1
|
Feng G, Li S, Yang X, Hu Y, Zhang X, Chen D, Liu W, Yu G, Nie G, Huang L, Zhang X. Integrative multi-omic analyses reveal the molecular mechanisms of silicon nanoparticles in enhancing hyperaccumulator under Pb stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125677. [PMID: 39805468 DOI: 10.1016/j.envpol.2025.125677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/15/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Lead (Pb), one of the most ubiquitous and harmful contaminants of farmland, seriously threatens soil health and food security. Silicon nanoparticles (SiNPs) have potential applications in soil remediation and phytoremediation. Yet, how SiNPs influence plant growth under Pb stress remains poorly understood. In this study, the candidate Pb-hyperaccumulator Lolium multiflorum was selected to investigate the toxicity of Pb and the mitigation of Pb stress by SiNPs. The application of SiNPs was able to enhance Pb enrichment and maintain proper photosynthesis and root growth of L. multiflorum. Transcriptomic and metabolomic analyses indicated that Pb exposure interfered with nitrogen metabolism and alanine, aspartate and glutamate metabolism pathways in roots, which changed the root exudate composition. Besides, SiNPs altered both the accumulation of metabolites and correlated gene expression in roots, further affecting root exudates and stimulating the defense system, consequently increasing Pb tolerance. Our findings both demonstrated that co-application of L. multiflorum with SiNPs has potential for phytoremediation of Pb-polluted soil and revealed the contributions of SiNP amendment to mitigating Pb toxicity, and provided a new strategy for phytoremediation of farmland ecosystems.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shunfeng Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiangyu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Youshuang Hu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xianfang Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dongming Chen
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Wen Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Guohui Yu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Viana RDSR, Chagas JKM, Paz-Ferreiro J, Figueiredo CCD. Enhanced remediation of heavy metal-contaminated soils using biochar and zeolite combinations with additives: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125617. [PMID: 39743197 DOI: 10.1016/j.envpol.2024.125617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Soil heavy metal (HM) contamination is a major concern in agricultural lands due to its potential to enter the food chain and its adverse health effects. Remediation materials such as biochar (BC) and zeolites (ZE) have been studied for their potential to mitigate risks associated with soil HM contamination. This meta-analysis evaluates changes in the availability of Cd, Cu, Pb, and Zn following the application of BC and ZE to soil, whether applied individually, in combination (BC + ZE), or with additives (BC + ZE + A). Individually, BC reduced the availability of Cd, Cu, Pb, and Zn in soil by 24.0%, 33.0%, 31.3% and 10.1%, respectively; and ZE reduced these levels by 32.4%, 18.8%, 20.3% and 38.9%. Results indicate that, on average, BC + ZE effectively decreases the availability of Cd, Cu, Pb, and Zn in soils by 32.6%, 54.3%, 35.4%, and 18.3%, respectively. The combination with additives, BC + ZE + A, reduced the Cd and Pb availability by 54.2% and 20.9%, respectively. Most studies were undertaken with Cd, representing 59% of observations, followed by Pb, Zn, and Cu, respectively, with 29%, 8%, and 5%. The small number of studies with Pb, Zn and Cu prevented the creation of subgroups involving these three HMs. Notably, the nature of the additive influences the variation in available Cd content in remediated soils. Inorganic additives combined with BC + ZE demonstrated greater effectiveness in Cd remediation, achieving reductions of available content by 86.8%, compared to those containing clay minerals or organic compounds, with reductions of 27.4% and 15.4%, respectively. These findings enhance our understanding of how BC and ZE can be utilized in soil HM remediation and their effectiveness against different metals.
Collapse
Affiliation(s)
| | - Jhon Kenedy Moura Chagas
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, 70910-970, Brasília, DF, Brazil
| | - Jorge Paz-Ferreiro
- School of Engineering, RMIT University, GPO Box 2476, 3001, Melbourne, VIC, Australia
| | | |
Collapse
|
3
|
Pan G, Geng S, Wang L, Xing J, Fan G, Gao Y, Lu X, Zhang Z. Effects of Modified Biochar on Growth, Yield, and Quality of Brassica chinensis L. in Cadmium Contaminated Soils. PLANTS (BASEL, SWITZERLAND) 2025; 14:524. [PMID: 40006782 PMCID: PMC11859143 DOI: 10.3390/plants14040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Cadmium (Cd) pollution in farmland soil leads to excessive Cd in vegetables, which can be transferred to humans through the food chain, posing a significant threat to human health, and requires urgent measures to combat it. Modified biochar may have the potential to remediate Cd pollution in farmland soils. In this experiment, bulk biochar (YC) derived from reed straw or modified biochar by ball milling (Q) either alone or combined with a combination of several passivation agents {potassium hydroxide (K), attapulgite (A), calcium magnesium phosphate fertilizer (M), and polyacrylamide (P)} was applied to soils polluted with Cd, to investigate the growth, yield, and quality of pakchoi (Brassica chinensis L.). The results showed that bulk biochar (YC) provided pakchoi with plenty of nitrogen, phosphorus, and potassium, while passivation agents enhance macronutrient accumulation. Compared to YC, modified biochar improved pakchoi yields and nutritional quality. Among them, concentrations of nitrates in pakchoi significantly decreased by 51.8% and 51.0%, while vitamin C levels increased by 29.6% and 19.0%, respectively, in QKAMP and QKAM treatments. The contents of Cd in pakchoi significantly decreased by 21.6% and 18.6%, respectively, in QKAMP and QKAM treatments. The implementation of QKAMP led to the cadmium contents in edible vegetables being lower than the maximum stipulated content as defined by the national standard, but QKAM failed to accomplish it. In conclusion, QKAMP effectively reduced the bioavailability of Cd in the middle to slightly Cd-polluted alkaline soils, making it a suitable soil amendment to improve the yield and quality and mitigate Cd accumulation in vegetables.
Collapse
Affiliation(s)
- Guojun Pan
- Key Laboratory for Saline-Alkali Soil Improvement and Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.P.)
| | - Shufang Geng
- Key Laboratory for Saline-Alkali Soil Improvement and Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.P.)
| | - Liangliang Wang
- Key Laboratory for Saline-Alkali Soil Improvement and Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.P.)
| | - Jincheng Xing
- Institute of Jiangsu Coastal Agricultural Sciences, Yancheng 224002, China
| | - Guangping Fan
- Key Laboratory for Saline-Alkali Soil Improvement and Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.P.)
| | - Yan Gao
- Key Laboratory for Saline-Alkali Soil Improvement and Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.P.)
| | - Xin Lu
- Key Laboratory for Saline-Alkali Soil Improvement and Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.P.)
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhenhua Zhang
- Key Laboratory for Saline-Alkali Soil Improvement and Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.P.)
- Institute of Jiangsu Coastal Agricultural Sciences, Yancheng 224002, China
- The School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
4
|
Qian R, Yu K, Chen N, Li R, Tang KHD. Adsorptive immobilization of cadmium and lead using unmodified and modified biochar: A review of the advances, synthesis, efficiency and mechanisms. CHEMOSPHERE 2025; 370:143988. [PMID: 39706489 DOI: 10.1016/j.chemosphere.2024.143988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Biochar is an environmentally friendly adsorbent material with excellent adsorption performance due to its extensive pore structure, large specific surface area, and numerous surface functional groups. It is commonly used to treat inorganic and organic pollutants. In recent years, with increasing focus on controlling soil pollution caused by heavy metals such as cadmium (Cd) and lead (Pb), the potential application of biochar has attracted much attention. This review used Citespace to quantitatively analyze the literature on the application of biochar from 2021 to 2024. It then explains the preparation techniques of unmodified and modified biochar and presents the physical and chemical properties and adsorption capacity of different biochar types for Cd and Pb. It also illustrates and compares the preparation process, modification methods, and adsorption mechanisms of biochar. Additionally, it evaluates the impacts of biochar application on heavy metal removal from rice, wheat, and corn, as well as their yields. This article contributes to the identification of the most effective materials and methods for biochar synthesis. It provides suggestions for remediation of soil heavy metal pollution and yield increase.
Collapse
Affiliation(s)
- Rong Qian
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi 712100, China; The Department of Environmental Science, The University of Arizona (UA), Tucson, Arizona 85721, USA; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China
| | - Kunru Yu
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi 712100, China; The Department of Environmental Science, The University of Arizona (UA), Tucson, Arizona 85721, USA; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China
| | - Nanyang Chen
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi 712100, China; The Department of Environmental Science, The University of Arizona (UA), Tucson, Arizona 85721, USA; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi 712100, China; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China
| | - Kuok Ho Daniel Tang
- The Department of Environmental Science, The University of Arizona (UA), Tucson, Arizona 85721, USA; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Kong Y, Liu J, Chen M, Zheng W, Liu Y, Wang Y, Ruan X, Wang Y. Accumulation and risk assessment of heavy metals in different varieties of leafy vegetables. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:527. [PMID: 39585483 DOI: 10.1007/s10653-024-02314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
A pot experiment was conducted to investigate the differences in heavy metal accumulation in different varieties of leafy vegetables (five leafy vegetables four or five varieties of each) and their potential risk. The results revealed that the concentrations of Cd in all the vegetables exceeded the limit for China (0.2 mg/kg) and that the As and Pb concentrations were within the limit. The bioaccumulation of Pb, Cd, and As in spinach (0.01, 1.08, and 0.02) and rape seedlings (0.004, 0.43, and 0.03) were the highest and lowest, respectively. Health risk assessments indicate that the hazard index (HI) ranged from 0.66 to 3.37 and 2.86 to 14.64 for adults and children, respectively, and the total carcinogenic risk (TCR) ranged from 2.13E-03 to 1.86E-02 and 9.27E-03 to 8.07E-02. Probabilistic health risk assessment revealed that the HI was 3.06 and 4.75, and the TCR was 2.5E-03 and 8.88E-04 for adults and children, respectively. More importantly, heavy metal accumulation significantly differed among varieties of leafy vegetables, especially spinach. The BF of Pb, Cd, and As in spinach ranged from 0.003 to 0.01, 0.77 to 1.39, and 0.01 to 0.02, respectively. Geodetector analysis revealed that oxalic acid, available As, and organic matter are the key factors that affect Pb, Cd, and As accumulation, respectively, in these vegetables. These results suggest that the planting of suitable types and varieties of vegetables can reduce the potential health risk to a certain extent and that more effective measures should be implemented to ensure the safety of local residents in areas contaminated with heavy metals.
Collapse
Affiliation(s)
- Yuke Kong
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Jinhui Liu
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Ming Chen
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Wenxiu Zheng
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Yifan Liu
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Yangzhou Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Xinling Ruan
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China.
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China.
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Guo N, Li X, Xie L, Hao S, Zhou X. A quantitative review of the effects of biochar application on the reduction of Cu concentration in plant: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60731-60748. [PMID: 39392574 DOI: 10.1007/s11356-024-34789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Contamination and toxicity of copper (Cu) in soils are global issues, particularly in regions where Cu-based fungicides are utilized. Elevated Cu concentrations can lead to soil contamination and pose significant risks to the ecosystem, including plant life, wildlife, and human health. The application of biochar has been proposed as a viable strategy to mitigate Cu accumulation in plants. However, there is no quantitative and data-based consensus on the impact of biochar on plant Cu accumulation. In this meta-analysis, 624 data records from 65 published literature were collected and the effects of various factors, including biochar properties, experimental conditions, and soil properties on Cu accumulation in plants, were examined through meta-subgroup analysis and meta-regression models. The results obtained indicate a significant dose-dependent effect of biochar in decreasing Cu concentration in plants by an average of 23.45%. Soils with acidic pH values and medium textures were more conducive for biochar to mitigate Cu accumulation in plant tissues. In addition, manure biochar and green waste biochar were found to be more successful in decreasing Cu concentrations in plants compared to other biochar types. Biochar types with pyrolysis temperatures of > 600 °C and pH values of ≥ 10 resulted in greater decreases in plant Cu concentration. Regarding biochar application, biochar minimum range of 1% in potting experiments and 20 t/ha in field experiments have been recommended to effectively decrease Cu concentration in plants. Overall, these findings provide valuable insights into Cu transfer mitigation through food chain to human bodies and for policymakers to take preventive measures.
Collapse
Affiliation(s)
- Ningyu Guo
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xue Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Linzhi Xie
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Shangyan Hao
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xinbin Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Chen L, Yang X, Huang F, Zhu X, Wang Z, Sun S, Dong F, Qiu T, Zeng Y, Fang L. Unveiling biochar potential to promote safe crop production in toxic metal(loid) contaminated soil: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124309. [PMID: 38838809 DOI: 10.1016/j.envpol.2024.124309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Biochar application emerges as a promising and sustainable solution for the remediation of soils contaminated with potentially toxic metal (loid)s (PTMs), yet its potential to reduce PTM accumulation in crops remains to be fully elucidated. In our study, a hierarchical meta-analysis based on 276 research articles was conducted to quantify the effects of biochar application on crop growth and PTM accumulation. Meanwhile, a machine learning approach was developed to identify the major contributing features. Our findings revealed that biochar application significantly enhanced crop growth, and reduced PTM concentrations in crop tissues, showing a decrease trend of grains (36.1%, 33.6-38.6%) > shoots (31.1%, 29.3-32.8%) > roots (27.5%, 25.7-29.2%). Furthermore, biochar modifications were found to amplify its remediation potential in PTM-contaminated soils. Biochar application was observed to provide favorable conditions for reducing PTM uptake by crops, primarily through decreasing available PTM concentrations and improving overall soil quality. Employing machine learning techniques, we identified biochar properties, such as surface area and C content as a key factor in decreasing PTM bioavailability in soil-crop systems. Furthermore, our study indicated that biochar application could reduce probabilistic health risks associated with of the presence of PTMs in crop grains, thereby contributing to human health protection. These findings highlighted the essential role of biochar in remediating PTM-contaminated lands and offered guidelines for enhancing safe crop production.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou, 570228, China
| | - Fengyu Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Faqin Dong
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
8
|
Irshad MK, Lee JC, Aqeel M, Javed W, Noman A, Lam SS, Naggar AE, Niazi NK, Lee HH, Ibrahim M, Lee SS. Efficacy of Fe-Mg-bimetallic biochar in stabilization of multiple heavy metals-contaminated soil and attenuation of toxicity in spinach (Spinacia oleracea L.). CHEMOSPHERE 2024; 364:143184. [PMID: 39197684 DOI: 10.1016/j.chemosphere.2024.143184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Globally, soil contamination with heavy metals (HMs) pose serious threats to soil health, crop productivity, and human health. The present investigation involved synthesis and analysis of biochar with bimetallic combination of iron and magnesium (Fe-Mg-BC). Our study evaluated how Fe-Mg-BC affects the absorption of cadmium (Cd), lead (Pb), and copper (Cu) in spinach (Spinacia oleracea L.) and remediation of soil contaminated with multiple HMs. Results demonstrated the successful loading of iron (Fe) and magnesium (Mg) onto pristine biochar (BC) derived from peanut shells. The addition of Fe-Mg-BC (3%) notably increased spinach biomass, enhancing photosynthesis, transpiration, stomatal conductance, and intercellular CO2 levels by 22%, 21%, 103%, and 15.3%, respectively. Compared to control, Fe-Mg-BC (3%) suppressed metal-induced oxidative stress by boosting levels of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) in roots by 40.9%, 57%, 54.8 %, and in shoots by 55.5%, 65.5%, and 37.4% in shoots, respectively. The Fe-Mg-BC effectively reduced the uptake of Cd, Pb, and Cu in spinach tissues by transforming their bioavailable fractions to non-bioavailable forms. The Fe-Mg-BC (3%) significantly reduced the mobility of Cd, Pb and Cu in soil and limited the concentration of Cd, Pb, and Cu in plant roots by 34.1%, 79.2%, 47%, and shoots by 56.3%, 43.3%, and 54.1%, respectively, compared to control. These findings underscore the potential of Fe-Mg-BC as a promising amendment for reclaiming soils contaminated with variety of HMs, thereby making a significant contribution to the promotion of safer food production.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea; Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Jong Cheol Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Wasim Javed
- Water Management Research Center (WMRC), University of Agriculture Faisalabad, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Ali El Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Hun Ho Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Muhammad Ibrahim
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
9
|
Liu M, Xu R, Cui X, Hou D, Zhao P, Cheng Y, Qi Y, Duan G, Fan G, Lin A, Tan X, Xiao Y. Effects of remediation agents on rice and soil in toxic metal(loid)s contaminated paddy fields: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171656. [PMID: 38490416 DOI: 10.1016/j.scitotenv.2024.171656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Toxic metal(loid)s contamination of paddy soil is a nonnegligible issue and threatens food safety considering that it is transmitted via the soil-plant system. Applying remediation agents could effectively inhibit the soil available toxic metal(loid)s and reduce their accumulation in rice. To comprehensively quantify how remediation agents impact the accumulation of Cd/Pb/As in rice, rice growth and yield, the accumulation of available Cd/Pb/As in paddy soil, and soil characteristics, 50 peer-reviewed publications were selected for meta-analysis. Overall, the application of remediation agents exhibited significant positive effects on rice plant length (ES = 0.05, CI = 0.01-0.08), yield (ES = 0.20, CI = 0.13-0.27), peroxidase (ES = 0.56, CI = 0.18-0.31), photosynthetic rate (ES = 0.47, CI = 0.34-0.61), and respiration rate (ES = 0.68, CI = 0.47-0.88). Among the different types of remediation agents, biochar was the most effective in controlling the accumulation of Cd/Pb/As in all portions of rice, and was also superior in inhibiting the accumulation of Pb in rice grains (ES = -0.59, 95 % CI = -1.04-0.13). This study offers an essential contribution for the remediation strategies of toxic metal(loid)s contaminated paddy fields.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Ruiqing Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Pengjie Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yanzhao Cheng
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yujie Qi
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Guodong Fan
- Henan ENERGY Storage Technology Co., Ltd., People's Republic of China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Yong Xiao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
10
|
Zhang J, Li J, Lin Q, Huang Y, Chen D, Ma H, Zhao Q, Luo W, Nawaz M, Jeyakumar P, Trakal L, Wang H. Impact of coconut-fiber biochar on lead translocation, accumulation, and detoxification mechanisms in a soil-rice system under elevated lead stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133903. [PMID: 38430601 DOI: 10.1016/j.jhazmat.2024.133903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Biochar, an environmentally friendly material, was found to passivate lead (Pb) in contaminated soil effectively. This study utilized spectroscopic investigations and partial least squares path modeling (PLS-PM) analysis to examine the impact of coconut-fiber biochar (CFB) on the translocation, accumulation, and detoxification mechanisms of Pb in soil-rice systems. The results demonstrated a significant decrease (p < 0.05) in bioavailable Pb concentration in paddy soils with CFB amendment, as well as reduced Pb concentrations in rice roots, shoots, and brown rice. Synchrotron-based micro X-ray fluorescence analyses revealed that CFB application inhibited the migration of Pb to the rhizospheric soil region, leading to reduced Pb uptake by rice roots. Additionally, the CFB treatment decreased Pb concentrations in the cellular protoplasm of both roots and shoots, and enhanced the activity of antioxidant enzymes in rice plants, improving their Pb stress tolerance. PLS-PM analyses quantified the effects of CFB on the accumulation and detoxification pathways of Pb in the soil-rice system. Understanding how biochar influences the immobilization and detoxification of Pb in soil-rice systems could provide valuable insights for strategically using biochar to address hazardous elements in complex agricultural settings.
Collapse
Affiliation(s)
- Jingmin Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Danzhou Soil Environment of Rubber Plantation, Hainan Observation and Research Station, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Jianhong Li
- Danzhou Soil Environment of Rubber Plantation, Hainan Observation and Research Station, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Qinghuo Lin
- Danzhou Soil Environment of Rubber Plantation, Hainan Observation and Research Station, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Yanyan Huang
- Danzhou Soil Environment of Rubber Plantation, Hainan Observation and Research Station, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Dongliang Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
| | - Haiyang Ma
- Key Laboratory of Tropical Crops Nutrition of Hainan Province/ South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Zhanjiang, Guangdong 524091, China
| | - Qingjie Zhao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wei Luo
- Danzhou Soil Environment of Rubber Plantation, Hainan Observation and Research Station, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China.
| | - Mohsin Nawaz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture & Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Lukas Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Prague 6, Czech Republic
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, China.
| |
Collapse
|
11
|
Tepanosyan G, Gevorgyan A, Albanese S, Baghdasaryan L, Sahakyan L. Compositional-geochemical characterization of lead (Pb) anomalies and Pb-induced human health risk in urban topsoil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:192. [PMID: 38696062 DOI: 10.1007/s10653-024-01984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/04/2024] [Indexed: 06/17/2024]
Abstract
Urban areas are characterized by a constant anthropogenic input, which is manifested in the chemical composition of the surface layer of urban soil. The consequence is the formation of intense anomalies of chemical elements, including lead (Pb), that are atypical for this landscape. Therefore, this study aims to explore the compositional-geochemical characteristics of soil Pb anomalies in the urban areas of Yerevan, Gyumri, and Vanadzor, and to identify the geochemical associations of Pb that emerge under prevalent anthropogenic influences in these urban areas. The results obtained through the combined use of compositional data analysis and geospatial mapping showed that the investigated Pb anomalies in different cities form source-specific geochemical associations influenced by historical and ongoing activities, as well as the natural geochemical behavior of chemical elements occurring in these areas. Specifically, in Yerevan, Pb was closely linked with Cu and Zn, forming a group of persistent anthropogenic tracers of urban areas. In contrast, in Gyumri and Vanadzor, Pb was linked with Ca, suggesting that over decades, complexation of Pb by Ca carbonates occurred. These patterns of compositional-geochemical characteristics of Pb anomalies are directly linked to the socio-economic development of cities and the various emission sources present in their environments during different periods. The human health risk assessment showed that children are under the Pb-induced non-carcinogenic risk by a certainty of 63.59% in Yerevan and 50% both in Gyumri and Vanadzor.
Collapse
Affiliation(s)
- Gevorg Tepanosyan
- The Center for Ecological-Noosphere Studies of the National Academy of Sciences, Abovyan-68, Yerevan, 0025, Republic of Armenia.
| | - Astghik Gevorgyan
- The Center for Ecological-Noosphere Studies of the National Academy of Sciences, Abovyan-68, Yerevan, 0025, Republic of Armenia
| | - Stefano Albanese
- Department of Earth, Environmental and Resources Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Lusine Baghdasaryan
- The Center for Ecological-Noosphere Studies of the National Academy of Sciences, Abovyan-68, Yerevan, 0025, Republic of Armenia
| | - Lilit Sahakyan
- The Center for Ecological-Noosphere Studies of the National Academy of Sciences, Abovyan-68, Yerevan, 0025, Republic of Armenia
| |
Collapse
|
12
|
Wu J, Fu X, Zhao L, Lv J, Lv S, Shang J, Lv J, Du S, Guo H, Ma F. Biochar as a partner of plants and beneficial microorganisms to assist in-situ bioremediation of heavy metal contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171442. [PMID: 38453085 DOI: 10.1016/j.scitotenv.2024.171442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Synergistic remediation of heavy metal (HM) contaminated soil using beneficial microorganisms (BM) and plants is a common and effective in situ bioremediation method. However, the shortcomings of this approach are the low colonisation of BM under high levels of heavy metal stress (HMS) and the poor state of plant growth. Previous studies have overlooked the potential of biochar to mitigate the above problems and aid in-situ remediation. Therefore, this paper describes the characteristics and physicochemical properties of biochar. It is proposed that biochar enhances plant resistance to HMS and aids in situ bioremediation by increasing colonisation of BM and HM stability. On this basis, the paper focuses on the following possible mechanisms: specific biochar-derived organic matter regulates the transport of HMs in plants and promotes mycorrhizal colonisation via the abscisic acid signalling pathway and the karrikin signalling pathway; promotes the growth-promoting pathway of indole-3-acetic acid and increases expression of the nodule-initiating gene NIN; improvement of soil HM stability by ion exchange, electrostatic adsorption, redox and complex precipitation mechanisms. And this paper summarizes guidelines on how to use biochar-assisted remediation based on current research for reference. Finally, the paper identifies research gaps in biochar in the direction of promoting beneficial microbial symbiotic mechanisms, recognition and function of organic molecules, and factors affecting practical applications.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, China.
| | - Xiaofan Fu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Sidi Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jing Shang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jiaxuan Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Shuxuan Du
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Haijuan Guo
- School of Environmental Science, Liaoning University, Shenyang 110036, China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
13
|
Jia Q, Sun J, Gan Q, Shi NN, Fu S. Zea mays cultivation, biochar, and arbuscular mycorrhizal fungal inoculation influenced lead immobilization. Microbiol Spectr 2024; 12:e0342723. [PMID: 38393320 PMCID: PMC10986566 DOI: 10.1128/spectrum.03427-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Plant cultivation can influence the immobilization of heavy metals in soil. However, the roles of soil amendments and microorganisms in crop-based phytoremediation require further exploration. In this study, we evaluated the impact of Zea mays L. cultivation, biochar application, and arbuscular mycorrhizal fungi (AMF) inoculation on soil lead (Pb) immobilization. Our results indicated that biochar addition resulted in a significant, 42.00%, reduction in AMF colonization. Plant cultivation, AMF inoculation, and biochar addition all contributed to enhanced Pb immobilization, as evidenced by decreased levels of diethylenetriaminepentaacetic acid- and CaCl2-extractable Pb in the soil. Furthermore, soil subjected to plant cultivation with AMF and biochar displayed reduced concentrations of bioavailable Pb. Biochar addition altered the distribution of Pb fractions in the soil, transforming the acid-soluble form into the relatively inert reducible and oxidizable forms. Additionally, biochar, AMF, and their combined use promoted maize growth parameters, including height, stem diameter, shoot and root biomass, and phosphorus uptake, while simultaneously reducing the shoot Pb concentration. These findings suggest a synergistic effect in Pb phytostabilization. In summary, despite the adverse impact of biochar on mycorrhizal growth, cultivating maize with the concurrent use of biochar and AMF emerges as a recommended and effective strategy for Pb phytoremediation.IMPORTANCEHeavy metal contamination in soil is a pressing environmental issue, and phytoremediation has emerged as a sustainable approach for mitigating this problem. This study sheds light on the potential of maize cultivation, biochar application, and arbuscular mycorrhizal fungi (AMF) inoculation to enhance the immobilization of Pb in contaminated soil. The findings demonstrate that the combined use of biochar and AMF during maize cultivation can significantly improve Pb immobilization and simultaneously enhance maize growth, offering a promising strategy for sustainable and effective Pb phytoremediation practices. This research contributes valuable insights into the field of phytoremediation and its potential to address heavy metal pollution in agricultural soils.
Collapse
Affiliation(s)
- Qiong Jia
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, China
| | - Jiahua Sun
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, China
| | - Qiuyu Gan
- Miami College of Henan University, Kaifeng, China
| | - Nan-Nan Shi
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, China
| | - Shenglei Fu
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, China
| |
Collapse
|
14
|
Xiang Y, Rillig MC, Peñuelas J, Sardans J, Liu Y, Yao B, Li Y. Global Responses of Soil Carbon Dynamics to Microplastic Exposure: A Data Synthesis of Laboratory Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5821-5831. [PMID: 38416534 PMCID: PMC10993418 DOI: 10.1021/acs.est.3c06177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Microplastics (MPs) contamination presents a significant global environmental challenge, with its potential to influence soil carbon (C) dynamics being a crucial aspect for understanding soil C changes and global C cycling. This meta-analysis synthesizes data from 110 peer-reviewed publications to elucidate the directional, magnitude, and driving effects of MPs exposure on soil C dynamics globally. We evaluated the impacts of MPs characteristics (including type, biodegradability, size, and concentration), soil properties (initial pH and soil organic C [SOC]), and experimental conditions (such as duration and plant presence) on various soil C components. Key findings included the significant promotion of SOC, dissolved organic C, microbial biomass C, and root biomass following MPs addition to soils, while the net photosynthetic rate was reduced. No significant effects were observed on soil respiration and shoot biomass. The study highlights that the MPs concentration, along with other MPs properties and soil attributes, critically influences soil C responses. Our results demonstrate that both the nature of MPs and the soil environment interact to shape the effects on soil C cycling, providing comprehensive insights and guiding strategies for mitigating the environmental impact of MPs.
Collapse
Affiliation(s)
- Yangzhou Xiang
- Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, School of Geography and Resources, Guizhou Education University, Guiyang 550018, China
| | - Matthias C Rillig
- Institut für Biologie, Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Freie Universität Berlin, Berlin D-14195, Germany
| | - Josep Peñuelas
- CSIC Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia 08193, Spain
- CREAF - Ecological and Forestry Applications Research Centre, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Jordi Sardans
- CSIC Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia 08193, Spain
- CREAF - Ecological and Forestry Applications Research Centre, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Ying Liu
- School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Bin Yao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecolog Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuan Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems in Gansu Qingyang, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
15
|
Sui F, Xue Z, Shao K, Hao Z, Ge H, Cui L, Quan G, Yan J. Iron-modified biochar inhibiting Cd uptake in rice by Cd co-deposition with Fe oxides in the rice rhizosphere. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26099-26111. [PMID: 38492143 DOI: 10.1007/s11356-024-32839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Fe-enriched biochar has proven to be effective in reducing Cd uptake in rice plants by enhancing iron plaque formation. However, the effect of Fe on biochar, especially the biochar with high S content, for Cd immobilization in rice rhizosphere was not fully understood. To obtain eco-friendly Fe-loaded biochar at a low cost, garlic straw, bean straw, and rape straw were chosen as the feedstocks for Fe-enhanced biochar production by co-pyrolysis with Fe2O3. The resulting biochars and Fe-loaded biochars were GBC, BBC, BRE, GBC-Fe, BBC-Fe, and BRE-Fe, respectively. XRD and FTIR analyses showed that Fe was successfully loaded onto the biochar. The pristine and Fe-containing biochars were applied at rates of 0% (BC0) and 0.1% in pot experiments. Results suggested that BBC-Fe caused the highest reduction in Cd content of rice grain, and the reductions were 67.9% and 31.4%, compared with BC0 and BBC, respectively. Compared to BBC, BBC-Fe effectively reduced Cd uptake in rice roots by 47.5%. The exchangeable and acid-soluble fraction of Cd (F1-Cd) in soil with BBC-Fe treatment was 37.6% and 63.7% lower than that of BC0 and BBC, respectively. Compared to BC0, soil pH was increased by 0.53 units with BBC-Fe treatment. BBC-Fe significantly increased Fe oxides (free Fe oxides, amorphous Fe oxides, and complex Fe oxides) content in the soil as well. DGT study demonstrated that BBC-Fe could enhance the mobility of sulfate in the rhizosphere, which might be beneficial for Cd fixation in the rhizosphere. Moreover, BBC-Fe increased the relative abundance of Bacteroidota, Firmicutes, and Clostridia, which might be beneficial for Cd immobilization in the rhizosphere. This work highlights the synergistic effect of loaded Fe and biochar on Cd immobilization by enhancing Cd deposited with Fe oxides.
Collapse
Affiliation(s)
- Fengfeng Sui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China
- Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization & Application, Yancheng, 224051, China
| | - Zhongjun Xue
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Kangle Shao
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China
| | - Zikang Hao
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China
| | - Haochuan Ge
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China
- Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization & Application, Yancheng, 224051, China
| | - Guixiang Quan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China
- Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization & Application, Yancheng, 224051, China
| | - Jinlong Yan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China.
- Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization & Application, Yancheng, 224051, China.
- Industrial Technology Research Institute of YCIT, Yancheng, 224051, China.
| |
Collapse
|
16
|
Guo M, Shang X, Ma Y, Zhang K, Zhang L, Zhou Y, Gong Z, Miao R. Biochars assisted phytoremediation of polycyclic aromatic hydrocarbons contaminated agricultural soil: Dynamic responses of functional genes and microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123476. [PMID: 38311160 DOI: 10.1016/j.envpol.2024.123476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
A biochar-intensified phytoremediation experiment was designed to investigate the dynamic effects of different biochars on polycyclic aromatic hydrocarbon (PAH) removal in ryegrass rhizosphere contaminated soil. Maize and wheat straw biochar pyrolyzed at 300 °C and 500 °C were amended into PAH-contaminated soil, and then ryegrass (Lolium multiflorum L.) was planted for 90 days. Spearman's correlations among PAH removal, enzyme activity, abundance of PAH-ring hydroxylating dioxygenase (PAH-RHDα), and fungal and bacterial community structure were analyzed to elucidate the microbial degradation mechanisms during the combined remediation process. The results showed that 500 °C wheat straw biochar had higher surface area and more nutrients, and significantly accelerated the phytoremediation of PAHs (62.5 %), especially for high molecular weight PAH in contaminated soil. The activities of urease and dehydrogenase and the abundance of total and PAH-degrading bacteria, which improved with time by biochar and ryegrass, had a positive correlation with the removal rate of PAHs. Biochar enhanced the abundance of gram-negative (GN) PAH-RHDα genes. The GN PAH-degraders, Sphingomonas, bacteriap25, Haliangium, and Dongia may play vital roles in PAH degradation in biochar-amended rhizosphere soils. Principal coordinate analysis indicated that biochar led to significant differences in fungal community structures before 30 days, while the diversity of the bacterial community composition depended on planting ryegrass after 60 days. These findings imply that the structural reshaping of microbial communities results from incubation time and the selection of biochar and ryegrass in PAH-contaminated soils. Applying 500 °C wheat straw biochar could enhance the rhizoremediation of PAH-contaminated soil and benefit the soil microbial ecology.
Collapse
Affiliation(s)
- Meixia Guo
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Xingtian Shang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Yulong Ma
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Keke Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Ling Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Renhui Miao
- Henan Dabieshan National Observation and Research Field Station of Forest Ecosystem, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
17
|
Lima JZ, Ogura AP, Espíndola ELG, Ferreira da Silva E, Rodrigues VGS. Post-sorption of Cd, Pb, and Zn onto peat, compost, and biochar: Short-term effects of ecotoxicity and bioaccessibility. CHEMOSPHERE 2024; 352:141521. [PMID: 38395370 DOI: 10.1016/j.chemosphere.2024.141521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Contamination by potentially toxic metals and metalloids (PTMs) has become a significant health and environmental issue worldwide. Sorption has emerged as one of the most prominent strategies for remediating both soil and water contamination. New sorbents are being developed to provide economically viable and environmentally sound alternatives, in alignment with the principles of the Sustainable Development Goals. This research aimed to assess the potential effects on human health and environmental toxicity following the sorption of cadmium (Cd), lead (Pb), and zinc (Zn) using peat, compost, and biochar as sorbents. The peat was collected in Brazil, a country with a tropical climate, while the compost and biochar were produced from the organic fraction of municipal solid waste (OFMSW). In terms of bioaccessibility, the results showed the following order: compost < biochar < peat for Pb, and compost < peat < biochar for Cd and Zn. There was a significant growth inhibition for Eruca sativa and Zea mays exposed to increasing concentrations of PTMs treated with peat and compost. The presence of contaminants played a decisive role on immobilization of neonates of Ceriodaphnia silvestrii after treatments with compost and, especially, peat. However, the biochar addition rate caused a significant influence on the outcomes of ecotoxicity across all tested species. Although the samples treated with biochar exhibited lower residual concentrations of PTMs than those treated with compost and peat, the inherent toxicity of biochar might be attributed to the material itself. The exposure to residual PTM concentrations post-desorption caused ecotoxic effects on tested species, emphasizing the need to assess PTM desorption potential. Peat, compost, and biochar are promising alternatives for the sorption of PTMs, but the addition rates must be properly adjusted to avoid the occurrence of undesirable ecotoxicological effects. This research offers valuable insights for sustainable environmental management and protection by thoroughly investigating the impacts of different sorbents and contaminants on aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
- Jacqueline Zanin Lima
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil; GeoBioTec, Department of Geoscience, University of Aveiro, Campus of Santiago, Aveiro, 3810-193, Portugal.
| | - Allan Pretti Ogura
- PPG-SEA and NEEA/LPB/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- PPG-SEA and NEEA/LPB/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Eduardo Ferreira da Silva
- GeoBioTec, Department of Geoscience, University of Aveiro, Campus of Santiago, Aveiro, 3810-193, Portugal
| | | |
Collapse
|
18
|
Li T, Yang H, Zhang N, Dong L, Wu A, Wu Q, Zhao M, Liu H, Li Y, Wang Y. Synergistic effects of arbuscular mycorrhizal fungi and biochar are highly beneficial to Ligustrum lucidum seedlings in Cd-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11214-11227. [PMID: 38217817 DOI: 10.1007/s11356-024-31870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Cadmium (Cd) contamination is a widespread environmental issue. There is a lack of knowledge about the impacts of applying arbuscular mycorrhizal fungi (AMF) and biochar, either alone or in their combination, on alleviating Cd phytotoxicity in Ligustrum lucidum. Therefore, a pot experiment was conducted in a greenhouse, where L. lucidum seedlings were randomly subjected to four regimes of AMF treatments (inoculation with sterilized AMF, with Rhizophagus irregularis, Diversispora versiformis, alone or a mixture of these two fungi), and two regimes of biochar treatments (with or without rice-husk biochar), as well as three regimes of Cd treatments (0, 15, and 150 mg kg-1), to examine the responses of growth, photosynthetic capabilities, soil enzymatic activities, nutritional concentrations, and Cd absorption of L. lucidum plants to the interactive effects of AMF, biochar, and Cd. The results demonstrated that under Cd contaminations, AMF alone significantly increased plant total dry weight, soil pH, and plant nitrogen (N) concentration by 84%, 3.2%, and 13.2%, respectively, and inhibited soil Cd transferring to plant shoot by 42.2%; biochar alone significantly enhanced net photosynthetic rate, soil pH, and soil catalase of non-mycorrhizal plants by 16.4%, 9%, and 11.9%, respectively, and reduced the soil Cd transferring to plant shoot by 44.7%; the additive effect between AMF and biochar greatly enhanced plant total dry weight by 101.9%, and reduced the soil Cd transferring to plant shoot by 51.6%. Furthermore, dual inoculation with D. versiformis and R. irregularis conferred more benefits on plants than the single fungal species did. Accordingly, amending Cd-contaminated soil with the combination of mixed-fungi inoculation and biochar application performed the best than either AMF or biochar alone. These responses may have been attributed to higher mycorrhizal colonization, soil pH, biomass accumulation, and biomass allocation to the roots, as well as photosynthetic capabilities. In conclusion, the combined use of mixed-fungi involving D. versiformis and R. irregularis and biochar addition had significant synergistic effects on enhancing plant performance and reducing Cd uptake of L. lucidum plants in Cd-contaminated soil.
Collapse
Affiliation(s)
- Tiantian Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Huan Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Naili Zhang
- State Key Laboratory of Efficient Production of Forest Resources and the Key Laboratory of Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Lijia Dong
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, China
| | - Aiping Wu
- Ecology Department, College of Environment and Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha, 410128, China
| | - Qiqian Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Mingshui Zhao
- Zhejiang Tianmu Mountain National Nature Reserve Administration, Hangzhou, 311311, China
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yanhong Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
19
|
Huang H, Ge L, Zhang X, Chen H, Shen Y, Xiao J, Lu H, Zhu Y, Han J, Li R. Rice straw biochar and lime regulate the availability of heavy metals by managing colloid-associated- but dissolved-heavy metals. CHEMOSPHERE 2024; 349:140813. [PMID: 38040254 DOI: 10.1016/j.chemosphere.2023.140813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Heavy metal (HM) pollution has extensively spread in agricultural soils, posing potential threats to food safety and human health. Biochar and lime are two amendments used to remediate the soils contaminated with HMs. However, colloids have been shown to increase the mobility of HMs in paddy soils. Nevertheless, limited investigations have been made into the impact of biochar and lime on the formation of colloid-associated (colloidal) HMs in paddy soils. In this study, column and microcosm incubation experiments were conducted to examine how biochar and lime affected the availability of HMs (arsenic, cadmium, copper, iron, manganese, lead, and zinc) in different layers of paddy soils. The results revealed that biochar significantly inhibited the formation of colloidal HMs in the soil flooding phase, whereas the lime increased the colloidal HMs. These colloids containing HMs were identified as poorly dissolved metal sulfides. When the soil was drained, colloidal HMs transformed into dissolved forms, thereby improving the availability of HMs. Biochar decreased HM availability by reducing colloidal- but dissolved- HMs, whereas lime had the opposite effect. Hence, biochar demonstrated a stable and reliable remediation ability to decrease HM availability in paddy soil during flooding and drainage processes. In conclusion, this study highlighted that biochar efficiently reduced HM availability by mitigating the formation of colloidal HMs during flooding and their transformation into dissolved HMs during drainage in paddy soils.
Collapse
Affiliation(s)
- Hui Huang
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China.
| | - Liang Ge
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Xiaowei Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Hangyu Chen
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Yu Shen
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Jian Xiao
- School of Applied Meteorology and Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, China.
| | - Haiying Lu
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Yongli Zhu
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Jiangang Han
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China.
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China.
| |
Collapse
|
20
|
El-Naggar A, Jiang W, Tang R, Cai Y, Chang SX. Biochar and soil properties affect remediation of Zn contamination by biochar: A global meta-analysis. CHEMOSPHERE 2024; 349:140983. [PMID: 38141669 DOI: 10.1016/j.chemosphere.2023.140983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/24/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Zinc (Zn) is one of the most common heavy metals that pollute soils and can threaten both environmental and human health. Biochar is a potential solution for remediating soil Zn contamination. This meta-analysis investigates the effect of biochar application on the remediation of Zn-contaminated soils and the factors affecting the remediation efficiency. We found that biochar application in Zn-contaminated soils reduced Zn bioavailability by up to 77.2% in urban soils, 55.1% in acidic soils, and 50.8% in coarse textured soils. Moreover, the remediation efficiency depends on the biochar production condition, with crop straw and sewage sludge feedstocks, high pyrolysis temperature (450-550 °C), low heating rate (<10 °C min-1), and short residence time (<180 min) producing high performing biochars. Biochar affects soil Zn bioavailability by changing soil pH and organic carbon, as well as through its high surface area, ash content, and O-containing surface functional groups. Our findings highlight the role of biochar as a promising and environmentally friendly material for remediating Zn contamination in acidic and/or coarse textured soils. We conclude that soil properties must be considered when selecting biochars for remediating soil Zn contamination.
Collapse
Affiliation(s)
- Ali El-Naggar
- State Key Laboratory of Subtropical Silviculture, College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt; Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Wenting Jiang
- State Key Laboratory of Subtropical Silviculture, College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China
| | - Ronggui Tang
- State Key Laboratory of Subtropical Silviculture, College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China; Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada.
| |
Collapse
|
21
|
Proshad R, Li J, Sun G, Zheng X, Yue H, Chen G, Zhang S, Li Z, Zhao Z. Field application of hydroxyapatite and humic acid for remediation of metal-contaminated alkaline soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13155-13174. [PMID: 38243026 DOI: 10.1007/s11356-024-32015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
The quality of soil is essential for ensuring the safety and quality of agricultural products. However, soils contaminated with toxic metals pose a significant threat to agricultural production and human health. Therefore, remediation of contaminated soils is an urgent task, and humic acid (HA) with hydroxyapatite (HAP) materials was applied for this study in contaminated alkaline soils to remediate Cd, Pb, Cu, and Zn. Physiochemical properties, improved BCR sequential extraction, microbial community composition in soils with superoxide dismutase (SOD), peroxidase (POD), and chlorophyll content in plants were determined. Among the studied treatments, application of HAP-HA (2:1) (T7) had the most significant impact on reducing the active forms of toxic metals from soil such as Cd, Pb, Cu, and Zn decreased by 18.59%, 9.12%, 11.83%, and 3.33%, respectively, but HAP and HA had a minor impact on metal accumulation in Juncao. HAP (T2) had a beneficial impact on reducing the TCleaf/root of Cd, Cu, and Zn, whereas HAP-HA (T5) showed the best performance for reducing Cd and Cu in EFleaf/soil. HAP-HA (T5 and T7) showed higher biomass (57.3%) and chlorophyll (17.9%), whereas HAP (T4) showed better performance in POD (25.8%) than T0 in Juncao. The bacterial diversity in soil was increased after applying amendments of various treatments and enhancing metal remediation. The combined application of HAP and HA effectively reduced active toxic metals in alkaline soil. HAP-HA mixtures notably improved soil health, plant growth, and microbial diversity, advocating for their use in remediating contaminated soils.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jie Li
- CCTEG Chongqing Engineering (Group) Co., LTD., Chongqing, 400000, People's Republic of China
| | - Guohuai Sun
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xu Zheng
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Haoyu Yue
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Geng Chen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Shuangting Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ziyi Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhuanjun Zhao
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
22
|
Stegenta-Dąbrowska S, Syguła E, Bednik M, Rosik J. Effective Carbon Dioxide Mitigation and Improvement of Compost Nutrients with the Use of Composts' Biochar. MATERIALS (BASEL, SWITZERLAND) 2024; 17:563. [PMID: 38591413 PMCID: PMC10856095 DOI: 10.3390/ma17030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 04/10/2024]
Abstract
Composting is a process that emits environmentally harmful gases: CO2, CO, H2S, and NH3, negatively affecting the quality of mature compost. The addition of biochar to the compost can significantly reduce emissions. For effective CO2 removal, high doses of biochar (up to 20%) are often recommended. Nevertheless, as the production efficiency of biochar is low-up to 90% mass loss-there is a need for research into the effectiveness of lower doses. In this study, laboratory experiments were conducted to observe the gaseous emissions during the first 10 days of composting with biochars obtained from mature composts. Biochars were produced at 550, 600, and 650 °C, and tested with different doses of 0, 3, 6, 9, 12, and 15% per dry matter (d.m.) in composting mixtures, at three incubation temperatures (50, 60, and 70 °C). CO2, CO, H2S, and NH3 emissions were measured daily. The results showed that the biochars effectively mitigate CO2 emissions during the intensive phase of composting. Even 3-6% d.m. of compost biochars can reduce up to 50% of the total measured gas emissions (the best treatment was B650 at 60 °C) and significantly increase the content of macronutrients. This study confirmed that even low doses of compost biochars have the potential for enhancing the composting process and improving the quality of the material quality.
Collapse
Affiliation(s)
- Sylwia Stegenta-Dąbrowska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland; (S.S.-D.); (E.S.)
| | - Ewa Syguła
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland; (S.S.-D.); (E.S.)
| | - Magdalena Bednik
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wrocław University of Environmental and Life Sciences, Grunwaldzka Street 53, 50-375 Wrocław, Poland;
| | - Joanna Rosik
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland; (S.S.-D.); (E.S.)
| |
Collapse
|
23
|
Yin M, Zhang X, Li F, Yan X, Zhou X, Ran Q, Jiang K, Borch T, Fang L. Multitask Deep Learning Enabling a Synergy for Cadmium and Methane Mitigation with Biochar Amendments in Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1771-1782. [PMID: 38086743 DOI: 10.1021/acs.est.3c07568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Biochar has demonstrated significant promise in addressing heavy metal contamination and methane (CH4) emissions in paddy soils; however, achieving a synergy between these two goals is challenging due to various variables, including the characteristics of biochar and soil properties that influence biochar's performance. Here, we successfully developed an interpretable multitask deep learning (MTDL) model by employing a tensor tracking paradigm to facilitate parameter sharing between two separate data sets, enabling a synergy between Cd and CH4 mitigation with biochar amendments. The characteristics of biochar contribute similar weightings of 67.9% and 62.5% to Cd and CH4 mitigation, respectively, but their relative importance in determining biochar's performance varies significantly. Notably, this MTDL model excels in custom-tailoring biochar to synergistically mitigate Cd and CH4 in paddy soils across a wide geographic range, surpassing traditional machine learning models. Our findings deepen our understanding of the interactive effects of Cd and CH4 mitigation with biochar amendments in paddy soils, and they also potentially extend the application of artificial intelligence in sustainable environmental remediation, especially when dealing with multiple objectives.
Collapse
Affiliation(s)
- Mengmeng Yin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, Henan, China
| | - Xin Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, Henan, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiliang Yan
- Institute of Environmental Research at Great Bay, Guangzhou University, Guangzhou 510006, China
| | - Xiaoxia Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Institute of Environmental Research at Great Bay, Guangzhou University, Guangzhou 510006, China
| | - Qiwang Ran
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kai Jiang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, Henan, China
| | - Thomas Borch
- Department of Soil and Crop Sciences and Department of Chemistry, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
24
|
Jia H, Lei Y, Pan S, Zhu J, Shen Z, Tang L, Hou D. The impacts of exogenous phosphorus on Cd absorption in perennial ryegrass root cell: Kinetic and mechanism study. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108220. [PMID: 38039583 DOI: 10.1016/j.plaphy.2023.108220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Phosphorus (P) is critical to plants in metal-contaminated soils because it participates in various biochemical reactions during plant growth. However, the mechanisms of P in mitigating the toxicity of heavy metals to ryegrass root is still veiled. In this study, the physiological and biochemical dynamics of the ryegrass root under various cadmium (Cd) and P conditions were investigated in a hydroponic system. Cd stress decreased the length of the ryegrass root, but P application enhanced the root elongation to reduce the Cd concentration in the root. Both Cd and P dosages were positively correlated with hemicellulose 1 content, pectin content, and PME activity, while having a negative effect on cellulose content. Moreover, the addition of 80 mg L-1 P increased the contents of pectin and hemicellulose 1 by 2.5 and 5.8% even with 4 mg L-1 Cd. In addition, P supply increased pectin methylesterbase activity under Cd stress, which further changed the extra-cytoplasmic structures and cell wall composition. Thus, exogenous P promoted the immobilization of Cd onto the cell wall and protected protoplast primarily through indirectly regulating the binding capacity of the root cell wall for Cd.
Collapse
Affiliation(s)
- Hui Jia
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuze Lei
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Shizhen Pan
- Department of Environment in Yangtze Delta Region Institute of Tsinghua University, Zhejiang Provincial Key Laboratory of Water Science and Technology, Jiaxing, 314006, Zhejiang, China
| | - Jin Zhu
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zhengtao Shen
- School of Earth and Engineering Sciences, Nanjing University, Nanjing, 210023, China.
| | - Lingyi Tang
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, T6G 2E3, Canada.
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
25
|
Ma J, Hua Z, Noreen S, Malik Z, Riaz M, Kamran M, Ali S, Elshikh MS, Chen F. Chemical and mechanical coating of sulfur on baby corn biochar and their role in soil Pb availability, uptake, and growth of tomato under Pb contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122654. [PMID: 37778489 DOI: 10.1016/j.envpol.2023.122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/17/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
In recent ages, industrial revolution and natural weathering processes have been increasing lead (Pb) contamination in agricultural soils, therefore, green remediation technologies are becoming attractive and cost-effective. In the current pot study, 1% and 2% (w/w) application rates of sulfur (S) alone and novel chemo-mechanically S-modified baby corn biochars (CSB and MSB) were applied in a Pb-contaminated (500 mg/kg) soil to evaluate tomato (Lycopersicon esculentum L.) growth, Pb uptake and its soil availability. The results from SEM-EDS and XRD patterns confirmed the S enrichment on the surface of baby-corn biochar. Further, Pb treatment alone imposed a significant reduction in biomass accumulation, photosynthetic pigments, antioxidative mechanism, root traits, and Pb-tolerance index because of increased soil Pb availability and its uptake, translocation and biological accumulation in various tissues of tomato. However, incorporation of lower rate of elemental S (1%) and higher rates of biochars, especially chemically S-modified biochar, CSB (2%) significantly improved dry biomass production, Pb-tolerance index, physiological attributes and antioxidative defense system of tomato plants. These results might be due to a prominent decrease in soil Pb availability by 37.5%, Pb concentration in shoot by 66.7% and root by 58.3%, soil to root transfer by 33.8%, and root to shoot transfer by 20.2% in tomato plants under 2% application rate of CSB, as compared with the Pb treatment without any amendment. Moreover, sulfur treatment induced a significant impact in reduction of soil pH (from 8.97-7.47) as compared to the biochar treatments under Pb-toxicity. The current findings provided an insight that 2% chemically S-modified biochar (CSB) has significant potential to improve the tomato growth by reducing Pb bioavailability in the Pb-contaminated soil, compared to the S alone and MSB amendments.
Collapse
Affiliation(s)
- Jing Ma
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Ziyi Hua
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Sana Noreen
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur 63100, Pakistan
| | - Zaffar Malik
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur 63100, Pakistan
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Muhamamd Kamran
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur 63100, Pakistan; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Shafaqat Ali
- Department of Environmental Science, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China
| |
Collapse
|
26
|
Zhao P, Huang P, Yan X, Chukwuma A, Yang S, Yang Z, Li H, Yang W. Inhibitory effect of exogenous mineral elements (Si, P, Zn, Ca, Mn, Se, Fe, S) on rice Cd accumulation and soil Cd bioavailability in Cd-contaminated farmlands: A meta-analysis. CHEMOSPHERE 2023; 343:140282. [PMID: 37758089 DOI: 10.1016/j.chemosphere.2023.140282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
A promising strategy for safely remediating Cd-contaminated farmland has been the application of mineral elements, which can reduce Cd accumulation in rice and inhibit its bioavailability in Cd-contaminated farmlands. However, there is still a lack of systematic and quantitative evaluations regarding how different mineral elements affect rice Cd accumulation and soil Cd bioavailability. Here, a meta-analysis was conducted based on 1062 individual observations from 137 published works to explore the effects of Si, P, Zn, Ca, Mn, Se, Fe and S in rice Cd accumulation and soil Cd bioavailability, we aimed to identify key factors that control the reduction of Cd concentration in rice grains. The results showed that the presence of exogenous elements had dramatically reduced rice grains Cd concentrations in the following decreasing order: Fe (43.03%) > P (38.45%) > Si (33.24%) > Ca (31.90%) > Se (29.83%) > Zn (25.95%) > Mn (23.26%) > S (18.78%). The elements of Ca, P and Si had strongly reduced Cd bioavailability in soils by 29.87%, 27.80% and 22.70%, respectively. The effects of these elements on Cd bioavailability appeared to be controlled by soil physio-chemical properties, such as pH, soil organic carbon (SOC) but also water management, application amounts and elemental forms. Overall, this study provides valuable insights into the potential of using exogenous mineral elements to mitigate Cd contamination in rice and farmlands, and facilitates the selection and application of mineral elements for the safe utilization of Cd-contaminated farmlands, taking into account soil properties and other factors that affect their effect.
Collapse
Affiliation(s)
- Pengwei Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China
| | - Peicheng Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China
| | - Xiao Yan
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China
| | - Arinzechi Chukwuma
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China
| | - Sen Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, Hunan, PR China
| | - Huan Li
- Hunan University of Technology and Business, Changsha 410083, Hunan, PR China.
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, Hunan, PR China.
| |
Collapse
|
27
|
Huang Y, Tang Y, Liang Y, Xie Z, Wu J, Huang J, Wei S, Nie S, Jiang T. Transport and retention of n-hexadecane in cadmium-/naphthalene-contaminated calcareous soil sampled in a karst area. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8881-8895. [PMID: 37358714 DOI: 10.1007/s10653-023-01664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Studying the transport of petroleum hydrocarbons in cadmium-/naphthalene-contaminated calcareous soils is crucial to comprehensive assessment of environmental risks and developing appropriate strategies to remediate petroleum hydrocarbons pollution in karst areas. In this study, n-hexadecane was selected as a model petroleum hydrocarbon. Batch experiments were conducted to explore the adsorption behavior of n-hexadecane on cadmium-/naphthalene-contaminated calcareous soils at various pH, and column experiments were performed to investigate the transport and retention of n-hexadecane under various flow velocity. The results showed that Freundlich model better described the adsorption behavior of n-hexadecane in all cases (R2 > 0.9). Under the condition of pH = 5, it was advantageous for soil samples to adsorb more n-hexadecane, and the maximum adsorption content followed the order of: cadmium/naphthalene-contaminated > uncontaminated soils. The transport of n-hexadecane in cadmium/naphthalene-contaminated soils at various flow velocity was well described by two kinetic sites model of Hydrus-1D with R2 > 0.9. Due to the increased electrostatic repulsion between n-hexadecane and soil particles, n-hexadecane was more easily able to breakthrough cadmium/naphthalene-contaminated soils. Compared to low flow velocity (1 mL/min), a higher concentration of n-hexadecane was determined at high flow velocity, with 67, 63, and 45% n-hexadecane in effluent from cadmium-contaminated soils, naphthalene-contaminated soils, and uncontaminated soils, respectively. These findings have important implications for the government of groundwater in calcareous soils from karst areas.
Collapse
Affiliation(s)
- Yiting Huang
- School of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China
| | - Yankui Tang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| | - Yi Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhenze Xie
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jipeng Wu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jiajie Huang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Shanxiong Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Shaojiang Nie
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Tao Jiang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
28
|
Han C, Li J, Shen J. Study on the physical and chemical properties of lead passivating agent in soil. Sci Rep 2023; 13:18213. [PMID: 37880293 PMCID: PMC10600227 DOI: 10.1038/s41598-023-45567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
With the rapid development of industry, heavy metal pollution has seriously damaged the health of soil, and heavy metals spread through the food chain, posing a threat to human health. The firm existence of heavy metals in soil under earthy conditions is a center trouble faced by soil dense metal pollution solidification and correction technology. However, the existing investigation results are mostly controlled to soil passivation experiments using various materials. Macroscopically, heavy metal passivation materials have been selected, but the intrinsic mechanisms of different compound functional groups in soil passivation have been ignored. With the common heavy metal ion Pb2+ as an example, the stability of the combination of heavy metal ions and common ion groups in soil was analyzed in this study by using quantum chemical calculation as the theoretical guidance. The results show that SO42- and PO43-, as functional groups of passivating agents, are used to control lead pollution and have been verified to have good effects. When the pollution is particularly serious and not easy to passivation and precipitation, Fe3+ can be considered to enhance the passivation effect.
Collapse
Affiliation(s)
- Chengyu Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Juan Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jianglong Shen
- Shaanxi Engineering Research Center of Land Consolidation, Xi'an, 710075, China
| |
Collapse
|
29
|
Bolan S, Hou D, Wang L, Hale L, Egamberdieva D, Tammeorg P, Li R, Wang B, Xu J, Wang T, Sun H, Padhye LP, Wang H, Siddique KHM, Rinklebe J, Kirkham MB, Bolan N. The potential of biochar as a microbial carrier for agricultural and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163968. [PMID: 37164068 DOI: 10.1016/j.scitotenv.2023.163968] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Biochar can be an effective carrier for microbial inoculants because of its favourable properties promoting microbial life. In this review, we assess the effectiveness of biochar as a microbial carrier for agricultural and environmental applications. Biochar is enriched with organic carbon, contains nitrogen, phosphorus, and potassium as nutrients, and has a high porosity and moisture-holding capacity. The large number of active hydroxyl, carboxyl, sulfonic acid group, amino, imino, and acylamino hydroxyl and carboxyl functional groups are effective for microbial cell adhesion and proliferation. The use of biochar as a carrier of microbial inoculum has been shown to enhance the persistence, survival and colonization of inoculated microbes in soil and plant roots, which play a crucial role in soil biochemical processes, nutrient and carbon cycling, and soil contamination remediation. Moreover, biochar-based microbial inoculants including probiotics effectively promote plant growth and remediate soil contaminated with organic pollutants. These findings suggest that biochar can serve as a promising substitute for non-renewable substrates, such as peat, to formulate and deliver microbial inoculants. The future research directions in relation to improving the carrier material performance and expanding the potential applications of this emerging biochar-based microbial immobilization technology have been proposed.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lauren Hale
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, United States
| | - Dilfuza Egamberdieva
- Institute of Fundamental and Applied Research, National Research University (TIIAME), Tashkent 100000, Uzbekistan; Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Priit Tammeorg
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Rui Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, People's Republic of China
| | - Jiaping Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Ting Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland, 1010, New Zealand
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia.
| |
Collapse
|
30
|
Yu P, Qin K, Niu G, Gu M. Alleviate environmental concerns with biochar as a container substrate: a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1176646. [PMID: 37575924 PMCID: PMC10415017 DOI: 10.3389/fpls.2023.1176646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
Peat moss has desirable properties as a container substrate, however, harvesting it from peatland for greenhouse/nursery production use has disturbed peatland ecosystem and caused numerous environmental concerns. More recently, many nations have taken actions to reduce or ban peat moss production to reach the carbon neutral goal and address the environmental concerns. Also, the overuse of fertilizers and pesticides with peat moss in greenhouse/nursery production adds extra environmental and economic issues. Thus, it is urgent to find a peat moss replacement as a container substrate for greenhouse/nursery production. Biochar, a carbon-rich material with porous structure produced by the thermo-chemical decomposition of biomass in an oxygen-limited or oxygen-depleted atmosphere, has drawn researchers' attention for the past two decades. Using biochar to replace peat moss as a container substrate for greenhouse/nursery production could provide environmental and economic benefits. Biochar could be derived from various feedstocks that are regenerated faster than peat moss, and biochar possesses price advantages over peat moss when local feedstock is available. Certain types of biochar can provide nutrients, accelerate nutrient adsorption, and suppress certain pathogens, which end up with reduced fertilizer and pesticide usage and leaching. However, among the 36,474 publications on biochar, 1,457 focused on using biochar as a container substrate, and only 68 were used to replace peat moss as a container substrate component. This study provides a review for the environmental and economic concerns associated with peat moss and discussed using biochar as a peat moss alternative to alleviate these concerns.
Collapse
Affiliation(s)
- Ping Yu
- Department of Horticulture, University of Georgia, Griffin, GA, United States
| | - Kuan Qin
- Department of Horticulture, University of Georgia, Griffin, GA, United States
| | - Genhua Niu
- AgriLife Research Center, Department of Horticultural Sciences, Texas A&M University, Dallas, TX, United States
| | - Mengmeng Gu
- Department of Horticulture and Architecture, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
31
|
Niu L, Li C, Wang W, Zhang J, Scali M, Li W, Liu H, Tai F, Hu X, Wu X. Cadmium tolerance and hyperaccumulation in plants - A proteomic perspective of phytoremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114882. [PMID: 37037105 DOI: 10.1016/j.ecoenv.2023.114882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/27/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) is a major environmental pollutant and poses a risk of transfer into the food chain through contaminated plants. Mechanisms underlying Cd tolerance and hyperaccumulation in plants are not fully understood. Proteomics-based approaches facilitate an in-depth understanding of plant responses to Cd stress at the systemic level by identifying Cd-inducible differentially abundant proteins (DAPs). In this review, we summarize studies related to proteomic changes associated with Cd-tolerance mechanisms in Cd-tolerant crops and Cd-hyperaccumulating plants, especially the similarities and differences across plant species. The enhanced DAPs identified through proteomic studies can be potential targets for developing Cd-hyperaccumulators to remediate Cd-contaminated environments and Cd-tolerant crops with low Cd content in the edible organs. This is of great significance for ensuring the food security of an exponentially growing global population. Finally, we discuss the methodological drawbacks in current proteomic studies and propose that better protocols and advanced techniques should be utilized to further strengthen the reliability and applicability of future Cd-stress-related studies in plants. This review provides insights into the improvement of phytoremediation efficiency and an in-depth study of the molecular mechanisms of Cd enrichment in plants.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Chunyang Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Monica Scali
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
32
|
Huang F, Hu J, Chen L, Wang Z, Sun S, Zhang W, Jiang H, Luo Y, Wang L, Zeng Y, Fang L. Microplastics may increase the environmental risks of Cd via promoting Cd uptake by plants: A meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130887. [PMID: 36731321 DOI: 10.1016/j.jhazmat.2023.130887] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) and cadmium (Cd) are widely distributed in soil ecosystems, posing a potential threat to agricultural production and human health. However, the coupled effects of MPs and Cd in soil-plant systems remain largely unknown, especially on a large scale. In this study, a meta-analysis was conducted to evaluate the influence of MPs on plant growth and Cd accumulation under the Cd contamination conditions. Our results showed that MPs had significantly negative effects on shoot biomass (a decrease of 11.8 %) and root biomass (a decrease of 8.79 %). MPs also significantly increased Cd accumulation in the shoots and roots by 14.6 % and 13.5 %, respectively, revealing that MPs promote plant Cd uptake. Notably, polyethylene displayed a stronger promoting effect (an increase of 29.4 %) on Cd accumulation among these MP types. MPs induced a significantly increase (9.75 %) in concentration of soil available Cd and a slight decrease in soil pH, which may be the main driver promoting plant Cd uptake. MP addition posed physiological toxicity risks to plants by inhibiting photosynthesis and enhancing oxidative damage, directly demonstrating that MPs in combination with Cd can pose synergetic toxicity risks to plants. We further noted that MPs altered microbial diversity, likely influencing Cd bioavailability in soil-plant systems. Overall, our study has important implications for the combined impacts of Cd and MPs on plants and provides new insights into developing guidelines for the sustainable use of MPs in agriculture.
Collapse
Affiliation(s)
- Fengyu Huang
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Jinzhao Hu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Wanming Zhang
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Hu Jiang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Ying Luo
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Lei Wang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
33
|
Duan Z, Chen C, Ni C, Xiong J, Wang Z, Cai J, Tan W. How different is the remediation effect of biochar for cadmium contaminated soil in various cropping systems? A global meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130939. [PMID: 36860073 DOI: 10.1016/j.jhazmat.2023.130939] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) poses great threats to human health as a major contaminant in agricultural soil. Biochar shows great potential in the remediation of agricultural soil. However, it remains unclear whether the remediation effect of biochar on Cd pollution is affected by various cropping systems. Here, this study used 2007 paired observations from 227 peer-reviewed articles and employed hierarchical meta-analysis to investigate the response of three types of cropping systems to the remediation of Cd pollution by using biochar. As a result, biochar application significantly reduced the Cd content in soil, plant roots and edible parts of various cropping systems. The decrease in Cd level ranged from 24.9% to 45.0%. The feedstock, application rate, and pH of biochar as well as soil pH and cation exchange capacity were dominant factors for Cd remediation effect of biochar, and their relative importance all exceeded 37.4%. Lignocellulosic and herbal biochar were found to be suitable for all cropping systems, while the effects of manure, wood and biomass biochar were limited in cereal cropping systems. Furthermore, biochar exhibited a more long-lasting remediation effect on paddy soils than on dryland. This study provides new insights into the sustainable agricultural management of typical cropping systems.
Collapse
Affiliation(s)
- Zihao Duan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang Chen
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chunlan Ni
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Junxiong Cai
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Academy of Ecological and Environmental Science, Wuhan, Hubei 430072, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
34
|
Shen J, Li J, Mao Z, Zhang Y. First-principle study on the stability of Cd passivates in soil. Sci Rep 2023; 13:4255. [PMID: 36918623 PMCID: PMC10015070 DOI: 10.1038/s41598-023-31460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023] Open
Abstract
The stable existence of heavy metals in soil under natural conditions is the core issue in heavy metal pollution solidification and remediation technology. However, the existing research is limited to soil passivation tests of different materials or biochar adsorption tests and cannot reveal the internal mechanism of functional groups of different compounds in soil passivation. This paper takes the common heavy metal ion Cd2+ as an example to analyze the stability of the combination of heavy metal ions and common ion groups in soil. The stability and existing form of Cd are analyzed by using first-principle calculations, and the free energy, band structure, and partial density of states of CdCO3, CdSO4, CdCl2, and CdSiO3 are computed. The stability of Cd binding to common anions in soil is determined. Results show the descending order of structural stability of cadmium compounds is CdSiO3, CdSO4, CdCO3, and CdCl2. SO42- and SiO32- can be used as preferred functional groups for cadmium pollution passivation. Anhydrous sodium sulfate and sodium silicate are promising passivators.
Collapse
Affiliation(s)
- Jianglong Shen
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China.
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China.
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China.
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China.
| | - Juan Li
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China
| | - Zhongan Mao
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China
| | - Yang Zhang
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China
| |
Collapse
|
35
|
Zuo W, Wang S, Zhou Y, Ma S, Yin W, Shan Y, Wang X. Conditional remediation performance of wheat straw biochar on three typical Cd-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160998. [PMID: 36535479 DOI: 10.1016/j.scitotenv.2022.160998] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Undoubtedly biochar has excellent remediation performance for Cd-contaminated soil. Nevertheless, the remediation performance may be not invariable considering highly variable soil conditions including soil properties and environmental conditions. This work investigated the fate of Cd in three typical Cd-contaminated soils (acidic, neutral and saline-alkali soils) treated with wheat straw biochar and its driving mechanisms under specific soil conditions through aging and remediation experiment, Cd availability experiment and leaching column experiment. The results indicated that biochar addition facilitated Cd immobilization and reduced the uptake of Cd by green vegetables in acidic, neutral and saline-alkali soils under wetting-drying conditions. In contrast to neutral and saline-alkali soils, the release of exchangeable aluminum from biochar-treated acidic soil under flooding-drying cycles lowered the pH of leachate, thus promoting the leaching of Cd from leaching column, especially at 7 and 14 days, when the leaching of Cd increased by 25.3 and 32.6 times, respectively. This result was further supported by the increase in the exchangeable fraction and total leaching amounts of Cd in the topsoil layer (0-20 cm) of biochar-treated acidic soil of leaching column. Additionally, the leaching of Cd was positively correlated with DOC contents of leachate in biochar-treated neutral and saline-alkali soils. In summary, the remediation performance of biochar for Cd-contaminated soils is conditional, and its remediation effect is better in neutral and saline-alkali soils. Notably, the inherent conditions of soil must be fully considered when applying biochar for Cd remediation, especially in acidic Cd-contaminated paddy soils in South China.
Collapse
Affiliation(s)
- Wengang Zuo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225127, China
| | - Shengjie Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yuxi Zhou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Shuai Ma
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Weiqin Yin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yuhua Shan
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
36
|
Wei B, Peng Y, Jeyakumar P, Lin L, Zhang D, Yang M, Zhu J, Ki Lin CS, Wang H, Wang Z, Li C. Soil pH restricts the ability of biochar to passivate cadmium: A meta-analysis. ENVIRONMENTAL RESEARCH 2023; 219:115110. [PMID: 36574793 DOI: 10.1016/j.envres.2022.115110] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/30/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Soil acidification is the main cause for aggravation of soil cadmium (Cd) pollution. Biochar treatment can increase the soil pH and decrease the Cd availability in soils. However, there is limited information in literature on the comprehensive assessment of the response of Cd fractions to biochar. Therefore, in the present meta-analysis study, we evaluate the response of Cd fractions to biochar application in soils with different pH and to further examine the effect of physicochemical properties of biochar on Cd. Results from the overall analysis indicated that biochar treatment increased the soil pH by 7.0%, thereby decreasing the amount of available Cd (37.3%). In acidic soil, biochar significantly reduced the acid-soluble fraction (Acid-Cd) of Cd by 36.8%, while Oxidizable fraction of Cd (Oxid-Cd, 20.9%) and Residual fraction of Cd (Resid-Cd, 22.2%) were significantly increased. In neutral soils, only Acid-Cd was significantly reduced (33.0%) in the presence of biochar. In alkaline soils, biochar caused significant reduction in Acid-Cd of 12.4% and an increase in Oxid-Cd and Resid-Cd of 26.6% and 47.8%, respectively. Further, our findings showed that biochar with cation exchange capacity >100 cmol+/kg effectively decreased Acid-Cd (32.4%), while biochar with the percentage of hydrogen <2% was more contributory in increasing Resid-Cd (64.3%). These results demonstrate the importance of soil pH in regulating the biological effectiveness of Cd in soil and the complexation between the functional groups of biochar and Cd, and provide key information for the remediation of Cd pollution in soils with different pH by biochar.
Collapse
Affiliation(s)
- Beilei Wei
- College of Agronomy, Guangxi University, Nanning, 530000, Guangxi, China; State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530000, China
| | - Yunchang Peng
- College of Agronomy, Guangxi University, Nanning, 530000, Guangxi, China; State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530000, China
| | - Paramsothy Jeyakumar
- Environmental Science Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Longxin Lin
- College of Agronomy, Guangxi University, Nanning, 530000, Guangxi, China; State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530000, China
| | - Dongliang Zhang
- College of Agronomy, Guangxi University, Nanning, 530000, Guangxi, China; State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530000, China
| | - Meiyan Yang
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, 528200, China
| | - Jinning Zhu
- Nanjing Institute of Product Quality Inspection, No. 3 Jialingjiang East Street, Nanjing, 210019, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Ziting Wang
- College of Agronomy, Guangxi University, Nanning, 530000, Guangxi, China; State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530000, China.
| | - Chong Li
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, 528200, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
37
|
Peng C, Gong K, Li Q, Liang W, Song H, Liu F, Yang J, Zhang W. Simultaneous immobilization of arsenic, lead, and cadmium in soil by magnesium-aluminum modified biochar: Influences of organic acids, aging, and rainfall. CHEMOSPHERE 2023; 313:137453. [PMID: 36464022 DOI: 10.1016/j.chemosphere.2022.137453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Magnesium-aluminum modified biochar (MABs) has an outstanding effect on the simultaneous immobilization of arsenic (As), lead (Pb), and cadmium (Cd) in soil, but the stability of remediation effect of MAB under various natural conditions is still unknown. In this study, we investigated the effects of organic acids, dry-wet cycles (DW), freeze-thaw cycles (FT), and rainfall (pH 4, 7, and 8) on the immobilization of As, Pb, and Cd by MAB. The results showed that oxalic acid decreased the immobilization efficiencies of As, Pb, and Cd by 15.5%-38.5%; meanwhile, humic acid reduced the immobilization efficiency of Pb by 89.7%, but elevated that of Cd by 19.5%. The immobilization mechanisms of MAB-5 on three metals were mainly involved in ion exchange and surface-complexation. Compared with the 7th round, the immobilization efficiencies of As, Pb, and Cd by MAB in the 28th round was decreased by 17%-28% in DW, but was increased by 11%-18% in FT. In addition, MAB was transformed into hydrotalcite after FT and DW. After experiencing simulated rainfall, MAB caused more As, Pb, and Cd to be retained in the upper soil layer, and the immobilization effect of MBA was more significant under the stimulated rainfall with higher pH. The study provides a more theoretical basis for the application of MAB in the actual site remediation.
Collapse
Affiliation(s)
- Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiannan Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huihui Song
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fang Liu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| | - Jie Yang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
38
|
Zheng X, Zhang B, Lai W, Wang M, Tao X, Zou M, Zhou J, Lu G. Application of bovine bone meal and oyster shell meal to heavy metals polluted soil: Vegetable safety and bacterial community. CHEMOSPHERE 2023; 313:137501. [PMID: 36502914 DOI: 10.1016/j.chemosphere.2022.137501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The development of efficient, environmentally friendly soil amendments is necessary in order to minimize the risk of metal contaminants (Cd, Pb, Cu, and Zn) to the soil ecosystem. As soil amendments, bovine bone meal (BM) and oyster shell meal (OS) reduced the mobility and bioavailability of metals primarily by increasing soil pH. Soil geochemical properties (pH, EC, CEC, Ca, P, and K) after amendment supplementation were more likely to affect metal migration than enzyme activity. Furthermore, BM and OS were found to suppress the Cd and Pb uptake by water spinach, keeping them below international standards for safe utilization. The protein and sugar content and peroxidase (POD) activity showed a significant negative correlation with the amount of metal in water spinach, whereas superoxide dismutase (SOD), ascorbate peroxidase (APX) activities and malondialdehyde (MDA) content exhibited a positive correlation with metal content in water spinach. We also found that BM and OS had less perturbation to phylum-level and genus-level bacterial composition during the remediation of heavy metals contaminated soil. Based on the above, we assume that BM and OS are eco-friendly soil amendments, which could improve soil nutrients contents, stabilize heavy metals and regulate bacterial community structure. Our research contributes to resource utilization of waste and holds promise for widespread application in current agricultural systems.
Collapse
Affiliation(s)
- Xiongkai Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Bowen Zhang
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, 510060, China
| | - Weibin Lai
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Mengting Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Mengyao Zou
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
39
|
Acosta-Luque MP, López JE, Henao N, Zapata D, Giraldo JC, Saldarriaga JF. Remediation of Pb-contaminated soil using biochar-based slow-release P fertilizer and biomonitoring employing bioindicators. Sci Rep 2023; 13:1657. [PMID: 36717659 PMCID: PMC9886935 DOI: 10.1038/s41598-022-27043-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 02/01/2023] Open
Abstract
Soil contamination by Pb can result from different anthropogenic sources such as lead-based paints, gasoline, pesticides, coal burning, mining, among others. This work aimed to evaluate the potential of P-loaded biochar (Biochar-based slow-release P fertilizer) to remediate a Pb-contaminated soil. In addition, we aim to propose a biomonitoring alternative after soil remediation. First, rice husk-derived biochar was obtained at different temperatures (450, 500, 550, and 600 °C) (raw biochars). Then, part of the resulting material was activated. Later, the raw biochars and activated biochars were immersed in a saturated KH2PO4 solution to produce P-loaded biochars. The ability of materials to immobilize Pb and increase the bioavailability of P in the soil was evaluated by an incubation test. The materials were incorporated into doses of 0.5, 1.0, and 2.0%. After 45 days, soil samples were taken to biomonitor the remediation process using two bioindicators: a phytotoxicity test and enzyme soil activity. Activated P-loaded biochar produced at 500 °C has been found to present the best conditions for soil Pb remediation. This material significantly reduced the bioavailability of Pb and increased the bioavailability of P. The phytotoxicity test and the soil enzymatic activity were significantly correlated with the decrease in bioavailable Pb but not with the increase in bioavailable P. Biomonitoring using the phytotoxicity test is a promising alternative for the evaluation of soils after remediation processes.
Collapse
Affiliation(s)
- María Paula Acosta-Luque
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711, Bogotá, Colombia
| | - Julián E López
- Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 #65-46, 050034, Medellín, Colombia
| | - Nancy Henao
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711, Bogotá, Colombia
| | - Daniela Zapata
- Faculty of Engineering, Universidad de Medellín, Carrera 87 #30-65, 050026, Medellín, Colombia
| | - Juan C Giraldo
- Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 #65-46, 050034, Medellín, Colombia
| | - Juan F Saldarriaga
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711, Bogotá, Colombia.
| |
Collapse
|
40
|
Cui J, Yu Y, Xiang M, Shi Y, Zhang F, Fang D, Jiang J, Xu R. Decreased in vitro bioaccessibility of Cd and Pb in an acidic Ultisol through incorporation of crop straw-derived biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120721. [PMID: 36436663 DOI: 10.1016/j.envpol.2022.120721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/02/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Studies analyzing the in vitro bioaccessibility (BAc) of heavy metals in biochar-amended soils are currently lacking. The present study aimed to assess the metal BAc in Cd- and Pb-spiked acidic Ultisol samples treated individually with 2% (w/w) maize, rice, wheat, soybean, and pea straw-derived biochar. The results indicate that the Cd-BAc simulated in gastric phase (GP) decreased from 78.4% to 66.5-72.3% and the Pb-BAC decreased from 74.3% to 67.2-69.2%; however, the Cd-BAc in the intestinal phase (IP) decreased from 35.6% to 27.9-33.5% and the Pb-BAc decreased from 34.7% to 29.7-32.9% after 120 d of incubation with biochar application compared to the un-amended Ultisol. The Cd- and Pb-BAc in both GP and IP were significantly negatively correlated with soil pH, CEC, and organic carbon (P < 0.05), which increased after biochar application. The soybean straw-derived biochar amendment has the greatest potential to decrease the BAc of Cd and Pb in the GP and IP, owing to the highest level of CEC, SOC, TC and TN among all soil samples. Moreover, the BAc was positively correlated with the exchangeable, and exchangeable + carbonate-bound Cd and Pb fractions (P < 0.05), indicating these fractions had a dominant influence on the BAc of cationic heavy metals. Therefore, crop straw-derived biochar amendment can decrease the BAc of Cd and Pb in acidic Ultisol, and thus mitigate the health risks posed by these metals from incidental ingestion.
Collapse
Affiliation(s)
- Jiaqi Cui
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China; College of Resources and Environmental Sciences, Nanjing Agriculture University, Nanjing, 210095, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yangxiaoxiao Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Feng Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Di Fang
- College of Resources and Environmental Sciences, Nanjing Agriculture University, Nanjing, 210095, China
| | - Jun Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China.
| | - Renkou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| |
Collapse
|
41
|
Al-Tabbal J, Al-Jedaih M, Al-Zboon KK, Alrawashdeh KAB. Mitigation of salinity stress effects on kochia ( Bassia scoparia L.) biomass productivity using biochar application. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1463-1473. [PMID: 36600578 DOI: 10.1080/15226514.2022.2164248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Salinity continues to be a key factor limiting food security and agricultural sustainability in arid and semi-arid countries. Biochar has been promoted to reduce the risk of saline irrigation. In a controlled study, physiological and morphological growth factors of kochia plants that were irrigated with tap water (S1) and saline water (S2) were assessed to identify the ameliorative effects of biochar amendment to the soil at different levels (B1: 0%, B2: 2%, B3: 5%, and B4: 10%. According to our findings, salinity stress negatively affected morphological and physiological growth parameters of kochia plants by decreasing the fresh and dry weight (25% and 28%, respectively), plant height (30%), circumference (46%), total chlorophyll (51%), and relative water content (29%) when compared to the controls. Furthermore, electrolyte leakage increased considerably (19%) due to salt stress. Significant morphological and physiological growth enhancements were seen at all biochar levels in comparison to the control treatment, with the highest level increasing plant height by 55%, circumference by 76%, total chlorophyll concentrations by 121%, and relative water content by 28%. Furthermore, it resulted in a 36% reduction in the stressed plants' electrolyte leakage. The findings demonstrated biochar's benefits in reducing salinity's negative effects on kochia plants.
Collapse
Affiliation(s)
- Jalal Al-Tabbal
- Department of Nutrition and Food Processing, Al‑Huson University College, Al-Balqa Applied University, Huson, Jordan
| | - Maamoun Al-Jedaih
- Department of Environmental Engineering, Al‑Huson University College, Al-Balqa Applied University, Huson, Jordan
| | - Kamel K Al-Zboon
- Department of Environmental Engineering, Al‑Huson University College, Al-Balqa Applied University, Huson, Jordan
| | | |
Collapse
|
42
|
Jin X, Rahman MKU, Ma C, Zheng X, Wu F, Zhou X. Silicon modification improves biochar's ability to mitigate cadmium toxicity in tomato by enhancing root colonization of plant-beneficial bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114407. [PMID: 36508786 DOI: 10.1016/j.ecoenv.2022.114407] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Modification of biochar, such as impregnation with minerals, can improve biochar's efficacy to mitigate heavy metal toxicity in plants. Biochar amendments can alter plant rhizosphere microbiome, which has profound effects on plant growth and fitness. Here, we tested whether rhizosphere microbiome is involved in the ability of silicon (Si)-modified biochar to mitigate cadmium toxicity in tomato (Solanum lycopersicum L.). We demonstrated that Si modification altered biochar's physico-chemical properties and enhanced its ability to mitigate cadmium toxicity in tomato. Particularly, the Si-modified biochar contained higher content of Si and increased plant-available Si content in the soil. The rhizosphere microbiome transplant experiment showed that changes in rhizosphere microbiome contributed to the mitigation of cadmium toxicity by biochar amendments. The raw biochar and Si-modified biochar differently altered tomato rhizosphere bacterial community composition. Both biochars, especially the Si-modified biochar, promoted specific bacterial taxa (e.g., Sphingomonas, Lysobacter and Pseudomonas spp.). Subsequent culturing found these promoted bacteria could mitigate cadmium toxicity in tomato. Moreover, both biochars stimulated tomato to recruit plant-beneficial bacteria with Si-modified biochar having stronger stimulatory effects, indicating that the positive effects of biochar on plant-beneficial bacteria was partially mediated via the host plant. Overall, Si modification enhanced biochar's ability to mitigate cadmium toxicity, which was linked to the stimulatory effects on plant-beneficial bacteria.
Collapse
Affiliation(s)
- Xue Jin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Muhammad Khashi U Rahman
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Changli Ma
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Xianqing Zheng
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Fengzhi Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Xingang Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
43
|
Fan B, Ding S, Peng Y, Yin J, Liu Y, Cui S, Zhou X, Mu K, Ru S, Chen Q. Supplying amendments alleviates aluminum toxicity and regulates cadmium accumulation by spinach in strongly acidic soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116340. [PMID: 36170780 DOI: 10.1016/j.jenvman.2022.116340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Al toxicity and Cd pollution are key limiting factors for agricultural production in the acidic soils in China. The application of amendments is an effective and promising measure for remediating strongly acidic Cd-contaminated soils. However, the information on applying amendments for alleviating Al toxicity and regulating plant Cd accumulation is still rare. Here, oyster shell (OS), red mud (RM), hydroxyapatite (HAP), and biochar (BC) at 30 g kg-1 were investigated for alleviating Al toxicity and decreasing Cd accumulation in spinach plants. The results showed that four amendments significantly increased soil pH, and reduced soil exchangeable Al3+ and DTPA-Cd, promoted spinach growth (P < 0.05). Al(OH)30 and Al-HA were the main forms of active Al in soil. The BC and OS were more effective to alleviate Al toxicity but significantly (P < 0.05) increased Cd accumulation in spinach. RM and HAP effectively reduced the uptake of Cd by spinach plants as well as alleviated Al toxicity (P < 0.05). Bivariate correlation analysis and the partial least squares path modeling analysis indicated that soil exchangeable Al3+ was the main limiting factor for biomass production. Our study demonstrated that HAP could significantly alleviate Al toxicity, promote spinach growth, and decrease Cd accumulation in strongly acidic Cd-contaminated soils. Besides, OS and BC effectively alleviated soil Al toxicity leading to promoting the growth of spinach. Compared with CK, RM treatment significantly reduced soil Cd bioavailability (61.2%) and decreased Cd concentration and uptake of spinach plants by 90.0% and 50.7%. These results indicated that RM could be used as an efficient amendment in Cd contaminated.
Collapse
Affiliation(s)
- Beibei Fan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuai Ding
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong, 523758, China
| | - Junhui Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Shihao Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xue Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Kangguo Mu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Ru
- Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Science, Shijiazhuang, Hebei, 050051, China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
44
|
Wu D, Peng W, Bao L, Yu X, Dong X, Lai M, Liang Z, Xie S, Jacobs DF, Zeng S. Biochar alleviating heavy metals phytotoxicity in sludge-amended soil varies with plant adaptability. ENVIRONMENTAL RESEARCH 2022; 215:114248. [PMID: 36058279 DOI: 10.1016/j.envres.2022.114248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Recycling sewage sludge (SS) to soil potentially causes soil heavy metal (HM) pollution and plant phytotoxicity. Biochar plays an important role in alleviating HM phytotoxicity, and responses vary with the feedstocks and usage of biochar. However, the effect of plant adaptability on biochar-mediated alleviation is poorly understood. Here, SS-derived biochar (SB) and rice straw-derived biochar (RB) applied at rates of 1.5% and 3% (W/W, SB1.5, SB3, RB1.5, and RB3) were used to improve the properties of soil amended with SS at 50% (W/W). Alleviation of phytotoxicity by biochar was further analyzed with SS-sensitive plant Monstera deliciosa and SS-resistant plant Ruellia simplex. Results revealed that both SB and RB significantly decreased the soil's bulk density and increased water retention. They also changed soil organic matter content and HMs fractionation. The addition of SB or RB alleviated the SS phytotoxicity, and they significantly promoted the growth and the root morphology and physiological index of M. deliciosa. But for R. simplex, these significant changes only synchronously occurred in SB3 treatment. The alleviation in M. deliciosa was more prominent and more closely connected with soil property changes than in R. simplex. Also, more soil property predictors were observed to play an important role in M. deliciosa growth than in R. simplex growth. These results indicated that biochar alleviating HMs phytotoxicity in SS-amended soil is associated with the changes of soil property. Moreover, the alleviation varies more prominently with plant adaptability than with biochar feedstocks and usage.
Collapse
Affiliation(s)
- Daoming Wu
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Weixin Peng
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Li'an Bao
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoli Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaoquan Dong
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Mingli Lai
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiqi Liang
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Shanyan Xie
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Douglass F Jacobs
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907-2061, USA
| | - Shucai Zeng
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
45
|
Tepanosyan G, Pipoyan D, Beglaryan M, Sahakyan L. Compositional features of Pb in agricultural soils and geochemical associations conditioning Pb contents in plants. CHEMOSPHERE 2022; 306:135492. [PMID: 35760136 DOI: 10.1016/j.chemosphere.2022.135492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Soil geochemical data is compositional. Hence the studies targeting the potential of accumulation of toxic elements (TE) in plants have to consider the compositional nature of soil chemical environment. In this study, the combined application of compositional data analysis and geospatial mapping was used to investigate Pb geochemical associations in agricultural soils, revealing the link between these associations and Pb contents in plants, as well as identifying source-specific transfer of Pb from soil to plants. The obtained results showed that soil chemical composition was conditioned by the geological peculiarities of the study area and the potential sources of chemical elements' release. Particularly, k-means clustering and CoDa-biplot allows to identify three distinct subsamples and the application of HCA showed that both Pb soil and plants contents were in the same cluster in all subsamples. However, the geochemical association of elements in subsamples I and III suggested that Pb contents in plants were conditioned by the geochemical behaviors of carbonates whereas in subsample II Pb plant contents were presented in a geochemical association (K, Rb, Pb, and Zn) typical for both fertilizers and the potassium feldspar. The transfer factor (TF) for the comparatively higher values is observed for the subsample linked to K, Rb, Pb, and Zn geochemical association. At the same time, the negative influence of carbonates on the Pb availability in the plants was evidenced. The results of this study can serve as a good example for other investigations targeting the role of soil chemical elements compositional features in elements transfer to plant.
Collapse
Affiliation(s)
- Gevorg Tepanosyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, 0025, Yerevan, Armenia.
| | - Davit Pipoyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, 0025, Yerevan, Armenia
| | - Meline Beglaryan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, 0025, Yerevan, Armenia
| | - Lilit Sahakyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, 0025, Yerevan, Armenia
| |
Collapse
|
46
|
Lima JZ, Ferreira da Silva E, Patinha C, Rodrigues VGS. Sorption and post-sorption performances of Cd, Pb and Zn onto peat, compost and biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115968. [PMID: 35988405 DOI: 10.1016/j.jenvman.2022.115968] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The development of waste-derived sorbents to immobilize potentially toxic elements (PTEs) is a promising strategy, contributing to the achievement of sustainable development goals (SDGs). Therefore, this study aimed to assess the sorption performance of cadmium (Cd), lead (Pb) and zinc (Zn), comparing sorbents derived from organic fraction of municipal solid waste (composts and biochars) with peat. The physicochemical characterization, equilibrium of sorption, post-sorption analyzes and bioaccessibility were investigated. Results showed that the sorbents have distinct characteristics; however, each material have their particularities favorable to sorption. For instance, peat and composts have the highest cation exchange capacity (800-1100 mmolc kg-1), while biochar produced at 700 °C has the highest specific surface area (91.21 m2 g-1). The sorption equilibrium data revealed the actual sorption capacity and was well explained by the Freundlich and Langmuir isotherms and, in some cases, by the Dubinin-Radushkevich model. Post-sorption analyzes indicated the occurrence of several sorption mechanisms, driven by the physicochemical properties. Electrostatic interaction stood out for peat and compost. The FTIR spectrum for peat proved the complexation with oxygenated functional groups. The composts showed variations in the released cations (e.g. Ca2+ and K+), indicating cation exchange. Differently, for biochars, the XRD patterns showed that precipitation or coprecipitation seems to be one of the main mechanisms, especially for Cd and Pb. Regarding human bioaccessibility, the results of the gastric phase simulation (pH∼1.20) revealed lower percentages of Pb (33-81%) than Cd (91-99%) or Zn (82-99%), especially for the highest concentrations. Nevertheless, in numerical terms, all bioaccessible concentrations inspire care. In conclusion, among the sorbents, composts and biochars presented the best sorption performances and, therefore, have great potential for environmental applications. Furthermore, the bioaccessibility findings indicate that these assays, still little used in experiments with sorbents, are an important tool that should be better explored in the assessment of the environmental risk associated with contamination.
Collapse
Affiliation(s)
- Jacqueline Zanin Lima
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo - 400 Trabalhador São Carlense Ave, São Carlos, 13566-590, Brazil; GeoBioTec, Department of Geoscience, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Eduardo Ferreira da Silva
- GeoBioTec, Department of Geoscience, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Carla Patinha
- GeoBioTec, Department of Geoscience, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Valéria Guimarães Silvestre Rodrigues
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo - 400 Trabalhador São Carlense Ave, São Carlos, 13566-590, Brazil.
| |
Collapse
|
47
|
Gong S, Wang H, Lou F, Qin R, Fu T. Calcareous Materials Effectively Reduce the Accumulation of Cd in Potatoes in Acidic Cadmium-Contaminated Farmland Soils in Mining Areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11736. [PMID: 36142008 PMCID: PMC9517293 DOI: 10.3390/ijerph191811736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The in situ chemical immobilization method reduces the activity of heavy metals in soil by adding chemical amendments. It is widely used in farmland soil with moderate and mild heavy metal pollution due to its high efficiency and economy. However, the effects of different materials depend heavily on environmental factors such as soil texture, properties, and pollution levels. Under the influence of lead-zinc ore smelting and soil acidification, Cd is enriched and highly activated in the soils of northwestern Guizhou, China. Potato is an important economic crop in this region, and its absorption of Cd depends on the availability of Cd in the soil and the distribution of Cd within the plant. In this study, pot experiments were used to compare the effects of lime (LM), apatite (AP), calcite (CA), sepiolite (SP), bentonite (BN), and biochar (BC) on Cd accumulation in potatoes. The results showed that the application of LM (0.4%), AP (1.4%), and CA (0.4%) had a positive effect on soil pH and cations, and that they effectively reduced the availability of Cd in the soil. In contrast, the application of SP, BN, and BC had no significant effect on the soil properties and Cd availability. LM, AP, and CA treatment strongly reduced Cd accumulation in the potato tubers by controlling the total 'flux' of Cd into the potato plants. In contrast, the application of SP and BN promoted the migration of Cd from the root to the shoot, while the effect of BC varied by potato genotype. Overall, calcareous materials (LM, CA, and AP) were more applicable in the remediation of Cd-contaminated soils in the study area.
Collapse
Affiliation(s)
| | - Hu Wang
- Guizhou Chuyang Ecological Environmental Protection Technology Co., Ltd., Guiyang 550025, China
| | - Fei Lou
- Guizhou University, Guiyang 550025, China
| | - Ran Qin
- Guizhou University, Guiyang 550025, China
| | | |
Collapse
|
48
|
Wang J, Yuan R, Zhang Y, Si T, Li H, Duan H, Li L, Pan G. Biochar decreases Cd mobility and rice (Oryza sativa L.) uptake by affecting soil iron and sulfur cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155547. [PMID: 35504381 DOI: 10.1016/j.scitotenv.2022.155547] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Biochar has been used as an amendment in Cd-contaminated soils. However, the mechanisms of which biochar reduce Cd mobility and rice (Oryza sativa L.) Cd uptake by modifying the iron and sulfur cycling in soil has rarely been addressed in the literature. A pot experiment has been carried out with two Cd-contaminated paddy soils (FG and DBS) from South China. Rice straw biochar (RSB) and rape straw biochar (RASB) pyrolyzed at 450 °C were applied at 0, 0.5, and 1% (w/w), respectively. The results showed that biochar amendment at a rate of 1% reduced grain Cd concentrations by 29.3-35.2%. Furthermore, biochar significantly reduced the Cd concentration of root, while the decline of Cd concentration by RASB treatment was higher than by RSB treatment. Root Cd in RASB0.5 was significantly reduced by 56.4-51.8% compared to than that in RSB0.5 at the maturing stage. Biochar reduced soil acid-soluble Cd by 15.9-25.3% with the increase of pH at the maturing stage in FG soil, and 30.1-59.3% by promoting soil into more reductive condition at the heading stage in DBS soil with higher contents of Fe and S. In addition, biochar impeded Cd transport from soil to rice roots by increasing the formation of iron plaque at the flooding stage. Owing to the influence of RASB1, DCB-Cd concentration increased significantly, with 99.7% at the heading stage in FG soil and 237.9% at the tillering stage in DBS soil, respectively. Furthermore, RASB with a higher sulfur concentration had a more positive effect on Cd immobilization and iron plaque formation compared to RSB. As a conclusion, this study suggested that biochar might be able to promote the Cd immobilization by affecting the cycling of iron and sulfur in soil.
Collapse
Affiliation(s)
- Jingbo Wang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Rui Yuan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Yuhao Zhang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Tianren Si
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Hao Li
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Huatai Duan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Lianqing Li
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China.
| | - Genxing Pan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| |
Collapse
|
49
|
He L, Wang B, Cui H, Yang S, Wang Y, Feng Y, Sun X, Feng Y. Clay-hydrochar composites return to cadmium contaminated paddy soil: Reduced Cd accumulation in rice seed and affected soil microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155542. [PMID: 35489518 DOI: 10.1016/j.scitotenv.2022.155542] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/03/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Excess cadmium (Cd) in rice precipitated by Cd contamination in paddy soils is a global human health threat and rational response is urgently needed. In this study, attapulgite-modified hydrochar (CA) and the montmorillonite-modified hydrochar (CM) were utilized in Cd-contaminated paddy soils at 0.5% (w/w) and 1% (w/w) application rates to investigate the effects of these clay-hydrochar composites on rice growth and soil Cd availability. The results show that the utility of CA and CM resulted in a significant increase in rice yield, especially at 1% application rate, which extended rice yield by 46.7-50.0% compared to 0.5% application rate. This is related to the Cd fixation and nutrient sequestration of the acidic functional groups on the surface of CA and CM. Additionally, CA-1% and CM-1% reduced the Cd concentration in rice seeds by 26.9-28.1% relative to the control. Notably, CA-1% showed the capacity to passivate Cd at the early stage of rice transplanting, lowering the proportion of Cd in the ion exchange state by 41.6% compared to the control, and this passivation effect persisted until the late stage of transplanted rice. The soil microbial community consequences showed that CA and CM did not significantly change the horizontal composition of the soil bacterial phylum and species diversity, indicating that CA and CM had excessive soil microbial adaptability. Moreover, results of correlation and Canonical Correspondence Analysis confirm that microbial genera responded significantly to the soil Cd morphologies, revealing the importance of CA and CM in the remediation of Cd-contaminated soils by influencing microorganisms. Our findings provide clay-hydrochar composites as a low-cost approach to effectively mitigate soil Cd contamination and improve the security and quality of rice.
Collapse
Affiliation(s)
- Lili He
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Center of Biochar of Zhejiang Province, Hangzhou 310021, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Shengmao Yang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Center of Biochar of Zhejiang Province, Hangzhou 310021, China
| | - Yuying Wang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Center of Biochar of Zhejiang Province, Hangzhou 310021, China
| | - Yuanyuan Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Key Laboratory for Combined Farming and Raising, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Agricultural Product Quality, Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Murdoch Applied Innovation Nanotechnology Research Group, Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 5150, Australia.
| | - Xiaolong Sun
- Institute of Agricultural Economics and Development, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Key Laboratory for Combined Farming and Raising, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Agricultural Product Quality, Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
50
|
Sun P, Chen Y, Liu J, Lu S, Guo J, Zhang Z, Zheng X. Quantitative evaluation of the synergistic effect of biochar and plants on immobilization of Pb. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115200. [PMID: 35533595 DOI: 10.1016/j.jenvman.2022.115200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/10/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Biochar and plant cooperation in remediation of heavy metal contaminated soil is effective and important, but there still have knowledge gaps of synergistic effect between the two and the synergistic pathway has not been clarified. We prepared the Enteromorpha prolifera biochar at 400 °C and 600 °C (denoted as BC400 and BC600). The Pb fractions changes in soil and Pb toxicity in Brassica juncea were investigated by adding 30 g kg-1 biochar to soil containing 1200 mg kg-1 Pb in a pot experiment. There was a significant synergistic effect between biochar and plants on Pb immobilization in soil, according to the "E > 0" of Pb fractions in the interaction equation. Pb immobilization rates of biochar-plant treatments (BJBC4 and BJBC6) were 12.47% and 11.38% higher than biochar treatment (BC4, BC6), and 17.66% and 16.28% plant treatment (BJ). BJBC4 had a better immobilization effect than BJBC6. Biochar alleviated the phytotoxicity of Pb by increasing the antioxidant enzymes activities of plants. These results indicated two synergistic pathways: (1) The high pH and oxygen-containing functional groups of biochar could immobilize Pb through ion exchange, precipitation, or complexation. (2) Biochar enhanced the activity of the antioxidant enzyme system in plants thus improving the Pb tolerance of plants. Statistical analysis methods such as the partial least squares path modeling (PLS-PM) also confirmed the pathways. In a word, clear synergistic effects and pathways could guide the application of biochar and plants in Pb-contaminated soil.
Collapse
Affiliation(s)
- Ping Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Youyuan Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Jiaxin Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Shuang Lu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jiameng Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zhiming Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xilai Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|