1
|
Chu S, de Solla SR, Smythe TA, Eng M, Lavoie R, Letcher RJ. Per- and polyfluoroalkyl substance profiles revealed by targeted and non-targeted screening in European starling eggs from sites across Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126414. [PMID: 40355069 DOI: 10.1016/j.envpol.2025.126414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/19/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmental contaminants including in wildlife but are a fraction of the growing 1000s of PFAS that are being produced. Our study objective was to determine and compare PFAS profiles using targeted analysis and non-targeted analysis (NTA) methods in European starling (Sturnus vulgaris) eggs collected in April/May of 2023 from 11 nesting box sites across Canada at locations described as landfills, near parks, forest, urban, near wastewater facilities, rural, waste management facilities and urban industrial. NTA revealed 41 PFAS at variable detection frequencies in eggs samples and up to 29 PFAS were quantifiable by targeted method analysis. The Σ29PFAS mean concentration (range) (1048 (991-1078) ng/g ww) at the lone landfill site at Brantford were the highest whereas all other sites were <151 ng/g w.w. Σ29PFAS concentrations were not significantly different (p < 0.05) among the 10 non-Brantford landfill sites including the Nova Scotia hospital site (range of 58.0-152 ng/g ww). Two side-chain fluorinated polymer surfactants for a sub-set of egg pools, and 4 emerging PFAS including GenX (or HFPO-DA), F-53B components and ADONA for all pools were not detectable. Confirmed against in-house synthesized standards, 8:2 FTOH sulfate, was detected in 93 % of all samples, and 6:2, 10:2, and 12:2 FTOH sulfates were also detected only in Brantford landfill site eggs. FTOHs, which are likely precursors of FTOH sulfate metabolites, were not detectable in any samples. This suggested that FTOH sulfate metabolites may be suitable biomarkers of exposure to FTOHs and perhaps other PFAS. Among all nest box locations, other additional NTA detected PFAS in eggs were e.g. branched isomers of PFOA, PFHpS, PFNS and PFDS and 6:2 diPAP. Overall, more targeted PFAS candidates should be monitored in starling eggs.
Collapse
Affiliation(s)
- Shaogang Chu
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science, Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Carleton University, Ottawa, ON, Canada, K1A 0H3
| | - Shane R de Solla
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science, Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Blvd, Burlington, ON, Canada, L7S 1A1
| | - Tristan A Smythe
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science, Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Carleton University, Ottawa, ON, Canada, K1A 0H3
| | - Margaret Eng
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science, Environment and Climate Change Canada, 45 Alderney Dr, Dartmouth, NS, Canada, B2Y 2N6
| | - Raphaël Lavoie
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science, Environment and Climate Change Canada, 801-1550 d'Estimauville, Québec, QC, Canada, G1J 0C3
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science, Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Carleton University, Ottawa, ON, Canada, K1A 0H3.
| |
Collapse
|
2
|
Jouanneau W, Boulinier T, Herzke D, Nikiforov VA, Gabrielsen GW, Chastel O. Legacy and emerging per- and polyfluoroalkyl substances in eggs of yellow-legged gulls from Southern France. MARINE POLLUTION BULLETIN 2025; 216:117941. [PMID: 40220546 DOI: 10.1016/j.marpolbul.2025.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
More than 70 years of industrial production of per- and polyfluoroalkyl substances (PFAS) have resulted in their ubiquitous presence in the environment on a global scale, although differences in sources, transport and fate lead to variability of occurrence in the environment. Gull eggs are excellent bioindicators of environmental pollution, especially for persistent organic pollutants such as PFAS, known to bioaccumulate in organisms and to be deposited in bird eggs by maternal transfer. Using yellow-legged gull (Larus michahellis) eggs, we investigated the occurrence of more than 30 PFAS, including the most common chemicals (i.e., legacy PFAS) as well as their alternatives (i.e., emerging PFAS) in the Bay of Marseille, the second largest city in France. Compared to eggs from other colonies along the Mediterranean coast, those from Marseille had PFAS concentrations ranging from slightly higher to up to four times lower, suggesting that this area cannot be specifically identified as a hotspot for these compounds. We also found several emerging PFAS including 8:2 and 10:2 FTS, 7:3 FTCA or PFECHS in all collected eggs. Although the scarcity in toxicity thresholds for seabirds, especially during embryogenesis, does not enable any precise statement about the risks faced by this population, this study contributes to the effort in documenting legacy PFAS contamination on Mediterranean coasts while providing valuable novel inputs on PFAS of emerging concern. Identifying exposure in free-ranging species also participate to determine the main target for toxicity testing in wildlife.
Collapse
Affiliation(s)
- William Jouanneau
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France; Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.
| | - Thierry Boulinier
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier, France
| | | | | | | | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France
| |
Collapse
|
3
|
Corbitt ER, Leonard LA, Mallin MA, Mead RN. Occurrence and distribution of per- and polyfluoroalkyl substances (PFAS) in tidal salt marsh creeks. MARINE POLLUTION BULLETIN 2025; 216:117932. [PMID: 40233581 DOI: 10.1016/j.marpolbul.2025.117932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous global contaminants where the ocean plays a critical role in global PFAS cycling. Large estuarine systems are conduits for anthropogenic contaminants, but little is known regarding PFAS in small tidal creek systems. Surface waters from seven tidal creeks were analyzed for 16 target PFAS including legacy and replacement PFAS. Mean total PFAS ranged from 139.4 to 12,293.8 ng/L in terrestrial influenced upland sampling sites and 33.9-176.3 ng/L in tidal creek mouth sites. Nine PFAS were negatively correlated with salinity and positively correlated with DOC (p < 0.05), indicating that the source of PFAS is predominantly terrestrial. Mean total PFAS of upland sites also had a strong positive relationship with percent impervious surface (R2 = 0.99), indicating the importance of human land use influencing PFAS occurrence. Results of this study will inform future investigations of tidal creeks and their role in PFAS dynamics at the land-sea interface.
Collapse
Affiliation(s)
- Emily R Corbitt
- Department of Earth and Ocean Sciences, 601 South College Road, University of North Carolina Wilmington, Wilmington, NC 28403, United States of America; Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC 28409, United States of America.
| | - Lynn A Leonard
- Department of Earth and Ocean Sciences, 601 South College Road, University of North Carolina Wilmington, Wilmington, NC 28403, United States of America; Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC 28409, United States of America
| | - Michael A Mallin
- Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC 28409, United States of America
| | - Ralph N Mead
- Department of Earth and Ocean Sciences, 601 South College Road, University of North Carolina Wilmington, Wilmington, NC 28403, United States of America; Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC 28409, United States of America.
| |
Collapse
|
4
|
Huang J, Fu K, Liu H, Zhang J, Luo J. Unveiling the Differential Intensity of Fluorous Active Sites Toward Selective Polyfluoroalkyl Substance Removal: Insights into Adsorption and Desorption Trade-Offs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40311092 DOI: 10.1021/acs.est.5c02960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The design of selective sorption sites for per- and polyfluoroalkyl substance (PFAS) removal, integrated with efficient regenerative strategies, remains a critical yet underexplored challenge. While existing technologies prioritize adsorption capacity over regenerative sustainability, we engineered a fluorinated hydrogel with tailored fluorous binding sites to target PFAS via their hydrophobic C-F termini. This design achieved over 90% PFAS removal efficiency in real water matrices (e.g., tap and lake water), at environmentally relevant concentrations (1 μg L-1), with robust resistance to competing background ions and natural organic matter. Selectivity correlated strongly with PFAS chain length (F9 > F12 > F6), driven by stable adsorption configurations (C-F···F-C vs C-H···F-C) and a favorable adsorption energy of -29.06 kcal mol-1. Leveraging controlled noncovalent F···F interactions, the hydrogel enabled efficient desorption (60-80% efficiency using 1% NaCl, 1% NH4Cl, or 0.5% NH4OH-NH4Cl) without structural degradation. Full regeneration (>92% recovery) was achieved with 50% methanol, supporting five reuse cycles with minimal performance decline. In continuous operation, using 1% NaCl achieved a 10-fold PFAS enrichment, while 50% methanol enabled a significantly higher 51-fold enrichment. Both approaches reduced eluent consumption by 20-50% compared to conventional activated carbon and resins. Overall, balancing PFAS adsorption and desorption trade-offs significantly reduces environmental footprint and operational costs, providing a sustainable strategy for PFAS remediation.
Collapse
Affiliation(s)
- Jinjing Huang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hengzhi Liu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Jing Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
5
|
Agarwal V, Kumar M, Dogra K, Mejia-Avendaño S. Isomers of perfluorooctanesulfonate exhibit preferential infiltration and contrasting ionic associations between surface water and groundwater. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138445. [PMID: 40367779 DOI: 10.1016/j.jhazmat.2025.138445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/05/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025]
Abstract
We evaluated the spatiotemporal variations of perfluorooctane sulfonate (PFOS) contamination in various environmental matrices of Yorkshire, United Kingdom. The dataset indicates decreasing PFOS concentrations between 2005 and 2023 in the groundwater of Yorkshire, UK. We used statistical methods, including kriging and hydrogeochemical plots, to analyze co-occurring ions, land use influences, and pollution sources. Groundwater exhibited less PFOS concentration, mainly in the form of linear (L) and branched (B) isomers, than surface water. PFOS (B) was more prevalent in groundwater and associated with F, Cr, Cu, Cl, and pH. PFOS pollution in the surface water exhibited source line ionic pairing with Hg, As, and dissolved carbon. Surface water clustering reveals the connection between branched and linear PFOS with Ca-Mg-Cu forms a larger cluster that interacts with major groups like SO4-Na-K and NO3, while the ionic PFOS cluster with As-Cl indicates strong source-level associations, especially in urban areas. Further, isomers were found to be evenly distributed in surface water, which alters during infiltration into groundwater. However, further research is required to provide confirmatory evidence of PFOS pathways linking with surface-groundwater interactions. This study likely represents the first comprehensive analysis of PFOS isomers that provides crucial emphasis on the need for monitoring emerging chemicals, such as PFOS, PFCs, and PFAAs, to establish timely and stringent regulatory guidelines.
Collapse
Affiliation(s)
- Vivek Agarwal
- Engineering and Environment, Northumbria University, Newcastle, United Kingdom.
| | - Manish Kumar
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico; Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India.
| | - Kanika Dogra
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India.
| | - Sandra Mejia-Avendaño
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico.
| |
Collapse
|
6
|
Hong Z, Lin L, Yu H, Wei Q, Zhang Y, He W, Liao X, Jing J, Dong G, Zhang Z. Branched perfluorohexanesulfonic acid (PFHxS) and perfluoroheptanoic acid (PFHpA): 'Safer' per- and polyfluoroalkyl substances (PFASs) alternatives for their effects on gut microbiota and metabolic function in children. ENVIRONMENT INTERNATIONAL 2025; 198:109380. [PMID: 40120233 DOI: 10.1016/j.envint.2025.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/16/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
This study examined the effects of branched perfluorohexanesulfonic acid (PFHxS) and perfluoroheptanoic acid (PFHpA), two alternatives to per- and polyfluoroalkyl substances (PFASs), on gut microbiota and metabolic function in Chinese children aged 6-9 years. A total of 336 children were enrolled, providing plasma and fecal samples. Gut microbiota composition was assessed through 16S rRNA gene sequencing, and fecal metabolites and short-chain fatty acids (SCFAs) were analyzed using targeted metabolomics profiling and high-performance liquid chromatography (HPLC), respectively. PFASs in plasma samples were detected using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results revealed that exposure to PFHpA significantly reduced microbial diversity and richness in the gut microbiota. Specific bacterial genera were found to be positively or negatively associated with branched PFHxS and PFHpA exposures (β = -0.008---0.009, P_fdr = <0.001---0.048), with Parabacteroides positively correlated with branched PFHxS and Lachnospiraceae FCS020 group negatively correlated with PFHpA. Metabolomic analysis showed that branched PFHxS and PFHpA exposures were associated with distinct changes in fecal metabolite profiles (β = -0.182---0.177, P_fdr = 0.015---0.172), particularly reducing fatty acids and amino acids. Additionally, higher exposure to PFHpA was linked to a reduction in SCFA profiles, such as valeric acid (β = -0.691 - -0.341, P = 0.011---0.030). This study offers new insights into the potential adverse effects of PFASs alternatives, specifically branched PFHxS and PFHpA, on the gut microbiome and metabolic health in children.
Collapse
Affiliation(s)
- Zhen Hong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515 Guangdong, China
| | - Lizi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080 Guangdong, China
| | - Haoran Yu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515 Guangdong, China
| | - Qinzhi Wei
- Department of Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515 Guangdong, China
| | - Yunting Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080 Guangdong, China
| | - Wanting He
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080 Guangdong, China
| | - Xuemei Liao
- Department of Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515 Guangdong, China
| | - Jin Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080 Guangdong, China
| | - Guanghui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080 Guangdong, China.
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515 Guangdong, China.
| |
Collapse
|
7
|
Jaus A, Fragnière Rime C, Riou J, Brüschweiler BJ, Bochud M, von Goetz N. Serum biomonitoring of per- and polyfluoroalkyl substances (PFASs) in the adult population of Switzerland: Results from the pilot phase of the Swiss health study. ENVIRONMENT INTERNATIONAL 2025; 198:109382. [PMID: 40147138 DOI: 10.1016/j.envint.2025.109382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/18/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Monitoring human exposure to per- and polyfluoroalkyl substances (PFASs) is of significant public health relevance, given the documented associations between PFAS exposure and a range of adverse health outcomes. This study aimed to provide a sensitive and reliable analytical approach for the determination of PFASs in human serum and to advance the understanding of PFAS exposure. Serum samples from 630 adult participants from the population-based Swiss Health Study pilot phase were analysed for 30 legacy and emerging PFASs. Quantitative analysis was performed after specific sample preparation using high-performance liquid chromatography coupled to mass spectrometry. The association between PFAS serum concentrations and selected demographic and behavioural parameters of interest was assessed using linear regression. The developed method enabled sensitive high-throughput analysis and resulted in reliable validation parameters and robust quantification performance. The study revealed that, while the prevalence of emerging PFASs was observed to be marginal, legacy PFASs predominated. Perfluorooctane sulfonic acid (PFOS, geometric mean (GM) 6.6 ng/mL), perfluorooctanoic acid (PFOA, GM 1.3 ng/mL) and perfluorohexane sulfonic acid (PFHxS, GM 1.2 ng/mL) were detected in all serum samples and contributed 88 % to the median sum of determined PFASs (10.3 ng/mL). The levels of PFOA and PFOS were found to be associated with age and gender. Furthermore, PFOS levels were associated with consumption of fish, particularly freshwater species, while PFOA levels were negatively associated with the duration of breastfeeding. Regional disparities were also observed. Several results exceeded specific health thresholds for PFAS intake or human biomonitoring, but the observed values were overall comparable to similar studies conducted worldwide. The provision of comprehensive information on a wide range of legacy and emerging PFASs facilitates a more complete identification of possible sources of exposure, not only in the regions concerned, but also beyond, and establishes a robust foundation for the guidance of future investigations.
Collapse
Affiliation(s)
- Alexandra Jaus
- Swiss Federal Institute of Metrology, Bern, Switzerland.
| | | | - Julien Riou
- Center for Primary Care and Public Health (Unisanté), Department of Epidemiology and Health Systems, University of Lausanne, Lausanne, Switzerland
| | - Beat J Brüschweiler
- Federal Food Safety and Veterinary Office, Knowledge Foundations Division, Bern, Switzerland
| | - Murielle Bochud
- Center for Primary Care and Public Health (Unisanté), Department of Epidemiology and Health Systems, University of Lausanne, Lausanne, Switzerland
| | - Natalie von Goetz
- Health Protection Directorate, Federal Office of Public Health, Bern, Switzerland
| |
Collapse
|
8
|
Biswas B, Joseph A, Parveen N, Ranjan VP, Goel S, Mandal J, Srivastava P. Contamination of per- and poly-fluoroalkyl substances in agricultural soils: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124993. [PMID: 40120441 DOI: 10.1016/j.jenvman.2025.124993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Numerous reviews have focused on the chemistry, fate and transport, and remediation of per- and poly-fluoroalkyl substances (PFAS) across various environmental media. However, there remains a significant gap in the literature regarding a comprehensive review specifically addressing PFAS contamination within agricultural soils. Recognizing the threat PFAS pose to ecosystems and human health, this review critically examines the sources of PFAS in agricultural environments, their uptake and translocation within plant systems, and recent advancements in soil remediation techniques. PFAS ingress into agricultural soils primarily occurs through the application of biowastes, wastewater, and pesticides, necessitating a thorough examination of their pathways and impacts. Factors such as carbon chain length, salinity, temperature, and pH levels affect PFAS uptake and distribution within plants, ultimately influencing their transfer through the food web. Moreover, this review explores a range of physical, chemical, and biological strategies currently employed for the remediation of PFAS-contaminated agricultural soils.
Collapse
Affiliation(s)
- Bishwatma Biswas
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India.
| | - Anuja Joseph
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India.
| | - Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India; Civil Engineering Department, National Institute of Technology Mizoram, Aizawl, Mizoram, 796012, India.
| | - Ved Prakash Ranjan
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India.
| | - Sudha Goel
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India.
| | - Jajati Mandal
- School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom; Commonwealth Scientific and Industrial Research Organization (CSIRO), Environment, Industry Environments Program, Waite Campus, Urrbrae, SA, 5064, Australia.
| | - Prashant Srivastava
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Environment, Industry Environments Program, Waite Campus, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
9
|
Cai D, Li SP, Guo YT, Chou WC, Mohammed Z, Qiu RL, Hu G, Qi J, Ren M, Xiang M, Li Z, Zhou Y, Huang J, Kong M, Xie Y, Tang C, Lin LZ, Yu Y, Dong GH, Zeng XW. Effects of Serum Insulin and Insulin-Like Growth Factor 1 Levels on the Association between Fetal Growth and Per- and Polyfluoroalkyl Substance Exposure Based on a Nested Case-Control Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3841-3852. [PMID: 39969242 DOI: 10.1021/acs.est.4c08752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Insulin and insulin-like growth factor 1 (IGF1) play key roles in fetal growth and development. However, their roles in the association between fetal growth and perfluoroalkyl and polyfluoroalkyl substance (PFAS) exposure remain unclear. In this study, the levels of 34 PFAS, IGF1, and insulin were measured in 258 paired mother-infant serum samples collected from a nested case-control study in Maoming city. Isomeric perfluorooctanesulfonate (PFOS) exposure significantly increased the preterm birth or low birth weight (PTB/LBW) risk, and the odds ratios for ∑2m, 3+4+5m, iso, and branched PFOS were 1.50, 1.72, 1.61, and 1.77, respectively. Cord IGF1 could explain 15.4, 13.4, 9.7, and 11.9% of these associations, respectively. Additionally, cord IGF1 mediated 12.3 to 44.6% of the associations between PFOS isomers, perfluorooctanoate acid (PFOA), and its alternative (perfluorobutanoic acid: PFBA) with a fetal growth index. For instance, cord IGF1 contributed 42.0% (95% Cl: 0.8, 140.0%), 42.7% (95% Cl: 13.0, 110.0%), and 43.0% (95% Cl: 8.4, 130.0%) to the associations between z-scores of birth weight and branched PFOS, PFOA, and PFBA, respectively. These findings suggest that cord IGF1 plays a mediating role in the associations between PFAS exposure and fetal growth.
Collapse
Affiliation(s)
- Dan Cai
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shen-Pan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yu-Ting Guo
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Chun Chou
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Zeeshan Mohammed
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 7760, United States
| | - Rong-Liang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jianying Qi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Mingzhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhenchi Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jinbo Huang
- Maoming Maternal and Child Health Hospital, Maoming 525000, China
| | - Minli Kong
- Maoming Maternal and Child Health Hospital, Maoming 525000, China
| | - Yanqi Xie
- Maoming Maternal and Child Health Hospital, Maoming 525000, China
| | - Cuilan Tang
- Maoming Maternal and Child Health Hospital, Maoming 525000, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
10
|
Fang S, Guo R, Zhao X, Jin H. Isomer-specific sediment-water partitioning and bioaccumulation of perfluoroalkyl sulfonyl fluorides. WATER RESEARCH 2025; 271:122904. [PMID: 39642789 DOI: 10.1016/j.watres.2024.122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Perfluoroalkyl sulfonyl fluorides (PFASFs) have long been used as crucial synthetic intermediates in the production of various perfluoroalkyl substances. While, knowledge on the environmental occurrence and behaviors of PFASFs in the aquatic environment is still very limited, especially at the isomer-specific level. In this study, surface water, sediment, and fish samples were collected from the water environment near a wastewater treatment plant outlet, and analyzed them for five PFASFs. The highest mean water concentration was observed for linear perfluorobutyl sulfonyl fluoride (l-PFBSF; 122 ng/L, 10-457 ng/L). While, linear perfluorooctane sulfonyl fluoride (l-PFOSF) displayed the highest mean concentration in collected sediment (108 ng/g dw, 78-271 ng/g dw) and fish (113 ng/g ww, 48-244 ng/g ww). For detected PFASFs, their branched isomers accounted for mean 16-29 %, 8.2-11 %, and 16-25 % of total PFASFs (sum of linear and branched isomers) in water, sediment, and fish samples, respectively. Calculated log-transformed sediment-water partitioning coefficients (log Koc) of linear PFASFs linearly increased with the increasing carbon chain length, with the mean values ranging from 2.1 ± 0.36 (l-PFBSF) to 3.9 ± 0.18 (l-PFOSF). Calculated log-transformed bioaccumulation factors (log BAF) of linear PFASFs increased from 1.7 ± 0.34 (l-PFBSF) to 3.0 ± 0.27 (l-PFOSF) with the carbon chain length. Branched isomers of detected PFASFs displayed lower log Koc and log BAF values than their respective linear isomers. To our knowledge, this study provides the first evidence on isomer-specific environmental behaviors of PFASFs, which is crucial for assessing the ecological risks these compounds may pose.
Collapse
Affiliation(s)
- Shuhong Fang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Ximeng Zhao
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
11
|
Dai S, Zhang G, Dong C, Yang R, Pei Z, Li Y, Li A, Zhang Q, Jiang G. Occurrence, bioaccumulation and trophodynamics of per- and polyfluoroalkyl substances (PFAS) in terrestrial and marine ecosystems of Svalbard, Arctic. WATER RESEARCH 2025; 271:122979. [PMID: 39708621 DOI: 10.1016/j.watres.2024.122979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) enter the Arctic through long-range transport and local pollution. To date, little is known about their behavior in plant and benthic marine food webs in remote Arctic. In this study, we analyzed the environmental distribution and nutrient transfer of 20 PFAS in soil, sediment, plant and benthic biota samples collected between 2014 and 2016 in Svalbard, Arctic. Total concentrations of PFAS were in the ranges of 0.12-4.84 ng/g dry weight (dw) in soil, 0.15-0.93 ng/g dw in sediment, 0.11-16.6 ng/g dw in plant, and 0.049-26.2 ng/g dw in marine biota. Perfluorocarboxylic acids (PFCAs) dominated Σ20PFAS in all sample types except amphipods, in which perfluorooctane sulfonate (PFOS) made up 80 % of Σ20PFAS. The profile of PFAS components observed in the terrestrial and marine ecosystems suggests that atmospheric transport and oxidation of volatile precursors are important sources of PFCAs in the Arctic region. However, the impact of long-distance ocean transport and local emissions cannot be ignored. The biota-sediment or biota-soil bioaccumulation factors (BSAF) differed among plants and biota species, with mountain avens (BSAF of Σ20PFAS: 12.1) and amphipods (BSAF of Σ20PFAS: 44.9) having higher accumulation potential. PFOS, perfluorohexane sulfonamide (FHxSA) and Σ20PFAS have biomagnification potential in Arctic benthic biota, but short-chain PFCA exhibits trophic dilution. This is one of few studies to investigate the environmental behavior of PFAS in terrestrial and aquatic ecosystems in the remote Arctic, providing a basis for investigating the ecological risks of PFAS in polar regions.
Collapse
Affiliation(s)
- Shiyu Dai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - An Li
- School of Public Health, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
12
|
Yang S, Gwak J, Kim M, Cha J, Kim Y, Lee Y, Moon HB, Hong S. Spatial and vertical distribution of per- and polyfluoroalkyl substances (PFASs) in the water columns of the regional seas of South Korea. CHEMOSPHERE 2025; 370:144042. [PMID: 39733948 DOI: 10.1016/j.chemosphere.2024.144042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
This study focused on analyzing the spatial and vertical distributions of 28 per- and polyfluoroalkyl substances (PFASs), which comprised five precursors and three alternatives, in the water columns of the regional seas surrounding South Korea, such as the Yellow Sea (YS, Y1-Y10), East China Sea (ECS, EC1-EC6), South Sea (SS, S1-S5), and East Sea (ES, E1-E7). The concentrations of these PFASs detected in 204 seawater samples varied from below the limit of detection (
Collapse
Affiliation(s)
- Sunmi Yang
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jiyun Gwak
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mungi Kim
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jihyun Cha
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Youngnam Kim
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yeonjung Lee
- Ocean Climate Response & Ecosystem Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Seongjin Hong
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
13
|
Kozisek F, Dvorakova D, Kotal F, Jeligova H, Mayerova L, Svobodova V, Jurikova M, Gomersall V, Pulkrabova J. Assessing PFAS in drinking water: Insights from the Czech Republic's risk-based monitoring approach. CHEMOSPHERE 2025; 370:143969. [PMID: 39694288 DOI: 10.1016/j.chemosphere.2024.143969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/19/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
This study investigates the presence of perfluoroalkyl substances (PFAS) in the drinking water supplies in the Czech Republic using a risk-based monitoring approach. Tap water samples (n = 27) from sources close to areas potentially contaminated with PFAS were analysed. A total of 28 PFAS were measured using ultra-performance liquid chromatography with tandem mass spectrometry after solid phase extraction. Total PFAS concentrations (∑PFAS) varied from undetectable to 90.8 ng/L, with perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA) and perfluorobutane sulfonic acid (PFBS) being the most abundant, detected in over 70% of samples. Risk-based monitoring in drinking water showed that commercial wells had higher PFAS levels compared to tap water, particularly C4-C9 perfluorocarboxylic acids (PFCAs), possibly due to proximity to industrial areas. However, the hypothesis that risk-based monitoring is more effective than random monitoring was not confirmed, possibly because specific sources did not produce the target PFAS or because of the wide range and less obvious sources of potential contamination. The study also assessed exposure risks and compliance with regulatory thresholds. Weekly intake estimates for adults and children indicated that regular consumption of most contaminated water sample would exceed the tolerable weekly intake. Compared to EU regulations, none of the tap water samples exceeded the 'Sum of PFAS' parametric value of 100 ng/L, though one sample approached this limit. In addition, surface water samples from the Jizera River (n = 21) showed a wider range of PFAS, with C7-C10 PFCAs, PFBS, and perfluorooctane sulfonic acid (PFOS) in every sample, with higher PFOS concentrations at a median of 2.56 ng/L. ∑PFAS concentrations increased downstream, rising from 1.08 ng/L near the spring to 26 ng/L downstream. This comprehensive analysis highlights the need for detailed/areal monitoring to also address hidden or non-obvious sources of PFAS contamination.
Collapse
Affiliation(s)
- Frantisek Kozisek
- National Institute of Public Health (NIPH), Department of Water Hygiene, Srobarova 49/48, Prague, 100 00, Czech Republic
| | - Darina Dvorakova
- University of Chemistry and Technology (UCT), Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, 166 28, Prague, Czech Republic.
| | - Filip Kotal
- National Institute of Public Health (NIPH), Department of Water Hygiene, Srobarova 49/48, Prague, 100 00, Czech Republic
| | - Hana Jeligova
- National Institute of Public Health (NIPH), Department of Water Hygiene, Srobarova 49/48, Prague, 100 00, Czech Republic
| | - Lenka Mayerova
- National Institute of Public Health (NIPH), Department of Water Hygiene, Srobarova 49/48, Prague, 100 00, Czech Republic
| | - Veronika Svobodova
- University of Chemistry and Technology (UCT), Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, 166 28, Prague, Czech Republic
| | - Martina Jurikova
- University of Chemistry and Technology (UCT), Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, 166 28, Prague, Czech Republic
| | - Veronika Gomersall
- University of Chemistry and Technology (UCT), Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, 166 28, Prague, Czech Republic
| | - Jana Pulkrabova
- University of Chemistry and Technology (UCT), Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, 166 28, Prague, Czech Republic
| |
Collapse
|
14
|
Song C, Chen S, Bi Z, Wang L, Cao M, Zhou Z, Cao H, Chen M, Zhang J, Liang Y. Perfluorohexane sulfonate exposure caused multiple developmental abnormalities in early life of zebrafish. ENVIRONMENTAL RESEARCH 2025; 265:120461. [PMID: 39603589 DOI: 10.1016/j.envres.2024.120461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Perfluorohexane sulfonate (PFHxS) has been listed as a new persistent organic pollutant since 2022. Although the production and use of PFHxS are now restricted, it remains highly persistent in aquatic environments for decades. However, so far research about the toxic effects on early-life exposure of PFHxS and underlying mechanisms are still limited. In this study, we employed both wild type and specifically labeled transgenic zebrafish as model to investigate the developmental toxicity of PFHxS during early-stage exposure in zebrafish. A series of phenotypic and molecular indicators were analyzed at various time points between 24 h post-fertilization (hpf) and 7 days post-fertilization (dpf). Our data showed that the acute toxicity of PFHxS was much lower than PFOS, with a lethal concentration 50% of 508.11 ± 88.54 μM at 120 hpf. Low-dose PFHxS exposure significantly altered heart rates, blood flow, and swimming behavior in zebrafish larvae, suggesting potential cardiotoxicity and neurotoxicity of zebrafish. Data from transgenic zebrafish with specifically labeled hearts (CZ40) confirmed that PFHxS affects cardiovascular system development. PFHxS-induced changes in transgenic zebrafish with labeled liver and pancreas (CZ16) suggest that PFHxS may cause metabolic disorders and contribute to developmental defects. Gene expression analysis showed that PFHxS with potential estrogenic effect might also affect the gonadal development of zebrafish. Our study can offer an insight into the toxicity of PFHxS in aquatic environment and health risks of early-stage PFHxS exposure in humans.
Collapse
Affiliation(s)
- Chuxin Song
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siyi Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Zeyu Bi
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Minjie Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Jie Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| |
Collapse
|
15
|
Kuc J, Grochowalska I, Thomas M, Zalewska T, Rybka-Murat M. Assessment of the Variability in the Occurrence of PFAS in Fish Tissues from Selected Fisheries in the Baltic Sea. Molecules 2024; 29:6029. [PMID: 39770117 PMCID: PMC11679852 DOI: 10.3390/molecules29246029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, the results of a comprehensive assessment of the variability in the occurrence of ten perfluorinated compounds (PFAS) in fish tissues originating from 2014 to 2019 from six fisheries in the Baltic Sea are presented. A total of 360 fish samples of three species (perch, herring and flatfish) were analysed. For the determination of PFAS, both linear and branched stereoisomers, LC-ESI-MS/MS technique preceded by simultaneous SPE isolation was validated and applied. The total concentration of all determined PFAS compounds shows that the highest levels were observed in the Szczecin Lagoon (4.8 ± 0.7 µg/kg) and the lowest in the Pomeranian Bay (1.9 ± 0.1 µg/kg). In most samples, the dominant compound was perfluorooctane sulfonic acid (PFOS). The present research enabled the assessment of the variability in the occurrence of PFAS stereoisomers in marine fish.
Collapse
Affiliation(s)
- Joanna Kuc
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Iwona Grochowalska
- Faculty of Natural Sciences, Jan Kochanowski University in Kielce, Stefana Żeromskiego 5, 25-369 Kielce, Poland;
| | - Maciej Thomas
- Faculty of Environmental Engineering and Energy, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
| | - Tamara Zalewska
- Institute of Meteorology and Water Management, National Research Institute, Waszyngtona 42, 81-342 Gdynia, Poland; (T.Z.); (M.R.-M.)
| | - Marta Rybka-Murat
- Institute of Meteorology and Water Management, National Research Institute, Waszyngtona 42, 81-342 Gdynia, Poland; (T.Z.); (M.R.-M.)
| |
Collapse
|
16
|
Qiu T. Mass Spectrometry Imaging for Spatial Toxicology Research. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5104. [PMID: 39624029 PMCID: PMC11612705 DOI: 10.1002/jms.5104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 12/06/2024]
Abstract
The spatial information of xenobiotics distribution, metabolism, and toxicity mechanisms in situ has drawn increasing attention in both pharmaceutical and environmental toxicology research to aid drug development and environmental risk assessments. Mass spectrometry imaging (MSI) provides a label-free, multiplexed, and high-throughput tool to characterize xenobiotics, their metabolites, and endogenous molecules in situ with spatial resolution, providing knowledge on spatially resolved absorption, distribution, metabolism, excretion, and toxicity on the molecular level. In this perspective, we briefly summarize applications of MSI in toxicology on xenobiotic distribution and metabolism, quantification, toxicity mechanisms, and biomarker discovery. We identified several challenges regarding how we can fully harness the power of MSI in both fundamental toxicology research and regulatory practices. First, how can we increase the coverage, sensitivity, and specificity in detecting xenobiotics and their metabolites in complex biological matrices? Second, how can we link the spatial molecular information of xenobiotics to toxicity consequences to understand toxicity mechanisms, predict exposure outcomes, and aid biomarker discovery? Finally, how can we standardize the MSI experiment and data analysis workflow to provide robust conclusions for regulation and drug development? With these questions in mind, we provide our perspectives on the future directions of MSI as a promising tool in spatial toxicology research.
Collapse
Affiliation(s)
- Tian (Autumn) Qiu
- Department of ChemistryMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
17
|
Saha B, Ateia M, Tolaymat T, Fernando S, Varghese JR, Golui D, Bezbaruah AN, Xu J, Aich N, Briest J, Iskander SM. The unique distribution pattern of PFAS in landfill organics. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135678. [PMID: 39217946 PMCID: PMC11483333 DOI: 10.1016/j.jhazmat.2024.135678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
PFAS from degrading landfill waste partition into organic matter, leachate, and landfill gas. Driven by the limited understanding of PFAS distribution in landfill organics, we analyzed PFAS across various depths and seven spatially distinct locations within a municipal landfill. The measured PFAS concentrations in organics ranged from 6.71 to 73.06 µg kg-1, a sum of twenty-nine PFAS from six classes. Perfluorocarboxylic acids (PFCAs) and fluorotelomer carboxylic acids (FTCAs) were the dominant classes, constituting 25-82 % and 8-40 % of total PFAS at different depths. PFBA was the most dominant PFCA with a concentration range of 0.90-37.91 µg kg-1, while 5:3 FTCA was the most prevalent FTCA with a concentration of 0.26-17.99 µg kg-1. A clear vertical distribution of PFAS was observed, with significantly greater PFAS concentrations at the middle depths (20-35 ft), compared to the shallow (10-20 ft) and high depths (35-50 ft). A strong positive correlation (r > 0.50) was noted between total PFAS, total carbon, and dissolved organic matter in landfill organics. Multivariate statistical analysis inferred common sources and transformations of PFAS within the landfill. This study underscores the importance of a system-level analysis of PFAS fate in landfills, considering waste variability, chemical properties, release mechanisms, and PFAS transformations.
Collapse
Affiliation(s)
- Biraj Saha
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Mohamed Ateia
- U S Environmental Protection Agency Office of Research and Development, 26 Martin Luther King Dr W, Cincinnati, OH 45268, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States
| | - Thabet Tolaymat
- U S Environmental Protection Agency Office of Research and Development, 26 Martin Luther King Dr W, Cincinnati, OH 45268, United States
| | - Sujan Fernando
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, United States
| | - Juby R Varghese
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, United States
| | - Debasis Golui
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States; Department of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Achintya N Bezbaruah
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Jiale Xu
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Nirupam Aich
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - John Briest
- Weaver Consultants Group, Centennial, CO 80111, United States
| | - Syeed Md Iskander
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States; Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58108, United States.
| |
Collapse
|
18
|
Dui W, Smith MP, Bartock SH. Development, validation, and clinical assessment of a liquid chromatography-tandem mass spectrometry serum assay for per- and polyfluoroalkyl substances (PFAS) recommended by the National Academies of Science, Engineering, and Medicine (NASEM). Anal Bioanal Chem 2024; 416:6333-6344. [PMID: 39269501 PMCID: PMC11541307 DOI: 10.1007/s00216-024-05519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used in industry, residential, and consumer products. Studies have shown associations between high PFAS exposure and adverse health effects. In 2022, the National Academies of Science, Engineering, and Medicine (NASEM) published Guidance on PFAS Exposure, Testing, and Clinical Follow-up providing laboratory and clinical direction. The Guidance suggests nine PFAS should be measured in serum or plasma specimens and summed to provide a total PFAS concentration using a NASEM-recommended method. Follow-up clinical recommendations are based on the calculated PFAS NASEM summation. We developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in accordance with NASEM recommendations but distinguished by the ability to separate closely related structural isomers. As part of our validation, PFAS prevalence was evaluated in a population survey comprised of clinical donor and remnant specimens (n = 1023 in total). In this study, 82.2% of the specimens had PFAS NASEM summations of 2 to < 20 ng/mL and 2.5% had a summation ≥ 20 ng/mL. The median PFAS NASEM summation was 4.65 ng/mL in this study, lower than the 7.74 ng/mL median observed in the 2017-2020 Centers for Disease Control and Prevention, National Health and Nutrition Examination Survey (n = 3072). This lower median PFAS NASEM summation may reflect a decline in PFAS population levels over time or sample population exposure differences.
Collapse
Affiliation(s)
- Wen Dui
- Quest Diagnostics, 14225 Newbrook Drive, Chantilly, VA, 20151, USA
| | - Michael P Smith
- Quest Diagnostics, 14225 Newbrook Drive, Chantilly, VA, 20151, USA
| | - Sarah H Bartock
- Quest Diagnostics, 14225 Newbrook Drive, Chantilly, VA, 20151, USA.
| |
Collapse
|
19
|
Hall AM, Ashley-Martin J, Lei Liang C, Papandonatos GD, Arbuckle TE, Borghese MM, Buckley JP, Cecil KM, Chen A, Dodds L, Fisher M, Lanphear BP, Fk Rawn D, Yolton K, Braun JM. Personal care product use and per- and polyfluoroalkyl substances in pregnant and lactating people in the Maternal-Infant Research on Environmental Chemicals study. ENVIRONMENT INTERNATIONAL 2024; 193:109094. [PMID: 39476594 DOI: 10.1016/j.envint.2024.109094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/15/2024] [Accepted: 10/19/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are ubiquitous chemicals routinely detected in personal care products (PCPs). However, few studies have evaluated the impact of PCP use on PFAS concentrations in pregnant and lactating populations. OBJECTIVE We investigated associations between PCP use and PFAS concentrations in prenatal plasma and human milk. METHODS We leveraged the Maternal-Infant Research on Environmental Chemicals (MIREC) Study to evaluate the contribution of PCP use on PFAS concentrations in prenatal plasma (6 to 13 weeks' gestation; n = 1,940) and human-milk (2 to 10 weeks' postpartum; n = 664). Participants reported frequency of use across 8 PCP categories during the 1st and 3rd trimesters, 1 to 2 days postpartum, and 2 to 10 weeks' postpartum. We used adjusted linear regression models to quantify percent differences and corresponding 95 % confidence intervals. RESULTS In 1st trimester pregnant people, we found higher use of nailcare products (≥once a week vs. never: perfluorooctanoic acid (PFOA): 21 % [9.7 %, 32 %]; perfluorooctane-sulfonic acid (PFOS): 11 % [0.3 %, 23 %]), fragrances (daily vs. never: PFOA: 14 % [7.8 %, 21 %]; PFOS: 7.8 % [1.3 %, 15 %]), makeup (daily vs. never: PFOA: 14 % [5.8 %, 23 %]), hair dyes (never vs. 1-2 times during pregnancy: PFOA: 8.3 % [2.4 %, 15 %]), and hair sprays or gels (daily vs. never: PFOA: 12 % [5.0 %, 19 %], PFOS: 7.1 % [0.2 %, 15 %]) were associated with higher plasma PFAS concentrations. Similar results were observed for 3rd trimester PCP use and 2 to 10 weeks' postpartum human-milk PFAS concentrations. In addition, we also found that people using colored-permanent dye 1 to 2 days postpartum had higher Sm-PFOS (18 % [2.7 %, 35 %]), PFOA (16 % [4.3 %, 29 %]), and perfluorononanoic acid (17 % [3.6 %, 33 %]) postpartum human-milk concentrations. CONCLUSIONS Our results show that PCP use may be a modifiable source of PFAS exposure in pregnant and lactating populations. These results along with growing scientific evidence can help inform PFAS regulation and guide individual choices to reduce PFAS exposure.
Collapse
Affiliation(s)
- Amber M Hall
- Department of Epidemiology, Brown University, Providence, Rhode Island 02912, USA.
| | - Jillian Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada.
| | - Chun Lei Liang
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada.
| | | | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada.
| | - Michael M Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada.
| | - Jessie P Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Kim M Cecil
- Department of Pediatrics and Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Linda Dodds
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Mandy Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada.
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Dorothea Fk Rawn
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, Tunney's Pasture, Ottawa, Ontario K1A 0K9, Canada.
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island 02912, USA.
| |
Collapse
|
20
|
Sun J, Lorpaiboon W, Fox N, Jones A, Ho J, Manefield MJ, Kumar N, O'Carroll D, Lee M. Characterization of PFOA isomers from PFAS precursors and their reductive defluorination. WATER RESEARCH 2024; 268:122717. [PMID: 39509770 DOI: 10.1016/j.watres.2024.122717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Perfluorooctanoic acid (PFOA) including linear and branched isomers is one of only three PFAS included in the Stockholm convention on Persistent Organic Pollutants. Unfortunately, PFOA branched isomers have received less attention than the linear due to analytical difficulties and perceived lower environmental concentrations. In this study, we revealed a environmentally relevant pathway for the formation of branched PFOA from PFAS precursors. AFFF samples showed a doubling of branched PFOA concentrations (138 mg/L) after TOP assay oxidation (307 mg/L). These findings indicate that branched PFOA may be more pervasive in the environment than previously thought. Additionally, we investigated the reductive degradability of PFOA using vitamin B12 (VB12) (a naturally occurring electron shuttle) in combination with either zero-valent zinc (ZVZ) or zero-valent iron (ZVI). Linear PFOA, as well as two branched isomers (3-methyl PFOA and 5,5-dimethyl PFOA), resisted reductive defluorination under the experimental conditions. However, all other branched isomers degraded within 10 days in the ZVZ-VB12 system. The experimental rate constants for specific PFOA isomers generally correlate with their calculated reduction potentials, except for 6-methyl PFOA. A potential defluorination pathway was proposed based on high-resolution mass spectrometry (LC-Orbitrap) and density functional theory (DFT) studies.
Collapse
Affiliation(s)
- Jun Sun
- UNSW School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Wanutcha Lorpaiboon
- UNSW School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Nicholas Fox
- School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Adele Jones
- School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Junming Ho
- UNSW School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Michael J Manefield
- School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Naresh Kumar
- UNSW School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Denis O'Carroll
- School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Matthew Lee
- School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; Geosyntec Environmental Consultants, Suite 6, 66 Saint Georges Tce, Perth, Western Australia 6001, Australia.
| |
Collapse
|
21
|
Chen X, Xu D, Xiao Y, Zuo M, Zhou J, Sun X, Shan G, Zhu L. Multimedia and Full-Life-Cycle Monitoring Discloses the Dynamic Accumulation Rules of PFAS and Underestimated Foliar Uptake in Wheat near a Fluorochemical Industrial Park. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18088-18097. [PMID: 39292548 DOI: 10.1021/acs.est.4c03525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The escalating concern of perfluoroalkyl and polyfluoroalkyl substances (PFAS), particularly at contaminated sites, has prompted extensive investigations. In this study, samples of multimedia including air, rhizosphere soil, and tissues of wheat at various growing stages were collected near a mega fluorochemical industrial park in China. Perfluorooctanoic acid (PFOA) was predominant in both air and soil with a strong correlation, highlighting air deposition as an important source in the terrestrial system. PFAS concentrations in wheat decreased in the stem and ear but increased in the leaves as wheat matured. Specifically, perfluorobutanoic acid (PFBA) dominated in the aboveground tissues in the full-life-cycle, except that PFOA surpassed and became predominant in leaves during the filling and maturing stages, hinting at an airborne source. For all PFAS, both bioaccumulation factors and translocation factors (TFs) were inversely correlated with the carbon chain length during the full-life-cycle. The obtained TF values were considerably higher than those obtained from ambient sites reported previously, further suggesting an unneglectable foliar uptake from air, which was estimated to be 25% for PFOA. Moreover, spray irrigation remarkably enhanced the absorption of PFAS in wheat via foliar uptake relative to flood irrigation. The estimated daily intake of PFBA via wheat consumption and air inhalation was 0.50 μg/kg/day for local residents, at least one magnitude higher than the corresponding threshold, suggesting an alarmingly high exposure risk.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Dashan Xu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
- Sinochem Environment Holding Co., Ltd., Beijing 100071, PR China
| | - Yuehan Xiao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Mingjiang Zuo
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, Shaanxi 712100, PR China
| | - Xiao Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
22
|
Ferdous SR, Rojas A, Frank C, Sabatini HM, Luo X, Sharma S, Thummel R, Chouinard C, Dasgupta S. Examining perfluorohexane sulfonate (PFHxS) impacts on sensorimotor and circadian rhythm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617320. [PMID: 39464027 PMCID: PMC11507664 DOI: 10.1101/2024.10.08.617320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Perfluorohexane sulfonate (PFHxS) is a ubiquitous perfluoroalkyl substance known for its environmental persistence and potential toxicity. This study investigated PFHxS's impact on zebrafish embryos, focusing on sensorimotor behavior, circadian rhythm disruption, and underlying molecular mechanisms. Under 24 hr dark incubations, PFHxS exposure induced concentration-dependent hyperactivity within larval photomotor response, characterized by the distinctive "O-bend" response, strong light-phase hyperactive movement and seizure-like movements. It appears that PFHxS-treated embryos cannot sense light cues in a normal manner. Similar hyperactivity was seen for acoustic startle response assay, suggesting that the response is not merely visual, but sensorimotor. LC-MS studies confirmed detectable uptake of PFHxS into embryos. We then conducted mRNA-sequencing across multiple time points (48 and 120 hpf) and concentrations (0.00025, 0.0025 and 25 µM). Data at the 25 µM (2-120 hpf) exposure showed disrupted pathways associated with DNA and cell cycle. Interestingly, data at 0.00025 µM - an environmentally relevant concentration- at 48 hpf showed disruption of MAPK and other signaling pathways. Immunohistochemistry of eyes showed reduced retinal stem cell proliferation, consistent with observed DNA replication pathway disruptions. To assess if these impacts were driven by circadian rhythm development, we manipulated light/dark cycles during PFHxS incubation; this manipulation altered behavioral patterns, implicating circadian rhythm modulation as a target of PFHxS. Since circadian rhythm is modulated by the pineal gland, we ablated the gland using metronidazole; this ablation partially rescued hyperactivity, indicating the gland's role in driving the phenotype. Collectively, these findings underscore proclivity of PFHxS to cause neurodevelopmental toxicity, necessitating further mechanistic exploration and environmental health assessments.
Collapse
|
23
|
Wu J, Zhuang Y, Dong B, Wang F, Yan Y, Zhang D, Liu Z, Duan X, Bo Y, Peng L. Spatial heterogeneity of per- and polyfluoroalkyl substances caused by glacial melting in Tibetan Lake Nam Co due to global warming. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135468. [PMID: 39151357 DOI: 10.1016/j.jhazmat.2024.135468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) in high-latitude polar regions and the Tibetan Plateau have received widespread international attention. Here, we measured 18 PFASs and 11 major isomers in the lake water, sediment, and surrounding runoff of Lake Nam Co in 2020. The concentrations of ultrashort-chain trifluoroacetic acid (TFA) and perfluoropropanoic acid (PFPrA) and major isomers of perfluoooctanoic acid (PFOA) and perfluoooctane sulfonate acid (PFOS) in water bodies in high-latitude polar regions and the Tibetan Plateau are reported for the first time. The results showed that the concentration of ∑PFASs in glacial runoff was approximately 139 % greater than that in nonglacial runoff. The concentrations of ∑PFASs in the lake water and sediment in the southern lake with multiple glacial runoff events were approximately 113 % and 108 % higher, respectively, than those in the northern lake. The concentrations of short-chain perfluorobutanoic acid (PFBA) and ultrashort-chain TFA and PFPrA, which may be indicators of ice and snow melt, exhibited significant spatial heterogeneity. Overall, the spatial heterogeneity of PFAS concentrations in the water, sediment and surrounding runoff of Lake Nam Co may be caused mainly by glacial melting.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing 100044, China; School of Environment, Beijing Jiaotong University, Beijing 100044, China.
| | - Yiru Zhuang
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Bingqi Dong
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Fan Wang
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yulong Yan
- Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing 100044, China; School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Dayu Zhang
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhuocheng Liu
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiaolin Duan
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yu Bo
- CAS Key Laboratory of Regional Climate and Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lin Peng
- Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing 100044, China; School of Environment, Beijing Jiaotong University, Beijing 100044, China.
| |
Collapse
|
24
|
Fu K, Huang J, Luo F, Fang Z, Yu D, Zhang X, Wang D, Xing M, Luo J. Understanding the Selective Removal of Perfluoroalkyl and Polyfluoroalkyl Substances via Fluorine-Fluorine Interactions: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39264176 DOI: 10.1021/acs.est.4c06519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
As regulatory standards for per- and polyfluoroalkyl substances (PFAS) become increasingly stringent, innovative water treatment technologies are urgently demanded for effective PFAS removal. Reported sorbents often exhibit limited affinity for PFAS and are frequently hindered by competitive background substances. Recently, fluorinated sorbents (abbreviated as fluorosorbents) have emerged as a potent solution by leveraging fluorine-fluorine (F···F) interactions to enhance selectivity and efficiency in PFAS removal. This review delves into the designs and applications of fluorosorbents, emphasizing how F···F interactions improve PFAS binding affinity. Specifically, the existence of F···F interactions results in removal efficiencies orders of magnitude higher than other counterpart sorbents, particularly under competitive conditions. Furthermore, we provide a detailed analysis of the fundamental principles underlying F···F interactions and elucidate their synergistic effects with other sorption forces, which contribute to the enhanced efficacy and selectivity. Subsequently, we examine various fluorosorbents and their synthesis and fluorination techniques, underscore the importance of accurately characterizing F···F interactions through advanced analytical methods, and emphasize the significance of this interaction in developing selective sorbents. Finally, we discuss challenges and opportunities associated with employing advanced techniques to guide the design of selective sorbents and advocate for further research in the development of sustainable and cost-effective treatment technologies leveraging F···F interactions.
Collapse
Affiliation(s)
- Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinjing Huang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fang Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhuoya Fang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Mingyang Xing
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
25
|
Lin HC, Sakolish C, Moyer HL, Carmichael PL, Baltazar MT, Ferguson SS, Stanko JP, Hewitt P, Rusyn I, Chiu WA. An in vitro-in silico workflow for predicting renal clearance of PFAS. Toxicol Appl Pharmacol 2024; 489:117015. [PMID: 38917890 PMCID: PMC11585971 DOI: 10.1016/j.taap.2024.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) have a wide range of elimination half-lives (days to years) in humans, thought to be in part due to variation in proximal tubule reabsorption. While human biomonitoring studies provide important data for some PFAS, renal clearance (CLrenal) predictions for hundreds of PFAS in commerce requires experimental studies with in vitro models and physiologically-based in vitro-to-in vivo extrapolation (IVIVE). Options for studying renal proximal tubule pharmacokinetics include cultures of renal proximal tubule epithelial cells (RPTECs) and/or microphysiological systems. This study aimed to compare CLrenal predictions for PFAS using in vitro models of varying complexity (96-well plates, static 24-well Transwells and a fluidic microphysiological model, all using human telomerase reverse transcriptase-immortalized and OAT1-overexpressing RPTECs combined with in silico physiologically-based IVIVE. Three PFAS were tested: one with a long half-life (PFOS) and two with shorter half-lives (PFHxA and PFBS). PFAS were added either individually (5 μM) or as a mixture (2 μM of each substance) for 48 h. Bayesian methods were used to fit concentrations measured in media and cells to a three-compartmental model to obtain the in vitro permeability rates, which were then used as inputs for a physiologically-based IVIVE model to estimate in vivo CLrenal. Our predictions for human CLrenal of PFAS were highly concordant with available values from in vivo human studies. The relative values of CLrenal between slow- and faster-clearance PFAS were most highly concordant between predictions from 2D culture and corresponding in vivo values. However, the predictions from the more complex model (with or without flow) exhibited greater concordance with absolute CLrenal. Overall, we conclude that a combined in vitro-in silico workflow can predict absolute CLrenal values, and effectively distinguish between PFAS with slow and faster clearance, thereby allowing prioritization of PFAS with a greater potential for bioaccumulation in humans.
Collapse
Affiliation(s)
- Hsing-Chieh Lin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Haley L Moyer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Paul L Carmichael
- Unilever Safety and Environmental Assurance Centre, Bedfordshire MK44 1LQ, UK
| | - Maria T Baltazar
- Unilever Safety and Environmental Assurance Centre, Bedfordshire MK44 1LQ, UK
| | - Stephen S Ferguson
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Jason P Stanko
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
26
|
Criswell RL, Simones T, Chatterjee M, Waite J, Diaz S, Smith A. Quantifying levels of per- and polyfluoroalkyl Substances (PFAS) in water and serum after contamination from agricultural biosolid application. ENVIRONMENT INTERNATIONAL 2024; 190:108850. [PMID: 38941944 DOI: 10.1016/j.envint.2024.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
The National Academies of Sciences, Engineering, and Medicine recommends per- and polyfluoroalkyl substance (PFAS) blood testing for patients with risk of elevated exposure, and the Agency for Toxic Substances and Disease Registry (ATSDR) suggests PFAS blood testing based on exposure. Barriers to PFAS blood testing include cost, access to labs, and evolving laboratory methods. We quantify water and serum PFAS levels among a highly-exposed cohort in an area with groundwater contaminated by historical agricultural biosolid application. We compare the gold standard PFAS serum test with a commercial test and results from a one-compartment toxicokinetic model. Participants were adults (n = 30) whose household (n = 19) water had levels of the sum of six PFAS > 500 ng/L. Serum PFAS were measured using liquid chromatography-tandem mass spectrometry. Demographic and water consumption data were collected via telephone. Serum PFAS results from the commercial test were accessed via medical record. Statistical analysis included descriptive statistics and bivariate plots of serum levels. Perfluorohexanoic acid, perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorobutanesulfonic acid, perfluorohexanesulfonic acid (PFHxS), and perfluorooctanesulfonic acid (PFOS) were detected in 19 wells, and PFHpA, PFOA, PFNA, perfluorodecanoic acid, perfluoroundecanoic acid, PFHxS, and PFOS were detected in at least 19 participants' serum. In well water, PFOA and PFOS levels had geometric means (GMs) of 1749 ng/L (geometric standard deviation [GSD] 2.4) and 887 ng/L (GSD 19.7), respectively. In serum, PFOA and PFOS had GMs of 116.2 µg/L (GSD 13.5) and 58.3 µg/L (GSD 13.8), respectively. Our results are comparable with and had a wider mix of PFAS than other high-exposure cohorts. There was good agreement between the commercial and gold standard tests for PFOA, PFNA, and PFHxS, and mixed agreement between the gold standard test and modeled predictions, suggesting water-based toxicokinetic models of serum PFAS may be inadequate for assessing exposure in this population.
Collapse
Affiliation(s)
| | - Thomas Simones
- Environmental and Occupational Health Program, Maine Centers for Disease Control and Prevention, Augusta, ME USA
| | - Madhumita Chatterjee
- Bureau of Public Health Laboratories, Chemistry Program, New Hampshire Division of Public Health Services, Department of Health and Human Services, Concord, NH USA
| | - Jasmine Waite
- MaineGeneral Medical Center, Augusta, ME, USA; Environmental and Occupational Health Program, Maine Centers for Disease Control and Prevention, Augusta, ME USA
| | - Steven Diaz
- MaineGeneral Medical Center, Augusta, ME, USA
| | - Andrew Smith
- Environmental and Occupational Health Program, Maine Centers for Disease Control and Prevention, Augusta, ME USA
| |
Collapse
|
27
|
Sun J, Yu TT, Mirabediny M, Lee M, Jones A, O'Carroll DM, Manefield MJ, Kumar PV, Pickford R, Ramadhan ZR, Bhattacharyya SK, Åkermark B, Das B, Kumar N. Soluble metal porphyrins - Zero-valent zinc system for effective reductive defluorination of branched per and polyfluoroalkyl substances (PFASs). WATER RESEARCH 2024; 258:121803. [PMID: 38795548 DOI: 10.1016/j.watres.2024.121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Nano zero-valent metals (nZVMs) have been extensively utilized for decades in the reductive remediation of groundwater contaminated with chlorinated organic compounds, owing to their robust reducing capabilities, simple application, and cost-effectiveness. Nevertheless, there remains a dearth of information regarding the efficient reductive defluorination of linear or branched per- and polyfluoroalkyl substances (PFASs) using nZVMs as reductants, largely due to the absence of appropriate catalysts. In this work, various soluble porphyrin ligands [[meso‑tetra(4-carboxyphenyl)porphyrinato]cobalt(III)]Cl·7H2O (CoTCPP), [[meso‑tetra(4-sulfonatophenyl) porphyrinato]cobalt(III)]·9H2O (CoTPPS), and [[meso‑tetra(4-N-methylpyridyl) porphyrinato]cobalt(II)](I)4·4H2O (CoTMpyP) have been explored for defluorination of PFASs in the presence of the nZn0 as reductant. Among these, the cationic CoTMpyP showed best defluorination efficiencies for br-perfluorooctane sulfonate (PFOS) (94%), br-perfluorooctanoic acid (PFOA) (89%), and 3,7-Perfluorodecanoic acid (PFDA) (60%) after 1 day at 70 °C. The defluorination rate constant of this system (CoTMpyP-nZn0) is 88-164 times higher than the VB12-nZn0 system for the investigated br-PFASs. The CoTMpyP-nZn0 also performed effectively at room temperature (55% for br-PFOS, 55% for br-PFOA and 25% for 3,7-PFDA after 1day), demonstrating the great potential of in-situ application. The effect of various solubilizing substituents, electron transfer flow and corresponding PFASs defluorination pathways in the CoTMpyP-nZn0 system were investigated by both experiments and density functional theory (DFT) calculations. SYNOPSIS: Due to the unavailability of active catalysts, available information on reductive remediation of PFAS by zero-valent metals (ZVMs) is still inadequate. This study explores the effective defluorination of various branched PFASs using soluble porphyrin-ZVM systems and offers a systematic approach for designing the next generation of catalysts for PFAS remediation.
Collapse
Affiliation(s)
- Jun Sun
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tsz Tin Yu
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Maryam Mirabediny
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Matthew Lee
- School of Civil and Environmental Engineering, Water Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Adele Jones
- School of Civil and Environmental Engineering, Water Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Denis M O'Carroll
- School of Civil and Environmental Engineering, Water Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Michael J Manefield
- School of Civil and Environmental Engineering, Water Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Priyank V Kumar
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Zeno Rizqi Ramadhan
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Saroj Kumar Bhattacharyya
- Solid State and Elemental Analysis Unit, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, 2052 Australia
| | - Björn Åkermark
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Biswanath Das
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
28
|
Fujii Y, Kato Y, Miyatake M, Akeda S, Nagata S, Ando J, Kido K, Ohta C, Koga N, Harada KH, Haraguchi K. Levels and spatial profile of per- and polyfluoroalkyl substances in edible shrimp products from Japan and neighboring countries; a potential source of dietary exposure to humans. ENVIRONMENT INTERNATIONAL 2024; 189:108685. [PMID: 38823154 DOI: 10.1016/j.envint.2024.108685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 06/03/2024]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS) is of great concern for human health because of their persistence and potentially adverse effects. Dietary intake, particularly through aquatic products, is a significant route of human exposure to PFAS. We analyzed perfluoroalkyl sulfonic acid (PFSA with carbon numbers from 6 to 8 and 10 (C6-C8, C10)) and perfluorooctanesulfonamide (FOSA), and perfluoroalkyl carboxylic acid (PFCA with carbon numbers from 6 to 15 (C6-C15)) in 30 retail packs of edible shrimps, which included seven species from eight coastal areas of Japan and neighboring countries. The most prevalent compounds were perfluorooctane sulfonate (PFOS, C8) and perfluoroundecanoic acid (PFUnDA, C11), accounting for 46 % of total PFAS. The concentrations ranged from 6.5 to 44 ng/g dry weight (dw) (equivalent to 1.5 to 10 ng/g wet weight (ww)) and varied according to species and location. For example, Alaskan pink shrimp (Pandalus eous) from the Hokuriku coast, Japan contained high levels of long-chain PFCAs (38 ng/g dw (equivalent to 8.7 ng/g ww)), while red rice prawn (Metapenaeopsis barbata) from Yamaguchi, Japan contained a high concentration of PFOS (29 ng/g dw (equivalent to 6.7 ng/g ww)). We also observed regional differences in the PFAS levels with higher concentrations of long-chain PFCAs in Japanese coastal waters than in the South China Sea. The PFAS profiles in shrimp were consistent with those in the diet and serum of Japanese consumers, suggesting that consumption of seafood such as shrimp may be an important source of exposure. The estimated daily intake of sum of all PFAS from shrimp from Japanese coastal water was 0.43 ng/kg body weight/day in average, which could reach the weekly tolerable values (4.4 ng/kg body weight /week) for the sum of the four PFSA set by the EFSA for heavy consumers. The high concentration of PFAS in shrimp warrants further investigation.
Collapse
Affiliation(s)
- Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan.
| | - Yoshihisa Kato
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Shido, Sanuki, Kagawa 769-2193, Japan
| | - Masayuki Miyatake
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Shido, Sanuki, Kagawa 769-2193, Japan
| | - Syunpei Akeda
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Shido, Sanuki, Kagawa 769-2193, Japan
| | - Sigeru Nagata
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan
| | - Junpei Ando
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan
| | - Katsumi Kido
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan
| | - Chiho Ohta
- Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
| | - Nobuyuki Koga
- Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Koichi Haraguchi
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan
| |
Collapse
|
29
|
Guo H, Hu T, Yang X, Liu Z, Cui Q, Qu C, Guo F, Liu S, Sweetman AJ, Hou J, Tan W. Roles of varying carbon chains and functional groups of legacy and emerging per-/polyfluoroalkyl substances in adsorption on metal-organic framework: Insights into mechanism and adsorption prediction. ENVIRONMENTAL RESEARCH 2024; 251:118679. [PMID: 38518904 DOI: 10.1016/j.envres.2024.118679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/21/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Metal-organic frameworks (MOFs) are promising adsorbents for legacy per-/polyfluoroalkyl substances (PFASs), but they are being replaced by emerging PFASs. The effects of varying carbon chains and functional groups of emerging PFASs on their adsorption behavior on MOFs require attention. This study systematically revealed the structure-adsorption relationships and interaction mechanisms of legacy and emerging PFASs on a typical MOF MIL-101(Cr). It also presented an approach reflecting the average electronegativity of PFAS moieties for adsorption prediction. We demonstrated that short-chain or sulfonate PFASs showed higher adsorption capacities (μmol/g) on MIL-101(Cr) than their long-chain or carboxylate counterparts, respectively. Compared with linear PFASs, their branched isomers were found to exhibit a higher adsorption potential on MIL-101(Cr). In addition, the introduction of ether bond into PFAS molecule (e.g., hexafluoropropylene oxide dimeric acid, GenX) increased the adsorption capacity, while the replacement of CF2 moieties in PFAS molecule with CH2 moieties (e.g., 6:2 fluorotelomer sulfonate, 6:2 FTS) caused a decrease in adsorption. Divalent ions (such as Ca2+ and SO42-) and solution pH have a greater effect on the adsorption of PFASs containing ether bonds or more CF2 moieties. PFAS adsorption on MIL-101(Cr) was governed by electrostatic interaction, complexation, hydrogen bonding, π-CF interaction, and π-anion interaction as well as steric effects, which were associated with the molecular electronegativity and chain length of each PFAS. The average electronegativity of individual moieties (named Me) for each PFAS was estimated and found to show a significantly positive correlation with the corresponding adsorption capacity on MIL-101(Cr). The removal rates of major PFASs in contaminated groundwater by MIL-101(Cr) were also correlated with the corresponding Me values. These findings will assist with the adsorption prediction for a wide range of PFASs and contribute to tailoring efficient MOF materials.
Collapse
Affiliation(s)
- Hao Guo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongyu Hu
- Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100101, China
| | - Xiaoman Yang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | | | - Chenchen Qu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Fayang Guo
- Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shun Liu
- The Seventh Geological Brigade of Hubei Geological Bureau, Yichang 443100, China
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
30
|
Zhu X, Li H, Luo Y, Li Y, Zhang J, Wang Z, Yang W, Li R. Evaluation and prediction of anthropogenic impacts on long-term multimedia fate and health risks of PFOS and PFOA in the Elbe River Basin. WATER RESEARCH 2024; 257:121675. [PMID: 38692258 DOI: 10.1016/j.watres.2024.121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) have aroused great concern owing to their widespread occurrence and toxic effects. However, their long-term trends and multimedia fate remain largely unknown. Here, we investigate the spatiotemporal characteristics and periodic oscillations of PFOS and PFOA in the Elbe River between 2010 and 2021. Anthropogenic emission inventories and multimedia fugacity model were developed to analyse their historical and future transport fates and quantify related human risks in each medium for the three age groups. The results show that average PFOS and PFOA concentrations in the Elbe River were 4.08 and 3.41 ng/L, declining at the annual rate of 7.36% and 4.98% during the study period, respectively. Periodic oscillations of their concentrations and mass fluxes were most pronounced at 40-60 and 20-40 months. The multimedia fugacity model revealed that higher concentrations occurred in fish (PFOS: 14.29, PFOA: 0.40 ng/g), while the soil was their dominant sink (PFOS: 179, PFOA: 95 tons). The exchange flux between water and sediment was the dominant pathway in multimedia transportation (397 kg/year). Although PFOS and PFOA concentrations are projected to decrease by 22.41% and 50.08%, respectively, from 2021 to 2050, the hazard quotient of PFOS in fish is a low hazard. This study provides information for the assessment of PFOS and PFOA pollution in global watersheds and the development of related mitigation policies, such as banning fish predation in polluted rivers, to mitigate their risks.
Collapse
Affiliation(s)
- Xu Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yu Luo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yu Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, 210098 Nanjing, China
| | - Zhenyu Wang
- Department of Hydrogeology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Wenyu Yang
- Department of Hydrogeology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Ruifei Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
31
|
Sun T, Ji C, Li F, Wu H. Time Is Ripe for Targeting Per- and Polyfluoroalkyl Substances-Induced Hormesis: Global Aquatic Hotspots and Implications for Ecological Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9314-9327. [PMID: 38709515 DOI: 10.1021/acs.est.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose-response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose-response model for ERA of per- and polyfluoroalkyl substances (PFAS) represented by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). A total of 266 hormetic dose-response relationships were recompiled from 1237 observations, covering 30 species from nine representative taxonomic groups. The standardized hormetic amplitudes followed the log-normal probability distribution, being subject to the limits of biological plasticity but independent of stress inducers. The SHapley Additive exPlanations algorithm revealed that the target endpoint was the most important variable explaining the hormetic amplitudes. Subsequently, quantitative frameworks were established to incorporate hormesis into the predicted no-effect concentration levels, with a lower induction dose and a zero-equivalent point but a broader hormetic zone for PFOS. Realistically, 10,117 observed concentrations of PFOA and PFOS were gathered worldwide, 4% of which fell within hormetic zones, highlighting the environmental relevance of hormesis. Additionally, the hormesis induction potential was identified in other legacy and emerging PFAS as well as their alternatives and mixtures. Collectively, it is time to incorporate the hormesis concept into PFAS studies to facilitate more realistic risk characterizations.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| |
Collapse
|
32
|
Feng G, Zhou B, Yuan R, Luo S, Gai N, Chen H. Influence of soil composition and environmental factors on the adsorption of per- and polyfluoroalkyl substances: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171785. [PMID: 38508244 DOI: 10.1016/j.scitotenv.2024.171785] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have garnered considerable scientific and regulatory scrutiny due to their widespread distribution across environments and their potential toxicological impacts on human health. The pedosphere serves as a vital reservoir for these chemicals, significantly determining their environmental trajectory and chemical transformations. This study offers a comprehensive synthesis of the current understanding regarding the adsorption mechanics of PFASs in soil matrices. Due to their unique molecular structure, PFASs predominantly engage in hydrophobic and electrostatic interactions during soil adsorption. This work thoroughly evaluates the influence of various factors on adsorption efficiency, including soil properties, molecular characteristics of PFASs, and the prevailing environmental conditions. The complex nature of soil environments complicates isolating individual impacts on PFAS behavior, necessitating an integrated approach to understanding their environmental destinies better. Through this exploration, we seek to clarify the complex interplay of factors that modulate the adsorption of PFASs in soils, highlighting the urgent need for future research to disentangle the intricate and combined effects that control the environmental behavior of PFAS compounds.
Collapse
Affiliation(s)
- Ge Feng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Eco-geochemistry, Ministry of Natural Resources of China, National Research Center for Geo-analysis (NRCGA), Beijing 100037, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shuai Luo
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Nan Gai
- Key Laboratory of Eco-geochemistry, Ministry of Natural Resources of China, National Research Center for Geo-analysis (NRCGA), Beijing 100037, China.
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
33
|
Witt CC, Gadek CR, Cartron JLE, Andersen MJ, Campbell ML, Castro-Farías M, Gyllenhaal EF, Johnson AB, Malaney JL, Montoya KN, Patterson A, Vinciguerra NT, Williamson JL, Cook JA, Dunnum JL. Extraordinary levels of per- and polyfluoroalkyl substances (PFAS) in vertebrate animals at a New Mexico desert oasis: Multiple pathways for wildlife and human exposure. ENVIRONMENTAL RESEARCH 2024; 249:118229. [PMID: 38325785 DOI: 10.1016/j.envres.2024.118229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) in the environment pose persistent and complex threats to human and wildlife health. Around the world, PFAS point sources such as military bases expose thousands of populations of wildlife and game species, with potentially far-reaching implications for population and ecosystem health. But few studies shed light on the extent to which PFAS permeate food webs, particularly ecologically and taxonomically diverse communities of primary and secondary consumers. Here we conducted >2000 assays to measure tissue-concentrations of 17 PFAS in 23 species of mammals and migratory birds at Holloman Air Force Base (AFB), New Mexico, USA, where wastewater catchment lakes form biodiverse oases. PFAS concentrations were among the highest reported in animal tissues, and high levels have persisted for at least three decades. Twenty of 23 species sampled at Holloman AFB were heavily contaminated, representing middle trophic levels and wetland to desert microhabitats, implicating pathways for PFAS uptake: ingestion of surface water, sediments, and soil; foraging on aquatic invertebrates and plants; and preying upon birds or mammals. The hazardous long carbon-chain form, perfluorooctanosulfonic acid (PFOS), was most abundant, with liver concentrations averaging >10,000 ng/g wet weight (ww) in birds and mammals, respectively, and reaching as high 97,000 ng/g ww in a 1994 specimen. Perfluorohexanesulfonic acid (PFHxS) averaged thousands of ng/g ww in the livers of aquatic birds and littoral-zone house mice, but one order of magnitude lower in the livers of upland desert rodent species. Piscivores and upland desert songbirds were relatively uncontaminated. At control sites, PFAS levels were strikingly lower on average and different in composition. In sum, legacy PFAS at this desert oasis have permeated local aquatic and terrestrial food webs across decades, severely contaminating populations of resident and migrant animals, and exposing people via game meat consumption and outdoor recreation.
Collapse
Affiliation(s)
- Christopher C Witt
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Chauncey R Gadek
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Environmental Stewardship, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Jean-Luc E Cartron
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Daniel B. Stephens & Associates, Inc., 6020 Academy Road NE, Suite 100, Albuquerque, NM, 87109, USA
| | - Michael J Andersen
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mariel L Campbell
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Marialejandra Castro-Farías
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ethan F Gyllenhaal
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Andrew B Johnson
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jason L Malaney
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; New Mexico Museum of Natural History and Science, Albuquerque, NM, 87104, USA
| | - Kyana N Montoya
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Andrew Patterson
- Eurofins Environment Testing America, West Sacramento, CA, 95605, USA
| | - Nicholas T Vinciguerra
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jessie L Williamson
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Joseph A Cook
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jonathan L Dunnum
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
34
|
Herlory O, Briand MJ, Munaron D, Boissery P, Giraud A, Marchand P, Bouchoucha M. Perfluoroalkyl substances (PFAS) occurrence, concentrations and spatial distribution along the French Mediterranean coast and lagoons, based on active biomonitoring. MARINE POLLUTION BULLETIN 2024; 202:116419. [PMID: 38677107 DOI: 10.1016/j.marpolbul.2024.116419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Tracking PFAS in ecosystems is challenging. In this context, monitoring programs are crucial to fill data gaps, especially in marine environments, which are the ultimate outlets for these forever chemicals. The 2021 chemical contamination monitoring campaign along the French Mediterranean coast established a baseline for PFAS concentrations in mussels, with 90 % of measurements below quantification limits. When detected, long-chain PFCA's were predominant. Spatial distribution patterns suggested continuous PFAS inputs and complex dynamics, shaped by the influence of large watersheds and rivers (Rhône, Aude, Huveaune). Lapeyrade shallow lagoon stood out as the most contaminated site. Similar PFAS profiles in connected sites implied shared sources but raised questions about accumulation processes in mussels. While certain sites had evident sources (e.g., military airbase for Palo lagoon), others remained uncertain (e.g., Toulon bay). Coastal stations (Banyuls, Cap Agde, Brégançon, Pampelonne) showed PFAS contamination without clear onshore sources, possibly due to insufficient transportation process understanding.
Collapse
Affiliation(s)
- Olivier Herlory
- Ifremer, Laboratoire Environnement Ressources Provence Azur Corse, CS 20330, 83507 La Seyne Sur Mer, France.
| | - Marine J Briand
- Ifremer, Laboratoire Environnement Ressources Provence Azur Corse, CS 20330, 83507 La Seyne Sur Mer, France
| | - Dominique Munaron
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, CS 30171, 34203 Sète, France
| | - Pierre Boissery
- Agence de l'Eau Rhône Méditerranée Corse - Délégation Paca Corse, 13001 Marseille, France
| | - Anaïs Giraud
- Agence de l'Eau Rhône Méditerranée Corse - Délégation de Montpellier, 34961 Montpellier, France
| | | | - Marc Bouchoucha
- Ifremer, Laboratoire Environnement Ressources Provence Azur Corse, CS 20330, 83507 La Seyne Sur Mer, France
| |
Collapse
|
35
|
Londhe K, Lee CS, Grdanovska S, Smolinski R, Hamdan N, McDonough C, Cooper C, Venkatesan AK. Application of electron beam technology to decompose per- and polyfluoroalkyl substances in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123770. [PMID: 38493862 DOI: 10.1016/j.envpol.2024.123770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/04/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
The widespread detection of per- and polyfluoroalkyl substances (PFAS) in environmental compartments across the globe has raised several health concerns. Destructive technologies that aim to transform these recalcitrant PFAS into less toxic, more manageable products, are gaining impetus to address this problem. In this study, a 9 MeV electron beam accelerator was utilized to treat a suite of PFAS (perfluoroalkyl carboxylates: PFCAs, perfluoroalkyl sulfonates, and 6:2 fluorotelomer sulfonate: FTS) at environmentally relevant levels in water under different operating and water quality conditions. Although perfluorooctanoic acid and perfluorooctane sulfonic acid showed >90% degradation at <500 kGy dose at optimized conditions, a fluoride mass balance revealed that complete defluorination occurred only at/or near 1000 kGy. Non-target and suspect screening revealed additional degradation pathways differing from previously reported mechanisms. Treatment of PFAS mixtures in deionized water and groundwater matrices showed that FTS was preferentially degraded (∼90%), followed by partial degradation of long-chain PFAS (∼15-60%) and a simultaneous increase of short-chain PFAS (up to 20%) with increasing doses. The increase was much higher (up to 3.5X) in groundwaters compared to deionized water due to the presence of PFAS precursors as confirmed by total oxidizable precursor (TOP) assay. TOP assay of e-beam treated samples did not show any increase in PFCAs, confirming that e-beam was effective in also degrading precursors. This study provides an improved understanding of the mechanism of PFAS degradation and revealed that short-chain PFAS are more resistant to defluorination and their levels and regulation in the environment will determine the operating conditions of e-beam and other PFAS treatment technologies.
Collapse
Affiliation(s)
- Kaushik Londhe
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Cheng-Shiuan Lee
- Research Center for Environmental Changes, Academia Sinica, Taipei, 115, Taiwan
| | | | - Rachel Smolinski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Noor Hamdan
- Department of Environmental Health and Engineering, Johns Hopkins University, MD, 21205, USA
| | - Carrie McDonough
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Charles Cooper
- Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA
| | - Arjun K Venkatesan
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
36
|
Saha B, Ateia M, Fernando S, Xu J, DeSutter T, Iskander SM. PFAS occurrence and distribution in yard waste compost indicate potential volatile loss, downward migration, and transformation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:657-666. [PMID: 38312055 DOI: 10.1039/d3em00538k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
We discovered high concentrations of PFAS (18.53 ± 1.5 μg kg-1) in yard waste compost, a compost type widely acceptable to the public. Seventeen out of forty targeted PFAS, belonging to six PFAS classes were detected in yard waste compost, with PFCAs (13.51 ± 0.99 μg kg-1) and PFSAs (4.13 ± 0.19 μg kg-1) being the dominant classes, comprising approximately 72.5% and 22.1% of the total measured PFAS. Both short-chain PFAS, such as PFBA, PFHxA, and PFBS, and long-chain PFAS, such as PFOA and PFOS, were prevalent in all the tested yard waste compost samples. We also discovered the co-occurrence of PFAS with low-density polyethylene (LDPE) and polyethylene terephthalate (PET) plastics. Total PFAS concentrations in LDPE and PET separated from incoming yard waste were 7.41 ± 0.41 μg kg-1 and 1.35 ± 0.1 μg kg-1, which increased to 8.66 ± 0.81 μg kg-1 in LDPE and 5.44 ± 0.56 μg kg-1 in PET separated from compost. An idle mature compost pile revealed a clear vertical distribution of PFAS, with the total PFAS concentrations at the surface level approximately 58.9-63.2% lower than the 2 ft level. This difference might be attributed to the volatile loss of short-chain PFCAs, PFAS's downward movement with moisture, and aerobic transformations of precursor PFAS at the surface.
Collapse
Affiliation(s)
- Biraj Saha
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14th Ave N, CIE 201, Fargo, North Dakota 58102, USA.
| | - Mohamed Ateia
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Sujan Fernando
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, USA
| | - Jiale Xu
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14th Ave N, CIE 201, Fargo, North Dakota 58102, USA.
| | - Thomas DeSutter
- Department of Soil Science, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Syeed Md Iskander
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14th Ave N, CIE 201, Fargo, North Dakota 58102, USA.
- Environmental and Conservation Sciences, North Dakota State University, 1410 14th Ave N, CIE 201, Fargo, North Dakota 58108, USA
| |
Collapse
|
37
|
Huh SW, Cho SY, Yoon S, Kim D, Park HW, Kang J, Kim KW. Relationship between crustacean consumption and serum perfluoroalkyl substances (PFAS): the Korean National Environmental Health Survey (KoNEHS) cycle 4. Ann Occup Environ Med 2024; 36:e12. [PMID: 38872633 PMCID: PMC11168942 DOI: 10.35371/aoem.2024.36.e12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Perfluoroalkyl substances (PFASs) are non-aromatic organic compounds, whose hydrogen atoms in the carbon chain substituted by fluorine atoms. PFASs exhibit developmental toxicity, carcinogenicity, hepatotoxicity, reproductive toxicity, immunotoxicity, and hormone toxicity. PFASs are used in the production of disposable food packages, aircraft and automobile devices, cooking utensils, outdoor gear, furniture and carpets, aqueous film forming foam (AFFF), cables and wires, electronics, and semiconductors. This study aimed to determine the association between crustacean consumption and serum PFASs. Methods Adult participants (2,993) aged ≥ 19 years were extracted from the 4th cycle data of the Korean National Environmental Health Survey (KoNEHS). Based on the 50th percentile concentrations of serum PFASs, participants were divided into the low-concentration group (LC) and the high-concentration group (HC). General characteristics, dietary factors, coated product usage, and personal care product usage, an independent t-test and χ2 test were analyzed. The odds ratio (OR) of serum PFAS concentration against crustacean consumption was estimated via logistic regression analysis adjusting for general characteristics, dietary factors, coated product usage, and personal care product usage. Results The OR for the HC of serum PFASs was higher in individuals with ≥once a week crustacean consumption than in those with < once a week crustacean consumption. Estimated ORs were perfluorohexanesulfonic acid 2.15 (95% confidence interval [CI]: 1.53-3.02), perfluorononanoic acid (PFNA) 1.23 (95% CI: 1.07-1.41), and perfluorodecanoic acid (PFDeA) 1.42 (95% CI: 1.17-1.74) in males, and perfluorooctanoic acid 1.48 (95% CI: 1.19-1.84), perfluorooctanesulfonic acid 1.39 (95% CI: 1.27-1.52), PFNA 1.70 (95% CI: 1.29-2.26) and PFDeA 1.43 (95% CI: 1.32-1.54) in females. Conclusions This study revealed the association between the crustacean consumption and concentrations of serum PFASs in general Korean population.
Collapse
Affiliation(s)
- Sung Woo Huh
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Seong-yong Cho
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Seongyong Yoon
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Daehwan Kim
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Hyun Woo Park
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Jisoo Kang
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Keon Woo Kim
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| |
Collapse
|
38
|
Mo L, Wan N, Zhou B, Shao M, Zhang X, Li M, Liu Y, Mai B. Per- and polyfluoroalkyl substances in waterbird feathers around Poyang Lake, China: Compound and species-specific bioaccumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116141. [PMID: 38394760 DOI: 10.1016/j.ecoenv.2024.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
As a nondestructive means of environmental monitoring, bird feathers have been used to analyze levels of per- and polyfluoroalkyl substances (PFASs) in specific environments. In this study, feather samples from 10 waterbird species around Poyang Lake were collected, and a pretreatment method for PFASs in feathers was optimized. The results showed that a combined cleaning method using ultrapure water and n-hexane effectively removed external PFASs. Twenty-three legacy and emerging PFASs were identified in the feathers of waterbirds, of which hexafluoropropylene oxides (HFPOs), chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs), and sodium p-perfluorinated noneoxybenzene sulfonate (OBS) were reported for the first time, with their concentrations ranging from 0.060-2.4 ng·g-1 dw, 0.046-30 ng·g-1 dw, and lower than the method detection limit to 30 ng·g-1 dw, respectively. Compound- and species-specific bioaccumulation of PFASs was observed in the feathers of different waterbird species, suggesting that different PFAS types can be monitored through the selection of different species. Moreover, the concentrations of most PFCAs (except perfluorobutyric acid), perfluorooctane sulfonate (PFOS), and perfluorooctane sulfonamide (FOSA) were significantly positively correlated with δ15N (p < 0.05), while the concentrations of HFPOs, Cl-PFESAs, and OBS had significant positive correlations with δ13C. This indicates that the bioaccumulation of legacy and emerging PFASs in waterbird feathers is affected by their trophic level, feeding habits, and foraging area.
Collapse
Affiliation(s)
- Limin Mo
- School of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Nannan Wan
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Bo Zhou
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Mingqin Shao
- School of Life Sciences, Jiangxi Normal University, Nanchang 330022, China.
| | - Xinghui Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Mingqi Li
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
39
|
Liu Z, Liu S, Xiao F, Sweetman AJ, Cui Q, Guo H, Xu J, Luo Z, Wang M, Zhong L, Gan J, Tan W. Tissue-specific distribution and bioaccumulation of perfluoroalkyl acids, isomers, alternatives, and precursors in citrus trees of contaminated fields: Implication for risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133184. [PMID: 38064944 DOI: 10.1016/j.jhazmat.2023.133184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 02/08/2024]
Abstract
The ingestion of fruits containing perfluoroalkyl acids (PFAAs) presents potential hazards to human health. This study aimed to fill knowledge gaps concerning the tissue-specific distribution patterns and bioaccumulation behavior of PFAAs and their isomers, alternatives, and precursors (collectively as per-/polyfluoroalkyl substances, PFASs) within citrus trees growing in contaminated fields. It also assessed the potential contribution of precursor degradation to human exposure risk of PFASs. High concentrations of total target PFASs (∑PFASstarget, 92.45-7496.16 ng/g dw) and precursors measured through the total oxidizable precursor (TOP) assay (130.80-13979.21 ng/g dw) were found in citrus tree tissues, and short-chain PFASs constituted the primary components. The total PFASs concentrations followed the order of leaves > fruits > branches, bark > wood, and peel > pulp > seeds. The average contamination burden of peel (∑PFASstarget: 57.75%; precursors: 71.15%) was highest among fruit tissues. Bioaccumulation factors (BAFs) and translocation potentials of short-chain, branched, or carboxylate-based PFASs exceeded those of their relatively hydrophobic counterparts, while ether-based PFASs showed lower BAFs than similar PFAAs in above-ground tissues of citrus trees. In the risk assessment of residents consuming contaminated citruses, precursor degradation contributed approximately 36.07% to total PFASs exposure, and therefore should not be ignored.
Collapse
Affiliation(s)
- Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shun Liu
- The Seventh Geological Brigade of Hubei Geological Bureau, Yichang 443100, China
| | - Feng Xiao
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | | - Hao Guo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiayi Xu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziyao Luo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Linlin Zhong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
40
|
Xu C, Xu C, Zhou Q, Shen C, Peng L, Liu S, Yin S, Li F. Spatial distribution, isomer signature and air-soil exchange of legacy and emerging poly- and perfluoroalkyl substances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123222. [PMID: 38145639 DOI: 10.1016/j.envpol.2023.123222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Widespread occurrences of various poly- and perfluoroalkyl substances (PFAS) in terrestrial environment calls for the growing interest in their transport behaviors. However, limited studies detected PFAS with structural diversity in tree barks, which reflect the long-term contamination in atmosphere and play a vital role in air-soil exchange behaviors. In this study, 26 PFAS congeners and typical branched isomers were investigated in surface soils and tree barks at 28 sites along the Taihu Lake, Taipu River, and Huangpu River. Concentrations of total PFAS in soils and tree barks were 0.991-29.4 and 7.99-188 ng/g dw, with PFPeA and PFDoA were the largest contributors in the two matrices. The highest PFAS levels were found in the Taihu Lake watershed, where textile manufacturing and metal plating activities highly prosper. With regard to the congener and isomer signatures, short-chain homologs dominated in soils (65.5%), whereas long-chain PFAS showed a major proportion in barks (41.9%). The composition of linear isomers of PFOS, PFOA and PFHxS implied that precursor degradation might be an important source of PFAS in addition to the 3M electrochemical fluorination (ECF). Additionally, the distance from the emission source, total organic carbon (TOC), logKOA and logKOW were considered potential influencing factors in PFAS distributions. Based on the multi-media fugacity model, about 71% of the fugacity fraction (ffs) values of the PFAS were below 0.3, indicating the dominant deposition from the atmosphere to the soil. The average fluxes of air-soil exchange for PFAS were -0.700 ± 11.0 ng/(m2·h). Notably, the estimated daily exposure to PFAS ranged from 9.57 × 10-2 to 8.59 × 10-1 ng/kg·bw/day for children and 3.31 × 10-2 to 3.09 × 10-1 ng/kg·bw/day for adults, suggesting low risks from outdoor inhalation and dermal uptake. Overall, results from distribution with structural diversity, air-soil exchange and preliminary risk assessment. This study provided in-depth insight of PFAS in multi-medium environment and bridged gaps between field data and policy-making for pollution control.
Collapse
Affiliation(s)
- Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Chenman Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Quan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Leni Peng
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shuren Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Fang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
41
|
Hyötyläinen T, Ghaffarzadegan T, Karthikeyan BS, Triplett E, Orešič M, Ludvigsson J. Impact of Environmental Exposures on Human Breast Milk Lipidome in Future Immune-Mediated Diseases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2214-2223. [PMID: 38263945 PMCID: PMC10851438 DOI: 10.1021/acs.est.3c06269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
The composition of human breast milk (HBM) exhibits significant variability both between individuals and within the same individual. While environmental factors are believed to play a role in this variation, their influence on breast milk composition remains inadequately understood. Herein, we investigate the impact of environmental factors on HBM lipid composition in a general population cohort. The study included mothers (All Babies In Southeast Sweden study) whose children later progressed to one or more immune-mediated diseases later in life: type 1 diabetes (n = 9), celiac disease (n = 24), juvenile idiopathic arthritis (n = 9), inflammatory bowel disease (n = 7), hypothyroidism (n = 6), and matched controls (n = 173). Lipidome of HBM was characterized by liquid chromatography combined with high-resolution mass spectrometry. We observed that maternal age, body mass index, diet, and exposure to perfluorinated alkyl substances (PFASs) had a marked impact on breast milk lipidome, with larger changes observed in the milk of those mothers whose children later developed autoimmune diseases. We also observed differences in breast milk lipid composition in those mothers whose offspring later developed autoimmune diseases. Our study suggests that breast milk lipid composition is modified by a complex interaction between genetic and environmental factors, and, importantly, this impact was significantly more pronounced in those mothers whose offspring later developed autoimmune/inflammatory diseases. Our findings also suggest that merely assessing PFAS concentration may not capture the full extent of the impact of chemical exposures; thus, the more comprehensive exposome approach is essential for accurately assessing the impact of PFAS exposure on HBM and, consequently, on the health outcomes of the offspring.
Collapse
Affiliation(s)
- Tuulia Hyötyläinen
- School
of Science and Technology, Örebro
University, Örebro SE-702 81, Sweden
| | | | - Bagavathy Shanmugam Karthikeyan
- School
of Science and Technology, Örebro
University, Örebro SE-702 81, Sweden
- School
of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro SE-702 81, Sweden
| | - Eric Triplett
- Department
of Microbiology and Cell Science, Institute
of Food and Agricultural Sciences University of Florida, Gainesville, Florida 32611-0700, United
States
| | - Matej Orešič
- School
of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro SE-702 81, Sweden
- Turku
Bioscience Centre, University of Turku and
Åbo Akademi University, Turku FI-20520, Finland
| | - Johnny Ludvigsson
- Crown
Princess Victoria’s Children’s Hospital and Division
of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping SE 58185, Sweden
| |
Collapse
|
42
|
Hong J, Wang X, Jin H, Chen Y, Jiang Y, Du K, Chen D, Zheng S, Cao L. Environment relevant exposure of perfluorooctanoic acid accelerates the growth of hepatocellular carcinoma cells through mammalian target of rapamycin (mTOR) signal pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122910. [PMID: 37967710 DOI: 10.1016/j.envpol.2023.122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Perfluorooctanoic acid (PFOA), a synthetic alkyl chain fluorinated compound, has emerged as a persistent organic pollutant of grave concern, casting a shadow over both ecological integrity and humans. Its insidious presence raises alarms due to its capacity to bioaccumulate within the human liver, potentially paving the treacherous path toward liver cancer. Yet, the intricate mechanisms underpinning PFOA's role in promoting the growth of hepatocellular carcinoma (HCC) remain shrouded in ambiguity. Here, we determined the proliferation and transcription changes of HCC after PFOA exposure through integrated experiments including cell culture, nude mice tests, and colony-forming assays. Based on our findings, PFOA effectively promotes the proliferation of HCC cells within the experimental range of concentrations, both in vivo and in vitro. The proliferation efficiency of HCC cells was observed to increase by approximately 10% due to overexposure to PFOA. Additionally, the cancer weight of tumor-bearing nude mice increased by 87.0% (p < 0.05). We systematically evaluated the effects of PFOA on HCC cells and found that PFOA's exposure can selectively activate the PI3K/AKT/mTOR/4E-BP1 signaling pathway, thereby playing a pro-cancer effect on HCC cells Confirmation echoed through western blot assays and inhibitor combination analyses. These insights summon a response to PFOA's dual nature as both an environmental threat and a promoter of liver cancer. Our work illuminates the obscured domain of PFOA-induced hepatoxicity, shedding light on its ties to hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Jiawei Hong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Xiaoyan Wang
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Keyi Du
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China.
| |
Collapse
|
43
|
Sukatis FF, Looi LJ, Lim HN, Abdul Rahman MB, Mohd Zaki MR, Aris AZ. Fixed-bed adsorption studies of endocrine-disrupting compounds from water by using novel calcium-based metal-organic frameworks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122980. [PMID: 37992953 DOI: 10.1016/j.envpol.2023.122980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
The presence of emerging water pollutants such as endocrine-disrupting compounds (EDCs), including 17-ethynylestradiol (EE2), bisphenol A (BPA), and perfluorooctanoic acid (PFOA), in contaminated water sources poses significant environmental and health challenges. This study aims to address this issue by investigating the efficiency of novel calcium-based metal-organic frameworks, known as mixed-linker calcium-based metal-organic frameworks (Ca-MIX), in adsorbing these endocrine-disrupting compounds. This study analyzed the influence of influent concentration, bed height, and flow rate on pollutant removal, with bed height emerging as a crucial factor. From the breakthrough curves, it was determined that the column maximum adsorption capacities followed the order of 17-ethynylestradiol (101.52 μg/g; 40%) > bisphenol A (99.07 μg/g; 39%) > perfluorooctanoic acid (81.28 μg/g; 32%). Three models were used to predict the adsorption process, with the Yan model outperforming the other models. This suggests the potential of mixed-linker calcium-based metal-organic frameworks for removing endocrine-disrupting compounds from water, using the Yan model as an effective predictor. Overall, this study provides valuable insights for the development of effective water treatment methods using mixed-linker calcium-based metal-organic frameworks to remove endocrine-disrupting compounds from contaminated water sources.
Collapse
Affiliation(s)
- Fahren Fazzer Sukatis
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Ley Juen Looi
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Hong Ngee Lim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | | | - Muhammad Rozaimi Mohd Zaki
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
44
|
Yu H, Zhang P, Chen H, Yao Y, Zhao L, Zhao M, Zhu L, Sun H. Porous polypyrrole with a vesicle-like structure for efficient removal of per- and polyfluoroalkyl substances from water: Crucial role of porosity and morphology. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132748. [PMID: 37839383 DOI: 10.1016/j.jhazmat.2023.132748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Herein, a vesicle-like and porous polypyrrole (pPPy) was fabricated by in suit self-template method to efficiently capture per- and polyfluoroalkyl substances (PFASs) and the important role of porosity and morphology in PFAS removal was explored. Compared to solid PPy (sPPy), the porosity and vesicle-like morphology of pPPy endowed it with excellent properties such as large specific surface area (108.9 m2/g vs. 22.3 m2/g), suitable pore sizes (17.4 nm), dispersity, and high hydrophilicity, which facilitated mass transfer and enhanced PFAS sorption performance. The estimated sorption capacities of pPPy for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) were 509 mg/g and 532 mg/g, respectively, which were ∼2 times higher than sPPy. Furthermore, pPPy demonstrated PFAS removal of ≥ 90% across a wide pH range (3-9) and varying humic acid concentrations (0-50 mg/L). In actual water matrices, pPPy efficiently removed 12 short-chain (C-F number: 3-6) and long-chain PFASs (>90% removal for major PFASs), outperforming sPPy by ∼1.2-2.5 times. Notably, the enlarged porosity and regular morphology of pPPy significantly enhanced the removal of short-chain PFASs by ∼2 times. The spent pPPy could be regenerated and reused over 5 times. This research provides valuable insights for designing efficient PFAS sorbents by emphasizing control over porosity and morphology.
Collapse
Affiliation(s)
- Hao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Maoshen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
45
|
Ozbek M, Voorhies N, Howard L, Swanson R, Fox T. Delineation of a PFOA Plume and Assessment of Data Gaps in its Conceptual Model Using PlumeSeeker™. GROUND WATER 2024; 62:44-59. [PMID: 37930157 DOI: 10.1111/gwat.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
An accurate conceptual site model (CSM) and plume-delineation at contamination sites are pre-requisites for successful remediation and for satisfying regulators and stakeholders. PlumeSeeker™ is well-suited for assessing data gaps in CSMs by using available site data and for identifying the optimal number and locations of sampling locations to delineate contaminant plumes. It is an enhancement of a university research code for plume delineation using geostatistical and stochastic modeling integrated with the groundwater modeling software MODFLOW-SURFACT™. PlumeSeeker™ increases the overall confidence in the location of the plume boundary through a variance-reduction approach that selects existing- or new monitoring wells for sampling based on minimizing the uncertainty in plume boundary and on new field information. Applicable at sites with or without existing monitoring wells, PlumeSeeker™ is particularly powerful for optimally allocating project resources (labor, well installation, and laboratory costs) between existing wells and sampling at new locations. An application of PlumeSeeker™ at Lakehurst, the naval component of Joint Base McGuire-Dix-Lakehurst in New Jersey, demonstrates how the cost of delineating the migration pathway of a perfluorooctanoic acid (PFOA) plume can be minimized by requiring only 9 new sampling locations in addition to samples from 2 existing wells for achieving a 70% reduction in plume uncertainty. In addition, the use of available site data in three different scenarios identified CSM data-gaps in the source area and in the interaction between Manapaqua Branch and groundwater, where the observed high concentration in this area could have resulted from a combination of groundwater migration and induced infiltration.
Collapse
Affiliation(s)
- Metin Ozbek
- HydroGeoLogic Inc., Reston, Virginia, 20190, USA
| | | | - Lucas Howard
- Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Ryan Swanson
- HydroGeoLogic Inc., Lakewood, Colorado, 80228, USA
| | - Tad Fox
- HydroGeoLogic Inc., Reston, Virginia, 20190, USA
| |
Collapse
|
46
|
B Fortela DL, Mikolajczyk AP, Carnes MR, Sharp W, Revellame E, Hernandez R, Holmes WE, Zappi ME. Predicting molecular docking of per- and polyfluoroalkyl substances to blood protein using generative artificial intelligence algorithm DiffDock. Biotechniques 2024; 76:14-26. [PMID: 37947020 DOI: 10.2144/btn-2023-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
This study computationally evaluates the molecular docking affinity of various perfluoroalkyl and polyfluoroalkyl substances (PFAs) towards blood proteins using a generative machine-learning algorithm, DiffDock, specialized in protein-ligand blind-docking learning and prediction. Concerns about the chemical pathways and accumulation of PFAs in the environment and eventually in the human body has been rising due to empirical findings that levels of PFAs in human blood has been rising. DiffDock may offer a fast approach in determining the fate and potential molecular pathways of PFAs in human body.
Collapse
Affiliation(s)
- Dhan Lord B Fortela
- Department of Chemical Engineering, University of Louisiana, Lafayette, LA 70504, USA
- Energy Institute of Louisiana, University of Louisiana, Lafayette, LA 70504, USA
| | - Ashley P Mikolajczyk
- Department of Chemical Engineering, University of Louisiana, Lafayette, LA 70504, USA
- Energy Institute of Louisiana, University of Louisiana, Lafayette, LA 70504, USA
| | - Miranda R Carnes
- Department of Chemical Engineering, University of Louisiana, Lafayette, LA 70504, USA
| | - Wayne Sharp
- Energy Institute of Louisiana, University of Louisiana, Lafayette, LA 70504, USA
- Department of Civil Engineering, University of Louisiana, Lafayette, LA 70504, USA
| | - Emmanuel Revellame
- Department of Chemical Engineering, University of Louisiana, Lafayette, LA 70504, USA
- Energy Institute of Louisiana, University of Louisiana, Lafayette, LA 70504, USA
| | - Rafael Hernandez
- Department of Chemical Engineering, University of Louisiana, Lafayette, LA 70504, USA
- Energy Institute of Louisiana, University of Louisiana, Lafayette, LA 70504, USA
| | - William E Holmes
- Department of Chemical Engineering, University of Louisiana, Lafayette, LA 70504, USA
- Energy Institute of Louisiana, University of Louisiana, Lafayette, LA 70504, USA
| | - Mark E Zappi
- Department of Chemical Engineering, University of Louisiana, Lafayette, LA 70504, USA
- Energy Institute of Louisiana, University of Louisiana, Lafayette, LA 70504, USA
| |
Collapse
|
47
|
Parker BA, Valentini E, Graham SE, Starr JM. In vitro modeling of the post-ingestion bioaccessibility of per- and polyfluoroalkyl substances sorbed to soil and house dust. Toxicol Sci 2023; 197:95-103. [PMID: 37740396 PMCID: PMC10942096 DOI: 10.1093/toxsci/kfad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are regularly found in soils and dusts, both of which can be consumed by children at relatively high amounts. However, there is little data available to model the bioaccessibility of PFAS in soils and dusts when consumed or to describe how the physiochemical properties of PFAS and soils/dusts might affect bioaccessibility of these chemicals. Because bioaccessibility is an important consideration in estimating absorbed dose for exposure and risk assessments, in the current study, in vitro assays were used to determine bioaccessibility of 14 PFAS in 33 sets of soils and dusts. Bioaccessibility assays were conducted with and without a sink, which was used to account for the removal of PFAS due to their movement across the human intestine. Multiple linear regression with backward elimination showed that a segmented model using PFAS chain length, number of branches, and percent total organic carbon explained 78.0%-88.9% of the variability in PFAS bioaccessibility. In general, PFAS had significantly greater bioaccessibility in soils relative to dusts and the addition of a sink increased bioaccessibility in the test system by as much as 10.8% for soils and 20.3% for dusts. The results from this study indicate that PFAS bioaccessibility in soils and dusts can be predicted using a limited set of physical chemical characteristics and could be used to inform risk assessment models.
Collapse
Affiliation(s)
- Bethany A Parker
- Office of Research and Development, Oak Ridge Institute for Science and Education Fellow at the United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Evelyn Valentini
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Stephen E Graham
- Office of Pesticide Programs, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - James M Starr
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| |
Collapse
|
48
|
Dutta S, Goodrich JM, Dolinoy DC, Ruden DM. Biological Aging Acceleration Due to Environmental Exposures: An Exciting New Direction in Toxicogenomics Research. Genes (Basel) 2023; 15:16. [PMID: 38275598 PMCID: PMC10815440 DOI: 10.3390/genes15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Biological clock technologies are designed to assess the acceleration of biological age (B-age) in diverse cell types, offering a distinctive opportunity in toxicogenomic research to explore the impact of environmental stressors, social challenges, and unhealthy lifestyles on health impairment. These clocks also play a role in identifying factors that can hinder aging and promote a healthy lifestyle. Over the past decade, researchers in epigenetics have developed testing methods that predict the chronological and biological age of organisms. These methods rely on assessing DNA methylation (DNAm) levels at specific CpG sites, RNA levels, and various biomolecules across multiple cell types, tissues, and entire organisms. Commonly known as 'biological clocks' (B-clocks), these estimators hold promise for gaining deeper insights into the pathways contributing to the development of age-related disorders. They also provide a foundation for devising biomedical or social interventions to prevent, reverse, or mitigate these disorders. This review article provides a concise overview of various epigenetic clocks and explores their susceptibility to environmental stressors.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.G.); (D.C.D.)
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.G.); (D.C.D.)
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Douglas M. Ruden
- C. S. Mott Center for Human Health and Development, Department of Obstetrics and Gynecology, Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
49
|
Garcia-Garin O, Borrell A, Colomer-Vidal P, Vighi M, Trilla-Prieto N, Aguilar A, Gazo M, Jiménez B. Biomagnification and temporal trends (1990-2021) of perfluoroalkyl substances in striped dolphins (Stenella coeruleoalba) from the NW Mediterranean sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122738. [PMID: 37838318 DOI: 10.1016/j.envpol.2023.122738] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023]
Abstract
Poly- and Perfluoroalkyl Substances (PFAS) are a well-known class of pollutants which can bioaccumulate and biomagnify with a vast majority being highly persistent. This study aims to determine the biomagnification rates of PFAS in sexually mature striped dolphins and to assess temporal trends on PFAS concentrations over the past three decades (1990-2021) in the North-Western Mediterranean Sea. Thirteen and 17 of the 19 targeted PFAS were detected in the samples of the dolphins' digestive content and liver, respectively, at concentrations ranging between 43 and 1609 ng/g wet weight, and 254 and 7010 ng/g wet weight, respectively. The most abundant compounds in both types of samples were linear perfluorooctanesulfonic acid (n-PFOS) and perfluorooctanesulfonamide (FOSA), which were present in all samples, followed by perfluoroundecanoic acid (PFUnDA), perfluorotridecanoic acid (PFTrDA) and perfluorononanoic acid (PFNA). Long-chain PFAS (i.e., PFCAs C ≥ 7 and PFSAs C ≥ 6) biomagnified to a greater extent than short-chain PFAS, suggesting a potential effect on the health of striped dolphins. Environmental Quality Standards concentrations set in 2014 by the European Union were exceeded in half of the samples of digestive content, suggesting that polluted prey may pose potential health risks for striped dolphins. Concentrations of most long-chain PFAS increased from 1990 to 2004-2009, then stabilized during 2014-2021, possibly following country regulations and industrial initiatives. The current study highlights the persistent presence of banned PFAS and may contribute to future ecological risk assessments and the design of management strategies to mitigate PFAS pollution in marine ecosystems.
Collapse
Affiliation(s)
- Odei Garcia-Garin
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio). Faculty of Biology. Universitat de Barcelona, 08028, Barcelona, Spain.
| | - Asunción Borrell
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio). Faculty of Biology. Universitat de Barcelona, 08028, Barcelona, Spain
| | - Pere Colomer-Vidal
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, IQOG-CSIC, 28006, Madrid, Spain
| | - Morgana Vighi
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio). Faculty of Biology. Universitat de Barcelona, 08028, Barcelona, Spain
| | - Núria Trilla-Prieto
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034, Barcelona, Catalunya, Spain
| | - Alex Aguilar
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio). Faculty of Biology. Universitat de Barcelona, 08028, Barcelona, Spain
| | - Manel Gazo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio). Faculty of Biology. Universitat de Barcelona, 08028, Barcelona, Spain
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, IQOG-CSIC, 28006, Madrid, Spain
| |
Collapse
|
50
|
San Román A, Abilleira E, Irizar A, Santa-Marina L, Gonzalez-Gaya B, Etxebarria N. Optimization for the analysis of 42 per- and polyfluorinated substances in human plasma: A high-throughput method for epidemiological studies. J Chromatogr A 2023; 1712:464481. [PMID: 37948771 DOI: 10.1016/j.chroma.2023.464481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
There is an increasing awareness about the presence of per- and polyfluoroalkyl substances (PFAS) in many environmental and biological compartments, including human biofluids and tissues. However, the increase of PFAS replacements, including alternatives with shorter chain or less bioaccumulative potential, has broaden the exposure and the need for wider identification procedures. Moreover, the low volumes available for human blood or plasma, and the high number of samples needed to assess adequately epidemiologic studies, require particularly fast, reproducible and, if possible, miniaturized protocols. Therefore, accurate and robust analytical methods are still needed to quantify the PFAS's burden in humans and to understand potential health risks. In this study, we have developed and validated the analysis of 42 PFAS in human plasma by means of a Captiva 96-well micro extraction plate and a LC-q-Orbitrap. For the optimization of the analytical workflow, three extraction/clean-up methods were tested, and the selected one was validated using spiked artificial and bovine plasma at four concentration levels. The final method showed high absolute recoveries for the 42 PFAS, ranging from 52% to 130%, instrumental detection limits between 0.001-0.6 ng mL-1, overall good precision (CV < 20% for most of the PFAS) and a low uncertainty (< 30% of relative expanded deviation, k = 2). The method was further validated both with the NIST plasma Standard Reference Material 1950, showing that the accuracy of the provided results was between 63%-101%, and by the proficiency test arranged by the Arctic Monitoring Assessment Program (AMAP, 2022) obtaining satisfactory results within 95% confidence interval of the assigned value.
Collapse
Affiliation(s)
- Anne San Román
- Institute of Health Research Biodonostia, Paseo Dr. Begiristain, s/n, 20014 Donostia Gipuzkoa, Basque Country; Plentzia Marine Station (PiE), University of Basque Country (UPV/EHU), Areatza Hiribidea, 47, 48620 Plentzia, Bizkaia, Basque Country; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Department of Public Health from the Basque Government, Avenida Navarra, 4, 20013 Donostia Gipuzkoa, Basque Country.
| | - Eunate Abilleira
- Institute of Health Research Biodonostia, Paseo Dr. Begiristain, s/n, 20014 Donostia Gipuzkoa, Basque Country; Department of Public Health from the Basque Government, Avenida Navarra, 4, 20013 Donostia Gipuzkoa, Basque Country
| | - Amaia Irizar
- Institute of Health Research Biodonostia, Paseo Dr. Begiristain, s/n, 20014 Donostia Gipuzkoa, Basque Country
| | - Loreto Santa-Marina
- Institute of Health Research Biodonostia, Paseo Dr. Begiristain, s/n, 20014 Donostia Gipuzkoa, Basque Country; Department of Public Health from the Basque Government, Avenida Navarra, 4, 20013 Donostia Gipuzkoa, Basque Country
| | - Belen Gonzalez-Gaya
- Plentzia Marine Station (PiE), University of Basque Country (UPV/EHU), Areatza Hiribidea, 47, 48620 Plentzia, Bizkaia, Basque Country; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain
| | - Nestor Etxebarria
- Plentzia Marine Station (PiE), University of Basque Country (UPV/EHU), Areatza Hiribidea, 47, 48620 Plentzia, Bizkaia, Basque Country; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain
| |
Collapse
|