1
|
Wang Y, Bai RH, Liu Q, Tang QX, Xie CH, Richel A, Len C, Cui JX, Yan CR, He WQ. Degradation of biodegradable plastic films in soil: microplastics formation and soil microbial community dynamics. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138250. [PMID: 40228453 DOI: 10.1016/j.jhazmat.2025.138250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Biodegradable plastic poly(butylene adipate-co-terephthalate) (PBAT) has raised concerns regarding the release of PBAT microplastics and their potential environmental risks. In this study, PBAT plastic films were incubated in soil for 180 days to investigate the temporal evolution of PBAT microplastics and the dynamic responses of soil bacteria and fungi. The results showed that PBAT microplastics initially increased to a peak before decreasing by 74.7 % within 180 days. The predominant microplastics were film-shaped and smaller than 10 μm. Based on the temporal patterns, three distinct phases were identified: the initial release phase (0-30 days), the critical release phase (60-120 days), and the critical degradation phase (150-180 days). Notably, dominant fungal biomarkers with prevalent saprotrophic functions, particularly Humicola and Schizothecium, promoted the formation of PBAT microplastics by structurally fragmenting the PBAT film. In contrast, dominant bacterial biomarkers associated with dominant metabolic functions, such as Verrucomicrobiota, primarily contributed to the degradation of the PBAT microplastics by utilizing them as carbon sources. Our findings offer new insights into systematically evaluating the environmental behavior and potential environmental risks of biodegradable microplastics and provide a theoretical basis for strategies aimed at accelerating the degradation of biodegradable microplastics in soil environments.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Run-Hao Bai
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Qi Liu
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China.
| | - Qiu-Xiang Tang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, No. 311 Nongda East Road, Urumqi 830052, China
| | - Chang-Hong Xie
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege, Gembloux 2 B-5030, Belgium
| | - Christophe Len
- Chimie ParisTech, CNRS, PSL Research University, Institute of Chemistry for Life and Health Sciences, 11 rue Pierre et Marie Curie, Paris F-75005, France
| | - Ji-Xiao Cui
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, No. 195 Ningbian East Road, Changji 831100, China
| | - Chang-Rong Yan
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Wen-Qing He
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, No. 195 Ningbian East Road, Changji 831100, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, China.
| |
Collapse
|
2
|
Habarakada Liyanage TU, Dada OI, Abeysinghe S, Liu H, Yu L, Chen S. Digestibility and fate of biodegradable plastic mulch films in thermophilic anaerobic digestion. CHEMOSPHERE 2025; 379:144411. [PMID: 40306159 DOI: 10.1016/j.chemosphere.2025.144411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025]
Abstract
Recent developments in biodegradable mulches (BDMs) provide a sustainable and eco-friendly alternative to persistent polyethylene (PE) mulches, addressing plastic pollution and disposal challenges; however, BDM degradation requires an extended period for complete mineralization under natural in-situ conditions. This study investigates the potential of thermophilic anaerobic digestion (AD) as an alternative to the in-situ degradation of BDMs. Two commercially available BDMs were evaluated in batch AD, initial characterization, and post-AD analysis of digestate were carried out for remaining fragments and liquid. In the TGA, a major weight loss in both BDMs at 400 °C indicated a high polybutylene-adipate-co-terephthalate (PBAT) content (>70 %), along with biobased polymers. After 160 days of digestion, cumulative methane yields were 226 and 129 mL CH4/g VS for BDM Samples 1 and 2, respectively. These values correspond to 36 % and 25% of their respective theoretical methane potentials (628 and 508 mL CH4/g VS) due to the low biodegradability of PBAT. FTIR analysis of BDM fragments showed similar spectral features with some shifts and new peaks (OH group) due to hydrolysis. The biomethane potential (BMP) tests showed no accumulation of volatile fatty acids (VFA), but soluble chemical oxygen demand (sCOD) increased due to partial biodegradation. Further analysis detected different monomers of PBAT, such as 1,4-benzenedicarboxylic acid, in the liquid phase of the digestate. This suggests that while most of the particles disintegrated (>98 % size reduction), the thermophilic anaerobic microorganisms were not able to mineralize BDMs completely, thus requiring further treatment.
Collapse
Affiliation(s)
- T U Habarakada Liyanage
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164-6120, USA
| | - Oluwatunmise Israel Dada
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164-6120, USA
| | - Shalini Abeysinghe
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164-6120, USA
| | - Hang Liu
- Composite Materials and Engineering Center, Washington State University, Pullman, WA, 99164, USA; Apparel, Merchandising, Design and Textiles, Washington State University, Pullman, WA, 99164, USA
| | - Liang Yu
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164-6120, USA; Department of Agricultural and Biological Engineering, School of Engineering and Technology, Kentucky State University, Frankfort, KY, 40601, USA.
| | - Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164-6120, USA.
| |
Collapse
|
3
|
Wang Y, Liu Q, Xie CH, Zhao RT, Tang QX, Han DF, Xia YN, Cui JX, Yan CR, He WQ. Bridging the knowledge gap: From poly(butylene adipate-co-terephthalatebutylene) degradation to CO 2-generating mineralization under the synergistic effect of bacteria and fungi. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138643. [PMID: 40381352 DOI: 10.1016/j.jhazmat.2025.138643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) is a promising polymer with excellent mechanical properties and biodegradability. However, knowledge gaps between its degradation and mineralization processes in soil hampers its environmental impact and application potential. In this study, we elucidated the degradation process of PBAT, starting with the degradation of high-molecular-weight polymers into 30 intermediates, before ultimately mineralized into CO2. Bacteria and fungi drove the degradation and mineralization of these intermediates. We discovered that PBAT was synergistically degraded by combinations of 27 bacterial and fungal biomarkers rather than by single biomarkers dominated by Bacteroidota, Acidobacteriota, and Ascomycota. These combinations of related functional genes perform various functions at every stage of PBAT degradation, including breaking down molecular structures, degrading intermediates, and mineralization. Bacterial biomarkers showed greater diversity than fungal biomarkers in degrading PBAT. Our findings provide useful insights into the degradation of PBAT in soil and a foundation for systematically evaluating and controlling the environmental behavior and safety of PBAT in soil.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Qi Liu
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China.
| | - Chang-Hong Xie
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Ruo-Tong Zhao
- College of Resources and Environmental Sciences, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 910013, China
| | - Qiu-Xiang Tang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, No. 311 Nongda East Road, Urumqi 830052, China
| | - Dong-Fei Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99 Xuefu Road, Suzhou 215009, China
| | - Yi-Ning Xia
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing 100193, China
| | - Ji-Xiao Cui
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, No. 195 Ningbian East Road, Changji 831100, China
| | - Chang-Rong Yan
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Wen-Qing He
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, No. 195 Ningbian East Road, Changji 831100, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, China.
| |
Collapse
|
4
|
Chen C, Li Z, Yin K, Li L, Zhang Z, Xu X, Liu H, Qing Y, Li X, Wu Y. Biodegradable Liquid Slow-Release Mulch Film Based on Bamboo Residue for Selenium-Enriched Crop Cultivation. RESEARCH (WASHINGTON, D.C.) 2025; 8:0685. [PMID: 40357360 PMCID: PMC12067929 DOI: 10.34133/research.0685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 05/15/2025]
Abstract
The development of biodegradable mulch film is an effective means to address plastic pollution and promote modern green agriculture. In this work, with compounding sodium carboxymethyl cellulose (CMC) and quaternized lignin (QL), a biodegradable liquid mulch film (PVA@CMC/QL) was constructed by introducing polyvinyl alcohol (PVA) and a selenium-containing cross-linking agent through electrostatic interaction. The effect of sodium carboxymethyl cellulose and QL on different liquid mulch films was examined. PVA@CMC/QL had exceptional spray-film-forming properties of liquid mulch film and was capable of generating a dense mulch film above the soil/on top of the soil under natural conditions. PVA@CMC/QL exhibited excellent oxygen transmission rate (60.2 cm3·m-2·d-1·Pa-1) and water vapor transmission rate (753.4 g·m-2·d-1). Soil temperature and humidity increased by 0.4 to 2.1 °C and 0.5% to 2.8%, respectively, in the soil covered with PVA@CMC/QL compared to those in other controls, thereby confirming its exceptional moisture retention and insulation capabilities. PVA@CMC/QL combined remarkable weed suppression with only 13.3% weed germination under the mulch. Optimal rhizome growth of pak choi seedlings was observed under the PVA@CMC/QL cover, as demonstrated by the planting of both pak choi seedlings and weeds. Roots and stems increased by 3.8 ± 0.3 and 1.2 ± 0.3 cm, respectively. The weed suppression mechanism of PVA@CMC/QL was explained through the lens of density functional theory. In addition, the selenium content of pak choi seedlings under PVA@CMC/QL cover could reach 28.5 μg/kg, making the mulch film both degradable and highly reusable. This work not only improved the value-added utilization of bamboo residues but also gave new insight into the research on multifunctional bamboo-plastic mulch film.
Collapse
Affiliation(s)
- Chaoqi Chen
- College of Materials Science and Engineering,
Central South University of Forestry & Technology, Changsha 410004, China
| | - Zhaoshuang Li
- College of Materials Science and Engineering,
Central South University of Forestry & Technology, Changsha 410004, China
| | - Kuaile Yin
- College of Materials Science and Engineering,
Central South University of Forestry & Technology, Changsha 410004, China
| | - Lei Li
- College of Materials Science and Engineering,
Central South University of Forestry & Technology, Changsha 410004, China
| | - Zhen Zhang
- College of Materials Science and Engineering,
Central South University of Forestry & Technology, Changsha 410004, China
| | - Xu Xu
- International Innovation Center for Forest Chemicals and Materials,
Nanjing Forestry University, Nanjing 210037, China
| | - He Liu
- Key Laboratory of Biomass Energy and Material, Institute of Chemical Industry of Forestry Products,
Chinese Academy of Forestry, Nanjing 210042, Jiangsu Province, China
| | - Yan Qing
- College of Materials Science and Engineering,
Central South University of Forestry & Technology, Changsha 410004, China
| | - Xingong Li
- College of Materials Science and Engineering,
Central South University of Forestry & Technology, Changsha 410004, China
| | - Yiqiang Wu
- College of Materials Science and Engineering,
Central South University of Forestry & Technology, Changsha 410004, China
| |
Collapse
|
5
|
Wang K, Flury M, Sun S, Cai J, Zhang A, Li Q, Jiang R. In-field degradation of polybutylene adipate-co-terephthalate (PBAT) films, microplastic formation, and impacts on soil health. ENVIRONMENTAL RESEARCH 2025; 272:121086. [PMID: 39954930 DOI: 10.1016/j.envres.2025.121086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/17/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Polybutylene adipate-co-terephthalate (PBAT) mulch films are potential alternatives to traditional polyethylene (PE) mulch films in agriculture. Here, we investigated the degradation rate and microplastic formation of PBAT films in an agricultural field and the impacts on soil health as well as maize yields. We compared two biodegradable films (PBAT clear film: BCF and PBAT black film: BBF) with two conventional films (PE clear film: PCF and PE black film: PBF) in a field experiment over three growing seasons. Biodegradable films consisted of >90% PBAT and 5% polylactic acid. After three years of mulching, more microplastics were detected for the BCF (1820 particles kg-1) and BBF (1560 particles kg-1) treatments than for PCF (840 particles kg-1) and PBF (747 particles kg-1). The majority (about 70%) of microplastics in BCF and BBF were <0.25 mm, while in PCF and PBF the fraction of microplastics <0.25 mm made up only 24-41%. Biodegradable films increased soil organic carbon, microbial biomass carbon, and nitrate nitrogen by 0.16-0.48 g kg-1, 5.5-33.8 mg kg-1, and 32.6-109.6 mg kg-1, respectively, compared to PE films. Yield was highest for BBF, exceeding that of non-film, PCF, PBF and BCF by 2550, 566, 960 and 367 kg ha-1, respectively. Overall, the biodegradable films had a positive impact on soil health and maize yields.
Collapse
Affiliation(s)
- Kai Wang
- Research Center for Cultural Landscape Protection and Ecological Restoration, China-Portugal Joint Laboratory of Cultural Heritage Conservation Science Supported by the Belt and Road Initiative, Gold Mantis School of Architecture, Soochow University, Suzhou, 215006, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Markus Flury
- Department of Crop and Soil Sciences, Washington State University, Puyallup, 98371 and Pullman, 99164, WA, USA.
| | - Shiyan Sun
- Research Center for Cultural Landscape Protection and Ecological Restoration, China-Portugal Joint Laboratory of Cultural Heritage Conservation Science Supported by the Belt and Road Initiative, Gold Mantis School of Architecture, Soochow University, Suzhou, 215006, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Junling Cai
- Shihezi Research Institute of Agricultural Science, Xinjiang, 832000, China
| | - Aihua Zhang
- Shihezi Research Institute of Agricultural Science, Xinjiang, 832000, China
| | - Qiang Li
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; College of Horticulture & Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rui Jiang
- Research Center for Cultural Landscape Protection and Ecological Restoration, China-Portugal Joint Laboratory of Cultural Heritage Conservation Science Supported by the Belt and Road Initiative, Gold Mantis School of Architecture, Soochow University, Suzhou, 215006, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
6
|
Fan H, Hong X, Wang H, Gao F, Su Z, Yao H. Biodegradable microplastics affect tomato (Solanum lycopersicum L.) growth by interfering rhizosphere key phylotypes. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137208. [PMID: 39842126 DOI: 10.1016/j.jhazmat.2025.137208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/03/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Biodegradable microplastics (BMPs), which form as biodegradable plastics degrade in agricultural settings, may influence plant growth and soil health. This study investigates the effects of BMPs on tomato growth and the microbial mechanisms involved. A greenhouse experiment applied BMPs-polyhydroxyalkanoate (PHA), polylactic acid (PLA), poly(butylene succinate-co-butylene adipate) (PBSA), and poly(butylene-adipate-co-terephthalate) (PBAT)-to tomato plants. The study analyzed their effects on plant growth, soil properties, and rhizosphere microbial communities. BMP treatments significantly reduced tomato biomass, height, and chlorophyll content compared to the control. PLA0.1 decreased the chlorophyll a/b ratio, while PLA1 increased it. Elemental analysis showed PLA1 increased phosphorus, calcium, and potassium in leaves, whereas all BMPs reduced nitrogen levels. BMPs also altered soil nitrogen and DOC levels, significantly shifting rhizosphere microbial communities, with a notable increase in Betaproteobacteria abundance. Ecological network analysis revealed that BMPs disrupted key microbial modules linked to plant growth. Beneficial modules positively associated with biomass and nutrient uptake were reduced under BMP treatments, whereas harmful microbial taxa in module 3, associated to poor plant health, were promoted. These shifts suggest that BMPs disrupt microbial ecological relationships critical for optimal plant growth. The findings highlight the potential negative impacts of BMPs on tomato growth through changes in microbial dynamics and soil properties.
Collapse
Affiliation(s)
- Haoxin Fan
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xincheng Hong
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hehua Wang
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Feng Gao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ziqi Su
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
7
|
Wang Y, Zhang Q, Huang Y, Xu J, Xie J. Degradation Characteristics of Reed-Based PBAT Mulch and Their Effects on Plant Growth and Soil Properties. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1477. [PMID: 40271660 PMCID: PMC11989479 DOI: 10.3390/ma18071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025]
Abstract
Poly (butylene adipate-co-terephthalate) (PBAT) and PBAT/reed fiber (RF) mulch films were prepared. The molecular structural changes and surface morphological evolution during the degradation process were systematically characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The prepared PBAT/RF mulch film biodegradation rate reached 90.43% within 91 days under controlled composting conditions, which was 9.52% higher than a pure PBAT mulch film. The effects of adding PBAT and PBAT/RF microplastics on soil properties and soybean physiological indicators were dynamic. The study demonstrated that the incorporation of 5% PBAT/RF mulch film fragments into soil led to a 5.1% reduction in soil pH and a 17.2% increase in soluble organic carbon content. While the effects of 5% PBAT/RF on soil urease and neutral phosphatase activities were non-significant, sucrase activity decreased by 7.4% and catalase activity was reduced to 0.38 U/g. Additionally, the addition of 5% PBAT/RF resulted in a soybean germination rate of 93.74%, which was 4.0% higher than that observed in the group treated with 5% PBAT alone. The experimental data revealed a 7.2% reduction in leaf chlorophyll content, with concomitant growth inhibition in the soybean seedlings. The study demonstrated that the PBAT/RF composite film achieved 89% biodegradation within 180 days under field conditions, effectively mitigating post-application effects on agroecosystems compared to conventional polyethylene mulch.
Collapse
Affiliation(s)
- Yipeng Wang
- School of Eco-Environment, Hebei University, Baoding 071000, China; (Y.W.); (Q.Z.); (Y.H.)
| | - Qiuxia Zhang
- School of Eco-Environment, Hebei University, Baoding 071000, China; (Y.W.); (Q.Z.); (Y.H.)
| | - Yinghao Huang
- School of Eco-Environment, Hebei University, Baoding 071000, China; (Y.W.); (Q.Z.); (Y.H.)
| | - Jia Xu
- Xiong’an Institute of Innovation, Baoding 071700, China
| | - Jixing Xie
- School of Eco-Environment, Hebei University, Baoding 071000, China; (Y.W.); (Q.Z.); (Y.H.)
| |
Collapse
|
8
|
Li Y, Yan Q, Zou C, Li X, Wang J, Shao M, Jia H. Microplastic-Induced Alterations in Soil Aggregate-Associated Carbon Stabilization Pathways: Evidence from δ 13C Signature Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5545-5555. [PMID: 40070098 DOI: 10.1021/acs.est.4c09242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Microplastics (MPs) are known to affect soil carbon stability in a numerous ways. However, the mechanisms by which they alter the carbon stability within soil aggregates remain unclear . Herein, a one-year field experiment was conducted in an arid agricultural region employing stable isotope techniques to evaluate the soil organic carbon flow in the presence of both persistent (PE, PVC) and biodegradable (PLA, PHA) MPs. PE and PVC reduced the stability of soil aggregates, while PLA and PHA maintained it. Additionally, organic carbon content increased in microaggregates but decreased in small macroaggregates for PE and PVC treatments. By contrast, treatment with PLA and PHA enhanced organic carbon content across aggregates. The δ13C values of PE- and PVC-treated aggregates ranged from -25.34 to -20.85‰, while those of PLA and PHA ranged from -16.29 to -9.26‰. Notably, MPs altered the direction of carbon flow between aggregates, reduced carbon flux, and accelerated carbon emissions. RFP and PLS-PM analyses revealed that persistent MPs affected carbon flow primarily via abiotic factors, whereas biodegradable MPs influenced it via biotic factors. These findings provide insights into the mechanisms by which MPs impact aggregate-associated carbon, highlighting their effects on soil ecosystem services.
Collapse
Affiliation(s)
- Yanpei Li
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Qing Yan
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Chuningrui Zou
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Xia Li
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jiao Wang
- CAS Engineering Laboratory for Yellow River Delta Modern Agriculture, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming'an Shao
- CAS Engineering Laboratory for Yellow River Delta Modern Agriculture, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| |
Collapse
|
9
|
Zhang H, Wang D, Zhang X, Wang Y, Liu H, Tang Q, Lin T. Response of the soil hydrothermal environment and cotton yield to different irrigation quotas under biodegradable mulch film in oasis cotton fields: a three-year study. FRONTIERS IN PLANT SCIENCE 2025; 16:1521635. [PMID: 40190651 PMCID: PMC11968355 DOI: 10.3389/fpls.2025.1521635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025]
Abstract
Introduction Polyethylene mulch film (PE) is a key agricultural practice for enhancing crop production and income in water-scarce regions. However, the complete recycling of PE remains challenging, resulting in the persistence of residual film fragments in the soil, which compromises soil structure and negatively impacts crop growth and yield potential. Although biodegradable mulch film (BEMF) is considered a promising alternative, the underlying mechanisms governing its regulation of soil water and thermal dynamics, as well as its subsequent impacts on crop productivity, are yet to be fully elucidated. Methods Therefore, a comprehensive understanding of how BEMF influences soil water dynamics, thermal regimes, and crop growth and development is crucial for assessing its ecological adaptability. In this study field plot experiments were carried out over three consecutive growing seasons (2021 - 2023) under three irrigation quotas: W1 (63.6% crop evapotranspiration [ETc], 315 mm), W2 (81.8% ETc, 405 mm), and W3 (100% ETc, 495 mm). Results This study systematically evaluated the impacts of PE and biodegradable mulch films (BEMF: B1 and B2) on soil hydrothermal dynamics, cotton photosynthetic productivity, and water use efficiency under varying irrigation quotas. Furthermore, the economic and ecological benefits of cotton fields under these treatments were analyzed. The findings revealed that PE left residual film fragments of 12.95 kg·ha-1 in the soil after mechanical recovery, while BEMF exhibited no such residue accumulation. However, BEMF reduced soil effective temperature by 100 - 111°C and soil water content (SWC) by 2.82 - 9.42% compared to PE. These adverse effects under BEMF significantly impaired cotton net photosynthetic rate (Pn) and photosynthetic product accumulation. Specifically, BEMF decreased cotton net Pn by 8.42 - 18.09%, photosynthetic product accumulation by 10.74 - 26.41%, and yield by 651 - 1079 kg·ha-1 relative to PE, particularly under the W1 irrigation level. Increasing the irrigation quota mitigated soil water and heat deficits, enhanced cotton net Pn and photosynthetic productivity, boosted yield by 1.76 - 31.72%, and increased economic income by 552 - 12,423 CNY·ha-1. Discussion In summary, this study provides a new ecological regional adaptation scheme for BEFM, highlighting that under conventional conditions, BEFM cannot fully substitute the yield advantages of PEFM. Nevertheless, the application of an additional 90 mm of irrigation water effectively mitigates the yield and economic losses associated with BEMF while eliminating the risk of residual film fragment accumulation in the soil. These findings offer valuable insights for advancing the green and sustainable management of agricultural ecosystems.
Collapse
Affiliation(s)
- Hao Zhang
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Dong Wang
- Xinjiang Jinfengyuan Seed Industry Co., LTD., Xinjiang, China
| | - Xun Zhang
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Yifan Wang
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Haijun Liu
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Qiuxiang Tang
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Tao Lin
- Xinjiang Cotton Technology Innovation Center/Xinjiang Key Laboratory of Cotton Genetic Improvement and Intelligent Production/National Cotton Engineering Technology Research Center, Cotton Research Institute of Xinjiang Uyghur Autonomous Region Academy of Agricultural Sciences, Wulumuqi, Xinjiang, China
| |
Collapse
|
10
|
Dada OI, Habarakada Liyanage TU, Chi T, Yu L, DeVetter LW, Chen S. Towards sustainable agroecosystems: A life cycle assessment review of soil-biodegradable and traditional plastic mulch films. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 24:100541. [PMID: 40034612 PMCID: PMC11875804 DOI: 10.1016/j.ese.2025.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
The increasing use of traditional agricultural plastic mulch films (PMs) has raised significant environmental concerns, prompting the search for sustainable alternatives. Soil-biodegradable mulch films (BDMs) are often proposed as eco-friendly replacements; however, their widespread adoption remains contentious. This review employs a comparative life cycle assessment perspective to evaluate the environmental impact of PMs and BDMs across their production, use, and end-of-life stages, providing strategies to mitigate their impact on agroecosystems. BDMs generally exhibit lower energy use and greenhouse gas emissions than PMs but contribute to greater land-use demands. Reported eutrophication and acidification potentials are less consistent, varying based on feedstock types and the scope of assessment of BDM, as well as the end-of-life management of PM. The environmental burden of both mulch types is influenced by the life cycle stage, polymer composition, farming practices, additives, film thickness, and local climatic conditions. The manufacturing stage is a major contributor to energy use and greenhouse gas emissions for both PMs and BDMs, despite their shared benefits of increasing crop yields. However, post-use impacts are more pronounced for PMs, driven by end-of-life strategy and adsorbed waste content. While starch-based BDMs offer a more sustainable alternative to PMs, uncertainties regarding the residence time of BDM residues in soil (albeit shorter than PM residues) and their effects on soil health, coupled with higher production costs, impede widespread adoption. For BDM end-of-life, soil biodegradation is recommended. Energy and material recovery options are crucial for PM end-of-life, with mechanical recycling preferred, although it requires addressing eutrophication and human toxicity. This review discusses these complexities within specific contexts and provides actionable insights to guide the sustainable integration of mulch films into agricultural practices.
Collapse
Affiliation(s)
- Oluwatunmise Israel Dada
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164-6120, USA
| | | | - Ting Chi
- Department of Apparel, Merchandising, Design and Textiles, Washington State University, Pullman, WA, 99164-6406, USA
| | - Liang Yu
- Department of Agricultural and Biological Engineering, School of Engineering and Technology, Kentucky State University, Frankfort, KY, 40601, USA
| | - Lisa Wasko DeVetter
- Department of Horticulture, Washington State University, Northwestern Washington Research and Extension Center, Mount Vernon, WA, 98273, USA
| | - Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164-6120, USA
| |
Collapse
|
11
|
Bao S, Wang X, Zeng J, Yue L, Xiao Z, Chen F, Wang Z. The fate of biodegradable polylactic acid microplastics in maize: impacts on cellular ion fluxes and plant growth. FRONTIERS IN PLANT SCIENCE 2025; 16:1544298. [PMID: 40070709 PMCID: PMC11893570 DOI: 10.3389/fpls.2025.1544298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
The widespread application of biodegradable microplastics (MPs) in recent years has resulted in a significant increase in their accumulation in the environment, posing potential threats to ecosystems. Thus, it is imperative to evaluate the distribution and transformation of biodegradable MPs in crops due to the utilization of wastewater containing MPs for irrigation and plastic films, which have led to a rising concentration of biodegradable MPs in agricultural soils. The present study analyzed the uptake and transformation of polylactic acid (PLA) MPs in maize. Seed germination and hydroponic experiments were conducted over a period of 5 to 20 days, during which the plants were exposed to PLA MPs at concentrations of 0, 1, 10, and 100 mg L-1. Low concentrations of PLA MPs (1 mg L-1 and 10 mg L-1) significantly enhanced maize seed germination rate by 52.6%, increased plant shoot height by 16.6% and 16.9%, respectively, as well as elevated aboveground biomass dry weight by 133.7% and 53.3%, respectively. Importantly, depolymerization of PLA MPs was observed in the nutrient solution, resulting in the formation of small-sized PLA MPs (< 2 μm). Interestingly, further transformation occurred within the xylem sap and apoplast fluid (after 12 h) with a transformation rate reaching 13.1% and 27.2%, respectively. The enhanced plant growth could be attributed to the increase in dissolved organic carbon resulting from the depolymerization of PLA MPs. Additionally, the transformation of PLA MPs mediated pH and increase in K+ flux (57.2%, 72 h), leading to acidification of the cell wall and subsequent cell expansion. Our findings provide evidence regarding the fate of PLA MPs in plants and their interactions with plants, thereby enhancing our understanding of the potential impacts associated with biodegradable plastics.
Collapse
Affiliation(s)
- Shijia Bao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Xi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Jianxiong Zeng
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Bollinger JC, Bordas F, Martinková E, Dytrtová JJ, Komárek M. Comments and discussion concerning 'Sorption behavior of tebuconazole on microplastics: kinetics, isotherms and influencing factors' [Environ Technol. 2023;44:3937-3948]. ENVIRONMENTAL TECHNOLOGY 2025:1-11. [PMID: 39985819 DOI: 10.1080/09593330.2025.2463035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/19/2025] [Indexed: 02/24/2025]
Abstract
The widespread use of synthetic polymers since the mid-twentieth century has led to significant environmental pollution from microplastics (MPs). These MPs, which persist in ecosystems, can interact with various pollutants, including pesticides such as tebuconazole (TEB). The subject paper investigates the sorption behaviour of TEB on different types of MPs (polystyrene, polypropylene, and polyamide-6), focusing on the kinetics and isotherms of these interactions. The role of metal cations (Al, Cd, Cu, Pb, Zn) in influencing TEB sorption is also investigated. Our findings highlight critical flaws that invalidate the original article, mainly in the interpretation of TEB physicochemical properties, such as pKa and speciation, and the importance of considering metal ion complexation in environmental risk assessment. The sorption models used by the original authors, although widely used, are questioned for their accuracy in representing real-world scenarios.
Collapse
Affiliation(s)
- Jean-Claude Bollinger
- Laboratoire E2Lim (Eau et Environnement en Limousin), Faculté des Sciences et Techniques, Université de Limoges, Limoges, France
| | - François Bordas
- Laboratoire E2Lim (Eau et Environnement en Limousin), Faculté des Sciences et Techniques, Université de Limoges, Limoges, France
| | - Eva Martinková
- Division of Environmental Geochemistry and Biogeochemistry, Czech Geological Survey, Prague, Czech Republic
| | - Jana Jaklová Dytrtová
- Faculty of Physical Education and Sport, Sport Sciences-Biomedical Department, Charles University, Prague, Czech Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague - Suchdol, Czech Republic
| |
Collapse
|
13
|
Song D, Jin G, Su Z, Ge C, Fan H, Yao H. Influence of biodegradable microplastics on soil carbon cycling: Insights from soil respiration, enzyme activity, carbon use efficiency and microbial community. ENVIRONMENTAL RESEARCH 2025; 266:120558. [PMID: 39644987 DOI: 10.1016/j.envres.2024.120558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The rising prevalence of biodegradable microplastics (BMPs) in soils has raised concerns about their impacts on soil ecosystems and carbon cycling. This study investigates the effects of different BMPs on soil carbon cycling, focusing on soil respiration, enzyme activities, and carbon use efficiency (CUE) from 13C-labeled dissolved organic carbon (DOC) in an upland soil. The BMPs tested were polybutylene adipate terephthalate (PBAT), polyhydroxyalkanoates (PHA), and polylactic acid (PLA), at high (H, 1% w/w) and low (L, 0.1% w/w) concentrations. Over a 64-day incubation, cumulative CO2 emissions increased in the PHA_L, PHA_H, and PLA_H treatments, with the highest rise of 665% PHA_H treatment. Microbial biomass carbon (MBC) ranged from 97.73 ± 3.03 mg C kg⁻1 in the control to 223.09 ± 7.91 mg C kg⁻1 in PHA_H, with microbial CUE peaking at 0.26 in PHA_H. Enzymatic activities were notably affected: β-glucosidase (BG) increased by 50% in PLA_H, while cellobiohydrolase (CBH) activity decreased by up to 62% in PBAT_H and PLA_L. N-acetylglucosaminidase (NAG) and phosphatase (AP) activities were highest in PHA_H, indicating enhanced nutrient cycling. Microbial community structure based on PLFAs was significantly altered, with total PLFA content increasing by 191% in PHA_H. Correlation analysis and partial least squares path modeling (PLS-PM) revealed that BMP concentration, DOC content, and microbial diversity were positively correlated with microbial CUE. This study highlights the significant role of BMPs in influencing soil carbon cycling, primarily through their effects on microbial diversity and soil enzyme activities.
Collapse
Affiliation(s)
- Dan Song
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Guoqin Jin
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ziqi Su
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Haoxin Fan
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
14
|
van Loon S, Hurley R, Kernchen S, de Jeu L, Hulscher C, van Gestel CAM. Survival and reproduction effects of microplastics from three agricultural mulching films on Folsomia candida, Sinella curviseta, Heteromurus nitidus and Ceratophysella denticulata (Collembola). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178137. [PMID: 39700973 DOI: 10.1016/j.scitotenv.2024.178137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
An estimated 467 kt of plastic used in agriculture annually end up in European soils, potentially breaking down into secondary microplastics (MPs). Not much is known about the possible effects of these MPs on organisms residing in the soil. To properly assess their environmental risk, experimental data is needed on the toxicity of MPs to the survival and reproduction of model organisms. This study aimed at assessing the toxicity of three MP types derived from commonly used agricultural plastics to different Collembola species, representing an important and highly diverse class of soil arthropods. Starch- polybutadiene adipate terephthalate blend (starch-PBAT blend) MPs were produced from mulching films that were artificially aged by mechanical recycling. MPs were also made from virgin low density polyethylene (LDPE) mulching films and from linear low density polyethylene (LLDPE) films that underwent the same mechanical recycling process as the starch-PBAT blend films. Four Collembola species were tested: Folsomia candida, Sinella curviseta, Heteromurus nitidus and Ceratophysella denticulata, representing epedaphic, hemiedaphic and euedaphic, as well as sexually reproducing and parthenogenetic species. Each species was exposed in Lufa 2.2 soil spiked with nine MP concentrations: 0.0016, 0.008, 0.04, 0.2, 1, 2, 3, 4 and 5 % (w/w dry soil) and a control without additional MPs added to the soil. No dose-dependent effects were found for any of the exposed organisms, to any of the MPs tested. The results of this study suggest that the MPs used in this study, derived from commonly applied agricultural plastics, do not pose an immediate hazard to Collembola.
Collapse
Affiliation(s)
- Sam van Loon
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| | - Rachel Hurley
- Norwegian Institute for Water Research (NIVA), Oslo 0579, Norway.
| | - Sarmite Kernchen
- Animal Ecology I, University of Bayreuth, Bayreuth 95440, Germany.
| | - Lotte de Jeu
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| | - Cas Hulscher
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Xiao W, Xiang P, Liao W, Xiong Z, Peng L, Zou L, Liu B, Li Q. Effects of polystyrene microplastics on the growth and metabolism of highland barley seedlings based on LC-MS. FRONTIERS IN PLANT SCIENCE 2024; 15:1477605. [PMID: 39741681 PMCID: PMC11685026 DOI: 10.3389/fpls.2024.1477605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
Microplastics are widely present in the environment and can adversely affect plants. In this paper, the effects of different concentrations of microplastics on physiological indices and metabolites of highland barley were investigated for the first time using a metabolomics approach, and revealed the response mechanism of barley seedlings to polystyrene microplastics (PS-MPs) was revealed. The results showed that the aboveground biomass of highland barley exposed to low (10 mg/L) and medium (50 mg/L) concentrations of PS-MPs increased by 32.2% and 48.2%, respectively. The root length also increased by 16.4% and 21.6%, respectively. However, the aboveground biomass of highland barley exposed to high (100 mg/L) concentrations of PS-MPs decreased by 34.8%, leaf length by 20.7%, and root length by 25.9%. Microplastic exposure increased the levels of antioxidant activity, suggesting that highland barley responds to microplastic stress through oxidative stress. Metabolome analysis revealed that the contents of 4 metabolites increased significantly with increasing PS-MPs concentration in positive ionmode, while the contents of 8 metabolites increased significantly with increasing PS-MPs concentration in negative ionmode (P < 0.05), including prunin, dactylorhin E, and schisantherin B. Additionally, PS-MPs significantly interfered with highland barley flavonoid biosynthesis, pyrimidine metabolism, purine metabolism, fatty acid biosynthesis, and phenylpropanoid biosynthesis metabolic pathways. This study provides a new theoretical basis for a deeper understanding of the effects of different concentrations of PS-MPs on highland barley.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qiang Li
- *Correspondence: Bingliang Liu, ; Qiang Li,
| |
Collapse
|
16
|
Ramanayaka S, Zhang H, Semple KT. Environmental fate of microplastics and common polymer additives in non-biodegradable plastic mulch applied agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125249. [PMID: 39510302 DOI: 10.1016/j.envpol.2024.125249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Numerous studies have been conducted to investigate the impact of microplastics on soil eco-system, yet little attention has been given to the specific effects of mulch microplastics and the leaching of plastic additives from mulch films. This review inspects the propensity of commonly used plastic additives in mulch films, such as Di(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), and benzophenones (BPs), to migrate into soils and pose potential risks to soil biota. Further, we highlight the degradation of non-biodegradable plastic mulch films over time, which leads to an increase in the release of plastic additives and microplastics into agricultural soils. DEHP has been detected in high concentrations for example 25.2 mg/kg in agricultural soils, indicating a potential risk of uptake, translocation and accumulation in plants, ultimately altering soil physicochemical properties and affecting soil microflora and invertebrates. The review also explores how exposure to ultraviolet (UV) radiation and microbial activities accelerates the weathering of mulch films. Moreover, the resultant plastic additives and mulch microplastics can lead to genotoxicity and growth inhibition in earthworms (Eisenia fetida) and negatively impact the soil microbiome. Despite the significant implications, there has been a lack of comprehensive reviews comparing the effects of non-biodegradable mulch film additives on agricultural soil flora and fauna. Therefore, this review addresses the knowledge gaps providing a bibliometric analysis and eco-toxicological evaluation, discussing the challenges and future perspectives regarding mulch plastic additives and microplastics, thus offering a comprehensive understanding of their impact.
Collapse
Affiliation(s)
- Sammani Ramanayaka
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
17
|
Luo C, Zhou Y, Chen Z, Bian X, Chen N, Li J, Wu Y, Yang Z. Comparative life cycle assessment of PBAT from fossil-based and second-generation generation bio-based feedstocks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176421. [PMID: 39306119 DOI: 10.1016/j.scitotenv.2024.176421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
With the increasing demand for plastics, plastic pollution is growing rapidly. A significant amount of plastic has leaked into the environment, leading to severe environmental issues. Biodegradable plastics are considered promising alternatives to conventional durable plastics, and the environmental impacts of biodegradable plastics have received increasing attention. Poly (butylene adipate-co-terephthalate) (PBAT) is a commercial and cost-competitive biodegradable polymer and has been applied in the packaging and agriculture sectors. The environmental performances of PBAT with second-generation feedstocks from forestry waste have been rarely investigated. Since China is the leading global producer and exporter of PBAT polymer, Chinese cradle-to-gate life cycle inventories of PBAT were compiled in this study. A comparative life cycle assessment (LCA) was conducted to explore the potential for environmental performance of PBAT with second-generation bio-based feedstock compared to fossil-based PBAT and conventional plastics. The results showed that feedstocks contributed to more than 70 % of 18 environmental impact categories of fossil-based PBAT. In comparison, PBAT with second-generation bio-based feedstock reduces the environmental loads in 16 impact categories by 15-85 %, and renewable energy substitution has the potential to reduce environmental impacts by 10 %. Bio-based PBAT performs better than PVC, PP, HDPE, LDPE, and PET in 16 impact categories by 15-80 %. Bio-based PBAT has GWP of 3.72 kg CO2 eq, which is 37 % lower than fossil-based PBAT (5.89 kg CO2 eq) and 18-32 % lower than conventional plastics. Since feedstock dominates the environmental performance of PBAT, the development of biomanufacturing technologies for bio-based polymers and chemicals could significantly improve environmental performance of biodegradable plastics and promote the sustainable development of the plastic industry. Results could serve as the basis for environmental impact and mitigation strategies for biodegradable plastics with bio-based feedstocks, as well as the sustainable development of the PBAT industry.
Collapse
Affiliation(s)
- Chenkai Luo
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Ya Zhou
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhitong Chen
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinchao Bian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Junjie Li
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Yufeng Wu
- Institute of Circular Economy, Beijing University of Technology, Beijing 100124, China
| | - Zhifeng Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Asri NA, Sezali NAA, Ong HL, Mohd Pisal MH, Lim YH, Fang J. Review on Biodegradable Aliphatic Polyesters: Development and Challenges. Macromol Rapid Commun 2024; 45:e2400475. [PMID: 39445644 DOI: 10.1002/marc.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Biodegradable polymers are gaining attention as alternatives to non-biodegradable plastics to address environmental issues. With the rising global demand for plastic products, the development of non-toxic, biodegradable plastics is a significant topic of research. Aliphatic polyester, the most common biodegradable polyester, is notable for its semi-crystalline structure and can be synthesized from fossil fuels, microbial fermentation, and plants. Due to great properties like being lightweight, biodegradable, biocompatible, and non-toxic, aliphatic polyesters are used in packaging, medical, agricultural, wearable devices, sensors, and textile applications. The biodegradation rate, crucial for biodegradable polymers, is discussed in this review as it is influenced by their structural properties and environmental conditions. This review discusses currently available biodegradable polyesters, their emerging applications, and the challenges in their commercialization. As research in this area grows, this review emphasizes the innovation in biodegradable aliphatic polyesters and their role in advancing environmental sustainability.
Collapse
Affiliation(s)
- Nur Asnani Asri
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Nur Atirah Afifah Sezali
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Hui Lin Ong
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
- Centre of Excellence for Biomass Utilization and Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Mohd Hanif Mohd Pisal
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
- Centre of Excellence for Biomass Utilization and Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Ye Heng Lim
- Platinum Phase Sdn. Bhd., Plot 155, Jalan PKNK Utama, Kawasan Perusahaan Taman Ria Jaya, Sungai Petani, Kedah, 08000, Malaysia
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| |
Collapse
|
19
|
Jemec Kokalj A, Dolar A, Nagode A, Drobne D, Kuljanin A, Kalčíková G. Response of terrestrial crustacean Porcellio scaber and mealworm Tenebrio molitor to non-degradable and biodegradable fossil-based mulching film microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175379. [PMID: 39137843 DOI: 10.1016/j.scitotenv.2024.175379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Agricultural mulching films are potential sources of microplastics (MPs) in soil. As an alternative to conventional non-degradable mulching films, a variety of different biodegradable mulching films are used. However, it is not yet known whether MPs from biodegradable mulching films pose a lower risk to terrestrial invertebrates compared to MPs from conventional mulching films. In this study, the effects of MPs produced from two conventional polyethylene (PE-1 and PE-2) and two biodegradable (starch-based poly(butylene adipate co-terephthalate); PBAT-BD-1, and PBAT-BD-2) fossil-based mulching films on terrestrial crustacean woodlice Porcellio scaber and mealworm Tenebrio molitor were compared. A key finding was that no clear differences in induced responses between biodegradable and conventional MPs were detected. No adverse effects on P. scaber after two weeks and on T. molitor after four weeks of exposure were observed up to 5 % (w/w dry soil) of either MP type. However, some sublethal physiological changes in metabolic rate and immune parameters were found in P. scaber after two weeks of exposure indicating a response of organisms to the presence of MP exposure in soil. In addition, it was demonstrated that both types of MPs might affect the soil water holding capacity and pH. In conclusion, we confirmed that biodegradable MPs can induce responses in organisms hence further studies testing the environmental hazard of biodegradable MPs are justified.
Collapse
Affiliation(s)
- Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia.
| | - Andraž Dolar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Ana Nagode
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Aleksandra Kuljanin
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| | - Gabriela Kalčíková
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| |
Collapse
|
20
|
Jemec Kokalj A, Nagode A, Drobne D, Dolar A. Effects of agricultural microplastics in multigenerational tests with insects; mealworms Tenebrio molitor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174490. [PMID: 38969109 DOI: 10.1016/j.scitotenv.2024.174490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Mulching films, widely used in agriculture, are a large source of microplastics (MPs) to soil. However, there is little knowledge on the long-term effects of agricultural MPs on soil invertebrates. We investigated the effects of MPs from conventional non-biodegradable, fossil-based, low-density polyethylene (PE) and biodegradable fossil-based poly(butylene adipate-coterephthalate) (starch-PBAT blend) mulching films on two generations of the mealworm Tenebrio molitor. No effects of MPs (0.005 %-5 %, w/w dry food) on mealworm development and survival were observed until the end of the experiments (12 weeks for the first generation, nine weeks for the second generation), but effects on their moulting and growth were observed. These were most evident for PE MPs (5 %, w/w), where a decrease in larval growth and moulting was noted in the first generation. On the contrary, PBAT MPs (5 %, w/w) significantly induced the growth of mealworms in the second generation. In addition, there was a non-significant trend towards increased growth at all other PBAT MP exposure concentrations. Increased growth is most likely due to the biodegradation of starch PBAT MPs by mealworms. Overall, these data suggest that PE and PBAT MPs do not induce significant effects on mealworms at environmentally relevant concentrations, but rather only at very high exposure concentrations (5 %).
Collapse
Affiliation(s)
- Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia.
| | - Ana Nagode
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Andraž Dolar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| |
Collapse
|
21
|
Hurley R, Binda G, Briassoulis D, Carroccio SC, Cerruti P, Convertino F, Dvořáková D, Kernchen S, Laforsch C, Löder MGL, Pulkrabova J, Schettini E, Spanu D, Tsagkaris AS, Vox G, Nizzetto L. Production and characterisation of environmentally relevant microplastic test materials derived from agricultural plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174325. [PMID: 38942306 DOI: 10.1016/j.scitotenv.2024.174325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Soil environments across the globe, particularly in agricultural settings, have now been shown to be contaminated with microplastics. Agricultural plastics - such as mulching films - are used in close or direct contact with soils and there is growing evidence demonstrating that they represent a potential source of microplastics. There is a demand to undertake fate and effects studies to understand the behaviour and potential long-term ecological risks of this contamination. Yet, there is a lack of test materials available for this purpose. This study describes the manufacture and characterisation of five large (1-40 kg) batches of microplastic test materials derived from agricultural mulching films. Batches were produced from either polyethylene-based conventional mulching films or starch-polybutadiene adipate terephthalate blend mulching films that are certified biodegradable in soil. Challenges encountered and overcome during the micronisation process provide valuable insights into the future of microplastic test material generation from these material types. This includes difficulties in micronising virgin polyethylene film materials. All five batches were subjected to a thorough physical and chemical characterisation - both of the original virgin films and the subsequent microplastic particles generated - including a screening for the presence of chemical additives. This is a critical step to provide essential information for interpreting particle fate or effects in scientific testing. Trade-offs between obtaining preferred particle typologies and time and cost constraints are elucidated. Several recommendations emerging from the experiences gained in this study are put forward to advance the research field towards greater harmonisation and utilisation of environmentally relevant test materials.
Collapse
Affiliation(s)
- Rachel Hurley
- Norwegian Institute for Water Research, Oslo, Norway.
| | - Gilberto Binda
- Norwegian Institute for Water Research, Oslo, Norway; Department of Science and High Technology, University of Insubria, Como, Italy
| | - Demetres Briassoulis
- Natural Resources & Agricultural Engineering Department, Agricultural University of Athens, Athens, Greece
| | | | - Pierfrancesco Cerruti
- National Research Council Institute of Polymers, Composites and Biopolymers, Pozzuoli, Italy
| | - Fabiana Convertino
- Department of Soil, Plant and Food Science, University of Bari, Bari, Italy
| | - Darina Dvořáková
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | | | | | | | - Jana Pulkrabova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Evelia Schettini
- Department of Soil, Plant and Food Science, University of Bari, Bari, Italy
| | - Davide Spanu
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Aristeidis S Tsagkaris
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Giuliano Vox
- Department of Soil, Plant and Food Science, University of Bari, Bari, Italy
| | - Luca Nizzetto
- Norwegian Institute for Water Research, Oslo, Norway; Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic
| |
Collapse
|
22
|
She Y, Qi X, Li Z. Insights into soil autotrophic ammonium oxidization under microplastics stress: Crossroads of nitrification, comammox, anammox and Feammox. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135443. [PMID: 39128156 DOI: 10.1016/j.jhazmat.2024.135443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/30/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Microplastics (MPs) are widespread in agroecosystems and profoundly impact soil microbiome and nutrient cycling. However, the effects of MPs on soil autotrophic ammonium oxidization processes, including nitrification, complete ammonium oxidation (comammox), anaerobic ammonium oxidation (anammox), and anaerobic ammonium oxidation coupled to iron reduction (Feammox), remain unclear. These processes are the rate-limiting steps of nitrogen cycling in agroecosystems. Here, our work unveiled that exposures of polyethylene (PE), polypropylene (PP), polylactic acid (PLA), and polybutylene adipate terephthalate (PBAT) MPs significantly modulated ammonium oxidization pathways with distinct type- and dose-dependent effects. Nitrification remained the main contributor (56.4-70.7 %) to soil ammonium removal, followed by comammox (11.7-25.6 %), anammox (5.0-20.2 %) and Feammox (3.3-11.6 %). Compared with conventional nonbiodegradable MPs (i.e., PE and PP), biodegradable MPs (i.e., PLA and PBAT) exhibited more pronounced impacts on soil nutrient conditions and functional microbes, which collectively induced alterations in soil ammonium oxidation. Interestingly, low-dose PLA and PBAT remarkably enhanced the roles of anammox and Feammox in soil ammonium removal, contributing to the mitigation of soil acidification in agroecosystems. This study highlights the diverse responses of ammonium oxidization pathways to MPs, further deepening our understanding of how MPs affect biogeochemical cycling and enriching strategies for agricultural managements amid increasing MPs pollution.
Collapse
Affiliation(s)
- Yuecheng She
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xin Qi
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
23
|
Wright ACM, Boots B, Ings TC, Green DS. Above- and below-ground field study on the impacts of conventional and alternative mesoplastics on Hordeum vulgare growth and soil invertebrate communities. CHEMOSPHERE 2024; 365:143393. [PMID: 39307466 DOI: 10.1016/j.chemosphere.2024.143393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Plastic plays an important role in agriculture, but its use has become a concerning source of pollution. While new (bio)degradable, alternative plastics are being developed and used as mulching films, their ecological impacts, in particular under field conditions, are not well understood. Furthermore, there is a notable lack of knowledge on how plastic pollution affects soil invertebrate communities. Most existing studies primarily focus on microplastics, often neglecting the impacts of mesoplastics. This study therefore compared the separate effects of two conventional (polyethylene and polypropylene) and two alternative (polyethylene containing biodegradable additives and compostable polylactic acid) mesoplastic films on plant performance (biomass, seed yield) and soil mesofaunal assemblages in a field experiment. The mesoplastics were applied at 0.1% (w/w), prior to soil being planted with Hordeum vulgare (spring barley), which was grown to maturity, for 11 weeks. Generally, there were no measurable differences between the conventional and alternative plastic treatments, however, barley exposed to mesoplastics showed reduced biomass, seed yield, and chlorophyll content, along with increased oxidative stress. Soil fauna, particularly Collembola, had lower richness and abundance when exposed to both plastic types, but assemblage structure and composition remained unchanged after 11 weeks. This study is pivotal in highlighting that both conventional and alternative plastics can similarly affect plant health and soil ecosystems. The evidence provided is essential for refining future risk assessments of agricultural plastic pollution and underscores the urgent need for more sustainable practices and materials in agriculture.
Collapse
Affiliation(s)
- Amy C M Wright
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, UK.
| | - Bas Boots
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, UK
| | - Thomas C Ings
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, UK
| | - Dannielle S Green
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, UK
| |
Collapse
|
24
|
Shirin J, Chen Y, Hussain Shah A, Da Y, Zhou G, Sun Q. Micro plastic driving changes in the soil microbes and lettuce growth under the influence of heavy metals contaminated soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1427166. [PMID: 39323532 PMCID: PMC11422782 DOI: 10.3389/fpls.2024.1427166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/27/2024]
Abstract
Microplastics (MPs) have garnered global attention as emerging contaminants due to their adaptability, durability, and robustness in various ecosystems. Still, studies concerning their combination with heavy metals (HMs), their interactions with soil biota, and how they affect soil physiochemical properties and terrestrial plant systems are limited. Our study was set to investigate the combined effect of HMs (cadmium, arsenic, copper, zinc and lead) contaminated soil of Tongling and different sizes (T1 = 106 µm, T2 = 50 µm, and T3 = 13 µm) of polystyrene microplastics on the soil physiochemical attributes, both bacterial and fungal diversity, compositions, AMF (arbuscular mycorrhizal fungi), plant pathogens in the soil, and their effect on Lactuca sativa by conducting a greenhouse experiment. According to our results, the combination of HMs and polystyrene microplastic (PS-MPs), especially the smaller PS-MPs (T3), was more lethal for the lettuce growth, microbes and soil. The toxicity of combined contaminants directly reduced the physio-biochemical attributes of lettuce, altered the lettuce's antioxidant activity and soil health. T3 at the final point led to a significant increase in bacterial and fungal diversity. In contrast, overall bacterial diversity was higher in the rhizosphere, and fungal diversity was higher in the bulk soil. Moreover, the decrease in MPs size played an important role in decreasing AMF and increasing both bacterial and fungal pathogens, especially in the rhizosphere soil. Functional prediction was found to be significantly different in the control treatment, with larger MPs compared to smaller PS-MPs. Environmental factors also played an important role in the alteration of the microbial community. This study also demonstrated that the varied distribution of microbial populations could be an ecological indicator for tracking the environmental health of soil. Overall, our work showed that the combination of HMs and smaller sizes of MPs was more lethal for the soil biota and lettuce and also raised many questions for further studying the ecological risk of PS-MPs and HMs.
Collapse
Affiliation(s)
- Jazbia Shirin
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Yongjing Chen
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Azhar Hussain Shah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Yanmei Da
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Guowei Zhou
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Qingye Sun
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| |
Collapse
|
25
|
Soni A, Chakraborty S, Das PK, Saha AK. Selection of sustainable construction material from recycled waste plastics by q-rung orthopair fuzzy SWARA-MABAC approach. CHEMOSPHERE 2024; 364:143166. [PMID: 39209034 DOI: 10.1016/j.chemosphere.2024.143166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Recycling of waste plastics and agro-industrial waste for the development of sustainable polymeric composites is recognized as a viable approach to overcome the detrimental environmental effects of plastics waste. Despite of immense potential of sustainable composites in the Circular Economy (CE), its implementation is still insignificant due to the lack of an effective material selection approach. The existence of several influencing aspects in the process of material selection considers it a multi-criteria decision making (MCDM) problem. In the present work, an Aggregation Operator (AO) based integrated Stepwise Weight Assessment Ratio Analysis (SWARA) and Multi-attributive Border Approximation Area Comparison (MABAC) has been proposed to deal with the issues of material selection for polymer based sustainable composites. Moreover, q-rung orthopair fuzzy numbers (q-ROPFNs) have been implemented to tackle the uncertainty in the information. The effectiveness of the proposed approach has been confirmed by different comparative and sensitivity investigations. The developed composites have shown excellent properties whereas the responses of the materials vary invariably with compositions. The proposed method has identified the amalgamation of 10 wt percentage of rice husk ash and 10 wt percentage of sand with 80 wt percentage of high-density polyethylene (HDPE) as an appropriate material for the development of sustainable floor tiles as the composites resulted to optimum mechanical performances and minimum abrasive wear. The proposed model gives reliable and robust results and is sensitive to the criteria weights and mathematical parameters. The outcome of the research has exposed that the suggested mathematical approach can be effectively applied for material selection of sustainable polymeric composites for different applications.
Collapse
Affiliation(s)
- Ashish Soni
- Department of Mechanical Engineering, National Institute of Technology Agartala, Tripura, 799046, India; Centre for Additive Manufacturing, Chennai Institute of Technology, Chennai, Tamil Nadu, 600069, India.
| | - Sayanta Chakraborty
- Department of Mathematics, National Institute of Technology Agartala, Tripura, 799046, India.
| | - Pankaj Kumar Das
- Department of Mechanical Engineering, National Institute of Technology Agartala, Tripura, 799046, India.
| | - Apu Kumar Saha
- Department of Mathematics, National Institute of Technology Agartala, Tripura, 799046, India.
| |
Collapse
|
26
|
Ciaramitaro V, Piacenza E, Paliaga S, Cavallaro G, Badalucco L, Laudicina VA, Chillura Martino DF. Exploring the Feasibility of Polysaccharide-Based Mulch Films with Controlled Ammonium and Phosphate Ions Release for Sustainable Agriculture. Polymers (Basel) 2024; 16:2298. [PMID: 39204519 PMCID: PMC11359579 DOI: 10.3390/polym16162298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Bio-based polymers are a promising material with which to tackle the use of disposable and non-degradable plastics in agriculture, such as mulching films. However, their poor mechanical properties and the high cost of biomaterials have hindered their widespread application. Hence, in this study, we improved polysaccharide-based films and enriched them with plant nutrients to make them suitable for mulching and fertilizing. Films were produced combining sodium carboxymethyl cellulose (CMC), chitosan (CS), and sodium alginate (SA) at different weight ratios with glycerol and CaCl2 as a plasticizer and crosslinker, respectively, and enriched with ammonium phosphate monobasic (NH4H2PO4). A polysaccharide weight ratio of 1:1 generated a film with a more crosslinked structure and a lower expanded network than that featuring the 17:3 ratio, whereas CaCl2 increased the films' water resistance, thermal stability, and strength characteristics, slowing the release rates of NH4+ and PO43-. Thus, composition and crosslinking proved crucial to obtaining promising films for soil mulching.
Collapse
Affiliation(s)
- Veronica Ciaramitaro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Building 17, 90128 Palermo, Italy; (V.C.); (D.F.C.M.)
| | - Elena Piacenza
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Building 17, 90128 Palermo, Italy; (V.C.); (D.F.C.M.)
| | - Sara Paliaga
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Viale delle Scienze Building 4, 90128 Palermo, Italy; (S.P.); (L.B.)
| | - Giuseppe Cavallaro
- Department of Physics and Chemistry-Emilio Segrè, Università degli Studi di Palermo, Viale delle Scienze Building 17, 90128 Palermo, Italy;
| | - Luigi Badalucco
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Viale delle Scienze Building 4, 90128 Palermo, Italy; (S.P.); (L.B.)
| | - Vito Armando Laudicina
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Viale delle Scienze Building 4, 90128 Palermo, Italy; (S.P.); (L.B.)
| | - Delia Francesca Chillura Martino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Building 17, 90128 Palermo, Italy; (V.C.); (D.F.C.M.)
| |
Collapse
|
27
|
Liang R, Zhang C, Zhang R, Li Q, Liu H, Wang XX. Effects of microplastics derived from biodegradable mulch film on different plant species growth and soil properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174899. [PMID: 39043299 DOI: 10.1016/j.scitotenv.2024.174899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Biodegradable mulch residues contribute significantly to the presence of microplastics in soil ecosystems. The environmental impact of microplastics, especially biodegradable microplastics (bio-MPs), on soil and plants is of increasing concern. In this study, the responses of five crop species potted in soil treated with different mass concentrations of bio-MPs were assessed for one month. The shoot and root biomasses of cabbages and strawberries were inhibited by bio-MPs treatment. There was little variation in the growth indicators of identical plants with the addition of different mass concentrations of bio-MPs; however, a significant difference was observed among different plants with the addition of the same concentration of bio-MPs. The detrimental effects of bio-MPs were more pronounced in strawberries and cabbages than in the other plant species. Moreover, bio-MPs can affect the availability of soil nutrients and enzyme activities. Structural equation modeling showed that changes in soil properties may indirectly affect plant growth and nutrient uptake when exposed to bio-MPs. This study provides a theoretical basis for understanding the ecological effects of biodegradable mulch films.
Collapse
Affiliation(s)
- Rong Liang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Hebei, Baoding 071001, People's Republic of China; Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Chi Zhang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Ruifang Zhang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Qingyun Li
- College of Horticulture, Hebei Agricultural University, Hebei, Baoding 071001, People's Republic of China
| | - Hongquan Liu
- College of Urban and Rural Construction, Hebei Agricultural University, Baoding 071002, People's Republic of China
| | - Xin-Xin Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Hebei, Baoding 071001, People's Republic of China; Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, People's Republic of China; College of Horticulture, Hebei Agricultural University, Hebei, Baoding 071001, People's Republic of China.
| |
Collapse
|
28
|
Zantis LJ, Adamczyk S, Velmala SM, Adamczyk B, Vijver MG, Peijnenburg W, Bosker T. Comparing the impact of microplastics derived from a biodegradable and a conventional plastic mulch on plant performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173265. [PMID: 38754499 DOI: 10.1016/j.scitotenv.2024.173265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Agricultural lands have been identified as plastic sinks. One source is plastic mulches, which are a source of micro- and nano-sized plastics in agricultural soils. Because of their persistence, there is now a push towards developing biodegradable plastics, which are designed to undergo (partial) breakdown after entering the environment. Yet, limited research has investigated the impacts of both conventional and biodegradable plastics on distinct plants. Moreover, comparisons among studies are difficult due to differences in experimental design. This study directly compares the effects of artificially weathered conventional polyethylene (PE) and starch-based biodegradable polybutylene adipate terephthalate (PBAT) on four food crops, including two monocots (barley, Hordeum vulgare, and wheat, Triticum aestivum L.) and two dicots (carrot, Daucus carota, and lettuce, Lactuca sativa L.). We investigated the effects of environmentally relevant low, medium, and high (0.01 %, 0.1 %, 1 % w/w) concentrations of PE and starch-PBAT blend on seed germination (acute toxicity), and subsequently on plant growth and chlorophyll through a pot-plant experiment (chronic toxicity). Germination of all species was not affected by both plastics. However, root length was reduced for lettuce and wheat seedlings. No other effects were recorded on monocots. We observed a reduction in shoot length and bud wet weight of carrot seedlings for the highest concentration of PE and starch-PBAT blend. Chronic exposure resulted in a significant decrease in shoot biomass of barley and lettuce. Additionally, a positive increase in the number of leaves of lettuce was observed for both plastics. Chlorophyll content was increased in lettuce when exposed to PE and starch-PBAT blend. Overall, adverse effects in dicots were more abundant than in monocots. Importantly, we found that the biodegradable plastic caused more commonly adverse effects on plants compared to conventional plastic, which was confirmed by a mini-review of studies directly comparing the impact of conventional and biodegradable microplastics.
Collapse
Affiliation(s)
- Laura J Zantis
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Sylwia Adamczyk
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland.
| | - Sannakajsa M Velmala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland.
| | - Bartosz Adamczyk
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland.
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Willie Peijnenburg
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands.
| | - Thijs Bosker
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| |
Collapse
|
29
|
Convertino F, Carroccio SC, Cocca MC, Dattilo S, Dell'Acqua AC, Gargiulo L, Nizzetto L, Riccobene PM, Schettini E, Vox G, Zannini D, Cerruti P. The fate of post-use biodegradable PBAT-based mulch films buried in agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174697. [PMID: 39019280 DOI: 10.1016/j.scitotenv.2024.174697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
The fate of black biodegradable mulch film (MF) based on starch and poly(butylene-adipate-co-terephthalate) (PBAT) in agricultural soil is investigated herein. Pristine (BIO-0) and UV-aged film samples (BIO-A192) were buried for 16 months at an experimental field in southern Italy. Visual, physical, chemical, morphological, and mechanical analyses were carried out before and after samples burial. Film residues in the form of macro- and microplastics in soil were analyzed at the end of the trial. Progressive deterioration of both pristine and UV-aged samples, with surface loss and alterations in mechanical properties, occurred from 42 days of burial. After 478 days, the apparent surface of BIO-0 and BIO-A192 films decreased by 57 % and 66 %, respectively. Burial determined a rapid depletion of starch from the polymeric blend, especially for the BIO-A192, while the degradation of the polyester phase was slower. Upon burial, an enrichment of aromatic moieties of PBAT in the film residues was observed, as well as microplastics release to soil. The analysis of the MF degradation products extracted from soil (0.006-0.008 % by mass in the soil samples) revealed the predominant presence of adipate moieties. After 478 days of burial, about 23 % and 17 % of the initial amount of BIO-0 and BIO-A192, respectively, were extracted from the soil. This comprehensive study underscores the complexity of biodegradation phenomena that involve the new generation of mulch films in the field. The different biodegradability of the polymeric components, the climate, and the soil conditions that did not strictly meet the parameters required for the standard test method devised for MFs, have significantly influenced their degradation rate. This finding further emphasizes the importance of implementing field experiments to accurately assess the real effects of biodegradable MFs on soil health and overall agroecosystem sustainability.
Collapse
Affiliation(s)
- Fabiana Convertino
- Department of Soil, Plant and Food Science, University of Bari, Bari, Italy
| | - Sabrina Carola Carroccio
- National Research Council of Italy, Institute of Polymers, Composites and Biomaterials (CNR-IPCB), Catania, Italy
| | - Maria Cristina Cocca
- National Research Council of Italy, Institute of Polymers, Composites and Biomaterials (CNR-IPCB), Pozzuoli (Naples), Italy
| | - Sandro Dattilo
- National Research Council of Italy, Institute of Polymers, Composites and Biomaterials (CNR-IPCB), Catania, Italy
| | | | - Luca Gargiulo
- National Research Council of Italy, Institute of Polymers, Composites and Biomaterials (CNR-IPCB), Pozzuoli (Naples), Italy
| | - Luca Nizzetto
- Norwegian Institute for Water Research, Oslo, Norway; Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic
| | - Paolo Maria Riccobene
- National Research Council of Italy, Institute of Polymers, Composites and Biomaterials (CNR-IPCB), Catania, Italy
| | - Evelia Schettini
- Department of Soil, Plant and Food Science, University of Bari, Bari, Italy.
| | - Giuliano Vox
- Department of Soil, Plant and Food Science, University of Bari, Bari, Italy
| | - Domenico Zannini
- National Research Council of Italy, Institute of Chemical Sciences and Technologies "G. Natta" (CNR-SCITEC), Genova, Italy
| | - Pierfrancesco Cerruti
- National Research Council of Italy, Institute of Polymers, Composites and Biomaterials (CNR-IPCB), Pozzuoli (Naples), Italy
| |
Collapse
|
30
|
Barone GD, Rodríguez-Seijo A, Parati M, Johnston B, Erdem E, Cernava T, Zhu Z, Liu X, Axmann IM, Lindblad P, Radecka I. Harnessing photosynthetic microorganisms for enhanced bioremediation of microplastics: A comprehensive review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100407. [PMID: 38544950 PMCID: PMC10965471 DOI: 10.1016/j.ese.2024.100407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 11/11/2024]
Abstract
Mismanaged plastics, upon entering the environment, undergo degradation through physicochemical and/or biological processes. This process often results in the formation of microplastics (MPs), the most prevalent form of plastic debris (<1 mm). MPs pose severe threats to aquatic and terrestrial ecosystems, necessitating innovative strategies for effective remediation. Some photosynthetic microorganisms can degrade MPs but there lacks a comprehensive review. Here we examine the specific role of photoautotrophic microorganisms in water and soil environments for the biodegradation of plastics, focussing on their unique ability to grow persistently on diverse polymers under sunlight. Notably, these cells utilise light and CO2 to produce valuable compounds such as carbohydrates, lipids, and proteins, showcasing their multifaceted environmental benefits. We address key scientific questions surrounding the utilisation of photosynthetic microorganisms for MPs and nanoplastics (NPs) bioremediation, discussing potential engineering strategies for enhanced efficacy. Our review highlights the significance of alternative biomaterials and the exploration of strains expressing enzymes, such as polyethylene terephthalate (PET) hydrolases, in conjunction with microalgal and/or cyanobacterial metabolisms. Furthermore, we delve into the promising potential of photo-biocatalytic approaches, emphasising the coupling of plastic debris degradation with sunlight exposure. The integration of microalgal-bacterial consortia is explored for biotechnological applications against MPs and NPs pollution, showcasing the synergistic effects in wastewater treatment through the absorption of nitrogen, heavy metals, phosphorous, and carbon. In conclusion, this review provides a comprehensive overview of the current state of research on the use of photoautotrophic cells for plastic bioremediation. It underscores the need for continued investigation into the engineering of these microorganisms and the development of innovative approaches to tackle the global issue of plastic pollution in aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
| | - Andrés Rodríguez-Seijo
- Área de Edafoloxía, Departamento de Bioloxía Vexetal e Ciencia Do Solo, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain
- Agroecology and Food Institute (IAA), University of Vigo – Campus Auga, 32004, Ourense, Spain
| | - Mattia Parati
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
- FlexSea Ltd., London, EC2A4NE, United Kingdom
| | - Brian Johnston
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| | - Elif Erdem
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, 8010, Graz, Austria
| | - Zhi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Xufeng Liu
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Ilka M. Axmann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine, University Düsseldorf, D-40001, Düsseldorf, Germany
| | - Peter Lindblad
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Iza Radecka
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| |
Collapse
|
31
|
He YQ, McDonough LK, Zainab SM, Guo ZF, Chen C, Xu YY. Microplastic accumulation in groundwater: Data-scaled insights and future research. WATER RESEARCH 2024; 258:121808. [PMID: 38796912 DOI: 10.1016/j.watres.2024.121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Given that microplastics (MPs) in groundwater have been concerned for risks to humans and ecosystems with increased publications, a Contrasting Analysis of Scales (CAS) approach is developed by this study to synthesize all existing data into a hierarchical understanding of MP accumulation in groundwater. Within the full data of 386 compiled samples, the median abundance of MPs in Open Groundwater (OG) and Closed Groundwater (CG) were 4.4 and 2.5 items/L respectively, with OG exhibiting a greater diversity of MP colors and larger particle sizes. The different pathways of MP entry (i.e., surface runoff and rock interstices) into OG and CG led to this difference. At the regional scale, median MP abundance in nature reserves and landfills were 17.5 and 13.4 items/L, respectively, all the sampling points showed high pollution load risk. MPs in agricultural areas exhibited a high coefficient of variation (716.7%), and a median abundance of 1.0 items/L. Anthropogenic activities at the regional scale are the drivers behind the differentiation in the morphological characteristics of MPs, where groundwater in residential areas with highly toxic polymers (e.g., polyvinylchloride) deserves prolonged attention. At the local scale, the transport of MPs is controlled by groundwater flow paths, with a higher abundance of MP particles downstream than upstream, and MPs with regular surfaces and lower resistance (e.g., pellets) are more likely to be transported over long distances. From the data-scaled insight this study provides on the accumulation of MPs, future research should be directed towards network-based observation for groundwater-rich regions covered with landfills, residences, and agricultural land.
Collapse
Affiliation(s)
- Yu-Qin He
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liza K McDonough
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW 2234, Australia
| | - Syeda Maria Zainab
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhao-Feng Guo
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Cai Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
32
|
Nizzetto L, Binda G, Hurley R, Baann C, Selonen S, Velmala S, van Gestel CAM. Comments to "Degli-Innocenti, F. The pathology of hype, hyperbole and publication bias is creating an unwarranted concern towards biodegradable mulch films" [J. Hazard. Mater. 463 (2024) 132923]. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:133690. [PMID: 38336580 DOI: 10.1016/j.jhazmat.2024.133690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Some narratives present biodegradable plastic use for soil mulching practices in agriculture as "environmentally friendly" and "sustainable" alternatives to conventional plastics. To verify these narratives, environmental research recently started focusing on their potential impact on soil health, highlighting some concerns. The paper by Degli-Innocenti criticizes this unfolding knowledge arguing that it is affected by communication hypes, alarmistic writing and a focus on exposure scenarios purposedly crafted to yield negative effects. The quest of scientists for increased impact - the paper concludes - is the driver of such behavior. As scholars devoted to the safeguarding of scientific integrity, we set to verify whether this serious claim is grounded in evidence. Through a bibliometric analysis (using number of paper reads, citations and mentions on social media to measure the impact of publications) we found that: i) the papers pointed out by Degli-Innocenti as examples of biased works do not score higher than the median of similar publications; ii) the methodology used to support the conclusion is non-scientific; and iii) the paper does not fulfil the requirements concerning disclosure of conflicts of interests. We conclude that this paper represents a non-scientific opinion, potentially biased by a conflict of interest. We ask the paper to be clearly tagged as such, after the necessary corrections on the ethic section have been made. That being said, the paper does offer some useful insights for the definition of exposure scenarios in risk assessment. We comment and elaborate on these proposed models, hoping that this can help to advance the field.
Collapse
Affiliation(s)
- Luca Nizzetto
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway; Research Centre for Toxic Compounds in the Environment, Masaryk University, 62500 Brno, Czech Republic.
| | - Gilberto Binda
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway; DISAT Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Rachel Hurley
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| | - Cecilie Baann
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| | - Salla Selonen
- Finnish Environment Institute (SYKE), Mustialankatu 3, 00790 Helsinki, Finland
| | - Sannakajsa Velmala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
33
|
Wang Y, Tang DWS. Soil chemical fumigation alters soil phosphorus cycling: effects and potential mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1289270. [PMID: 38855465 PMCID: PMC11157047 DOI: 10.3389/fpls.2024.1289270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/13/2024] [Indexed: 06/11/2024]
Abstract
Soil chemical fumigation is an effective and popular method to increase agricultural productivity. However, the broad-spectrum bioactivity of fumigants causes harm to soil beneficial microorganisms involved in the soil phosphorous cycle, such as soil phosphorus solubilizing microorganisms (PSMs). We review the effects of soil chemical fumigation on soil phosphorus cycling, and the potential underlying mechanisms that ultimately lead to altered phosphorus availability for crops. These complex processes involve the highly diverse PSM community and a plethora of soil phosphorus forms. We discuss phosphatizing amendments aimed at counteracting the possible negative effects of fumigation on phosphorus availability, phosphorus use efficiency, and crop yields. We also emphasize distinguishing between the effects on soil phosphorus cycling caused by the chemical fumigants, and those caused by the fumigation process (e.g. plastic mulching). These are typically conflated in the literature; distinguishing them is critical for identifying appropriate amendments to remediate possible post-fumigation soil phosphorus deficiencies.
Collapse
Affiliation(s)
| | - Darrell W. S. Tang
- Soil Physics and Land Management Group, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
34
|
Men J, Liu H, Jin T, Cai G, Cao H, Cernava T, Jin D. The color of biodegradable mulch films is associated with differences in peanut yield and bacterial communities. ENVIRONMENTAL RESEARCH 2024; 248:118342. [PMID: 38295980 DOI: 10.1016/j.envres.2024.118342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Biodegradable mulch films (BDMs) are increasingly used in agricultural production as desirable alternatives to the current widespread use of polyethylene (PE) mulch films in China. However, potential effects of different colors of BDMs on field crop production and microbiomes remain unexplored. Here, the differences in bacterial communities of peanut rhizosphere soil (RS) and bulk soil (BS) under non-mulching (CK), PE, and three different colors of BDMs were studied. The results indicated that all treatments could increase the soil temperature, which positively affected the growth of the peanut plants. Moreover, mulching affected the bacterial community structure in RS and BS compared to CK. Furthermore, certain BDM treatments significantly enriched N-fixing bacteria (Bradyrhizobium and Mesorhizobium) and functional groups, increased the closeness of bacterial networks, and harbored more beneficial bacteria as keystone taxa in the RS. This in turn facilitated the growth and development of the peanut plants under field conditions. Our study provides new insights into the micro-ecological effects of mulch films, which can be affected by both the mulch type and color. The observed effects are likely caused by temperature and prevalence of specific microbial functions under the employed films and could guide the development of optimized mulching materials.
Collapse
Affiliation(s)
- Jianan Men
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Huiying Liu
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Tuo Jin
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Guangxing Cai
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Hongzhe Cao
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria; School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
35
|
Ali M, Wang Q, Zhang Z, Chen X, Ma M, Tang Z, Li R, Tang B, Li Z, Huang X, Song X. Mechanisms of benzene and benzo[a]pyrene biodegradation in the individually and mixed contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123710. [PMID: 38458518 DOI: 10.1016/j.envpol.2024.123710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/25/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024]
Abstract
There is a lack of knowledge on the biodegradation mechanisms of benzene and benzo [a]pyrene (BaP), representative compounds of polycyclic aromatic hydrocarbons (PAHs), and benzene, toluene, ethylbenzene, and xylene (BTEX), under individually and mixed contaminated soils. Therefore, a set of microcosm experiments were conducted to explore the influence of benzene and BaP on biodegradation under individual and mixed contaminated condition, and their subsequent influence on native microbial consortium. The results revealed that the total mass loss of benzene was 56.0% under benzene and BaP mixed contamination, which was less than that of individual benzene contamination (78.3%). On the other hand, the mass loss of BaP was slightly boosted to 17.6% under the condition of benzene mixed contamination with BaP from that of individual BaP contamination (14.4%). The significant differences between the microbial and biocide treatments for both benzene and BaP removal demonstrated that microbial degradation played a crucial role in the mass loss for both contaminants. In addition, the microbial analyses revealed that the contamination of benzene played a major role in the fluctuations of microbial compositions under co-contaminated conditions. Rhodococcus, Nocardioides, Gailla, and norank_c_Gitt-GS-136 performed a major role in benzene biodegradation under individual and mixed contaminated conditions while Rhodococcus, Noviherbaspirillum, and Phenylobacterium were highly involved in BaP biodegradation. Moreover, binary benzene and BaP contamination highly reduced the Rhodococcus abundance, indicating the toxic influence of co-contamination on the functional key genus. Enzymatic activities revealed that catalase, lipase, and dehydrogenase activities proliferated while polyphenol oxidase was reduced with contamination compared to the control treatment. These results provided the fundamental information to facilitate the development of more efficient bioremediation strategies, which can be tailored to specific remediation of different contamination scenarios.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Chen
- China Construction 8th Engineering Division Corp., LTD, Shanghai 200122, China
| | - Min Ma
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhongyuan Li
- China Construction 8th Engineering Division Corp., LTD, Shanghai 200122, China
| | - Xiangfeng Huang
- China Construction 8th Engineering Division Corp., LTD, Shanghai 200122, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
36
|
Hao Y, Min J, Ju S, Zeng X, Xu J, Li J, Wang H, Shaheen SM, Bolan N, Rinklebe J, Shi W. Possible hazards from biodegradation of soil plastic mulch: Increases in microplastics and CO 2 emissions. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133680. [PMID: 38325094 DOI: 10.1016/j.jhazmat.2024.133680] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Biodegradable mulches are widely recognized as ecologically friendly substances. However, their degradation percentage upon entering soils may vary based on mulch type and soil microbial activities, raising concerns about potential increases in microplastics (MPs). The effects of using different types of mulch on soil carbon pools and its potential to accelerate their depletion have not yet well understood. Therefore, we conducted an 18-month experiment to investigate mulch biodegradation and its effects on CO2 emissions. The experiment included burying soil with biodegradable mulch made of polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT), and control treatments with traditional mulch (PE) and no mulch (CK). The results indicated that PE did not degrade, and the degradation percentage of PLA and PBAT were 46.2% and 88.1%, and the MPs produced by the degradation were 6.7 × 104 and 37.2 × 104 items/m2, respectively. Biodegradable mulch, particularly PLA, can enhance soil microbial diversity and foster more intricate bacterial communities compared to PE. The CO2 emissions were 0.58, 0.74, 0.99, and 0.86 g C/kg in CK, PE, PLA, , PBAT, respectively. A positive correlation was observed between microbial abundance and diversity with CO2 emissions, while a negative correlation was observed with soil total organic carbon. Biodegradable mulch enhanced the transformation of soil organic C into CO2 by stimulating microbial activity.
Collapse
Affiliation(s)
- Yaqiong Hao
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ju Min
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Shengrong Ju
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Zeng
- Jiangsu Provincial Agricultural Technology Extension Station, Nanjing 210036, China
| | - Jiyuan Xu
- National Agro-Tech Extension and Service Centre, Beijing 100026, China
| | - Jianbing Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Jansen MAK, Andrady AL, Bornman JF, Aucamp PJ, Bais AF, Banaszak AT, Barnes PW, Bernhard GH, Bruckman LS, Busquets R, Häder DP, Hanson ML, Heikkilä AM, Hylander S, Lucas RM, Mackenzie R, Madronich S, Neale PJ, Neale RE, Olsen CM, Ossola R, Pandey KK, Petropavlovskikh I, Revell LE, Robinson SA, Robson TM, Rose KC, Solomon KR, Andersen MPS, Sulzberger B, Wallington TJ, Wang QW, Wängberg SÅ, White CC, Young AR, Zepp RG, Zhu L. Plastics in the environment in the context of UV radiation, climate change and the Montreal Protocol: UNEP Environmental Effects Assessment Panel, Update 2023. Photochem Photobiol Sci 2024; 23:629-650. [PMID: 38512633 DOI: 10.1007/s43630-024-00552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/23/2024]
Abstract
This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.
Collapse
Affiliation(s)
- Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, University College, Cork, Ireland.
| | - Anthony L Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Janet F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | | | - Alkiviadis F Bais
- Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastazia T Banaszak
- Unidad Académica Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, LA, USA
| | | | - Laura S Bruckman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Rosa Busquets
- Chemical and Pharmaceutical Sciences, Kingston University London, Kingston Upon Thames, UK
| | | | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | | | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra, Australia
| | - Roy Mackenzie
- Centro Universitario Cabo de Hornos, Universidad de Magallanes, Puerto Williams, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems BASE, Santiago, Chile
- Cape Horn International Center CHIC, Puerto Williams, Chile
| | - Sasha Madronich
- UV-B Monitoring and Research Program, Colorado State University, Fort Collins, CO, USA
| | - Patrick J Neale
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Rachel E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Catherine M Olsen
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Frazer Institute, University of Queensland, Brisbane, Australia
| | - Rachele Ossola
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | - Irina Petropavlovskikh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Ozone and Water Vapor Division, NOAA ESRL Global Monitoring Laboratory, Boulder, CO, USA
| | - Laura E Revell
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sharon A Robinson
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, Australia
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - T Matthew Robson
- UK National School of Forestry, University of Cumbria, Ambleside Campus, Ambleside, UK
- Organismal & Evolutionary Ecology, Viikki Plant Science Centre, Faculty of Biological & Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kevin C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Keith R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Mads P Sulbæk Andersen
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA, USA
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Sulzberger
- Retired From Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland
| | - Timothy J Wallington
- Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Qing-Wei Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Sten-Åke Wängberg
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Richard G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - Liping Zhu
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
38
|
Xu Y, Xiong B, Huang YMM, Xu J, He Y, Lu Z. Exploring additives beyond phthalates: Release from plastic mulching films, biodegradation and occurrence in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170763. [PMID: 38336072 DOI: 10.1016/j.scitotenv.2024.170763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
It is widely recognized that applications of plastic films result in plastic pollution in agroecosystems. However, there is limited knowledge on the release and occurrence of additives beyond phthalates in agricultural soil. In this study, the rates of release and biodegradation of various additives, including phthalates, bisphenols, organophosphate esters, phenolic antioxidants, and ultraviolet absorbents from mulching films in soil were quantified by laboratory incubation. The rates of release and biodegradation ranged from 0.069 d-1 to 5.893 d-1 and from 1.43 × 10-3 d-1 to 0.600 d-1, respectively. Both of these rates were affected by temperature, flooding, and the properties of additives, films, and soils. An estimated 4000 metric tons of these additives were released into soil annually in China exclusively. The total concentrations of these additives in 80 agricultural soils varied between 228 and 3455 μg kg-1, with phenolic antioxidants, phthalates, and bisphenols accounting for 54.1%, 25.2%, and 17.9% of the total concentrations, respectively. A preliminary risk assessment suggested that the current levels of these additives could potentially present moderate hazards to the soil ecosystem.
Collapse
Affiliation(s)
- Yiwen Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China
| | - Boya Xiong
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, MN 55455, United States
| | - Yu-Ming M Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, United States
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China.
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, MI 48201, United States.
| |
Collapse
|
39
|
Vermeire ML, Thiour-Mauprivez C, De Clerck C. Agroecological transition: towards a better understanding of the impact of ecology-based farming practices on soil microbial ecotoxicology. FEMS Microbiol Ecol 2024; 100:fiae031. [PMID: 38479782 PMCID: PMC10994205 DOI: 10.1093/femsec/fiae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/22/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Alternative farming systems have developed since the beginning of industrial agriculture. Organic, biodynamic, conservation farming, agroecology and permaculture, all share a grounding in ecological concepts and a belief that farmers should work with nature rather than damage it. As ecology-based agricultures rely greatly on soil organisms to perform the functions necessary for agricultural production, it is thus important to evaluate the performance of these systems through the lens of soil organisms, especially soil microbes. They provide numerous services to plants, including growth promotion, nutrient supply, tolerance to environmental stresses and protection against pathogens. An overwhelming majority of studies confirm that ecology-based agricultures are beneficial for soil microorganisms. However, three practices were identified as posing potential ecotoxicological risks: the recycling of organic waste products, plastic mulching, and pest and disease management with biopesticides. The first two because they can be a source of contaminants; the third because of potential impacts on non-target microorganisms. Consequently, developing strategies to allow a safe recycling of the increasingly growing organic matter stocks produced in cities and factories, and the assessment of the ecotoxicological impact of biopesticides on non-target soil microorganisms, represent two challenges that ecology-based agricultural systems will have to face in the future.
Collapse
Affiliation(s)
- Marie-Liesse Vermeire
- CIRAD, UPR Recyclage et Risque, Dakar 18524, Sénégal
- Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier 34398, France
| | - Clémence Thiour-Mauprivez
- INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie, Dijon 21000, France
| | - Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, 2 Passage des Déportés, 5030 Gembloux, Belgium
| |
Collapse
|
40
|
Hassan F, Mu B, Yang Y. Natural polysaccharides and proteins-based films for potential food packaging and mulch applications: A review. Int J Biol Macromol 2024; 261:129628. [PMID: 38272415 DOI: 10.1016/j.ijbiomac.2024.129628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Conventional nondegradable packaging and mulch films, after reaching the end of their use, become a major source of waste and are primarily disposed of in landfills. Accumulation of non-degradable film residues in the soil leads to diminished soil fertility, reduced crop yield, and can potentially affect humans. Application of degradable films is still limited due to the high cost, poor mechanical, and gas barrier properties of current biobased synthetic polymers. In this respect, natural polysaccharides and proteins can offer potential solutions. Having versatile functional groups, three-dimensional network structures, biodegradability, ease of processing, and the potential for surface modifications make polysaccharides and proteins excellent candidates for quality films. Besides, their low-cost availability as industrial waste/byproducts makes them cost-effective alternatives. This review paper covers the performance properties, cost assessment, and in-depth analysis of macromolecular structures of some natural polysaccharides and proteins-based films that have great potential for packaging and mulch applications. Proper dissolution of biopolymers to improve molecular interactions and entanglement, and establishment of crosslinkages to form an ordered and cohesive polymeric structure can help to obtain films with good properties. Simple aqueous-based film formulation techniques and utilization of waste/byproducts can stimulate the adoption of affordable biobased films on a large-scale.
Collapse
Affiliation(s)
- Faqrul Hassan
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Bingnan Mu
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Yiqi Yang
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States; Department of Biological Systems Engineering, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States.
| |
Collapse
|
41
|
Cobo-Golpe M, Blanco P, Fernández-Fernández V, Ramil M, Rodríguez I. Assessment of the occurrence and interaction between pesticides and plastic litter from vineyard plots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169273. [PMID: 38086475 DOI: 10.1016/j.scitotenv.2023.169273] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024]
Abstract
In this research, aged plastic fragments collected from vineyards were characterized in terms of composition, residues of pesticides, and their potential to exchange these compounds with the aquatic media. To this end, we employed the qualitative and quantitative information provided by complementary analytical techniques, including chromatography, organic and inorganic mass spectrometry, infrared spectroscopy and electronic microscopy. Debris of weathered plastics were identified as polypropylene and polyethylene, containing different types of additives, from organic UV stabilizers to inorganic fillers, such as calcium salts. Regardless of polymer type, plastic litter collected from vineyards contained residues of pesticides, and particularly of fungicides, with total concentrations in the range of values from 114 ng g-1 to 76.4 μg g-1. Data obtained under different extraction conditions suggested that a fraction of these compounds was absorbed in aged polymers, penetrating inside the material. The parallel analysis of plastic litter and vineyard soils reflected higher pesticide residues in the former matrix. Furthermore, several fungicides, considered as labile in vineyard soils (i.e. zoxamide and folpet), were those showing the highest levels in plastic litter. Simulated sorption-desorption studies, with plastic debris in contact with surface water, demonstrated the higher affinity of aged materials by moderately polar pesticides than their new counterparts. For the first time, the manuscript highlights the presence of plastic litter in vineyards soils, reflecting the accumulation of several fungicides in this matrix, in some cases, with a different stability pattern to that observed in the soil from same vineyards.
Collapse
Affiliation(s)
- M Cobo-Golpe
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782 Santiago de Compostela, Spain
| | - P Blanco
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro, Ourense, Spain
| | - V Fernández-Fernández
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782 Santiago de Compostela, Spain
| | - M Ramil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782 Santiago de Compostela, Spain
| | - I Rodríguez
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
42
|
Khan AR, Ulhassan Z, Li G, Lou J, Iqbal B, Salam A, Azhar W, Batool S, Zhao T, Li K, Zhang Q, Zhao X, Du D. Micro/nanoplastics: Critical review of their impacts on plants, interactions with other contaminants (antibiotics, heavy metals, and polycyclic aromatic hydrocarbons), and management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169420. [PMID: 38128670 DOI: 10.1016/j.scitotenv.2023.169420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Microplastic/nanoplastics (MPs/NPs) contamination is not only emerging threat to the agricultural system but also constitute global hazard to the environment worldwide. Recent review articles have addressed the environmental distribution of MPs/NPs and their single-exposure phytotoxicity in various plant species. However, the mechanisms of MPs/NPs-induced phytotoxicity in conjunction with that of other contaminants remain unknown, and there is a need for strategies to ameliorate such phytotoxicity. To address this, we comprehensively review the sources of MPs/NPs, their uptake by and effects on various plant species, and their phytotoxicity in conjunction with antibiotics, heavy metals, polycyclic aromatic hydrocarbons (PAHs), and other toxicants. We examine mechanisms to ameliorate MP/NP-induced phytotoxicity, including the use of phytohormones, biochar, and other plant-growth regulators. We discuss the effects of MPs/NPs -induced phytotoxicity in terms of its ability to inhibit plant growth and photosynthesis, disrupt nutrient metabolism, inhibit seed germination, promote oxidative stress, alter the antioxidant defense system, and induce genotoxicity. This review summarizes the novel strategies for mitigating MPs/NPs phytotoxicity, presents recent advances, and highlights research gaps, providing a foundation for future studies aimed at overcoming the emerging problem of MPs/NPs phytotoxicity in edible crops.
Collapse
Affiliation(s)
- Ali Raza Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zaid Ulhassan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Guanlin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Jiabao Lou
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Babar Iqbal
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Abdul Salam
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Sundas Batool
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Pakistan
| | - Tingting Zhao
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Kexin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qiuyue Zhang
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Daolin Du
- Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering,Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
43
|
Cheng Y, Guo Y, Wang F, Zhang L. Effects of polyethylene microplastics stress on soil physicochemical properties mediated by earthworm Eisenia fetida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12071-12082. [PMID: 38227261 DOI: 10.1007/s11356-024-32007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Microplastics (MPs) are widely distributed in soil environments, but their ecological risks are not fully understood. To fill this knowledge gap, incubation experiments were conducted to explore the physiological response of Eisenia foetida (E. fetida) to polyethylene MP stress and its effects on soil physicochemical properties. E. fetida was incubated in soils amended with MPs of two particle sizes (13 μm and 130 μm) at six concentrations (0, 1, 3, 6, 10 and 20 g MPs·kg-1 soil) under laboratory conditions. The toxicity of 13 μm MPs on the growth and survival of E. fetida was greater than that of 130 μm MPs. Excessive reactive oxygen species accumulation induced by high MP concentrations decreased superoxide dismutase activity and increased malondialdehyde content. Soil pH increased significantly in the 130 μm treatments. MPs increased the contents of soil organic carbon and available potassium. However, the presence of MPs did not significantly alter available phosphorus or nitrate nitrogen content. MP contamination in soil may have adverse impacts on the growth of earthworms, induce oxidative stress in earthworms, and change soil physicochemical properties. In addition, the effects of MPs are size-dependent and dose-dependent. This study provides new evidence for the ecological risks of MP pollution in the earthworm-soil systems.
Collapse
Affiliation(s)
- Yanan Cheng
- School of Resources and Environment, Henan Institute of Science and Technology, 90 Eastern Hualan Avenue, Xinxiang, 453003, China.
| | - Yanling Guo
- School of Resources and Environment, Henan Institute of Science and Technology, 90 Eastern Hualan Avenue, Xinxiang, 453003, China
| | - Fei Wang
- School of Resources and Environment, Henan Institute of Science and Technology, 90 Eastern Hualan Avenue, Xinxiang, 453003, China
| | - Lihao Zhang
- School of Resources and Environment, Henan Institute of Science and Technology, 90 Eastern Hualan Avenue, Xinxiang, 453003, China
| |
Collapse
|
44
|
Ji H, Abdalkarim SYH, Chen X, Chen X, Lu W, Chen Z, Yu HY. Deep insights into biodegradability mechanism and growth cycle adaptability of polylactic acid/hyperbranched cellulose nanocrystal composite mulch. Int J Biol Macromol 2024; 254:127866. [PMID: 37939769 DOI: 10.1016/j.ijbiomac.2023.127866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
The widespread use of petroleum-based plastic mulch in agriculture has accelerated white and microplastic pollution while posing a severe agroecological challenge due to its difficulty in decomposing in the natural environment. However, endowing mulch film with degradability and growth cycle adaptation remains elusive due to the inherent non-degradability of petroleum-based plastics severely hindering its applications. This work reports polylactic acids hyperbranched composite mulch (PCP) and measured biodegradation behavior under burial soil, seawater, and ultraviolet (UV) aging to understand the biodegradation kinetics and to increase their sustainability in the agriculture field. Due to high interfacial interactions between polymer and nanofiler, the resultant PCP mulch significantly enhances crystallization ability, hydrophilicity, and mechanical properties. PCP mulch can be scalable-manufactured to exhibit modulated degradation performance under varying degradation conditions and periods while concurrently enhancing crop growth (wheat). Thus, such mulch with excellent performance can reduce labor costs and the environmental impact of waste mulch disposal to replace traditional mulch for sustainable agricultural production.
Collapse
Affiliation(s)
- Haibin Ji
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, College of Textile Science and Engineering, International Institute of Silk, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, College of Textile Science and Engineering, International Institute of Silk, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiang Chen
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, College of Textile Science and Engineering, International Institute of Silk, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xuefei Chen
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, College of Textile Science and Engineering, International Institute of Silk, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China
| | - Weidong Lu
- Hangzhou Xin Guang Plastics Co., Ltd., Hangzhou 310018, China
| | - Zhiming Chen
- Zhejiang Hisun Biomaterials Co., Ltd., Taizhou 318000, China
| | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, College of Textile Science and Engineering, International Institute of Silk, Zhejiang Sci-Tech University, Hangzhou 310018, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua. University, 2999 Renmin North Road, Songjiang District, Shanghai 201620, China.
| |
Collapse
|
45
|
Saberi Riseh R. Advancing agriculture through bioresource technology: The role of cellulose-based biodegradable mulches. Int J Biol Macromol 2024; 255:128006. [PMID: 37977475 DOI: 10.1016/j.ijbiomac.2023.128006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Agriculture plays a pivotal role in meeting the world's ever-growing food demands. However, traditional agricultural practices often have negative consequences for the environment, such as soil erosion and chemical runoff. Recently, there has been a pressing need for advance agricultural practices. Cellulose-based mulches offer a solution by optimizing agricultural productivity while minimizing harm. These mulches are made from renewable bioresources derived from cellulose-rich materials. Compared to plastic mulches, cellulose-based alternatives show potential in improving nutrient retention, soil health, weed suppression, water conservation, and erosion mitigation. The article investigates the characteristics and application methods of cellulose-based mulches, highlighting their biodegradability, water retention, crop protection, and weed suppression capabilities. It also evaluates their economic feasibility, emphasizing their potential to transform sustainable farming practices. Overall, cellulose-based mulches have the potential to revolutionize agriculture, addressing environmental concerns while optimizing productivity. They represent a significant step toward a more sustainable and resilient agricultural system.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Departement of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran.
| |
Collapse
|
46
|
Weng Y, Hong CB, Zhang Y, Liu H. Catalytic depolymerization of polyester plastics toward closed-loop recycling and upcycling. GREEN CHEMISTRY 2024; 26:571-592. [DOI: 10.1039/d3gc04174c] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Catalytic depolymerization of polyester plastics toward closed-loop recycling and upcycling
Collapse
Affiliation(s)
- Yujing Weng
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, PR China
| | - Cheng-Bin Hong
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Yulong Zhang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, PR China
| | - Haichao Liu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
47
|
Yan X, Chen Q, Zhang Z, Fu Y, Huo Z, Wu Y, Shi H. Chemical features and biological effects of degradation products of biodegradable plastics in simulated small waterbody environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166829. [PMID: 37673271 DOI: 10.1016/j.scitotenv.2023.166829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
A plethora of research has focused on the biosafety of biodegradable plastics (BPs), including their microplastic formation and additives leaching; however, relatively fewer studies have explored biodegradation products. This study aims to investigate the biological effects and chemical features of degradation products from three kinds of BPs, namely polyglycolic acid (PGA), poly (butylene adipate-co-terephthalate) (PBAT), and the blends of PGA/PBAT without the addition of additives, in a simulated small waterbody environment with extracted soil solution for three months. Results showed that exposure to the whole degradation remnants of three BPs had no lethal effects on zebrafish at the current BP environmental concentrations (from 0.24 to 12.72 mg plastic/L) in small waterbodies. However, from the calculated BPs environmental concentrations (from 0.57 to 43.82 mg plastic/L) in 2026, PGA and PGA/PBAT blends may cause adverse effects on the cardiovascular system such as heartbeat rate suppression in zebrafish embryos, and also lead to reduced body length and pericardial edema and spinal curvature in fish larvae. We further qualitatively analyzed the composition of degradation products, and quantitatively measured four dominant degradation monomers (glycolic acid (GA), adipic acid (A), 1,4-butanediol (B), and terephthalic acid (T)) in the degradation remnants. It was found that the observed toxicities were probably due to the presence of GA, A, and T monomers, and their concentrations can reach 0.776, 0.034, and 0.6 mg/L under the calculated future scenario, respectively. It is worth mentioning that either GA or T monomers at the above concentrations were found to cause suppressed heartbeat rate in zebrafish embryos. Collectively, though the degradation products of BPs are temporarily safe at current environmental concentrations, they may lead to non-negligible toxicity with increasing production and continual improper recycling and/or BP waste management.
Collapse
Affiliation(s)
- Xiaoyun Yan
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai 200241, China.
| | - Zhuolan Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Ye Fu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100037, China
| | - Zhanbin Huo
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100037, China
| | - Yan Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
48
|
Feng S, Wang H, Wang Y, Cheng Q. A review of the occurrence and degradation of biodegradable microplastics in soil environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166855. [PMID: 37683869 DOI: 10.1016/j.scitotenv.2023.166855] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
The use of plastics for manufacturing of products and packaging has become ubiquitous. This is because plastics are cheap, pliable, and durable. However, these characteristics of plastics have also led to their disposal in landfill, where they persist. To overcome the environmental challenge posed by conventional plastics (CPs), biodegradable plastics (BDPs) are increasingly being used. However, BDPs form residual microplastics (MPs) at a rate that far exceeds that of CPs, and MPs have negative impacts on the soil environment. This review aimed to evaluate whether the move away from CPs to BDPs is having an overall positive impact on the environment considering the formation of MPs. Topics focused on in this review include the degradation of BDPs in the soil environment and the impacts of MPs originating from BDPs on soil physical and chemical properties, microbial communities, animals, and plants. The information collated in this review can provide scientific guidance for sustainable development of the BDPs industry.
Collapse
Affiliation(s)
- Shanshan Feng
- Key Lab of Eco-Restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Haodong Wang
- Key Lab of Eco-Restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yan Wang
- Key Lab of Eco-Restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Quanguo Cheng
- Key Lab of Eco-Restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang 110044, China.
| |
Collapse
|
49
|
Rizzarelli P, Leanza M, Rapisarda M. Investigations into the characterization, degradation, and applications of biodegradable polymers by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023. [PMID: 38014928 DOI: 10.1002/mas.21869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Biodegradable polymers have been getting more and more attention because of their contribution to the plastic pollution environmental issues and to move towards a circular economy. Nevertheless, biodegradable materials still exhibit various disadvantages restraining a widespread use in the market. Therefore, additional research efforts are required to improve their performance. Mass spectrometry (MS) affords a relevant contribution to optimize biodegradable polymer synthesis, to confirm macromolecular structures, to examine along the time the progress of degradation processes and highlight advantages and drawbacks in the extensive applications. This review aims to provide an overview of the MS investigations carried out to support the synthesis of biodegradable polymers, with helpful information on undesirable products or polymerization mechanism, to understand deterioration pathways by the structure of degradation products and to follow drug release and pharmacokinetic. Additionally, it summarizes MS studies addressed on environmental and health issues related to the extensive use of plastic materials, that is, potential migration of additives or microplastics identification and quantification. The paper is focused on the most significant studies relating to synthetic and microbial biodegradable polymers published in the last 15 years, not including agro-polymers such as proteins and polysaccharides.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Melania Leanza
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Marco Rapisarda
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| |
Collapse
|
50
|
Xue Y, Zhao F, Sun Z, Bai W, Zhang Y, Zhang Z, Yang N, Feng C, Feng L. Long-term mulching of biodegradable plastic film decreased fungal necromass C with potential consequences for soil C storage. CHEMOSPHERE 2023; 337:139280. [PMID: 37385482 DOI: 10.1016/j.chemosphere.2023.139280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
The use of biodegradable plastic film mulching as a replacement for polyethylene plastic film has gained recognition due to its reduced environmental pollution. However, its impact on soil environment is not yet fully understood. Here, we compared the effects of different plastic film mulching on the accumulation of microbial necromass carbon (C) and its contribution to soil total C in 2020 and 2021. Results showed that biodegradable plastic film mulching decreased the accumulation of fungal necromass C compared to no plastic film mulching and polyethylene film mulching. However, the bacterial necromass C and soil total C were not affected by the plastic film mulching. Biodegradable plastic film mulching decreased the soil dissolved organic carbon content after maize harvest. Random forest models suggested that soil dissolved organic C, soil pH and the ratio of soil dissolved organic C to microbial biomass C were important factors in regulating the accumulation of fungal necromass C. The abundance of the fungal genus Mortierella was also found to have a significant positive contribution to the accumulation of fungal necromass C. These findings suggest that biodegradable plastic film mulching may decrease the accumulation of fungal necromass C by changing substrate availability, soil pH, and fungal community composition, with potential implications for soil C storage.
Collapse
Affiliation(s)
- Yinghao Xue
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China; Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Fengyan Zhao
- Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China; National Agricultural Experimental Station for Agricultural Environment, Fuxin, 123102, China
| | - Zhanxiang Sun
- Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China; National Agricultural Experimental Station for Agricultural Environment, Fuxin, 123102, China.
| | - Wei Bai
- Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China; National Agricultural Experimental Station for Agricultural Environment, Fuxin, 123102, China
| | - Yongyong Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhe Zhang
- Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China; National Agricultural Experimental Station for Agricultural Environment, Fuxin, 123102, China
| | - Ning Yang
- Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China; National Agricultural Experimental Station for Agricultural Environment, Fuxin, 123102, China
| | - Chen Feng
- Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China; National Agricultural Experimental Station for Agricultural Environment, Fuxin, 123102, China
| | - Liangshan Feng
- Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China; National Agricultural Experimental Station for Agricultural Environment, Fuxin, 123102, China.
| |
Collapse
|