximum Residue Limits (MRLs) and using LC-MS/MS for residue detection will help manage exposure. Educating livestock producers and researching alternatives like probiotics can decrease reliance on ionophores to mitigate the ecological footprint of ionophores, making it a timely and relevant piece of research. Ionophores can persist in the environment, potentially contributing to AMR in gram-positive bacteria. Furthermore, their presence in manure, runoff, and agricultural soils has been documented, leading to contamination of water bodies and sediments. Ionophores pose risks to terrestrial and aquatic ecosystems, with studies revealing hazardous effects even at low concentrations. This review highlights the need for improved management practices to mitigate the environmental impacts of ionophores, particularly regarding AMR development and ecosystem disruption. Careful monitoring and sustainable use of these antibiotics are essential to reduce their ecological footprint in livestock production. PRACTITIONER POINTS: Ionophores enhance feed efficiency, but pose environmental health risks. Their persistence may lead to antimicrobial resistance in gram-positive bacteria. Ionophore contamination threatens both terrestrial and aquatic ecosystems. Monitoring and management are crucial to mitigate ionophore-related risks.
Collapse
Affiliation(s)
- Mahbub Alam
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, Bangladesh
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Md Samium Basir
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, Bangladesh
| | - Maisha Binte Sultan
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, Bangladesh
| | - Md Fahim Murshed
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, Bangladesh
| | - Shabiha Hossain
- Department of Geography and Sustainability, University of Tennessee, Knoxville, Tennessee, USA
| | - Amit Hasan Anik
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, Bangladesh
| |
Collapse
|
11
|
Horvat O, Kovačević Z. Human and Veterinary Medicine Collaboration: Synergistic Approach to Address Antimicrobial Resistance Through the Lens of Planetary Health. Antibiotics (Basel) 2025; 14:38. [PMID: 39858324 PMCID: PMC11762137 DOI: 10.3390/antibiotics14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Antimicrobial resistance (AMR) represents a critical threat to human, animal, and environmental health, challenging global efforts to maintain sustainable ecosystems and public health systems. In this review, the complex, cross-disciplinary issues of AMR are explored within the framework of planetary health, emphasizing the interconnectedness of human and veterinary medicine with broader environmental and social systems. Specifically, it addresses the social, economic, environmental, and health dimensions of AMR under the planetary health framework. The social aspects consider how public awareness, education, and healthcare practices shape antimicrobial use (AMU) and resistance patterns. The economic impact evaluates the cost burdens of AMR, including healthcare costs, loss of productivity, and the implications for the livestock and food production industries. The environmental dimension highlights the role of pharmaceutical waste, agricultural runoff, and industrial pollution in contributing to the spread of antimicrobials and resistant pathogens in ecosystems. To illustrate these challenges, a comprehensive literature review using the PubMed and Web of Science databases was conducted, identifying 91 relevant articles on planetary health and AMR. In this review, the knowledge from these studies and additional references is integrated to provide a holistic overview of the AMR crisis. By applying the four pillars of planetary health-social, economic, environmental, and health knowledge-in this manuscript, the necessity is underscored of collaborative strategies across human and veterinary medicine to combat AMR. Ultimately, this synergistic approach aims to shape the policies and practices that safeguard public health, protect ecosystems, and promote a sustainable future by implementing antimicrobial stewardship programs and encouraging prudent AMU.
Collapse
Affiliation(s)
- Olga Horvat
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
| | - Zorana Kovačević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000 Novi Sad, Serbia
| |
Collapse
|
12
|
Wang Y, Liu Q, Ran H, Peng P, Wang Y, Peng G, Wu Y, Wen X. Residual ciprofloxacin in chicken manure inhibits methane production in an anaerobic digestion system. Poult Sci 2025; 104:104539. [PMID: 39546921 PMCID: PMC11609544 DOI: 10.1016/j.psj.2024.104539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Anaerobic digestion (AD) is commonly used to dispose of laying hen manure. However, veterinary antibiotic residues present in chicken manure may affect the AD process. Here, the effects of three types of veterinary antibiotics commonly used in laying hen breeding on AD were explored. Manures containing antibiotics at two different concentrations were continuously added during AD for 5 days: amoxicillin (HAMX: 145.06 mg/kg, LAMX: 57.88 mg/kg), doxycycline (HDOC: 183.61 mg/kg, LDOC: 98.00 mg/kg), and ciprofloxacin (HCIP: 96.34 mg/kg, LCIP: 40.43 mg/kg). Compared with a control with no veterinary antibiotics, the amoxicillin and doxycycline groups presented no significant effects on biogas production, methane production, VFA concentration, acetic acid concentration or the pH of the AD system (P > 0.05). However, compared with the control, the ciprofloxacin groups presented significantly inhibited biogas and methane production during AD (P < 0.05), and the HCIP and LCIP groups presented significantly decreased biogas (47.82% and 45.37%, respectively) and methane (58.24% and 52.55%, respectively) production (P < 0.05). Moreover, the VFA and acetic acid concentrations of the ciprofloxacin groups were significantly higher than those of control during the entire AD period (P < 0.05), and the pH value at the withdrawal stage was significantly lower than that of the control group (P < 0.01), with no significant difference between the HCIP and LCIP groups (P > 0.05). Our results suggest that ciprofloxacin causes VFA and acetic acid accumulation in AD systems, thereby reducing the pH of the systems and inhibiting methanogen growth, ultimately reducing methane production in the AD systems. These findings contribute to a deeper understanding of the impact of ciprofloxacin on methane production in AD systems and offer some considerations for the application of AD systems.
Collapse
Affiliation(s)
- Yiting Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qing Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Hongli Ran
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Pingcai Peng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yan Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Guoliang Peng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Yinbao Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, and the Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
| |
Collapse
|
13
|
Žaltauskaitė J, Miškelytė D, Sujetovienė G, Dikšaitytė A, Kacienė G, Januškaitienė I, Dagiliūtė R. Comprehensive tetracycline, ciprofloxacin and sulfamethoxazole toxicity evaluation to earthworm Dendrobaena veneta through life-cycle, behavioral and biochemical parameters. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104609. [PMID: 39667546 DOI: 10.1016/j.etap.2024.104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Veterinary antibiotics are widely spread in the environment, however, the knowledge about their impact on soil key species is still limited. This study evaluated the short-term and long-term effects of tetracycline (TC), ciprofloxacin (CIP) and sulfamethoxazole (SMX) (1-500 mg kg) on earthworm Dendrobaena veneta by measuring multiple parameters (survival, growth, reproduction, behavior and biochemical responses). Neither antibiotic induced acute toxicity and low mortality was observed after chronic exposure. TC and CIP had a negligible effect on the earthworm's weight from the 6th week of exposure, SMX inhibited the earthworm growth when was present in the range of 50-500 mg kg-1. In parallel, SMX reduced earthworm reproduction at environmentally relevant concentrations. Antibiotics altered superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and gluthathione-S-transferase (GST) activities and induced lipid peroxidation. Overall, earthworms showed no apparent acute response at environmentally relevant concentrations except for avoidance behavior; after long-term exposure earthworms experienced biochemical, physiological, and reproductive impairments and reduced survival at high soil contamination.
Collapse
Affiliation(s)
- Jūratė Žaltauskaitė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania.
| | - Diana Miškelytė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Gintarė Sujetovienė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Austra Dikšaitytė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Giedrė Kacienė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Irena Januškaitienė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Renata Dagiliūtė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| |
Collapse
|
14
|
Eichberg C, Leiß A, Stothut M, Bernheine J, Jurczyk K, Paulus L, Thiele-Bruhn S, Thomas FM, Donath TW. Tetracycline but not sulfamethazine inhibits early root growth of wild grassland species, while seed germination is hardly affected by either antibiotic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125178. [PMID: 39447628 DOI: 10.1016/j.envpol.2024.125178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/20/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Seed germination and early growth of grassland species might be influenced by veterinary antibiotics that are extensively released into agricultural habitats. Therefore, we tested impacts of the commonly used antibiotics tetracycline and sulfamethazine, single and in mixture, on seed germination and seedling root growth of six typical species of temperate European grasslands (Carum carvi, Centaurea jacea, Galium mollugo, Plantago lanceolata, Silene latifolia, Dactylis glomerata). In standardised germination experiments, we assessed three germination variables (germination percentage, mean germination time, synchrony of germination) and one post-germination variable (seedling root length) under different environmentally realistic antibiotic concentrations (0.1, 1, 10 mg l-1 and a water control). While the germination variables were only irregularly and weakly affected by both antibiotics, seedling root length was strongly reduced by tetracycline, but not by sulfamethazine. Among the test species, D. glomerata was most sensitive to tetracycline with the average root length reduced up to 81 % in the 10 mg l-1 treatment. Its germination behaviour, however, was almost insensitive to the two antibiotics. Mixture effects were only shown in relation to the germination of single species, where the binary mixture produced effects but not the two single antibiotics or, conversely, effects of single antibiotics were lost in the mixture. These findings highlight the potential threat of plant regeneration from seed by veterinary antibiotics, particularly affecting early root growth and potentially influencing plant population growth in natural habitats.
Collapse
Affiliation(s)
- Carsten Eichberg
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany.
| | - Angela Leiß
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Manuel Stothut
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Jan Bernheine
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Kim Jurczyk
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Lena Paulus
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Sören Thiele-Bruhn
- Soil Science, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Frank M Thomas
- Geobotany, Spatial and Environmental Sciences, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Tobias W Donath
- Department of Landscape Ecology, Institute for Natural Resource Conservation, Kiel University, Olshausenstraße 75, 24118, Kiel, Germany
| |
Collapse
|
15
|
Jia WL, Gao FZ, Song C, Chen CE, Ma CX, White JC, Ying GG. Swine wastewater co-exposed with veterinary antibiotics enhanced the antibiotic resistance of endophytes in radish (Raphanus sativus L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125040. [PMID: 39343351 DOI: 10.1016/j.envpol.2024.125040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The widespread utilization of antibiotics in livestock has promoted the accumulation and diffusion of antibiotics and antibiotic resistance in agricultural soils and crops. Here we investigated the mechanisms of antibiotic uptake and accumulation in swine wastewater (SW)-treated radish (Raphanus sativus L.) and subsequent impacts on endophyte antibiotic resistance. Under SW treatments, exposure to 500 μg/L sulfamethazine (SMZ) and enrofloxacin (EFX) significantly affected radish biomass, with SMZ causing 63.0% increases and EFX causing 36.3% decreases relative to the untreated control. EFX uptake by radish were from 5 to 100-folds over SMZ. Passive diffusion through anion channel proteins on cell membranes was an important route for SMZ uptake, while both passive diffusion and energy-dependent processes contributed to the uptake of EFX. Bacterial community was time-dependent as a function of both antibiotics and SW, the bacterial alpha diversity in liquid solution co-treated with antibiotics and SW increased over time. The abundance of antibiotic resistance genes (ARGs) in the roots was positively correlated with ARGs in the Hoagland's solution under antibiotic-alone treatments. EFX co-exposure with SW enhanced the dissemination of ARGs from swine wastewater into plant roots, and significant correlations existed between ARGs and integrons in both Hoagland's solution and roots. These findings increased our understanding of the fate of antibiotics in crops and their subsequent impacts on antibiotic resistance of endophytic bacteria.
Collapse
Affiliation(s)
- Wei-Li Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Chao Song
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Chang-Er Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Chuan-Xin Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Wang M, Li J, Zhou Y, Zhou W, Huang S. Spatial and temporal distribution and ecological risk assessment of typical antibiotics in natural and wastewater of Jinjiang River Basin. PLoS One 2024; 19:e0310865. [PMID: 39541361 PMCID: PMC11563446 DOI: 10.1371/journal.pone.0310865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024] Open
Abstract
Antibiotics are widely used in human medical, livestock, and aquaculture fields. Most antibiotics are water-soluble and cannot be fully absorbed by humans or animals. If feces or wastewater containing antibiotics are improperly treated or discharged directly into surface water or groundwater, it will undoubtedly have an impact on aquatic organisms. The Ganjiang River is the largest river in Jiangxi Province and the largest tributary of Poyang Lake Basin. Jinjiang River, a tributary of Ganjiang River, is a typical livestock and poultry breeding area in the Poyang Lake Basin, along which many townships and counties are distributed. Gao'an and Shanggao counties are important agricultural and animal husbandry production areas in Jiangxi Province. In this paper, automatic solid phase extraction-ultra high performance liquid chromatography-mass spectrometry (SPE-UPLC-MS/MS) technology was used to simultaneously detect 27 antibiotics in 5 categories of macrolides, tetracyclines, quinolones, nitroimidazoles and sulfonamides in water. Based on this method, the concentrations and distributions of these antibiotics were analyzed. Ecological risk assessment of the Jinjiang River Basin was conducted using the ecological risk quotient method, aiming to supplement antibiotic data in the Jinjiang River Basin and provide scientific basis for local ecological environment management. The research results indicate that from 2019 to 2021, two years later, there was an increase in the use of Sulfadiazine and Roxithromycin in the Jinjiang River Basin, while the usage of Ciprofloxacin and Oxytetracycline was relatively low. In 2021, out of the 27 antibiotics, 24 were detected in surface water, 20 in groundwater, and all in wastewater. Among them, Sulfamethoxazole was the most widely used antibiotic, primarily in livestock and poultry farming. Gao'an City, a key breeding area in the Jinjiang River Basin, exhibited the highest concentration of Sulfamethoxazole at 409.96 ng·L-1, which far exceeds other antibiotics and warrants significant attention. A comparison of surface water concentrations between the Jinjiang River and 12 other regions revealed higher overall pollution levels of Roxithromycin and Sulfamethoxazole. Furthermore, according to the ecological risk assessment results, only Sulfamethoxazole poses a moderate risk to aquatic organisms.
Collapse
Affiliation(s)
- Meng Wang
- School of Geological Engineering, Institute of Disaster Prevention, Sanhe, China
- Hebei Key Laboratory of Earthquake Disaster Prevention and Risk Assessment, China
| | - Jiale Li
- School of Water Resources and Environmental Engineering, East China Institute of Technology, China
| | - Yongkang Zhou
- School of Water Resources and Environmental Engineering, East China Institute of Technology, China
| | - Wenjia Zhou
- School of Geological Engineering, Institute of Disaster Prevention, Sanhe, China
- Hebei Key Laboratory of Earthquake Disaster Prevention and Risk Assessment, China
| | - Shuai Huang
- School of Geological Engineering, Institute of Disaster Prevention, Sanhe, China
- Hebei Key Laboratory of Earthquake Disaster Prevention and Risk Assessment, China
| |
Collapse
|
17
|
Ransirini AM, Elżbieta MS, Joanna G, Bartosz K, Wojciech T, Agnieszka B, Magdalena U. Fertilizing drug resistance: Dissemination of antibiotic resistance genes in soil and plant bacteria under bovine and swine slurry fertilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174476. [PMID: 38969119 DOI: 10.1016/j.scitotenv.2024.174476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The increasing global demand for food production emphasizes the use of organic animal fertilizers, such as manure and slurry, to support sustainable agricultural practices. However, recent studies highlight concerns about antibiotic resistance determinants in animal excrements, posing a potential risk of spreading antibiotic resistance genes (ARGs) in agricultural soil and, consequently, in food products. This study examines the dissemination of ARGs within the soil and plant-associated microbiomes in cherry radish following the application of swine and bovine slurry. In a 45-day pot experiment, slurry-amended soil, rhizospheric bacteria, and endophytic bacteria in radish roots and leaves were sampled and analyzed for 21 ARGs belonging to 7 Antibiotic Resistance Phenotypes (ARPs). The study also assessed slurry's impact on soil microbiome functional diversity, enzymatic activity, physicochemical soil parameters, and the concentration of 22 selected antimicrobials in soil and plant tissues. Tetracyclines and β-lactams were the most frequently identified ARGs in bovine and swine slurry, aligning with similar studies worldwide. Swine slurry showed a higher prevalence of ARGs in soil and plant-associated bacteria, particularly TET genes, reflecting pig antibiotic treatments. The persistent dominance of TET genes across slurry, soil, and plant microbiomes highlights significant influence of slurry application on gene occurrence in plant bacteria. The presence of ARGs in edible plant parts underscores health risks associated with raw vegetable consumption. Time-dependent dynamics of ARG occurrence highlighted their persistent presence throughout the experiment duration, influenced by the environmental factors and antibiotic residuals. Notably, ciprofloxacin, which was the only one antimicrobial detected in fertilized soil, significantly impacted bovine-amended variants. Soil salinity modifications induced by slurry application correlated with changes in ARG occurrence. Overall, the research underscores the complex relationships between agricultural practices, microbial activity, and antibiotic resistance dissemination, emphasizing the need for a more sustainable and health-conscious farming approaches.
Collapse
Affiliation(s)
- Attanayake Mudiyanselage Ransirini
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Mierzejewska-Sinner Elżbieta
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Giebułtowicz Joanna
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Banacha 1, 02-097 Warsaw, Poland
| | - Kózka Bartosz
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Banacha 1, 02-097 Warsaw, Poland
| | - Tołoczko Wojciech
- Department of Physical Geography, Faculty of Geography, University of Lodz, Prez. Gabriela Narutowicza 88, 90-139, Lodz, Poland
| | - Bednarek Agnieszka
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Urbaniak Magdalena
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
18
|
Fučík J, Jašek V, Hamplová M, Navrkalová J, Zlámalová Gargošová H, Mravcová L. Assessing Lettuce Exposure to a Multi-Pharmaceutical Mixture in Soil: Insights from LC-ESI-TQ Analysis and the Impact of Biochar on Pharmaceutical Bioavailability. ACS OMEGA 2024; 9:39065-39081. [PMID: 39310173 PMCID: PMC11411693 DOI: 10.1021/acsomega.4c05831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Agricultural practices introduce pharmaceutical (PhAC) residues into the terrestrial environment, potentially endangering agricultural crops and human health. This study aimed to evaluate various aspects related to the presence of pharmaceuticals in the lettuce-soil system, including bioconcentration factors (BCFs), translocation factors (TFs), ecotoxicological effects, the influence of biochar on the PhAC bioavailability, persistence in soil, and associated environmental and health risks. Lettuce (Lactuca sativa L.) was exposed to a mixture of 25 PhACs in two scenarios: initially contaminated soil (ranging from 0 to 10,000 ng·g-1) and soil irrigated with contaminated water (ranging from 0 to 1000 μg·L-1) over a 28-day period. The findings revealed a diverse range of BCFs (0.068-3.7) and TFs (0.032-0.58), indicating the uptake and translocation potential of pharmaceuticals by lettuce. Significant ecotoxicological effects on L. sativa, including weight change and increased mortality, were observed (p < 0.05). Interestingly, biochar did not significantly affect PhAC uptake by L. sativa (p > 0.05), while it significantly influenced the soil degradation kinetics of 12 PhACs (p < 0.05). Additionally, the estimated daily intake of PhACs through the consumption of L. sativa suggested negligible health risks, although concerns arose regarding the potential health risks if other vegetable sources were similarly contaminated with trace residues. Furthermore, this study evaluated the environmental risk associated with the emergence of antimicrobial resistance (AMR) in soil, as medium to high. In conclusion, these findings highlight the multifaceted challenges posed by pharmaceutical contamination in agricultural environments and emphasize the importance of proactive measures to mitigate the associated risks to both environmental and human health.
Collapse
Affiliation(s)
- Jan Fučík
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Vojtěch Jašek
- Institute
of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Marie Hamplová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Jitka Navrkalová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Helena Zlámalová Gargošová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Ludmila Mravcová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| |
Collapse
|
19
|
Liu P, Sun M, Xia S, Ju J, Mao W, Zhao H, Yanbin Hao. Earthworms and lactic acid bacteria (LAB) cooperate to promote the biodegradation of tetracycline residues in livestock manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:166-175. [PMID: 38905906 DOI: 10.1016/j.wasman.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
Tetracycline is an antibiotic with extensive veterinary use in the livestock industry. However, their widespread application poses risks to soil health as residue in livestock feces, and their removal is crucial for sustainable soil-ecosystem development. Physical and chemical approaches to extract tetracycline may have adverse effects on soil ecosystems, but no studies have thus far examined the potential for biological methods, such as collective degradation action of soil fauna. Thus, this study aimed to investigate the synergistic effects of lactic acid bacteria (LAB) and earthworms (Eisenia fetida) on biodegradation of tetracycline residues in sheep manure. We assessed earthworm biomass, tetracycline residue, and bacterial communities in both earthworm intestines and vermicompost. Earthworm biomass and tetracycline degradation efficiency increased significantly with LAB addition, with a degradation rate of up to 80.16%. This increase may be attributable to LAB acting as electron donors to spur tetracycline degradation. Additionally, we noted that tetracycline presence significantly influenced bacterial communities in earthworm intestines and vermicompost, elevating the abundance of potential pathogenic bacteria (e.g., Flavobacterium, Gammaproteobacteria, and Enterobacteriaceae). This finding suggests that heightened environmental stress from antibiotics could actually facilitate the growth of less prevalent bacteria, including potential pathogens. In conclusion, our study provides evidence supporting the effectiveness of LAB and earthworms in degrading tetracycline residues. In particular, LAB appears to mitigate stress from tetracycline exposure in earthworms, thus increasing their vermicomposting efficacy. Our work has important implications for soil management, with the potential to enhance pollution clean-up rates while minimizing negative side-effects to soil microbial communities.
Collapse
Affiliation(s)
- Ping Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou China 225009; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Yangzhou, China 225009
| | - Minghui Sun
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou China 225009
| | - Siqi Xia
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou China 225009
| | - Jing Ju
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou China 225009; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Yangzhou, China 225009
| | - Wei Mao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou China 225009
| | - Haitao Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou China 225009; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Yangzhou, China 225009.
| | - Yanbin Hao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 10049, China; Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
20
|
Marques RZ, Oliveira PGD, Barbato ML, Kitamura RSA, Maranho LT, Brito JCM, Nogueira KDS, Juneau P, Gomes MP. Green solutions for antibiotic pollution: Assessing the phytoremediation potential of aquatic macrophytes in wastewater treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124376. [PMID: 38897277 DOI: 10.1016/j.envpol.2024.124376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
We compared the ability of one emergent (Sagittaria montevidensis), two floating (Salvinia minima and Lemna gibba), and one heterophyllous species (Myriophyllum aquaticum) to simultaneously remove sulfamethoxazole, sulfadiazine, ciprofloxacin, enrofloxacin, norfloxacin, levofloxacin, oxytetracycline, tetracycline, doxycycline, azithromycin, amoxicillin, and meropenem from wastewater in a mesocosm-scale constructed wetland over 28 days. Antibiotic concentrations in plants and effluent were analyzed using an LC-MS/MS to assess the removal rates and phytoremediation capacities. M. aquaticum did not effectively mitigate contamination due to poor tolerance and survival in effluent conditions. S. minima and L. gibba demonstrated superior efficiency, reducing the antibiotic concentrations to undetectable levels within 14 days, while S. montevidensis achieved this result by day 28. Floating macrophytes emerge as the preferable choice for remediation of antibiotics compared to emergent and heterophyllous species. Antibiotics were detected in plant tissues at concentrations ranging from 0.32 to 29.32 ng g-1 fresh weight, highlighting macrophytes' ability to uptake and accumulate these contaminants. Conversely, non-planted systems exhibited a maximum removal rate of 65%, underscoring the persistence of these molecules in natural environments, even after the entire experimental period. Additionally, macrophytes improved effluent quality regardless of species by reducing total soluble solids and phosphate concentrations and mitigating ecotoxicological effects. This study underscores the potential of using macrophytes in wastewater treatment plants to enhance overall efficiency and prevent environmental contamination by antibiotics, thereby mitigating the harmful impact on biota and antibiotic resistance. Selecting appropriate plant species is crucial for successful phytoremediation in constructed wetlands, and actual implementation is essential to validate their effectiveness and practical applicability.
Collapse
Affiliation(s)
- Raizza Zorman Marques
- Programa de Pós-Graduação em Ciência dos Solo, Universidade Federal do Paraná, Rua dos Funcionários, 140, Juvevê, 80035-050, Curitiba, Paraná, Brazil; Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | | | - Marcello Locatelli Barbato
- Programa de Pós-Graduação em Ciência dos Solo, Universidade Federal do Paraná, Rua dos Funcionários, 140, Juvevê, 80035-050, Curitiba, Paraná, Brazil; Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Rafael Shinji Akiyama Kitamura
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Leila Teresinha Maranho
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Julio Cesar Moreira Brito
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, 30510-010, Belo Horizonte, Minas Gerais, Brazil
| | - Keite da Silva Nogueira
- Programa de Pós-Graduação em Microbiologia Parasitologia e Patologia, Laboratório de Microbiologia Médica, Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Philippe Juneau
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Paraná, Brazil; Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL, EcotoQ, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, Succ. Centre-ville, C.P.8888, H3C 3P8, Québec, Canada
| | - Marcelo Pedrosa Gomes
- Programa de Pós-Graduação em Ciência dos Solo, Universidade Federal do Paraná, Rua dos Funcionários, 140, Juvevê, 80035-050, Curitiba, Paraná, Brazil; Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
21
|
Serwecińska L, Font-Nájera A, Strapagiel D, Lach J, Tołoczko W, Bołdak M, Urbaniak M. Sewage sludge fertilization affects microbial community structure and its resistome in agricultural soils. Sci Rep 2024; 14:21034. [PMID: 39251745 PMCID: PMC11385149 DOI: 10.1038/s41598-024-71656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Global sewage sludge production is rapidly increasing, and its safe disposal is becoming an increasingly serious issue. One of the main methods of municipal sewage sludge management is based on its agricultural use. The wastewater and sewage sludge contain numerous antibiotic resistance genes (ARGs), and its microbiome differs significantly from the soil microbial community. The aim of the study was to assess the changes occurring in the soil microbial community and resistome after the addition of sewage sludge from municipal wastewater treatment plant (WWTP) in central Poland, from which the sludge is used for fertilizing agricultural soils on a regular basis. This study used a high-throughput shotgun metagenomics approach to compare the microbial communities and ARGs present in two soils fertilized with sewage sludge. The two soils represented different land uses and different physicochemical and granulometric properties. Both soils were characterized by a similar taxonomic composition of the bacterial community, despite dissimilarities between soils properties. Five phyla predominated, viz. Planctomycetes, Actinobacteria, Proteobacteria, Chloroflexi and Firmicutes, and they were present in comparable proportions in both soils. Network analysis revealed that the application of sewage sludge resulted in substantial qualitative and quantitative changes in bacterial taxonomic profile, with most abundant phyla being considerably depleted and replaced by Proteobacteria and Spirochaetes. In addition, the ratio of oligotrophic to copiotrophic bacteria substantially decreased in both amended soils. Furthermore, fertilized soils demonstrated greater diversity and richness of ARGs compared to control soils. The increased abundance concerned mainly genes of resistance to antibiotics most commonly used in human and animal medicine. The level of heavy metals in sewage sludge was low and did not exceed the standards permitted in Poland for sludge used in agriculture, and their level in fertilized soils was still inconsiderable.
Collapse
Affiliation(s)
- Liliana Serwecińska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90‑364, Lodz, Poland.
| | - Arnoldo Font-Nájera
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90‑364, Lodz, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 139, 90-235, Lodz, Poland
| | - Jakub Lach
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 139, 90-235, Lodz, Poland
| | - Wojciech Tołoczko
- Department of Physical Geography, Faculty of Geographical Sciences, University of Lodz, Narutowicza 88, 90-139, Lodz, Poland
| | - Małgorzata Bołdak
- Department of Agriculture and Environmental Chemistry, University of Agriculture in Krakow, Mickiewicza 21, 31-120, Kraków, Poland
| | - Magdalena Urbaniak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90‑237, Lodz, Poland
| |
Collapse
|
22
|
Zhai W, Guo Q, Wang N, Liu X, Liu D, Zhou Z, Wang P. Antibiotics alter the metabolic profile of metolachlor in soil-plant system by disturbing the detoxifying process and oxidative stress. BIORESOURCE TECHNOLOGY 2024; 406:130855. [PMID: 38851596 DOI: 10.1016/j.biortech.2024.130855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/10/2024]
Abstract
Antibiotics are widely detected in farmland, which may influence the environmental behavior and risks of the coexisting pesticide. In this work, the effects of antibiotics on metolachlor transformation in soil-pea and the risk of metolachlor to earthworm were assessed, and the mechanism was explored in view of detoxifying process and oxidative stress. Antibiotics affected not the degradation rate but the metabolic profile of metolachlor. In soil, the content of metabolites oxaloacetic acid (OA) and ethane sulfonic acid (ESA) was decreased and dechlorometolachlor (DCL) was increased by antibiotics. In pea, the accumulation of metolachlor, DCL and ESA was decreased, while OA was increased by antibiotics. The changed transformation of metolachlor affected the risk to earthworm according to risk quote assessment. In further research, it was found that cytochrome P450 (CYP450) enzyme was reduced by 12.3% - 30.4% in soil and 12.4% - 23.6% in pea, which might due to excessive ROS accumulation induced by antibiotics, thus affecting the transformation and metabolite profile of metolachlor in soil-plant system.
Collapse
Affiliation(s)
- Wangjing Zhai
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Qiqi Guo
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Nan Wang
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xueke Liu
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
23
|
Xue W, Li F, Li X, Liu Y. A Support Vector Machine-Assisted Metabolomics Approach for Non-Targeted Screening of Multi-Class Pesticides and Veterinary Drugs in Maize. Molecules 2024; 29:3026. [PMID: 38998975 PMCID: PMC11243018 DOI: 10.3390/molecules29133026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The contamination risks of plant-derived foods due to the co-existence of pesticides and veterinary drugs (P&VDs) have not been fully understood. With an increasing number of unexpected P&VDs illegally added to foods, it is essential to develop a non-targeted screening method for P&VDs for their comprehensive risk assessment. In this study, a modified support vector machine (SVM)-assisted metabolomics approach by screening eligible variables to represent marker compounds of 124 multi-class P&VDs in maize was developed based on the results of high-performance liquid chromatography-tandem mass spectrometry. Principal component analysis and orthogonal partial least squares discriminant analysis indicate the existence of variables with obvious inter-group differences, which were further investigated by S-plot plots, permutation tests, and variable importance in projection to obtain eligible variables. Meanwhile, SVM recursive feature elimination under the radial basis function was employed to obtain the weight-squared values of all the variables ranging from large to small for the screening of eligible variables as well. Pairwise t-tests and fold changes of concentration were further employed to confirm these eligible variables to represent marker compounds. The results indicate that 120 out of 124 P&VDs can be identified by the SVM-assisted metabolomics method, while only 109 P&VDs can be found by the metabolomics method alone, implying that SVM can promote the screening accuracy of the metabolomics method. In addition, the method's practicability was validated by the real contaminated maize samples, which provide a bright application prospect in non-targeted screening of contaminants. The limits of detection for 120 P&VDs in maize samples were calculated to be 0.3~1.5 µg/kg.
Collapse
Affiliation(s)
- Weifeng Xue
- Technology Centre of Dalian Customs, Dalian 116000, China
| | - Fang Li
- Technology Centre of Dalian Customs, Dalian 116000, China
| | - Xuemei Li
- Technology Centre of Dalian Customs, Dalian 116000, China
| | - Ying Liu
- Technology Centre of Dalian Customs, Dalian 116000, China
| |
Collapse
|
24
|
Wang W, Dang G, Hao W, Li A, Zhang H, Guan S, Ma T. Dietary Supplementation of Compound Probiotics Improves Intestinal Health by Modulated Microbiota and Its SCFA Products as Alternatives to In-Feed Antibiotics. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10314-3. [PMID: 38904897 DOI: 10.1007/s12602-024-10314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Enterococcus faecium, Bifidobacterium, and Pediococcus acidilactici, as intestinal probiotics, have been proved to play a positive role in treating intestinal diseases, promoting growth and immune regulation in poultry. The aim of this study was to evaluate the effect of compound probiotics on growth performance, digestive enzyme activity, intestinal microbiome characteristics, as well as intestinal morphology in broiler chickens. Treatment diets with chlortetracycline and compound probiotics were used for two groups of sixty broilers each throughout the feeding process. Another group was fed the basal diet. The BW (2589.41 ± 13.10 g vs 2422.50 ± 19.08 g) and ADG (60.57 ± 0.31 g vs 56.60 ± 0.45 g) of the compound probiotics added feed treatment group were significantly increased, and the FCR was significantly decreased (P < 0.05). The supplementation of a compound probiotics enhanced the abundance of beneficial bacteria such as Lactobacillus, Faecalibacterium, and norank_f_norank_o_Clostridia_vadinBB60_group (P < 0.05), and modulated the cecal microbiota structure, thereby promoting the production of short-chain fatty acids (SCFAs) and elevating their levels (P < 0.05), particularly propionic and butyric acids. Furthermore, the administration of the compound probiotics supplements significantly enhanced the villi height, V/C ratio, and reduced the crypt depth (P < 0.05). In addition, the activity of digestive enzymes in the duodenum and jejunum was elevated (P < 0.05). Collectively, the selected compound probiotics supplemented in this experiment have demonstrated efficacy, warranting further application in practical production settings as a viable alternative to antibiotics, thereby facilitating efficient production and promoting gastrointestinal health.
Collapse
Affiliation(s)
- Wenxing Wang
- State Key Laboratory of Livestock and Poultry Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guoqi Dang
- State Key Laboratory of Livestock and Poultry Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Hao
- Department of Animal Nutrition and Health, DSM (China) Co., Ltd, Shanghai, 201203, China
| | - Anping Li
- Department of Animal Nutrition and Health, DSM (China) Co., Ltd, Shanghai, 201203, China
| | - Hongfu Zhang
- State Key Laboratory of Livestock and Poultry Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shu Guan
- Department of Animal Nutrition and Health, DSM Singapore Industrial Pte. Ltd, Singapore, 117440, Singapore
| | - Teng Ma
- State Key Laboratory of Livestock and Poultry Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
25
|
Abedi-Firoozjah R, Alizadeh-Sani M, Zare L, Rostami O, Azimi Salim S, Assadpour E, Azizi-Lalabadi M, Zhang F, Lin X, Jafari SM. State-of-the-art nanosensors and kits for the detection of antibiotic residues in milk and dairy products. Adv Colloid Interface Sci 2024; 328:103164. [PMID: 38703455 DOI: 10.1016/j.cis.2024.103164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Antibiotic resistance is increasingly seen as a future concern, but antibiotics are still commonly used in animals, leading to their accumulation in humans through the food chain and posing health risks. The development of nanomaterials has opened up possibilities for creating new sensing strategies to detect antibiotic residues, resulting in the emergence of innovative nanobiosensors with different benefits like rapidity, simplicity, accuracy, sensitivity, specificity, and precision. Therefore, this comprehensive review provides pertinent and current insights into nanomaterials-based electrochemical/optical sensors for the detection of antibitic residues (ANBr) across milk and dairy products. Here, we first discuss the commonly used ANBs in real products, the significance of ANBr, and also their binding/biological properties. Then, we provide an overview of the role of using different nanomaterials on the development of advanced nanobiosensors like fluorescence-based, colorimetric, surface-enhanced Raman scattering, surface plasmon resonance, and several important electrochemical nanobiosensors relying on different kinds of electrodes. The enhancement of ANB electrochemical behavior for detection is also outlined, along with a concise overview of the utilization of (bio)recognition units. Ultimately, this paper offers a perspective on the future concepts of this research field and commercialized nanomaterial-based sensors to help upgrade the sensing techniques for ANBr in dairy products.
Collapse
Affiliation(s)
- Reza Abedi-Firoozjah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmood Alizadeh-Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Zare
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Rostami
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shamimeh Azimi Salim
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Azizi-Lalabadi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran..
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
26
|
Zhang T, Nickerson R, Zhang W, Peng X, Shang Y, Zhou Y, Luo Q, Wen G, Cheng Z. The impacts of animal agriculture on One Health-Bacterial zoonosis, antimicrobial resistance, and beyond. One Health 2024; 18:100748. [PMID: 38774301 PMCID: PMC11107239 DOI: 10.1016/j.onehlt.2024.100748] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
The industrialization of animal agriculture has undoubtedly contributed to the improvement of human well-being by increasing the efficiency of food animal production. At the same time, it has also drastically impacted the natural environment and human society. The One Health initiative emphasizes the interdependency of the health of ecosystems, animals, and humans. In this paper, we discuss some of the most profound consequences of animal agriculture practices from a One Health perspective. More specifically, we focus on impacts to host-microbe interactions by elaborating on how modern animal agriculture affects zoonotic infections, specifically those of bacterial origin, and the concomitant emergence of antimicrobial resistance (AMR). A key question underlying these deeply interconnected issues is how to better prevent, monitor, and manage infections in animal agriculture. To address this, we outline approaches to mitigate the impacts of agricultural bacterial zoonoses and AMR, including the development of novel treatments as well as non-drug approaches comprising integrated surveillance programs and policy and education regarding agricultural practices and antimicrobial stewardship. Finally, we touch upon additional major environmental and health factors impacted by animal agriculture within the One Health context, including animal welfare, food security, food safety, and climate change. Charting how these issues are interwoven to comprise the complex web of animal agriculture's broad impacts on One Health will allow for the development of concerted, multidisciplinary interventions which are truly necessary to tackle these issues from a One Health perspective.
Collapse
Affiliation(s)
- Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rhea Nickerson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Wenting Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xitian Peng
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, Hubei, China
- Ministry of Agriculture and Rural Affairs Laboratory of Quality and Safe Risk Assessment for Agro-products (Wuhan), Wuhan 430064, Hubei, China
| | - Yu Shang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Youxiang Zhou
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, Hubei, China
- Ministry of Agriculture and Rural Affairs Laboratory of Quality and Safe Risk Assessment for Agro-products (Wuhan), Wuhan 430064, Hubei, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
27
|
Wondie Mekonen A, Sintayehu T, Endeshaw Woldeyohanins A, Tefera Mekasha Y, Weldegerima Atsbeha B. Assessment of veterinary pharmaceutical warehouse management practices and its associated challenges in four selected zones and Bahir Dar city of Amhara regional state, Ethiopia. Front Vet Sci 2024; 11:1336660. [PMID: 38774908 PMCID: PMC11107088 DOI: 10.3389/fvets.2024.1336660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/09/2024] [Indexed: 05/24/2024] Open
Abstract
A pharmaceutical warehouse is part of the pharmaceutical supply chain and is essential to maintaining the quality and efficacy of veterinary pharmaceuticals for successful animal health service delivery. However, poor storage conditions, improper handling, and inappropriate use and disposal constitute challenges for veterinary supplies in animal health services. Therefore, this study aimed to assess the existing practices and challenges in warehouse management in government veterinary clinics and private veterinary drug wholesalers in Ethiopia. A cross-sectional study was conducted on 37 veterinary health facilities in four selected zones (south Gondar, west Gondar, central Gondar, and west Gojam zones) and Bahir Dar administrative city. Zones were selected using a simple random sampling technique. Data was collected using a structured questionnaire, pre-defined and tested observational checklists, and semi-structured interview guides. Descriptive statistics were used to analyze the quantitative data, while qualitative data was analyzed using a thematic approach. The study revealed the presence of poor stock management practices, such as the absence of standard operating procedures for warehouse activities in ~59.5% of facilities surveyed. In none of the surveyed facilities, bin cards and system software utilization were satisfactory. The absence of disposal guidelines was detected in 83.8% of the facilities, and the practice of timely disposal of expired drugs was not satisfactory. Compared to the government veterinary clinics, private veterinary drug wholesalers had better storage practices (86.25%) following theoretical recommendations. The storage conditions in government clinics were rated poor at 48.3% (>80%, which is the limit to the acceptable rate for good storage conditions). The challenges of inadequate infrastructure, a lack of qualified staff, problems with the availability and affordability of pharmaceutical products, insufficient regulatory practice, and budget constraints were identified. A holistic approach involving related stakeholders should be followed to improve the existing challenges and the sector's efficiency.
Collapse
Affiliation(s)
- Abibo Wondie Mekonen
- Department of Veterinary Pharmacy, Pharmaceutical Supply Chain Management, University of Gondar, Gondar, Ethiopia
| | - Tadilo Sintayehu
- Department of Logistic and Supply Chain Management, University of Gondar, Gondar, Ethiopia
| | - Alem Endeshaw Woldeyohanins
- Department of Social and Administrative Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethio
| | - Yesuneh Tefera Mekasha
- Department of Veterinary Pharmacy, Pharmaceutical Quality Assurance and Regulatory Affairs, University of Gondar, Gondar, Ethiopia
| | - Berhanemeskel Weldegerima Atsbeha
- Department of Social and Administrative Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethio
| |
Collapse
|
28
|
Zhao R, Wang T, Wang Z, Cheng W, Li L, Wang Y, Xie X. Activation of peroxymonosulfate with natural pyrite-biochar composite for sulfamethoxazole degradation in soil: Organic matter effects and free radical conversion. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133895. [PMID: 38432091 DOI: 10.1016/j.jhazmat.2024.133895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) represent an effective method for the remediation of antibiotic-contaminated soils. In this study, a natural pyrite-biochar composite material (FBCx) was developed, demonstrating superior activation performance and achieving a 76% removal rate of SMX from soil within 120 min. There existed different degradation mechanisms for SMX in aqueous and soil solutions, respectively. The production of 1O2 and inherent active species produced by soil slurry played an important role in the degradation process. The combination of electron paramagnetic resonance (EPR) and free radical probe experiments confirmed the presence of free radical transformation processes in soil. Wherein, the·OH and SO4·- generated in soil slurry did not directly involve in the degradation process, but rather preferentially reacted with soil organic matter (SOM) to form alkyl-like radicals (R·), thereby maintaining a high concentration of reactive species in the system. Furthermore, germination and growth promotion of mung bean seeds observed in the toxicity test indicated the environmental compatibility of this remediation method. This study revealed the influence mechanism of SOM in the remediation process of contaminated soil comprehensively, which possessed enormous potential for application in practical environments.
Collapse
Affiliation(s)
- Ranran Zhao
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou 730000, Gansu, China
| | - Tianyu Wang
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou 730000, Gansu, China
| | - Zhaowei Wang
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou 730000, Gansu, China.
| | - Wan Cheng
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou 730000, Gansu, China
| | - Liangyu Li
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou 730000, Gansu, China
| | - Yaodong Wang
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou 730000, Gansu, China
| | - Xiaoyun Xie
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou 730000, Gansu, China
| |
Collapse
|
29
|
Zalewska M, Błażejewska A, Szadziul M, Ciuchciński K, Popowska M. Effect of composting and storage on the microbiome and resistome of cattle manure from a commercial dairy farm in Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30819-30835. [PMID: 38616224 PMCID: PMC11096248 DOI: 10.1007/s11356-024-33276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Manure from food-producing animals, rich in antibiotic-resistant bacteria and antibiotic resistance genes (ARGs), poses significant environmental and healthcare risks. Despite global efforts, most manure is not adequately processed before use on fields, escalating the spread of antimicrobial resistance. This study examined how different cattle manure treatments, including composting and storage, affect its microbiome and resistome. The changes occurring in the microbiome and resistome of the treated manure samples were compared with those of raw samples by high-throughput qPCR for ARGs tracking and sequencing of the V3-V4 variable region of the 16S rRNA gene to indicate bacterial community composition. We identified 203 ARGs and mobile genetic elements (MGEs) in raw manure. Post-treatment reduced these to 76 in composted and 51 in stored samples. Notably, beta-lactam, cross-resistance to macrolides, lincosamides and streptogramin B (MLSB), and vancomycin resistance genes decreased, while genes linked to MGEs, integrons, and sulfonamide resistance increased after composting. Overall, total resistance gene abundance significantly dropped with both treatments. During composting, the relative abundance of genes was lower midway than at the end. Moreover, higher biodiversity was observed in samples after composting than storage. Our current research shows that both composting and storage effectively reduce ARGs in cattle manure. However, it is challenging to determine which method is superior, as different groups of resistance genes react differently to each treatment, even though a notable overall reduction in ARGs is observed.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Błażejewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mateusz Szadziul
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karol Ciuchciński
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
30
|
Proskynitopoulou V, Vourros A, Garagounis I, Toursidis PD, Lorentzou S, Kougias P, Zouboulis A, Panopoulos KD. Treatment of anaerobically digested pig manure by applying membrane processes for nutrient recovery and antibiotics removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33313-x. [PMID: 38613762 DOI: 10.1007/s11356-024-33313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
A combination of membrane processes was applied to treat the digestate produced after the anaerobic treatment of pig manure in a biogas plant, aiming towards the recovery of nutrients and effective water treatment for potential reuse. Initially, coarse filtration (sieving and microfiltration) was used to remove particles larger than 1 µm, followed by ultrafiltration, to reduce the suspended solids concentrations below 1 g/L. Subsequently, selective electrodialysis is employed to recover the main nutrient ions, primarily ammonium and potassium. The ion-depleted digestate is then fed to a reverse osmosis unit, where clean water was recovered, yielding a by-product (concentrate) stream enriched in phosphates and organics content. The presence of antibiotics and the concentrations of heavy metals were monitored during all treatment stages to assess their behavior/removal in the various membrane processes. The results indicate that almost 51% of the digestate could be recovered as water free from ions and antibiotics, suitable for reuse in the biogas plant for process needs and irrigation purposes. The selective electrodialysis process can recover 51% of initial NH4+ content (corresponding to 96% of the electrodialysis feed), while the remainder largely ended up in the ultrafiltration concentrate. A similar behavior was observed for the case of K+, while approximately 68% of the phosphates content was retained by the coarse filtration process, with another 24% remaining in the ultrafiltration concentrate and the remaining 8% in the reverse osmosis concentrate. Most of the antibiotics and heavy metals were retained by the coarse and ultrafiltration steps, with smaller amounts detected in the reverse osmosis concentrate.
Collapse
Affiliation(s)
- Vera Proskynitopoulou
- ARTEMIS Laboratory, Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas, 57001, Thessaloniki, Greece.
- Chemical and Environmental Technology Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Anastasios Vourros
- ARTEMIS Laboratory, Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas, 57001, Thessaloniki, Greece
| | - Ioannis Garagounis
- ARTEMIS Laboratory, Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas, 57001, Thessaloniki, Greece
| | - Panagiotis Dimopoulos Toursidis
- ARTEMIS Laboratory, Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas, 57001, Thessaloniki, Greece
| | - Souzana Lorentzou
- ARTEMIS Laboratory, Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas, 57001, Thessaloniki, Greece
| | - Panagiotis Kougias
- Hellenic Agricultural Organisation-DEMETER, Soil and Water Resources Institute, 57001, Thessaloniki, Greece
| | - Anastasios Zouboulis
- Chemical and Environmental Technology Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Kyriakos D Panopoulos
- ARTEMIS Laboratory, Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas, 57001, Thessaloniki, Greece
| |
Collapse
|
31
|
Zhang X, Gong Z, Jia Y, Zhao X, Jia C, Chen X, Guo S, Ludlow RA. Response characteristics and functional predictions of soil microorganisms to heavy metals, antibiotics, and their resistance genes originating from different animal farms amended with Herbaspirillum huttiense. ENVIRONMENTAL RESEARCH 2024; 246:118143. [PMID: 38199465 DOI: 10.1016/j.envres.2024.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Current understanding is limited regarding technologies that use biochar and microorganisms to simultaneously treat soils contaminated with both veterinary antibiotics (VAs) and heavy metals (HMs) from different animal farms. The contributions of the keystone taxa and their similarities from different animal farms under VA and HM stresses before and after soil remediation should be further investigated as well. An innovative treatment of Herbaspirillum huttiense (HHS1) inoculated waste fungus chaff-based (WFCB) biochar was designed for immobilization of copper (Cu) and zinc (Zn), and the removal of oxytetracycline (OTC), enrofloxacin (ENR), and a subsequent reduction in their resistance genes in soils from pig, cow, and chicken farms. Roles of indigenous microorganisms which can treat soils contaminated with VAs and HMs were summarized. Results showed that available Cu and Zn were reduced by 19.5% and 28.1%, respectively, while 49.8% of OTC and 85.1% of ENR were removed by WFCB-HHS1. The decrease in ENR improved overall microbial community diversity, and the increases in genera HHS1, Pedobacter, Flavobacterium and Aequorivita, along with the decreases of genera Bacillus, Methylobacter, and Fermentimonas were indirectly favorable to treat HMs and VAs in soils from different animal farms. Bacterial communities in different animal farm soils were predominantly influenced by stochastic processes. The regulations of functional genes associated with metabolism and environmental information processing, which contribute to HM and VA defense, were altered when using WFCB-HHS1. Furthermore, the spread of their antibiotic resistance genes was restricted.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, PR China.
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, PR China.
| | - Yanjie Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Xiang Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; School of Environmental Science, Liaoning University, Shenyang, 110036, PR China.
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, PR China; Key Laboratory of Conservation Tillage and Ecological Agriculture, Liaoning, 110016, PR China.
| | - Shuhai Guo
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, PR China.
| | - Richard A Ludlow
- School of Biosciences, Cardiff University, Cardiff, CF10 3TL, UK.
| |
Collapse
|
32
|
Wu X, Jin C, Du G, Wang J, Su J, Li R. Urea promoted soil microbial community and reduced the residual ciprofloxacin in soil and its uptake by Chinese flowering cabbage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30137-30148. [PMID: 38602632 DOI: 10.1007/s11356-024-33213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Antibiotics in agricultural soil can be accumulated in crops and might pose a potential risk to human health. Nevertheless, there is a lack of knowledge about the impact of nitrogen fertilizers on the dissipation and uptake of antibiotics in soils. Therefore, our aim in this study is to investigate the effects of urea fertilizer on the residues of ciprofloxacin and its uptake by Chinese flowering cabbage (Brassica parachinensis L.) as affected by the associated changes on the soil microbial community. A pot experiment has been conducted using spiked soil with 20 mg ciprofloxacin /kg soil and fertilized with urea at dosages equal to 0, 0.2, 0.4, 0.8 t/ha. Application urea especially at 0.4 t/ha decreased the residue of ciprofloxacin in the soil and its uptake by the roots and its translocation to the shoots of Chinese flowering cabbage. The translocation factors (TFs) for ciprofloxacin were significantly decreased (P < 0.05) only at the treatment of 0.4 t/ha, while no significant difference of bio-concentration factors (BCFs). The average well color development (AWCD) values, Shannon diversity, and richness index were higher in the fertilized than the un-fertilized soils, and all such indicators were greater at the treatment of 0.4 t/ha than at 0.2 and 0.8 t/ha. The carbon substrate utilization of phenolic acids at the treatments of 0.4 t/ha were greater than with other levels of urea fertilizer. In conclusion, moderate urea addition significantly increased soil microbial activity and abundance, which in turn promoted the ciprofloxacin dissipation in soil and plant tissue. The present study provides an economical and operational strategy for the remediation of ciprofloxacin contaminated soils.
Collapse
Affiliation(s)
- Xiaolian Wu
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China.
| | - Chenze Jin
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Gengying Du
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Jianan Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Jiayi Su
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Rongxuan Li
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| |
Collapse
|
33
|
Shawver S, Ishii S, Strickland MS, Badgley B. Soil type and moisture content alter soil microbial responses to manure from cattle administered antibiotics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27259-27272. [PMID: 38507165 PMCID: PMC11052774 DOI: 10.1007/s11356-024-32903-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Growing concerns about the global antimicrobial resistance crisis require a better understanding of how antibiotic resistance persists in soil and how antibiotic exposure impacts soil microbial communities. In agroecosystems, these responses are complex because environmental factors may influence how soil microbial communities respond to manure and antibiotic exposure. The study aimed to determine how soil type and moisture alter responses of microbial communities to additions of manure from cattle treated with antibiotics. Soil microcosms were constructed using two soil types at 15, 30, or 45% moisture. Microcosms received biweekly additions of manure from cattle given cephapirin or pirlimycin, antibiotic-free manure, or no manure. While soil type and moisture had the largest effects on microbiome structure, impacts of manure treatments on community structure and individual ARG abundances were observed across varying soil conditions. Activity was also affected, as respiration increased in the cephapirin treatment but decreased with pirlimycin. Manure from cattle antibiotics also increased NH4+ and decreased NO3- availability in some scenarios, but the effects were heavily influenced by soil type and moisture. Overall, this work demonstrates that environmental conditions can alter how manure from cattle administered antibiotics impact the soil microbiome. A nuanced approach that considers environmental variability may benefit the long-term management of antibiotic resistance in soil systems.
Collapse
Affiliation(s)
- Sarah Shawver
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Satoshi Ishii
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, 55108, USA
| | - Michael S Strickland
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, 83844, USA
| | - Brian Badgley
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
34
|
Yang G, Jiang D, Huang LJ, Cui C, Yang R, Pi X, Peng X, Peng X, Pi J, Li N. Distinct toxic effects, gene expression profiles, and phytohormone responses of Polygonatum cyrtonema exposed to two different antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133639. [PMID: 38309169 DOI: 10.1016/j.jhazmat.2024.133639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
The excessive usage of veterinary antibiotics has raised significant concerns regarding their environmental hazard and agricultural impact when entering surface water and soil. Animal waste serves as a primary source of organic fertilizer for intensive large-scale agricultural cultivation, including the widely utilized medicinal and edible plant, Polygonatum cyrtonem. In this study, we employed a novel plant stress tissue culture technology to investigate the toxic effects of tetracycline hydrochloride (TCH) and sulfadiazine (SDZ) on P. cyrtonema. TCH and SDZ exhibited varying degrees of influence on plant growth, photosynthesis, and the reactive oxygen species (ROS) scavenging system. Flavonoid levels increased following exposure to TCH and SDZ. The biosynthesis and signaling pathways of the growth hormones auxin and gibberellic acid were suppressed by both antibiotics, while the salicylic acid-mediated plant stress response was specifically induced in the case of SDZ. Overall, the study unveiled both common and unique responses at physiological, biochemical, and molecular levels in P. cyrtonema following exposure to two distinct types of antibiotics, providing a foundational framework for comprehensively elucidating the precise toxic effects of antibiotics and the versatile adaptive mechanisms in plants.
Collapse
Affiliation(s)
- Guoqun Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Dong Jiang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Jun Huang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chuantong Cui
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Runke Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Pi
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xia Peng
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaofeng Peng
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jianhui Pi
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418099, China
| | - Ning Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
35
|
Tuts L, Rasschaert G, Heyndrickx M, Boon N, Eppinger R, Becue I. Detection of antibiotic residues in groundwater with a validated multiresidue UHPLC-MS/MS quantification method. CHEMOSPHERE 2024; 352:141455. [PMID: 38367872 DOI: 10.1016/j.chemosphere.2024.141455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
The occurrence of antibiotic residues in the environment has received considerable attention because of their potential to select for bacterial resistance. The overuse of antibiotics in human medicine and animal production results in antibiotic residues entering the aquatic environment, but concentrations are currently not well determined. This study investigates the occurrence of antibiotics in groundwater in areas strongly related to agriculture and the antibiotic treatment of animals. A multiresidue method was validated according to EU Regulation 2021/808, to allow (semi-)quantitative analysis of 78 antibiotics from 10 different classes: β-lactams, sulfonamides, tetracyclines, lincosamides, amphenicols, (fluoro)quinolones, macrolides, pleuromutilins, ansamycins and diaminopyrimidines using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). This method was used to test different storage conditions of these water samples during a stability study over a period of 2 weeks. Sulfonamides, lincosamides and pleuromutilins were the most stable. Degradation was most pronounced for β-lactam antibiotics, macrolides and ansamycins. To maintain stability, storage of samples at -18 °C is preferred. With the validated method, antibiotic residues were detected in groundwater, sampled from regions associated with intensive livestock farming in Flanders (Belgium). Out of 50 samples, 14% contained at least one residue. Concentrations were low, ranging from < LOD to 0.03 μg/L. Chloramphenicol, oxolinic acid, tetracycline and sulfonamides (sulfadiazine, sulfadoxine, sulfamethazine and sulfisoxazole) were detected. This study presents a new method for the quantification of antibiotic residues, which was applied to investigate the presence of antibiotic residues in groundwater in Flanders.
Collapse
Affiliation(s)
- Laurens Tuts
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium; Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Coupure Links 653, 9000, Gent, Belgium.
| | - Geertrui Rasschaert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium.
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium; Ghent University, Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology and Zoological Medicine, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Nico Boon
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Coupure Links 653, 9000, Gent, Belgium.
| | - Ralf Eppinger
- Flanders Environment Agency (VMM), Dokter De Moorstraat 24-26, 9300, Aalst, Belgium.
| | - Ilse Becue
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium.
| |
Collapse
|
36
|
Nkoh JN, Shang C, Okeke ES, Ejeromedoghene O, Oderinde O, Etafo NO, Mgbechidinma CL, Bakare OC, Meugang EF. Antibiotics soil-solution chemistry: A review of environmental behavior and uptake and transformation by plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120312. [PMID: 38340667 DOI: 10.1016/j.jenvman.2024.120312] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/21/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The increased use of antibiotics by humans for various purposes has left the environment polluted. Antibiotic pollution remediation is challenging because antibiotics exist in trace amounts and only highly sensitive detection techniques could be used to quantify them. Nevertheless, their trace quantity is not a hindrance to their transfer along the food chain, causing sensitization and the development of antibiotic resistance. Despite an increase in the literature on antibiotic pollution and the development and transfer of antibiotic-resistant genes (ARGs), little attention has been given to the behavior of antibiotics at the soil-solution interface and how this affects antibiotic adsorption-desorption interactions and subsequent uptake and transformation by plants. Thus, this review critically examines the interactions and possible degradation mechanisms of antibiotics in soil and the link between antibiotic soil-solution chemistry and uptake by plants. Also, different factors influencing antibiotic mobility in soil and the transfer of ARGs from one organism to another were considered. The mechanistic and critical analyses revealed that: (a) the charge characteristics of antibiotics at the soil-root interface determine whether they are adsorbed to soil or taken up by plants; (b) antibiotics that avoid soil colloids and reach soil pore water can be absorbed by plant roots, but their translocation to the stem and leaves depends on the ionic state of the molecule; (c) few studies have explored how plants adapt to antibiotic pollution and the transformation of antibiotics in plants; and (d) the persistence of antibiotics in cropland soils can be influenced by the content of soil organic matter, coexisting ions, and fertilization practices. Future research should focus on the soil/solution-antibiotic-plant interactions to reveal detailed mechanisms of antibiotic transformation by plants and whether plant-transformed antibiotics could be of environmental risk.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya; Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China.
| | - Onome Ejeromedoghene
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya; School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189, China
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Nelson Oshogwue Etafo
- Programa de Posgrado en Ciencia y Tecnología de Materiales, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N Republica, 25280 Saltillo, Coahuila Mexico
| | - Chiamaka Linda Mgbechidinma
- Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State, 200243, Nigeria
| | - Omonike Christianah Bakare
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Elvira Foka Meugang
- School of Metallurgy & Environment, Central South University, 932 Lushan South Road, Changsha, 410083, China
| |
Collapse
|
37
|
Han S, Shin R, Ryu SH, Unno T, Hur HG, Shin H. A Potential Indicator Gene, tetM, to Assess Contamination by Antibiotic Resistance Genes in Greenhouses in South Korea. Microbes Environ 2024; 39:ME24053. [PMID: 39756985 PMCID: PMC11821766 DOI: 10.1264/jsme2.me24053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/07/2024] [Indexed: 01/07/2025] Open
Abstract
Antibiotic resistance genes (ARGs) have been emerging as a concerning threat to both environment and public health. The continuous input of manure, irrigation water, and fertilizers increases the abundance of ARGs in agricultural environments. However, current risk assessments have focused on clinical settings, which are not applicable to environmental settings. Therefore, we herein aimed to identify and assess indicator genes to reduce the time and effort required for ARG surveillance. A nationwide ana-lysis of 322 ARGs and 58 mobile genetic elements (MGEs) was performed on 42 greenhouse and 19 control soil samples. The chemical properties and pH of soil were also investigated to characterize differences between greenhouse and control soil samples. The results obtained showed that the abundance of ARGS was significantly higher and ion concentrations were higher in greenhouse samples than in control samples. These results indicate that agricultural activities increased the abundance of ARGs. Furthermore, the abundance of core genes was significantly higher in greenhouse samples than in control samples, and the chemical characteristics of soil significantly differed between these samples. Among the discriminatory genes selected, tetM was identified as an ARG surveillance indicator gene based on its clinical relevance, prevalence in the soil resistome, and relationship with mobile genetic elements. The present results will contribute to the continuous and rapid surveillance of antibiotic resistance dissemination and proliferation in greenhouses in South Korea.
Collapse
Affiliation(s)
- Seunggyun Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Raan Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Song-Hee Ryu
- Residual Agrochemical Assessment Division, National Institute of Agricultural Sciences, Wanju-gun, South Korea
| | - Tatsuya Unno
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hanseob Shin
- Center for Health Effects of Environmental Contamination, University of Iowa, W195 Chemistry Building, University of Iowa, Iowa city, Iowa, United States
- State Hygienic Laboratory, University of Iowa, Coralville, Iowa, United States
| |
Collapse
|
38
|
García-Delgado C, Delgado-Moreno L, Toro M, Puñal M, Martín-Trueba M, Eymar E, Ruíz AI. The role of biochar and green compost amendments in the adsorption, leaching, and degradation of sulfamethoxazole in basic soil. CHEMOSPHERE 2023; 344:140364. [PMID: 37797895 DOI: 10.1016/j.chemosphere.2023.140364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
The fate of the antibiotic sulfamethoxazole in amended soils remains unclear, moreover in basic soils. This work aimed to assess the adsorption, leaching, and biodegradation of sulfamethoxazole in unamended and biochar from holm oak pruning (BC)- and green compost from urban pruning (CG)-amended basic soil. Adsorption properties of the organic amendments and soil were determined by adsorption isotherms of sulfamethoxazole. The leachability of this antibiotic from unamended (Soil) and BC- (Soil + BC) and GC- (Soil + GC) amended soil was determined by leaching columns using water as solvent up to 250 mL. Finally, Soil, Soil + BC, and Soil + GC were spiked with sulfamethoxazole and incubated for 42 days. The degradation rate and microbial activity were periodically monitored. Adsorption isotherms showed poor adsorption of sulfamethoxazole in unamended basic soil. BC and CG showed good adsorption capacity. Soil + BC and Soil + GC increased the sulfamethoxazole adsorption capacity of the soil. The low sulfamethoxazole adsorption of Soil produced quick and intense sulfamethoxazole leaching. Soil + BC reduced the sulfamethoxazole leaching, unlike to Soil + GC which enhanced it concerning Soil. The pH of adsorption isotherms and leachates indicate that the anion of sulfamethoxazole was the major specie in unamended and amended soil. CG enhanced the microbial activity of the soil and promoted the degradability of sulfamethoxazole. In contrast, the high adsorption and low biostimulation effect of BC in soil reduced the degradation of sulfamethoxazole. The half-life of sulfamethoxazole was 2.6, 6.9, and 11.9 days for Soil + GC, Soil, and Soil + BC, respectively. This work shows the benefits and risks of two organic amendments, BC and GC, for the environmental fate of sulfamethoxazole. The different nature of the organic carbon of the amendments was responsible for the different effects on the soil.
Collapse
Affiliation(s)
- Carlos García-Delgado
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Laura Delgado-Moreno
- Department of Agricultural Chemistry and Food Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Marta Toro
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Marcos Puñal
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María Martín-Trueba
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain; Department of Agricultural Chemistry and Food Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Enrique Eymar
- Department of Agricultural Chemistry and Food Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Ana I Ruíz
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
39
|
Kenneth MJ, Koner S, Hsu GJ, Chen JS, Hsu BM. A review on the effects of discharging conventionally treated livestock waste to the environmental resistome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122643. [PMID: 37775024 DOI: 10.1016/j.envpol.2023.122643] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Globally, animal production has developed rapidly as a consequence of the ongoing population growth, to support food security. This has consequently led to an extensive use of antibiotics to promote growth and prevent diseases in animals. However, most antibiotics are not fully metabolized by these animals, leading to their excretion within urine and faeces, thus making these wastes a major reservoir of antibiotics residues, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the environment. Farmers normally depend on conventional treatment methods to mitigate the environmental impact of animal waste; however, these methods are not fully efficient to remove the environmental resistome. The present study reviewed the variability of residual antibiotics, ARB, as well as ARGs in the conventionally treated waste and assessed how discharging it could increase resistome in the receiving environments. Wherein, considering the efficiency and environmental safety, an addition of pre-treatments steps with these conventional treatment methods could enhance the removal of antibiotic resistance agents from livestock waste.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Diseases, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
40
|
Nardulli P, Ballini A, Zamparella M, De Vito D. The Role of Stakeholders' Understandings in Emerging Antimicrobial Resistance: A One Health Approach. Microorganisms 2023; 11:2797. [PMID: 38004808 PMCID: PMC10673085 DOI: 10.3390/microorganisms11112797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The increasing misuse of antibiotics in human and veterinary medicine and in agroecosystems and the consequent selective pressure of resistant strains lead to multidrug resistance (AMR), an expanding global phenomenon. Indeed, this phenomenon represents a major public health target with significant clinical implications related to increased morbidity and mortality and prolonged hospital stays. The current presence of microorganisms multi-resistant to antibiotics isolated in patients is a problem because of the additional burden of disease it places on the most fragile patients and the difficulty of finding effective therapies. In recent decades, international organizations like the World Health Organization (WHO) and the European Centre for Disease Prevention and Control (ECDC) have played significant roles in addressing the issue of AMR. The ECDC estimates that in the European Union alone, antibiotic resistance causes 33,000 deaths and approximately 880,000 cases of disability each year. The epidemiological impact of AMR inevitably also has direct economic consequences related not only to the loss of life but also to a reduction in the number of days worked, increased use of healthcare resources for diagnostic procedures and the use of second-line antibiotics when available. In 2015, the WHO, recognising AMR as a complex problem that can only be addressed by coordinated multi-sectoral interventions, promoted the One Health approach that considers human, animal, and environmental health in an integrated manner. In this review, the authors try to address why a collaboration of all stakeholders involved in AMR growth and management is necessary in order to achieve optimal health for people, animals, plants, and the environment, highlighting that AMR is a growing threat to human and animal health, food safety and security, economic prosperity, and ecosystems worldwide.
Collapse
Affiliation(s)
- Patrizia Nardulli
- S.C. Farmacia e UMACA IRCCS Istituto Tumori “Giovanni Paolo II”, Viale O. Flacco 65, 70124 Bari, Italy;
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | | | - Danila De Vito
- Department of Translational Biomedicine and Neuroscience, Medical School, University Aldo Moro of Bari, 70124 Bari, Italy;
| |
Collapse
|
41
|
Zhou Q, Mai W, Chen Z, Wang X, Pu M, Tu J, Zhang C, Yi X, Huang M. Thiamethoxam adsorption by ZnCl 2 modified cow manure biochar: Mechanism and quantitative prediction. ENVIRONMENTAL RESEARCH 2023; 237:117004. [PMID: 37643684 DOI: 10.1016/j.envres.2023.117004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
The overuse of thiamethoxam (THM) has threatened the survival of living organisms and it is necessary to find an environmentally friendly material to remove THM frequently detected in water. Biochar prepared from cow manure modified with ZnCl2 (Zn-CBC) was used to remove THM. Compared to the unmodified cow manure biochar (CBC), the removal ratio of THM by Zn-CBC was enhanced 35 times. In the mechanistic analysis, SEM and BET showed that Zn-CBC had a good pore structure and its specific surface area (166.502 m2 g-1) increased to 17 times that of CBC, indicating that Zn-CBC had good pore adsorption properties. The adsorption kinetic and isotherm implied that the main mechanism was chemisorption including π-π interaction and H-bonding. Furthermore, the stable graphitized structure of Zn-CBC allowed for efficient adsorption and reusability. In addition, this study constructed an intelligent prediction model using batch experiment data, and the high R2 (0.978) and low RMSE (0.057) implied that the model could accurately and quantitatively predict the adsorption efficiency. This paper provides a novel perspective to simultaneously remove the neonicotinoid insecticides and realize the resource utilization of cow manure.
Collapse
Affiliation(s)
- Qiao Zhou
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Wenjie Mai
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Zhenguo Chen
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU Qingyuan Institute of Science and Technology Innovation Co, Ltd, Qingyuan 511517, PR China.
| | - Xinzhi Wang
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Mengjie Pu
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Jun Tu
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Chao Zhang
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; School of Civil Engineering & Transportation, South China University of Technology, Guangzhou, 510640, PR China
| | - Xiaohui Yi
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Mingzhi Huang
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; Huashi(Fujian) Environment Technology Co.,Ltd, Quanzhou, 362001, PR China; SCNU Qingyuan Institute of Science and Technology Innovation Co, Ltd, Qingyuan 511517, PR China; Econ Technology Co, Ltd, Yantai 265503, PR China.
| |
Collapse
|
42
|
Yang L, Lyu J, Zhang L, Wang L, Yu J, Cao Z, Tudi M, Meng M. Spatial distribution of antibiotics and antibiotic resistance genes in tidal flat reclamation areas in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112863-112876. [PMID: 37843708 DOI: 10.1007/s11356-023-30087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
Tidal flat areas are important resources for land development and are becoming antibiotic resistance receivers that trigger major health concerns. The spatial distributions of forty-nine antibiotics, nine antibiotic resistance genes (ARGs), one mobile gene element (MGE) gene, and nine available metals in the soils and sediments along the coastlines of the Yellow Sea in China were quantified. Hierarchical linear model analysis was used to explore relationships between the antibiotics and ARGs across multiple effects resulting from human activities and environmental factors. Fish farm sediments and farmland soils showed high levels of quinolones (QNs) (maximum 637 ng·g-1), sulfonamides (SAs) (maximum 221 ng·g-1), and corresponding ARGs. Significant positive correlations (P from 5.47 × 10-14 to 0.0487) were observed between the antibiotics (QNs, SAs, and chlortetracycline) and their corresponding ARGs (qnrA, qnrD, aac(6')-Ib-cr, dfrA, sul2, and tetA), indicating the selective pressure from antibiotics in soils and sediments. Nine available metals had positive correlations with at least one ARG, indicating heavy metal pollution could enhance the ARGs. Sheep and poultry husbandry and marine aquaculture contribute the most to the antibiotic resistance in the coastlines. In conclusion, antibiotic pollutions have promoting effects at sub-inhibitory concentrations and more attention should be given to inhibit the enrichment of ARGs during tidal flat reclamation processes. The study also suggests the induction effects from metal pollutions, MGE spread, and the antibiotic pollutions from the usage in livestock and aquaculture.
Collapse
Affiliation(s)
- Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No.11 Datun Road, Beijing, 100101, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Road, Beijing, 101408, China
| | - Jia Lyu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No.11 Datun Road, Beijing, 100101, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Road, Beijing, 101408, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Beijing, 100050, China
| | - Lan Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Beijing, 100050, China
| | - Li Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No.11 Datun Road, Beijing, 100101, China.
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No.11 Datun Road, Beijing, 100101, China
| | - Zhiqiang Cao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No.11 Datun Road, Beijing, 100101, China
| | - Muyesaier Tudi
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No.11 Datun Road, Beijing, 100101, China
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD, 4111, Australia
| | - Min Meng
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, No.27 Shanda Nanlu, Jinan, 250100, China
| |
Collapse
|
43
|
Huang Z, Hu LX, Yang JB, Liu YS, He LY, Zhao JL, Ying GG. Comprehensive discovery and migration evaluation of antimicrobial drugs and their transformation products in a swine farm by target, suspect, and nontarget screening. ENVIRONMENT INTERNATIONAL 2023; 181:108304. [PMID: 37931561 DOI: 10.1016/j.envint.2023.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Swine farms contaminated the surrounding environment through manure application and biogas slurry irrigation, hence causing the wide residual of multiple antimicrobial drugs (ADs) and their transformation products (TPs). This study performed target, suspect, and nontarget screening methods to comprehensively investigate the pollution profiles of ADs in a typical swine farm, and characterize the potential transformed pathway of TPs and distinguish specific reactions of different catalog of ADs. Samples of fresh feces, compost, biogas slurry, topsoil, column soil, groundwater and plants were analyzed using the database containing 98 target analytes, 679 suspected parent ADs, and ∼ 107 TPs. In total, 29 ADs were quantitively detected, and tetracyclines (TCs) were mostly frequently detected ADs with the concentrations up to 4251 ng/g in topsoil. Soil column investigation revealed that doxycycline (DOX) and tetracycline (TC) in soil could migrate to depths of approximately 1 m in soil. Suspect screening identified 75 parent ADs, with 10 being reported for the first time in environmental media. Semi-quantification of ADs revealed that one of the less-concerned ADs, clinafloxacin, was detected to exceed 5000 ng/L in biogas slurry, suggesting that significant attentions should be paid to these less-concerned ADs. Moreover, 314 TPs was identified, and most of them were found to undergo microbial/enzymatic metabolism pathways. Overall, our study displays a comprehensive overview of ADs and their TPs in swine farming environments, and provides an inventory of crucial list that worthy of concern. The results emphasize the need to quantify the levels and distribution of previously overlooked ADs and their TPs in livestock farms.
Collapse
Affiliation(s)
- Zheng Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Jiong-Bin Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| |
Collapse
|
44
|
Xu JM, Lv Y, Xu K, Liu X, Wang K, Zi HY, Zhang G, Wang AJ, Lu S, Cheng HY. Long-distance responses of ginger to soil sulfamethoxazole and chromium: Growth, co-occurrence with antibiotic resistance genes, and consumption risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122081. [PMID: 37414118 DOI: 10.1016/j.envpol.2023.122081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
The coexistence of antibiotics and heavy metals in agroecosystems is nonnegligible, which permits the promotion of antibiotic resistance genes (ARGs) in crops, thus posing a potential threat to humans along the food chain. In this study, we investigated the bottom-up (rhizosphere→rhizome→root→leaf) long-distance responses and bio-enrichment characteristics of ginger to different sulfamethoxazole (SMX) and chromium (Cr) contamination patterns. The results showed that ginger root systems adapted to SMX- and/or Cr-stress by increasing humic-like exudates, which may help to maintain the rhizosphere indigenous bacterial phyla (i.e., Proteobacteria, Chloroflexi, Acidobacteria and Actinobacteria). The root activity, leaf photosynthesis and fluorescence, and antioxidant enzymes (SOD, POD, CAT) of ginger were significantly decreased under high-dose Cr and SMX co-contamination, while a "hormesis effect" was observed under single low-dose SMX contamination. For example, CS100 (co-contamination of 100 mg/L SMX and 100 mg/L Cr) caused the most severe inhibition to leaf photosynthetic function by reducing photochemical efficiency (reflected on PAR-ETR, φPSII and qP). Meanwhile, CS100 induced the highest ROS production, in which H2O2 and O2·- increased by 328.82% and 238.00% compared with CK (the blank control without contamination). Moreover, co-selective stress by Cr and SMX induced the increase of ARG bacterial hosts and bacterial phenotypes containing mobile elements, contributing to the high detected abundance of target ARGs (sul1, sul2) up to 10-2∼10-1 copies/16S rRNA in rhizomes intended for consumption.
Collapse
Affiliation(s)
- Jia-Min Xu
- School of Civil and Environmental Engineering, Harbin Institute of Technology-Shenzhen (HIT-SZ), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xiaohui Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kai Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Hu-Yi Zi
- School of Civil and Environmental Engineering, Harbin Institute of Technology-Shenzhen (HIT-SZ), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ai-Jie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology-Shenzhen (HIT-SZ), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hao-Yi Cheng
- School of Civil and Environmental Engineering, Harbin Institute of Technology-Shenzhen (HIT-SZ), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| |
Collapse
|
45
|
Méndez-Rivera M, Montiel-Mora JR, Ramírez-Morales D, Masís-Mora M, Rodríguez-Rodríguez CE. On-farm Occurrence of Pharmaceuticals and Their Environmental Hazard: Case Study of a Tropical Dairy farm. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:51. [PMID: 37752279 DOI: 10.1007/s00128-023-03809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
Animal husbandry wastewaters represent an important source of pharmaceuticals into the environment. This work aimed to evaluate the occurrence of pharmaceuticals and their hazard in wastewater from a model dairy farm from Costa Rica. Among the seven pharmaceuticals detected (acetaminophen, caffeine, carbamazepine, ibuprofen, ketoprofen, risperidone, sulfamethazine), caffeine, ibuprofen and acetaminophen showed the highest concentrations, while caffeine, carbamazepine and risperidone were the most frequently detected compounds. High (HQ ≥ 1) or medium (0.1 ≤ HQ < 1) hazard were estimated for three (caffeine, ibuprofen, risperidone) and two (acetaminophen, ketoprofen) pharmaceuticals, respectively; similarly, high overall hazard (∑HQ) and significant ecotoxicity were determined in samples from all sampling points. According to our results, the release of these aqueous matrices is a matter of environmental concern, as the treated wastewater is used for farm irrigation or directly released into nearby water streams. This work contributes to the knowledge on the scarcely described occurrence and risk of pharmaceuticals in Latin American regions.
Collapse
Affiliation(s)
- Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - José R Montiel-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica.
| |
Collapse
|
46
|
Narciso A, Barra Caracciolo A, De Carolis C. Overview of Direct and Indirect Effects of Antibiotics on Terrestrial Organisms. Antibiotics (Basel) 2023; 12:1471. [PMID: 37760767 PMCID: PMC10525971 DOI: 10.3390/antibiotics12091471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotics (ABs) have made it possible to treat bacterial infections, which were in the past untreatable and consequently fatal. Regrettably, their use and abuse among humans and livestock led to antibiotic resistance, which has made them ineffective in many cases. The spread of antibiotic resistance genes (ARGs) and bacteria is not limited to nosocomial environments, but also involves water and soil ecosystems. The environmental presence of ABs and ARGs is a hot topic, and their direct and indirect effects, are still not well known or clarified. A particular concern is the presence of antibiotics in agroecosystems due to the application of agro-zootechnical waste (e.g., manure and biosolids), which can introduce antibiotic residues and ARGs to soils. This review provides an insight of recent findings of AB direct and indirect effects on terrestrial organisms, focusing on plant and invertebrates. Possible changing in viability and organism growth, AB bioaccumulation, and shifts in associated microbiome composition are reported. Oxidative stress responses of plants (such as reactive oxygen species production) to antibiotics are also described.
Collapse
Affiliation(s)
- Alessandra Narciso
- Water Research Institute, National Research Council (IRSA-CNR), SP 35d, km 0.7 Montelibretti, 00010 Rome, Italy; (A.N.); (C.D.C.)
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università s.n.c., 01100 Viterbo, Italy
| | - Anna Barra Caracciolo
- Water Research Institute, National Research Council (IRSA-CNR), SP 35d, km 0.7 Montelibretti, 00010 Rome, Italy; (A.N.); (C.D.C.)
| | - Chiara De Carolis
- Water Research Institute, National Research Council (IRSA-CNR), SP 35d, km 0.7 Montelibretti, 00010 Rome, Italy; (A.N.); (C.D.C.)
- Department of Environmental Biology, La Sapienza’ University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
47
|
Gbylik-Sikorska M, Gajda A, Felipe-Sotelo M, Caniça M, Cabal-Rosel A, Tenson T, Kořínková M, Arbo K, Kisand V, Rab G, Brandtner M. Investigation of 29 Antimicrobial Compounds in Soil Using Newly Developed UHPLC-MS/MS Method. Molecules 2023; 28:6496. [PMID: 37764271 PMCID: PMC10534473 DOI: 10.3390/molecules28186496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
While the prudent and reasonable use of veterinary antimicrobial agents in food-producing animals is necessary, researchers over the decades have shown that these antimicrobial agents can spread into the environment through livestock manure and wastewater. The analysis of the occurrence of antimicrobial compounds in soil samples is of a great importance to determine potential impacts on human and animal health and the environment. In this study, an affordable, rugged and simple analytical method has been developed for the determination of twenty-nine antimicrobial compounds from five different classes (tetracyclines, fluoro(quinolones), macrolides, sulfonamides and diaminopirimidines). Liquid-liquid extraction (LLE) with extract filtration combined with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) was the best strategy for the simultaneous determination of all analytes. The developed method was validated according to the Commission Implementing Regulation (EU) 2021/808. The limit of detections (LODs) ranged from 0.5 to 2.0 µg/kg, while the limit of quantitation (LOQ) was established at 1.0 to 20.0 µg/kg. The developed method was successfully applied for the determination of antimicrobial residues in one hundred and eighteen soil samples obtained from four European countries (Austria, Czech Republic, Estonia and Portugal). Doxycycline in the concentration levels of 9.07 µg/kg-20.6 µg/kg was detected in eight of the analysed samples. Samples were collected from areas where natural fertilizers (swine or cow manure) were applied. Our method can be efficiently used to monitor anti-microbial compounds in soil samples.
Collapse
Affiliation(s)
- Małgorzata Gbylik-Sikorska
- Department of Pharmacology and Toxicology, National Veterinary Research Institute (NVRI), Al. Partyzantow 57, 24-100 Pulawy, Poland;
| | - Anna Gajda
- Department of Pharmacology and Toxicology, National Veterinary Research Institute (NVRI), Al. Partyzantow 57, 24-100 Pulawy, Poland;
| | - Monica Felipe-Sotelo
- Faculty of Engineering and Physical Sciences, School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK;
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal;
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4050-453 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, 1300-477 Lisbon, Portugal
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Adriana Cabal-Rosel
- Austrian Agency for Health and Food Safety (AGES), 1220 Vienna, Austria; (A.C.-R.); (M.B.)
| | - Tanel Tenson
- Institute of Technology, University of Tartu (UT), 50411 Tartu, Estonia; (T.T.); (K.A.); (V.K.)
| | - Marta Kořínková
- National Institute of Public Health—(NIPH), 10042 Prague, Czech Republic;
| | - Krõõt Arbo
- Institute of Technology, University of Tartu (UT), 50411 Tartu, Estonia; (T.T.); (K.A.); (V.K.)
| | - Veljo Kisand
- Institute of Technology, University of Tartu (UT), 50411 Tartu, Estonia; (T.T.); (K.A.); (V.K.)
| | - Gerhard Rab
- Institute for Land and Water Management Research, Federal Agency for Water Management, 3252 Petzenkirchen, Austria;
| | - Martin Brandtner
- Austrian Agency for Health and Food Safety (AGES), 1220 Vienna, Austria; (A.C.-R.); (M.B.)
| |
Collapse
|
48
|
Li R, Men X, Li R, Liu T, Liang H, Fang F, Sun-Waterhouse D, Wang Y. Residue behaviors and dietary risk of cyazofamid in turnip, onion and romaine lettuce assessed by a QuEChERS-LC-MS/MS method. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
49
|
Zalewska M, Błażejewska A, Czapko A, Popowska M. Pig manure treatment strategies for mitigating the spread of antibiotic resistance. Sci Rep 2023; 13:11999. [PMID: 37491438 PMCID: PMC10368742 DOI: 10.1038/s41598-023-39204-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023] Open
Abstract
Due to the risk of pathogenic antibiotic-resistant bacteria and their antibiotic-resistance genes transfer from livestock feces to the soil and cultivated crops, it is imperative to find effective on-farm manure treatments to minimize that hazardous potential. An introduced worldwide policy of sustainable development, focus on ecological agricultural production, and the circular economy aimed at reducing the use of artificial fertilizers; therefore, such treatment methods should also maximize the fertilization value of animal manure. The two strategies for processing pig manure are proposed in this study-storage and composting. The present study examines the changes in the physicochemical properties of treated manure, in the microbiome, and in the resistome, compared to raw manure. This is the first such comprehensive analysis performed on the same batch of manure. Our results suggest that while none of the processes eliminates the environmental risk, composting results in a faster and more pronounced reduction of mobile genetic elements harboring antibiotic resistance genes, including those responsible for multi-drug resistance. Overall, the composting process can be an efficient strategy for mitigating the spread of antibiotic resistance in the environment and reducing the risk of its transfer to crops and the food chain while providing essential fertilizer ingredients.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Błażejewska
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Czapko
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
50
|
Habiba UE, Khan A, Mmbaga EJ, Green IR, Asaduzzaman M. Use of antibiotics in poultry and poultry farmers- a cross-sectional survey in Pakistan. Front Public Health 2023; 11:1154668. [PMID: 37497033 PMCID: PMC10366442 DOI: 10.3389/fpubh.2023.1154668] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/09/2023] [Indexed: 07/28/2023] Open
Abstract
Background Antimicrobial resistance (AMR) which has been ascribed to be due to community carriage of antibiotic-resistant bacteria is highly prevalent in the WHO South-East Asia region. One of the major reasons for this is the misuse of antibiotics in animal farming practices and at the community level, which threatens both human and animal health. However, this problem of antibiotic misuse in poultry farms and in respective farmers is not well studied in countries like Pakistan. Methods We conducted a cross-sectional study in rural Punjab to explore the current practices of antibiotic use in poultry and poultry farmers, associated factors, their healthcare-seeking behavior and biosecurity practices. Results In the context of antibiotic use for poultry, 60% comprised of Colistin sulfate and Amoxicillin trihydrate whereas Colistin is considered as the last resort antibiotic. In addition, the significant consumption of antibiotics in poultry farms (60%) and poultry farmers (50%) was without prescription by either human health physicians or veterinarians. Most of the farms (85%) had no wastewater drainage system, which resulted in the direct shedding of poultry waste and antibiotic residue into the surrounding environment. The lack of farmers' education, professional farm training and farming experience were the most significant factors associated with antibiotic use and knowledge of AMR. Conclusion Our study findings show that it is necessary for an integrated AMR policy with the inclusion of all poultry farmers to be educated, a mass awareness program to be undertaken and that strict antibiotic usage guidelines be available to them. Such initiatives are also important to ensure food safety and farm biosecurity practices.
Collapse
Affiliation(s)
- Um e Habiba
- Department of Community Medicine and Global Health, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Amjad Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Elia John Mmbaga
- Department of Community Medicine and Global Health, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ivan Robert Green
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, South Africa
| | - Muhammad Asaduzzaman
- Department of Community Medicine and Global Health, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|