1
|
Nauman Mahamood M, Zhu S, Noman A, Mahmood A, Ashraf S, Aqeel M, Ibrahim M, Ashraf S, Liew RK, Lam SS, Irshad MK. An assessment of the efficacy of biochar and zero-valent iron nanoparticles in reducing lead toxicity in wheat (Triticum aestivum L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120979. [PMID: 36586554 DOI: 10.1016/j.envpol.2022.120979] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Soil heavy metal contamination is increasing rapidly due to increased anthropogenic activities. Lead (Pb) is a well-known human carcinogen causing toxic effects on humans and the environment. Its accumulation in food crops is a serious hazard to food security. Developing environment-friendly and cost-efficient techniques is necessary for Pb immobilization in the soil. A pot experiment was executed to determine the role of biochar (BC), zero-valent iron nanoparticles (n-ZVI), and zero-valent iron nanoparticles biochar composite (n-ZVI-BC) in controlling the Pb mobility and bioaccumulation in wheat (Triticum aestivum L.). The results showed that BC and n-ZVI significantly enhanced the wheat growth by increasing their photosynthetic and enzymatic activities. Among all the applied treatments, the maximum significant (p ≤ 0.05) improvement in wheat biomass was with the n-ZVI-BC application (T3). Compared to the control, the biomass of wheat roots, shoots & grains increased by 92.5, 58.8, and 49.1%, respectively. Moreover, the soil addition of T3 amendment minimized the Pb distribution in wheat roots, shoots, and grains by 33.8, 26.8, and 16.2%, respectively. The outcomes of this experiment showed that in comparison to control treatment plants, soil amendment with n-ZVI-BC (T3) increased the catalase (CAT), superoxide dismutase (SOD) activity by 49.8 and 31.1%, respectively, ultimately declining electrolyte leakage (EL), malondialdehyde (MDA) and hydrogen peroxide (H2O2) content in wheat by 38.7, 33.3, and 38%respectively. In addition, applied amendments declined the Pb mobility in the soil by increasing the residual Pb fractions. Soil amendment with n-ZVI-BC also increased the soil catalase (CAT), urease (UR), and acid phosphatase (ACP) activities by 68, 59, and 74%, respectively. Our research results provided valuable insight for the remediation of Pb toxicity in wheat. Hence, we can infer from our findings that n-ZVI-BC can be considered a propitious, environment friendly and affordable technique for mitigating Pb toxicity in wheat crop and reclamation of Pb polluted soils.
Collapse
Affiliation(s)
| | - Sihang Zhu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Agricultural Management Institute, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan
| | - Abid Mahmood
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sana Ashraf
- College of Earth and Environmental Sciences, University of the Punjab, Lahore Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Gansu, China
| | - Muhammad Ibrahim
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sobia Ashraf
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Rock Keey Liew
- NV Western PLT, No. 208B, Second Floor, Macalister Road, 10400 Georgetown, Penang, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan.
| |
Collapse
|
2
|
Yang Y, Tan X, Almatrafi E, Ye S, Song B, Chen Q, Yang H, Fu Q, Deng Y, Zeng Z, Zeng G. Alfalfa biochar supported Mg-Fe layered double hydroxide as filter media to remove trace metal(loid)s from stormwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156835. [PMID: 35750170 DOI: 10.1016/j.scitotenv.2022.156835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Polluted stormwater (PSW) treatment is becoming increasingly important because of the existence of multiple pollutants from non-point pollution sources. Alfalfa biochar loaded with Mg/Fe layered double hydroxide (AF-LDH) was successfully synthesized to remove trace metal(loid)s from stormwater. The adsorption kinetics and isotherms of metal(loid)s in a mono-component system and the reusability of the composite materials was investigated in this study. The result showed that the maximum removal efficiency for Pb(II), Cu(II), Zn(II), Cd(II), As(V), and Cr(VI) were 98.98 %, 98.11 %, 97.88 %, 97.71 %, 98.81 %, and 50.89 %, respectively, when added calcined AF-LDH (AF-LDO) composite material to the multi-component solution. The AF-LDH and AF-LDO could efficiently remove trace pollutants (10-100 μg/L) from multi-component solution, especially for AF-LDO, which could completely remove the tested six trace metal(loid)s. Furthermore, Fourier transform infrared spectra and X-ray diffraction characterizations supported the Mg/Fe layered double hydroxide reconstruction. The main mechanisms of Pb(II), Cu(II), Zn(II), and Cd(II) (cationic metals) removal were ion exchange and surface precipitation, whereas As(V) and Cr(VI) (anionic metals) were mainly dislodged through the formation of surface complexation, electrostatic attraction, and interlayer anion exchange, concerning the -OH and -COOH of AF-LDH. Importantly, the results of the column experiment demonstrated that AF-LDO was superior to AF-LDH for anionic metal removal from stormwater. In this study, we synthesized AF-LDH and AF-LDO for trace metal(loid) removal and proposed a new and practical approach for stormwater purification.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Xiaofei Tan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shujing Ye
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Biao Song
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qiang Chen
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Hailan Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qianmin Fu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yuanyuan Deng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Guangming Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
3
|
High-performance Removal of Tetracycline Enabled by Fe0 Nanoparticles Supported on Carbon@ZIF-8. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Tao Z, Liu C, He Q, Chang H, Ma J. Detection and treatment of organic matters in hydraulic fracturing wastewater from shale gas extraction: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153887. [PMID: 35181355 DOI: 10.1016/j.scitotenv.2022.153887] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Although shale gas has shown promising potential to alleviate energy crisis as a clean energy resource, more attention has been paid to the harmful environmental impacts during exploitation. It is a critical issue for the management of shale gas wastewater (SGW), especially the organic compounds. This review focuses on analytical methods and corresponding treatment technologies targeting organic matters in SGW. Firstly, detailed information about specific shale-derived organics and related organic compounds in SGW were overviewed. Secondly, the state-of-the art analytical methods for detecting organics in SGW were summarized. The gas chromatography paired with mass spectrometry was the most commonly used technique. Thirdly, relevant treatment technologies for SGW organic matters were systematically explored. Forward osmosis and membrane distillation ranked the top two most frequently used treatment processes. Moreover, quantitative analyses on the removal of general and single organic compounds by treatment technologies were conducted. Finally, challenges for the analytical methods and treatment technologies of organic matters in SGW were addressed. The lack of effective trace organic detection techniques and high cost of treatment technologies are the urgent problems to be solved. Advances in the extraction, detection, identification and disposal of trace organic matters are critical to address the issues.
Collapse
Affiliation(s)
- Zhen Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| |
Collapse
|
5
|
Jia G, Tang X, Xu J. Synthesis of hydrochar supported zero-valent iron composites through hydrothermal carbonization of granatum and zero-valent iron: potential applications for Pb 2+ removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1873-1884. [PMID: 34695016 DOI: 10.2166/wst.2021.366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the present investigation, a one-step synthesis of hydrochar (HC) supported zero-valent iron (ZVI) was performed through hydrothermal carbonization (HTC) of granatum and ZVI. According to XRD, XPS, and FTIR data, ZVI was evenly distributed on the surface of the hydrochar. In addition, the external ZVI oxide layer and the functional groups present in the hydrochar remained on the surface of the HC/ZVI composites after HTC treatment. The surface area of the HC/ZVI composites was between 31.11 and 44.16 m2/g. These numbers were higher than those obtained for hydrochar (20.36 m2/g) and ZVI (12.14 m2/g) separately. The Pb2+ adsorption capacity of hydrochar and ZVI was 28.64 and 192.44 mg/g, respectively (25 °C, pH = 6.05, Pb2+ concentration of 200 mg/L with 0.05 g HC and 0.01 g ZVI). In addition, the adsorption capacity of the composites was between 49.63 and 88.09 mg/g. The data obtained for Pb2+ removal by the samples used in this experiments fitted well the pseudo-second-order kinetics and Langmuir isotherm models. Therefore, hydrochar may represent a promising supporting material for the synthesis of ZVI composites.
Collapse
Affiliation(s)
- Guangyin Jia
- College of City and Architecture Engineering, Zaozhuang University, Zaozhuang 277160, China E-mail:
| | - Xiangchao Tang
- The Beijing Prevention and Treatment Hospital of Occupational Disease for Chemical Industry, Beijing 100080, China
| | - Jie Xu
- College of City and Architecture Engineering, Zaozhuang University, Zaozhuang 277160, China E-mail:
| |
Collapse
|
6
|
Yang Y, Xu L, Shen H, Wang J. Construction of three-dimensional reduced graphene oxide wrapped nZVI doped with Al 2O 3 as the ternary Fenton-like catalyst: Optimization, characterization and catalytic mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146576. [PMID: 33765472 DOI: 10.1016/j.scitotenv.2021.146576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/14/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
The rational design and synthesis of novel nanocomposites as effective heterogeneous catalysts is meaningful for the advances in Fenton-like technology. Herein, multiple variants of three-dimensional reduced graphene oxide wrapped nZVI doped with Al2O3 (3D-RGO@nZVI/Al2O3) were prepared by three different self-assembly methods. The composites were characterized by field emission scanning electron microscopy, nitrogen adsorption/desorption isotherms, Raman spectrum analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. A series of experiments on chloramphenicol degradation at different pH values were employed to evaluate the catalytic properties of the prepared catalysts. With the systematical investigation of their morphologies, chemical components and catalytic performance, the optimal 3D-RGO@nZVI/Al2O3 catalyst was synthesized, which was favorable for inducing the Fenton-like reaction by activation of dissolved oxygen (DO) within a wide pH range. The anchored nZVI particles were the main active sites for catalytic oxidation, and doped Al3+ played a major role in buffering the pH of CAP solution. Electron spin resonance spectroscopy revealed the existence of the superoxide radicals (·O2-) and singlet oxygen (1O2), which provides a new insight into the reaction mechanism of reactive oxygen species in the Fenton-like system. This work is an essential effort to explore the promoting effect of synthesis methods on the catalytic behavior of catalysts, and to further study the Fenton-like reaction triggered by DO activation.
Collapse
Affiliation(s)
- Yujia Yang
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Lejin Xu
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Huiyi Shen
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET and Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
7
|
Tang F, Tian F, Zhang L, Yang X, Xin J, Zheng X. Remediation of trichloroethylene by microscale zero-valent iron aged under various groundwater conditions: Removal mechanism and physicochemical transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145757. [PMID: 33611180 DOI: 10.1016/j.scitotenv.2021.145757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/23/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Microscale zero-valent iron (mZVI) has been widely used for the in-situ groundwater remediation of various pollutants. However, the aging behavior of injected mZVI particles limits the widespread application in groundwater remediation projects. To assess the long-term reactivity of mZVI particles, the mechanism of trichloroethylene (TCE) degradation by various aged mZVI particles (A-mZVI) was determined by quantitatively evaluating the contributions of chemical reduction and adsorption. Further, this study investigated the physicochemical transformation of mZVI particles aged under various hydraulic conditions (static and dynamic), redox conditions (anoxic and aerobic) and aging durations (152 d and 455 d). The results show that the removal of TCE by different A-mZVI particles increased the sorption capacity in the initial period (0-6 h). However, in the long term, a significant inhibition of TCE removal was observed because of the decreased TCE reduction capacity caused by the hindrance of electron transfer, which was generated by corrosion precipitates. Furthermore, the characterization results demonstrated that despite the significant differences in the apparent morphology of the A-mZVI particles in various groundwater conditions, the final crystal corrosion products were mainly Fe3O4. Thus, the aging and inactivation of mZVI particles on TCE removal were promoted under the aerobic conditions. In addition, the structure of mZVI particles collapsed from the micro- to nanoscale under anaerobic dynamic over 455 d. No substantial impact on the final TCE removal was observed for the A-mZVI particles prepared under various hydraulic conditions and aging times. These findings provide insights regarding the impact mechanisms of corrosion precipitates on the removal of target contaminant and provide implications for long-term mZVI application under various target aquifer conditions.
Collapse
Affiliation(s)
- Fenglin Tang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China; Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fangming Tian
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Lin Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Jia Xin
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Xilai Zheng
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
8
|
Esposito MC, Corsi I, Russo GL, Punta C, Tosti E, Gallo A. The Era of Nanomaterials: A Safe Solution or a Risk for Marine Environmental Pollution? Biomolecules 2021; 11:441. [PMID: 33809769 PMCID: PMC8002239 DOI: 10.3390/biom11030441] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, the application of engineered nanomaterials (ENMs) in environmental remediation gained increasing attention. Due to their large surface area and high reactivity, ENMs offer the potential for the efficient removal of pollutants from environmental matrices with better performances compared to conventional techniques. However, their fate and safety upon environmental application, which can be associated with their release into the environment, are largely unknown. It is essential to develop systems that can predict ENM interactions with biological systems, their overall environmental and human health impact. Until now, Life-Cycle Assessment (LCA) tools have been employed to investigate ENMs potential environmental impact, from raw material production, design and to their final disposal. However, LCA studies focused on the environmental impact of the production phase lacking information on their environmental impact deriving from in situ employment. A recently developed eco-design framework aimed to fill this knowledge gap by using ecotoxicological tools that allow the assessment of potential hazards posed by ENMs to natural ecosystems and wildlife. In the present review, we illustrate the development of the eco-design framework and review the application of ecotoxicology as a valuable strategy to develop ecosafe ENMs for environmental remediation. Furthermore, we critically describe the currently available ENMs for marine environment remediation and discuss their pros and cons in safe environmental applications together with the need to balance benefits and risks promoting an environmentally safe nanoremediation (ecosafe) for the future.
Collapse
Affiliation(s)
- Maria Consiglia Esposito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy;
| | - Gian Luigi Russo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano and INSTM Local Unit, Via Mancinelli 7, 20131 Milano, Italy;
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| | - Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| |
Collapse
|
9
|
Li D, Zhong Y, Wang H, Huang W, Peng P. Remarkable promotion in particle dispersion and electron transfer capacity of sulfidated nano zerovalent iron by coating alginate polymer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143481. [PMID: 33221003 DOI: 10.1016/j.scitotenv.2020.143481] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/03/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
Alginate has been widely employed to increase the performance of nanoscale zerovalent iron (nZVI)-based materials for site remediation. Yet, the effects of alginate on reactivity of sulfidated nZVI (an efficient reductant material) towards contaminants have been understood poorly. In this study, we have developed a one-step synthesis of alginate-coated sulfidated nZVI (S-nZVI@alginate) under air atmosphere and evaluated the reactivity of S-nZVI@alginate towards tetrabromobisphenol A (TBBPA) debromination. Surface analysis shows that S-nZVI has been successfully coated by alginate through the interaction of OH and COO- groups of alginate with Fe species. The coating of alginate increases particle stability and dispersion under various conditions and facilitates FeS precipitation on the particle surface. Reactivity experiments show that the coating of alginate significantly enhances TBBPA debromination by S-nZVI. The optimized alginate to Fe weight ratio of S-nZVI@alginate is 0.06, with ~3-fold greater TBBPA debromination rate than S-nZVI. S-nZVI@alginate can completely debrominate TBBPA into bisphenol A via a four-sequential step debromination pathway while S-nZVI not. Its superior reactivity may be attributed to that the formation of alginate-Fe complex can lower the redox potential of Fe species to accelerate electron transfer on the particle surface. The TBBPA debromination rate by S-nZVI@alginate is initially enhanced followed by a decrease with an increase in TBBPA concentration, while it can increase 3.3-, 8.9- and 5.6-fold by increasing S-nZVI@alginate dosage, decreasing pH and adding co-contaminant Cd2+, respectively. S-nZVI@alginate has greater performance in aging and reusability tests than S-nZVI, and achieves rapid TBBPA removal from wastewater, which may be due to the role of alginate on inhibiting surface oxidation of Fe and S species. Taken together, these results suggest that S-nZVI@alginate provides better reactivity, longevity and reusability than S-nZVI, having the great potential for application into site remediation.
Collapse
Affiliation(s)
- Dan Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Zhong
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China.
| | - Heli Wang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China
| |
Collapse
|
10
|
Yang C, Ge C, Li X, Li L, Wang B, Lin A, Yang W. Does soluble starch improve the removal of Cr(VI) by nZVI loaded on biochar? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111552. [PMID: 33396093 DOI: 10.1016/j.ecoenv.2020.111552] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
A novel material that nano zero valent iron (nZVI) loaded on biochar with stable starch stabilization (nZVI/SS/BC) was synthesized and used for the removal of hexavalent chromium [Cr(VI)] in simulated wastewater. It was indicated that as the pyrolysis temperature of rice straw increased, the removal rate of Cr(VI) by nZVI/SS/BC first increased and then decreased. nZVI/SS/BC made from biochar pyrolyzed at 600 °C (nZVI/SS/BC600) had the highest removal efficiency and was suitable for a wide pH range (pH 2.1-10.0). The results showed that 99.67% of Cr(VI) was removed by nZVI/SS/BC600, an increase of 45.93% compared to the control group, which did not add soluble starch during synthesis. The pseudo-second-order model and the Langmuir model were more in line with reaction. The maximum adsorption capacity for Cr(VI) by nZVI/SS/BC600 was 122.86 mg·g-1. The properties of the material were analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) mapping, Brunauer-Emmett-Teller (BET), Fourier-transform infrared (FTIR), and X-ray diffraction (XRD). The results showed that the nZVI particles were uniformly supported on the biochar, and the BET surface areas of nZVI/SS/BC was 40.4837 m2·g-1, an increase of 8.79 times compared with the control group. Mechanism studies showed that soluble starch reduced the formation of metal oxides, thereby improving the reducibility of the material, and co-precipitates were formed during the reaction. All results indicated that nZVI/SS/BC was a potential repair material that can effectively overcome the limitations of nZVI and achieve efficient and rapid repair of Cr(VI).
Collapse
Affiliation(s)
- Chun Yang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chazhong Ge
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Xiaoliang Li
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Lu Li
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Bin Wang
- Qinhuangdao Bohai Biological Research Institute of Beijing University of Chemical Technology, Qinhuangdao, Hebei 066000, China
| | - Aijun Lin
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Qinhuangdao Bohai Biological Research Institute of Beijing University of Chemical Technology, Qinhuangdao, Hebei 066000, China.
| | - Wenjie Yang
- Chinese Academy for Environmental Planning, Beijing 100012, China; College of Renewable Energy, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
11
|
Sharif HMA, Mahmood A, Djellabi R, Cheng HY, Dong H, Ajibade FO, Ali I, Yang B, Wang AJ. Utilization of electrochemical treatment and surface reconstruction to achieve long lasting catalyst for NO x removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123440. [PMID: 33113717 DOI: 10.1016/j.jhazmat.2020.123440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/23/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
The development of catalysts has seen tremendous growth recently but most strategies only report utilization of catalysts for a few initial cycles without taking into account the influence of oxygen poisoning. Here, the magnetic Fe3O4@EDTA-Fe (MEFe, having a core Fe3O4 particle with EDTA-Fe coating) was investigated as a model catalyst for long-term recycling for the removal of nitrogen oxide (NOx) from NO/O2 mixture, followed by N2O recovery. The concentration of oxygen in the flue gas was found to have a strong impact on NOx absorption and catalytic response. To circumvent the oxygen poisoning, the MEFe was subjected to electrochemical treatment in the presence of neutral red (N.R.) and NO removal efficiency was ∼95 % noted. Furthermore, the surface of the catalyst degraded significantly (p < 0.05) after 6-7 repetitive cycling due to surface catalytic reactions, surface poisoning, oxidation of metallic species as well as residual stresses. The MEFe surface was reconstructed after 7 cycles using EDTA solution and Fe source to achieve similar surface coating as the fresh MEFe catalyst. The reconstructed MEFe exhibited similar NOx absorption capability as the fresh MEFe and the reconstruction loop was repeated several times to achieve long term cycling, which make the catalyst cost-effective. Hence, it is proposed that a successful regeneration process can be employed for promising, sustainable and long-lasting catalytic treatment of air pollutants.
Collapse
Affiliation(s)
- Hafiz Muhammad Adeel Sharif
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, PR China
| | - Asif Mahmood
- School of Chemical and Biomolecular Engineering, The University of Sydney, Australia
| | - Ridha Djellabi
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, PR China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Hao-Yi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| | - Heng Dong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fidelis Odedishemi Ajibade
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Imran Ali
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, PR China
| | - Bo Yang
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, PR China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| |
Collapse
|
12
|
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review. Carbohydr Polym 2021; 251:116986. [PMID: 33142558 PMCID: PMC8648070 DOI: 10.1016/j.carbpol.2020.116986] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Natural biopolymers, polymeric organic molecules produced by living organisms and/or renewable resources, are considered greener, sustainable, and eco-friendly materials. Natural polysaccharides comprising cellulose, chitin/chitosan, starch, gum, alginate, and pectin are sustainable materials owing to their outstanding structural features, abundant availability, and nontoxicity, ease of modification, biocompatibility, and promissing potentials. Plentiful polysaccharides have been utilized for making assorted (nano)catalysts in recent years; fabrication of polysaccharides-supported metal/metal oxide (nano)materials is one of the effective strategies in nanotechnology. Water is one of the world's foremost environmental stress concerns. Nanomaterial-adorned polysaccharides-based entities have functioned as novel and more efficient (nano)catalysts or sorbents in eliminating an array of aqueous pollutants and contaminants, including ionic metals and organic/inorganic pollutants from wastewater. This review encompasses recent advancements, trends and challenges for natural biopolymers assembled from renewable resources for exploitation in the production of starch, cellulose, pectin, gum, alginate, chitin and chitosan-derived (nano)materials.
Collapse
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA; Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
13
|
Zhao S, Li S, Zhao Z, Su Y, Long Y, Zheng Z, Cui D, Liu Y, Wang C, Zhang X, Zhang Z. Microwave-assisted hydrothermal assembly of 2D copper-porphyrin metal-organic frameworks for the removal of dyes and antibiotics from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39186-39197. [PMID: 32638310 DOI: 10.1007/s11356-020-09865-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Adsorption and photocatalysis are promising strategies to remove pollutants of dyes and antibiotics from wastewater. In this study, we demonstrate a rapid microwave-assisted hydrothermal route for the assembly of 2D copper-porphyrin Metal-Organic Frameworks (Cu-TCPP MOFs) within 1 h. The resulting 2D Cu-TCPP nanosheets with excellent crystallinity and a large surface area (342.72 m2/g) exhibited outstanding adsorption performance for typical dyes with adsorption capacities of about 185 mg/g for rhodamine B, 625 mg/g for methylene blue, and 290 mg/g for Congo red, respectively, as well as for representative antibiotics with adsorption capacities of about 130 mg/g for oxytocin, 150 mg/g for tetracycline, and 50 mg/g for norfloxacin, respectively. Meanwhile, the as-prepared 2D Cu-TCPP showed good photocatalytic degradation activity of pollutants after adsorption under irradiation by visible light, reaching removal efficiencies of 81.2 and 86.3% toward rhodamine B and norfloxacin, respectively. These results demonstrate the promising potential of 2D Cu-TCPP for use in the removal of contaminants from wastewater.
Collapse
Affiliation(s)
- Shiyin Zhao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shun Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China.
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
- Foshan (Southern China) Institute for New Materials, Foshan, 528200, Guangdong, China.
| | - Zhicheng Zhao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China
| | - Yiping Su
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China
| | - Yangke Long
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China
| | - Zuquan Zheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China
| | - Daling Cui
- Foshan (Southern China) Institute for New Materials, Foshan, 528200, Guangdong, China
| | - Yong Liu
- Foshan (Southern China) Institute for New Materials, Foshan, 528200, Guangdong, China
| | - Chunfei Wang
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xuanjun Zhang
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Zuotai Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
14
|
Qu P, Li Y, Huang H, Chen J, Yu Z, Huang J, Wang H, Gao B. Urea formaldehyde modified alginate beads with improved stability and enhanced removal of Pb 2+, Cd 2+, and Cu 2. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122664. [PMID: 32339875 DOI: 10.1016/j.jhazmat.2020.122664] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/23/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Urea formaldehyde (UF) was grafted onto the backbone of alginate to prepare microbeads as an adsorbent for the removal of heavy metal ions from aqueous solutions. The expensive alginate was crosslinked with cheaper UF at different ratios (1: 2.5∼1: 12.5) to produce sturdy alginate-UF beads at lower cost. Characterization results showed that UF modification enhanced the pore network and structural stability of the beads, which can be attributed to the reduced intermolecular forces and plentiful of nitrogen and oxygen donor atoms of the beads. The swelling of air-dried alginate-UF beads in different solutions was much lower than that of the unmodified alginate beads, confirming the improved stability. The replacement of alginate with UF at different ratios either did not affect or increased the adsorption of heavy metal ions (Pb2+, Cd2+, and Cu2+) on the beads. For example, the adsorption capacities of Pb2+, Cd2+, and Cu2+ on air-dried alginate-UF (1: 2.5) beads were 1.66, 0.61, and 0.80 mmol/g, which were 39.88%, 9.29%, and 9.52% higher than those of the corresponding unmodified alginate beads, respectively. The adsorption of heavy metals on the alginate-UF beads was mainly controlled by ion exchange, complexation, and electrostatic interaction mechanisms.
Collapse
Affiliation(s)
- Ping Qu
- Recycling Agriculture Research Center, Jiangsu Academy of Agricultural Sciences, Key laboratory of Crop and livestock Integrated Farming, Ministry of Agriculture, Nanjing, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu Province, 210014, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32606, USA; Soil and Water Science Department, Tropical Research and Education Center, University of Florida, Homestead, FL, 33031, USA
| | - Yuncong Li
- Soil and Water Science Department, Tropical Research and Education Center, University of Florida, Homestead, FL, 33031, USA
| | - Hongying Huang
- Recycling Agriculture Research Center, Jiangsu Academy of Agricultural Sciences, Key laboratory of Crop and livestock Integrated Farming, Ministry of Agriculture, Nanjing, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu Province, 210014, China
| | - Jianjun Chen
- Mid-Florida Research & Education Center, University of Florida, Apopka, FL, 32703, USA
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jun Huang
- Hualan Design & Consulting Group Co. Ltd., Nanning, 530011, China; College of Civil Engineering and Architecture Guangxi University, Nanning, 530004, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32606, USA.
| |
Collapse
|
15
|
Guo B, Kamura Y, Koilraj P, Sasaki K. Co-sorption of Sr 2+ and SeO 42- as the surrogate of radionuclide by alginate-encapsulated graphene oxide-layered double hydroxide beads. ENVIRONMENTAL RESEARCH 2020; 187:109712. [PMID: 32480026 DOI: 10.1016/j.envres.2020.109712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Graphene oxides (GO) and layered double hydroxides (LDHs) were applied to produce alginate beads for the remove of 90Sr2+ and 79SeO42-. The Freundlich isotherm indicated that the Sr2+ sorptions were based on the energetically heterogeneous multilayer surfaces. In contrast, the sorption behavior of SeO42- fitted to the Langmuir adsorption isotherm models, indicating that the removal of SeO42- was caused by the ion-exchange of LDHs. The synthesized LDH/GO alginates beads were also applied for setting up small-bore adsorption columns with loading synthetic SeO42- and Sr2+ contaminated wastewater. Based on the water chemistry, the adsorbed amount of Sr2+ significantly increased after using alginates beads, which was attributed to the functional groups of either GO or alginic acid. The incorporated SeO42- was highly depended on the contents of fabricated LDHs in alginate beads. Specifically, the adsorption capacity of Sr2+ (0.85-0.91 mmol/g) on GO slightly increased after alginates fabrication. Therefore, it was deduced that this layered material was partially exfoliated during the manufacture and thus increased the sorption sites. Applications of LDH/GO alginates beads in the removal of both Sr2+ and SeO42- in water and soil treatment have a significant impact on the environmental remediation.
Collapse
Affiliation(s)
- Binglin Guo
- Department of Earth Resource Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Yuta Kamura
- Department of Earth Resource Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Paulmanickam Koilraj
- Department of Earth Resource Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Keiko Sasaki
- Department of Earth Resource Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
16
|
Guo B, Li M, Li S. The comparative study of a homogeneous and a heterogeneous system with green synthesized iron nanoparticles for removal of Cr(VI). Sci Rep 2020; 10:7382. [PMID: 32355322 PMCID: PMC7193580 DOI: 10.1038/s41598-020-64476-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/16/2020] [Indexed: 11/18/2022] Open
Abstract
Green iron nanoparticles (G-nZVI) were synthesized in situ by adding grape-seed extracts and Fe2+ solution simultaneously. The performances for the removal of Cr(VI) were compared in a homogeneous system by original G-nZVI (in suspension) with in a heterogeneous system by treated G-nZVI. The characterization of TEM, SEM, XRD, FTIR and XPS show that G-nZVI is the formation of Fe°-iron oxide core-shell nanoparticles with organic matters in the extracts as capping/stabilizing agents. The same excellent performances on the removal of Cr(VI) were observed in the both systems and the adsorption capacity was from 78.3 to 166.7 mg (Cr)·g-1 (Fe) with the increase of initial Fe2+ concentrations. The pseudo second-order model described the adsorption process excellently and both pseudo first-order and pseudo second-order models fit the reduction process well. It illustrated that the reaction included prompt adsorption and simultaneous redox process. Moreover, the results of thermodynamics study (ΔG° < 0, ΔH° > 0, ΔS° > 0) revealed that the adsorption was a spontaneous and endothermic process. It is obvious that the systhesis of original G-nZVI in the homogeneous system is more simple, rapid, cost-effective and suitable for in situ uses. It holds a great potential for remediation of soil and water.
Collapse
Affiliation(s)
- Bo Guo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P.R. China.
| | - Meiling Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P.R. China
| | - Sai Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P.R. China
| |
Collapse
|
17
|
Liu B, Kim KH, Kumar V, Kim S. A review of functional sorbents for adsorptive removal of arsenic ions in aqueous systems. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121815. [PMID: 31831285 DOI: 10.1016/j.jhazmat.2019.121815] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
The presence of arsenic in the water system has been a universal problem over the past several decades. Inorganic arsenic ions mainly occur in two oxidation states, As(V) and As(III), in the natural environment. These two oxidation states of arsenic ions are ubiquitous in natural waters and pose significant health hazards to humans when present at or above the allowable limits. Therefore, treatment of arsenic ions has become more stringent based on various techniques (e.g., membrane filtration, adsorption, and ion exchange). This paper aims to review the current knowledge on various functional adsorbents through comparison of removal potential for As on the basis of key performance metrics, especially the partition coefficient (PC). As a whole, novel materials exhibited far better removal performance for As(V) and As(III) than conventional materials. Of the materials reviewed, the advanced sorbent like ZrO(OH)2/CNTs showcased superior performances such as partition coefficient values of 584.6 (As(V) and 143.8 mol kg-1 M-1 (As(III) with excellent regenerability (>90 % of desorption efficiency after three sorption cycles). The results of this review are expected to help researchers to establish a powerful strategy for abatement of arsenic ions in wastewater.
Collapse
Affiliation(s)
- Botao Liu
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India.
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
18
|
Li Z, Sun Y, Yang Y, Han Y, Wang T, Chen J, Tsang DCW. Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: Mechanisms and pathway. ENVIRONMENTAL RESEARCH 2020; 183:109156. [PMID: 32000003 DOI: 10.1016/j.envres.2020.109156] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
The selective degradation of recalcitrant antibiotics into byproducts with low toxicity and high biodegradability has been increasingly popular using peroxymonosulfate (PMS) based advanced oxidation processes (AOPs). In this paper, two Fe-based heterogeneous catalysts, bentonite supported Fe-Ni composite (BNF) and biochar-supported Fe composite (Fe/C), were tailored and comprehensively characterized for distinctive physicochemical properties, crystalline structures, and interfacial behaviors. Two widely used antibiotics, sulfapyridine (SPY) and oxytetracycline (OTCs) at their common concentrations in pharmaceutical wastewaters (250 and 10 mg L-1) were tested for degradation in three PMS-based oxidation processes, i.e., PMS, PMS-BNF, and PMS-Fe/C, respectively. Results demonstrated that a large amount of PMS (10 and 1 mM) could effectively remove SPY (0.385 min-1, 100% removal) and OTC (2.737 min-1, 100% removal) via1O2 derived from PMS self-decomposition and non-radical pathway, respectively. Additional Fe-based catalysts (0.5 g L-1 Fe/C and BNF) significantly reduced the PMS consumption (1 and 0.25 mM) and accelerated the reaction rate (1.08 and 5.05 min-1) of SPY and OTC removal. Moreover, the supplementary catalysts shifted the degradation route. The biochar matrix in Fe/C composite contributed to predominant interaction with PMS forming 1O2, which preferably attacked SPY via hydroxylation. In contrast, the redox-active Fe-Ni pairs induced SO4- formation, which could selectively degrade OTC through decarboxylation. Thus, these results are conducive to tailoring advanced yet low-cost heterogeneous catalysts for eco-friendly treatment of antibiotics-rich industrial wastewaters.
Collapse
Affiliation(s)
- Zhe Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong, China
| | - Yang Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Yitong Han
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Tongshuai Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Jiawei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong, China.
| |
Collapse
|
19
|
Wang D, Sun Y, Tsang DCW, Khan E, Cho DW, Zhou Y, Qi F, Gong J, Wang L. Synergistic utilization of inherent halides and alcohols in hydraulic fracturing wastewater for radical-based treatment: A case study of di-(2-ethylhexyl) phthalate removal. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121321. [PMID: 31655386 DOI: 10.1016/j.jhazmat.2019.121321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/11/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The degradation of di-(2-ethylhexyl) phthalate (DEHP) was examined as an example to capitalize on the potential interactions of peroxydisulfate (PS) and ferrous iron (Fe2+) in the model Day-1/Day-90 and on-site hydraulic fracturing wastewater (FWW). The primary oxidative radicals in the Fe2+/PS system (i.e., SO4- and OH) were less effective for the degradation of DEHP (6.45%) in ultrapure water. Both chloride (Cl-) and bromide (Br-) at equivalent molar ratio with PS enhanced DEHP degradation (15.6% and 45.5%, respectively) via the generation of Cl and Br radicals, whereas the degradation rate was inhibited by the excessive amount of Cl- or Br- in the Day-1/Day-90 FWW. However, the co-presence of ethylene glycol (C2H4(OH)2, 0.043% v/v in the FWW) and halide ions (Cl- or Br-, 0.05 mM) resulted in the highest removal efficiency of 82.6 - 88.5% within 10 min by Fe2+/PS. Further investigation revealed that the formation of reductive alcohol radicals (C2H3(OH)2) slowed down or replenished the Fe2+ exhaustion. This study demonstrated that the Fe2+/PS-based advanced oxidation may show a synergistic interplay with Cl-/Br- and C2H4(OH)2 in the FWW, which depends on their relative concentrations. Thus, the inherent constituents in the fracturing wastewater can be utilized for the catalytic degradation of co-existing organic contaminants.
Collapse
Affiliation(s)
- Di Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, USA
| | - Dong-Wang Cho
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Geological Environment Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon, 34132, Republic of Korea
| | - Yaoyu Zhou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Fei Qi
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jianyu Gong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Linling Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
20
|
Teng Z, Shao W, Zhang K, Yu F, Huo Y, Li M. Enhanced passivation of lead with immobilized phosphate solubilizing bacteria beads loaded with biochar/ nanoscale zero valent iron composite. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121505. [PMID: 31776085 DOI: 10.1016/j.jhazmat.2019.121505] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/03/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Phosphate solubilizing bacteria (PSBs) can effectively enhance the stability of lead via the formation of insoluble Pb-phosphate compounds. This research presents a bio-beads, which was implemented with the help of a self-designed porous spheres carrier, by immobilized PSBs strains Leclercia adecarboxylata (hereafter referred as L1-5). In addition, the passivation efficiency of lead via bio-beads under different conditions and its mechanism were also investigated in this study. The results indicated that phosphate solubilized by bio-beads could reach 30 mg/L in Ca3(PO4)2 medium containing 1 mM Pb2+, and the highest removal rate of Pb2+ in beef peptone liquid medium could reach 93%, which is better than that of free bacteria. Furthermore, it was also concluded that the lead could be transformed into stable crystal texture, such as Pb5(PO4)3Cl and Pb5(PO4)3OH. Both hydrophobic and hydrophilic groups in the bio-beads could capture Pb2+, which indicated that electrostatic attraction and ion-exchange were also the mechanism of Pb2+ adsorption. All the experimental findings demonstrated that this bio-bead could be consider as an efficient way for the lead immobilization in contaminated soil in the future.
Collapse
Affiliation(s)
- Zedong Teng
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Lab for Source Control Technology of Water Pollution. Beijing Forestry University, Beijing 100083, China
| | - Wen Shao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Department of Geoscience, Eberhard Karls Universität Tübingen, Tübingen 72074, Germany
| | - Keyao Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Lab for Source Control Technology of Water Pollution. Beijing Forestry University, Beijing 100083, China
| | - Fulu Yu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; School of Chemical Science and Engineering, Tongji University, Shanghai 200940, China
| | - Yaoqiang Huo
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Min Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Lab for Source Control Technology of Water Pollution. Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
21
|
Sun Y, Chen SS, Lau AYT, Tsang DCW, Mohanty SK, Bhatnagar A, Rinklebe J, Lin KYA, Ok YS. Waste-derived compost and biochar amendments for stormwater treatment in bioretention column: Co-transport of metals and colloids. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121243. [PMID: 31563764 DOI: 10.1016/j.jhazmat.2019.121243] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/29/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Bioretention systems, as one of the most practical management operations for low impact development of water recovery, utilize different soil amendments to remove contaminants from stormwater. For the sake of urban sustainability, the utilization of amendments derived from waste materials has a potential to reduce waste disposal at landfill while improving the quality of stormwater discharge. This study investigated the efficiency of food waste compost and wood waste biochar for metal removal from synthetic stormwater runoff under intermittent flow and co-presence of colloids. Throughout intermittent infiltration of 84 pore volumes of stormwater, columns amended with compost and biochar removed more than 50-70% of influent metals, whereas iron-oxide coated sand was much less effective. Only a small portion of metals adsorbed on the compost (< 0.74%) was reactivated during the drainage of urban pipelines that do not flow frequently, owing to abundant oxygen-containing functional groups in compost. In comparison, co-existing kaolinite enhanced metal removal by biochar owing to the abundance of active sites, whereas co-existing humic acid facilitated mobilization via metal-humate complexation. The results suggest that both waste-derived compost and biochar show promising potential for stormwater harvesting, while biochar is expected to be more recalcitrant and desirable in field-scale bioretention systems.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Season S Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Abbe Y T Lau
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Sanjay K Mohanty
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095-1593, USA
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
22
|
Li Z, Sun Y, Yang Y, Han Y, Wang T, Chen J, Tsang DCW. Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121240. [PMID: 31563767 DOI: 10.1016/j.jhazmat.2019.121240] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 05/15/2023]
Abstract
High-efficiency and cost-effective catalysts are critical to completely mineralization of organic contaminants for in-situ groundwater remediation via advanced oxidation processes (AOPs). The engineered biochar is a promising method for waste biomass utilization and sustainable remediation. This study engineers maize stalk (S)- and maize cob (C)-derived biochars (i.e., SB300, SB600, CB300, and CB600, respectively) with oxygen-containing functional groups as a carbon-based support for nanoscale zero-valent iron (nZVI). Morphological and physiochemical characterization showed that nZVI could be impregnated within the framework of the synthesized Fe-CB600 composite, which exhibited the largest surface area, pore volume, iron loading capacity, and Fe0 proportion. Superior degradation efficiency (100% removal in 20 min) of trichloroethylene (TCE, 0.1 mM) and fast pseudo-first-order kinetics (kobs =22.0 h-1) were achieved via peroxymonosulfate (PMS, 5 mM) activation by the Fe-CB600 (1 g L-1) under groundwater condition (bicarbonate buffer solution at pH = 8.2). Superoxide radical and singlet oxygen mediated by Fe0 and oxygen-containing group (i.e., CO) were demonstrated as the major reactive oxygen species (ROSs) responsible for TCE dechlorination. The effectiveness and mechanism of the Fe/C composites for rectifying organic-contaminated groundwater were depicted in this study.
Collapse
Affiliation(s)
- Zhe Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong, China
| | - Yang Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Yitong Han
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Tongshuai Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Jiawei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong, China.
| |
Collapse
|
23
|
Wang X, Xu J, Liu J, Liu J, Xia F, Wang C, Dahlgren RA, Liu W. Mechanism of Cr(VI) removal by magnetic greigite/biochar composites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134414. [PMID: 31698277 DOI: 10.1016/j.scitotenv.2019.134414] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
This study synthesized magnetic greigite/biochar composites (MGBs) by a solvothermal method and tested their ability to remove Cr(VI) from heavy metal-polluted wastewater. X-ray diffraction (XRD), Fourier transformed infrared spectrometry (FT-IR) and scanning electron microscopy (SEM) revealed that magnetic greigite (Fe3S4) flakes were aggregated and anchored to the biochar surface, resulting in more active sites than pristine biochar. Maximum Cr removal efficiency and capacity of MGB-30 (greigite/biochar = 30%) at an initial Cr(VI) concentration of 20 mg/L were 93% and 23.25 mg/g, respectively. A pseudo-first-order kinetic model was determined for the Cr(VI) removal process and the Cr(VI) removal rate constants were highly dependent on the mass ratios of Fe3S4 loaded on biochar, initial MGB and Cr(VI) concentrations and solution pH. X-ray photoelectron spectroscopy (XPS) and flame atomic absorption spectrometric (FAAS) analysis demonstrated that Cr(VI) was preferentially adsorbed on MGBs and subsequently reduced to Cr(III) by MGBs. Electron paramagnetic resonance (EPR) spectroscopy and iron redox transformations revealed that the Cr(VI) removal enhancement was attributed to efficient surface Fe(III)/Fe(II) cycling via electron transfer with the persistent free radicals (PFRs) of biochar. These novel findings provide new insights into the Fe(III)/Fe(II) cycle induced by biochar and the prospects of using magnetic greigite/biochar composites for remediation of Cr(VI)-rich wastewaters.
Collapse
Affiliation(s)
- Xuedong Wang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Jin Xu
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Jia Liu
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Jun Liu
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Fang Xia
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Cuicui Wang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Randy A Dahlgren
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, United States
| | - Wei Liu
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
24
|
Nie H, Nie M, Diwu Z, Wang L, Yan H, Lin Y, Zhang B, Wang Y. Biological treatment of high salinity and low pH produced water in oilfield with immobilized cells of P. aeruginosa NY3 in a pilot-scale. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:121232. [PMID: 31563036 DOI: 10.1016/j.jhazmat.2019.121232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Produced water (PW) in oilfield, as the largest waste streams in the oil and gas production, has posed a huge threat to the ecosystem. In this work, an environmentally friendly and recyclable biofilms have been developed for treating PW. We discovered that the cells of P. aeruginosa NY3 could be easily immobilized on the surface of polyurethane foam (PUF). Removal efficiency of oil and suspended solids (SS) by immobilized P. aeruginosa NY3 was keeping above 80% and 76% both in a laboratory scale and a pilot scale under suitable pH. Low pH and high value of SS had negative effect on the degradation of oil and SS by P. aeruginosa NY3. Recovery test showed that, the activity of biofilms P. aeruginosa NY3 after running in a pilot scale could be recovered in 5 days. Removal ability of oil in the real PW by the recovered biofilms of P. aeruginosa NY3 was even higher than that of the freshly prepared biofilms. These results indicated that, with a simple pH adjustment, immobilized P. aeruginosa NY3 could be recycled for removing oil and SS in the raw PW resulted from oil production.
Collapse
Affiliation(s)
- Hongyun Nie
- School of Environmental and Munichazipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, People's Republic of China; Key Laboratory of Membrane Separation of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, People's Republic of China
| | - Maiqian Nie
- School of Environmental and Munichazipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, People's Republic of China; Key Laboratory of Membrane Separation of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, People's Republic of China.
| | - Zhenjun Diwu
- School of Environmental and Munichazipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, People's Republic of China; Key Laboratory of Membrane Separation of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, People's Republic of China.
| | - Lei Wang
- School of Environmental and Munichazipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, People's Republic of China; Key Laboratory of Membrane Separation of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, People's Republic of China
| | - Han Yan
- School of Environmental and Munichazipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, People's Republic of China
| | - Yingying Lin
- School of Environmental and Munichazipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, People's Republic of China
| | - Bo Zhang
- School of Environmental and Munichazipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, People's Republic of China
| | - Yan Wang
- School of Environmental and Munichazipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, People's Republic of China
| |
Collapse
|
25
|
Liu YL, Li YT, Huang JF, Zhang YL, Ruan ZH, Hu T, Wang JJ, Li WY, Hu HJ, Jiang GB. An advanced sol-gel strategy for enhancing interfacial reactivity of iron oxide nanoparticles on rosin biochar substrate to remove Cr(VI). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:438-446. [PMID: 31299576 DOI: 10.1016/j.scitotenv.2019.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
The application of iron oxide nanoparticles (IONs) is often limited by agglomeration and low loading. Here, we presented a facile phase change material (PCM) -based sol-gel strategy for the fabrication of α-Fe2O3 nanoparticles. Rosin was used as the PCM in the sol-gel process and the carbon-based substrate of α-Fe2O3 nanoparticles in the thermal process. The α-Fe2O3 nanoparticle embedded rosin-derived biochar(α-Fe2O3@HrBc)were highly dispersed. The dispersity of α-Fe2O3 nanoparticle could be regulated by the weight ratios of rosin to FeCl3·6H2O during the preparation, as evidenced by the scanning electron microscope (SEM) spectrum and the sorption capacity results. Among a series of α-Fe2O3@HrBc nanocomposites, the one with the weight ratios of 1/1.5 rosin/FeCl3·6H2O had the highest capacity for hexavalent chromium (Cr(VI)) sorption. This phenomenon can be ascribed to a remarkably enhanced interfacial reactivity due to an increase in the dispersity of α-Fe2O3 nanoparticle. In addition, SEM showed that the majority of α-Fe2O3 nanoparticles was dispersed on and inside the biochar substrate. Batch adsorption experiments revealed that the α-Fe2O3@HrBc adsorbed 90% Cr(VI) within one minute, and the maximum capacity was up to 166 mg·g-1 based on the Langmuir model. The FTIR and XPS spectra revealed that the adsorbed Cr(VI) species were partially reduced to less toxic Cr(III). Considering that α-Fe2O3 nanoparticles provided important sorption sites, the newly formed Cr(III) and the remaining Cr(VI) ions could be adsorbed on α-Fe2O3@HrBc via the formation of FeCr coprecipitation.
Collapse
Affiliation(s)
- Yong-Lin Liu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yong-Tao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Fei Huang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Long Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhong-Hang Ruan
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Tian Hu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jin-Jin Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Yan Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Han-Jian Hu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Gang-Biao Jiang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
26
|
Park MH, Lee J, Kim JY. Oxidation resistance of nanoscale zero-valent iron supported on exhausted coffee grounds. CHEMOSPHERE 2019; 234:179-186. [PMID: 31207423 DOI: 10.1016/j.chemosphere.2019.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
In this study, nanoscale zero-valent iron (NZVI) was supported by exhausted coffee grounds. Exhausted coffee grounds are a crucial waste generated in enormous amounts. Since supported nanoscale particles have a lower free energy than bare particles, oxidation resistance of supported NZVI on coffee grounds (NZVI-Coffee ground) is postulated. The main aim of this study was to ascertain the enhanced oxidation resistance of NZVI-Coffee ground. Synthesized materials were dried and stored in the air at temperatures of 4, 20, and 35 °C. Changes in the surface characteristics and cadmium removal efficiency of the supported NZVI were investigated. Fourier transformation infrared spectroscopy and X-ray photoelectron spectroscopy showed that supported NZVI underwent less oxidation compared to bare NZVI. Cadmium removal efficiencies of supported NZVI did not deteriorate with age, while those of bare NZVI decreased by 9.5 ± 0.1, 13.0 ± 0.1, and 18.3 ± 0.2% compared to their initial removal efficiencies when stored 8 weeks at 4, 20, and 35 °C, respectively. This is because the surface free energy of the NZVI decreased via strong interaction with the functional groups of the coffee grounds. According to the results, exhausted coffee grounds are an effective supporting material for NZVI to enhance its storage stability.
Collapse
Affiliation(s)
- Man Ho Park
- Department of Civil & Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanakgu, Seoul, 08826, Republic of Korea.
| | - Jongkeun Lee
- Department of Civil, Environmental and Plant Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| | - Jae Young Kim
- Department of Civil & Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanakgu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
27
|
Ahmad S, Zhu X, Luo J, Shen M, Zhou S, Zhang S. Conversion of phosphorus and nitrogen in lincomycin residue during microwave-assisted hydrothermal liquefaction and its application for Pb 2+ removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:1381-1388. [PMID: 31412471 DOI: 10.1016/j.scitotenv.2019.07.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Treatment of antibiotic fermentative residue (AFR) produced from pharmaceutical industries and their application in the environment has been gaining researchers' interest. In this study, lincomycin residue (LMR, the type of AFR) was treated with microwave-assisted hydrothermal liquefaction (MW-HTL) in a temperature range 120-210 °C, transforming effect of phosphorus (P) and nitrogen (N) functional groups in LMR samples was characterized with elemental analysis, XRD, XPS, FT-IR, and P-extraction, and utilized LMR samples for Pb2+ removal from aqueous solutions. The temperature had a significant impact on P and N functional groups conversion justified by characterization techniques and also responsible for Pb2+ adsorption. LMR hydrochar produced at 210 °C was accounted highest Pb2+ adsorption capacity (57.4 mg g-1), higher four folds than raw LMR (13.8 mg g-1). To understand the mechanism and rate defining phase of adsorption equilibrium isotherm and kinetic models were applied systematically. Adsorption results of LMR and its derived hydrochar samples found connectivity with Langmuir and pseudo-first-order isotherm models. Adsorption mainly occurred as ion-exchange dependent on the substitution of metal ions (Pb2+) to Ca2+ ions present in P-materials, and surface adsorption dependent on surface functional groups of LMR samples. Better operation feasibility of MW-HTL treated LMR, elaboration of P and N conversion behavior and high sorption of Pb2+ ions could make LMR a frontrunner for heavy metals immobilization.
Collapse
Affiliation(s)
- Shakeel Ahmad
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xiangdong Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiewen Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Minghao Shen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Shaojie Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
28
|
Yi Y, Wei Y, Tsang PE, Fang Z. Aging effects on the stabilisation and reactivity of iron-based nanoparticles green synthesised using aqueous extracts of Eichhornia crassipes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28361-28371. [PMID: 31372953 DOI: 10.1007/s11356-019-06006-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Aging effects play a crucial role in determining applications of green-synthesised iron-based nanoparticles in wastewater treatment from laboratory scale to practical applications. In this study, iron-based nanoparticles (Ec-Fe-NPs) were synthesised using the extract of Eichhornia crassipes and ferric chloride. Scanning electron microscopy (SEM) revealed that the fresh Ec-Fe-NPs were spherical and had a narrow particle size range (50 to 80 nm). X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) demonstrated that the Ec-Fe-NPs were mainly amorphous in nature and consisted of Fe0, FeO, Fe2O3 and Fe3O4. As they aged, the particle size of the liquid Ec-Fe-NPs gradually increased and then tended to stabilise. Ec-Fe-NPs that were aged for 28 days were only 19% less efficient than fresh material at removing Cr(VI). Extracts aged up to 28 days were also tested, and their antioxidant capacity was found to be 15.4% lower than that of the fresh extracts. Furthermore, the removal efficiency of Cr(VI) using iron-based nanoparticles synthesised with the aged extracts was 67.2%. Finally, the active components of the extracts, which were responsible for the reactivity and stability of the iron-based nanoparticles, were identified by liquid chromatography-mass spectrometry. Overall, green-synthesised iron-based nanoparticles show promise for Cr(VI) removal from wastewater in practical applications.
Collapse
Affiliation(s)
- Yunqiang Yi
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
| | - Yufen Wei
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
| | - Pokeung Eric Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, 00852, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China.
| |
Collapse
|
29
|
Cho DW, Yoon K, Ahn Y, Sun Y, Tsang DCW, Hou D, Ok YS, Song H. Fabrication and environmental applications of multifunctional mixed metal-biochar composites (MMBC) from red mud and lignin wastes. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:412-419. [PMID: 31029746 DOI: 10.1016/j.jhazmat.2019.04.071] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 05/04/2023]
Abstract
This study fabricated a new and multifunctional mixed metal-biochar composites (MMBC) using the mixture of two abundant industrial wastes, red mud (RM) and lignin, via pyrolysis under N2 atmosphere, and its ability to treat wastewater containing various contaminants was comprehensively evaluated. A porous structure (BET surface area = 100.8 m2 g-1) was created and metallic Fe was formed in the MMBC owing to reduction of Fe oxides present in RM by lignin decomposition products during pyrolysis at 700 °C, which was closely associated with the transformation of liquid to gaseous pyrogenic products. The potential application of the MMBC was investigated for the removal of heavy metals (Pb(II) and Ni(II)), oxyanions (As(V) and Cr(VI)), dye (methylene blue), and pharmaceutical/personal care products (para-nitrophenol and pCBA). The aluminosilicate mineral, metallic Fe, and porous carbon matrix derived from the incorporation of RM and lignin contributed to the multifunctionality (i.e., adsorption, chemical reduction, and catalytic reaction) of the MMBC. Thus, engineered biochar composites synthesized from selected industrial wastes can be a potential candidate for environmental applications.
Collapse
Affiliation(s)
- Dong-Wan Cho
- Geological Environment Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea
| | - Kwangsuk Yoon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Yongtae Ahn
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Sik Ok
- O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
30
|
Zhou H, Wu S, Zhou Y, Yang Y, Zhang J, Luo L, Duan X, Wang S, Wang L, Tsang DCW. Insights into the oxidation of organic contaminants by iron nanoparticles encapsulated within boron and nitrogen co-doped carbon nanoshell: Catalyzed Fenton-like reaction at natural pH. ENVIRONMENT INTERNATIONAL 2019; 128:77-88. [PMID: 31029982 DOI: 10.1016/j.envint.2019.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/17/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Iron nanoparticles encapsulated within boron and nitrogen co-doped carbon nanoshell (B/N-C@Fe) were synthesized through a novel and green pyrolysis process using melamine, boric acid, and ferric nitrate as the precursors. The surface morphology, structure, and composition of the B/N-C@Fe materials were thoroughly investigated. The materials were employed as novel catalysts for the activation of potassium monopersulfate triple salt (PMS) for the degradation of levofloxacin (LFX). Linear sweep voltammograms and quenching experiments were used to identify the mechanisms of PMS activation and LFX oxidation by B/N-C@Fe, where SO4- as well as HO were proved to be the main radicals for the reaction processes. This study also discussed how the fluvic acid and inorganic anions in the aqueous solutions affected the degradation of LFX and use this method to simulate the degradation in the real wastewater. The synthesized materials showed a high efficiency (85.5% of LFX was degraded), outstanding stability, and excellent reusability (77.7% of LFX was degraded in the 5th run) in the Fenton-like reaction of LFX. In view of these advantages, B/N-C@Fe have great potentials as novel strategic materials for environmental catalysis.
Collapse
Affiliation(s)
- Hao Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shikang Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Lei Wang
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin St, Sheffield S1 3JD, United Kingdom; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
31
|
Diao ZH, Qian W, Lei ZX, Kong LJ, Du JJ, Liu H, Yang JW, Pu SY. Insights on the nitrate reduction and norfloxacin oxidation over a novel nanoscale zero valent iron particle: Reactivity, products, and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:541-549. [PMID: 30641381 DOI: 10.1016/j.scitotenv.2019.01.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 01/05/2019] [Indexed: 05/26/2023]
Abstract
Herein, the application of a novel acid mine drainage-based nanoscale zero valent iron (AMD-based nZVI) for the remediation of nitrate and norfloxacin (NOR) was studied. Experimental results indicated that the catalytic reactivity of AMD-based nZVI toward nitrate reduction was superior to that of iron salt-based nanoscale zero valent iron (Iron salt-based nZVI). The presence of ultrasound irradiation could significantly enhance the reactivity toward both the nitrate reduction and NOR oxidation processes. The optimal efficiencies of nitrate and NOR by AMD-based nZVI/US process could be kept 96 and 94% within 120 min, respectively. Ammonia was identified as a major product in nitrate reduction process, while three oxidation products were observed in NOR degradation process. Both reduction reaction of nitrate from AMD-based nZVI and oxidation reaction of NOR from US-assisted Fenton system might be involved in AMD-based nZVI/US process. The AMD-based nZVI/US process showed a better performance on the removal of NOR compared with that of nitrate. The findings of the present work could be as a guide and show that AMD-based nZVI/US process is feasible for the remediation of both nitrate and NOR in real wastewater.
Collapse
Affiliation(s)
- Zeng-Hui Diao
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Department of Civil and Environment Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Wei Qian
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ze-Xiang Lei
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | | | - Jian-Jun Du
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hui Liu
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jie-Wen Yang
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Sheng Yan Pu
- Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
32
|
Sun Y, Wang D, Tsang DCW, Wang L, Ok YS, Feng Y. A critical review of risks, characteristics, and treatment strategies for potentially toxic elements in wastewater from shale gas extraction. ENVIRONMENT INTERNATIONAL 2019; 125:452-469. [PMID: 30763832 DOI: 10.1016/j.envint.2019.02.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Shale gas extraction via horizontal drilling and hydraulic fracturing (HF) has enhanced gas production worldwide, which has altered global energy markets and reduced the prices of natural gas and oil. Water management has become the most challenging issue of HF, as it demands vast amounts of freshwater and generates high volumes of complex liquid wastes contaminated by diverse potentially toxic elements at variable rates. This critical review focuses on characterizing HF wastewater and establishing strategies to mitigate environmental impacts. High prioritization was given to the constituents with mean concentrations over 10 times greater than the maximum contamination level (MCL) guidelines for drinking water. A number of potentially harmful organic compounds in HF wastewaters were identified via the risk quotient approach to predict the associated toxicity for freshwater organisms in recipient surface waters. Currently, two options for HF wastewater treatment are preferred, i.e., disposal by deep well injection or on-site re-use as a fracturing fluid. Supplementary treatment will be enforced by increasingly rigorous regulations. Partial treatment and reuse remain the preferred method for managing HF wastewater where feasible. Otherwise, advanced technologies such as membrane separation/distillation, forward osmosis, mechanical vapor compression, electrocoagulation, advanced oxidation, and adsorption-biological treatment will be required to satisfy the sustainable requirements for reuse or surface discharge.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Di Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Linling Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
33
|
Wan Z, Cho DW, Tsang DCW, Li M, Sun T, Verpoort F. Concurrent adsorption and micro-electrolysis of Cr(VI) by nanoscale zerovalent iron/biochar/Ca-alginate composite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:410-420. [PMID: 30690237 DOI: 10.1016/j.envpol.2019.01.047] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/22/2018] [Accepted: 01/11/2019] [Indexed: 05/20/2023]
Abstract
This study introduced a new approach for simultaneously enhancing Cr(VI) removal performance and mitigating release of dissolved Fe during nanoscale zero-valent iron (nZVI)-mediated reactions. After entrapping nZVI-impregnated biochar (BC) in the matrix of calcium-alginate (CA) bead, the physicochemical characterization of nZVI/BC/CA composites revealed that nZVI/BC particles were embedded inside CA having a spherical shape and several cracks on its outer layer. The multi-functionality of nZVI/BC/CA composites consisting of reductant (nZVI), porous adsorbent (BC), and external screening layer (CA) enhanced the removal of Cr(VI) with the maximum adsorption capacity of 86.4 mg/g (based on the Langmuir isotherm) and little release of dissolved Fe. With the XPS analysis and fitting results of kinetics (pseudo second order) and isotherms (Redlich-Peterson model), plausible removal mechanisms of Cr(VI) were simultaneous adsorption and micro-electrolysis reactions by nZVI/BC/CA composites. The practical applicability of nZVI/BC/CA composites was further demonstrated through the fixed-bed column experiments. These results provide new insights into the design of high-performance engineered biochar for wastewater treatment.
Collapse
Affiliation(s)
- Zhonghao Wan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dong-Wan Cho
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, China
| | - Tan Sun
- College of Environmental Science and Engineering, Tongji University, China
| | - Francis Verpoort
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, China; Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Ghent, Belgium
| |
Collapse
|
34
|
Sun Y, Yu IKM, Tsang DCW, Cao X, Lin D, Wang L, Graham NJD, Alessi DS, Komárek M, Ok YS, Feng Y, Li XD. Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater. ENVIRONMENT INTERNATIONAL 2019; 124:521-532. [PMID: 30685454 DOI: 10.1016/j.envint.2019.01.047] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 05/04/2023]
Abstract
This paper evaluates a novel sorbent for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater (FWW). A series of iron-biochar (Fe-BC) composites with different Fe/BC impregnation mass ratios (0.5:1, 1:1, and 2:1) were prepared by mixing forestry wood waste-derived BC powder with an aqueous FeCl3 solution and subsequently pyrolyzing them at 1000 °C in a N2-purged tubular furnace. The porosity, surface morphology, crystalline structure, and interfacial chemical behavior of the Fe-BC composites were characterized, revealing that Fe chelated with CO bonds as COFe moieties on the BC surface, which were subsequently reduced to a CC bond and nanoscale zerovalent Fe (nZVI) during pyrolysis. The performance of the Fe-BC composites was evaluated for simultaneous removal of potentially toxic elements (Cu(II), Cr(VI), Zn(II), and As(V)), inherent cations (K, Na, Ca, Mg, Ba, and Sr), hetero-chloride (1,1,2-trichlorethane (1,1,2-TCA)), and total organic carbon (TOC) from high-salinity (233 g L-1 total dissolved solids (TDS)) model FWW. By elucidating the removal mechanisms of different contaminants, we demonstrated that Fe-BC (1:1) had an optimal reducing/charge-transfer reactivity owing to the homogenous distribution of nZVI with the highest Fe0/Fe2+ ratio. A lower Fe content in Fe-BC (0.5:1) resulted in a rapid exhaustion of Fe0, while a higher Fe content in Fe-BC (2:1) caused severe aggregation and oxidization of Fe0, contributing to its complexation/(co-)precipitation with Fe2+/Fe3+. All of the synthesized Fe-BC composites exhibited a high removal capacity for inherent cations (3.2-7.2 g g-1) in FWW through bridging with the CO bonds and cation-π interactions. Overall, this study illustrated the potential efficacy and mechanistic roles of Fe-BC composites for (pre-)treatment of high-salinity and complex FWW.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Iris K M Yu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Linling Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Nigel J D Graham
- Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Michael Komárek
- Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague-Suchdol, Czech Republic
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiang-Dong Li
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
35
|
Yang F, Zhang S, Sun Y, Du Q, Song J, Tsang DCW. A novel electrochemical modification combined with one-step pyrolysis for preparation of sustainable thorn-like iron-based biochar composites. BIORESOURCE TECHNOLOGY 2019; 274:379-385. [PMID: 30544043 DOI: 10.1016/j.biortech.2018.10.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
A novel method incorporating electrochemical (EC) modification and one-step pyrolysis is developed to prepare sustainable Fe3O4-based magnetic adsorbent (EC-Fe3O4/BC) via pyrolysis of FeCl3-pretreated corn straw-derived biochar under an electric field generated by graphite electrode. Morphological characterization revealed a uniform dispersion of rod-like crystalline Fe3O4 nanoparticles in the inner and outer structure of biochar. The EC modification also introduced more oxygen-containing functional groups, which contributed to an outstanding Pb adsorption capacity (113 mg g-1) and fast kinetics (0.054 g mg-1 h-1). Therefore, the EC modification is a simple and time-saving method to effectively fabricate magnetic biochar adsorbent for high-performance wastewater treatment.
Collapse
Affiliation(s)
- Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Shuaishuai Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qing Du
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Jingpeng Song
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
36
|
The Impact of Selected Pretreatment Procedures on Iron Dissolution from Metallic Iron Specimens Used in Water Treatment. SUSTAINABILITY 2019. [DOI: 10.3390/su11030671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studies were undertaken to determine the reasons why published information regarding the efficiency of metallic iron (Fe0) for water treatment is conflicting and even confusing. The reactivity of eight Fe0 materials was characterized by Fe dissolution in a dilute solution of ethylenediaminetetraacetate (Na2–EDTA; 2 mM). Both batch (4 days) and column (100 days) experiments were used. A total of 30 different systems were characterized for the extent of Fe release in EDTA. The effects of Fe0 type (granular iron, iron nails and steel wool) and pretreatment procedure (socking in acetone, EDTA, H2O, HCl and NaCl for 17 h) were assessed. The results roughly show an increased iron dissolution with increasing reactive sites (decreasing particle size: wool > filings > nails), but there were large differences between materials from the same group. The main output of this work is that available results are hardly comparable as they were achieved under very different experimental conditions. A conceptual framework is presented for future research directed towards a more processed understanding.
Collapse
|
37
|
Yang F, Zhang S, Cho DW, Du Q, Song J, Tsang DCW. Porous biochar composite assembled with ternary needle-like iron-manganese-sulphur hybrids for high-efficiency lead removal. BIORESOURCE TECHNOLOGY 2019; 272:415-420. [PMID: 30388579 DOI: 10.1016/j.biortech.2018.10.068] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Hierarchical porous biochar derived from corn straw containing ternary needle-like iron-manganese-sulphur composites (Fe-Mn-S@HCS) are fabricated, and their physicochemical characteristics and performance for Pb removal were examined in detail. Introduction of Mn (transition metal) into Fe-biochar composites can effectively alter the chemical state of Fe; simultaneous doping with S can enhance cation exchange for Pb removal. High uptake of Pb by Fe-Mn-S@HCS in a short time period was observed with the adsorption capacity of 181.5 mg g-1 and the pseudo-second-order rate constant of 0.075 g mg-1 h-1. Complexation, reduction, and precipitation were found to be involved in the Pb removal by Fe-Mn-S@HCS based on the results of HRTEM, XPS, and XRD analyses. This study demonstrated the feasibility of Fe-Mn-S biochar composites for high-efficiency Pb removal from aqueous solution.
Collapse
Affiliation(s)
- Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Shuaishuai Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; College of Science, Northeast Agricultural University, Harbin 150030, China
| | - Dong-Wan Cho
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qing Du
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Jingpeng Song
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
38
|
Diao ZH, Du JJ, Jiang D, Kong LJ, Huo WY, Liu CM, Wu QH, Xu XR. Insights into the simultaneous removal of Cr 6+ and Pb 2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron: Coexistence effect and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:505-515. [PMID: 29908509 DOI: 10.1016/j.scitotenv.2018.06.093] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Cr6+ and Pb2+ are both highly toxic pollutants and commonly co-exist in some industrial effluents and contaminated waters. In this study, simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero-valent iron (SSB-nZVI) was systematically investigated. It was well demonstrated that a porous structure was successfully formed on the SSB-nZVI when the starch was used as an additive. A synergistic effect on the adsorption and reduction over the SSB-nZVI was achieved, resulting in nearly 90 and 82% of Cr6+ and Pb2+ removal within 30 min, respectively. Cr6+ was reduced prior to Pb2+. A low pH could accelerate the corrosion of nZVI as well as phosphate leaching. When Malachite green was added as a coexisting organic pollutant, its effective removal was found due to the formation of a Fenton-like system. The SSB-nZVI could be run consecutively three times with a relatively satisfactory performance. Most of Cr6+ was converted into Cr2O3 and Cr(OH)3 on the SSB-nZVI surface, whereas most of Pb2+ species existed as Pb(OH)2 (or PbO). A possible reaction mechanism on the SSB-nZVI involved the adsorption, reduction and precipitation of both Cr6+ and Pb2+ over the particles. Present study sheds light on the insight of the fate and transport of Cr6+ and Pb2+ in aquatic environment, as well provides helpful guide for the remediation of coexistence of pollutants in real applications.
Collapse
Affiliation(s)
- Zeng-Hui Diao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Jian-Jun Du
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dan Jiang
- Research Resources Center, South China Normal University, Guangzhou 510631, China
| | - Ling-Jun Kong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wen-Yi Huo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Cui-Mei Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qi-Hang Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Center for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Xiang-Rong Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
39
|
O'Connor D, Hou D, Ok YS, Song Y, Sarmah AK, Li X, Tack FM. Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review. J Control Release 2018; 283:200-213. [DOI: 10.1016/j.jconrel.2018.06.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 11/29/2022]
|
40
|
Yu C, Zhang D, Dong X, Lin Q. Pyrolytic behavior of a zero-valent iron biochar composite and its Cu(ii) removal mechanism. RSC Adv 2018; 8:34151-34160. [PMID: 35548805 PMCID: PMC9087118 DOI: 10.1039/c8ra05676e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/23/2018] [Indexed: 12/02/2022] Open
Abstract
The reduction behavior of Fe3+ during the preparation of a zero-valent iron cocoanut biochar (ZBC8-3) by the carbothermic reduction method was analyzed. Fe3+ was first converted into Fe3O4, which was subsequently decomposed into FeO, and finally reduced to Fe0. A minor amount of γ-Fe2O3 was produced in the process. The isothermal thermodynamic data for the removal of Cu(ii) over ZBC8-3 followed a Langmuir model. The Langmuir equation revealed a maximum removal capacity of 169.49 mg g−1 at pH = 5 for ZBC8-3. The removal of Cu(ii) over ZBC8-3 fitted well to a pseudo-first-order equation, which suggested that the rate limiting step of the process was diffusion. The Cu(ii) removal mechanism on ZBC8-3 involved the reduction of Cu(ii) by Fe0 to produce Cu0 and Cu2O, while C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C, C–O–, and –O–H formed a complex with Cu(ii). The Cu(ii) removal mechanism on ZBC8-3 involved the reduction of Cu(ii) by Fe0 to produce Cu0 and Cu2O, while CC, C–O–, –O–H formed a complex with Cu(ii).![]()
Collapse
Affiliation(s)
- Changjiang Yu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
| | - Dashuai Zhang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
| | - Xinyu Dong
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
| |
Collapse
|