1
|
Álvarez-Varas R, Ayala E, Lagos R, Peña-Galindo I, Palma-Rojas V, Hereveri N, Campos N, Chiang G, Gaymer CF. Mercury exposure and health challenges in Rapa Nui green turtles: urging conservation and long-term monitoring in the South Pacific. CONSERVATION PHYSIOLOGY 2025; 13:coaf019. [PMID: 40207014 PMCID: PMC11981715 DOI: 10.1093/conphys/coaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025]
Abstract
The endangered green sea turtle (Chelonia mydas; hereafter C. mydas) plays a crucial role in maintaining the balance of marine ecosystems. However, its populations are highly vulnerable to various threats, including marine pollution. Rapa Nui (Easter Island), an isolated location in the southeastern Pacific, provides vital foraging habitats for both morphotypes of Pacific C. mydas (black and yellow). In this study, we examined the demographic structure (morphotype, life stage, sex) and health status (based on blood analytes and mercury-Hg concentration) of C. mydas on Rapa Nui during 2018 and 2023. Turtles from various life stages and sexes were observed, with a predominance of yellow morphotype juveniles, likely recently recruited or emerging from brumation. Haematological analyses revealed low levels of several key analytes (e.g. cholesterol, calcium, phosphorus, total protein, globulins), suggesting poor nutritional status, potentially related to the brumation process, limited food availability or poor food quality in the region. Alterations in both red and white blood cell lines, including anaemia and lymphopenia, indicate ongoing inflammatory states and infections, consistent with clinical observations. Rapa Nui turtles exhibited some of the highest blood Hg concentrations globally. Abnormalities in blood profiles, along with correlations between various analytes and blood Hg concentrations, suggest altered immune function and probable renal and liver dysfunction, likely resulting from both natural and anthropogenic sources of this heavy metal. Additionally, a very high body condition index in turtles with carapace lesions suggests a negative impact from human food subsidies in local bays, particularly from high-trophic-level fish, which may also serve as a pathway for Hg accumulation, both for the turtle aggregation and the human population. Our findings underscore the urgent need for long-term mercury monitoring and turtle movement studies to identify pollution sources, inform effective conservation strategies for this endangered species, and address potential public health concerns on this remote Pacific island.
Collapse
Affiliation(s)
- Rocío Álvarez-Varas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Zip code 2373223, Valparaíso, Chile
- Centro de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Zip code 781421, Coquimbo, Chile
- Qarapara Tortugas Marinas Chile NGO, Las Flores Oriente 2725, Zip code 7940560, Santiago, Chile
| | - Eamy Ayala
- Qarapara Tortugas Marinas Chile NGO, Las Flores Oriente 2725, Zip code 7940560, Santiago, Chile
- Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Zip code 7800003, Santiago, Chile
| | - Rocío Lagos
- Laboratorio Clínico Veterinario SpVet, Arturo Prat 705, Zip code 9500037, Región Metropolitana, Santiago, Chile
| | - Irene Peña-Galindo
- Programa de Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 440, Zip code 8370251, Santiago, Chile
- Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Zip code 7820436, Santiago, Chile
| | - Victoria Palma-Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Zip code 2373223, Valparaíso, Chile
| | | | | | - Gustavo Chiang
- Centro para la Resiliencia, Adaptación y Mitigación (CReAM), Universidad Mayor, Zip code 4801043 Temuco, Chile
- Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 440, Zip code 8370251, Santiago, Chile
| | - Carlos F Gaymer
- Centro de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Zip code 781421, Coquimbo, Chile
| |
Collapse
|
2
|
Lelong P, Besnard A, Girondot M, Habold C, Priam F, Giraudeau M, Le Loc'h G, Le Loc'h A, Fournier P, Fournier-Chambrillon C, Fort J, Bustamante P, Dupont SM, Vincze O, Page A, Perrault JR, De Thoisy B, Gros-Desormeaux JR, Martin J, Bourgeois O, Lepori M, Régis S, Lecerf N, Lefebvre F, Aubert N, Frouin C, Flora F, Pimentel E, Passalboni AS, Jeantet L, Hielard G, Louis-Jean L, Brador A, Giannasi P, Etienne D, Lecerf N, Chevallier P, Chevallier T, Meslier S, Landreau A, Desnos A, Maceno M, Larcher E, Le Maho Y, Chevallier D. Fibropapillomatosis Dynamics, Severity and Demographic Effect in Caribbean Green Turtles. ECOHEALTH 2025; 22:108-123. [PMID: 39907943 DOI: 10.1007/s10393-025-01701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 02/06/2025]
Abstract
Habitat degradation induced by human activities can exacerbate the spread of wildlife disease and could hinder the recovery of imperiled species. The endangered green turtle Chelonia mydas is impacted worldwide by fibropapillomatosis (FP), a neoplastic infectious disease likely triggered by the Scutavirus chelonidalpha5 with coastal anthropogenic stressors acting as cofactors in disease development. Here, we studied fibropapillomatosis dynamics and its demographic consequences using an 11-year capture-mark-recapture dataset in Anse du Bourg d'Arlet/Chaudière (ABAC) and Grande Anse d'Arlet (GA), two juvenile green turtle foraging grounds in Martinique, French West Indies. Afflicted turtles had similar mortality and permanent emigration rates to the non-afflicted ones. Fibropapillomatosis was commonly observed in large individuals and disease recovery may take several years. Consequently, permanent emigration before full recovery from the disease is suspected and might affect the developmental migration success. Additionally, the results revealed that the FP had higher prevalence and severity, and progressed two times faster in ABAC than in GA despite the proximity (< 2 km) and the similarity of the two foraging grounds. The reasons for these differences remain unidentified. Locally, further studies should be focused on the determination of the external and internal cofactors related to the observed FP dynamics. Finally, the investigations should be extended at a global regional scale to determine potential deleterious effect of the FP on the adult life-stage. These perspectives improves upon our overall understanding on the interplay between wildlife diseases, hosts and environmental factors.
Collapse
Affiliation(s)
- Pierre Lelong
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France.
- Université des Antilles, Campus de Schoelcher, 97275, Schoelcher Cedex, Martinique, France.
| | - Aurélien Besnard
- CEFE, University Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - Marc Girondot
- CNRS, AgroParisTech, Ecologie Systématique et Evolution, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Caroline Habold
- Institut Pluridisciplinaire Hubert-Curien (IPHC), UMR 7178, Université de Strasbourg, CNRS, 23 rue Becquerel, 67000, Strasbourg, France
| | - Fabienne Priam
- Groupe de Recherche BIOSPHERES, Université des Antilles, Campus de Schoelcher, 97275, Schoelcher Cedex, Martinique, France
| | - Mathieu Giraudeau
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | | | - Aurélie Le Loc'h
- Laboratoire NAC&CO, 29 chemin de Bordeblanche, 31100, Toulouse, France
| | - Pascal Fournier
- Groupe de Recherche et d'Etude pour la Gestion de L'Environnement, 1 La Peyrère, 33730, Villandraut, France
| | | | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Sophie M Dupont
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Orsolya Vincze
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Annie Page
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. Highway 1 N, Fort Pierce, FL, 34946, USA
| | - Justin R Perrault
- Loggerhead Marinelife Center, 14200 US Highway 1, Juno Beach, FL, 33408, USA
| | - Benoît De Thoisy
- Association Kwata, Cayenne Cedex, French Guiana, France
- Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Jean-Raphaël Gros-Desormeaux
- Laboratoire Caribéen de Sciences Sociales, UMR 8053, LC2S, Université des Antilles, 97275, Schoelcher Cedex, Martinique, France
| | - Jordan Martin
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Ouvéa Bourgeois
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Muriel Lepori
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Sidney Régis
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Nicolas Lecerf
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Fabien Lefebvre
- Association ACWAA, Quartier L'étang, 97217, Les Anses d'Arlet, Martinique, France
| | - Nathalie Aubert
- Association ACWAA, Quartier L'étang, 97217, Les Anses d'Arlet, Martinique, France
| | - Cédric Frouin
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Frédéric Flora
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Esteban Pimentel
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Anne-Sophie Passalboni
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Lorène Jeantet
- African Institute for Mathematical Sciences, 7 Melrose Rd, Muizenberg, Cape Town, 7950, South Africa
- Department of Mathematical Sciences, Stellenbosch University, Victoria Street, Stellenbosch, 7602, South Africa
- African Institute for Mathematical Sciences, Research and Innovation Centre, Kigali, Rwanda
| | - Gaëlle Hielard
- Office de L'Eau Martinique, 7 Avenue Condorcet, 97200, Fort-de-France, Martinique, France
| | - Laurent Louis-Jean
- Parc naturel régional de la martinique, Maison du Parc, Morne TARTENSON, BP 437, 97200, Fort-de-France, Martinique, France
| | - Aude Brador
- Office Français de la Biodiversité, Parc Naturel marin de Martinique, Rue des Pionniers, 97200, Fort de France, Martinique, France
| | - Paul Giannasi
- Office Français de la Biodiversité, Parc Naturel marin de Martinique, Rue des Pionniers, 97200, Fort de France, Martinique, France
| | - Denis Etienne
- Direction de L'Environnement, de L'Aménagement et du Logement Martinique, B.P. 7212, 97274, Schœlcher Cedex, Martinique, France
| | - Nathaël Lecerf
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Pascale Chevallier
- ANSLO-S Association naturaliste de soutien logistique à la science, 7 Avenue Georges Clémenceau, 49280, La Tessoualle, France
| | - Tao Chevallier
- ANSLO-S Association naturaliste de soutien logistique à la science, 7 Avenue Georges Clémenceau, 49280, La Tessoualle, France
| | - Stéphane Meslier
- ANSLO-S Association naturaliste de soutien logistique à la science, 7 Avenue Georges Clémenceau, 49280, La Tessoualle, France
| | - Anthony Landreau
- ANSLO-S Association naturaliste de soutien logistique à la science, 7 Avenue Georges Clémenceau, 49280, La Tessoualle, France
| | - Anaïs Desnos
- ANSLO-S Association naturaliste de soutien logistique à la science, 7 Avenue Georges Clémenceau, 49280, La Tessoualle, France
| | - Myriane Maceno
- Communauté d'Agglomération de L'Espace Sud, Lotissement des Frangipaniers, 97228, Sainte-Luce, Martinique, France
| | - Eugène Larcher
- Mairie des Anses d'Arlet, Boulevard des Arlésiens, 97217, Les Anses-d'Arlet, Martinique, France
| | - Yvon Le Maho
- Institut Pluridisciplinaire Hubert-Curien (IPHC), UMR 7178, Université de Strasbourg, CNRS, 23 rue Becquerel, 67000, Strasbourg, France
| | - Damien Chevallier
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France.
| |
Collapse
|
3
|
Semmouri I, Janssen CR, Asselman J. Health risks associated with the consumption of sea turtles: A review of chelonitoxism incidents and the presumed responsible phycotoxins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176330. [PMID: 39293768 DOI: 10.1016/j.scitotenv.2024.176330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Consuming the meat of some marine turtles can lead to a specific type of seafood poisoning known as chelonitoxism. A recent poisoning event (March 2024) on the Tanzanian island Pemba, resulting in the death of 9 people and hospitalization of 78 others, underscores the need to obtain an up to date overview and understanding of chelonitoxism. Here, we document a global overview of poisoning incidents resulting from the consumption of sea turtle flesh worldwide. All events combined involved over 2400 victims and 420 fatalities. Incidents were predominantly reported in remote regions (often islands) across the Indo-Pacific region. Reported health effects of consuming poisonous sea turtles include epigastric pain, diarrhea, vomiting, a burning mouth and throat sensation, and dehydration. In addition, ulcerative oeso-gastro-duodenal lesions, which occasionally have resulted in hospitalization and death, have been reported. Lyngbyatoxins have been suggested as (one of) the causative agents, originating from the cyanobacterium Moorena producens, growing epiphytically on the seagrass and seaweed consumed by green turtles. However, due to the limited evidence of their involvement, the actual etiology of chelonitoxism remains unresolved and other compounds may be responsible. The data outlined in this review offer valuable insights to both regulatory bodies and the general public regarding the potential risks linked to consuming sea turtles.
Collapse
Affiliation(s)
- Ilias Semmouri
- Blue Growth Research Lab, Faculty of Bioscience Engineering, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium.
| | - Colin R Janssen
- Blue Growth Research Lab, Faculty of Bioscience Engineering, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Jana Asselman
- Blue Growth Research Lab, Faculty of Bioscience Engineering, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| |
Collapse
|
4
|
Espinoza J, Alfaro-Núñez A, Cedillo-Peláez C, Fernández-Sanz H, Mancini A, Zavala-Norzagaray AA, Ley-Quiñonez CP, López ES, Garcia-Bereguiain MA, Alonso Aguirre A, Reséndiz E. Epidemiology of marine turtle fibropapillomatosis and tumour-associated chelonid alphaherpesvirus 5 (ChHV5; Scutavirus chelonidalpha5) in North-Western Mexico: a scoping review implementing the one health approach. Vet Res Commun 2024; 48:2943-2961. [PMID: 38922387 PMCID: PMC11442556 DOI: 10.1007/s11259-024-10429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Fibropapillomatosis (FP) - tumour-associated chelonid alphaherpesvirus 5 (ChHV5; Scutavirus chelonidalpha5) - is a disease that affect marine turtles around the world, and characterized by the formation of cutaneous tumours that can appear anywhere on the body. We carried out a thorough literature search (from 1990 to 2024) in the feeding sites of North-western Mexico, a region that hosts important habitats for feeding, development, and reproduction for five of the seven existing sea turtle species. We found 18 reports recording a total of 32 cases of FP and/or ChHV5/Scutavirus chelonidalpha5 in coastal and insular areas of North-western Mexico. Baja California Sur resulted with the highest number of cases (75%). While the first case of ChHV5/Scutavirus chelonidalpha5 infection was reported in 2004, the presence of FP tumours was reported in 2014 and became more frequent between 2019 and 2024. The affected species were black, Chelonia mydas (50%), olive ridley, Lepidochelys olivacea (46.8%) and loggerhead turtles, Caretta caretta (3.2%). Tumours occurred mainly in anterior flippers (46.1%) and neck (22.5%), and most had a nodular and verrucous appearance with a rough surface. In the study region, there is a potential sign of the emergence of the ChHV5/Scutavirus chelonidalpha5 infections and FP disease during the last 20 years, with a rapid increase during the last 10 years. As long as infections by ChHV5/Scutavirus chelonidalpha5 and the prevalence of the FP disease may be potentially influenced by anthropogenic activities, a One Health approach is needed to understand and improve sea turtles' health.
Collapse
Affiliation(s)
- Joelly Espinoza
- Posgrado en Ciencias Marinas y Costeras (CIMACO), Universidad Autónoma de Baja California Sur (UABCS), Carretera al Sur Km 5.5., Apartado Postal 19-B, 23080, La Paz, Baja California Sur, Mexico
- Health assessments in sea turtles from B.C.S, La Paz, 23085, Baja California Sur, México
| | - Alonzo Alfaro-Núñez
- Department of Clinical Biochemistry, Naestved Hospital, Ringstedgade 57a, Naestved, 4700, Denmark.
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5, Copenhagen K, 1353, Denmark.
| | - Carlos Cedillo-Peláez
- Laboratorio de Inmunología experimental, Instituto Nacional de Pediatría, Insurgentes Cuicuilco, Av. Insurgentes Sur 3700, Coyoacán, Ciudad de México, 04530, Mexico
| | - Helena Fernández-Sanz
- Posgrado en Ciencias Marinas y Costeras (CIMACO), Universidad Autónoma de Baja California Sur (UABCS), Carretera al Sur Km 5.5., Apartado Postal 19-B, 23080, La Paz, Baja California Sur, Mexico
- Health assessments in sea turtles from B.C.S, La Paz, 23085, Baja California Sur, México
| | - Agnese Mancini
- Grupo Tortuguero de las Californias A.C, La Paz, 23098, Baja California Sur, Mexico
| | - Alan A Zavala-Norzagaray
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (IPN-CIIDIR), Mexico City, Mexico
| | - Cesar Paul Ley-Quiñonez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (IPN-CIIDIR), Mexico City, Mexico
| | - Erika Santacruz López
- Grupo tortuguero de Bahía de los Ángeles, Bahía de los ángeles, 22980, Baja California, Mexico
| | | | - A Alonso Aguirre
- Department of Fish, Wildlife, and Conservation Biology, Warner College of Natural Resources, Colorado State University, Fort Collins, CO, USA
| | - Eduardo Reséndiz
- Departamento académico de Ciencia Animal y Conservación del Hábitat, Universidad Autónoma de Baja California Sur (UABCS), Carretera al Sur KM 5.5., Apartado Postal 19-B, La Paz, 23080, Baja California Sur, México
- Asociación Mexicana de Veterinarios de Tortugas A.C, Xalapa, 91050, Veracruz, México
| |
Collapse
|
5
|
Nederlof RA, van der Veen D, Perrault JR, Bast R, Barron HW, Bakker J. Emerging Insights into Brevetoxicosis in Sea Turtles. Animals (Basel) 2024; 14:991. [PMID: 38612230 PMCID: PMC11010821 DOI: 10.3390/ani14070991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
This review summarizes the current understanding of how brevetoxins, produced by Karenia brevis during harmful algal blooms, impact sea turtle health. Sea turtles may be exposed to brevetoxins through ingestion, inhalation, maternal transfer, and potentially absorption through the skin. Brevetoxins bind to voltage-gated sodium channels in the central nervous system, disrupting cellular function and inducing neurological symptoms in affected sea turtles. Moreover, the current evidence suggests a broader and longer-term impact on sea turtle health beyond what is seen during stranding events. Diagnosis relies on the detection of brevetoxins in tissues and plasma from stranded turtles. The current treatment of choice, intravenous lipid emulsion therapy, may rapidly reduce symptoms and brevetoxin concentrations, improving survival rates. Monitoring, prevention, and control strategies for harmful algal blooms are discussed. However, as the frequency and severity of blooms are expected to increase due to climate change and increased environmental pollution, continued research is needed to better understand the sublethal effects of brevetoxins on sea turtles and the impact on hatchlings, as well as the pharmacokinetic mechanisms underlying brevetoxicosis. Moreover, research into the optimization of treatments may help to protect endangered sea turtle populations in the face of this growing threat.
Collapse
Affiliation(s)
| | | | - Justin R. Perrault
- Loggerhead Marinelife Center, Juno Beach, FL 33408, USA; (J.R.P.); (H.W.B.)
| | - Robin Bast
- Clinic for the Rehabilitation of Wildlife, Inc., Sanibel, FL 33957, USA;
| | - Heather W. Barron
- Loggerhead Marinelife Center, Juno Beach, FL 33408, USA; (J.R.P.); (H.W.B.)
| | - Jaco Bakker
- Animal Science Department, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands;
| |
Collapse
|
6
|
Oduor NA, Munga CN, Imbayi LK, Botwe PK, Nyanjong EO, Muthama CM, Mise NA, Moosdorf N. Anthropogenic nutrients and phytoplankton diversity in Kenya's coastal waters: An ecological quality assessment of sea turtle foraging sites. MARINE POLLUTION BULLETIN 2024; 199:115897. [PMID: 38128251 DOI: 10.1016/j.marpolbul.2023.115897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/14/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
We assessed ecological quality status (EQS) of coastal waters following claims of increasing sea turtle fibro-papillomatosis (FP) infections in Kenya, a disease hypothesized to be associated with 'poor' ecological health. We established widespread phosphate (P) and silicate (Si) limitation, dissolved ammonium contamination and an increase in potential harmful algal blooming species. Variations in the EQS was established in the sites depending on the indicators used and seasons. Generally, more sites located near hotels, tidal creeks, and estuarine areas showed 'poor', and 'bad' EQS during rainy period compared to dry season. Additionally, 90.1 % of the sites in 'poor' and 'bad' EQS based on dissolved inorganic nitrogen. Low dissolved oxygen, elevated temperature, salinity and ammonium, 'poor' EQS based on DIN, and potential bio-toxin-producing phytoplankton species characterized the FP prevalent areas, specifically during the dry season suggesting environmental stress pointing to the hypothesized connection between ecological and sea turtle health.
Collapse
Affiliation(s)
- Nancy A Oduor
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany; Eracoma Ltd, P.O. Box 48664, Nairobi, Kenya; Faculty of Mathematics and Natural Sciences, Kiel University (CAU), Germany.
| | - Cosmas N Munga
- Department of Environment and Health Sciences, Marine and Fisheries Programme, Technical University of Mombasa (TUM), P.O. Box 90420, 80100 Mombasa, Kenya
| | - Linet K Imbayi
- Department of Oceanography and Hydrography, Kenya Marine and Fisheries Research Institute (KMFRI), P.O. Box 81651, 80100 Mombasa, Kenya
| | - Paul K Botwe
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany; Department of Biological, Environmental, and Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box L.G. 13, Accra, Ghana
| | - Ezekiel O Nyanjong
- Department of Oceanography and Hydrography, Kenya Marine and Fisheries Research Institute (KMFRI), P.O. Box 81651, 80100 Mombasa, Kenya
| | - Charles M Muthama
- Department of Oceanography and Hydrography, Kenya Marine and Fisheries Research Institute (KMFRI), P.O. Box 81651, 80100 Mombasa, Kenya
| | | | - Nils Moosdorf
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany; Faculty of Mathematics and Natural Sciences, Kiel University (CAU), Germany
| |
Collapse
|
7
|
Fernández-Sanz H, Perrault JR, Stacy NI, Mancini A, Reyes-Bonilla H, Reséndiz E. Blood analyte reference intervals and correlations with trace elements of immature and adult Eastern Pacific green turtles (Chelonia mydas) in coastal lagoons of Baja California Sur, México. MARINE POLLUTION BULLETIN 2023; 195:115547. [PMID: 37717495 DOI: 10.1016/j.marpolbul.2023.115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Sea turtles can bioaccumulate high concentrations of potentially toxic contaminants. To better understand trace element effects on sea turtles' health, we established reference intervals for hematological and plasma biochemical analytes in 40 in-water, foraging immature and adult Eastern Pacific green turtles (Chelonia mydas) from two coastal lagoons in Baja California Sur, quantified whole blood concentrations of eight trace elements, and assessed their correlations. Rank-order trace element concentrations in both immature and adult turtles was zinc > selenium > nickel > arsenic > copper > cadmium > lead > manganese. Immature turtles had significantly higher copper and lower nickel and zinc concentrations. Additionally, a number of relationships between trace elements and blood analytes were identified. These data provide baseline information useful for future investigations into this population, or in other geographic regions and various life-stage classes.
Collapse
Affiliation(s)
- Helena Fernández-Sanz
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, El Mezquitito 19-B, 23080 La Paz, Baja California Sur, Mexico; Health Assessments in Sea Turtles From Baja California Sur, Villa Ballena 330, Villas del Encanto, 23085 La Paz, Baja California Sur, Mexico.
| | - Justin R Perrault
- Loggerhead Marinelife Center, 14200 US Highway 1, Juno Beach, FL 33408, USA.
| | - Nicole I Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL 32610, USA.
| | - Agnese Mancini
- Grupo Tortuguero de las Californias A.C., Calle Seis 141, Azaleas, 23098 La Paz, Baja California Sur, Mexico.
| | - Héctor Reyes-Bonilla
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, El Mezquitito 19-B, 23080 La Paz, Baja California Sur, Mexico.
| | - Eduardo Reséndiz
- Health Assessments in Sea Turtles From Baja California Sur, Villa Ballena 330, Villas del Encanto, 23085 La Paz, Baja California Sur, Mexico; Laboratorio de Investigación y Medicina de Organismos Acuáticos, Departamento Académico de Ciencia Animal y Conservación del Hábitat, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, El Mezquitito 19-B, 23080 La Paz, Baja California Sur, Mexico.
| |
Collapse
|
8
|
Moreira-González AR, Domit C, Rosa KMS, Mafra LL. Occurrence of potentially toxic microalgae and diarrhetic shellfish toxins in the digestive tracts of green sea turtles (Chelonia mydas) from southern Brazil. HARMFUL ALGAE 2023; 128:102498. [PMID: 37714579 DOI: 10.1016/j.hal.2023.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Algal toxins are involved in the mortality and/or illness of marine organisms via consumption of contaminated prey, or upon direct exposure to toxic cells. In this study, the presence of potentially toxic microalgal cells was investigated within the digestive tract contents of a threatened species of green turtle (Chelonia mydas). Additionally, lipophilic toxins were determined by LC-MS/MS in tissue samples (liver, stomach and/or intestine) of selected animals (n = 39 individuals) found dead-stranded in southern Brazil, from winter/2015 to autumn/2016. Thirteen potentially toxic species of microalgae (both benthic and planktonic), including seven dinoflagellates, six cyanobacteria and one diatom, were found in the digestive tract contents of green turtles. Among them, dinoflagellates belonging to the Dinophysis acuminata species complex were the most frequent (36%) and abundant (maximum average abundance of 566 cells g-1 in spring/2015). Moreover, 23% of the examined sea turtles exhibited detectable levels of the diarrhetic shellfish toxin okadaic acid (OA) in washed digestive tissues. Seven individuals accumulated OA in their intestines (max. 24.1 ng g-1) and two in the stomachs (max. 7.4 ng g-1). Toxin levels in the tissues were directly and significantly (r = 0.70, p < 0.025) associated with the cell abundance of OA-producing D. acuminata and Prorocentrum lima species complexes within the digestive contents of green turtles. Although OA concentrations were relatively low, possible chronic exposure might deteriorate general health conditions of exposed sea turtles, increasing the risk for diseases. Okadaic acid has been regarded as a tumor-promoting compound and an environmental co-factor in the incidence of fibropapillomatosis, a frequent disease in juvenile green turtles inhabiting this geographic region. Even though, only one green turtle containing OA in the digestive tissues (out of six examined) also presented fibropapillomatosis in this study. Notwithstanding, sea turtles are sentinels of ocean health. Monitoring the accumulation of algal toxins and their negative effects on these organisms contributes to conserving biodiversity and marine habitats.
Collapse
Affiliation(s)
- Angel R Moreira-González
- Centro de Estudos do Mar. Universidade Federal do Paraná. Cx. Postal 61. Pontal do Paraná. Paraná. 83255-976. Brazil; Centro de Estudios Ambientales de Cienfuegos (CEAC). Carretera a Castillo de Jagua. Km 1.5. AP. 5, Ciudad Nuclear 59350, Cienfuegos, Cuba
| | - Camila Domit
- Centro de Estudos do Mar. Universidade Federal do Paraná. Cx. Postal 61. Pontal do Paraná. Paraná. 83255-976. Brazil
| | - Kaianan M S Rosa
- Centro de Estudos do Mar. Universidade Federal do Paraná. Cx. Postal 61. Pontal do Paraná. Paraná. 83255-976. Brazil
| | - Luiz L Mafra
- Centro de Estudos do Mar. Universidade Federal do Paraná. Cx. Postal 61. Pontal do Paraná. Paraná. 83255-976. Brazil.
| |
Collapse
|
9
|
Pérez YAA, Lima SR, Souza GM, Gião T, Bispo FJS, Reis AMF, da Silva Leite J, da Silva KVGC. Evaluation of biometry and blood concentration of heavy metals in free-living Chelonia mydas with and without fibropapillomatosis in southern Brazil. MARINE POLLUTION BULLETIN 2023; 190:114879. [PMID: 37004471 DOI: 10.1016/j.marpolbul.2023.114879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The present study determined the presence of heavy metals in green sea turtles with and without fibropapillomatosis in Itapirubá and Cassino beaches, southern Brazil. The weight, curved length of the carapace and body index were determined and blood was collected to quantify the concentrations of cadmium, lead and mercury. A total of 51 blood samples were analyzed, being 46 positives for at least one of the metals. There was a greater number of juvenile turtles in Itapirubá, larger in size and weight than those in Cassino. No statistical differences were found between metal concentrations between regions or between turtles with and without fibropapillomatosis. There was no significant correlation between metal concentrations, biometric variables and the presence of fibropapilomatose. Metal concentrations were low in both regions, with the highest concentrations being Cd and the lowest Hg.
Collapse
Affiliation(s)
- Yohany Arnold Alfonso Pérez
- Postgraduate Program in Veterinary Medicine (Clinical and Animal Reproduction), Faculty of Veterinary, Fluminense Federal University, Almirante Ary Parreiras Avenue 503, Vital Brazil/Santa Rosa, Niterói, Rio de Janeiro 24230-340, Brazil; Caminho Marinho Project, Federal University of Rio Grande, Rio Grande do Sul, Brazil.
| | - Samara Rosolem Lima
- Postgraduate Program in Veterinary Medicine (Clinical and Animal Reproduction), Faculty of Veterinary, Fluminense Federal University, Almirante Ary Parreiras Avenue 503, Vital Brazil/Santa Rosa, Niterói, Rio de Janeiro 24230-340, Brazil
| | - Gustavo Martinez Souza
- Laboratory of Environmental Statistics, Institute of Mathematics, Statistics and Physics, of the Federal University of Rio Grande. Itália Avenue km 8, Carreiros, Rio Grande, Rio Grande do Sul, Brazil; Caminho Marinho Project, Federal University of Rio Grande, Rio Grande do Sul, Brazil
| | - Thayana Gião
- Caminho Marinho Project, Federal University of Rio Grande, Rio Grande do Sul, Brazil
| | - Felipe J S Bispo
- Institute of Chemistry, Federal University of Rio de Janeiro, Avenida Athos da Silveira Ramos 149, Technology Center - University City, Rio de Janeiro, RJ 21941-909, Brazil
| | - Ana Maria Ferreira Reis
- Postgraduate Program in Veterinary Medicine (Clinical and Animal Reproduction), Faculty of Veterinary, Fluminense Federal University, Almirante Ary Parreiras Avenue 503, Vital Brazil/Santa Rosa, Niterói, Rio de Janeiro 24230-340, Brazil; Department of Pathology and Veterinary Clinic, Sector of Veterinary Pathological Anatomy, Faculty of Veterinary, Fluminense Federal University, Almirante Ary Parreiras Avenue 503, Vital Brazil/Santa Rosa, Niterói, Rio de Janeiro 24230-340, Brazil
| | - Juliana da Silva Leite
- Postgraduate Program in Veterinary Medicine (Clinical and Animal Reproduction), Faculty of Veterinary, Fluminense Federal University, Almirante Ary Parreiras Avenue 503, Vital Brazil/Santa Rosa, Niterói, Rio de Janeiro 24230-340, Brazil; Department of Pathology and Veterinary Clinic, Sector of Veterinary Pathological Anatomy, Faculty of Veterinary, Fluminense Federal University, Almirante Ary Parreiras Avenue 503, Vital Brazil/Santa Rosa, Niterói, Rio de Janeiro 24230-340, Brazil
| | - Kássia Valéria Gomes Coelho da Silva
- Postgraduate Program in Veterinary Medicine (Clinical and Animal Reproduction), Faculty of Veterinary, Fluminense Federal University, Almirante Ary Parreiras Avenue 503, Vital Brazil/Santa Rosa, Niterói, Rio de Janeiro 24230-340, Brazil; Department of Pathology and Veterinary Clinic, Sector of Veterinary Pathological Anatomy, Faculty of Veterinary, Fluminense Federal University, Almirante Ary Parreiras Avenue 503, Vital Brazil/Santa Rosa, Niterói, Rio de Janeiro 24230-340, Brazil
| |
Collapse
|
10
|
Troiano AT, Peel M, Cameron AI, Bast R, Flewelling L, Abbott J, Barron H. INVESTIGATING BLOOD LACTATE CONCENTRATION AS A PROGNOSTIC INDICATOR FOR BIRDS PRESENTING WITH BREVETOXICOSIS: 2020-2021. J Zoo Wildl Med 2023; 54:23-31. [PMID: 36971625 DOI: 10.1638/2022-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2022] [Indexed: 03/29/2023] Open
Abstract
Large blooms of the dinoflagellate Karenia brevis cause annual harmful algal bloom events, or "red tides" on Florida's Gulf Coast. Each year, the Clinic for the Rehabilitation of Wildlife (CROW) is presented with hundreds of cases of aquatic birds that exhibit neurologic clinical signs due to brevetoxicosis. Double-crested cormorants (Phalacrocorax auratus) are the most common species seen, and typically present with a combination of ataxia, head tremors, knuckling, and/or lagophthalmos. Blood lactate levels are known to increase in mammals for a variety of reasons, including stress, hypoxia, sepsis, and trauma, but there is limited literature on blood lactate values in avian species. The objective of this study was to determine the prognostic value of blood lactate concentration on successful rehabilitation and release of birds presenting with clinical signs consistent with brevetoxicosis. Blood lactate levels were collected on intake, the morning after presentation and initial therapy, and prior to disposition (release or euthanasia) from 194 birds (including 98 cormorants) representing 17 species during the 2020-2021 red tide season. Overall, mean blood lactate at intake, the morning after intake, and predisposition was 2.9, 2.8, and 3.2 mmol/L, respectively, for released birds across all species (2.9, 2.9, and 3.2 mmol/L for released cormorants); 3.4, 3.4, and 6.5 mmol/L for birds that died (4.0, 3.5, and 7.9 mmol/L for cormorants that died); and 3.1, 3.5, and 4.7 mmol/L for birds that were euthanized (3.5, 4.7, and 4.9 mmol/L for cormorants that were euthanized). On average, birds that died or were euthanized had an elevated lactate at all time points as compared to those that were released, but these results were not statistically significant (P = 0.13). These results indicate that blood lactate levels do not appear to be useful as a prognostic indicator for successful release of birds, including double-crested cormorants, affected by brevetoxicosis.
Collapse
Affiliation(s)
| | - Melanie Peel
- Clinic for the Rehabilitation of Wildlife, Sanibel, FL 33957 USA
| | | | - Robin Bast
- Clinic for the Rehabilitation of Wildlife, Sanibel, FL 33957 USA
| | - Leanne Flewelling
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL 33701, USA
| | - Jay Abbott
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL 33701, USA
| | - Heather Barron
- Clinic for the Rehabilitation of Wildlife, Sanibel, FL 33957 USA
| |
Collapse
|
11
|
Immunity in Sea Turtles: Review of a Host-Pathogen Arms Race Millions of Years in the Running. Animals (Basel) 2023; 13:ani13040556. [PMID: 36830343 PMCID: PMC9951749 DOI: 10.3390/ani13040556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
The immune system of sea turtles is not completely understood. Sea turtles (as reptiles) bridge a unique evolutionary gap, being ectothermic vertebrates like fish and amphibians and amniotes like birds and mammals. Turtles are ectotherms; thus, their immune system is influenced by environmental conditions like temperature and season. We aim to review the turtle immune system and note what studies have investigated sea turtles and the effect of the environment on the immune response. Turtles rely heavily on the nonspecific innate response rather than the specific adaptive response. Turtles' innate immune effectors include antimicrobial peptides, complement, and nonspecific leukocytes. The antiviral defense is understudied in terms of the diversity of pathogen receptors and interferon function. Turtles also mount adaptive responses to pathogens. Lymphoid structures responsible for lymphocyte activation and maturation are either missing in reptiles or function is affected by season. Turtles are a marker of health for their marine environment, and their immune system is commonly dysregulated because of disease or contaminants. Fibropapillomatosis (FP) is a tumorous disease that afflicts sea turtles and is thought to be caused by a virus and an environmental factor. We aim, by exploring the current understanding of the immune system in turtles, to aid the investigation of environmental factors that contribute to the pathogenesis of this disease and provide options for immunotherapy.
Collapse
|
12
|
Brammer-Robbins E, Costa KA, Bowden JA, Martyniuk CJ, Larkin IV, Denslow ND. Putative high-level toxicity pathways based on evidence of brevetoxin immunotoxicity in marine fauna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106298. [PMID: 36162204 DOI: 10.1016/j.aquatox.2022.106298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/25/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Red tide events, caused by a toxin producing dinoflagellate, Karenia brevis, occur annually in Florida and Texas. These events lead to health risks for both humans and wildlife that utilize coastal environments. Brevetoxins, potent lipophilic neurotoxins produced by K. brevis, modulate immune responses in laboratory studies with model organisms and in the natural environment in both humans and wildlife. Studies show that brevetoxins activate immune cells, stimulate production of gamma-globulins, cytokines, and neutrophils, modulate lysozyme activity, induce apoptosis, and modulate lymphocyte proliferation in marine species. The objective of this review was to summarize brevetoxin-induced immunotoxicity in marine animals based on available peer-reviewed literature about K. brevis blooms and associated health concerns and propose putative toxicity pathways. This review identifies knowledge gaps within current brevetoxin induced immunotoxicity research, including assessing the long-term impacts of brevetoxin exposure, elucidating the mechanistic linkages between brevetoxins and immune cells, and evaluating repeated and chronic versus acute brevetoxin exposure implications on overall organismal health. The putative immunotoxicity pathways based on evidence from brevetoxin-exposure in marine fauna described in this review represent a useful tool and resource for researchers, wildlife managers, and policy makers. This review and proposed putative immunotoxicity pathways will inform decisions regarding the risks of algal blooms, as it pertains to marine animal health.
Collapse
Affiliation(s)
- Elizabeth Brammer-Robbins
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, United States; Center for Environmental and Human Toxicology, University of Florida, PO Box 110885, Gainesville, FL 32611, United States
| | - Kaylie Anne Costa
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, United States
| | - John A Bowden
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, United States; Center for Environmental and Human Toxicology, University of Florida, PO Box 110885, Gainesville, FL 32611, United States
| | - Christopher J Martyniuk
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, United States; Center for Environmental and Human Toxicology, University of Florida, PO Box 110885, Gainesville, FL 32611, United States
| | - Iske V Larkin
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL 32610, United States
| | - Nancy D Denslow
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, United States; Center for Environmental and Human Toxicology, University of Florida, PO Box 110885, Gainesville, FL 32611, United States.
| |
Collapse
|
13
|
Cáceres-Farias L, Reséndiz E, Espinoza J, Fernández-Sanz H, Alfaro-Núñez A. Threats and Vulnerabilities for the Globally Distributed Olive Ridley (Lepidochelys olivacea) Sea Turtle: A Historical and Current Status Evaluation. Animals (Basel) 2022; 12:ani12141837. [PMID: 35883384 PMCID: PMC9311662 DOI: 10.3390/ani12141837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
The olive ridley (Lepidochelys olivacea) is the most abundant of all seven sea turtles, found across the tropical regions of the Atlantic, Pacific, and Indian Oceans in over 80 different countries all around the globe. Despite being the most common and widely distributed sea turtle, olive ridley populations have been declining substantially for decades. Worldwide, olive ridleys have experienced a 30–50% decline, putting their populations at risk and being considered an Endangered Species by the IUCN. Natural habitat degradation, pollution, bycatch, climate change, predation by humans and animals, infectious diseases and illegal trade are the most notorious threats to explain olive ridley populations rapidly decline. The present review assesses the numerous dangers that the olive ridley turtle has historically faced and currently faces. To preserve olive ridleys, stronger conservation initiatives and strategies must continue to be undertaken. Policies and law enforcement for the protection of natural environments and reduction in the effects of climate change should be implemented worldwide to protect this turtle species.
Collapse
Affiliation(s)
- Lenin Cáceres-Farias
- AquaCEAL Corporation, Urb. Las Palmeras, Ave. Capitán Byron Palacios & General Quisquis, Santo Domingo de los Colorados 230101, Ecuador;
- Grupo de Investigación en Biología y Cultivo de Moluscos, Departamento de Acuicultura, Pesca y Recursos Naturales Renovables, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí 131101, Ecuador
| | - Eduardo Reséndiz
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur (UABCS), La Paz 23080, Mexico; (E.R.); (J.E.); (H.F.-S.)
- Health Assessments in Sea Turtles from BCS, La Paz 23085, Mexico
| | - Joelly Espinoza
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur (UABCS), La Paz 23080, Mexico; (E.R.); (J.E.); (H.F.-S.)
- Health Assessments in Sea Turtles from BCS, La Paz 23085, Mexico
| | - Helena Fernández-Sanz
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur (UABCS), La Paz 23080, Mexico; (E.R.); (J.E.); (H.F.-S.)
- Health Assessments in Sea Turtles from BCS, La Paz 23085, Mexico
| | - Alonzo Alfaro-Núñez
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
- Department of Clinical Biochemistry, Naestved Hospital, Ringstedgade 57a, 4700 Naestved, Denmark
- Correspondence:
| |
Collapse
|
14
|
Characteristics of Harmful Algal Species in the Coastal Waters of China from 1990 to 2017. Toxins (Basel) 2022; 14:toxins14030160. [PMID: 35324656 PMCID: PMC8951513 DOI: 10.3390/toxins14030160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 01/31/2023] Open
Abstract
Harmful algal blooms (HABs) have occurred frequently in coastal waters of China, imposing negative effects on the marine ecological environment. A dataset of HABs and terrestrial runoff was collected and analyzed in this study, and factors responsible for HABs were further explored. Frequency and expansion of HABs peaked between 2001 and 2007, and although they have declined slightly since then, they have remained quite high. Frequency and accumulative area of HABs peaked in 2004–2005, and most occurred from April to August during these years. HABs occurred frequently in the Changjiang (Yangtze River) estuary, and Prorocentrum donghaiense, Noctiluca scientillans, Karenia mikimotoi, and Skeletonema costatum were the main algal species. The increases of eutrophication, the abnormal sea surface temperature caused by climate and ocean currents, and the species invasion caused by the discharge of ballast water may be important factors for the long-term outbreak of HABs in the Chinese coastal waters. These findings provide a better understanding of HABs in China, which will be helpful to further prevention and control.
Collapse
|
15
|
Perrault JR, Barron HW, Malinowski CR, Milton SL, Manire CA. Use of intravenous lipid emulsion therapy as a novel treatment for brevetoxicosis in sea turtles. Sci Rep 2021; 11:24162. [PMID: 34921188 PMCID: PMC8683444 DOI: 10.1038/s41598-021-03550-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/03/2021] [Indexed: 11/09/2022] Open
Abstract
The southwest coast of Florida experiences annual red tides, a type of harmful algal bloom that results from high concentrations of Karenia brevis. These dinoflagellates release lipophilic neurotoxins, known as brevetoxins, that bind to sodium channels and inhibit their inactivation, resulting in a variety of symptoms that can lead to mass sea turtle strandings. Traditional therapies for brevetoxicosis include standard and supportive care (SSC) and/or dehydration therapy; however, these treatments are slow-acting and often ineffective. Because red tide events occur annually in Florida, our objective was to test intravenous lipid emulsion (ILE) as a rapid treatment for brevetoxicosis in sea turtles and examine potential impacts on toxin clearance rates, symptom reduction, rehabilitation time, and survival rates. Sea turtles exhibiting neurological symptoms related to brevetoxicosis were brought to rehabilitation from 2018-2019. Upon admission, blood samples were collected, followed by immediate administration of 25 mg ILE/kg body mass (Intralipid® 20%) at 1 mL/min using infusion pumps. Blood samples were collected at numerous intervals post-ILE delivery and analyzed for brevetoxins using enzyme-linked immunosorbent assays. In total, nine (four subadults, one adult female, four adult males) loggerheads (Caretta caretta), five (four juvenile, one adult female) Kemp's ridleys (Lepidochelys kempii), and four juvenile green turtles (Chelonia mydas) were included in this study. We found that plasma brevetoxins declined faster compared to turtles that received only SSC. Additionally, survival rate of these patients was 94% (17/18), which is significantly higher than previous studies that used SSC and/or dehydration therapy (47%; 46/99). Nearly all symptoms were eliminated within 24-48 h, whereas using SSC, symptom elimination could take up to seven days or more. The dosage given here (25 mg/kg) was sufficient for turtles in this study, but the use of a higher dosage (50-100 mg/kg) for those animals experiencing severe symptoms may be considered. These types of fast-acting treatment plans are necessary for rehabilitation facilities that are already resource-limited. Intravenous lipid emulsion therapy has the potential to reduce rehabilitation time, save resources, and increase survival of sea turtles and other marine animals experiencing brevetoxicosis.
Collapse
Affiliation(s)
| | - Heather W Barron
- Clinic for the Rehabilitation of Wildlife, Sanibel, FL, 33957, USA
| | | | | | | |
Collapse
|
16
|
Dujon AM, Vittecoq M, Bramwell G, Thomas F, Ujvari B. Machine learning is a powerful tool to study the effect of cancer on species and ecosystems. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Antoine M. Dujon
- Geelong School of Life and Environmental Sciences Centre for Integrative Ecology Deakin University Waurn Ponds Victoria Australia
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC) Montpellier France
| | - Marion Vittecoq
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
- MIVEGECUniversity of MontpellierCNRSIRD Montpellier France
- Tour du Valat Research Institute for the Conservation of Mediterranean Wetlands Arles France
| | - Georgina Bramwell
- Geelong School of Life and Environmental Sciences Centre for Integrative Ecology Deakin University Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC) Montpellier France
| | - Frédéric Thomas
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC) Montpellier France
- MIVEGECUniversity of MontpellierCNRSIRD Montpellier France
| | - Beata Ujvari
- Geelong School of Life and Environmental Sciences Centre for Integrative Ecology Deakin University Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC) Montpellier France
| |
Collapse
|
17
|
Page-Karjian A, Whitmore L, Stacy BA, Perrault JR, Farrell JA, Shaver DJ, Walker JS, Frandsen HR, Rantonen E, Harms CA, Norton TM, Innis C, Yetsko K, Duffy DJ. Fibropapillomatosis and Chelonid Alphaherpesvirus 5 Infection in Kemp's Ridley Sea Turtles ( Lepidochelys kempii). Animals (Basel) 2021; 11:ani11113076. [PMID: 34827808 PMCID: PMC8614476 DOI: 10.3390/ani11113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The Kemp’s ridley sea turtle is an endangered species that is susceptible to a tumor disease called fibropapillomatosis (FP) and its associated virus, chelonid alphaherpesvirus 5 (ChHV5). The goal of our study was to describe FP in Kemp’s ridley turtles, including estimated disease prevalence and pathologyg, and case demographics and outcomes, to better understand the risk posed by FP to Kemp’s ridley population recovery. During 2006–2020, we identified 22 cases of Kemp’s ridley turtles with FP, including 12 adult turtles, a reproductively valuable age class. Molecular diagnostics were used to identify ChHV5 DNA in blood (7.8%) and tumor (91.7%) samples collected from free-ranging Kemp’s ridley turtles. Genomic sequencing was conducted to identify ChHV5 variants in tumor samples collected from Kemp’s ridley turtles with FP. Along with case data, phylogenetic analysis of resultant sequences suggests increasing, spatiotemporal spread of ChHV5 infections and FP among Kemp’s ridley turtles in coastal areas, including the Gulf of Mexico and the southwestern Atlantic Ocean, where they share habitat with green sea turtles (in which FP is enzootic). This is concerning because FP has an uncertain pathogenesis, is potentially related to anthropogenic environmental degradation, and can cause suffering and/or death in severely afflicted turtles. Abstract Fibropapillomatosis (FP), a debilitating, infectious neoplastic disease, is rarely reported in endangered Kemp’s ridley sea turtles (Lepidochelys kempii). With this study, we describe FP and the associated chelonid alphaherpesvirus 5 (ChHV5) in Kemp’s ridley turtles encountered in the United States during 2006–2020. Analysis of 22 case reports of Kemp’s ridley turtles with FP revealed that while the disease was mild in most cases, 54.5% were adult turtles, a reproductively valuable age class whose survival is a priority for population recovery. Of 51 blood samples from tumor-free turtles and 12 tumor samples from turtles with FP, 7.8% and 91.7%, respectively, tested positive for ChHV5 DNA via quantitative polymerase chain reaction (qPCR). Viral genome shotgun sequencing and phylogenetic analysis of six tumor samples show that ChHV5 sequences in Kemp’s ridley turtles encountered in the Gulf of Mexico and northwestern Atlantic cluster with ChHV5 sequences identified in green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtles from Hawaii, the southwestern Atlantic Ocean, and the Caribbean. Results suggest an interspecific, spatiotemporal spread of FP among Kemp’s ridley turtles in regions where the disease is enzootic. Although FP is currently uncommon in this species, it remains a health concern due to its uncertain pathogenesis and potential relationship with habitat degradation.
Collapse
Affiliation(s)
- Annie Page-Karjian
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA;
- Correspondence:
| | - Liam Whitmore
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (L.W.); (J.A.F.); (K.Y.); (D.J.D.)
- Department of Biological Sciences, University of Limerick, V94 T9PX Co. Limerick, Ireland
| | - Brian A. Stacy
- National Oceanic & Atmospheric Administration, National Marine Fisheries Service, Gainesville, FL 32611, USA;
| | | | - Jessica A. Farrell
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (L.W.); (J.A.F.); (K.Y.); (D.J.D.)
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Donna J. Shaver
- Division of Sea Turtle Science and Recovery, Padre Island National Seashore, Corpus Christi, TX 78480, USA; (D.J.S.); (J.S.W.); (H.R.F.)
| | - J. Shelby Walker
- Division of Sea Turtle Science and Recovery, Padre Island National Seashore, Corpus Christi, TX 78480, USA; (D.J.S.); (J.S.W.); (H.R.F.)
| | - Hilary R. Frandsen
- Division of Sea Turtle Science and Recovery, Padre Island National Seashore, Corpus Christi, TX 78480, USA; (D.J.S.); (J.S.W.); (H.R.F.)
| | - Elina Rantonen
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA;
| | - Craig A. Harms
- Center for Marine Science & Technology, North Carolina State University, Morehead City, NC 28557, USA;
| | | | | | - Kelsey Yetsko
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (L.W.); (J.A.F.); (K.Y.); (D.J.D.)
| | - David J. Duffy
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (L.W.); (J.A.F.); (K.Y.); (D.J.D.)
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
18
|
Sea Turtles in the Cancer Risk Landscape: A Global Meta-Analysis of Fibropapillomatosis Prevalence and Associated Risk Factors. Pathogens 2021; 10:pathogens10101295. [PMID: 34684244 PMCID: PMC8540842 DOI: 10.3390/pathogens10101295] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Several cancer risk factors (exposure to ultraviolet-B, pollution, toxins and pathogens) have been identified for wildlife, to form a “cancer risk landscape.” However, information remains limited on how the spatiotemporal variability of these factors impacts the prevalence of cancer in wildlife. Here, we evaluated the cancer risk landscape at 49 foraging sites of the globally distributed green turtle (Chelonia mydas), a species affected by fibropapillomatosis, by integrating data from a global meta-analysis of 31 publications (1994–2019). Evaluated risk factors included ultraviolet light exposure, eutrophication, toxic phytoplanktonic blooms, sea surface temperature, and the presence of mechanical vectors (parasites and symbiotic species). Prevalence was highest in areas where nutrient concentrations facilitated the emergence of toxic phytoplankton blooms. In contrast, ultraviolet light exposure and the presence of parasitic and/or symbiotic species did not appear to impact disease prevalence. Our results indicate that, to counter outbreaks of fibropapillomatosis, management actions that reduce eutrophication in foraging areas should be implemented.
Collapse
|
19
|
EVALUATION OF IMMUNE FUNCTION IN TWO POPULATIONS OF GREEN SEA TURTLES (CHELONIA MYDAS) IN A DEGRADED VERSUS A NONDEGRADED HABITAT. J Wildl Dis 2021; 57:761-772. [PMID: 34460917 DOI: 10.7589/jwd-d-20-00204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/08/2021] [Indexed: 11/20/2022]
Abstract
There is a strong correlation between degraded marine habitats and the prevalence of diseases such as green turtle fibropapillomatosis (GTFP) in coastal populations. In GTFP, small to large tumors grow on the turtle's soft tissues and shell, while internal nodules may also occur. The disease primarily affects juvenile green sea turtles (Chelonia mydas) that reside in nearshore waters. As a link has been shown between environmental pollution and immune suppression in a variety of animals, the objective of our research was to compare innate and adaptive immune responsiveness in green sea turtles from a severely degraded and a more pristine habitat, which differ greatly in rates of GTFP. We quantified phagocytosis by flow cytometry and performed in vitro stimulation analysis to measure activity of both the innate and adaptive immune systems in wild-caught Florida green turtles. Sea turtles from the degraded environment, both with and without visible cutaneous tumors, exhibited significantly reduced phagocytosis and stimulation indices than did those from the less polluted environment. Our results suggest that environmental factors may contribute to the development of GTFP and thus can impact the health of sea turtle populations.
Collapse
|
20
|
Greene W, Chan B, Bromage E, Grose JH, Walsh C, Kortright K, Forrest S, Perry G, Byrd L, Stamper MA. The Use of Bacteriophages and Immunological Monitoring for the Treatment of a Case of Chronic Septicemic Cutaneous Ulcerative Disease in a Loggerhead Sea Turtle Caretta caretta. JOURNAL OF AQUATIC ANIMAL HEALTH 2021; 33:139-154. [PMID: 34216060 PMCID: PMC8518602 DOI: 10.1002/aah.10130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 06/13/2023]
Abstract
In this case study, phage therapy was applied to treat a multidrug-resistant case of septicemic cutaneous ulcerative disease (SCUD) caused by Citrobacter freundii in a loggerhead sea turtle Caretta caretta. Phages were applied topically, intravenously, into the carapace, and into the exhibit water using various phage cocktails specific to the causative agent over an 8-month period. This was performed in conjunction with antimicrobial therapy. The animal was monitored through weekly cultures, photographs, and complete blood cell counts, as well as immune assays (phagocytosis, plasma lysozyme and superoxide dismutase activity, and plasma electrophoresis profiles). The animal, in comparison to an untreated, unaffected control, had elevated antibody titers to the administered phages, which persisted for at least 35 weeks. Although cultures were clear of C. freundii after phage treatment, the infection did return over time and immune assays confirmed deficiencies when compared to a healthy loggerhead sea turtle. Immune parameters with statistically significant changes over the study period included the following: decreased phagocytosis, increased alpha- and gamma-globulin protein components, and an increased albumin : globulin ratio. When C. freundii appeared again, the multidrug-resistant status had reverted back to normal susceptibility patterns. Although not completely known whether it was another subspecies of bacteria, the therapy did resolve the multidrug-resistant challenge. Phage therapy in combination with antimicrobial agents may be an effective treatment for sea turtles with normally functioning immune systems or less-severe infections. Additional research is needed to better understand and quantify sea turtle immunology.
Collapse
Affiliation(s)
- Whitney Greene
- Mote Marine Laboratory and Aquarium1600 Ken Thompson ParkwaySarasotaFlorida34236USA
| | | | - Erin Bromage
- University of Massachusetts Dartmouth285 Old Westport RoadNorth DartmouthMassachusetts02747USA
| | | | - Cathy Walsh
- Mote Marine Laboratory and Aquarium1600 Ken Thompson ParkwaySarasotaFlorida34236USA
| | | | - Sue Forrest
- Mote Marine Laboratory and Aquarium1600 Ken Thompson ParkwaySarasotaFlorida34236USA
| | - Grace Perry
- University of Massachusetts Dartmouth285 Old Westport RoadNorth DartmouthMassachusetts02747USA
| | - Lynne Byrd
- Mote Marine Laboratory and Aquarium1600 Ken Thompson ParkwaySarasotaFlorida34236USA
| | - M. Andrew Stamper
- Disney’s Animals, Science, and EnvironmentWalt Disney’s Parks and ResortsBay LakeFlorida32830USA
| |
Collapse
|
21
|
James A, Page-Karjian A, Charles KE, Edwards J, Gregory CR, Cheetham S, Buter BP, Marancik DP. Chelonid Alphaherpesvirus 5 Prevalence and First Confirmed Case of Sea Turtle Fibropapillomatosis in Grenada, West Indies. Animals (Basel) 2021; 11:1490. [PMID: 34064092 PMCID: PMC8224268 DOI: 10.3390/ani11061490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Chelonid alphaherpesvirus 5 (ChHV5) is strongly associated with fibropapillomatosis, a neoplastic disease of sea turtles that can result in debilitation and mortality. The objectives of this study were to examine green (Chelonia mydas), hawksbill (Eretmochelys imbricata), and leatherback (Dermochelys coriacea) sea turtles in Grenada, West Indies, for fibropapillomatosis and to utilize ChHV5-specific PCR, degenerate herpesvirus PCR, and serology to non-invasively evaluate the prevalence of ChHV5 infection and exposure. One-hundred and sixty-seven turtles examined from 2017 to 2019 demonstrated no external fibropapilloma-like lesions and no amplification of ChHV5 DNA from whole blood or skin biopsies. An ELISA performed on serum detected ChHV5-specific IgY in 18/52 (34.6%) of green turtles tested. In 2020, an adult, female green turtle presented for necropsy from the inshore waters of Grenada with severe emaciation and cutaneous fibropapillomas. Multiple tumors tested positive for ChHV5 by qPCR, providing the first confirmed case of ChHV5-associated fibropapillomatosis in Grenada. These results indicate that active ChHV5 infection is rare, although viral exposure in green sea turtles is relatively high. The impact of fibropapillomatosis in Grenada is suggested to be low at the present time and further studies comparing host genetics and immunologic factors, as well as examination into extrinsic factors that may influence disease, are warranted.
Collapse
Affiliation(s)
- Amanda James
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada; (A.J.); (J.E.); (S.C.); (B.P.B.)
| | - Annie Page-Karjian
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA;
| | | | - Jonnel Edwards
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada; (A.J.); (J.E.); (S.C.); (B.P.B.)
| | | | - Sonia Cheetham
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada; (A.J.); (J.E.); (S.C.); (B.P.B.)
| | - Brian P. Buter
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada; (A.J.); (J.E.); (S.C.); (B.P.B.)
| | - David P. Marancik
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada; (A.J.); (J.E.); (S.C.); (B.P.B.)
| |
Collapse
|
22
|
Tsai MA, Chang CC, Li TH. Antimicrobial-resistance profiles of gram-negative bacteria isolated from green turtles (Chelonia mydas) in Taiwan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116870. [PMID: 33714128 DOI: 10.1016/j.envpol.2021.116870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The green turtle (Chelonia mydas) is listed as a globally endangered species and is vulnerable to anthropogenic threats, including environmental pollution. This study investigated the antimicrobial resistance of Gram-negative bacteria isolated from wild green turtles admitted to a sea turtle rehabilitation center in Taiwan. For this investigation, cloacal and nasal swab samples were collected from 28 green turtles between 2018 and 2020, from which a total of 47 Gram-negative bacterial isolates were identified. Among these, Vibrio spp. were the most dominant isolate (31.91%), and 89.36% of the 47 isolates showed resistance to at least one of 18 antimicrobial agents tested. Isolates resistant to one (6.38%), two (8.51%), and multiple (74.47%) antimicrobials were observed. The antimicrobial agents to which isolates showed the greatest resistance were penicillin (74.47%), followed by spiramycin, amoxicillin, and cephalexin. The antimicrobial-resistance profiles identified in this study provide useful information for the clinical treatment of sea turtles in rehabilitation facilities. The results of our study also imply that wild green turtles may be exposed to polluting effluents containing antimicrobials when the turtles traverse migratory corridors or forage in feeding habitats. To benefit sea turtle conservation, future research should focus on (1) how to prevent pollution from antimicrobials in major green turtle activity areas and (2) identifying sources of antimicrobial-resistant bacterial strains in coastal waters of Taiwan.
Collapse
Affiliation(s)
- Ming-An Tsai
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; International Degree Program of Ornamental Fish Science and Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| | - Chao-Chin Chang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Tsung-Hsien Li
- National Museum of Marine Biology and Aquarium, Checheng, Pingtung, 94450, Taiwan.
| |
Collapse
|
23
|
Insights on Immune Function in Free-Ranging Green Sea Turtles ( Chelonia mydas) with and without Fibropapillomatosis. Animals (Basel) 2021; 11:ani11030861. [PMID: 33803547 PMCID: PMC8003005 DOI: 10.3390/ani11030861] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Chelonid alphaherpesviruses 5 and 6 (ChHV5 and ChHV6) are viruses that affect wild sea turtle populations. ChHV5 is associated with the neoplastic disease fibropapillomatosis (FP), which affects green turtles (Chelonia mydas) in panzootic proportions. ChHV6 infection is associated with lung-eye-trachea disease (LETD), which has only been observed in maricultured sea turtles, although antibodies to ChHV6 have been detected in free-ranging turtles. To better understand herpesvirus prevalence and host immunity in various green turtle foraging aggregations in Florida, USA, our objectives were to compare measures of innate and adaptive immune function in relation to (1) FP tumor presence and severity, and (2) ChHV5 and ChHV6 infection status. Free-ranging, juvenile green turtles (N = 45) were captured and examined for external FP tumors in Florida's Big Bend, Indian River Lagoon, and Lake Worth Lagoon. Blood samples were collected upon capture and analyzed for ChHV5 and ChHV6 DNA, antibodies to ChHV5 and ChHV6, in vitro lymphocyte proliferation using a T-cell mitogen (concanavalin A), and natural killer cell activity. Despite an overall high FP prevalence (56%), ChHV5 DNA was only observed in one individual, whereas 20% of turtles tested positive for antibodies to ChHV5. ChHV6 DNA was not observed in any animals and only one turtle tested positive for ChHV6 antibodies. T-cell proliferation was not significantly related to FP presence, tumor burden, or ChHV5 seroprevalence; however, lymphocyte proliferation in response to concanavalin A was decreased in turtles with severe FP (N = 3). Lastly, green turtles with FP (N = 9) had significantly lower natural killer cell activity compared to FP-free turtles (N = 5). These results increase our understanding of immune system effects related to FP and provide evidence that immunosuppression occurs after the onset of FP disease.
Collapse
|
24
|
Venous blood gas and biochemical analysis of wild captured green turtles (Chelonia mydas) and Kemp's ridley turtles (Lepidochelys kempii) from the Gulf of Mexico. PLoS One 2020; 15:e0237596. [PMID: 32785283 PMCID: PMC7423106 DOI: 10.1371/journal.pone.0237596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Blood was collected from wild captured green and Kemp’s ridley turtles off the west coast of Florida, USA. Blood gases and biochemical values were analyzed using a point of care (POC) device in the field. Analytes include pH, partial pressure of carbon dioxide (pCO2), partial pressure of oxygen (pO2), total carbon dioxide (TCO2), bicarbonate (HCO3), base excess (BE), oxygen saturation (sO2), lactate, sodium (Na), potassium (K), chloride (Cl), total carbon dioxide (TCO2), anion gap, ionized calcium, glucose, blood urea nitrogen (BUN), creatinine (Crea), hematocrit (Hct), and hemoglobin (Hb). These are novel data for wild healthy Kemp’s ridley turtles, and results for green turtles were generally consistent with past studies of green turtles with exceptions primarily in blood gas values. Ninety percent of the green turtles had fibropapillomatosis (FP), but none of the blood analytes were correlated with disease severity. Only BUN was correlated with weight of green turtles, and there was no correlation between blood parameters and weight of Kemp’s ridley turtles. This study provides data that are useful in understanding the physiologic status of sea turtles specific to this region, allowing for comparisons to other populations, life stages, and disease states.
Collapse
|
25
|
Hardman RH, Irwin KJ, Sutton WB, Miller DL. Evaluation of Severity and Factors Contributing to Foot Lesions in Endangered Ozark Hellbenders, Cryptobranchus alleganiensis bishopi. Front Vet Sci 2020; 7:34. [PMID: 32118058 PMCID: PMC7010714 DOI: 10.3389/fvets.2020.00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/14/2020] [Indexed: 11/13/2022] Open
Abstract
Arkansas populations of Ozark Hellbenders, Cryptobranchus alleganiensis bishopi have declined precipitously over the past few decades and are now limited to a single river. Biologists have also observed an increase of distal limb lesions with unidentified etiology and unknown role in morbidity and mortality of the species in this location. We documented lesions and collected associated individual size class data and pathogen samples in Ozark Hellbenders of Arkansas (n = 73) from 2011 to 2014 with the following two objectives: (1) document spatiotemporal patterns and severity of lesions present in this last remaining Arkansas Ozark Hellbender population, and (2) determine if host factors and infection status are associated with lesion severity. A scoring system was created from 0 to 7 based on lesion observations. Linear mixed model regressions followed by AICc model evaluation were used to determine associations among infection status for amphibian pathogens Batrachochytrium dendrobatidis (Bd) and Ranavirus as well as individual biometrics on lesion score. We discovered 93.2% of Hellbenders had lesions characterized by digit swelling that often progressed toward toe-tip ulceration. In severe cases we observed digital necrosis progressing to digit loss. Any recaptured individuals had the same or worse lesion score from previous captures. The top predictive model for lesion severity included individual mass and Bd infection status with a significant, positive association of Bd with increased lesion severity (β = 0.87 ± 0.39 S.E., C.I.: 0.11, 1.63). Our findings highlight a widespread and progressive disease that is an important factor to consider for the future of Ozark Hellbenders. This syndrome is presumptively multifactorial, and future studies will benefit from investigating several factors of host, infectious agents, and environment and their roles in disease manifestation for the purpose of developing effective, multi-faceted conservation strategies. A summary of potential etiologies and mechanisms is provided that may explain observed lesion distribution and that will be applicable to future disease and epidemiological investigations.
Collapse
Affiliation(s)
- Rebecca H Hardman
- Center for Wildlife Health, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Kelly J Irwin
- Arkansas Game and Fish Commission, Benton, AR, United States
| | - William B Sutton
- Wildlife Ecology Laboratory, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| | - Debra L Miller
- Center for Wildlife Health, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
26
|
Harmful algal and cyanobacterial toxins in foraging green turtles ( Chelonia mydas) in Florida's Big Bend. Toxicon X 2020; 5:100020. [PMID: 32550576 PMCID: PMC7286091 DOI: 10.1016/j.toxcx.2019.100020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/22/2019] [Accepted: 12/19/2019] [Indexed: 11/20/2022] Open
Abstract
Numerous toxin-producing harmful algal (HAB) species occur in Florida's coastal waters. Exposure to these toxins has been shown to have sublethal effects in sea turtles. The objective of this study was to establish concentrations of 10 HAB toxins in plasma samples from green turtles (Chelonia mydas) foraging in Florida's Big Bend. Domoic acid, lyngbyatoxin-A, microcystins, nodularin, and okadaic acid were detected, demonstrating exposure to these HAB toxins, which are also a public health concern.
Collapse
|
27
|
Perrault JR, Arendt MD, Schwenter JA, Byrd JL, Harms CA, Cray C, Tuxbury KA, Wood LD, Stacy NI. Blood analytes of immature Kemp's ridley sea turtles ( Lepidochelys kempii) from Georgia, USA: reference intervals and body size correlations. CONSERVATION PHYSIOLOGY 2020; 8:coaa091. [PMID: 33304585 PMCID: PMC7720087 DOI: 10.1093/conphys/coaa091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/14/2020] [Accepted: 10/26/2020] [Indexed: 05/04/2023]
Abstract
Health assessments of wildlife species are becoming increasingly important in an ever-changing environment. Kemp's ridley sea turtles (Lepidochelys kempii; hereafter, Kemp's ridleys) are critically endangered and incur several on-going threats to their population recovery; therefore, it is imperative to advance the understanding of baseline blood analyte data as a diagnostic and monitoring tool. For in-water, trawl-captured, immature Kemp's ridleys (minimum N = 31) from Georgia, USA, the objectives of this study were to (1) establish reference intervals (RIs) for packed cell volume (PCV) and 27 plasma biochemistry analytes and (2) determine length-specific relationships in blood analytes. We observed significant positive correlations between minimum straight carapace length and PCV, amylase, calcium:phosphorus ratio, cholesterol, magnesium, triglycerides, total solids, total protein and all protein fractions (e.g. alpha-, beta- and gamma-globulins); aspartate aminotransferase and chloride showed significant negative relationships. These results suggest that certain blood analytes in Kemp's ridleys change as these animals grow, presumptively due to somatic growth and dietary shifts. The information presented herein, in due consideration of capture technique that may have impacted glucose and potassium concentrations, represents the first report of blood analyte RIs for Kemp's ridley sea turtles established by guidelines of the American Society for Veterinary Clinical Pathology and will have direct applications for stranded individuals in rehabilitative care and for future investigations into the health status of wild individuals from this population.
Collapse
Affiliation(s)
- Justin R Perrault
- Loggerhead Marinelife Center, Juno Beach, Florida, 33408, USA
- Corresponding author: Loggerhead Marinelife Center, Juno Beach, Florida, 33408, USA. Tel: 561-627-8280.
| | - Michael D Arendt
- Marine Resources Division, South Carolina Department of Natural Resources, Charleston, South Carolina, 29412, USA
| | - Jeffrey A Schwenter
- Marine Resources Division, South Carolina Department of Natural Resources, Charleston, South Carolina, 29412, USA
| | - Julia L Byrd
- South Atlantic Fish Management Council, North Charleston, South Carolina, 29405, USA
| | - Craig A Harms
- Department of Clinical Sciences and Center for Marine Sciences and Technology, College of Veterinary Medicine, North Carolina State University, Morehead City, North Carolina, 27606, USA
| | - Carolyn Cray
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Kathryn A Tuxbury
- Animal Health Department, New England Aquarium, Central Wharf, Boston, Massachusetts, 02110, USA
| | - Lawrence D Wood
- Florida Hawksbill Project at the National Save the Sea Turtle Foundation, Fort Lauderdale, Florida, 33308, USA
| | - Nicole I Stacy
- Aquatic, Amphibian, and Reptile Pathology Program, Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, 32608, USA
| |
Collapse
|
28
|
Page-Karjian A, Perrault JR, Zirkelbach B, Pescatore J, Riley R, Stadler M, Zachariah TT, Marks W, Norton TM. Tumor re-growth, case outcome, and tumor scoring systems in rehabilitated green turtles with fibropapillomatosis. DISEASES OF AQUATIC ORGANISMS 2019; 137:101-108. [PMID: 31854328 DOI: 10.3354/dao03426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fibropapillomatosis (FP) is an infectious, neoplastic disease of major concern in sea turtle rehabilitation facilities. Rehabilitating sea turtles that undergo tumor removal surgery often have tumor regrowth and may experience mortality. We evaluated tumor score, removal, and regrowth in rehabilitating green sea turtles with FP in 4 rehabilitation facilities in the southeastern USA during 2009-2017. Of 756 cases, 312 (41%) underwent tumor removal surgery, 155 (50%) of those had tumor regrowth within an average of 46 ± 45 d, and 85 (27%) had multiple (>1) regrowth events. Of 756 turtles with FP, 563 (75%) did not survive after admission into a rehabilitation facility, including 283 (37%) that were euthanized and 280 that died without euthanasia (37%), and 193 survived, including 186 (25%) released and 7 (1%) placed in permanent captive care. Tumor removal surgery increased the odds of tumor regrowth but also enhanced survivorship, whereas tumor regrowth was not a significant predictor of case outcome. Three FP tumor scoring systems were used to assign tumor scores to 449 cases, and differing results emphasize that tumor scoring systems should be applied to the situations and/or location(s) for which they were intended. FP tumor score was not a significant predictor for the event or extent of FP tumor regrowth after surgical excision. Under current rehabilitation regimes, outcomes of rehabilitation for tumored turtles have a low probability of success. The results of this study may be used to help guide clinical decision-making and determine prognoses for rehabilitating sea turtles with FP.
Collapse
Affiliation(s)
- Annie Page-Karjian
- Florida Atlantic University, Harbor Branch Oceanographic Institute, Fort Pierce, Florida 34946, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mafra LL, Nolli PKW, Mota LE, Domit C, Soeth M, Luz LFG, Sobrinho BF, Leal JG, Di Domenico M. Multi-species okadaic acid contamination and human poisoning during a massive bloom of Dinophysis acuminata complex in southern Brazil. HARMFUL ALGAE 2019; 89:101662. [PMID: 31672229 DOI: 10.1016/j.hal.2019.101662] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/01/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
On June 2016, a major bloom of Dinophysis acuminata complex was noticed over the coast of Paraná State (PR), southern Brazil, an area unprotected by any official monitoring program. Here we report the results of an extensive sampling effort that ultimately led PR authorities to issue the first State shellfish-harvesting ban due to multi-species okadaic acid (OA) contamination. During its peak, the bloom covered an area of 201 km2 (∼2.0-3.5 × 54.0 km), attaining unprecedentedly high cell densities along the shallow (<15 m) continental shelf (mean 2.2 × 105, maximum 2.1 × 106 cells L-1) and adjacent sandy beaches (mean 2.8 × 105, maximum 5.2 × 106 cells L-1). Only OA was detected in suspension (max. 188 ng L-1). Toxin levels measured in bivalves were several times greater than the regulatory limit of 160 ng g-1, reaching up to 3600 ng g-1 in Crassostrea gasar, by far the highest OA concentrations ever reported in oysters worldwide, 7700 ng g-1 in brown mussels, Perna perna, and lower levels in clams, Anomalocardia brasiliana, and mangrove mussels, Mytella spp. Nine cases of human intoxication were officially reported and five people were hospitalized with typical symptoms of Diarrhetic Shellfish Poisoning linked to the consumption of contaminated bivalves. All bivalves quickly converted most of the OA into its esterified form, DTX-3, and eliminated the toxins only a few weeks following the bloom, with C. gasar being the slowest-detoxifying species. Lower OA levels were accumulated in zooplankton, gastropods and several novel toxin vectors, including benthic organisms such as sand dollars Mellita quinquiesperforata and the ghost-shrimp Callichirus major, which may act as a good indicator of the presence of toxins in sandy beaches, and pelagic fish species that can serve as potential alternative sources of OA to humans (Chaetodipterus faber and Mugil liza). Monitoring toxin contamination in seafood other than bivalves is thus recommended to ensure comprehensive human health protection during massive Dinophysis blooms. Additionally, since OA was also present at low concentrations in the liver of Guiana dolphins Sotalia guianensis and penguins Spheniscus magellanicus, exposure to biotoxins should be considered in conservation actions involving threatened and near-threatened marine organisms in this region.
Collapse
Affiliation(s)
- L L Mafra
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil.
| | - P K W Nolli
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - L E Mota
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - C Domit
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - M Soeth
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - L F G Luz
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - B F Sobrinho
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - J G Leal
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - M Di Domenico
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| |
Collapse
|
30
|
Walsh CJ, Cocilova C, Restivo J, Flewelling L, Milton S. Immune function in Trachemys scripta following exposure to a predominant brevetoxin congener, PbTx-3, as a model for potential health impacts for sea turtles naturally exposed to brevetoxins. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:1085-1104. [PMID: 31559558 DOI: 10.1007/s10646-019-02110-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Many species of marine life in southwestern Florida, including sea turtles, are impacted by blooms of the toxic dinoflagellate, Karenia brevis. Sublethal exposure to toxins produced by K. brevis has been shown to impact sea turtle health. Since all sea turtles in the Gulf of Mexico have protected status, a freshwater turtle, Trachemys scripta, was used as a model for immune system effects following experimental exposure to a predominant brevetoxin congener in K. brevis blooms, PbTx-3. Exposure to PbTx-3 was oral or intratracheal and health effects were assessed using a suite of immune function parameters: innate immune function (phagocytosis, plasma lysozyme activity), adaptive immune function (lymphocyte proliferation), and measures of oxidative stress (superoxide dismutase (SOD) and glutathione-S-transferase (GST) activity in plasma). Inflammation was also measured using plasma protein electrophoresis. In addition, differential expression of genes in peripheral blood leukocytes was determined using suppression subtractive hybridization followed by real-time PCR of specific genes. The primary immune effects of sublethal brevetoxin exposure in T. scripta following PbTx-3 administration, appear to be an increase in oxidative stress, a decrease in lysozyme activity, and modulation of immune function through lymphocyte proliferation responses. Plasma protein electrophoresis showed a decreased A:G ratio which may indicate potential inflammation. Genes coding for oxidative stress, such as thioredoxin and GST, were upregulated in exposed animals. That sublethal brevetoxin exposures impact immune function components suggests potential health implications for sea turtles naturally exposed to toxins. Knowledge of physiological stressors induced by brevetoxins may contribute to the ultimate goal of developing directed treatment strategies in exposed animals for reduced mortality resulting from red tide toxin exposure in sea turtles.
Collapse
Affiliation(s)
- Catherine J Walsh
- Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA.
| | - Courtney Cocilova
- Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Jessica Restivo
- Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
| | - Leanne Flewelling
- Florida Fish and Wildlife Conservation Commission, 100 8th Ave SE, St. Petersburg, FL, 33701, USA
| | - Sarah Milton
- Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| |
Collapse
|
31
|
Gravinese PM, Saso E, Lovko VJ, Blum P, Cole C, Pierce RH. Karenia brevis causes high mortality and impaired swimming behavior of Florida stone crab larvae. HARMFUL ALGAE 2019; 84:188-194. [PMID: 31128803 DOI: 10.1016/j.hal.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/19/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
The dinoflagellate Karenia brevis causes harmful algal blooms commonly referred to as red tides that are prevalent along Florida's gulf coast. Severe blooms often cause fish kills, turbid water, and hypoxic events all of which can negatively impact local fisheries. The stone crab, Menippe mercenaria, is a ˜$25 million per year fishery that occurs primarily along Florida's gulf coast. On the west Florida shelf, red tides occur from fall through spring, although severe blooms can occur during the summer. During the summer, stone crabs are reproductive and release larvae that are transported offshore where K. brevis blooms originate. This study determined the effects of K. brevis exposure on the survivorship, vertical swimming behavior, and oxygen consumption of stage-1 larval stone crabs. Survivorship was determined by exposing larvae to high (> 1 × 106 cells L-1) and medium (˜1 × 105 cells L-1) K. brevis concentrations for 96-hrs and were compared to controls that had no algae present. Larval swimming behavior (i.e., geotaxis) and oxygen consumption were monitored after 6-hr exposure to K. brevis. After 96-hrs of exposure, mortality was 100% and 30% for larvae in the high and medium concentrations of K. brevis, respectively, relative to the control. Larval swimming behavior was reversed in the K. brevis treatment; however oxygen consumption rates did not differ among treatments. These results suggest that severe blooms during the summer may reduce larval supply and serve as a potential bottleneck for new individuals recruiting into the fishery in years following a K. brevis bloom.
Collapse
Affiliation(s)
- Philip M Gravinese
- Mote Marine Laboratory, Fisheries Ecology and Enhancement Program, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, United States.
| | - Emma Saso
- Pitzer College, Keck Science Department, 925 N Mills Avenue, Claremont, CA, 91711, United States.
| | - Vincent J Lovko
- Mote Marine Laboratory, Phytoplankton Ecology Program, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, United States.
| | - Patricia Blum
- Mote Marine Laboratory, Ecotoxicology Program, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, United States.
| | - Cody Cole
- Mote Marine Laboratory, Phytoplankton Ecology Program, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, United States.
| | - Richard H Pierce
- Mote Marine Laboratory, Ecotoxicology Program, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, United States.
| |
Collapse
|
32
|
Brown ER, Cepeda MR, Mascuch SJ, Poulson-Ellestad KL, Kubanek J. Chemical ecology of the marine plankton. Nat Prod Rep 2019; 36:1093-1116. [DOI: 10.1039/c8np00085a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A review of chemically mediated interactions in planktonic marine environments covering new studies from January 2015 to December 2017.
Collapse
Affiliation(s)
- Emily R. Brown
- School of Biological Sciences
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| | - Marisa R. Cepeda
- School of Chemistry and Biochemistry
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| | - Samantha J. Mascuch
- School of Biological Sciences
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| | | | - Julia Kubanek
- School of Biological Sciences
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| |
Collapse
|
33
|
Duffy DJ, Schnitzler C, Karpinski L, Thomas R, Whilde J, Eastman C, Yang C, Krstic A, Rollinson D, Zirkelbach B, Yetsko K, Burkhalter B, Martindale MQ. Sea turtle fibropapilloma tumors share genomic drivers and therapeutic vulnerabilities with human cancers. Commun Biol 2018; 1:63. [PMID: 30271945 PMCID: PMC6123702 DOI: 10.1038/s42003-018-0059-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
Wildlife populations are under intense anthropogenic pressures, with the geographic range of many species shrinking, dramatic reductions in population numbers and undisturbed habitats, and biodiversity loss. It is postulated that we are in the midst of a sixth (Anthropocene) mass extinction event, the first to be induced by human activity. Further, threatening vulnerable species is the increased rate of emerging diseases, another consequence of anthropogenic activities. Innovative approaches are required to help maintain healthy populations until the chronic underlying causes of these issues can be addressed. Fibropapillomatosis in sea turtles is one such wildlife disease. Here, we applied precision-medicine-based approaches to profile fibropapillomatosis tumors to better understand their biology, identify novel therapeutics, and gain insights into viral and environmental triggers for fibropapillomatosis. We show that fibropapillomatosis tumors share genetic vulnerabilities with human cancer types, revealing that they are amenable to treatment with human anti-cancer therapeutics. David Duffy et al. use a precision-medicine-based approach to study fibropapillomatosis tumors in sea turtles to identify environmental triggers and potential therapeutics. They show that these tumors share genetic similarities with human cancer types, and may be treatable using human anti-cancer therapies.
Collapse
Affiliation(s)
- David J Duffy
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA. .,Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK. .,Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
| | - Christine Schnitzler
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Lorraine Karpinski
- The Turtle Hospital, 2396 Overseas Highway, Marathon, FL, 33050, USA.,Pinecrest Veterinary Hospital, 12125 South Dixie Highway, Pinecrest, FL, 33156, USA
| | - Rachel Thomas
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Jenny Whilde
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Catherine Eastman
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Calvin Yang
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Aleksandar Krstic
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Devon Rollinson
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Bette Zirkelbach
- The Turtle Hospital, 2396 Overseas Highway, Marathon, FL, 33050, USA
| | - Kelsey Yetsko
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Brooke Burkhalter
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
34
|
Huo J, Dong A, Niu X, Dong A, Lee S, Ma C, Wang L. Effects of cadmium on oxidative stress activities in plasma of freshwater turtle Chinemys reevesii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8027-8034. [PMID: 29305804 DOI: 10.1007/s11356-017-1139-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/26/2017] [Indexed: 05/24/2023]
Abstract
Cadmium (Cd) has been recently found in high concentrations in the aquatic environment. This study was designed to examine the effects of Cd on the oxidative stress activities in plasma of freshwater turtle Chinemys reevesii. Experimental turtles were exposed to Cd at the concentration of 15 mg/kg by intraperitoneal injection, and redox status was investigated. Compared to the controls, superoxide dismutase (SOD) and catalase activities in plasma of the treated animals significantly decreased in week 1, week 2, and week 4. However, SOD activities gradually increased from week 4 to week 8. The treated animals had higher content of MDA and lower content of GSH in plasma over the observation period. In conclusion, our results showed that Cd decreased the antioxidant capacity and increased the level of oxidative damage product in plasma, which suggest that Cd causes oxidative stress and damage in the animal under the experimental conditions.
Collapse
Affiliation(s)
- Junfeng Huo
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Aiguo Dong
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China.
| | - Xiaojun Niu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Ailing Dong
- QianAn agriculture Animal Husbandry and Fishery Bureau, Tangshan, Hebei Province, China
| | - Shaochin Lee
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China.
| | - Cungen Ma
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China.
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China.
| |
Collapse
|
35
|
Walker JS, Shaver DJ, Stacy BA, Flewelling LJ, Broadwater MH, Wang Z. Brevetoxin exposure in sea turtles in south Texas (USA) during Karenia brevis red tide. DISEASES OF AQUATIC ORGANISMS 2018; 127:145-150. [PMID: 29384484 DOI: 10.3354/dao03194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Five green (Chelonia mydas) and 11 Kemp's ridley (Lepidochelys kempii) sea turtles found dead, or that died soon after stranding, on the southern Texas (USA) coast during 2 Karenia brevis blooms (October 2015, September-October 2016) were tested for exposure to brevetoxins (PbTx). Tissues (liver, kidney) and digesta (stomach and intestinal contents) were analyzed by ELISA. Three green turtles found alive during the 2015 event and 2 Kemp's ridley turtles found alive during the 2016 event exhibited signs of PbTx exposure, including lethargy and/or convulsions of the head and neck. PbTx were detected in 1 or more tissues or digesta in all 16 stranded turtles. Detected PbTx concentrations ranged from 2 to >2000 ng g-1. Necropsy examination and results of PbTx analysis indicated that 10 of the Kemp's ridleys and 2 of the green turtles died from brevetoxicosis via ingestion. This is the first documentation of sea turtle mortality in Texas attributed to brevetoxicosis.
Collapse
Affiliation(s)
- Jennifer Shelby Walker
- National Park Service, Padre Island National Seashore, Division of Sea Turtle Science and Recovery, PO Box 181300, Corpus Christi, TX 78480, USA
| | | | | | | | | | | |
Collapse
|
36
|
Perrault JR, Stacy NI, Lehner AF, Poor SK, Buchweitz JP, Walsh CJ. Toxic elements and associations with hematology, plasma biochemistry, and protein electrophoresis in nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1398-1411. [PMID: 28939125 DOI: 10.1016/j.envpol.2017.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 05/06/2023]
Abstract
Toxic elements (arsenic, cadmium, lead, mercury, selenium, thallium) are a group of contaminants that are known to elicit developmental, reproductive, general health, and immune system effects in reptiles, even at low concentrations. Reptiles, including marine turtles, are susceptible to accumulation of toxic elements due to their long life span, low metabolic rate, and highly efficient conversion of prey into biomass. The objectives of this study were to (1) document concentrations of arsenic, cadmium, lead, mercury, selenium, and thallium in whole blood and keratin from nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida and document correlations thereof and (2) correlate whole blood toxic element concentrations to various hematological and plasma biochemistry analytes. Baselines for various hematological and plasma analytes and toxic elements in whole blood and keratin (i.e., scute) in nesting loggerheads are documented. Various correlations between the toxic elements and hematological and plasma biochemistry analytes were identified; however, the most intriguing were negative correlations between arsenic, cadmium, lead, and selenium with and α- and γ-globulins. Although various extrinsic and intrinsic variables such as dietary and feeding changes in nesting loggerheads need to be considered, this finding may suggest a link to altered humoral immunity. This study documents a suite of health variables of nesting loggerheads in correlation to contaminants and identifies the potential of toxic elements to impact the overall health of nesting turtles, thus presenting important implications for the conservation and management of this species.
Collapse
Affiliation(s)
- Justin R Perrault
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| | - Nicole I Stacy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 Southwest 16th Avenue, PO Box 100136, Gainesville, FL 32610, USA; Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA.
| | - Andreas F Lehner
- Diagnostic Center for Population and Animal Health, Michigan State University, 4125 Beaumont Road, Lansing, MI 48910, USA.
| | - Savannah K Poor
- University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| | - John P Buchweitz
- Diagnostic Center for Population and Animal Health, Michigan State University, 4125 Beaumont Road, Lansing, MI 48910, USA.
| | - Catherine J Walsh
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| |
Collapse
|