1
|
Lu P, He R, Wu Y, Wu B, Li H, He C, Lin M, Wang M, Cai W, Shen X, Li G, Cao Z, An T. Urinary metabolic alterations associated with occupational exposure to metals and polycyclic aromatic hydrocarbons based on non-target metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137158. [PMID: 39798303 DOI: 10.1016/j.jhazmat.2025.137158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Long-term occupational exposure to metals and organics have been reported to be under great health risks. However, limited data are available on the molecular mechanism between combined exposure to metals and polycyclic aromatic hydrocarbons (PAHs) and harmful health effects. In present work, non-target metabolomics study was conducted based on urine samples from nonferrous metal smelting workers (n = 207), surrounding residents (n = 180), and the control residents (n = 187) by using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). Differential and correlation analyses among metabolic features indicate that total 22 differential metabolites in smelting workers were associated (p < 0.05) with metal and PAH exposure. Particularly, amino acid metabolism was strongly disturbed, and other metabolic pathways, including steroid hormone biosynthesis, citrate cycle, and pantothenate and coenzyme A (CoA) biosynthesis were also perturbed. Among them, steroid hormone biosynthesis was more affected by PAH exposure than metals, especially for hydroxyphenanthrene. These altered pathways were closely associated with oxidative stress, inflammation, and energy metabolism disorder. Additionally, our results indicate that endogenous metabolism in surrounding residents were also affected by nonferrous metal smelting activities to some extent. Our work provides valuable insights into molecular mechanisms of adverse health effects probably induced by combined exposure to metals and PAHs.
Collapse
Affiliation(s)
- Ping Lu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Rujian He
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingjun Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Bizhi Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hailing Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chang He
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Mengmeng Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenwen Cai
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health of the Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Wang W, Deng S, Yu J, Wu Y, Feng W, Fan Q, Zhou R, Li P, Deng W, Huang Z, Yu J, Zhu W. Migration and distribution of thallium related with lead-zinc smelting enterprises from raw materials to soil: In-situ insight using diffusive gradients in thin-films. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125868. [PMID: 39956505 DOI: 10.1016/j.envpol.2025.125868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/16/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
Thallium-related industrial materials (TIMs) from the mining and smelting of lead-zinc ores may lead to thallium (Tl) contamination in the soil. Building upon the soil column experiments, this study employed the diffusive gradients in thin-films (DGT) technique and the DGT-induced fluxes in soils (DIFS) model to understand the migration and distribution characteristics of Tl from lead-zinc industrial raw materials to soil, as well as its adsorption-desorption kinetics in soil. The results indicated that Tl concentrations in the leachate from fly ash (0.3 μg L-1) and purified slag (0.42 μg L-1) significantly exceeded groundwater safety thresholds (0.1 μg L-1). This significantly increased the content of acid-exchangeable and reducible Tl in the soil, particularly in the purified slag-soil system, where the proportions of acid-exchangeable and reducible Tl in the topsoil increased by 20% and 37%, respectively, compared to the control. Further, the in-situ distribution of labile Tl was observed with a precision of 1 cm through the DGT, and the labile Tl in soils contaminated by purified slag was the highest (up to 635 μg L-1). The DIFS model analyzed the adsorption-desorption dynamics of Tl at the soil water-solid micro-interface. The derived response time (Tc) and desorption rate constant (K-1) indicated that purified slag enriched the labile Tl reservoir in the soil (Kd: 143 cm3 g-1). Tl was rapidly resupplied from the soil solid phase to the water phase (K-1: 1.23 × 10-2 s-1), maintaining Tl levels in the pore water phase over a short period (Tc: 0.128 s). Our study systematically evaluated the migration and distribution characteristics of soil Tl contamination, providing a scientific basis for the environmental management.
Collapse
Affiliation(s)
- Wenhao Wang
- Soil and Groundwater Pollution Prevention Research Institute, Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610046, PR China; Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Siwei Deng
- Soil and Groundwater Pollution Prevention Research Institute, Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610046, PR China; Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Sichuan Province Engineering Technology Research Center of Emerging Contaminants Treatment and Environmental Health, Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, PR China
| | - Jiang Yu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, 644000, PR China.
| | - Yi Wu
- Soil and Groundwater Pollution Prevention Research Institute, Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610046, PR China; Sichuan Province Engineering Technology Research Center of Emerging Contaminants Treatment and Environmental Health, Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, PR China
| | - Wenjuan Feng
- Soil and Groundwater Pollution Prevention Research Institute, Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610046, PR China; Sichuan Province Engineering Technology Research Center of Emerging Contaminants Treatment and Environmental Health, Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, PR China
| | - Qin Fan
- Soil and Groundwater Pollution Prevention Research Institute, Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610046, PR China; Sichuan Province Engineering Technology Research Center of Emerging Contaminants Treatment and Environmental Health, Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, PR China
| | - Rui Zhou
- Soil and Groundwater Pollution Prevention Research Institute, Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610046, PR China; Sichuan Province Engineering Technology Research Center of Emerging Contaminants Treatment and Environmental Health, Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, PR China
| | - Peirou Li
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Wei Deng
- Soil and Groundwater Pollution Prevention Research Institute, Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610046, PR China; Sichuan Province Engineering Technology Research Center of Emerging Contaminants Treatment and Environmental Health, Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, PR China
| | - Zhi Huang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China
| | - Jie Yu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China
| | - Weiwei Zhu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
3
|
Setu S, Strezov V. Impacts of non-ferrous metal mining on soil heavy metal pollution and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178962. [PMID: 40022981 DOI: 10.1016/j.scitotenv.2025.178962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/20/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Mining activities significantly contribute to soil contamination, posing risks to the environment and human health. This study evaluates the environmental and health impacts of four non-ferrous mining types, which have been rarely examined globally. It highlights gaps in existing datasets from selected mining sites and sampling practices, correlating soil pollutants with atmospheric variables. Overall, the geoaccumulation index (Igeo) of all mine soil types were in the order Hg > Cd > As>Cu > Pb > Zn > Ni > Cr > Mn > Co indicating that Hg and Cd are the main metals posing risks from soil pollution associated with all mining activities. Notably, the highest As contamination (Igeo: class 6) occurs in copper mines in China, Russia, and Portugal, and in lead‑zinc mines in Sweden and Mexico. Cd contamination (Igeo: class 6) was most severe in lead‑zinc mine soils across Tunisia, China, Ireland, Spain, Slovenia, Mexico, France, North Macedonia, Bulgaria, and Egypt, while uranium mines in the USA showed notably lower levels of Cd contamination (Igeo: class 2). Hg contamination levels were higher in gold mine-associated soils in Iran, China, Myanmar, Brazil and Nigeria. About half of the sites faced the highest ecological risks from lead‑zinc mining areas in Vietnam, Tunisia, and Sweden, while copper mines in Cyprus, China, and Portugal had only 8 % in that category. Gold mines in China, Nigeria, and Brazil showed considerable risks from As and Hg, whereas uranium mines in Germany and Bulgaria had a lower ecological risk, due to better environmental management. The primary exposure route for heavy metals is ingestion, with the hazard index (HI) for non-carcinogenic impacts being acceptable for most elements, except for As. Carcinogenic risks are notably present in Brazil, Spain, Slovenia, Mexico, China, and the UK. Hence, this review underscores the urgent need to address heavy metal pollution from global metal mining and offers policy recommendations for effective environmental management and restoration efforts.
Collapse
Affiliation(s)
- Shamsunnahar Setu
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
| | - Vladimir Strezov
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
4
|
Yadav SK, Baruah B, Dutta K, Rai K, Rai A, Rajak R, Gupta A, Misra AK, Wanjari N, Ranjan RK. Exploring the multi-faceted health risks of heavy metals exposure in Sikkim's unique Himalayan ecosystem, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:286. [PMID: 39945875 DOI: 10.1007/s10661-025-13745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/04/2025] [Indexed: 03/11/2025]
Abstract
Sikkim, located in the Eastern Himalayas, is a prominent tourist destination. The state exhibits a diverse climatic range spanning from subtropical to alpine zones. Springs and glacier-fed rivers serve as the primary water sources for both residents and tourists. Furthermore, rapid urbanization, climate change, altered precipitation patterns and frequent landslides have significantly stressed these water sources, especially in the lower subtropical regions, resulting in declining water quality. This study aimed to assess heavy metal contamination in surface water, considering both natural and anthropogenic sources, and its impact on different population groups. A total of 155 water samples were collected from households, rivers, springs and hot springs across pre-monsoon, monsoon and post-monsoon seasons. Heavy metals (Al, As, Cd, Co, Cr, Cu, Hg, Fe, Mn, Ni, Pb and Zn) were analyzed, and water quality was assessed using various water pollution indices. The findings revealed that the water is unsuitable for consumption without treatment. A novel approach, Monte Carlo simulation, was employed in health risk assessment, incorporating sensitivity and uncertainty analyses. This method provided greater accuracy in evaluating both carcinogenic and non-carcinogenic risks, with the results indicating moderate to high cancer risks through ingestion and dermal absorption. It is strongly recommended that treated water be used for drinking to mitigate exposure to heavy metal contamination in the region.
Collapse
Affiliation(s)
- Shailesh Kumar Yadav
- DST's Centre of Excellence, Water Resources, Cryosphere, and Climate Change Studies, Sikkim University, Sikkim, 737102, India
| | - Bidyutjyoti Baruah
- DST's Centre of Excellence, Water Resources, Cryosphere, and Climate Change Studies, Sikkim University, Sikkim, 737102, India
- Department of Geology, Sikkim University, Sikkim, 737102, India
| | - Kuldeep Dutta
- DST's Centre of Excellence, Water Resources, Cryosphere, and Climate Change Studies, Sikkim University, Sikkim, 737102, India
- Department of Geology, Sikkim University, Sikkim, 737102, India
| | - Krity Rai
- Department of Geology, Sikkim University, Sikkim, 737102, India
| | - Anirud Rai
- DST's Centre of Excellence, Water Resources, Cryosphere, and Climate Change Studies, Sikkim University, Sikkim, 737102, India
| | - Rajeev Rajak
- DST's Centre of Excellence, Water Resources, Cryosphere, and Climate Change Studies, Sikkim University, Sikkim, 737102, India
- Department of Geology, Sikkim University, Sikkim, 737102, India
| | - Aparna Gupta
- DST's Centre of Excellence, Water Resources, Cryosphere, and Climate Change Studies, Sikkim University, Sikkim, 737102, India
- Department of Geology, Sikkim University, Sikkim, 737102, India
| | - Anil Kumar Misra
- DST's Centre of Excellence, Water Resources, Cryosphere, and Climate Change Studies, Sikkim University, Sikkim, 737102, India
- Department of Geology, Sikkim University, Sikkim, 737102, India
| | - Nishchal Wanjari
- DST's Centre of Excellence, Water Resources, Cryosphere, and Climate Change Studies, Sikkim University, Sikkim, 737102, India
- Department of Geology, Sikkim University, Sikkim, 737102, India
| | - Rakesh Kumar Ranjan
- DST's Centre of Excellence, Water Resources, Cryosphere, and Climate Change Studies, Sikkim University, Sikkim, 737102, India.
- Department of Geology, Sikkim University, Sikkim, 737102, India.
| |
Collapse
|
5
|
Jeong B, Baek DJ, Kim H, Kwon SW, Kwon JH, An J. Comparative analysis of bioaccessibility tests for metals and metalloids: Methodological advancements and implications for consumer product safety. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117841. [PMID: 39904261 DOI: 10.1016/j.ecoenv.2025.117841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/08/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
Bioaccessibility is crucial in human health risk assessment as it predicts the fraction of metals and metalloids absorbed by the human body. This study compared the modified RIVM method, which includes acid digestion, with the ERU 19899 EN method to assess the oral bioaccessibility of certified reference materials. The modified RIVM method showed higher bioaccessibility, offering more conservative health risk values. Adding a filtration step after centrifugation with a 0.45 μm filter reduced the error in the results from 66.7 % to 19.9 % by removing small particles that were not separated during centrifugation. Dermal bioaccessibility was evaluated using two artificial sweat solutions: one with five amino acids at pH 5.5 and the EN 1811 method at pH 6.5. The pH 5.5 solution leached more metals due to complexation between amino acids and metal ions, increasing solubility. Sebum decreased the leached amount of cationic metals (Cd, Cr, and Pb), as fatty acids can form complexes with metal ions. Therefore, a solution with five amino acids at pH 5.5, without sebum, is suggested for assessing dermal bioaccessibility. Various consumer products, including seven toys, were tested for both oral and dermal bioaccessibility to provide more reliable health risk assessment information. The oral bioaccessibility results of the toys aligned with other studies. The dermal bioaccessibility of the consumer products ranged from 0.001 % to 1.414 %, with the highest Cr concentration measured in a brown watch strap.
Collapse
Affiliation(s)
- Buyun Jeong
- Department of Civil & Environmental Engineering, Seoul National University, Seoul 08826, South Korea
| | - Dong-Jun Baek
- Department of Smart City Engineering, Hanyang University, Ansan 15588, South Korea
| | - Haeun Kim
- Department of Smart City Engineering, Hanyang University, Ansan 15588, South Korea
| | - Seon-Woo Kwon
- Department of Environment Safety System Engineering, Semyung University, Jecheon 27136, South Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Jinsung An
- Department of Smart City Engineering, Hanyang University, Ansan 15588, South Korea; Department of Civil and Environmental Engineering, Hanyang University, Ansan 15588, South Korea.
| |
Collapse
|
6
|
Wu Y, Qi M, Yu H, Li G, An T. Assessment of internal exposure risk from metals pollution of occupational and non-occupational populations around a non-ferrous metal smelting plant. J Environ Sci (China) 2025; 147:62-73. [PMID: 39003077 DOI: 10.1016/j.jes.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 07/15/2024]
Abstract
Non-ferrous metal smelting poses significant risks to public health. Specifically, the copper smelting process releases arsenic, a semi-volatile metalloid, which poses an emerging exposure risk to both workers and nearby residents. To comprehensively understand the internal exposure risks of metal(loid)s from copper smelting, we explored eighteen metal(loid)s and arsenic metabolites in the urine of both occupational and non-occupational populations using inductively coupled plasma mass spectrometry with high-performance liquid chromatography and compared their health risks. Results showed that zinc and copper (485.38 and 14.00 µg/L), and arsenic, lead, cadmium, vanadium, tin and antimony (46.80, 6.82, 2.17, 0.40, 0.44 and 0.23 µg/L, respectively) in workers (n=179) were significantly higher compared to controls (n=168), while Zinc, tin and antimony (412.10, 0.51 and 0.15 µg/L, respectively) of residents were significantly higher than controls. Additionally, workers had a higher monomethyl arsenic percentage (MMA%), showing lower arsenic methylation capacity. Source appointment analysis identified arsenic, lead, cadmium, antimony, tin and thallium as co-exposure metal(loid)s from copper smelting, positively relating to the age of workers. The hazard index (HI) of workers exceeded 1.0, while residents and control were approximately at 1.0. Besides, all three populations had accumulated cancer risks exceeding 1.0 × 10-4, and arsenite (AsIII) was the main contributor to the variation of workers and residents. Furthermore, residents living closer to the smelting plant had higher health risks. This study reveals arsenic exposure metabolites and multiple metals as emerging contaminants for copper smelting exposure populations, providing valuable insights for pollution control in non-ferrous metal smelting.
Collapse
Affiliation(s)
- Yingjun Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Mengdie Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hang Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Cai LM, Quan K, Wen HH, Luo J, Wang S, Chen LG, Song H, Wang A. A comprehensive approach for quantifying source-specific ecological and health risks of potentially toxic elements in agricultural soil. ENVIRONMENTAL RESEARCH 2024; 263:120163. [PMID: 39426454 DOI: 10.1016/j.envres.2024.120163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/29/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Given the pollution prevalence of potentially hazardous elements (PTEs) in agricultural soils worldwide, it is crucial to establish a comprehensive approach to accurately assess soil contamination, and quantitatively allocate sources and source-specific risks. In the study, soil contamination was assessed through environmental capacity based on the local geochemical baseline established using PTE contents of the subsoil. The sources of PTEs were quantified through positive matrix factorization (PMF) and GIS mapping. Ecological risk (ER) and human health risk (HHR) models based on PMF were used to evaluate source-specific ER and HHR. Taking Jieyang City as an example, obvious contamination of As, Pb, Cd, Zn and Hg was observed in agricultural soils, and 94.40% of sites had high-to-medium capacity for local PTE contamination. Four sources were apportioned including agricultural activities (17.36%), industrial activities (20.49%), natural sources (34.60%) and traffic emissions (27.55%). The study area was at moderate ER level (121.21) with industrial activities contributing the most (41.26%). The carcinogenic risks (3.21E-05 for children and 1.42E-05 for adults) were within the tolerable range, and non-carcinogenic risks (7.08E-01 for children and 7.70E-02 for adults) were not significant. Agricultural activities were the largest source to the carcinogenic (47.17% for children and 46.31% for adults) and non carcinogenic risks (53.55% for children and 53.03% for adults). Therefore, industrial activities and agricultural activities were the priority control sources to reduce ecological risk and protect human health, respectively.
Collapse
Affiliation(s)
- Li-Mei Cai
- Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University), Wuhan, 430100, China; College of Resources and Environment, Yangtze University, Wuhan, 430100, China.
| | - Ke Quan
- Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University), Wuhan, 430100, China; College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Han-Hui Wen
- No. 940 Branch of Geology Bureau for Nonferrous Metals of Guangdong Province, Qingyuan, 511500, China
| | - Jie Luo
- Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University), Wuhan, 430100, China; College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Shuo Wang
- Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University), Wuhan, 430100, China; College of Resources and Environment, Yangtze University, Wuhan, 430100, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Lai-Guo Chen
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - He Song
- Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University), Wuhan, 430100, China; College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Ao Wang
- Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University), Wuhan, 430100, China; College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| |
Collapse
|
8
|
Wang H, Wu R, Zheng H, Gong Y, Yang Y, Zhu Y, Liu L, Cai M, Du S. Enhanced mobilization of soil heavy metals by the enantioselective herbicide R-napropamide compared to its S-isomer: Analyses of abiotic and biotic drivers. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135954. [PMID: 39353274 DOI: 10.1016/j.jhazmat.2024.135954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Chiral herbicides applied to agricultural soils are typically mildly to moderately contaminated with heavy metals (HMs), necessitating a thorough investigation into their effects on soil HMs availability. This study evaluated the effect of the chiral herbicide napropamide (NAP) on HMs bioavailability in different soil types, including weakly alkaline clay in Northeast China, neutral sandy loam in Zhejiang, and weakly acidic clay loam in Sichuan, China. The results demonstrate significant differences in the availability of HMs (Cd, Pb, Zn, and Ni) in the soil following enantiomer treatments, with variation ranges of 4.57-45.67 %, 5.03-96.21 %, 2.92-52.30 %, and 10.57-29.79 %, respectively. Overall, R-NAP enhanced the bioavailability of HMs more effectively than S-NAP, specifically by significantly activating available iron 3.33-191.97 % and markedly affecting soil pH and cation exchange capacity. Additionally, R-NAP influenced biotic processes by enriching dominant microbial communities, such as Chitinophaga, Niabella, and Promicromonospora, and by constructing more stable microbial networks. Notably, bioavailable Fe plays a dual regulatory role, affecting both the abiotic and biotic processes affected by soil NAP. In summary, although R-NAP is commonly used in agriculture, it poses a greater risk of HMs contamination in crops, highlighting the need for careful application and management. This study provides a fundamental theoretical basis for the judicious use of chiral herbicides in agricultural soils with mild-to-moderate HMs contamination.
Collapse
Affiliation(s)
- Hua Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Haoyi Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yanxia Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yong Yang
- Zhejiang Zhongyi Testing Research Institute Co. Ltd., Ningbo 315040, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Miaozhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
9
|
Li M, Li X, Hartley W, Luo X, Xiang C, Liu J, Guo J, Xue S. A meta-analysis of influencing factors on soil pollution around copper smelting sites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123083. [PMID: 39476666 DOI: 10.1016/j.jenvman.2024.123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Non-ferrous smelting activities have caused serious heavy metal(loid) pollution in soil which seriously threatens human health globally. A number of studies have been conducted to assess the characteristics and risks of soil heavy metal(loid) pollution around copper (Cu) smelting sites. However, the current research mainly focuses on soil pollution around a single smelter, and the global impact of Cu smelting on soil and its quantitative relationship with related factors need to be further studied. Meta-analysis can integrate a large amount of data and quantitatively analyze the relationship between multiple factors. To investigate the extent to which Cu smelting sites have contributed to heavy metal(loid) pollution in soils, a meta-analysis was conducted on 189 research publications from 1993 to 2023. Furthermore, a single meta regression was used to analyze the relationship between the soil heavy metal(loid)s (HMs) and influencing factors on a global scale. The results of meta-regression analysis showed that compared with the soil background value, Cu smelting significantly increased the concentration of HMs in soil (315%), with the concentration increase for each heavy metal(loid) being: Cu (1012%) > Cd (622%) > As (315%) > Pb (277%) > Zn (188%) > Cr (96%) > Ni (95%) > Mn (45%). Among these, Cu, Cd, and As were the major pollutants in soils around Cu smelting sites. Land use type was a key factor affecting HMs concentrations in surrounding soils, and the influence of non-agricultural land (381%) was greater than that of agricultural land (203%). In addition, the influence of Cu smelting on HMs were negatively correlated with distance (QM=9.86) and positively correlated with latitude (QM=10.7). There was no significant correlation between heavy metal(loid) pollution and soil chemical properties, average annual rainfall and temperature, longitude, or other factors. Our work may be meaningful to the risk control and remediation for Cu smelting sites.
Collapse
Affiliation(s)
- Mu Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Xue Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - William Hartley
- Royal Agricultural University, Cirencester, GL7 6JS, United Kingdom
| | - Xinghua Luo
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Chao Xiang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Jie Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
10
|
Wang M, Ma F, Zhong G, Liang T, Sun B, Liao J, Hu L, Pan J, Tang Z. Copper exposure promotes ferroptosis of chicken (Gallus gallus) kidney cells and causes kidney injury. J Trace Elem Med Biol 2024; 86:127501. [PMID: 39053339 DOI: 10.1016/j.jtemb.2024.127501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/05/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE While copper (Cu) is essential for biological organisms, excessive Cu can be harmful. Ferroptosis is a programmed cell death pathway, but the role of ferroptosis in renal injury induced by Cu is limited. The aim of this study was to investigate the role of ferroptosis in kidney injury in chickens and the molecular mechanism by which Cu promotes renal ferroptosis. MATERIALS AND METHODS Chicken were subjected to Cu treatment by artificially adding excess Cu to the basal diet (the Cu concentration in the diet was supplemented to 110-330 mg/kg), and the impact on kidney fibrosis, tissue structure, and ferroptosis-related molecular markers was studied. Then, the expression levels of genes and proteins related to ferroptosis, iron metabolism and ferroautophagy were detected to explore the promoting effect of Cu on ferroptosis in chicken kidney. MAIN FINDINGS Cu treatment resulted in significant fibrosis and tissue structure damage in chicken kidneys. Molecular analysis revealed a significant upregulation of LC3Ⅱ, P62, ATG5, and NCOA4, along with a decrease in FTH1 and FTL protein levels. Additionally, crucial markers of ferroptosis, including the loss of GPX4, SLC7A11, and FSP1, and an increase in PTGS2 and ACSL4 protein levels, were observed in chicken kidneys after Cu exposure. CONCLUSION Our study showed that dietary Cu excess caused kidney injury in brochickens and exhibited ferroptosis-related features, including lipid peroxidation, reduction of ferritin, and downregulation of FSP1 and GPX4. These results indicate that excess Cu can induce renal ferroptosis and lead to kidney injury in chickens. This study highlights the complex interplay between Cu ions and ferroptosis in the context of renal injury and provides a new perspective for understanding the mechanism of Cu-induced renal injury.
Collapse
Affiliation(s)
- Mengran Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Feiyang Ma
- College of Animal Science, Anhui Science and Technology University, Chuzhou, Anhui 233100, China.
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Tingyu Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Bingxia Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
11
|
Kasongo J, Alleman LY, Kanda JM, Kaniki A, Riffault V. Metal-bearing airborne particles from mining activities: A review on their characteristics, impacts and research perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175426. [PMID: 39137842 DOI: 10.1016/j.scitotenv.2024.175426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The presence of various contaminants in airborne dusts from metal mining sites poses obvious risks to human health and the environment. Yet, few studies have thoroughly investigated the properties of airborne particles in terms of their morphology, size distribution and chemical composition, that are associated with health effects around mining activities. This review presents the most recent knowledge on the sources, physicochemical characteristics, and health and environmental risks associated with airborne dusts from various mining and smelting operations. The literature reviewed found only one research on atmospheric dust associated with hydrometallurgical plants compared to a larger number of pyrometallurgical processes/smelters studies. In addition, there are relatively few works comparing the distribution of metals between the fine and coarse size fractions around mining sites. Our analysis suggests that (i) exposure pathways of metal(loid)s to the human body are defined by linking concentration data in human biosamples and contaminated samples such as soils, drinking water and food, and (ii) chitosan and its derivatives may serve as an environmentally friendly and cost-effective method for soil remediation, with removal rates for metal(loid)s around 70-95 % at pH 6-8, and as dust suppressants for unpaved roads around mining sites. The specific limit values for PM and metal(loid)s at mining sites are not well documented. Despite the health risks associated with fine particles around mining areas, regulations have tended to focus on coarse particles. While some air quality agencies have issued regulations for occupational health and safety, there is no global alignment or common regulatory framework for enforcement. Future research priorities should focus on investigating PM and secondary inorganic aerosols associated with hydrometallurgical processes and dust monitoring, using online metal(loid)s analysers to identify the driving parameters in the deposition and resuspension process.
Collapse
Affiliation(s)
- John Kasongo
- IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environnement, 59000 Lille, France; Department of Industrial Chemistry, Polytechnic Faculty, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.
| | - Laurent Y Alleman
- IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environnement, 59000 Lille, France.
| | - Jean-Marie Kanda
- Department of Industrial Chemistry, Polytechnic Faculty, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Arthur Kaniki
- Department of Industrial Chemistry, Polytechnic Faculty, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Véronique Riffault
- IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environnement, 59000 Lille, France
| |
Collapse
|
12
|
Li Z, Yao YX, Lu X, Peng K, He YZ, Liu ZB, Zhao H, Wang H, Xu DX, Tan ZX. Short-term respiratory cadmium exposure partially activates pulmonary NLRP3 inflammasome by inducing ferroptosis in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117106. [PMID: 39326353 DOI: 10.1016/j.ecoenv.2024.117106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Cadmium (Cd) is a common environmental metal. Previous studies indicated that long-term respiratory Cd exposure caused lung injury and airway inflammation. The purpose of this study was to evaluate whether short-term respiratory Cd exposure induces pulmonary ferroptosis and NLRP3 inflammasome activation. Adult C57BL/6J mice were exposed to Cd by inhaling CdCl2 aerosol (0, 10, or 100 ppm) for 5 days. Serum and lung Fe2+ contents were elevated in Cd-exposed mice. Oxidized AA metabolites, the major oxidized lipids during ferroptosis, were upregulated in Cd-exposed mouse lungs. Pulmonary MDA content and 4-HNE-positive cells were increased in Cd-exposed mice. ACSL4 and COX-2, two lipoxygenases, were upregulated in Cd-exposed mouse lungs. Further analyses found that phosphorylated NF-kB p65 was elevated in Cd-exposed mouse lungs. Innate immune receptor protein NLRP3 and adapter protein ASC were upregulated in Cd-exposed mouse lungs. Caspase-1 was activated and IL-1β and IL-18 were upregulated in Cd-exposed mouse lungs. Fer-1, a specific inhibitor of ferroptosis, attenuated Cd-induced elevation of pulmonary NLRP3 and ASC, caspase-1 activation, and IL-1β and IL-18 upregulation. Finally, mitoquinone (MitoQ), a mitochondria-target antioxidant, suppressed Cd-caused ferroptosis and NLRP3 inflammasome activation. Our results demonstrate that ferroptosis might partially mediate Cd-evoked activation of NLRP3 inflammasome in the lungs.
Collapse
Affiliation(s)
- Zhao Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ya-Xin Yao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue Lu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Kun Peng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi-Zhang He
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Bing Liu
- Department of Blood Transfusion, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.
| | - Zhu-Xia Tan
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
13
|
Wang Y, Zou B, Zuo X, Zou H, Zhang B, Tian R, Feng H. A remote sensing analysis method for soil heavy metal pollution sources at site scale considering source-sink relationships. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174021. [PMID: 38897476 DOI: 10.1016/j.scitotenv.2024.174021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Conventional methods for identifying soil heavy metal (HM) pollution sources are limited to area scale, failing to accurately pinpoint sources at specific sites due to the spatial heterogeneity of HMs in mining areas. Furthermore, these methods primarily focus on existing solid waste polluted dumps, defined as "direct pollution sources", while neglecting existing HM pollution hotspots generated by historical anthropogenic activities (e.g., mineral development, industrial discharges), defined as "potential pollution sources". Addressing this gap, a novel remote sensing analysis method is proposed to identify both direct and potential pollution sources at site scale, considering source-sink relationships. Direct pollution sources are extracted using a supervised classification algorithm on high-resolution multispectral imagery. Potential pollution sources depend on the spatial distribution of HM pollution, mapped using a machine learning model with hyperspectral imagery. Additionally, a source identification algorithm is developed for gridded pollution source analysis. Validated through a case study in a cadmium (Cd)-polluted mine area, the proposed method successfully extracted 21 solid waste polluted dumps with an overall accuracy approaching 90 % and a Kappa coefficient of 0.80. Simultaneously, 4167 HM pollution hotspots were identified, achieving optimal inversion accuracy for Cd (Rv2 = 0.91, RMSEv = 4.27, and RPDv = 3.02). Notably, the spatial distribution patterns of these identified sources exhibited a high degree of similarity. Further analysis employing the identification algorithm indicated that 3 polluted dumps and 258 pollution hotspots were pollution sources for a selected high-value point of Cd content. This innovative method provides a valuable methodological reference for precise prevention and control of soil HM pollution.
Collapse
Affiliation(s)
- Yulong Wang
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| | - Bin Zou
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China.
| | - Xuegang Zuo
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| | - Haijing Zou
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| | - Bo Zhang
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| | - Rongcai Tian
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| | - Huihui Feng
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| |
Collapse
|
14
|
Gao X, Jian S, Lei Y, Li B, Huang J, Ma X, He X. Evaluation and mechanistic analysis of the effect of the addition of alkaline earth metal CaO on Cd solidification enhancement in lightweight aggregate preparation. RSC Adv 2024; 14:30518-30528. [PMID: 39318453 PMCID: PMC11421553 DOI: 10.1039/d4ra04610b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024] Open
Abstract
The volatilization of Cd during the preparation of lightweight aggregates (LWAs) can cause serious damage to the environment, so a method to harmlessly transform Cd during this process is required. In this regard, the alkaline earth metal CaO was added to Cd-containing aggregate raw materials for treatment, and the effect of CaO addition on the properties of LWAs in the presence of chlorine and sulfate was investigated. Kinetic models of the Cd volatilization were established by using the Arrhenius equation to predict the volatilization of Cd at different sintering stages. The results showed that 0.8% wt of CaO under the influence of chlorine can reduce the Cd volatilization rate from 84.9% to 12.64%, corresponding to an increase in the reaction activation energy (E a) from 22.62 to 49.55 kJ mol-1. Additionally, the Cd volatilization rate under the influence of sulfate was reduced from 30% to 8%, with an increase in the E a from 33.25 to 42.62 kJ mol-1. The activation energy increase suggests that the addition of CaO is beneficial because it increases the energy required for Cd volatilization. According to the Cd leaching experiments conducted on the LWAs, it was found that the solidification ratio of Cd was higher than 99.9% for all samples after the addition of CaO. The addition of CaO promotes the formation of CdFe2O4 and anorthite for effective solidification of Cd, thus optimizing the structures of the LWAs. This work may provide a new idea for Cd waste recycling.
Collapse
Affiliation(s)
- Xin Gao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology Wuhan Hubei 430070 China
| | - Shouwei Jian
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology Wuhan Hubei 430070 China
| | - Yuting Lei
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology Wuhan Hubei 430070 China
| | - Baodong Li
- Department of Architecture and Civil Engineering, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Jianxiang Huang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology Wuhan Hubei 430070 China
| | - Xiaoyao Ma
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology Wuhan Hubei 430070 China
| | - Xinxin He
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology Wuhan Hubei 430070 China
| |
Collapse
|
15
|
Yan Y, Zhang Y, Xie Z, Wu X, Tu C, Chen Q, Tao L. Source Apportionment and Human Health Risks of Potentially Toxic Elements in the Surface Water of Coal Mining Areas. TOXICS 2024; 12:673. [PMID: 39330601 PMCID: PMC11435608 DOI: 10.3390/toxics12090673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Contamination with potentially toxic elements (PTEs) frequently occurs in surface water in coal mining areas. This study analyzed 34 surface water samples collected from the Yunnan-Guizhou Plateau for their hydrochemical characteristics, spatial distribution, source apportionment, and human health risks. Our statistical analysis showed that the average concentrations of PTEs in the surface water ranked as follows: Fe > Al > Zn > Mn > Ba > B> Ni > Li > Cd > Mo > Cu > Co > Hg > Se > As > Pb > Sb. The spatial analysis revealed that samples with high concentrations of Fe, Al, and Mn were predominantly distributed in the main stream, Xichong River, and Yangchang River. Positive matrix factorization (PMF) identified four sources of PTEs in the surface water. Hg, As, and Se originated from wastewater discharged by coal preparation plants and coal mines. Mo, Li, and B originated from the dissolution of clay minerals in coal seams. Elevated concentrations of Cu, Fe, Al, Mn, Co, and Ni were attributed to the dissolution of kaolinite, illite, chalcopyrite, pyrite, and minerals associated with Co and Ni in coal seams. Cd, Zn, and Pb were derived from coal melting and traffic release. The deterministic health risks assessment showed that 94.12% of the surface water samples presented non-carcinogenic risks below the health limit of 1. Meanwhile, 73.56% of the surface water samples with elevated As posed level III carcinogenic risk to the local populations. Special attention to drinking water safety for children is warranted due to their lower metabolic capacity for detoxifying PTEs. This study provides insight for PTE management in sustainable water environments.
Collapse
Affiliation(s)
- Yuting Yan
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yunhui Zhang
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China
- Sichuan Province Engineering Technology Research Center of Ecological Mitigation of Geohazards in Tibet Plateau Transportation Corridors, Chengdu 611756, China
| | - Zhan Xie
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xiangchuan Wu
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Chunlin Tu
- Kunming General Survey of Natural Resources Center, China Geological Survey, Kunming 650100, China
- Innovation Base for Eco-Geological Evolution, Protection and Restoration of Southwest Mountainous Areas, Geological Society of China, Kunming 650100, China
| | - Qingsong Chen
- Kunming General Survey of Natural Resources Center, China Geological Survey, Kunming 650100, China
- Innovation Base for Eco-Geological Evolution, Protection and Restoration of Southwest Mountainous Areas, Geological Society of China, Kunming 650100, China
| | - Lanchu Tao
- Kunming General Survey of Natural Resources Center, China Geological Survey, Kunming 650100, China
- Innovation Base for Eco-Geological Evolution, Protection and Restoration of Southwest Mountainous Areas, Geological Society of China, Kunming 650100, China
| |
Collapse
|
16
|
Anaman R, Peng C, Jiang Z, Amanze C, Fosua BA. Distinguishing the contributions of different smelting emissions to the spatial risk footprints of toxic elements in soil using PMF, Bayesian isotope mixing models, and distance-based regression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173153. [PMID: 38735332 DOI: 10.1016/j.scitotenv.2024.173153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Toxic element pollution of soils emanating from smelting operations is an escalating global concern due to its severe impact on ecosystems and human health. In this study, soil samples were collected and analyzed to quantify the risk contributions and delineate the spatial risk footprints from smelting emissions for 8 toxic elements. A comprehensive health risk contribution and delineation framework was utilized, consisting of Positive matrix factorization (PMF), spatial interpolation, an advanced Bayesian isotope mixing model via Mixing Stable Isotope Analysis in R (MixSIAR), and distance-based regression. The results showed that the mean concentrations of As, Cd, Cu, Hg, Pb, and Zn exceeded the background levels, indicating substantial contamination. Three sources were identified using the PMF model and confirmed by spatial interpolation and MixSIAR, with contributions ranked as follows: industrial wastewater discharge and slag runoff from the smelter site (48.9 %) > natural geogenic inputs from soil parent materials (26.7 %) > atmospheric deposition of dust particles from smelting operations (24.5 %). Among the identified sources, smelter runoff posed the most significant risk, accounting for 97.9 % of the non-carcinogenic risk (NCR) and 59.9 % of the carcinogenic risk (CR). Runoff also drove NCR and CR exceedances at 7.8 % and 4.7 % of sites near the smelter, respectively. However, atmospheric deposition from smelting emissions affected soils across a larger 0.8 km radius. Although it posed lower risks, contributing just 1.1 % to NCR and 22.6 % to CR due to the limited elevation of toxic elements, deposition reached more distant soils. Spatial interpolation and distance-based regression delineated high NCR and CR exposure hotspots within 1.4 km for runoff and 0.8 km for deposition, with exponentially diminishing risks at further distances. These findings highlight the need for pathway-specific interventions that prioritize localized wastewater containment and drainage controls near the smelter while implementing broader regional air pollution mitigation measures.
Collapse
Affiliation(s)
- Richmond Anaman
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Zhichao Jiang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Bridget Ataa Fosua
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
17
|
Gogoi BB, Yeasin M, Paul RK, Borgohain A, Deka D, Malakar H, Saikia J, Rahman FH, Panja S, Sarkar A, Maiti CS, Bordoloi J, Karak T. The Level of Selected Metals in Made Tea and Tea Infusion from the Roadside Tea Plants and Health Risk Assessment. Biol Trace Elem Res 2024; 202:2900-2920. [PMID: 37755587 DOI: 10.1007/s12011-023-03865-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
The effects of human activities are becoming clearer every year, with multiple reports of struggling and eroded ecosystems resulting in new threats of plant and animal extinctions throughout the world. It has been speculated that roadside tea-growing soils impact on metal dynamics from soil to tea plants and subsequently to tea infusion which may be threatened by increasingly unpredictable and dangerous surroundings. Furthermore, heavy metals released from vehicles on the national highway (NH) could be a source of metal contamination in roadside tea soils and tea plants. This study was articulated to realize the effect of NH on a buildup of selected metals (Cu, Cd, Fe, Mn, Ni, and Zn) in made tea along with repeated tea infusion. In general, metal concentration was found significantly higher in made tea prepared from the young shoots collected from the vicinity of NH. The results also showed that distance from the NH and infusion process significantly influenced to content of the analysed metal in tea infusions. The mean average daily intake (ADI) and hazard quotient (HQ) values of analysed tea samples were found in the orderMn˃Fe˃Zn˃Cu˃Ni˃Cd and Mn˃Cu˃Zn˃Fe˃Ni˃Cd, respectively. The HQ values of all analysed metals were found << 1, indicating that ingestion of tea infusion with analysed heavy metals should not cause a danger to human health. However, this study further demonstrates the consumption of tea infusion prepared from made tea around the vicinity of NH may contribute to a significantly higher quantity of metal intake in the human body. From the hierarchical cluster analysis, it has been observed that there are three homogenous groups of analysed heavy metals.
Collapse
Affiliation(s)
- Bidyot Bikash Gogoi
- Tea Research Association, Upper Assam Advisory Centre, Dikom-786101, Dibrugarh, Assam, India
- Department of Chemistry, D.H.S.K. College, 786001, Dibrugarh, Assam, India
- Department of Chemistry, Dibrugarh University, 786001, Dibrugarh, Assam, India
| | - Md Yeasin
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Ranjit Kumar Paul
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Arup Borgohain
- Tea Research Association, Upper Assam Advisory Centre, Dikom-786101, Dibrugarh, Assam, India
- Department of Chemistry, Dibrugarh University, 786001, Dibrugarh, Assam, India
| | - Diganta Deka
- Tea Research Association, North Bank Advisory Centre, Thakurbari, 784 503, Assam, India
| | - Harisadhan Malakar
- Tea Research Association, Tocklai Tea Research Institute, Cinnamara-785008, Jorhat, Assam, India
| | - Jiban Saikia
- Department of Chemistry, Dibrugarh University, 786001, Dibrugarh, Assam, India
| | - Feroze Hasan Rahman
- ICAR-NBSS&LUP, Regional Center Kolkata, Block DK, Sector II, Salt Lake, Kolkata-700091, India
| | - Saumik Panja
- University of California, San Francisco 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Animesh Sarkar
- Department of Horticulture, School of Agricultural Sciences, Nagaland University, Medziphema Campus-797106, Medziphema, Nagaland, India
| | - C S Maiti
- Department of Horticulture, School of Agricultural Sciences, Nagaland University, Medziphema Campus-797106, Medziphema, Nagaland, India
| | - Jurisandhya Bordoloi
- Department of Soil Science, School of Agricultural Sciences, Nagaland University, Medziphema Campus-797106, Medziphema, Nagaland, India
| | - Tanmoy Karak
- Tea Research Association, Upper Assam Advisory Centre, Dikom-786101, Dibrugarh, Assam, India.
- Department of Soil Science, School of Agricultural Sciences, Nagaland University, Medziphema Campus-797106, Medziphema, Nagaland, India.
| |
Collapse
|
18
|
Qi Z, Zhao Q, Yu Z, Yang Z, Feng J, Song P, He X, Lu X, Chen X, Li S, Yuan Y, Cai Z. Assessing the Impact of PM 2.5-Bound Arsenic on Cardiovascular Risk among Workers in a Non-ferrous Metal Smelting Area: Insights from Chemical Speciation and Bioavailability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8228-8238. [PMID: 38695658 PMCID: PMC11097390 DOI: 10.1021/acs.est.3c10761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 05/15/2024]
Abstract
Inhalation of fine particulate matter PM2.5-bound arsenic (PM2.5-As) may cause significant cardiovascular damage, due to its high concentration, long transmission range, and good absorption efficiency in organisms. However, both the contribution and the effect of the arsenic exposure pathway, with PM2.5 as the medium, on cardiovascular system damage in nonferrous smelting sites remain to be studied. In this work, a one-year site sample collection and analysis work showed that the annual concentration of PM2.5-As reached 0.74 μg/m3, which was 120 times the national standard. The predominant species in the PM2.5 samples were As (V) and As (III). A panel study among workers revealed that PM2.5-As exposure dominantly contributed to human absorption of As. After exposure of mice to PM2.5-As for 8 weeks, the accumulation of As in the high exposure group reached equilibrium, and its bioavailability was 24.5%. A series of animal experiments revealed that PM2.5-As exposure induced cardiac injury and dysfunction at the environmental relevant concentration and speciation. By integrating environmental and animal exposure assessments, more accurate health risk assessment models exposed to PM2.5-As were established for metal smelting areas. Therefore, our research provides an important scientific basis for relevant departments to formulate industry supervision, prevention and control policies.
Collapse
Affiliation(s)
- Zenghua Qi
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Qiting Zhao
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Zixun Yu
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Zhu Yang
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, China
| | - Jie Feng
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Pengfei Song
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Xiaochong He
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Xingwen Lu
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Xin Chen
- The
Center for Reproductive Medicine, Shunde Hospital, Southern Medical University (The First People’s Hospital of
Shunde), 528300 Foshan, Guangdong, China
| | - Shoupeng Li
- Analysis
and Test Center, Guangdong University of
Technology, Guangzhou 510006, China
| | - Yong Yuan
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, China
| |
Collapse
|
19
|
Zaman F, Khattak WA, Ihtisham M, Ilyas M, Ali A, Ali A, Khan H, Khan KA, Ni D, Zhao H, Chen FS. Assessing the health risks of heavy metals and seasonal minerals fluctuations in Camellia sinensis cultivars during their growth seasons. Food Chem Toxicol 2024; 187:114586. [PMID: 38493978 DOI: 10.1016/j.fct.2024.114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
The risk assessment of heavy metals in tea is extremely imperative for the health of tea consumers. However, the effects of varietal variations and seasonal fluctuations on heavy metals and minerals in tea plants remain unclear. Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to evaluate the contents of aluminum (Al), manganese (Mn), magnesium (Mg), boron (B), calcium (Ca), copper (Cu), cobalt (Co), iron (Fe), sodium (Na), zinc (Zn), arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and antimony (Sb) in the two categories of young leaves (YL) and mature leaves (ML) of tea (Camellia sinensis) cultivars throughout the growing seasons. The results showed significant variations in the contents of the investigated nutrients both among the different cultivars and growing seasons as well. Furthermore, the average concentrations of Al, Mn, Mg, B, Ca, Cu, Co, Fe, Na, Zn, As, Cd, Cr, Ni, and Sb in YL ranged, from 671.58-2209.12, 1260.58-1902.21, 2290.56-2995.36, 91.18-164.68, 821.95-5708.20, 2.55-3.80, 3.96-25.22, 37.95-202.84, 81.79-205.05, 27.10-69.67, 0.028-0.053, 0.065-0.127, 2.40-3.73, 10.57-12.64, 0.11-0.14 mg kg-1, respectively. In ML, the concentrations were 2626.41-7834.60, 3980.82-6473.64, 3335.38-4537.48, 327.33-501.70, 9619.89-13153.68, 4.23-8.18, 17.23-34.20, 329.39-567.19, 145.36-248.69, 40.50-81.42, 0.089-0.169, 0.23-0.27, 5.24-7.89, 18.51-23.97, 0.15-0.19 mg kg-1, respectively. The contents of all analyzed nutrients were found to be higher in ML than in YL. Target hazard quotients (THQ) of As, Cd, Cr, Ni, and Sb, as well as the hazard index (HI), were all less than one, suggesting no risk to human health via tea consumption. This research might provide the groundwork for essential minerals recommendations, as well as a better understanding and management of heavy metal risks in tea.
Collapse
Affiliation(s)
- Fawad Zaman
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang, 330045, China; Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China; National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wajid Ali Khattak
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Muhammad Ihtisham
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, 644000, China
| | - Muhammad Ilyas
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Abbas Ali
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang, 330045, China; Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haroon Khan
- Department of Weed Science and Botany, The University of Agriculture, Peshawar, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and Its Products, Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Zhao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Fu-Sheng Chen
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang, 330045, China; Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
20
|
Wu C, Hu X, Jiang Y, Tang J, Ge H, Deng S, Li X, Feng J. Involvement of ERK and Oxidative Stress in Airway Exposure to Cadmium Chloride Aggravates Airway Inflammation in Ovalbumin-Induced Asthmatic Mice. TOXICS 2024; 12:235. [PMID: 38668459 PMCID: PMC11054730 DOI: 10.3390/toxics12040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024]
Abstract
Inhalation represents a significant route of cadmium (Cd) exposure, which is associated with an elevated risk of lung diseases. This research study aims to evaluate the impact of repeated low-dose cadmium inhalation on exacerbating airway inflammation induced by ovalbumin (OVA) in asthma-afflicted mice. Mice were grouped into four categories: control (Ctrl), OVA, cadmium chloride (CdCl2), and OVA + cadmium chloride (OVA + CdCl2). Mice in the OVA group displayed increased airway mucus secretion and peribronchial and airway inflammation characterized by eosinophil cell infiltration, along with elevated levels of Th2 cytokines (IL-4, IL-5, IL-13) in bronchoalveolar lavage fluids (BALFs). These parameters were further exacerbated in the OVA + CdCl2 group. Additionally, the OVA + CdCl2 group exhibited higher levels of the oxidative stress marker malondialdehyde (MDA), greater activity of glutathione peroxidase (GSH-Px), and higher phosphorylation of extracellular regulated kinase (ERK) in lung tissue. Treatment with U0126 (an ERK inhibitor) and α-tocopherol (an antioxidant) in the OVA + CdCl2 group resulted in reduced peribronchial and airway inflammation as well as decreased airway mucus secretion. These findings indicate that CdCl2 exacerbates airway inflammation in OVA-induced allergic asthma mice following airway exposure. ERK and oxidative stress are integral to this process, and the inhibition of these pathways significantly alleviates the adverse effects of CdCl2 on asthma exacerbation.
Collapse
Affiliation(s)
- Chendong Wu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Xinyue Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yuanyuan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jiale Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Huan Ge
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Xiaozhao Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Juntao Feng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| |
Collapse
|
21
|
Xu D, Wang Z, Tan X, Xu H, Zhu D, Shen R, Ding K, Li H, Xiang L, Yang Z. Integrated assessment of the pollution and risk of heavy metals in soils near chemical industry parks along the middle Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170431. [PMID: 38301773 DOI: 10.1016/j.scitotenv.2024.170431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Industrialization in riparian areas of critical rivers has caused significant environmental and health impacts. Taking eight industrial parks along the middle Yangtze River as examples, this study proposes a multiple-criteria approach to investigate soil heavy metal pollution and associated ecological and health risks posed by industrial activities. Aiming at seven heavy metals, the results show that nickel (Ni), cadmium (Cd), and copper (Cu) exhibited the most significant accumulation above background levels. The comprehensive findings from Pearson correlation analysis, cluster analysis, principal component analysis, and industrial investigation uncover the primary sources of Cd, arsenic (As), mercury (Hg), and lead (Pb) to be chemical processing, while Ni and chromium (Cr) are predominantly derived from mechanical and electrical equipment manufacturing. In contrast, Cu exhibits a broad range of origins across various industrial processes. Soil heavy metals can cause serious ecological and carcinogenic health risks, of which Cd and Hg contribute to >70 % of the total ecological risk, and As contributes over 80 % of the total health risk. This study highlights the importance of employing multiple mathematical and statistical models in determining and evaluating environmental hazards, and may aid in planning the environmental remediation engineering and optimizing the industry standards.
Collapse
Affiliation(s)
- Dong Xu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Zejun Wang
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China.
| | - Xiaoyu Tan
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
| | - Haohan Xu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Dongbo Zhu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Ruili Shen
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Kang Ding
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Hongcheng Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Luojing Xiang
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China.
| | - Zhibing Yang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
22
|
Adnan M, Xiao B, Ali MU, Xiao P, Zhao P, Wang H, Bibi S. Heavy metals pollution from smelting activities: A threat to soil and groundwater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116189. [PMID: 38461579 DOI: 10.1016/j.ecoenv.2024.116189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Throughout the literature, the word "heavy metal" (HM) has been utilized to describe soil contamination; in this context, we characterize it as those elements with a density greater than 5 g per cubic centimeter. Contamination is one of the major global health concerns, especially in China. China's rapid urbanization over the past decades has caused widespread urban water, air, and soil degradation. This study provides a complete assessment of the soil contamination caused by heavy metals in China's mining and smelting regions. The study of heavy metals (HMs) includes an examination of their potential adverse impacts, their origins, and strategies for the remediation of soil contaminated by heavy metals. The presence of heavy metals in soil can be linked to both natural and anthropogenic processes. Studies have demonstrated that soils contaminated with heavy metals present potential health risks to individuals. Children are more vulnerable to the effects of heavy metal pollution than adults. The results highlight the significance of heavy metal pollution caused by mining and smelting operations in China. Soil contaminated with heavy metals poses significant health concerns, both carcinogenic and non-carcinogenic, particularly to children and individuals living in heavily polluted mining and smelting areas. Implementing physical, chemical, and biological remediation techniques is the most productive approach for addressing heavy metal-contaminated soil. Among these methods, phytoremediation has emerged as a particularly advantageous option due to its cost-effectiveness and environmentally favorable characteristics. Monitoring heavy metals in soils is of utmost importance to facilitate the implementation of improved management and remediation techniques for contaminated soils.
Collapse
Affiliation(s)
- Muhammad Adnan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Baohua Xiao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, PR China.
| | - Muhammad Ubaid Ali
- Department of Soil Sciences, Southern Federal University, Rostov-on-Don, Russia
| | - Peiwen Xiao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Peng Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Haiyan Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shaheen Bibi
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
23
|
Ju Y, Luo Z, Bi J, Liu C, Liu X. Transfer of heavy metals from soil to tea and the potential human health risk in a regional high geochemical background area in southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168122. [PMID: 37918746 DOI: 10.1016/j.scitotenv.2023.168122] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Tea is one of the most consumed nonalcoholic beverages. The collaborative analysis of heavy metals soil-to-tea transfer and the associated potential risk to human health is important. This study features a survey of As, Cd, Pb and Cr in 144 paired soils and tea leaves from six main tea-growing regions (Fengqing, Linxiang, Yongde, Mangshi, Longling, and Yunlong) in Yunnan, China. The data showed soil acidification (pH = 4.77-5.17) in tea plantations, affecting heavy metals bioavailability thereby the transfer to tea leaves. Soil total and bioavailable As, Cd, Pb and Cr concentrations were 1.45-117, 0.025-0.67, 15.2-153, 3.8-409 mg kg-1 and 0.03-0.22, 0.011-0.38, 0.59-17, 0.013-0.47 mg kg-1, respectively. Specifically, As concentration in 20.8 % of the soil samples exceeded the standard value at 40 mg kg-1, while the standard-exceeding ratio of Cr was low at 9 %. Besides, Cd showed high bioavailability at 44-56.1 %, while Cr was low at 0.12-0.34 %. Arsenic, Cd, and Pb in tea leaves were within the standard values at 2, 1 and 5 mg kg-1. However, though soil Cr was low in standard-exceeding ratio and bioavailability, Cr accumulation in tea showed high standard-exceeding ratio (72.2 %). This indicated that soil heavy metals concentration and bioavailability are not necessarily to predict the pollution risk in tea leaves. Besides, tea favors to accumulate Cd, with 16 % showing BAF > 1. Though Cr in tea leaves was highly standard-exceeded and Cd was uptake-preferred, the target hazard quotients (THQ; <1) and aggregate risk hazard indexes (HI; 0.046) suggested that there was no potential risks to human health. This indicated that high pollution risk in tea leaves is not necessarily to induce risk to human health. The information helps to better understand the efficiency and influencing factors for heavy metals soil-to-tea leaves transfer and strategize how to more accurate evaluate the risks in soil pollution, food safety and human health.
Collapse
Affiliation(s)
- Yongwang Ju
- College of Ecology and Environment, Southwest Forestry University, Yunnan 650224, China
| | - Ziwen Luo
- Institute of Tea, Yunnan Academy of Agricultural Sciences, Yunnan 650205, China
| | - Jue Bi
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan 678000, China
| | - Chaozhu Liu
- College of Ecology and Environment, Southwest Forestry University, Yunnan 650224, China
| | - Xue Liu
- College of Ecology and Environment, Southwest Forestry University, Yunnan 650224, China.
| |
Collapse
|
24
|
Zhao Y, Li D, Xiao D, Xiang Z, Yang X, Xiao Y, Xiao X, Cheng J, Lu Q, Zhang Q. Co-exposure of heavy metals in rice and corn reveals a probabilistic health risk in Guizhou Province, China. Food Chem X 2023; 20:101043. [PMID: 38144805 PMCID: PMC10740133 DOI: 10.1016/j.fochx.2023.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/26/2023] Open
Abstract
The adverse effects of heavy metals have arousing concern in the high geological background area, especially in southwestern Guizhou, China. However, the pollution status of heavy metals are still unclear when exposed to rice and corn in Guizhou province. Therefore, the concentration, pollution level, spatial distribution, and probabilistic health risks of Ni, Cr, Pb, Cu, and Zn are estimated in rice and corn. A total of 241 samples (117 for rice and 124 for corn) were collected from Guizhou province and measured by a method of inductively coupled plasma-mass spectrometry (ICP-MS). The results showed that rice and corn were contaminated with Ni and Cr. High concentrations of Ni were presented in the southeast of rice. It indicated that 22.0 % of rice samples were contaminated with Ni. HI values for children and adults exceeded 1.0 in rice and corn, suggesting that humans might be subject to probabilistic non-carcinogenic risks. FTCR demonstrated that rice and corn might cause probabilistic carcinogenic risks to children and adults, which were both greatly higher than 1.0 × 10-4. Moreover, the contributions of Ni to the HI and FTCR were the highest for adults and children. Therefore, more attention should be paid to the exposure of heavy metals in rice and corn, especially in Ni. The results would provide a novel prospective for pollution control and be helpful for environmental regulation.
Collapse
Affiliation(s)
- Yifang Zhao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- Guizhou Institute of Biology, Guiyang 550009, Guizhou, China
| | - Dashuan Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Daofen Xiao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Zhun Xiang
- Guizhou Institute of Biology, Guiyang 550009, Guizhou, China
| | - Xianping Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Yuanji Xiao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Xiangli Xiao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Jianzhong Cheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qinhui Lu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Qinghai Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
25
|
Wang J, Yuan J, Hou Q, Yang Z, You Y, Yu T, Ji J, Dou L, Ha X, Sheng W, Liu X. Distribution of potentially toxic elements in soils and sediments in Pearl River Delta, China: Natural versus anthropogenic source discrimination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166573. [PMID: 37633402 DOI: 10.1016/j.scitotenv.2023.166573] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Although anthropogenic contamination has been regarded as the most important source of potentially toxic elements (PTEs) in soils of large river delta plains, the extent to which human activities affect PTEs in soils is worth exploring. This study used high density geochemical data to distinguish source patterns of PTEs in soils of the Pearl River Delta Economic Zone, a large industrialized and urbanized area in China. Enrichment factor, discriminant analysis, principal components analysis, cumulative distribution function, and positive matrix factorization were used to identify sources of PTEs in soils. The results indicated that parent material was the most significant factor affecting geochemical characteristics of PTEs in soils. Median concentrations of Cd, Cr, Cu, Hg, Pb, and Zn were 0.400, 88.5, 40.5, 0.143, 43.0, and 116.0 mg/kg for stream sediments, 0.333, 75.7, 39.0, 0.121, 42.6, and 98.5 mg/kg for deep soils, and 0.365, 74.0, 45.1, 0.143, 44.6, and 119.5 mg/kg for surface soils, respectively, all of which exceed relevant reference standards. Compared with stream sediments and deep soils, surface soils exhibit substantial concentrations of PTEs. Chemical weathering and erosion of parent materials distributed in the Pearl River Delta were the main sources of PTEs in soils. Diffuse contamination and many small local contamination sources distributed throughout the study area were the most significant anthropogenic sources of PTEs in surface soils. Intensive human activities failed to change the soil geochemical characteristics derived from the parent material at the regional scale. However, it could induce non-point source pollution and local severe PTEs pollution in surface soils.
Collapse
Affiliation(s)
- Jiaxin Wang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| | - Jiaxin Yuan
- Tianjin Research Institute for Water Transport Engineering, M.O.T, Tianjin, 300456, China
| | - Qingye Hou
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| | - Yuanhang You
- 3rd Geological Team, Guangdong Geological Bureau, Shaoguan 512030, China
| | - Tao Yu
- School of sciences, China University of Geosciences, Beijing 100083, China.
| | - Junfeng Ji
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China.
| | - Lei Dou
- Institute of Guangdong Geological Survey, Guangdong Geological Bureau, Guangzhou 510080, China
| | - Xianrui Ha
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| | - Weikang Sheng
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Xu Liu
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
26
|
Yang H, Li R, Li J, Guo Y, Gao T, Guo D, Zhang Q. Changes of heavy metal concentrations in farmland soils affected by non-ferrous metal smelting in China: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122442. [PMID: 37634567 DOI: 10.1016/j.envpol.2023.122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Long-term human smelting activities have resulted in substantial heavy metals (HMs) pollution of farmland soils around smelting sites, and the safety of farmland products is critical for human health. The current study focuses on HMs in farmland soils surrounding a single smelter, therefore the impact of smelting on a national scale needs to be investigated further. This study was based on 116 papers and 1143 sets of relevant data for meta-analysis, and a hierarchical mixed-effects model was used to quantify the changes of HMs concentrations in farmland soils affected by non-ferrous metal smelting on a national scale, as well as their relationships with relevant explanatory variables in China. Results showed that: (i) non-ferrous metal smelting substantially increased farmland soils HMs concentrations (323%), with each HM concentration increasing in the following order: Cd (2753%) > Pb (562%) > Hg (455%) > Zn (228%) > Cu (158%) > As (107%) > Ni (52%); (ii) the highest increase of HMs in vegetable fields (361%), but not significant in comparison to other farmland categories, and the increase of Pb, Zn, Cu and As concentrations were significantly different in different types of smelting areas; (iii) the increase of Hg was significantly higher in the northern region than in the southern region, and the opposite increase of Cu; (iv) the soil depth from 0 to 40 cm was significantly affected by smelting, and the increase of multiple HMs were significantly positively correlated with soil pH and negatively correlated with distance; (v) the other explanatory variables (farmland category and soil organic matter) were not significantly related to the effect of smelting. The results can provide some reference for protecting and restoring farmland soils around smelting areas.
Collapse
Affiliation(s)
- HaiXin Yang
- College of Environment and Resource, Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China
| | - RongRong Li
- College of Environment and Resource, Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China
| | - JiaSheng Li
- College of Environment and Resource, Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China
| | - YuRu Guo
- College of Environment and Resource, Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China
| | - TianShu Gao
- College of Environment and Resource, Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China
| | - DongGang Guo
- College of Environment and Resource, Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China
| | - QuanXi Zhang
- College of Environment and Resource, Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
27
|
Lei D, Li S, Gao L, Hu M, Chai N, Fan J. Preparation of sulfur self-doped coal-based adsorbent and its adsorption performance for Cu 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115543-115555. [PMID: 37884718 DOI: 10.1007/s11356-023-30529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
The limited application of high-sulfur coal (HSC) and the increasing severity of copper pollution in solution are two pressing issues. To alleviate such issues, a sulfur self-doped coal-based adsorbent (HSC@ZnCl2) was obtained by pyrolysis (850 °C, 60 min holding time) of HSC and ZnCl2 with a mass ratio of 1:0.5. The results adsorption experiment revealed that the endothermic and spontaneous adsorption process was consistent with the Sips isothermal model (R2 = 0.992) and pseudo-second-order kinetic (R2 = 0.994), and that the adsorption process with a maximum adsorption capacity of 11.97 mg/g. Meanwhile, the adsorption of Cu2+ onto HSC@ZnCl2 was a result of the synergistic effects of various interactions, such as the complexation by oxygen-containing functional groups, electrostatic attraction and surface precipitation by ZnS on the adsorbent surface, and the process also included redox reaction. The findings of this work indicate that the preparation of sulfur self-doped coal-based adsorbent prepared from high-sulfur coal is a promising method for its large-scale utilization.
Collapse
Affiliation(s)
- Dengke Lei
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 22116, China
| | - Shulei Li
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, 22116, China.
| | - Lihui Gao
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 22116, China
| | - Ming Hu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 22116, China
| | - Na Chai
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 22116, China
| | - Jundi Fan
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 22116, China
| |
Collapse
|
28
|
He Y, Zhang Q, Wang W, Hua J, Li H. The multi-media environmental behavior of heavy metals around tailings under the influence of precipitation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115541. [PMID: 37806132 DOI: 10.1016/j.ecoenv.2023.115541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/18/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Precipitation can lead to significant leaching of heavy metals from abandoned tailings,resulting in a decline in the quality of the surrounding environment. This study aimed to simulate and quantify the migration patterns and fate of heavy metals in tailings caused by precipitation in various environmental media (tailings, air, water, soil, and sediments) using leaching tests, source apportionment, and a fugacity model. Results revealed that the average contents of Cd, Cu, As, Pb, Zn, and Cr in the un-weathered tailings were 3.43, 495.56, 160.70, 138.94, 536.57, and 69.52 mg/kg, respectively. The ecological risk factors in the tailings as well as in sediments and soils, were in the following order: Cd >Cu >As >Pb >Zn >Cr. A fugacity model based on the mass-balance methods was established, achieving a good agreement between simulation and measured values. The total amounts of Cd, Cu, As, Pb, and Zn leached from abandoned tailings over the 30-year evaluation period were estimated to be 1.09, 62.44, 0.16, 0.94, and 102.12 t, respectively. Soil and sediments are important reservoirs for heavy metals. The sum of the As, Cd, Cu, Pb, and Zn storage capacities in the soil and sediment accounted for 77.28%, 75.63%, 73.94%, 69.39%, and 57.80% of the total storage capacity, respectively. This study could provide the means for the establishment of a targeted pollution control plan, a guide for restoration projects, and will aid in controlling pollution risk and improving the surrounding environment.
Collapse
Affiliation(s)
- Yujie He
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Qian Zhang
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Wenjie Wang
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Jie Hua
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Haisheng Li
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
29
|
Liu F, Wang X, Dai S, Zhou J, Liu D, Hu Q, Bai J, Zhao L, Nazir N. Impact of different industrial activities on heavy metals in floodplain soil and ecological risk assessment based on bioavailability: A case study from the Middle Yellow River Basin, northern China. ENVIRONMENTAL RESEARCH 2023; 235:116695. [PMID: 37467945 DOI: 10.1016/j.envres.2023.116695] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Understanding the impact of different industrial activities on heavy metals and conducting scientific ecological risk assessments are critical to the management of heavy metal pollution. The present study compared soils affected by different industrial activities in three types of industrial cities (coal city, oil-gas city, and economic city) to control samples and examined the ecological risk based on bioavailability in the Middle Yellow River Basin. The findings revealed that the impact characteristics of different industrial activities on soil heavy metals in the research area were different. Both coal-based and oil-gas industry activities had a minor impact on soil heavy metals, whereas economic industry activities in the southern part had a major impact, as evidenced by significant enrichment of Cd, Hg, Cu, Pb, and Zn. In principal component analysis, the soil heavy metals affected by economic industry activities designated a distinct source from the control samples, particularly the anthropogenic sources represented by Hg and Cd. In the context of heavy metals in chemical form, three types of industrial activities all had an effect on bioavailability (0.72-24.27%) and could increase migratory activity in the environment. Furthermore, both traditional and improved assessments, based on total content and bioavailability, showed a low ecological risk near coal cities and oil-gas cities in the middle and northern parts, while there was a medium-high ecological risk near economically developed cities in the south, particularly Tianshui, Baoji, Qishan, Xianyang, Xi'an, and Tongchuan. In comparison, improved risk assessment based on bioavailability tends to not only compensate for an overestimation in traditional risk assessment from the perspective of total content, but additionally achieve a more reasonable, effective, and advanced assessment of heavy metal risks in scientific research. The outcome of this study has significance for the ecological conservation and high-quality development of the Yellow River Basin.
Collapse
Affiliation(s)
- Futian Liu
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources & School of Earth Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Xueqiu Wang
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang, 065000, China; UNESCO International Center on Global-scale Geochemistry, Langfang, 065000, China.
| | - Shuang Dai
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources & School of Earth Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Jian Zhou
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang, 065000, China; UNESCO International Center on Global-scale Geochemistry, Langfang, 065000, China
| | - Dongsheng Liu
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang, 065000, China; UNESCO International Center on Global-scale Geochemistry, Langfang, 065000, China
| | - Qinghai Hu
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang, 065000, China; UNESCO International Center on Global-scale Geochemistry, Langfang, 065000, China
| | - Jianke Bai
- Xining Center of Natural Resources Comprehensive Survey, CGS, Xining, 810000, China
| | - Linxing Zhao
- Xining Center of Natural Resources Comprehensive Survey, CGS, Xining, 810000, China
| | - Nusrat Nazir
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources & School of Earth Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
30
|
Xu J, Wu Y, Wang S, Wang Y, Dong S, Chen Z, He L. Source identification and health risk assessment of heavy metals with mineralogy: the case of soils from a Chinese industrial and mining city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7255-7274. [PMID: 37004580 DOI: 10.1007/s10653-023-01548-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Understanding the precise sources of heavy metals (HMs) in soil and the contribution of these sources to health risks has positive effects in terms of risk management. This study focused on the HMs in the soil of five land uses in an industrial and mining city. The sources of HMs in soils were identified, and the soil mineralogical characteristics and health risks of HMs were discussed. The results showed that the HMs (Cu, Zn, Ni, Cd, Pb) found in the soil of the five land uses were affected by human activities. For example, the Cu in grassland, gobi beach, woodland, green belt, and farmland is 22.3, 3.5, 22.5, 16.7, and 21.3 times higher than the soil background values in Gansu Province, respectively. The Positive Matrix Factorization model (PMF) results revealed that traffic emissions and industrial and agricultural activities were the primary sources of HMs in the soil, with industrial sources accounting for the largest share at 55.79%. Furthermore, various characteristics proved that the studied HMs were closely related to smelting products. Concentration-oriented health risk assessments showed that HMs in the different soil types held non-carcinogenic and carcinogenic risks for children and adults. Contamination source-oriented health risk assessments of children and adults found that industrial activities controlled non-carcinogenic and carcinogenic risks. This study highlighted the critical effects of smelting on urban soil and the contribution of pollution sources to health risks. Furthermore, this work is significant in respect of the risk control of HMs in urban soils.
Collapse
Affiliation(s)
- Jun Xu
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Yi Wu
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Shengli Wang
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
| | - Yufan Wang
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Suhuang Dong
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Zhaoming Chen
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Liang He
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| |
Collapse
|
31
|
Li Y, Bai H, Li Y, Zhang X, Zhang L, Zhang D, Xu M, Zhang H, Lu P. An integrated approach to identify the source apportionment of potentially toxic metals in shale gas exploitation area soil, and the associated ecological and human health risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132006. [PMID: 37453347 DOI: 10.1016/j.jhazmat.2023.132006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Public awareness of the potential environmental risks of shale gas extraction has increased in recent years. However, the status and environmental risks of potentially toxic metals (PTMs) in shale gas field soil remain unclear. A total of 96 topsoil samples were collected from the first shale gas exploitation area in China. The sources of nine PTMs in the soils were identified using positive matrix factorization and correlation analysis, and the ecological and human health risks of toxic metals from different sources under the two land use types were calculated. The results showed that mean pollution load index (PLI) values for farmland (1.18) and woodland (1.40) indicated moderate pollution, As, Cd and Ni were the most serious contaminants among all nine PTMs. The following four sources were identified: shale gas extraction activities (43.90%), nature sources (31.90%), agricultural and traffic activities (17.55%) and industrial activities (6.55%). For ecological risk, the mean ecological risk index (RI) values for farmlands (161.95) and woodlands (185.27) reaching considerable risk. The contribution ratio of shale gas extraction activities for farmlands and woodlands were 5.70% and 8.90%, respectively. Regarding human health risk, noncarcinogenic risks for adults in farmlands and woodlands were negligible. Industrial activities, agricultural and traffic activities were estimated to be the important sources of health risks. Overall, shale gas extraction activities had little impact on the ecological and human health risk. This study provides scientific evidence regarding the soil contamination potential of shale gas development activities.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Hongcheng Bai
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Yutong Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Chongqing Academy of Eco-environmental Science, Chongqing 401147, China
| | - Xin Zhang
- The Key Laboratory of GIS Application and Research, Chongqing Normal University, Chongqing 401331, China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Min Xu
- Department of Environmental Science, College of Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Zhang
- The Key Laboratory of GIS Application and Research, Chongqing Normal University, Chongqing 401331, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
32
|
Stone T, Trepal D, Lafreniere D, Sadler RC. Built and social indices for hazards in Children's environments. Health Place 2023; 83:103074. [PMID: 37482035 DOI: 10.1016/j.healthplace.2023.103074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023]
Abstract
Leveraging the capabilities of the Historical Spatial Data Infrastructure (HSDI) and composite indices we explore the importance of children's built and social environments on health. We apply contemporary GIS methods to a set of 2000 historical school records contextualized within an existing HSDI to establish seven variables measuring the relative quality of each child's built and social environments. We then combined these variables to create a composite index that assesses acute (short-term) health risks generated by their environments. Our results show that higher acute index values significantly correlated with higher presence of disease in the home. Further, higher income significantly correlated with lower acute index values, indicating that the relative quality of children's environments in our study area were constrained by familial wealth. This work demonstrates the importance of analyzing multiple activity spaces when assessing built and social environments, as well as the importance of spatial microdata.
Collapse
Affiliation(s)
- Timothy Stone
- Social Sciences Department, Michigan Technological University, USA.
| | - Dan Trepal
- Social Sciences Department, Michigan Technological University, USA
| | - Don Lafreniere
- Social Sciences Department, Michigan Technological University, USA
| | | |
Collapse
|
33
|
Wódkowska A, Gruszecka-Kosowska A. Dietary exposure to potentially harmful elements in edible plants in Poland and the health risk dynamics related to their geochemical differentiation. Sci Rep 2023; 13:8521. [PMID: 37231099 DOI: 10.1038/s41598-023-35647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
Differences in the health risk values calculated for consumers of potentially harmful elements (PHEs) present in edible plants were investigated. Based on a comprehensive literature search, the highest PHE contents in plants were identified in the southern and western regions of Poland, that also revealed the highest geochemical enrichment with Zn, Pb, Cu, As, Cd, and Tl. The highest unacceptable non-carcinogenic risk (HQ) values for mean PHE contents in Poland were found for Pb: toddlers (2.80), pre-schoolers (1.80), and school-aged children (1.45) and for Cd for toddlers (1.42). The highest unacceptable carcinogenic risk (CR) values for mean As content was observed for adults (5.9 × 10-5). The highest non-carcinogenic risk values for consumers were reported in Silesia, Lower Silesia, Lublin, Lesser Poland, and Opole Provinces, indicating the impact of geochemical variability on risk values.
Collapse
Affiliation(s)
- Agata Wódkowska
- Department of Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Agnieszka Gruszecka-Kosowska
- Department of Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland.
| |
Collapse
|
34
|
Forghani Tehrani G, Rubinos DA, Kelm U, Ghadimi S. Environmental and human health risks of potentially harmful elements in mining-impacted soils: A case study of the Angouran Zn-Pb Mine, Iran. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117470. [PMID: 36821988 DOI: 10.1016/j.jenvman.2023.117470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The soil pollution status, levels of exposure, and potential ecological and health risks to workers and residents by potentially harmful elements (PHEs) in the Angouran mining area (Iran), the biggest Zn-Pb mine in the Middle East, were studied. To this aim, topsoil (0-5 cm) samples (n = 63) from different land-uses were analyzed for their total PHEs concentrations. Mine worker's blood analysis and in vitro digestion extractions were applied in conjunction with human health risk assessment (HHRA) to assess the potential health impacts by exposure to PHEs. The maximum PHEs total concentrations were found in the soils near the waste rock dumps. HHRA indicated that ingestion of soils may induce a non-carcinogenic risk due to As and Pb (for both age groups of children and adults), while dermal contact for children may induce the same type of risk due to Cd, and Pb. The carcinogenic risks (CRs) of As, Cd, Cr, and Ni through ingestion route were above the acceptable value of 1 × 10-4, and children may face greater health risks. The average blood Zn, Pb, and Cd levels in the mine workers largely exceeded the safe concentration for adults, while 30% of the workers were tested positive for As in blood. In vitro digestion extractions indicated that the highest bioaccessible contents of As, Cd, Pb, Ni and Zn were found for the industrial-residential and mine soils in the area, while those of Cr and Cu were observed in the agricultural use soils. This study illustrates that a combination of techniques, including geochemical analysis, in vitro bioaccessibility extractions, HHRA, and blood analysis, is a workable integrated approach for evaluating pollution and health risks in mining districts.
Collapse
Affiliation(s)
| | - David A Rubinos
- Sustainable Minerals Institute-International Centre of Excellence Chile (SMI-ICE-Chile), The University of Queensland, Australia, Av. Apoquindo 2929, 3rd Floor of. 301, Las Condes, Santiago, Chile.
| | - Ursula Kelm
- Instituto de Geología Económica Aplicada, Universidad de Concepción, Concepción, Chile.
| | | |
Collapse
|
35
|
Liu W, Xing X, Li M, Yu Y, Hu T, Mao Y, Liang L, Zhang Y, Zhang J, Qi S. New insight into the geochemical mechanism and behavior of heavy metals in soil and dust fall of a typical copper smelter. ENVIRONMENTAL RESEARCH 2023; 225:115638. [PMID: 36889563 DOI: 10.1016/j.envres.2023.115638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The desorption mechanism of heavy metals (HMs) in soil around the mining region are complex and affected by multiple pollution sources, including sewage discharge and atmospheric deposition. Meanwhile, pollution sources would change soil physical and chemical properties (mineralogy and organic matter), thus affecting the bioavailability of HMs. This study aimed to investigate the pollution source of HMs (Cd, Co, Cu, Cr, Mn, Ni, Pb, and Zn) in soil near mining, and further evaluate influence mechanism of dust fall on HMs pollution in soil by desorption dynamics processes and pH-dependence leaching test. Result presented that dust fall is the primary pollution source to HMs accumulation in soil. Additionally, the result of mineralogical analysis in dust fall revealed that quartz, kaolinite, calcite, chalcopyrite, and magnetite are the major mineralogical phases by XRD and SEM-EDS. Meanwhile, the abundance of kaolinite and calcite in dust fall is higher than in soil, which is the primary reason of higher acid-base buffer capacity of dust fall. Correspondingly, the weakened or disappeared of hydroxyl after the adding acid extraction (0-0.4 mmol· g-1) demonstrated that hydroxyl is the main participants of HMs absorption in soil and dust fall. These combined findings suggested that atmospheric deposition not only increases the pollution loading of HMs in soil, but also changes the mineral phase composition of soil, which would increase the adsorption capacity and bioavailability of HMs in soil. This is very remarkable that heavy metals in soil influenced by dust fall pollution could be released preferentially when soil pH is changed. The present results of this study would provide efficient and scientific targeted strategies for pollution control of HMs in soil near mining areas.
Collapse
Affiliation(s)
- Weijie Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xinli Xing
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Miao Li
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yue Yu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Tianpeng Hu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yao Mao
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Lili Liang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yuan Zhang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jiaquan Zhang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Shihua Qi
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
36
|
Li H, Yao J, Sunahara G, Min N, Li C, Duran R. Quantifying ecological and human health risks of metal(loid)s pollution from non-ferrous metal mining and smelting activities in Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162364. [PMID: 36828070 DOI: 10.1016/j.scitotenv.2023.162364] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The environmental release and transfer of heavy metal(loids) from natural and anthropogenic sources to neighboring habitats can pose an ecological threat to the exposed biota and habitat, as well as a human health risk to the residents. However, analytical tools to identify the potential contamination source(s) and assess the impact of this transfer have not been well described. Soil samples were collected from affected areas proximal to non-ferrous metal(loid)s mining and smelting facilities. Two integrated assessment methods, based on soil total metal(loid) content, included: (1) the potential ecological risk index combined with positive matrix factorization (PMF) and (2) human health risk assessment combined with PMF. Results indicated that there were four generic sources of pollution (based on PMF analyses of 115 replicated samples collected from four study areas): agricultural and industrial activities, traffic emissions, and natural sources. For ecological risk, the contribution of these metal(loid)s pollution sources were industrial activities (20.34-70.76 %), traffic emissions (18.73-56.93 %), natural sources (3.69-27.02 %), and agricultural activities (3.79-21.43 %). Health risks were higher for children than for adults. Industrial activity was a major source of non-carcinogenic risk to children (32.10-74.62 %) and adults (31.33-73.78 %), and carcinogenic risk to children (22.53-67.27 %) and adults (20.69-64.76 %). Total metal analysis indicated that As and Cd were highly enriched in the soil, but chemical fractionation revealed low As mobility. Total Cd and possibly As were the main pollutants causing the ecological risks at these contaminated sites. This study demonstrates that ecological and human health risks could be quantified to prioritize the pollution sources for reasonable contaminated site risk management.
Collapse
Affiliation(s)
- Hao Li
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China.
| | - Geoffrey Sunahara
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Department of Natural Resource Sciences, McGill University, 21111, Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Ning Min
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Chenchen Li
- Faculty of Metallurgy and Energy Engineering, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials or Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
| | - Robert Duran
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| |
Collapse
|
37
|
Shi T, Xu B, He J, Liu X, Zuo Z. Arsenic release pathway and the interaction principle among major species in vacuum sulfide reduction roasting of copper smelting flue dust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121809. [PMID: 37172770 DOI: 10.1016/j.envpol.2023.121809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
The efficient release of arsenic in copper smelting flue dust (CSFD) with complicated production conditions and composition under the premise of environmental safety is difficult for the copper smelting industry. The vacuum environment is conducive to the volatilization of low-boiling arsenic compounds, which is beneficial to the physical process and chemical reaction of increasing the volume. In the present study, combined with thermodynamic calculations, the roasting process of pyrite and CSFD mixed in proportion in vacuum was simulated. Additionally, the release process of arsenic and the interaction mechanism of the main phases were performed in detail. The addition of pyrite facilitated the decomposition of stable arsenate in CSFD into volatile arsenic oxides. The results indicated that exceeding 98% of arsenic in CSFD volatilized into the condenser, while the arsenic content in the residue was reduced to 0.32% under optimal conditions. Pyrite could reduce the oxygen potential during the chemical reaction with CSFD, reacting with sulfates in CSFD to convert into sulfides and magnetic iron oxide (Fe3O4) simultaneously, and Bi2O3 would be transformed into metallic Bi. These findings are significant for developing arsenic-containing hazardous waste treatment routes and the application of innovative technical approaches.
Collapse
Affiliation(s)
- Tengteng Shi
- National Engineering Research Center for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, Yunnan, 650093, PR China; Kunming University of Science and Technology, Kunming, PR China
| | - Baoqiang Xu
- The State Key Laboratory of Complex Non-Ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan, 650093, PR China; National Engineering Research Center for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, Yunnan, 650093, PR China; Kunming University of Science and Technology, Kunming, PR China.
| | - Jilin He
- Zhengzhou University, Zhengzhou, PR China
| | - Xinyang Liu
- Kunming University of Science and Technology, Kunming, PR China
| | - Zibin Zuo
- The State Key Laboratory of Complex Non-Ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan, 650093, PR China; Kunming University of Science and Technology, Kunming, PR China
| |
Collapse
|
38
|
Ingrassia EB, Fiorentini EF, Escudero LB. Hybrid biomaterials to preconcentrate and determine toxic metals and metalloids: a review. Anal Bioanal Chem 2023:10.1007/s00216-023-04683-x. [PMID: 37085739 DOI: 10.1007/s00216-023-04683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 04/23/2023]
Abstract
Toxic elements represent a serious threat to the environment and cause harmful effects on different environmental components, even at trace levels. These toxic elements are often difficult to detect through the typical instrumentation of an analytical laboratory because they are found at very low concentrations in matrices such as food and water. Therefore, preconcentration plays a fundamental role since it allows the effects of the matrix to be minimized, thus reaching lower detection limits and greater sensitivity of detection techniques. In recent years, solid-phase extraction has been successfully used for the preconcentration of metals as an environmentally friendly technique due to the fact that it eliminates or minimizes the use of reagents and solvents and offers reduced analysis times and low generation of waste in the laboratory. Hybrid biomaterials are low-cost, eco-friendly, and useful as efficient solid phases for the preconcentration of elements. In this review, recent investigations based on the use of hybrid biomaterials for the preconcentration and determination of toxic metals are presented and discussed, given special attention to bionanomaterials. A brief description of hybrid biomaterials often used for analytical purposes, as well as analytical techniques mostly used to characterize the hybrid biomaterials, is explained. Finally, the future prospects that encourage the search for new hybrid biomaterials are commented upon.
Collapse
Affiliation(s)
- Estefanía B Ingrassia
- Laboratory of Environmental Biotechnology (BioTA), Faculty of Exact and Natural Sciences, National University of Cuyo/Interdisciplinary Institute of Basic Sciences (ICB), CONICET UNCUYO, Padre J. Contreras 1300, 5500, Mendoza, Argentina
| | - Emiliano F Fiorentini
- Laboratory of Environmental Biotechnology (BioTA), Faculty of Exact and Natural Sciences, National University of Cuyo/Interdisciplinary Institute of Basic Sciences (ICB), CONICET UNCUYO, Padre J. Contreras 1300, 5500, Mendoza, Argentina
| | - Leticia B Escudero
- Laboratory of Environmental Biotechnology (BioTA), Faculty of Exact and Natural Sciences, National University of Cuyo/Interdisciplinary Institute of Basic Sciences (ICB), CONICET UNCUYO, Padre J. Contreras 1300, 5500, Mendoza, Argentina.
| |
Collapse
|
39
|
Wang WJ, Lu X, Li Z, Peng K, Zhan P, Fu L, Wang Y, Zhao H, Wang H, Xu DX, Tan ZX. Early-life cadmium exposure elevates susceptibility to allergic asthma in ovalbumin-sensitized and challenged mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114799. [PMID: 36933479 DOI: 10.1016/j.ecoenv.2023.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/28/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Increasing evidence have demonstrated that early-life exposure to environmental toxicants elevates risk of allergic asthma. Cadmium (Cd) is widely present in the environment. The purposes of this study were to evaluate the impact of early-life Cd exposure on susceptibility to ovalbumin (OVA)-evoked allergic asthma. Newly weaned mice were subjected to a low concentration of CdCl2 (1 mg/L) by drinking water for 5 consecutive weeks. Penh value, an index of airway obstruction, was increased in OVA-stimulated and challenged pups. Abundant inflammatory cells were observed in the lung of OVA-exposed pups. Goblet cell hyperplasia and mucus secretion were shown in the airway of OVA-stimulated and challenged pups. Early-life Cd exposure exacerbated OVA-evoked airway hyperreactivity, Goblet cell hyperplasia and mucus secretion. The in vitro experiments showed that mucoprotein gene MUC5AC mRNA was upregulated in Cd-exposed bronchial epithelial cells. Mechanistically, endoplasmic reticulum (ER) stress-related molecules GRP78, p-eIF2α, CHOP, p-IRE1α and spliced XBP-1 (sXBP-1) were elevated in Cd-subjected bronchial epithelial cells. The blockade of ER stress, using chemical inhibitor 4-PBA or sXBP-1 siRNA interference, attenuated Cd-induced MUC5AC upregulation in bronchial epithelial cells. These results indicate that early-life Cd exposure aggravates OVA-induced allergic asthma partially through inducing ER stress in bronchial epithelial cells.
Collapse
Affiliation(s)
- Wen-Jing Wang
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xue Lu
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Zhao Li
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Kun Peng
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Ping Zhan
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin Fu
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Hui Zhao
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China.
| | - Zhu-Xia Tan
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China.
| |
Collapse
|
40
|
Yang X, Yang Y. Spatiotemporal patterns of soil heavy metal pollution risk and driving forces of increment in a typical industrialized region in central China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:554-565. [PMID: 36723365 DOI: 10.1039/d2em00487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Excessive enrichment of soil heavy metals seriously damages human health and soil environment. Exploring the spatiotemporal patterns and detecting the influencing factors are conducive to developing targeted risk management and control. Based on the soil samples of Co, Cr, Cu, Mn, Ni, Pb, Zn, and Cd collected in one typical industrialized region in China from 2016 to 2019, this study analyzed the spatiotemporal pattern of geo-accumulation risk and potential ecological risk based on the spatiotemporal ordinary kriging (STOK) prediction, and probed the driving forces of heavy metal increments with the random forest (RF) regression model. The risk assessment revealed that soils were seriously contaminated by Pb, Cd, and Cu, moderately contaminated by Zn and Mn, and uncontaminated by Co, Cr, and Ni; more than 30% of areas had moderate to high potential ecological risks. From 2016 to 2019, soil heavy metal contents increased in more than 50% of regions and the growth rates of accumulations were ranked as Co (65%) > Ni (56%) > Mn (43%) > Pb (40%) > Cr (36%) > Zn (31%) > Cu (23%) > Cd (3%). High contents and increases of heavy metals in soils near industrial lands are higher. Smelter (24%), mine (20%), and factory (12%) were the major contributing factors for these heavy metal increments, followed by transportation (6%) and population (5%). The results indicated that the management of industrial discharge and contaminated soils should be strengthened to prevent the worsening soil heavy metal pollution in the study area.
Collapse
Affiliation(s)
- Xue Yang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of the Yangtze River), Ministry of Agriculture, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan, China
| | - Yong Yang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of the Yangtze River), Ministry of Agriculture, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan, China
| |
Collapse
|
41
|
Tian Z, Pan Y, Chen M, Zhang S, Chen Y. The relationships between fractal parameters of soil particle size and heavy-metal content on alluvial-proluvial fan. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 254:104140. [PMID: 36642009 DOI: 10.1016/j.jconhyd.2023.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/10/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The particle size distribution (PSD) of soil is an important factor in determining heavy-metal content, mobility, and transformation. One method of describing the soil PSD is applying fractal theory. This study explored the use of fractal theory to characterize soil PSD in the alluvial-proluvial fan located downstream of the Yangshuo lead‑zinc mine. The relationships between fractal parameters of soil PSD and heavy-metal content were analyzed. The results showed that soil in front of the mountain (FM) had higher clay content than soil on the mountain slope (MS) or in the middle of the alluvial-proluvial fan (MF). Among the different sections of the alluvial-proluvial fan, MS had the largest capacity dimension D(0), information dimension D(1), correlation dimension D(2), single fractal dimension D, spectral width Δα, and D(1)/D(0), whereas MF had the greatest symmetry degree Δf. Soil of MS had the highest ω (Cr) and ω (Fe), while FM had the highest ω (Zn), ω (Mn), ω (Pb), ω (Cu), ω (As), ω (Sb), and ω (Cd). Fractal parameters of soil PSD and soil mechanical composition were significantly correlated, while both variables were correlated with heavy-metal content. Fractal parameters can be used to indicate heavy-metal content when heavy metals migrate due to migration of particle size. This study thus introduces an empirical method for evaluating heavy-metal content in soil and analyzing the mechanisms of their migration, making a strong contribution to developing strategies that limit heavy-metal pollution.
Collapse
Affiliation(s)
- Zhuo Tian
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541004, China
| | - Yongxing Pan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541004, China
| | - Meng Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541004, China.
| | - Shuaipu Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541004, China
| | - Yudao Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541004, China
| |
Collapse
|
42
|
Luo X, Wu C, Lin Y, Li W, Deng M, Tan J, Xue S. Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization. J Environ Sci (China) 2023; 125:662-677. [PMID: 36375948 DOI: 10.1016/j.jes.2022.01.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 06/16/2023]
Abstract
Smelting activities pose serious environmental problems due to the local and regional heavy metal pollution in soils they cause. It is therefore important to understand the pollution situation and its source in the contaminated soils. In this paper, data on heavy metal pollution in soils resulting from Pb/Zn smelting (published in the last 10 years) in China was summarized. The heavy metal pollution was analyzed from a macroscopic point of view. The results indicated that Pb, Zn, As and Cd were common contaminants that were present in soils with extremely high concentrations. Because of the extreme carcinogenicity, genotoxicity and neurotoxicity that heavy metals pose, remediation of the soils contaminated by smelting is urgently required. The primary anthropogenic activities contributing to soil pollution in smelting areas and the progressive development of accurate source identification were performed. Due to the advantages of biominerals, the potential of biomineralization for heavy metal contaminated soils was introduced. Furthermore, the prospects of geochemical fraction analysis, combined source identification methods as well as several optimization methods for biomineralization are presented, to provide a reference for pollution investigation and remediation in smelting contaminated soils in the future.
Collapse
Affiliation(s)
- Xinghua Luo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Yongcheng Lin
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Waichin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong 999077, China
| | - Min Deng
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| | - Jingqiang Tan
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
43
|
Yang D, Zhu H, Liu J, Zhang Y, Wu S, Xiong J, Wang F. Risk Assessment of Heavy Metals in Soils from Four Different Industrial Plants in a Medium-Sized City in North China. TOXICS 2023; 11:toxics11030217. [PMID: 36976982 PMCID: PMC10059013 DOI: 10.3390/toxics11030217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 05/14/2023]
Abstract
Laboratory experiments were carried out to analyze 39 soil samples collected from four industrial areas in Xuzhou City using inductively coupled plasma mass spectrometry and atomic fluorescence spectrometry. The descriptive statistics of heavy metals (HMs) in the soil profiles showed that the HM content at three depths was highly variable, and most coefficients of variation (CVs) showed moderate variability. The enrichment of Cd at all depths exceeded the risk screening value, and Cd pollution occurred in four plants. The enrichment of the other HMs at three depths was mainly concentrated in the pharmaceutical plant A and chemical plant C. It was found that the different HMs had different vertical distribution characteristics. For the different industrial plants, the raw materials and products not only made the spatial distribution characteristics of the HMs different, but also caused the HM types and contents to differ. The average single pollution indices of Cd in plant A, iron-steel plant B, and plant C indicated a slight pollution level. The other seven HMs in A, B, and C and all HMs in chemical plant D belonged to the safe category. The mean values of the Nemerow pollution index in the four industrial plants belonged to the warning category. The analysis showed that none of the HMs posed potential noncarcinogenic health risks, and only the carcinogenic health risks of Cr in plants A and C were unacceptable. The carcinogenic effect of Cr through the inhalation intake of resuspended soil particulates and that of Cd, Ni, and As via direct oral ingestion were the main exposure pathways.
Collapse
Affiliation(s)
- Dejun Yang
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
- Correspondence: (D.Y.); (F.W.)
| | - Huawei Zhu
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jianqin Liu
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yajun Zhang
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Song Wu
- Jiangsu Fangzheng Environmental Protection Group Co., Ltd., Xuzhou 221006, China
| | - Jibing Xiong
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Correspondence: (D.Y.); (F.W.)
| |
Collapse
|
44
|
Kandić I, Kragović M, Petrović J, Janaćković P, Gavrilović M, Momčilović M, Stojmenović M. Heavy Metals Content in Selected Medicinal Plants Produced and Consumed in Serbia and Their Daily Intake in Herbal Infusions. TOXICS 2023; 11:198. [PMID: 36851072 PMCID: PMC9966102 DOI: 10.3390/toxics11020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The heavy metals content (HMs) was investigated in 14 different medicinal plants collected from the three regions in Central Serbia, Zlatar, Sokobanja, and Kopaonik. The concentrations of Cd, Cr, Ni, Hg and Pb were determined: Cd (<0.03-2.72 mg/kg); Cr (<0.08-12.1 mg/kg); Ni (<0.08-12.2 mg/kg); Pb (0.6-49.0 mg/kg); the Hg concentration was below the detection limit of 0.06 mg/kg in all samples. The daily intake of HMs due to ingestion of 200 mL of herbal infusion was in all cases below the recommended limit prescribed by the World Health Organization. The estimated daily intake values were below the values for the oral reference dose regulated by the U.S. Environmental Protection Agency (USA EPA). The target hazard quotient and hazard index for Cd, Cr Ni, and Pb were below 1. Nevertheless, due to the tendency of heavy metals to accumulate in the organism, attention should be paid to the daily intake of herbal infusion during long-term usage. Specifically, it is recommended to consume not more than one cup (200 mL) of infusion per day made from thyme (Mt. Zlatar) and blueberry (Mt. Kopaonik), and not more than two cups per day for other herbs.
Collapse
Affiliation(s)
- Irina Kandić
- “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| | - Milan Kragović
- “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| | - Jelena Petrović
- “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| | - Peđa Janaćković
- Faculty of Biology Chair of Morphology and Systematics of Plants, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Milan Gavrilović
- Faculty of Biology Chair of Morphology and Systematics of Plants, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Miloš Momčilović
- “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| | - Marija Stojmenović
- “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| |
Collapse
|
45
|
Yuan B, Cao H, Du P, Ren J, Chen J, Zhang H, Zhang Y, Luo H. Source-oriented probabilistic health risk assessment of soil potentially toxic elements in a typical mining city. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130222. [PMID: 36356524 DOI: 10.1016/j.jhazmat.2022.130222] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 05/16/2023]
Abstract
Identifying potential sources of soil potentially toxic elements (PTEs) and developing source-oriented health risk assessments in typical mining cities are key for pollution prevention and risk management. To this end, a case study was conducted to explore the pollution characteristics, potential sources, and human health risks of PTEs in Daye City, China. Indices, including the pollution factor (PF), pollution load index (PLI), and geo-accumulation index (Igeo), were applied to assess PTE pollution. Cd had the highest value among the detected PTEs, and 82.93% of the sampling sites had moderate pollution levels, with the highest mean Igeo value for Cd (2.30). Four potential sources were determined. Cr and Ni originated mainly from natural sources. Zn (91.5%) was exclusively and then Cd (33.1%) was moderately derived from industrial activities. The mixed source of various mineral exploitation smelting, and coal-fired traffic emissions leaded to the accumulation of As, Cd, and Pb. Cu was associated with Cu-related mining and smelting activities. The probabilistic health risk assessment indicated that the non-carcinogenic risks for populations were negligible. Overall, this work provides scientific information for environmental managers to manage soil PTE pollution through the effective management of anthropogenic sources with limited resources and costs.
Collapse
Affiliation(s)
- Bei Yuan
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hanlin Cao
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Ping Du
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Jie Ren
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Juan Chen
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Hao Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yunhui Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Huilong Luo
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
46
|
Peng C, Gong K, Li Q, Liang W, Song H, Liu F, Yang J, Zhang W. Simultaneous immobilization of arsenic, lead, and cadmium in soil by magnesium-aluminum modified biochar: Influences of organic acids, aging, and rainfall. CHEMOSPHERE 2023; 313:137453. [PMID: 36464022 DOI: 10.1016/j.chemosphere.2022.137453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Magnesium-aluminum modified biochar (MABs) has an outstanding effect on the simultaneous immobilization of arsenic (As), lead (Pb), and cadmium (Cd) in soil, but the stability of remediation effect of MAB under various natural conditions is still unknown. In this study, we investigated the effects of organic acids, dry-wet cycles (DW), freeze-thaw cycles (FT), and rainfall (pH 4, 7, and 8) on the immobilization of As, Pb, and Cd by MAB. The results showed that oxalic acid decreased the immobilization efficiencies of As, Pb, and Cd by 15.5%-38.5%; meanwhile, humic acid reduced the immobilization efficiency of Pb by 89.7%, but elevated that of Cd by 19.5%. The immobilization mechanisms of MAB-5 on three metals were mainly involved in ion exchange and surface-complexation. Compared with the 7th round, the immobilization efficiencies of As, Pb, and Cd by MAB in the 28th round was decreased by 17%-28% in DW, but was increased by 11%-18% in FT. In addition, MAB was transformed into hydrotalcite after FT and DW. After experiencing simulated rainfall, MAB caused more As, Pb, and Cd to be retained in the upper soil layer, and the immobilization effect of MBA was more significant under the stimulated rainfall with higher pH. The study provides a more theoretical basis for the application of MAB in the actual site remediation.
Collapse
Affiliation(s)
- Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiannan Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huihui Song
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fang Liu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| | - Jie Yang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
47
|
Jiang Z, Xiao X, Guo Z, Zhang Y, Huang X. Impact of Vanadium-Containing Stone Coal Smelting on Trace Metals in an Agricultural Soil-Vegetable System: Accumulation, Transfer, and Health Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2425. [PMID: 36767791 PMCID: PMC9915546 DOI: 10.3390/ijerph20032425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Dietary exposure to trace metals (TMs) through vegetable consumption has been identified as a potential risk to human health. Fifty-one paired agricultural soil and leaf vegetable samples were collected around V-containing stone coal smelting sites in Hunan Province, China, to study the contamination and transfer characteristics of TMs (Cd, Cr, Cu, Pb, V, and Zn) in the soil-vegetable system. The health risk to local residents through vegetable ingestion was evaluated using Monte Carlo simulations. The results showed that 96.2%, 23.1%, 53.8%, 30.8%, 96.2%, and 69.2% of the soil samples had Cd, Cr, Cu, Pb, V, and Zn contents exceeding their related maximum allowable values, respectively. Cadmium and V were the primary pollutants based on the Igeo values. Moreover, 46.9% and 48.4% of vegetable samples exceeded the maximum permissible levels for Cd and Pb, respectively. There was a negative correlation between the bioaccumulation factors for Cd and V of the vegetable and soil physicochemical properties, including pH, organic matter, and free Fe2O3 content. Ingestion of garland chrysanthemum and pak choi posed high health risks, and Cd, V, and Pb were the primary contributors. These findings will help design strategies to minimize contamination and human exposure to soil-vegetable systems caused by V-containing stone coal smelting.
Collapse
|
48
|
Health Status and Quality of Life in the Population near Zhezkazgan Copper Smelter, Kazakhstan. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2023; 2023:8477964. [PMID: 36755778 PMCID: PMC9902142 DOI: 10.1155/2023/8477964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 01/31/2023]
Abstract
Background The industrial city of Zhezkazgan is one of the most important cities in the industrial sector and the most polluted city in the Republic of Kazakhstan. There is placed Kazakhstan's largest copper smelter. The entire technological process (extraction, crushing, grinding, purification, and smelting of pure ingots) of the production of the copper smelter releases into the environment mainly various kinds of solid particles, sulfur oxides (SOx), and various carcinogenic elements. Emissions from the industrial facilities extend to a significant area around the city, combined with other sources of environmental pollution (motor transport, thermal power plant, individual heating systems, and others). Objective This study assessed the health status of residents of villages near Zhezkazgan by screening, quality of life studies, and official medical statistics. Methods This study assessed the health status and quality of life of residents near Zhezkazgan city. The cohort included residents from Talap village (main group) and Malshybai village (comparison group) from the Ulytau district in the Karaganda region. The sampling for the health check and quality of life survey covered 260 adult residents of Talap village and 146 adult residents of Malshybai village. Univariate analysis was used to calculate the odds ratio (OR) with a 95% confidence interval (95% CI). Results In the city district of Zhezkazgan, the overall mortality rate and mortality from diseases of the circulatory system, neoplasms, and respiratory diseases were much higher than in the Karaganda region and the Republic of Kazakhstan from 2015-2020. Residents of the Talap settlement had higher rates of coronary heart disease (CHD) (OR 1.30; 95% CI: 0.70-2.39; and p < 0.05), arterial hypertension (AH) (OR 1.84; 95% CI: 1.11-3.03; and p < 0.05), decreased hemoglobin (OR 1.89; 95% CI: 1.17-3.07; and p < 0.05), and endocrine diseases (diabetes mellitus, obesity, and thyrotoxicosis) (OR 1.76; 95% CI: 1.12-2.79; and p < 0.05) at registration than residents of the Malshybai settlement. Residents of both settlements expressed dissatisfaction with the quality of drinking water and the presence of the area where launch vehicles fell. Conclusion Indicators of pollution in the city, statistics of official mortality, and differences in morbidity indicated the negative impact of hazardous emissions from industrial facilities of the copper smelter on public health.
Collapse
|
49
|
Wang F, Zhang Y, Wu T, Wu L, Shi G, An Y. The high-dimensional geographic dataset revealed significant differences in the migration ability of cadmium from various sources in paddy fields. Sci Rep 2023; 13:1589. [PMID: 36709230 PMCID: PMC9884224 DOI: 10.1038/s41598-023-28812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Cadmium (Cd) contamination in paddy fields and its subsequent transfer in soil-rice systems are of particular concern. Significant discrepancies exist in the transfer process of Cd pollution sources from soil to rice. Here, we proposed a novel hybrid framework to reveal the priority of controlling Cd pollution sources in soil-rice systems, based on a high-dimensional geographical database. We further defined transfer potential (TP) to describe the ability of Cd from soil to rice (TPr = Cdr/Cds) and activated status (TPa = Cda/Cds), respectively, to reveal the priority sources of Cd pollution at the regional scale. The mining source has both high levels of TPr and TPa, which should be a controlled priority. Followed by traffic sources with a higher value of TPr, showing the risk to rice rather than the soil. The activated and enriched capacities of soil Cd are unequal in different sources that we attribute to the disparities of Cd transport in soil-rice systems. Cd contamination shows a significant spatial heterogeneity due to the difference in its transport performance. Our findings provide support for designing site-specific and pollution-targeted control priorities for suitable Cd pollution mitigation strategies at the regional scale.
Collapse
Affiliation(s)
- Feng Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300071, China
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yanqiu Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300071, China
- College of Resource and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Wu
- State Key Laboratory on Odor Pollution Control, Tianjin Academy of Eco-Environmental Sciences, Tianjin, 300191, China
| | - Lina Wu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300071, China
| | - Guoliang Shi
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yi An
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300071, China.
| |
Collapse
|
50
|
Zhang X, Zhu Y, Li Z, Li J, Wei S, Chen W, Ren D, Zhang S. Assessment soil cadmium and copper toxicity on barley growth and the influencing soil properties in subtropical agricultural soils. ENVIRONMENTAL RESEARCH 2023; 217:114968. [PMID: 36455628 DOI: 10.1016/j.envres.2022.114968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Evaluation joint cadmium (Cd) and copper (Cu) phytotoxicity in wide range of subtropical agricultural soils is highly vital for phytoremediation of soils contaminated with Cd and Cu. In this study, barley root elongation assays were performed in 30 representative soils in response to single and combined Cd and Cu inhibition. The single Cd caused nearly 50% inhibition of barley root elongation, and Cu induced more than 50% inhibition in most soils. Mixed Cd + Cu caused significant inhibition on barley growth with average relative root elongation values of 20.0% and 30.4% in soil with a pH < 7 and pH > 7, respectively. An antagonistic interaction was evaluated in combined Cd + Cu toxicity, which was strong in soils containing low soluble Cu and Cd contents. Soil pH was the controlling factor in predicting single and mixed Cd and Cu phytotoxicity, which could explain 44% and 46% variation of single Cd and Cu toxicity, respectively. Soil organic carbon and effective cation exchange capacity were another important factor positively influencing metal toxicity, which further improved empirical prediction models accuracy, with determined coefficient (r2) values of 0.44-0.84. These results provide a theoretical basis for soils Cd and Cu pollution control.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Yuanjie Zhu
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhuangzhuang Li
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jiong Li
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Shan Wei
- College of Wuhan University, Wuhan, Hubei, 430081, China.
| | - Wangsheng Chen
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| |
Collapse
|