1
|
Hurtado P, Espelta JM, Jaime L, Martínez‐Vilalta J, Kokolaki MS, Lindner M, Lloret F. Biodiversity and Management as Central Players in the Network of Relationships Underlying Forest Resilience. GLOBAL CHANGE BIOLOGY 2025; 31:e70196. [PMID: 40351244 PMCID: PMC12067180 DOI: 10.1111/gcb.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/06/2025] [Accepted: 03/22/2025] [Indexed: 05/14/2025]
Abstract
Global change is threatening the integrity of forest ecosystems worldwide, amplifying the need for resilience-based management to ensure their conservation and sustain the services they provide. Yet, current efforts are still limited by the lack of implementation of clear frameworks for operationalizing resilience in decision-making processes. To overcome this limitation, we aim to identify reliable and effective drivers of forest resilience, considering their synergies and trade-offs. From a comprehensive review of 342 scientific articles addressing resilience in forests globally, we identified factors shaping forest resilience. We recognized them into two categories that influence forest responses to disturbances: resilience predictors, which can be modified through management, and codrivers, which are measurable but largely unmanageable (e.g., climate). We then performed network analyses based on predictors and codrivers underlying forest resilience. In total, we recognized 5332 such relationships linking predictors or codrivers with forest attributes resilience. Our findings support the central role of biodiversity, with mixed, non-planted, or functionally diverse forests promoting resilience across all contexts and biomes. While management also enhanced resilience, the success of specific interventions was highly context-dependent, suggesting that its application requires a careful analysis of trade-offs. Specifically, practices like cutting and prescribed burning generally enhanced resilience in terms of tree growth, plant diversity, landscape vegetation cover, and stand structure. In contrast, pest and herbivore control reduced the resilience of plant taxonomic diversity while offering only minimal gains for other variables. Even long-term restoration projects showed clear trade-offs in the resilience of different forest attributes, highlighting the need for careful consideration of these effects in practical management decisions. Overall, we emphasize that a reduced number of predictors can be used to effectively promote forest resilience across most attributes. Particularly, enhancing biodiversity and implementing targeted management strategies when biodiversity is impoverished emerge as powerful tools to promote forest resilience.
Collapse
Affiliation(s)
- Pilar Hurtado
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
- DIFARUniversity of GenoaGenoaItaly
- Department of Biology and Geology, Physics and Inorganic ChemistryRey Juan Carlos UniversityMadridSpain
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
| | | | - Luciana Jaime
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
| | - Jordi Martínez‐Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| | - Manto Samou Kokolaki
- Department of Natural Resources Development and Agricultural EngineeringAgricultural University of AthensAthensGreece
| | | | - Francisco Lloret
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| |
Collapse
|
2
|
Xu Y, Li M, Jia Z, Gong Y, Li X, Fu YH. Incorporating Drought Thresholds Improves Model Predictions of Autumn Phenology in Tropical and Subtropical Forests. GLOBAL CHANGE BIOLOGY 2025; 31:e70177. [PMID: 40237248 DOI: 10.1111/gcb.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/10/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025]
Abstract
Drought dramatically influences vegetation phenology, thereby impacting terrestrial carbon and water cycles. However, the mechanisms by which drought drives changes in autumn phenology remain unclear, hindering the accurate simulation of these processes in phenology models. In this study, we employed ridge regression analysis to quantify the dynamic effects of intensifying drought on the end-of-photosynthetic-growing-season (EOPS) and identified the drought threshold at which the vegetation's response to drought shifts. We demonstrate that the response of EOPS in tropical and subtropical forests reverses from a delay to an advancement as drought intensity surpasses specific thresholds, with the average drought threshold across the study area corresponding to a standardized precipitation evapotranspiration index (SPEI) value of -0.9. Drought thresholds, however, vary geographically, increasing along the precipitation gradient, potentially due to variations in drought stress-related gene expression and tolerance strategies across different humidity environments. Therefore, we developed a new autumn phenology model (DMPD) by incorporating a drought threshold parameter that distinguishes contrasting drought effects and predicts future EOPS under two scenarios (SSP245 and SSP585). The DMPD model substantially enhanced the representation of EOPS, as evidenced by a lower root mean square error (RMSE), higher correlation, and a greater proportion of significant correlations with EOPS derived from GOSIF. By the end of the century, EOPS is projected to be consistently delayed under both moderate (SSP245) and high (SSP585) warming scenarios, with the rate of delay decelerating under SSP245 after 2066. Our study confirms that increasing drought intensity leads to contrasting shifts in the autumnal photosynthetic phenology of tropical and subtropical forests and highlights the potential of integrating these contrasting drought effects into phenology models to improve the accuracy of vegetation phenology predictions under future climate change scenarios.
Collapse
Affiliation(s)
- Yue Xu
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Mingwei Li
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Zitong Jia
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Yufeng Gong
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Xiran Li
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Yongshuo H Fu
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
- College of Water Sciences, Beijing Normal University, Beijing, China
- Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
3
|
Chen L, Brun P, Buri P, Fatichi S, Gessler A, McCarthy MJ, Pellicciotti F, Stocker B, Karger DN. Global increase in the occurrence and impact of multiyear droughts. Science 2025; 387:278-284. [PMID: 39818908 DOI: 10.1126/science.ado4245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/07/2024] [Indexed: 01/19/2025]
Abstract
Persistent multiyear drought (MYD) events pose a growing threat to nature and humans in a changing climate. We identified and inventoried global MYDs by detecting spatiotemporally contiguous climatic anomalies, showing that MYDs have become drier, hotter, and led to increasingly diminished vegetation greenness. The global terrestrial land affected by MYDs has increased at a rate of 49,279 ± 14,771 square kilometers per year from 1980 to 2018. Temperate grasslands have exhibited the greatest declines in vegetation greenness during MYDs, whereas boreal and tropical forests have had comparably minor responses. With MYDs becoming more common, this global quantitative inventory of the occurrence, severity, trend, and impact of MYDs provides an important benchmark for facilitating more effective and collaborative preparedness toward mitigation of and adaptation to such extreme events.
Collapse
Affiliation(s)
- Liangzhi Chen
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Philipp Brun
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pascal Buri
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Simone Fatichi
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Michael James McCarthy
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Francesca Pellicciotti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Benjamin Stocker
- Institute of Geography, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Dirk Nikolaus Karger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
4
|
Wang G, Hu N, Hautier Y, Middleton B, Wang M, Zhao M, Meng J, Ma Z, Liu B, Liu Y, Jiang M. Biotic and Abiotic Drivers of Ecosystem Temporal Stability in Herbaceous Wetlands in China. GLOBAL CHANGE BIOLOGY 2025; 31:e70056. [PMID: 39853886 DOI: 10.1111/gcb.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Maintaining the stability of ecosystems is critical for supporting essential ecosystem services over time. However, our understanding of the contribution of the diverse biotic and abiotic factors to this stability in wetlands remains limited. Here, we combined data from a field vegetation survey of 725 herbaceous wetland sites in China with remote sensing information from the Enhanced Vegetation Index (EVI) from 2010 to 2020 to explore the contribution of biotic and abiotic factors to the temporal stability of primary productivity. We found that plant species richness directly contributed to stability on a national scale, but that this contribution differed among climate zones, hydrological regimes, and vegetation types. In addition, many abiotic factors, including soil properties, geographical location, and climate also contributed to stability. Piecewise structural equation modeling identified that soil properties, including soil pH, total nitrogen, and soil organic carbon, emerged as primary factors modulating ecosystem stability, both directly and indirectly by affecting species richness and vegetation type. Higher species richness and soil organic carbon were related to higher ecosystem stability in peatlands but less so in coastal and inland marshes. These findings enhance our ability to forecast how wetland ecosystems may respond to future environmental changes and biodiversity loss and can inform policy decisions related to ecosystem stability.
Collapse
Affiliation(s)
- Guodong Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Nanlin Hu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yann Hautier
- Department of Biology, Ecology and Biodiversity Group, Utrecht University, Utrecht, the Netherlands
| | - Beth Middleton
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, USA
| | - Ming Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
| | - Meiling Zhao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingci Meng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zijun Ma
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yanjie Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Ming Jiang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
5
|
Huang Y, Lei H, Duan L. Resistance of grassland productivity to drought and heatwave over a temperate semi-arid climate zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175495. [PMID: 39155014 DOI: 10.1016/j.scitotenv.2024.175495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Drought and heatwave are the primary climate extremes for vegetation productivity loss in the global temperate semi-arid grassland, challenging the ecosystem productivity stability in these areas. Previous studies have indicated a significant decline in the resistance of global grassland productivity to drought, but we still lack a systematic understanding of the mechanisms determining the spatiotemporal variations in grassland resistance to drought and heatwave. In this study, we focused on temperate semi-arid grasslands of China (TSGC) to assess the spatiotemporal variations of grassland productivity resistance to different climate extremes: compound dry-hot events, individual drought events, and individual heatwave events that occurred during 2000-2019. Based on the explainable machine learning model, we explored the resistance to the interaction of drought and heatwave and identify the dominant factors determining the spatiotemporal variations in resistance. The results revealed that grassland resistance to climate extremes had decreased in Xilingol Grassland and Mu Us Sandy Land, and had a not significant increase in Otindag Desert during 2000-2019. Human activities and the increase in CO2 concentration causes a decline in resistance in Mu Us Sandy Land, and the increase of VPD and shift of vegetation loss event timing caused a decline in resistance in Xilingol Grassland, while the weakening of climate extremes, especially the shortening of drought duration, increase the resistance in Otindag Desert. Mean annual temperature dominates the spatial differences in resistance among different grasslands. When drought and heatwave occur simultaneously, there is an additive effect on resistance and causes lower resistance to compound dry-hot events compared to individual drought and heatwave events. Our analysis provides crucial insights into understanding the impact of climate extremes on the temperate semi-arid grasslands of China.
Collapse
Affiliation(s)
- Yangbin Huang
- Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Huimin Lei
- Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China.
| | - Limin Duan
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
6
|
Li Q, Gao X, Li J, Yan A, Chang S, Song X, Lo K. Nonlinear time effects of vegetation response to climate change: Evidence from Qilian Mountain National Park in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173149. [PMID: 38740200 DOI: 10.1016/j.scitotenv.2024.173149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/24/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Vegetation responses to climate change are typically nonlinear with varied time effects, yet current research lacks comprehensiveness and precise definitions, hindering a deeper understanding of the underlying mechanisms. This study focuses on the mountain-type Qilian Mountain National Park (QMNP), investigating the characteristics and patterns of these nonlinear time effects using a generalized additive model (GAM) based on MODIS-NDVI, growing season temperature, and precipitation data. The results show that 1) The time effects of climate change on vegetation exhibit significant spatial variations, differing across vegetation types and topographic conditions. Accounting for optimal time effects can increase the explanatory power of climate on vegetation change by 6.8 %. Precipitation responses are mainly characterized by time-lag and time-accumulation effects, notably in meadows and steppes, while temperature responses are largely cumulative, especially in steppes. The altitude and slope significantly influence the pattern of vegetation response to climate, particularly in areas with high altitudes and steep slopes. 2) There is a significant nonlinear relationship between vegetation growth and both precipitation and temperature, with the nonlinear relationship between precipitation and vegetation being stronger than that with temperature, particularly in the western and central regions of the park. Different vegetation types exhibit significant variations in their response to climate change, with deserts and steppes being more sensitive to precipitation. 3) Precipitation is the primary driver of vegetation change in the QMNP, particularly for high-elevation vegetation and herbaceous vegetation. The complex temporal patterns of vegetation response to climate change in the QMNP not only deepen the understanding of the intricate relationship between regional vegetation and climate variability but also provide a methodological reference for global studies on vegetation responses to climate change.
Collapse
Affiliation(s)
- Qiuran Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Xiang Gao
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China.
| | - Jie Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - An Yan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Shuhang Chang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Xiaojiao Song
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Kevin Lo
- Department of Geography, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
7
|
Li B, Wang R, Chen JM. Responses of phenology to preseason drought and soil temperature for different land cover types on the Mongolian Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171895. [PMID: 38531448 DOI: 10.1016/j.scitotenv.2024.171895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Drought and heat caused major disturbance in nature by interfering with plant phenology, and can also alter the vulnerability and resilience of terrestrial ecosystems. Existing research on the Mongolian Plateau has primarily focused on studying the response of the start (SOS) and end (EOS) of the growing season to drought and heat variations. However, there is still a lack of comprehensive understanding regarding the coupled effects of drought and heat on phenology across different land cover types. In this study, we retrieved SOS and EOS based on 34-year (1982-2015) normalized difference vegetation index (NDVI) dataset from Global Inventory Modeling and Mapping Studies (GIMMS). Results showed that grasslands and the Gobi-Desert show rapid advancement in SOS, and forests presented the slowest advancement in SOS, but SOS in croplands were delayed. EOS across four land cover types advanced, with the Gobi-Desert showed the highest rate of advancement and forests the lowest. Using the Palmer Drought Severity Index (PDSI) and soil temperature as the indicators of drought and thermal conditions, the responses of SOS and EOS to these two climate variables were evaluated. The advanced SOS driven by lower drought severity was detected in forests, grasslands, croplands and the Gobi-Desert. The dominant response of EOS to drought severity was positive in croplands, grasslands and forests, except for the Gobi-Desert, where drought severity had negative effects on EOS. Compared with the daily average soil temperature (STmean), the daily maximum soil temperature (STmax, daytime), and the daily minimum soil temperature (STmin, nighttime), the daily diurnal soil temperature range (DSTR, where DSTR = STmax - STmin) between night and day were the most suitable indicators for assessing the response of SOS and EOS to soil temperature. Strong negative correlation between SOS and the preseason DSTR was pronounced in all land cover types on the Mongolian Plateau. However, EOS was negatively correlated with the preseason DSTR only in the Gobi-Desert. Last but not least, normalized sensitivity assessments reveal that the negative impacts of DSTR on SOS and EOS were the main controlling factors on the Mongolian Plateau phenology, followed by the couple negative effects of drought severity and DSTR.
Collapse
Affiliation(s)
- Bing Li
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, Fujian Province, China
| | - Rong Wang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, Fujian Province, China.
| | - Jing M Chen
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, Fujian Province, China.
| |
Collapse
|
8
|
Zhang Y, Feng X, Zhou C, Zhao R, Leng X, Wang Y, Sun C. The feedback of greening on local hydrothermal conditions in Northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170006. [PMID: 38220007 DOI: 10.1016/j.scitotenv.2024.170006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Northern China has experienced a significant increase in vegetation cover over the past few decades. It lacks a comprehensive understanding of how greening impacts local hydrothermal conditions. To address this issue, in our study, the RegCM-CLM45 model was used to conduct a thorough assessment of the impacts of greening on temperature, vapor pressure deficit (VPD), precipitation, and soil moisture. The findings revealed that the local climatic effects of greening varied across different drought gradients based on the aridity index (AI). In drier regions with AI<0.3, the increased energy induced by greening tended to dissipate as sensible heat, exacerbating both warming and drought conditions. Conversely, in wetter regions with AI>0.3, a greater proportion of energy was lost through evapotranspiration, attenuating warming. Additionally, greening enhanced precipitation and soil moisture in drier regions and moderated their decline in wetter regions. Significantly, our research emphasized the effectiveness of grassland expansion and conservation as prime strategies for ecological restoration, particularly in drylands, where they could effectively alleviate soil drought. Given the diverse responses of different land cover transformations to local hydrothermal conditions in drylands, there is an urgent need to address potential adverse effects arising from inappropriate ecological restoration strategies and to develop an optimal restoration framework for the future.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chaowei Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruibo Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejing Leng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqiang Wang
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Chuanlian Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Wu C, Zhong L, Yeh PJF, Gong Z, Lv W, Chen B, Zhou J, Li J, Wang S. An evaluation framework for quantifying vegetation loss and recovery in response to meteorological drought based on SPEI and NDVI. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167632. [PMID: 37806579 DOI: 10.1016/j.scitotenv.2023.167632] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Drought affects vegetation growth to a large extent. Understanding the dynamic changes of vegetation during drought is of great significance for agricultural and ecological management and climate change adaptation. The relations between vegetation and drought have been widely investigated, but how vegetation loss and restoration in response to drought remains unclear. Using the standardized precipitation evapotranspiration index (SPEI) and the normalized difference vegetation index (NDVI) data, this study developed an evaluation framework for exploring the responses of vegetation loss and recovery to meteorological drought, and applied it to the humid subtropical Pearl River basin (PRB) in southern China for estimating the loss and recovery of three vegetation types (forest, grassland, cropland) during drought using the observed NDVI changes. Results indicate that vegetation is more sensitive to drought in high-elevation areas (lag time < 3 months) than that in low-elevation areas (lag time > 8 months). Vegetation loss (especially in cropland) is found to be more sensitive to drought duration than drought severity and peak. No obvious linear relationship between drought intensity and the extent of vegetation loss is found. Regardless of the intensity, drought can cause the largest probability of mild loss of vegetation, followed by moderate loss, and the least probability of severe loss. Large spatial variability in the probability of vegetation loss and recovery time is found over the study domain, with a higher probability (up to 50 %) of drought-induced vegetation loss and a longer recovery time (>7 months) mostly in the high-elevation areas. Further analysis suggests that forest shows higher but cropland shows lower drought resistance than other vegetation types, and grassland requires a shorter recovery time (4.2-month) after loss than forest (5.1-month) and cropland (4.8-month).
Collapse
Affiliation(s)
- Chuanhao Wu
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China.
| | - Lulu Zhong
- School of Environment, Jinan University, Guangzhou 511436, China.
| | - Pat J-F Yeh
- Department of Civil Engineering, School of Engineering, Monash University, Malaysia Campus, Malaysia
| | - Zhengjie Gong
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wenhan Lv
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Bei Chen
- Guangdong South China Hydropower High tech Development Co., Ltd, Guangzhou 510610, China
| | - Jun Zhou
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiayun Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Saisai Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Schärer ML, Lüscher A, Kahmen A. Post-drought compensatory growth in perennial grasslands is determined by legacy effects of the soil and not by plants. THE NEW PHYTOLOGIST 2023; 240:2265-2275. [PMID: 37789694 DOI: 10.1111/nph.19291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Grasslands recovering from drought have repeatedly been shown to outperform non-drought-stressed grasslands in biomass production. The mechanisms that lead to the unexpectedly high biomass production in grasslands recovering from drought are, however, not understood. To disentangle plant-intrinsic and plant-extrinsic (soil) drought legacy effects on grassland recovery from drought, we designed a factorial field experiment where Lolium perenne plants that were exposed to either a 2-month drought or to well-watered control conditions were transplanted into control and drought-stressed soil and rewetted thereafter. Drought and rewetting (DRW) resulted in negative drought legacy effects of formerly drought-stressed plants (DRWp ) compared with control plants (Ctrp ) when decoupled from soil-mediated DRW effects, with DRWp showing less aboveground productivity (-13%), restricted N nutrition, and higher δ13 C compared with Ctrp . However, plants grown on formerly drought-stressed soil (DRWs ) showed enhanced aboveground productivity (+82%), improved N nutrition, and higher δ13 C values relative to plants grown on control soil (Ctrs ), irrespective of the plants' pretreatment. Our study shows that the higher post-drought productivity of perennial grasslands recovering from drought relative to non-drought-stressed controls is induced by soil-mediated DRW legacy effects which improve plant N nutrition and photosynthetic capacity and that these effects countervail negative plant-intrinsic drought legacy effects.
Collapse
Affiliation(s)
- Marie-Louise Schärer
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4057, Basel, Switzerland
- Forage Production and Grassland Systems, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Andreas Lüscher
- Forage Production and Grassland Systems, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4057, Basel, Switzerland
| |
Collapse
|
11
|
Wilcox KR, Chen A, Avolio ML, Butler EE, Collins S, Fisher R, Keenan T, Kiang NY, Knapp AK, Koerner SE, Kueppers L, Liang G, Lieungh E, Loik M, Luo Y, Poulter B, Reich P, Renwick K, Smith MD, Walker A, Weng E, Komatsu KJ. Accounting for herbaceous communities in process-based models will advance our understanding of "grassy" ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:6453-6477. [PMID: 37814910 DOI: 10.1111/gcb.16950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/01/2023] [Indexed: 10/11/2023]
Abstract
Grassland and other herbaceous communities cover significant portions of Earth's terrestrial surface and provide many critical services, such as carbon sequestration, wildlife habitat, and food production. Forecasts of global change impacts on these services will require predictive tools, such as process-based dynamic vegetation models. Yet, model representation of herbaceous communities and ecosystems lags substantially behind that of tree communities and forests. The limited representation of herbaceous communities within models arises from two important knowledge gaps: first, our empirical understanding of the principles governing herbaceous vegetation dynamics is either incomplete or does not provide mechanistic information necessary to drive herbaceous community processes with models; second, current model structure and parameterization of grass and other herbaceous plant functional types limits the ability of models to predict outcomes of competition and growth for herbaceous vegetation. In this review, we provide direction for addressing these gaps by: (1) presenting a brief history of how vegetation dynamics have been developed and incorporated into earth system models, (2) reporting on a model simulation activity to evaluate current model capability to represent herbaceous vegetation dynamics and ecosystem function, and (3) detailing several ecological properties and phenomena that should be a focus for both empiricists and modelers to improve representation of herbaceous vegetation in models. Together, empiricists and modelers can improve representation of herbaceous ecosystem processes within models. In so doing, we will greatly enhance our ability to forecast future states of the earth system, which is of high importance given the rapid rate of environmental change on our planet.
Collapse
Affiliation(s)
- Kevin R Wilcox
- University of North Carolina Greensboro, Greensboro, North Carolina, USA
- University of Wyoming, Laramie, Wyoming, USA
| | - Anping Chen
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Meghan L Avolio
- Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ethan E Butler
- Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, USA
| | - Scott Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Rosie Fisher
- CICERO Centre for International Cimate Research, Forskningsparken, Oslo, Norway
| | - Trevor Keenan
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nancy Y Kiang
- NASA Goddard Institute for Space Studies, New York, New York, USA
| | - Alan K Knapp
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Sally E Koerner
- University of North Carolina Greensboro, Greensboro, North Carolina, USA
| | - Lara Kueppers
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Guopeng Liang
- Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, USA
| | - Eva Lieungh
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Michael Loik
- Department of Environmental Studies, University of California, Santa Cruz, California, USA
| | - Yiqi Luo
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Ben Poulter
- Biospheric Sciences Lab, NASA GSFC, Greenbelt, Maryland, USA
| | - Peter Reich
- Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | | | - Melinda D Smith
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Anthony Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Ensheng Weng
- NASA Goddard Institute for Space Studies, New York, New York, USA
- Center for Climate Systems Research, Columbia University, New York, New York, USA
| | - Kimberly J Komatsu
- University of North Carolina Greensboro, Greensboro, North Carolina, USA
| |
Collapse
|
12
|
Correa-Díaz A, Villanueva-Díaz J, Gómez-Guerrero A, Martínez-Bautista H, Castruita-Esparza LU, Horwath WR, Silva LCR. A comprehensive resilience assessment of Mexican tree species and their relationship with drought events over the last century. GLOBAL CHANGE BIOLOGY 2023; 29:3652-3666. [PMID: 37026182 DOI: 10.1111/gcb.16705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/01/2023] [Accepted: 03/24/2023] [Indexed: 06/06/2023]
Abstract
The resilience of forests to drought events has become a major natural resource sustainability concern, especially in response to climate change. Yet, little is known about the legacy effects of repeated droughts, and tree species ability to respond across environmental gradients. In this study, we used a tree-ring database (121 sites) to evaluate the overall resilience of tree species to drought events in the last century. We investigated how climate and geography affected the response at the species level. We evaluated temporal trends of resilience using a predictive mixed linear modeling approach. We found that pointer years (e.g., tree growth reduction) occurred during 11.3% of the 20th century, with an average decrease in tree growth of 66% compared to the previous period. The occurrence of pointer years was associated with negative values of the Standardized Precipitation Index (SPI, 81.6%) and Palmer Drought Severity Index (PDSI, 77.3%). Tree species differed in their resilience capacity, however, species inhabiting xeric conditions were less resistant but with higher recovery rates (e.g., Abies concolor, Pinus lambertiana, and Pinus jeffreyi). On average, tree species needed 2.7 years to recover from drought events, with extreme cases requiring more than a decade to reach pre-drought tree growth rates. The main abiotic factor related to resilience was precipitation, confirming that some tree species are better adapted to resist the effects of droughts. We found a temporal variation for all tree resilience indices (scaled to 100), with a decreasing resistance (-0.56 by decade) and resilience (-0.22 by decade), but with a higher recovery (+1.72 by decade) and relative resilience rate (+0.33 by decade). Our results emphasize the importance of time series of forest resilience, particularly by distinguishing the species-level response in the context of legacy of droughts, which are likely to become more frequent and intense under a changing climate.
Collapse
Affiliation(s)
- A Correa-Díaz
- Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales CENID-COMEF, INIFAP, Ciudad de México, Mexico
| | - J Villanueva-Díaz
- Centro Nacional de Investigación Disciplinaria en Relación Agua, Suelo, Planta, Atmósfera CENID-RASPA, INIFAP, Durango, Mexico
| | - A Gómez-Guerrero
- Posgrado en Ciencias Forestales, Colegio de Postgraduados, Estado de México, Mexico
| | - H Martínez-Bautista
- Centro de Investigación en Matemáticas, A.C. (CIMAT), Unidad Aguascalientes, Aguascalientes, Mexico
| | | | - W R Horwath
- Department of Land Air and Water Resources, University of California, Davis, California, USA
| | - L C R Silva
- Environmental Studies Program, Department of Geography, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
13
|
Felton AJ, Goldsmith GR. Timing and magnitude of drought impacts on carbon uptake across a grassland biome. GLOBAL CHANGE BIOLOGY 2023; 29:2790-2803. [PMID: 36792968 DOI: 10.1111/gcb.16637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 05/31/2023]
Abstract
Although drought is known to negatively impact grassland functioning, the timing and magnitude of these impacts within a growing season remain unresolved. Previous small-scale assessments indicate grasslands may only respond to drought during narrow periods within a year; however, large-scale assessments are now needed to uncover the general patterns and determinants of this timing. We combined remote sensing datasets of gross primary productivity and weather to assess the timing and magnitude of grassland responses to drought at 5 km2 temporal resolution across two expansive ecoregions of the western US Great Plains biome: the C4 -dominated shortgrass steppe and the C3 -dominated northern mixed prairies. Across over 700,000 pixel-year combinations covering more than 600,000 km2 , we studied how the driest years between 2003-2020 altered the daily and bi-weekly dynamics of grassland carbon (C) uptake. Reductions to C uptake intensified into the early summer during drought and peaked in mid- and late June in both ecoregions. Stimulation of spring C uptake during drought was small and insufficient to compensate for losses during summer. Thus, total grassland C uptake was consistently reduced by drought across both ecoregions; however, reductions were twice as large across the more southern and warmer shortgrass steppe. Across the biome, increased summer vapor pressure deficit (VPD) was strongly linked to peak reductions in vegetation greenness during drought. Rising VPD will likely exacerbate reductions in C uptake during drought across the western US Great Plains, with these reductions greatest during the warmest months and in the warmest locations. High spatiotemporal resolution analyses of grassland response to drought over large areas provide both generalizable insights and new opportunities for basic and applied ecosystem science in these water-limited ecoregions amid climate change.
Collapse
Affiliation(s)
- Andrew J Felton
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Gregory R Goldsmith
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| |
Collapse
|
14
|
Ingrisch J, Umlauf N, Bahn M. Functional thresholds alter the relationship of plant resistance and recovery to drought. Ecology 2023; 104:e3907. [PMID: 36314950 PMCID: PMC10078541 DOI: 10.1002/ecy.3907] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 02/03/2023]
Abstract
The ecological consequences of future droughts are difficult to predict due to a limited understanding of the nonlinear responses of plants to increasing drought intensity, which can change abruptly when critical thresholds of drought intensity are crossed. Drought responses are composed of resistance and postdrought recovery. Although it is well established that higher drought intensity increases the impact and, thus, reduces plant resistance, less is known about how drought intensity affects recovery and how resistance and recovery are related. In this study, we tested the hypothesis that resistance, recovery, and their relationship change abruptly upon crossing critical thresholds of drought intensity. We exposed mesocosms of two monospecific stands of the common grassland species Dactylis glomerata and Plantago lanceolata to a large gradient of drought intensity and quantified the resistance and recovery of multiple measures of plant productivity, including gross-primary productivity, vegetative height, Normalized Difference Vegetation Index, and aboveground biomass production. Drought intensity had nonlinear and contrasting effects on plant productivity during drought and recovery, which differed between the two species. Increasing drought intensity decreased the resistance of plant productivity and caused rapid compensatory growth during postdrought recovery, the degree of which was highly dependent on drought intensity. Across multiple response parameters two thresholds of drought intensity emerged, upon which we observed abrupt changes in plant resistance and recovery, as well as their relationship. We conclude that across gradients of drought intensity resistance and recovery are tightly coupled and that both the magnitude and the direction of drought effects on resistance and recovery can change abruptly upon specific thresholds of stress intensity. These findings highlight the urgent need to account for nonlinear responses of resistance and recovery to drought intensity as critical drivers of productivity in a changing climate.
Collapse
Affiliation(s)
| | - Nikolaus Umlauf
- Department of StatisticsUniversity of InnsbruckInnsbruckAustria
| | - Michael Bahn
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
15
|
Irob K, Blaum N, Weiss‐Aparicio A, Hauptfleisch M, Hering R, Uiseb K, Tietjen B. Savanna resilience to droughts increases with the proportion of browsing wild herbivores and plant functional diversity. J Appl Ecol 2023. [DOI: 10.1111/1365-2664.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Katja Irob
- Freie Universität Berlin, Theoretical Ecology Institute of Biology Berlin Germany
| | - Niels Blaum
- Plant Ecology and Nature Conservation University of Potsdam Potsdam Germany
| | - Alex Weiss‐Aparicio
- Freie Universität Berlin, Theoretical Ecology Institute of Biology Berlin Germany
| | - Morgan Hauptfleisch
- Biodiversity Research Centre Namibia University of Science and Technology Windhoek Namibia
| | - Robert Hering
- Plant Ecology and Nature Conservation University of Potsdam Potsdam Germany
| | - Kenneth Uiseb
- Ministry of Environment, Forestry and Tourism Windhoek Namibia
| | - Britta Tietjen
- Freie Universität Berlin, Theoretical Ecology Institute of Biology Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| |
Collapse
|
16
|
Zhou H, Hou L, Lv X, Yang G, Wang Y, Wang X. Compensatory growth as a response to post-drought in grassland. FRONTIERS IN PLANT SCIENCE 2022; 13:1004553. [PMID: 36531403 PMCID: PMC9752846 DOI: 10.3389/fpls.2022.1004553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Grasslands are structurally and functionally controlled by water availability. Ongoing global change is threatening the sustainability of grassland ecosystems through chronic alterations in climate patterns and resource availability, as well as by the increasing frequency and intensity of anthropogenic perturbations. Compared with many studies on how grassland ecosystems respond during drought, there are far fewer studies focused on grassland dynamics after drought. Compensatory growth, as the ability of plants to offset the adverse effects of environmental or anthropogenic perturbations, is a common phenomenon in grassland. However, compensatory growth induced by drought and its underlying mechanism across grasslands remains not clear. In this review, we provide examples of analogous compensatory growth from different grassland types across drought characteristics (intensity, timing, and duration) and explain the effect of resource availability on compensatory growth and their underlying mechanisms. Based on our review of the literature, a hypothetic framework for integrating plant, root, and microbial responses is also proposed to increase our understanding of compensatory growth after drought. This research will advance our understanding of the mechanisms of grassland ecosystem functioning in response to climate change.
Collapse
Affiliation(s)
- Huailin Zhou
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
| | - Lulu Hou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaomin Lv
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
| | - Guang Yang
- College of Teacher Education, Capital Normal University, Beijing, China
| | - Yuhui Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xu Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Qiu J, Crow WT, Wang S, Dong J, Li Y, Garcia M, Shangguan W. Microwave-based soil moisture improves estimates of vegetation response to drought in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157535. [PMID: 35872188 DOI: 10.1016/j.scitotenv.2022.157535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The increased frequency and severity of drought has heightened concerns over the risk of hydraulic vegetative stress and the premature mortality of ecosystems globally. Unfortunately, most land surface models (LSMs) continue to underestimate ecosystem resilience to drought - which degrades the credibility of model-predicted ecohydrological responses to climate change. This study investigates the response of vegetation gross productivity to water-stress conditions using microwave-based vegetation optical depth (VOD) and soil moisture retrievals. Based on the estimated isohydric/anisohydric spectrum, we find that vegetation at isohydric state exhibits a larger decrease in gross primary productivity and higher water use efficiency than anisohydric vegetation due to their more rigorous stomatal control and higher tolerance of carbon starvation risk. In addition, the introduction of microwave soil moisture improves the accuracy of isohydricity/anisohydricity estimates compared to those obtained using microwave VOD alone (i.e., increases their Spearman rank correlation versus the benchmark of Global Biodiversity Information Facility dataset from 0.12 to 0.63). Results of this study provide clear justification for the use of microwave-based soil moisture retrievals to enhance stomatal conductance parameterization within LSMs.
Collapse
Affiliation(s)
- Jianxiu Qiu
- Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China.
| | - Wade T Crow
- USDA ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD 20705, USA
| | - Sheng Wang
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jianzhi Dong
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yan Li
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing 100875, China
| | - Monica Garcia
- Research Centre for the Management of Agricultural and Environmental Risks, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28015, Spain
| | - Wei Shangguan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
18
|
Gu X, Smaill SJ, Wang B, Liu Z, Xu X, Hao Y, Kardol P, Zhou X. Reducing plant-derived ethylene concentrations increases the resistance of temperate grassland to drought. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157408. [PMID: 35850345 DOI: 10.1016/j.scitotenv.2022.157408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Model predictions indicate that extreme drought events will occur more frequently by the end of this century, with major implications for terrestrial ecosystem functions such as plant productivity and soil respiration. Previous studies have shown that drought-induced ethylene produced by plants is a key factor affecting plant growth and development, but the impact of drought-induced ethylene on ecosystem functions in natural settings has not yet been tested. Here, we reduced the amount of plant-derived ethylene concentrations by adding the ethylene inhibitor aminoethoxyvinylglycine (AVG), and investigated in situ plant productivity, soil respiration and ethylene concentrations for two years in a semi-arid temperate grassland in Inner Mongolia, China. Drought significantly reduced plant productivity and soil respiration, but the application of AVG reduced ethylene concentrations and significantly increased aboveground plant productivity and soil respiration, effectively enhancing resistance to drought. The reason for this could be that AVG application increased the activity of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and abundance of the acdS gene (the key gene for ACC deaminase), facilitating reduced ACC concentrations in the plant tissue and reduced in planta ethylene synthesis. In addition, there was a significant correlation between soil ACC deaminase activity and plant productivity. Given the global distribution of arid and semi-arid areas, and the expected increases in the frequency and intensity of drought stress, this is a significant concern. These results provide novel evidence of the impact of drought-induced plant ethylene production on ecosystem functions in semi-arid temperate grassland ecosystems.
Collapse
Affiliation(s)
- Xinyun Gu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Simeon J Smaill
- Scion, PO Box 29237, Riccarton, Christchurch 8440, New Zealand
| | - Bo Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaoying Liu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xingliang Xu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanbin Hao
- School of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Paul Kardol
- Swedish University of Agricultural Science, Department of Forest Ecology & Management, Umea, Sweden
| | - Xiaoqi Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
19
|
Hu Y, Ding R, Kang S, Lana M. The trade-offs between resistance and resilience of forage stay robust with varied growth potentials under different soil water and salt stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157421. [PMID: 35850343 DOI: 10.1016/j.scitotenv.2022.157421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Water shortage and soil salinization are important factors restricting crop production worldwide. To conduct accurate yield prediction and reasonable crop layout, more attention should be paid to the performances of crop resistance and resilience under water and salt stress and their trade-off relationships. Here, we set different water (full irrigation, W0; moderate deficit irrigation, W1; and severe deficit irrigation, W2) and salt (S0, S1, S2, S3, S4, S5, and S6, representing 0 ‰, 1 ‰, 2 ‰, 3 ‰, 4 ‰, 5 ‰, and 6 ‰ salt in soil) treatments. Together with relevant studies, we analyzed the performances of forage resistance (Rt) and resilience (Rs) and their relationships under varied water and salt stress. The results indicated that logarithmic Rt (lg(Rt), the same as lg(Rs)) and the distribution of lg(Rs) were affected by water and salt stress, however, the relationships of lg(Rs)-lg(Rt) stayed stable with the constant slopes (k) and declined intercepts (m) as stress intensified. The physiological mechanisms and trade-offs for fixed species remained robust while the growth potentials varied under stress, which were closely related to stomatal regulations. Forage with larger |k| was suitable for fully irrigated regions to achieve higher yields, while regions with detrimental water and salt conditions should select cultivars with smaller |k| to ensure production. This study laid the groundwork for the estimation of the perennial forage adaptation and stability, and the method of long-term yield prediction and cultivar management under soil water and salt stress.
Collapse
Affiliation(s)
- Yanzhe Hu
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei 733009, China
| | - Risheng Ding
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei 733009, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei 733009, China.
| | - Marcos Lana
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| |
Collapse
|
20
|
Dong B, Yu Y, Pereira P. Non-growing season drought legacy effects on vegetation growth in southwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157334. [PMID: 35842151 DOI: 10.1016/j.scitotenv.2022.157334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Water availability influences terrestrial ecosystems' composition, structure, and function. Recently, climate change increased drought periods frequency and length in many parts of the world, including southwestern China, a biodiversity hotspot. Although the drought impacts on ecosystems are well known, studies are scarce in subtropical areas of China. This work studied the drought legacy effects on vegetation growth in southwestern China using Normalized Difference Vegetation Index (NDVI) and the Standardized Precipitation Evapotranspiration Index (SPEI), with a particular focus on non-growing season extreme drought events. Pervasive non-growing season drought legacy effects were found in the first growing season in most parts of southwestern China. The highest impacts were identified in forests, while the effects in grass were less severe. At the regional scale, horizontal and vertical spatial patterns of drought legacy effects were heterogeneous, and the highest impacts were found in warmer and wetter forests and alpine grasslands. Our study highlights that severe drought conditions may dramatically affect vegetation growth in southwestern China.
Collapse
Affiliation(s)
- Bogang Dong
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yang Yu
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, China.
| | - Paulo Pereira
- Environmental Management Center, Mykolas Romeris University, Ateities g. 20, LT-08303 Vilnius, Lithuania
| |
Collapse
|
21
|
Kramp RE, Liancourt P, Herberich MM, Saul L, Weides S, Tielbörger K, Májeková M. Functional traits and their plasticity shift from tolerant to avoidant under extreme drought. Ecology 2022; 103:e3826. [PMID: 35857330 DOI: 10.1002/ecy.3826] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022]
Abstract
Under climate change, extreme droughts will limit water availability for plants. However, the species-specific responses make it difficult to draw general conclusions. We hypothesized that changes in species' abundance in response to extreme drought can be best explained by a set of water economic traits under ambient conditions in combination with the ability to adjust these traits towards higher drought resistance. We conducted a four-year field experiment in temperate grasslands using rainout shelters with 30% and 50% rainfall reduction. We quantified the response as the change in species abundance between ambient conditions and the rainfall reduction. Abundance response to extreme drought was best explained by a combination of traits in ambient conditions and their functional adjustment, most likely reflecting plasticity. Smaller leaved species decreased less in abundance under drought. With increasing drought intensity, we observed a shift from drought tolerance, i.e. an increase in leaf dry matter content, to avoidance, i.e. a less negative turgor loss point (TLP) in ambient conditions and a constancy in TLP under drought. We stress the importance of using a multidimensional approach of variation in multiple traits and the importance of considering a range of drought intensities to improve predictions of species' response to climate change.
Collapse
Affiliation(s)
- Rosa E Kramp
- Plant Ecology Group, University of Tübingen, Germany
| | - Pierre Liancourt
- Plant Ecology Group, University of Tübingen, Germany.,Botany Department, State Museum of Natural History Stuttgart, Germany.,Institute of Botany, Czech Academy of Science, Czech Republic
| | | | - Lara Saul
- Plant Ecology Group, University of Tübingen, Germany
| | - Sophie Weides
- Department of Environmental Sciences, University of Basel, Switzerland
| | | | | |
Collapse
|
22
|
Quantifying Vegetation Stability under Drought in the Middle Reaches of Yellow River Basin, China. FORESTS 2022. [DOI: 10.3390/f13071138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Under the background of climate warming, the increase in the frequency and severity of drought leads to vegetation facing severe challenges. A comprehensive and systematic assessment of the stability of vegetation under drought stress in the middle reaches of Yellow River basin (MRYRB) will help to grasp the characteristics of vegetation response to drought. In this study, the normalized difference vegetation index (NDVI) was used to achieve quantitative and qualitative assessments of vegetation stability to drought, and the smoothed monthly standardized precipitation evapotranspiration index (SPEI) was used to describe the characteristics of drought events in 2005/2006 and identified vegetation stability parameters using a standardized anomaly of NDVI across space, which included the resistance duration, resilience duration, drought threshold, and lag time. Vegetation was dominated by less resistance and less resilience. The 2005/2006 drought event affected most of the study area, and vegetation growth was inhibited. The duration of vegetation resistance over 100 days accounted for 65.7%, and vegetation in 89.4% of the regions could return to normal within 100 days. The drought threshold of vegetation gradually decreased from northwest to southeast, and the lag time was mainly concentrated from 1 to 3 months. These findings contribute to a better understanding of the effects of drought on the environment, as well as scientific references for reducing ecological, economic, and social losses in future droughts, and promoting ecological environmental governance and high-quality development in the MRYRB.
Collapse
|
23
|
Vilonen L, Ross M, Smith MD. What happens after drought ends: synthesizing terms and definitions. THE NEW PHYTOLOGIST 2022; 235:420-431. [PMID: 35377474 PMCID: PMC9322664 DOI: 10.1111/nph.18137] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/18/2022] [Indexed: 05/22/2023]
Abstract
Drought is intensifying globally with climate change, creating an urgency to understand ecosystem response to drought both during and after these events end to limit loss of ecosystem functioning. The literature is replete with studies of how ecosystems respond during drought, yet there are far fewer studies focused on ecosystem dynamics after drought ends. Furthermore, while the terms used to describe drought can be variable and inconsistent, so can those that describe ecosystem responses following drought. With this review, we sought to evaluate and create clear definitions of the terms that ecologists use to describe post-drought responses. We found that legacy effects, resilience and recovery were used most commonly with respect to post-drought ecosystem responses, but the definitions used to describe these terms were variable. Based on our review of the literature, we propose a framework for generalizing ecosystem responses after drought ends, which we refer to as 'the post-drought period'. We suggest that future papers need to clearly describe characteristics of the imposed drought, and we encourage authors to use the term post-drought period as a general term that encompasses responses after drought ends and use other terms as more specific descriptors of responses during the post-drought period.
Collapse
Affiliation(s)
- Leena Vilonen
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| | - Maggie Ross
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| | - Melinda D. Smith
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| |
Collapse
|
24
|
Hu Y, Xiang W, Schäfer KVR, Lei P, Deng X, Forrester DI, Fang X, Zeng Y, Ouyang S, Chen L, Peng C. Photosynthetic and hydraulic traits influence forest resistance and resilience to drought stress across different biomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154517. [PMID: 35278541 DOI: 10.1016/j.scitotenv.2022.154517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Drought events lead to depressions in gross primary productivity (GPP) of forest ecosystems. Photosynthetic and hydraulic traits are important factors governing GPP variation. However, how these functional traits affect GPP responses to drought has not been well understood. We quantified the capacity of GPP to withstand changes during droughts (GPP_resistance) and its post-drought responses (GPP_resilience) using eddy covariance data from the FLUXNET2015 dataset, and investigated how functional traits of dominant tree species that comprised >80% of the biomass (or composition) influenced GPP_resistance or GPP_resilience. Light-saturated photosynthetic rate of dominant tree species was negatively related to GPP_resistance, and was positively correlated with GPP_resilience. Forests dominated by species with higher hydraulic safety margins (HSM), smaller vessel diameter (Vdia) and lower sensitivity of canopy stomatal conductance per unit land area (Gs) to droughts had a higher GPP_resistance, while those dominated by species with lower HSM, larger Vdia and higher sensitivity of Gs to droughts exhibited a higher GPP_resilience. Differences in functional traits of forests located in diverse climate regions led to distinct GPP sensitivities to droughts. Forests located in humid regions had a higher GPP_resilience while those in arid regions exhibited a higher GPP_resistance. Forest GPP_resistance was negatively related to drought intensity, and GPP_resilience was negatively related to drought duration. Our findings highlight the significant role of functional traits in governing forest resistance and resilience to droughts. Overall, forests dominated by species with higher hydraulic safety were more resistant to droughts, while forests containing species with higher photosynthetic and hydraulic efficiency recovered better from drought stress.
Collapse
Affiliation(s)
- Yanting Hu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Wenhua Xiang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China.
| | - Karina V R Schäfer
- Department of Earth and Environmental Sciences, Rutgers University, 195 University Avenue, Newark 07102, NJ, USA
| | - Pifeng Lei
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Xiangwen Deng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - David I Forrester
- Swiss Federal Institute of Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Xi Fang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Yelin Zeng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Shuai Ouyang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Changhui Peng
- Department of Biological Sciences, Institute of Environment Sciences, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
25
|
Bondaruk VF, Oñatibia GR, Fernández RJ, Agüero W, Blanco L, Brusquetti M, Kröpfl A, Loydi A, Pascual J, Peri P, Peter G, Quiroga RE, Yahdjian L. Forage provision is more affected by droughts in arid and semi‐arid than in mesic rangelands. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Viviana F. Bondaruk
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
- Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, Cátedra de Ecología, Universidad de Buenos Aires Buenos Aires Argentina
| | - Gastón R. Oñatibia
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
- Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, Cátedra de Ecología, Universidad de Buenos Aires Buenos Aires Argentina
| | - Roberto J. Fernández
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
- Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, Cátedra de Ecología, Universidad de Buenos Aires Buenos Aires Argentina
| | - Walter Agüero
- Instituto Nacional de Tecnología Agropecuaria (INTA)‐EEA La Rioja La Rioja Argentina
| | - Lisandro Blanco
- Instituto Nacional de Tecnología Agropecuaria (INTA)‐EEA La Rioja La Rioja Argentina
| | - Martín Brusquetti
- Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET‐Universidad de Mar del Plata Buenos Aires Argentina
| | - Alicia Kröpfl
- Universidad Nacional de Río Negro Viedma Argentina
- Centro Universitario Regional Zona Atlántica (CURZA), Universidad Nacional del Comahue Viedma Argentina
| | - Alejandro Loydi
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), CONICET‐Universidad Nacional del Sur Bahía Blanca Argentina
| | - Jesús Pascual
- Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET‐Universidad de Mar del Plata Buenos Aires Argentina
| | - Pablo Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA), EEA CONICET‐Universidad Nacional de la Patagonia Austral Río Gallegos Santa Cruz Argentina
| | - Guadalupe Peter
- Universidad Nacional de Río Negro Viedma Argentina
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), CONICET‐Universidad Nacional del Sur Bahía Blanca Argentina
| | - R. Emiliano Quiroga
- Instituto Nacional de Tecnología Agropecuaria (INTA)‐EEA La Rioja La Rioja Argentina
| | - Laura Yahdjian
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
- Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, Cátedra de Ecología, Universidad de Buenos Aires Buenos Aires Argentina
| |
Collapse
|
26
|
Suissa JS, Friedman WE. Rapid diversification of vascular architecture underlies the Carboniferous fern radiation. Proc Biol Sci 2022; 289:20212209. [PMID: 35473384 PMCID: PMC9043699 DOI: 10.1098/rspb.2021.2209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vascular plants account for 93% of Earth's terrestrial flora. Xylem and phloem, vital for transporting water and nutrients through the plant, unite this diverse clade. Three-dimensional arrangements of these tissues (vascular architecture) are manifold across living and extinct species. However, the evolutionary processes underlying this variation remain elusive. Using ferns, a diverse clade with multiple radiations over their ca 400-million-year history, we synthesized data across 3339 species to explore the tempo and mode of vascular evolution and to contextualize dynamics of phenotypic innovation during major fern diversification events. Our results reveal three paradigm shifts in our understanding of fern vascular evolution. (i) The canonical theory on the stepwise and unidirectional evolution of vascular architecture does not capture the complexities of character evolution among ferns. Rather, a new model permitting additional transitions, rate heterogeneity and multiple reversions is more likely. (ii) Major shifts in vascular architecture correspond to developmental changes in body size, not regional water availability. (iii) The early Carboniferous radiation of crown-group ferns was characterized by an explosion of phenotypic innovation. By contrast, during the Cretaceous and Cenozoic rise of eupolypods, rates of vascular evolution were dramatically low and seemingly decoupled from lineage diversification.
Collapse
Affiliation(s)
- Jacob S Suissa
- The Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.,The Arnold Arboretum of Harvard University Boston, Boston, MA 02131, USA
| | - William E Friedman
- The Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.,The Arnold Arboretum of Harvard University Boston, Boston, MA 02131, USA
| |
Collapse
|
27
|
Kang W, Liu S, Chen X, Feng K, Guo Z, Wang T. Evaluation of ecosystem stability against climate changes via satellite data in the eastern sandy area of northern China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114596. [PMID: 35114515 DOI: 10.1016/j.jenvman.2022.114596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 01/11/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Intensive and frequent climate change events (e.g., droughts or extreme weather) significantly affect vulnerable water-limited ecosystems. Until now, the ecosystem stability against climate changes in regional scale sandy lands remain unclear. In this study, the AutoRegression (ARx) model was combined with time-series Net Primary Productivity (NPP) data to extract stability metrics (e.g., temporal stability, resilience, drought-resistance, and temperature-resistance) to evaluate the stability of the main sandy land regions of Northern China. Strong correlations among ecosystem stability metrics were found in the study area, such as the significant negative correlation between resilience and resistance (r = -0.49, p < 0.01), the strong positive correlation between drought-resistance and temperature-resistance, (r = 0.81, p < 0.01), except for the uncorrelation between resilience and temporal stability. Meanwhile, more unstable regions were found in the western low- or moderate-cover sandy grassland. Due to the differences of factors (e.g. hydrothermal conditions, vegetation species composition, and other disturbances or anthropogenic impacts), the unstable grasslands and barren regions, Otindag and Hulun Buir sandy lands, and slightly desertified area (SL) presented more resilience but less resistance and variance than the forest and cropland, Horqin Sandy Land, and Moderate (M) or Severe desertified areas (S), respectively. Thus, the unstable low-or moderate-cover grassland and SL area should be paid much more attention to meet the challenges of more intense climate extremes in the future.
Collapse
Affiliation(s)
- Wenping Kang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shulin Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Xiang Chen
- Northwest Normal University, Lanzhou, 730000, China
| | - Kun Feng
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zichen Guo
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Wang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
28
|
Wang Y, Xiao J, Li X, Niu S. Global evidence on the asymmetric response of gross primary productivity to interannual precipitation changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152786. [PMID: 34990664 DOI: 10.1016/j.scitotenv.2021.152786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Understanding gross primary productivity (GPP) response to precipitation (PPT) changes is essential for predicting land carbon uptake under increasing PPT variability and extremes. Previous studies found that ecosystem GPP may have an asymmetric response to PPT changes, leading to the inconsistency of GPP gains in wet years compared to GPP declines in dry years. However, it is unclear how the asymmetric responses vary among vegetation types and under different PPT variabilities. This study evaluated the global patterns of asymmetries of GPP response to different PPT changes using two state-of-science global GPP datasets. The result shows that under mild PPT changes (|ΔPPT| ≤ 25%), grasslands, savannas, shrublands, and tundra show positive asymmetric responses (i.e., larger GPP gains in wet years than GPP losses in dry years), while other vegetation types show negative asymmetric responses (i.e., larger GPP losses in dry years than GPP gains in wet years). Conversely, all vegetation types show negative GPP asymmetric responses to moderate (25% < |ΔPPT| ≤ 50%) and extreme (|ΔPPT| > 50%) PPT changes. Thus, we propose a new non-linear asymmetric GPP-PPT model that incorporates three modes with regards to vegetation types. Meanwhile, we found that the spatial patterns of asymmetry were mainly driven by PPT amount and variability. Stronger and negative asymmetries were found in areas with smaller PPT amount and variability, while positive asymmetries were found in areas with higher PPT variability. These findings promote our understanding of carbon dynamics under increased PPT variability and extremes and provide new insights for land models to better predict future carbon uptake and its feedback to climate change.
Collapse
Affiliation(s)
- Yiheng Wang
- Key Laboratory of Ecosystem Network Observation and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
| | - Xing Li
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
The Benefit of Continuous Hydrological Modelling for Drought Hazard Assessment in Small and Coastal Ungauged Basins: A Case Study in Southern Italy. CLIMATE 2022. [DOI: 10.3390/cli10030034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rainfall-runoff modelling in small and ungauged basins represents one of the most common practices. However, it remains a challenging task for researchers and practitioners, in particular in a climate change context and in areas subject to drought risk. When discharge observations are not available, empirical or event-based approaches are commonly used. However, these schemes can be affected by several relevant assumptions. In the last years, continuous models have been developed in order to address the major drawbacks of event-based approaches. With this goal in mind, in this work we applied a synthetic rainfall generation model (STORAGE; stochastic rainfall generator), constituting the implementation of a modified version of Neymann-Scott rectangular pulse (NSRP) model, and a continuous rainfall-runoff framework (COSMO4SUB; continuous simulation modelling for small and ungauged basins) specifically designed for ungauged basins within a climate change context. The modeling approach allows one to investigate the drought hazard using specific indicators for rainfall and runoff in a small watershed located in southern Italy. Results show that the investigated area seems to tend to a mild/moderate drought in a future time period of approximately 30 years, with a decrease in seasonal water volumes availability in the range of 15–30%. Finally, our results confirm that the continuous modelling is suitable for rapid and effective design simulations supporting drought hazard assessment.
Collapse
|
30
|
Qian J, Guo Z, Muraina TO, Te N, Griffin-Nolan RJ, Song L, Xu C, Yu Q, Zhang Z, Luo W. Legacy effects of a multi-year extreme drought on belowground bud banks in rhizomatous vs bunchgrass-dominated grasslands. Oecologia 2022; 198:763-771. [PMID: 35230515 DOI: 10.1007/s00442-022-05133-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
Belowground bud banks play a crucial role in plant population regeneration, community dynamics, and functional responses of ecosystems to environmental change and disturbance. In mesic grasslands, belowground bud banks are largely resistant to short-term drought. However, the sensitivity of belowground bud banks to long-term extreme drought in semi-arid grasslands is less understood. We investigated the legacy effects of a four-year experimental drought (i.e., 66% reduction in growing season precipitation) on belowground bud density, aboveground shoot density, and the meristem limitation index (MLI; the ratio of bud to shoot density) in two semi-arid grasslands that differ in dominant grass species growth forms (i.e., rhizomatous vs. bunchgrasses). Measurements were made during the first recovery year following drought; thus, we report the legacy effects of drought on belowground bud banks. At the community level, drought reduced belowground bud density and aboveground shoot density with no change in MLI. However, drought had no significant influences on belowground buds, aboveground shoots and MLI of the dominant plant growth form in each community. The legacy effects of drought were largely dependent on plant community type and growth form. Specifically, bunchgrasses and bunchgrass-dominated communities were characterized by greater meristem limitation than rhizomatous grasses, likely due to their cluster/phalanx clonal growth. Overall, our study suggests bud banks may indeed be sensitive to long-term drought, although this depends on plant growth forms and community characteristics.
Collapse
Affiliation(s)
- Jianqiang Qian
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ziyue Guo
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Taofeek O Muraina
- Department of Animal Health and Production, Oyo State College of Agriculture and Technology, P.M.B. 10, Igbo-Ora, Oyo State, Nigeria
| | - Niwu Te
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | | | - Lin Song
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Chong Xu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiming Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Wentao Luo
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
31
|
Exploring the ecosystem resilience concept with land surface model scenarios. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Sun J, Ye C, Liu M, Wang Y, Chen J, Wang S, Lu X, Liu G, Xu M, Li R, Liu S, Zhou H, Du Z, Peng F, Tsunekawa A, Tsubo M. Response of net reduction rate in vegetation carbon uptake to climate change across a unique gradient zone on the Tibetan Plateau. ENVIRONMENTAL RESEARCH 2022; 203:111894. [PMID: 34418448 DOI: 10.1016/j.envres.2021.111894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/22/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The Tibetan Plateau (TP) has a variety of vegetation types that range from alpine tundra to tropic evergreen forest, which play an important role in the global carbon (C) cycle and is extremely vulnerable to climate change. The vegetation C uptake is crucial to the ecosystem C sequestration. Moreover, net reduction in vegetation C uptake (NRVCU) will strongly affect the C balance of terrestrial ecosystem. Until now, there is limited knowledge on the recovery process of vegetation net C uptake and the spatial-temporal patterns of NRVCU after the disturbance that caused by climate change and human activities. Here, we used the MODIS-derived net primary production to characterize the spatial-temporal patterns of NRVCU. We further explored the influence factors of the net reduction rate in vegetation C uptake (NRRVCU) and recovery processes of vegetation net C uptake across a unique gradient zone on the TP. Results showed that the total net reduction amount of vegetation C uptake gradually decreased from 2000 to 2015 on the TP (Slope = -0.002, P < 0.05). Specifically, an increasing gradient zone of multi-year average of net reduction rate in vegetation carbon uptake (MYANRRVCU) from east to west was observed. In addition, we found that the recovery of vegetation net C uptake after the disturbance caused by climate change and anthropogenic disturbance in the gradient zone were primarily dominated by precipitation and temperature. The findings revealed that the effects of climate change on MYANRRVCU and vegetation net C uptake recovery differed significantly across geographical space and vegetation types. Our results highlight that the biogeographic characteristics of the TP should be considered for combating future climate change.
Collapse
Affiliation(s)
- Jian Sun
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chongchong Ye
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Miao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ji Chen
- Department of Agroecology, Aarhus University, 8830, Tjele, Denmark; Aarhus University Centre for Circular Bioeconomy, Aarhus University, 8830, Tjele, Denmark; CLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, 4000, Roskilde, Denmark.
| | - Shuai Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, China.
| | - Xuyang Lu
- Institute of Mountain Hazard and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Guohua Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China.
| | - Ming Xu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Renqiang Li
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Shiliang Liu
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Huakun Zhou
- Key Laboratory of Restoration Ecology for Cold Regions in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| | - Zhong Du
- College of Land and Resources, China West Normal University, Nanchong, 637009, China.
| | - Fei Peng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Atsushi Tsunekawa
- Arid Land Research Center, Tottori University, Tottori, 6800001, Japan.
| | - Mitsuru Tsubo
- Arid Land Research Center, Tottori University, Tottori, 6800001, Japan.
| |
Collapse
|
33
|
A multidimensional stability framework enhances interpretation and comparison of carbon cycling response to disturbance. Ecosphere 2021. [DOI: 10.1002/ecs2.3800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
34
|
Haugum SV, Thorvaldsen P, Vandvik V, Velle LG. Coastal heathland vegetation is surprisingly resistant to experimental drought across successional stages and latitude. OIKOS 2021. [DOI: 10.1111/oik.08098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siri Vatsø Haugum
- Dept of Biological Sciences, Univ. of Bergen Norway
- The Heathland Centre Alver Norway
- Bjerknes Centre for Climate Research Bergen Norway
| | | | - Vigdis Vandvik
- Dept of Biological Sciences, Univ. of Bergen Norway
- Bjerknes Centre for Climate Research Bergen Norway
| | | |
Collapse
|
35
|
Bottero A, Forrester DI, Cailleret M, Kohnle U, Gessler A, Michel D, Bose AK, Bauhus J, Bugmann H, Cuntz M, Gillerot L, Hanewinkel M, Lévesque M, Ryder J, Sainte‐Marie J, Schwarz J, Yousefpour R, Zamora‐Pereira JC, Rigling A. Growth resistance and resilience of mixed silver fir and Norway spruce forests in central Europe: Contrasting responses to mild and severe droughts. GLOBAL CHANGE BIOLOGY 2021; 27:4403-4419. [PMID: 34166562 PMCID: PMC8453522 DOI: 10.1111/gcb.15737] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/05/2021] [Indexed: 05/24/2023]
Abstract
Extreme droughts are expected to increase in frequency and severity in many regions of the world, threatening multiple ecosystem services provided by forests. Effective strategies to adapt forests to such droughts require comprehensive information on the effects and importance of the factors influencing forest resistance and resilience. We used a unique combination of inventory and dendrochronological data from a long-term (>30 years) silvicultural experiment in mixed silver fir and Norway spruce mountain forests along a temperature and precipitation gradient in southwestern Germany. We aimed at examining the mechanisms and forest stand characteristics underpinning the resistance and resilience to past mild and severe droughts. We found that (i) fir benefited from mild droughts and showed higher resistance (i.e., lower growth loss during drought) and resilience (i.e., faster return to pre-drought growth levels) than spruce to all droughts; (ii) species identity determined mild drought responses while species interactions and management-related factors strongly influenced the responses to severe droughts; (iii) intraspecific and interspecific interactions had contrasting effects on the two species, with spruce being less resistant to severe droughts when exposed to interaction with fir and beech; (iv) higher values of residual stand basal area following thinning were associated with lower resistance and resilience to severe droughts; and (v) larger trees were resilient to mild drought events but highly vulnerable to severe droughts. Our study provides an analytical approach for examining the effects of different factors on individual tree- and stand-level drought response. The forests investigated here were to a certain extent resilient to mild droughts, and even benefited from such conditions, but were strongly affected by severe droughts. Lastly, negative effects of severe droughts can be reduced through modifying species composition, tree size distribution and stand density in mixed silver fir-Norway spruce forests.
Collapse
Affiliation(s)
- Alessandra Bottero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| | - David I. Forrester
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
- Chair of SilvicultureFaculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
| | - Maxime Cailleret
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- UMR RECOVERAix Marseille UniversityINRAEAix‐en‐ProvenceFrance
| | - Ulrich Kohnle
- Forest Research Institute of Baden‐Württemberg FVAFreiburgGermany
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
- Institute of Terrestrial EcologyETH ZürichZürichSwitzerland
| | - Dominic Michel
- IT Services GroupDepartment of Health Sciences and TechnologyETH ZürichZürichSwitzerland
- Forest EcologyDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Arun K. Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Forest and Wood Technology DisciplineKhulna UniversityKhulnaBangladesh
| | - Jürgen Bauhus
- Chair of SilvicultureFaculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
| | - Harald Bugmann
- SwissForestLabBirmensdorfSwitzerland
- Forest EcologyDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Matthias Cuntz
- Université de LorraineAgroParisTechINRAEUMR SilvaNancyFrance
| | - Loïc Gillerot
- SwissForestLabBirmensdorfSwitzerland
- Forest Management & SilvicultureDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Marc Hanewinkel
- Chair of Forestry Economics and Forest PlanningUniversity of FreiburgFreiburgGermany
| | - Mathieu Lévesque
- SwissForestLabBirmensdorfSwitzerland
- Forest Management & SilvicultureDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - James Ryder
- Université de LorraineAgroParisTechINRAEUMR SilvaNancyFrance
| | | | - Julia Schwarz
- Chair of SilvicultureFaculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
| | - Rasoul Yousefpour
- Chair of Forestry Economics and Forest PlanningUniversity of FreiburgFreiburgGermany
| | | | - Andreas Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
- Institute of Terrestrial EcologyETH ZürichZürichSwitzerland
| |
Collapse
|
36
|
Liang M, Cao R, Di K, Han D, Hu Z. Vegetation resistance and resilience to a decade-long dry period in the temperate grasslands in China. Ecol Evol 2021; 11:10582-10589. [PMID: 34367598 PMCID: PMC8328410 DOI: 10.1002/ece3.7866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 11/06/2022] Open
Abstract
The duration of climate anomalies has been increasing across the globe, leading to ecosystem function loss. Thus, we need to understand the responses of the ecosystem to long-term climate anomalies. It remains unclear how ecosystem resistance and resilience respond to long-term climate anomalies, for example, continuous dry years at a regional scale. Taking the opportunity of a 13-year dry period in the temperate grasslands in northern China, we quantified the resistance and resilience of the grassland in response to this periodic dry period. We found vegetation resistance to the dry period increased with mean annual precipitation (MAP), while resilience increased at first until at MAP of 250 mm and then decreased slightly. No trade-off between resistance and resilience was detected when MAP < 250 mm. Our results highlight that xeric ecosystems are most vulnerable to the long-term dry period. Given expected increases in drought severity and duration in the coming decades, our findings may be helpful to identify vulnerable ecosystems in the world for the purpose of adaptation.
Collapse
Affiliation(s)
- Minqi Liang
- School of GeographySouth China Normal UniversityGuangzhouChina
| | - Ruochen Cao
- School of GeographySouth China Normal UniversityGuangzhouChina
| | - Kai Di
- School of GeographySouth China Normal UniversityGuangzhouChina
| | - Daorui Han
- School of GeographySouth China Normal UniversityGuangzhouChina
| | - Zhongmin Hu
- School of GeographySouth China Normal UniversityGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)GuangdongChina
| |
Collapse
|
37
|
Croy JR, Pratt JD, Sheng D, Mooney KA. Climatic displacement exacerbates the negative impact of drought on plant performance and associated arthropod abundance. Ecology 2021; 102:e03462. [PMID: 34236699 DOI: 10.1002/ecy.3462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/27/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
Climate change is acting on species and modifying communities and ecosystems through changes not only with respect to mean abiotic conditions, but also through increases in the frequency and severity of extreme events. Changes in mean aridity associated with climate change can generate ecotype by environment mismatch (i.e., climatic displacement). At the same time, variability around these shifting means is predicted to increase, resulting in more extreme droughts. We characterized the effects of two axes of climate change, climatic displacement and drought, on the shrub Artemisia californica and its arthropods. We established common gardens of plants sourced along an aridity gradient (3.5-fold variation in mean annual precipitation) in an arid region of the species distribution, thus generating a gradient of climatic displacement (sustained increase in aridity) as predicted with climate change. We surveyed plants and arthropods over eight years where precipitation varied sixfold, including both extreme drought and relatively mesic conditions. These two axes of climate change interacted to influence plant performance, such that climatically displaced populations grew slowly regardless of drought and suffered substantial mortality during drought years. Conversely, local populations grew quickly, increased growth during wet years, and had low mortality regardless of drought. Effects on plant annual arthropod yield were negative and additive, with drought effects exceeding that of climatic displacement by 24%. However, for plant lifetime arthropod yield, incorporating effects on both plant growth and survival, climatic displacement exacerbated the negative effects of drought. Collectively these results demonstrate how climatic displacement (through increasing aridity stress) strengthens the negative effects of drought on plants and, indirectly, on arthropods, suggesting the possibility of climate-mediated trophic collapse.
Collapse
Affiliation(s)
- Jordan R Croy
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, 92697, USA
| | - Jessica D Pratt
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, 92697, USA
| | - Daniel Sheng
- Forestry Division of the County of Los Angeles Fire Department, Los Angeles, California, 91773, USA
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, 92697, USA
| |
Collapse
|
38
|
Responses of plant diversity to precipitation change are strongest at local spatial scales and in drylands. Nat Commun 2021; 12:2489. [PMID: 33941779 PMCID: PMC8093425 DOI: 10.1038/s41467-021-22766-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/18/2021] [Indexed: 11/08/2022] Open
Abstract
Mitigating and adapting to climate change requires an understanding of the magnitude and nature by which climate change will influence the diversity of plants across the world’s ecosystems. Experiments can causally link precipitation change to plant diversity change, however, these experiments vary in their methods and in the diversity metrics reported, making synthesis elusive. Here, we explicitly account for a number of potentially confounding variables, including spatial grain, treatment magnitude and direction and background climatic conditions, to synthesize data across 72 precipitation manipulation experiments. We find that the effects of treatments with higher magnitude of precipitation manipulation on plant diversity are strongest at the smallest spatial scale, and in drier environments. Our synthesis emphasizes that quantifying differential responses of ecosystems requires explicit consideration of spatial grain and the magnitude of experimental manipulation. Given that diversity provides essential ecosystem services, especially in dry and semi-dry areas, our finding that these dry ecosystems are particular sensitive to projected changes in precipitation has important implications for their conservation and management. The responses of terrestrial ecosystems to changes in precipitation patterns are highly context-dependent. Here the authors perform a quantitative synthesis of field rainfall manipulation experiments, showing stronger effects of precipitation on plant diversity at small spatial scales and in arid biomes.
Collapse
|
39
|
Javed T, Li Y, Rashid S, Li F, Hu Q, Feng H, Chen X, Ahmad S, Liu F, Pulatov B. Performance and relationship of four different agricultural drought indices for drought monitoring in China's mainland using remote sensing data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143530. [PMID: 33229075 DOI: 10.1016/j.scitotenv.2020.143530] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Increasing frequency and intensity of extreme drought events have harmed the environment, ecosystem, and agricultural productivity. However, the characteristics of agricultural drought in China have not been well understood. The remote sensing (RS) based gridded monthly precipitation, soil moisture, land surface temperature (LST), and normalized difference vegetation index (NDVI) datasets over 1982-2018 were utilized to derive standardized precipitation index (SPI), standardized soil moisture index (SSI), multivariate standardized drought index (MSDI), and vegetation health index (VHI). The variation patterns and trends of SPI, SSI, and MSDI at the 1-, 3-, and 6-month timescales against monthly VHI anomaly were compared to identify the best agricultural drought index in China. The drought variations in the four sub-regions (northwest, north, Qinghai-Tibet area, and south area) were also investigated. The results showed that: (1) Temporal patterns of VHI anomaly were similar to relative soil moisture and slightly different from precipitation. The spatial patterns of MSDI matched with VHI the best than SPI and SSI. (2) All three indices showed positive correlations with VHI at the three timescales. The highest correlation coefficients (r) between MSDI and VHI ranged from 0.25 to 0.67, 0.22 to 0.78, 0.23 to 0.69, and 0.19 to 0.74 in northwest China, north China, Qinghai-Tibet Plateau, and south China, respectively. (3) The connections between monthly VHI and the three drought indices were weaker at the 1-month timescale (0.16 < r < 0.25) than the 3-month (0.39 < r < 0.78) and 6-month (0.26 < r < 0.68) timescales. (4) The VHI significantly increased in most of China except north China. Overall, MSDI showed better performance for monitoring agricultural drought in China's mainland.
Collapse
Affiliation(s)
- Tehseen Javed
- College of Water Resources and Architectural Engineering, Northwest A&F University, 712100, Shaanxi, PR China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Yi Li
- College of Water Resources and Architectural Engineering, Northwest A&F University, 712100, Shaanxi, PR China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Sadaf Rashid
- Department of Physics, Islamia College, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Feng Li
- College of Water Resources and Architectural Engineering, Northwest A&F University, 712100, Shaanxi, PR China
| | - Qiaoyu Hu
- College of Water Resources and Architectural Engineering, Northwest A&F University, 712100, Shaanxi, PR China
| | - Hao Feng
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinguo Chen
- College of Water Resources and Architectural Engineering, Northwest A&F University, 712100, Shaanxi, PR China
| | - Shakeel Ahmad
- College of Agronomy, Northwest Agriculture & Forestry University/Key Laboratory of Physio-ecology, and Tillage in Loess Plateau, Ministry of Agriculture, Yangling 712100, PR China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Fenggui Liu
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, PR China
| | - Bakhtiyor Pulatov
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Qoriy Niyoziy 39, 100000 Tashkent, Uzbekistan
| |
Collapse
|
40
|
Wu G, Guan K, Li Y, Novick KA, Feng X, McDowell NG, Konings AG, Thompson SE, Kimball JS, De Kauwe MG, Ainsworth EA, Jiang C. Interannual variability of ecosystem iso/anisohydry is regulated by environmental dryness. THE NEW PHYTOLOGIST 2021; 229:2562-2575. [PMID: 33118166 DOI: 10.1111/nph.17040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
●Plants are characterized by the iso/anisohydry continuum depending on how they regulate leaf water potential (ΨL ). However, how iso/anisohydry changes over time in response to year-to-year variations in environmental dryness and how such responses vary across different regions remains poorly characterized. ●We investigated how dryness, represented by aridity index, affects the interannual variability of ecosystem iso/anisohydry at the regional scale, estimated using satellite microwave vegetation optical depth (VOD) observations. This ecosystem-level analysis was further complemented with published field observations of species-level ΨL . ●We found different behaviors in the directionality and sensitivity of isohydricity (σ) with respect to the interannual variation of dryness in different ecosystems. These behaviors can largely be differentiated by the average dryness of the ecosystem itself: in mesic ecosystems, σ decreases in drier years with a higher sensitivity to dryness; in xeric ecosystems, σ increases in drier years with a lower sensitivity to dryness. These results were supported by the species-level synthesis. ●Our study suggests that how plants adjust their water use across years - as revealed by their interannual variability in isohydricity - depends on the dryness of plants' living environment. This finding advances our understanding of plant responses to drought at regional scales.
Collapse
Affiliation(s)
- Genghong Wu
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Kaiyu Guan
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana Champaign, Champaign, IL, 61820, USA
| | - Yan Li
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nate G McDowell
- Earth Systems Science Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Sally E Thompson
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Civil, Environmental and Mining Engineering, University of Western Australia, Crawley, WA, 6009, Australia
| | - John S Kimball
- Numerical Terra dynamic Simulation Group, College of Forestry & Conservation, University of Montana, Missoula, MT, 59812, USA
| | - Martin G De Kauwe
- ARC Australia Centre of Excellence for Climate Extremes, Sydney, NSW, 2052, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Elizabeth A Ainsworth
- Department of Plant Biology, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, 61801, USA
| | - Chongya Jiang
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
41
|
Javed T, Li Y, Feng K, Ayantobo OO, Ahmad S, Chen X, Rashid S, Suon S. Monitoring responses of vegetation phenology and productivity to extreme climatic conditions using remote sensing across different sub-regions of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3644-3659. [PMID: 32929670 DOI: 10.1007/s11356-020-10769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Drought is a major natural disaster that significantly impacts the susceptibility and flexibility of the ecosystem by changing vegetation phenology and productivity. This study aimed to investigate the impact of extreme climatic variation on vegetation phenology and productivity over the four sub-regions of China from 2000 to 2017. Daily rain gauge precipitation and air temperature datasets were used to estimate the trends, and to compute the standardized precipitation-evapotranspiration index (SPEI). Remote sensing-based Enhanced Vegetation Index (EVI) data from a moderate resolution imaging spectroradiometer (MODIS) was used to characterize vegetation phenology. The results revealed that (1) air temperature had significant increasing trends (P < 0.05) in all sub-regions. Precipitation showed a non-significant increasing trend in Northwest China (NWC) and insignificant decreasing trends in North China (NC), Qinghai Tibet area (QTA), and South China (SC). (2) Integrated enhanced vegetation index (iEVI) and SPEI variations depicted that 2011 and 2016 were the extremely driest and wettest years during 2000-2017. (3) Rapid changes were observed in the vegetation phenology and productivity between 2011 and 2016. In 2011, changes in the vegetation phenology with the length of the growing season (ΔLGS) = was - 14 ± 36 days. In 2016, the overall net effect changed at the onset and end of the growing season with ΔLGS of 34 ± 71 days. The change in iEVI per SPEI increased rapidly with a changing rate of 0.16 from arid (NWC, and QTA) to semi-arid (NWC, QTA and NC) and declined with a rate of - 0.04 from semi-humid (QTA, NC, and SC) to humid (SC) region. A higher association was observed between iEVI and SPEI as compared to iEVI and precipitation. Our finding exposed that north China is more sensitive to climatic variation.
Collapse
Affiliation(s)
- Tehseen Javed
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yi Li
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Kai Feng
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Olusola O Ayantobo
- Department of Water Resources Management and Agricultural-Meteorology, Federal University of Agriculture, Abeokuta, PMB 2240, Nigeria
| | - Shakeel Ahmad
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest Agriculture & Forestry University/Key Laboratory of Physio-ecology, and Tillage in Loess Plateau, Ministry of Agriculture, Yangling, 712100, China
| | - Xinguo Chen
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Sadaf Rashid
- Department of Physics, Islamia College University Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Sovannaka Suon
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| |
Collapse
|
42
|
Lemoine NP. Unifying ecosystem responses to disturbance into a single statistical framework. OIKOS 2020. [DOI: 10.1111/oik.07752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Nathan P. Lemoine
- Dept of Biological Sciences, Marquette Univ. Milwaukee WI USA
- Dept of Zoology, Milwaukee Public Museum Milwaukee WI USA
| |
Collapse
|
43
|
Knowledge Production for Resilient Landscapes: Experiences from Multi-Stakeholder Dialogues on Water, Food, Forests, and Landscapes. FORESTS 2020. [DOI: 10.3390/f12010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Landscape-wide approaches integrating agriculture, forestry, energy, and water are considered key to address complex environmental problems and to avoid trade-offs. The objective of this paper is to analyse how knowledge production through multi-stakeholder dialogues on water, landscapes, forests, and agriculture can inform governance and the management of landscapes. Multi-stakeholder learning dialogues and platforms (MSPs) were established related to water and natural resources management, complemented by targeted reviews, to establish a shared understanding of the drivers of change and impacts on the hydrology of landscapes and ecosystem services. The MSP dialogues illustrate the need to address water as an integral part of landscape management and governance to achieve the wide range of the Sustainable Development Goals related to water and food security, climate action, life on land, as well as sustainable production and consumption, equality, and strong institutions. The co-production of knowledge through MSPs contributes to continuous learning that informs adaptive management of water flows in landscapes, above and below ground, as well as in the atmosphere. It helps to build a shared understanding of system dynamics and integrate knowledge about hydrology and water flows into policy recommendations. Co-production of knowledge also contributes to stakeholder participation at different levels, inclusiveness, and transparency, and to water stewardship.
Collapse
|
44
|
Spatio-Temporal Characteristics of Drought Events and Their Effects on Vegetation: A Case Study in Southern Tibet, China. REMOTE SENSING 2020. [DOI: 10.3390/rs12244174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Frequent droughts in a warming climate tend to induce the degeneration of vegetation. Quantifying the response of vegetation to variations in drought events is therefore crucial for evaluating the potential impacts of climate change on ecosystems. In this study, the standardized precipitation index (SPI) was calculated using the precipitation data sourced from the China Meteorological Forcing Dataset (CMFD), and then the drought events in southern Tibet from 1982 to 2015 were identified based on the SPI index. The results showed that the frequency, severity, and intensity of drought events in southern Tibet decreased from 1982 to 2015, and the highest frequency of drought was found between 1993 and 2000. To evaluate the impact of drought events on vegetation, the vegetation characteristic indexes were developed based on the normalized difference vegetation index (NDVI) and the drought characteristics. The assessment of two drought events showed that the alpine grasslands and alpine meadows had high vegetation vulnerability (AI). The assessment of multiple drought events showed that responses of vegetation to drought were spatially heterogeneous, and the total explain rate of environmental factors to the variations in AI accounted for 40%. Among the many environmental factors investigated, the AI were higher at middle altitudes (2000–3000 m) than low altitudes (<2000 m) and high altitudes (3000–4500 m). Meanwhile, the silt soil fraction in the upper soil layer (0–30 cm) had the greatest positive correlation with AI, suggesting that areas with a high silt soil fraction were more sensitive to drought. The relative contribution rates of environmental factors were predicted by a multivariate linear regression (MLR) model. The silt soil fraction was found to make the greatest relative contribution (23.3%) to the changes in AI.
Collapse
|
45
|
Hoffman AM, Smith MD. Nonlinear drought plasticity reveals intraspecific diversity in a dominant grass species. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ava M. Hoffman
- Department of Biology and Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
- Department of Earth and Planetary Sciences Johns Hopkins University Baltimore MD USA
| | - Melinda D. Smith
- Department of Biology and Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
| |
Collapse
|
46
|
Gough CM, Atkins JW, Bond-Lamberty B, Agee EA, Dorheim KR, Fahey RT, Grigri MS, Haber LT, Mathes KC, Pennington SC, Shiklomanov AN, Tallant JM. Forest Structural Complexity and Biomass Predict First-Year Carbon Cycling Responses to Disturbance. Ecosystems 2020. [DOI: 10.1007/s10021-020-00544-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Concurrent and Lagged Effects of Extreme Drought Induce Net Reduction in Vegetation Carbon Uptake on Tibetan Plateau. REMOTE SENSING 2020. [DOI: 10.3390/rs12152347] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Climatic extremes have adverse concurrent and lagged effects on terrestrial carbon cycles. Here, a concurrent effect refers to the occurrence of a latent impact during climate extremes, and a lagged effect appears sometime thereafter. Nevertheless, the uncertainties of these extreme drought effects on net carbon uptake and the recovery processes of vegetation in different Tibetan Plateau (TP) ecosystems are poorly understood. In this study, we calculated the Standardised Precipitation–Evapotranspiration Index (SPEI) based on meteorological datasets with an improved spatial resolution, and we adopted the Carnegie–Ames–Stanford approach model to develop a net primary production (NPP) dataset based on multiple datasets across the TP during 1982–2015. On this basis, we quantised the net reduction in vegetation carbon uptake (NRVCU) on the TP, investigated the spatiotemporal variability of the NPP, NRVCU and SPEI, and analysed the NRVCUs that are caused by the concurrent and lagged effects of extreme drought and the recovery times in different ecosystems. According to our results, the Qaidam Basin and most forest regions possessed a significant trend towards drought during 1982–2015 (with Slope of SPEI < 0, P < 0.05), and the highest frequency of extreme drought events was principally distributed in the Qaidam Basin, with three to six events. The annual total net reduction in vegetation carbon uptake on the TP experienced a significant downward trend from 1982 to 2015 (−0.0018 ± 0.0002 PgC year−1, P < 0.001), which was negatively correlated with annual total precipitation and annual mean temperature (P < 0.05). In spatial scale, the NRVCU decrement was widely spread (approximately 55% of grids) with 17.86% of the area displaying significant declining trends (P < 0.05), and the sharpest declining trend (Slope ≤ −2) was mainly concentrated in southeastern TP. For the alpine steppe and alpine meadow ecosystems, the concurrent and lagged effects of extreme drought induced a significant difference in NRVCU (P < 0.05), while forests presented the opposite results. The recovery time comparisons from extreme drought suggest that forests require more time (27.62% of grids ≥ 6 years) to recover their net carbon uptakes compared to grasslands. Therefore, our results emphasise that extreme drought events have stronger lagged effects on forests than on grasslands on the TP. The improved resilience of forests in coping with extreme drought should also be considered in future research.
Collapse
|
48
|
Paschalis A, Fatichi S, Zscheischler J, Ciais P, Bahn M, Boysen L, Chang J, De Kauwe M, Estiarte M, Goll D, Hanson PJ, Harper AB, Hou E, Kigel J, Knapp AK, Larsen KS, Li W, Lienert S, Luo Y, Meir P, Nabel JEMS, Ogaya R, Parolari AJ, Peng C, Peñuelas J, Pongratz J, Rambal S, Schmidt IK, Shi H, Sternberg M, Tian H, Tschumi E, Ukkola A, Vicca S, Viovy N, Wang YP, Wang Z, Williams K, Wu D, Zhu Q. Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand? GLOBAL CHANGE BIOLOGY 2020; 26:3336-3355. [PMID: 32012402 DOI: 10.1111/gcb.15024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Changes in rainfall amounts and patterns have been observed and are expected to continue in the near future with potentially significant ecological and societal consequences. Modelling vegetation responses to changes in rainfall is thus crucial to project water and carbon cycles in the future. In this study, we present the results of a new model-data intercomparison project, where we tested the ability of 10 terrestrial biosphere models to reproduce the observed sensitivity of ecosystem productivity to rainfall changes at 10 sites across the globe, in nine of which, rainfall exclusion and/or irrigation experiments had been performed. The key results are as follows: (a) Inter-model variation is generally large and model agreement varies with timescales. In severely water-limited sites, models only agree on the interannual variability of evapotranspiration and to a smaller extent on gross primary productivity. In more mesic sites, model agreement for both water and carbon fluxes is typically higher on fine (daily-monthly) timescales and reduces on longer (seasonal-annual) scales. (b) Models on average overestimate the relationship between ecosystem productivity and mean rainfall amounts across sites (in space) and have a low capacity in reproducing the temporal (interannual) sensitivity of vegetation productivity to annual rainfall at a given site, even though observation uncertainty is comparable to inter-model variability. (c) Most models reproduced the sign of the observed patterns in productivity changes in rainfall manipulation experiments but had a low capacity in reproducing the observed magnitude of productivity changes. Models better reproduced the observed productivity responses due to rainfall exclusion than addition. (d) All models attribute ecosystem productivity changes to the intensity of vegetation stress and peak leaf area, whereas the impact of the change in growing season length is negligible. The relative contribution of the peak leaf area and vegetation stress intensity was highly variable among models.
Collapse
Affiliation(s)
- Athanasios Paschalis
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Simone Fatichi
- Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Jakob Zscheischler
- Climate and Environmental Physics, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Lena Boysen
- Max Planck Institute for Meteorology, Hamburg, Germany
| | - Jinfeng Chang
- Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France
| | - Martin De Kauwe
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, Australia
| | - Marc Estiarte
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Daniel Goll
- Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France
- Department of Geography, University of Augsburg, Augsburg, Germany
| | - Paul J Hanson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Anna B Harper
- Department of Mathematics, University of Exeter, Exeter, UK
| | - Enqing Hou
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jaime Kigel
- Institute for Plant Sciences and Genetics, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alan K Knapp
- Graduate Degree Program in Ecology, Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Klaus S Larsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Wei Li
- Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Sebastian Lienert
- Climate and Environmental Physics, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Yiqi Luo
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Patrick Meir
- Research School of Biology, Australian National University, Acton, ACT, Australia
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | | | - Romà Ogaya
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Anthony J Parolari
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI, USA
| | - Changhui Peng
- Department of Biology Sciences, University of Quebec at Montreal, Montreal, QC, Canada
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Julia Pongratz
- Department of Geography, Ludwig Maximilian University of Munich, Munchen, Germany
| | - Serge Rambal
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Montpellier, France
| | - Inger K Schmidt
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Hao Shi
- International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
| | - Marcelo Sternberg
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hanqin Tian
- International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
| | - Elisabeth Tschumi
- Climate and Environmental Physics, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Anna Ukkola
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, Australia
| | - Sara Vicca
- Centre of Excellence PLECO (Plants and Ecosystems), Biology Department, University of Antwerp, Wilrijk, Belgium
| | - Nicolas Viovy
- Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France
| | - Ying-Ping Wang
- CSIRO Marine and Atmospheric Research and Centre for Australian Weather and Climate Research, Aspendale, Vic., Australia
| | - Zhuonan Wang
- International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
| | | | - Donghai Wu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Qiuan Zhu
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Xianyang, China
| |
Collapse
|
49
|
Nikinmaa L, Lindner M, Cantarello E, Jump AS, Seidl R, Winkel G, Muys B. Reviewing the Use of Resilience Concepts in Forest Sciences. CURRENT FORESTRY REPORTS 2020; 6:61-80. [PMID: 35747899 PMCID: PMC7612878 DOI: 10.1007/s40725-020-00110-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
PURPOSE OF REVIEW Resilience is a key concept to deal with an uncertain future in forestry. In recent years, it has received increasing attention from both research and practice. However, a common understanding of what resilience means in a forestry context and how to operationalise it is lacking. Here, we conducted a systematic review of the recent forest science literature on resilience in the forestry context, synthesizing how resilience is defined and assessed. RECENT FINDINGS Based on a detailed review of 255 studies, we analysed how the concepts of engineering resilience, ecological resilience and social-ecological resilience are used in forest sciences. A clear majority of the studies applied the concept of engineering resilience, quantifying resilience as the recovery time after a disturbance. The two most used indicators for engineering resilience were basal area increment and vegetation cover, whereas ecological resilience studies frequently focus on vegetation cover and tree density. In contrast, important social-ecological resilience indicators used in the literature are socioeconomic diversity and stock of natural resources. In the context of global change, we expected an increase in studies adopting the more holistic social-ecological resilience concept, but this was not the observed trend. SUMMARY Our analysis points to the nestedness of these three resilience concepts, suggesting that they are complementary rather than contradictory. It also means that the variety of resilience approaches does not need to be an obstacle for operationalisation of the concept. We provide guidance for choosing the most suitable resilience concept and indicators based on the management, disturbance and application context.
Collapse
Affiliation(s)
- L. Nikinmaa
- European Forest Institute, Platz der Vereinten Nationen 7, 53113 Bonn, Germany
- Division of Forest, Nature and Landscape, KU Leuven, Celestijnenlaan 200E, Box 2411, 3001 Leuven, Belgium
| | - M. Lindner
- European Forest Institute, Platz der Vereinten Nationen 7, 53113 Bonn, Germany
| | - E. Cantarello
- Department of Life and Environmental Sciences, Bournemouth University, Poole BH12 5BB, UK
| | - A. S. Jump
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - R. Seidl
- Institute of Silviculture, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences in Vienna, Peter Jordan Str. 82, 1190 Vienna, Austria
- Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - G. Winkel
- European Forest Institute, Platz der Vereinten Nationen 7, 53113 Bonn, Germany
| | - B. Muys
- Division of Forest, Nature and Landscape, KU Leuven, Celestijnenlaan 200E, Box 2411, 3001 Leuven, Belgium
| |
Collapse
|
50
|
Pritzkow C, Williamson V, Szota C, Trouvé R, Arndt SK. Phenotypic plasticity and genetic adaptation of functional traits influences intra-specific variation in hydraulic efficiency and safety. TREE PHYSIOLOGY 2020; 40:215-229. [PMID: 31860729 DOI: 10.1093/treephys/tpz121] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/24/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Understanding which hydraulic traits are under genetic control and/or are phenotypically plastic is essential in understanding how tree species will respond to rapid shifts in climate. We quantified hydraulic traits in Eucalyptus obliqua L'Her. across a precipitation gradient in the field to describe (i) trait variation in relation to long-term climate and (ii) the short-term (seasonal) ability of traits to adjust (i.e., phenotypic plasticity). Seedlings from each field population were raised under controlled conditions to assess (iii) which traits are under strong genetic control. In the field, drier populations had smaller leaves with anatomically thicker xylem vessel walls, a lower leaf hydraulic vulnerability and a lower water potential at turgor loss point, which likely confers higher hydraulic safety. Traits such as the water potential at turgor loss point and ratio of sapwood to leaf area (Huber value) showed significant adjustment from wet to dry conditions in the field, indicating phenotypic plasticity and importantly, the ability to increase hydraulic safety in the short term. In the nursery, seedlings from drier populations had smaller leaves and a lower leaf hydraulic vulnerability, suggesting that key traits associated with hydraulic safety are under strong genetic control. Overall, our study suggests a strong genetic control over traits associated with hydraulic safety, which may compromise the survival of wet-origin populations in drier future climates. However, phenotypic plasticity in physiological and morphological traits may confer sufficient hydraulic safety to facilitate genetic adaptation.
Collapse
Affiliation(s)
- Carola Pritzkow
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd Burnley, VIC 3121, Australia
| | - Virginia Williamson
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd Burnley, VIC 3121, Australia
| | - Christopher Szota
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd Burnley, VIC 3121, Australia
| | - Raphael Trouvé
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd Burnley, VIC 3121, Australia
| | - Stefan K Arndt
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd Burnley, VIC 3121, Australia
| |
Collapse
|