1
|
Niu X, Chen G, Luo N, Wang M, Ma M, Hui X, Gao Y, Li G, An T. The association between estrogenic activity evolution and the formation of different products during the photochemical transformation of parabens in water. WATER RESEARCH 2025; 276:123236. [PMID: 39908589 DOI: 10.1016/j.watres.2025.123236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Photochemical transformation is a critical factor influencing the environmental fate of pharmaceutical and personal care products in aquatic ecosystems. However, the relationship between toxicity evolution and the formation of various transformation products has been seldom explored. This study investigates the behavior and changes in estrogenic activity during the photochemical transformation of a series of typical endocrine-disrupting parabens (PBs), focusing on the effects of increasing alkyl-chain length (MPB, EPB, PPB and BPB). Based on MS/MS analysis, four types of transformation products were identified: (1) p-hydroxybenzoic acid (HB), which exhibits no estrogenic activity; (2) hydroxylated products (OH-PBs); (3) dimer products formed between HB and PBs (HB-PBs); and (4) dimer products formed from identical PBs (PBs-PBs), comprising three distinct isomers. In the absence of standard sample, OH-PBs were synthesized and their estrogenic activity was evaluated using a yeast two-hybrid reporter assay. The EC50 values were determined to be <1 × 10-3 M for OH-MPB, 2.05 × 10-4 M for OH-EPB, 5.05 × 10-5 M for OH-PPB, and 1.89 × 10-5 M for OH-BPB. These indicate that the estrogenic activity of OH-PBs is one order of magnitude lower than that of the corresponding PBs. Both HB-PBs and the three isomers of PBs-PBs exhibited significantly higher estrogenic activities than their corresponding parent compounds, increasing 9 - 14 and 32 - 184 times, respectively, based on theoretical calculations. Among the three PBs-PBs isomers, the highest estrogenic activity was observed in the ether dimer, followed by the biphenyl dimers. Consistent with the parent compounds, the estrogenic activities of OH-PBs, HB-PBs, and PBs-PBs increased with the length of the alkyl-chain. The estrogenic activity of MPB and EPB followed an overall downward trend during the photochemical transformation, whereas PPB and BPB remained stable initially before declining rapidly. This behavior was associated with the contributions of toxic transformation products. These findings elucidate the relationship between molecular structure, transformation products, and estrogenic activity, highlighting the importance of understanding estrogenic activity evolution during the photochemical transformation of PBs.
Collapse
Affiliation(s)
- Xiaolin Niu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guanhui Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Na Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinping Hui
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Styszko K, Pamuła J, Sochacka-Tatara E, Pac A, Kasprzyk-Hordern B. Estimation of public exposure to PAH and environmental risks via wastewater-based epidemiology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117920. [PMID: 39987684 DOI: 10.1016/j.ecoenv.2025.117920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/28/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
The wastewater-based epidemiology (WBE) has the potential to monitor public health emergencies via the analysis of human urinary biomarkers in wastewater. This work proposes a novel approach utilizing WBE for the spatial and temporal evaluation of PAHs exposure using hydroxyl derivatives of PAHs. These are 1-hydroxynaphthalene, 2-hydroxynaphthalene, 2-hydroxyfluorene, 9-hydroxyfluorene, 9-hydroxyphenanthrene, 1-hydroxypyrene and 3-hydroxybenzo(a)pyrene. Most target markers were found at quantifiable concentrations in raw and treated wastewater. The total loads identified in raw sewage ranged from 88.33 g/day to 154.77 g/day during the summer period and from 137.66 g/day to 283.78 2 g/day during the winter period. The obtained results for the removal efficiencies of OH-PAHs indicate a seasonal dependency in their degradation. Removal efficiencies were higher in January compared to August. The results of the back calculations allowed to estimate that during the summer, on average, a resident of Krakow could absorb approximately 2.1 µg of the assessed OH-PAHs per day, while in winter, this value increased to 4.1 µg. This is close to the reported in the literature value that the total daily exposure to OH-PAHs is estimated at 3 µg/day. Moreover, the risk quotation (RQ) values on the base of acute and chronic data base for compounds present in effluents were calculated. The RQ values in January were relatively low, but in August the RQ values were higher, indicating a high concentration of effluent and nitrogen in summer as these compounds were removed in winter and summer. To the authors' knowledge, this is the first time wastewater profiling of OH-PAHs in wastewater for the evaluation of exposure to PAHs have been used, also their removal as well emission with effluent were determined.
Collapse
Affiliation(s)
- Katarzyna Styszko
- AGH University of Krakow, Faculty of Energy and Fuels, Kraków, Poland.
| | - Justyna Pamuła
- Cracow University of Technology, Department of Geoengineering and Water Management, Faculty of Environmental Engineering and Energy, Kraków, Poland,.
| | - Elżbieta Sochacka-Tatara
- Jagiellonian University Medical College, Chair of Epidemiology and Preventive Medicine, Kraków, Poland.
| | - Agnieszka Pac
- Jagiellonian University Medical College, Chair of Epidemiology and Preventive Medicine, Kraków, Poland.
| | - Barbara Kasprzyk-Hordern
- University of Bath, Department of Chemistry, Bath BA2 7AY, UK; Centre of Excellence in Water-Based Early Warning Systems for Health Protection, University of Bath, Bath BA25RX, UK.
| |
Collapse
|
3
|
Venohr M, Beusch C, Goldhammer T, Nguyen HH, Podschun S, Schmalsch C, Wolter C. Spatial distribution of nicotine concentrations in Berlin's surface waters and their potential sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6784-6803. [PMID: 40014245 PMCID: PMC11928361 DOI: 10.1007/s11356-025-36124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
Nicotine is a ubiquitous emergent pollutant that primarily enters the environment through inappropriate disposal of cigarette butts. In a 7-week monitoring program, we collected 56 water samples from 14 lakes, 9 ponds, 9 rivers, 8 canals, and 2 canalized brooks in Berlin. Nicotine was detected in all investigated surface waters. Observed concentrations ranged between 7 ng/l and 1469 ng/l (mean 73 ng/l, median 28 ng/l). Rainy weather conditions generally led to an increase in nicotine concentrations, particularly in canals where concentrations were up to 16 times higher after rain events. For water bodies receiving sewer discharge, mean nicotine concentrations were positively related to population density, while concentrations in surface waters without sewer connections were more related to the presence of public transport stops or recreational areas. Our results highlight the high spatiotemporal variability of nicotine concentrations in urban surface waters. We recommend a temporary systematic daily or event-based monitoring of nicotine concentrations to support our findings and to better understand and quantify emission sources and concentration decay phases. This would improve our still incomplete knowledge about ecological impacts arising from long-term below-lethal nicotine concentrations in urban surface waters.
Collapse
Affiliation(s)
- Markus Venohr
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Justus-von-Liebig-Str. 7, 12489, Berlin, Germany.
| | - Christine Beusch
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Justus-von-Liebig-Str. 7, 12489, Berlin, Germany
| | - Tobias Goldhammer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Justus-von-Liebig-Str. 7, 12489, Berlin, Germany
| | - Hanh Hong Nguyen
- Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 2, 45141, Essen, Germany
- University Alliance Ruhr, Research Center One Health Ruhr, Essen, Germany
| | - Simone Podschun
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Justus-von-Liebig-Str. 7, 12489, Berlin, Germany
| | - Claudia Schmalsch
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Justus-von-Liebig-Str. 7, 12489, Berlin, Germany
| | - Christian Wolter
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Fish Biology, Fisheries and Aquaculture, Müggelseedamm 310, 12587, Berlin, Germany
| |
Collapse
|
4
|
Eren Z. The determination of wide-range pharmaceuticals class in Erzurum biological wastewater treatment plant using liquid chromatography coupled to tandem mass spectrometry: occurrence, treatment efficiency, and environmental risk assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:822-834. [PMID: 39968746 DOI: 10.1093/etojnl/vgae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/24/2024] [Accepted: 08/23/2024] [Indexed: 02/20/2025]
Abstract
Pharmaceuticals as an important group of contaminants of emerging concern (CECs) are unintentionally discharged into the aquatic environment due to lack of advanced treatment of classical wastewater treatment plants (WWTPs). Therefore, the detection and monitoring studies of pharmaceuticals and personal care products (PPCPs) in an aquatic environment are getting more important as well as the definition of their ecological risks to the aquatic ecosystem. To conduct these studies successfully, it is necessary to develop sensitive, robust, selective, and reliable methods to be able to analyze PPCPs. This study was carried out in the biological WWTP (BWWTP) of Erzurum City, Türkiye, to investigate the treatment efficiency of pharmaceuticals in the plant and to assess the ecological risks for the Karasu River where treated wastewater is discharged into it. For this purpose, a wide range of pharmaceutical classes in influent wastewater (IWW) and effluent wastewater samples taken from Erzurum BBWWTP, Türkiye was simultaneously identified and quantified with liquid chromatography coupled with tandem mass spectrometry following liquid phase extraction for sample preparation. A total of 55 active pharmaceutical groups in 25 general drug groups (29 subgroups) were detected, with the highest average ratios being 82.459%, 7.306%, 4.949%, and 2.145% for analgesic-anti-inflammatory, antiepileptic, diabetic, and antipyretic pharmaceuticals groups, respectively, in IWW. Although flurbiprofen from the analgesic-anti-inflammatory pharmaceuticals group was treated with the average efficiency of 66.13% during the 12-month treatment period, it had a high risk quotient due to the very high initial concentration in WWT in the range of 809.01-22,901.10 µg/L.
Collapse
Affiliation(s)
- Zeynep Eren
- Engineering Faculty, Environmental Engineering Department, Ataturk University, Erzurum, Türkiye
| |
Collapse
|
5
|
Styszko K, Bolesta W, Daso AP, Kasprzyk-Hordern B. Antimicrobial agents in agricultural fertilizers produced from sewage sludge - A cause for concern? THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178433. [PMID: 39798296 DOI: 10.1016/j.scitotenv.2025.178433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The production of organic-mineral fertilizers from sewage sludge is one of the ecological options in their management. Though, pharmaceuticals and their derivatives, which accumulate in the sludge, could be a problem due to their impacts on the environment. This manuscript aimed at better understanding of risks posed by antimicrobial agents (AAs) in sludge-based fertilizers. Sewage sludge and sewage-based fertilizers (from two sewage treatment plants in two cities in Poland) were tested for 99 AAs. 26 AAs were detected in the sludge at concentrations reaching 112,000 μg/kg. Several AAs were successfully removed during the sludge treatment process (sulfasalazine, sulfapyridine, isoniazid, isonicotinic acid, erythromycin, clarithromycin, erythromycin N-desmethyl, clarithromycin N-desmethyl, azithromycin N-desmethyl, emtricitabine, ANP) with reduction ranging from 34 % to 96,5 %. It is worth noting that penicillin V and ofloxacin/levofloxacin were recorded at higher concentrations in the fertilizer than in the sludge, which indicates the process of concentration of these AAs as a result of drying the fertilizer. Penicillin V content increased by 153 % and 191 % in WWTP 1 and WWTP 2 samples, respectively. The level of ofloxacin/levofloxacin increased by 70 % in fertilizer from WWTP 1, and decreased by 40 % in fertilizer from WWTP 2. The AAs leaching test revealed that 7 AAs (isoniazid, sulfapyridine, ofloxacin/levofloxacin, clindamycin, azithromycin, isonicotinic acid, pyrazinoic acid 5-hydroxy-) have potential to leach into the receiving soil environment after sludge-based fertilizer application. The risk factor (RQ) for sulfapyridine, ofloxacin/levofloxacin, isonicotinic acid and linezolid was too low to estimate, below 0.1, so the risk has mild environmental impacts. An RQ value of isoniazid and clindamycin ranging from 0.1 to 1.0 indicates a low risk to soil. Azithromycin RQ >36 denoted a high environmental risk. This warrants further study to understand risks from AAs present in sludge-based products.
Collapse
Affiliation(s)
- Katarzyna Styszko
- AGH University of Krakow, Faculty of Energy and Fuels, Department of Fuels Technology, al. Mickiewicza 30, 30-059 Kraków, Poland.
| | - Wioleta Bolesta
- AGH University of Krakow, Faculty of Energy and Fuels, Department of Fuels Technology, al. Mickiewicza 30, 30-059 Kraków, Poland; Water and Sewage Company Żory, ul. Wodociągowa 10, 44-240 Żory, Poland
| | - Adegbenro Peter Daso
- University of Bath, Department of Chemistry, Bath BA2 7AY, United Kingdom; University of Bath, Research and Innovation Services, Bath BA2 7AY, United Kingdom
| | - Barbara Kasprzyk-Hordern
- University of Bath, Department of Chemistry, Bath BA2 7AY, United Kingdom; Centre of Excellence in Water-Based Early Warning Systems for Health Protection, University of Bath, Bath BA25RX, United Kingdom
| |
Collapse
|
6
|
Ianes J, Cantoni B, Polesel F, Remigi EU, Vezzaro L, Antonelli M. Monitoring (micro-)pollutants in wastewater treatment plants: Comparing discharges in wet- and dry-weather. ENVIRONMENTAL RESEARCH 2024; 263:120132. [PMID: 39389202 DOI: 10.1016/j.envres.2024.120132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Municipal wastewater treatment plants (WWTPs) are crucial for maintaining good quality of surface water, limiting environmental pollution. However, during wet-weather events, WWTPs become an important point-source discharge due to the activation of the bypass, which releases a mix of untreated wastewater and stormwater. This work aims to assess how the WWTP discharges (effluent and bypass) impact on the receiving surface water body during dry- and wet-weather, monitoring 78 pollutants (7 conventional pollutants, 19 heavy metals, and 52 micropollutants) in each stream (effluent during dry-weather, effluent and bypass during wet-weather), including the influent in dry-weather for comparison. The occurrence, concentration levels and variability, and environmental risk were addressed, with a specific focus on high-resolution (up to 20-min) sampling of the bypass, based on the expected relevant temporal dynamicity. A wider range of pollutants occurred in the bypass, included undetected compounds in the dry-weather influent. Besides, a greater inter-events variability in bypass concentrations was observed, but smaller intra-event variability, with only some pollutants exhibiting a distinct first-flush effect. To address the challenge of a cost-effective bypass monitoring, we explored the applicability of readily measurable water quality parameters (total suspended solids and electrical conductivity) as proxies for micropollutants. Correlations between these parameters and specific pollutant groups suggest a promising path for further investigation and broader application. The magnitude of the rain event also affected concentration levels, with event volume clearly affecting pollutants dilution. The environmental risk assessment revealed a significantly higher risk associated to bypass discharge compared to the effluent, especially for conventional pollutants, metals, and terbutryn, highlighting the urgency of improved bypass management strategies. Overall, this study highlights the contribution of wet-weather discharges from WWTPs, emphasizing the importance of high-frequency bypass monitoring to capture peak pollutant concentrations and accurately assess the environmental risk.
Collapse
Affiliation(s)
- Jessica Ianes
- Politecnico Milano, Department of Civil and Environmental Engineering (DICA) - Environmental Section, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Beatrice Cantoni
- Politecnico Milano, Department of Civil and Environmental Engineering (DICA) - Environmental Section, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | | | | | - Luca Vezzaro
- Technical University of Denmark, Department of Environmental and Resources Engineering (DTU Sustain), Bygningstorvet, Building 115, 2800 Kongens Lyngby
| | - Manuela Antonelli
- Politecnico Milano, Department of Civil and Environmental Engineering (DICA) - Environmental Section, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
| |
Collapse
|
7
|
Soriano Y, Carmona E, Renovell J, Picó Y, Brack W, Krauss M, Backhaus T, Inostroza PA. Co-occurrence and spatial distribution of organic micropollutants in surface waters of the River Aconcagua and Maipo basins in Central Chile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176314. [PMID: 39306134 DOI: 10.1016/j.scitotenv.2024.176314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Organic Micropollutants (OMPs) might pose significant risks to aquatic life and have potential toxic effects on humans. These chemicals typically occur as complex mixtures rather than individually. Information on their co-occurrence and their association with land use is largely lacking, even in industrialized countries. Furthermore, data on the presence of OMPs in freshwater ecosystems in South America is insufficient. Consequently, we assessed the co-occurrence and distribution of OMPs, including pharmaceuticals, pesticides, personal care products, surfactants, and other industrial OMPs, in surface waters of two river basins in central Chile. We focused on identifying and ranking quantified chemicals, classifying their mode of actions, as well as correlating their occurrence with distinct land uses. We identified and quantified 311 compounds that occurred at least once in the River Aconcagua and River Maipo basins, encompassing compounds from urban, agricultural, industrial, and pharmaceutical sectors. Pharmaceuticals were the most frequently occurring chemicals, followed by pesticides, personal care and household products. OMPs with neuroactive properties dominated surface waters in Central Chile, along with OMPs known to alter the cardiovascular and endocrine systems of humans and aquatic animals. Finally, we observed positive correlations between agricultural and urban land uses and OMPs. Our findings represent a step forward in extending current knowledge on the co-occurrence patterns of OMPs in aquatic environments, particularly in developing countries of the southern hemisphere.
Collapse
Affiliation(s)
- Yolanda Soriano
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE) CSIC-GV-UV, Valencia, Spain
| | - Eric Carmona
- Department Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Javier Renovell
- Soil and water conservation system group, Desertification Research Centre-CIDE (CSIC, GV, UV), Valencia, Spain
| | - Yolanda Picó
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE) CSIC-GV-UV, Valencia, Spain
| | - Werner Brack
- Department Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| | - Martin Krauss
- Department Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Thomas Backhaus
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany; Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Pedro A Inostroza
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany; Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
8
|
Wang W, Xie T, Ma N, Jiang X, Zhang H, Sun T, Cui B. In-stream attenuation and enantioselective fractionation of psychiatric pharmaceuticals in a wastewater effluent-dominated river basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175521. [PMID: 39147057 DOI: 10.1016/j.scitotenv.2024.175521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Wastewater effluent is the main contributor of psychiatric pharmaceuticals (PPs) pollution in surface waters. However, little is known about its spatial evolution dynamics in effluent-dominated rivers. Herein, 10 representative PPs, including 6 chiral pharmaceuticals and 4 achiral pharmaceuticals, were explored in the Beiyun River, a typical wastewater effluent-dominated river, to explore their occurrence, in-stream attenuation and enantioselective fractionation behaviors at a watershed scale. Among the target substances, 8 and 9 drugs were detected in surface water and sediment samples with the ΣPPs concentrations ranging from 78.4 to 260.1 ng/L and 4.8 to 43.4 ng/g dw in surface water and sediments, respectively. Along the mainstream of the Beiyun River, only several PPs detected in surface water, e.g., citalopram, O-demethylvenlafaxine, and fluoxetine, exhibited in-stream attenuation behaviors when reaching rural area, while all PPs detected in sediments displayed in-stream attenuation behavior. Four chiral PPs detected in surface water exhibited an enantioselective attenuation phenomenon, while in sediments, only citalopram displayed an enantioselective fractionation behavior. The differences in the in-stream attenuation and enantioselective environmental behavior of individual PPs caused complex contaminant evolution along the stream reach. This work provides enantiomeric profiles of chiral pollutants for evaluating their in-stream attenuation processes, which would facilitate better understanding of the changing contaminant exposure conditions in complex natural environments.
Collapse
Affiliation(s)
- Weimin Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Tian Xie
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ning Ma
- Beijing Drainage Management Affairs Center, Beijing 100195, China
| | - Xiaoman Jiang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hui Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Tao Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baoshan Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Jiang T, Wu W, Ma M, Hu Y, Li R. Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175664. [PMID: 39173760 DOI: 10.1016/j.scitotenv.2024.175664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Emerging contaminants are pervasive in aquatic environments globally, encompassing pharmaceuticals, personal care products, steroid hormones, phenols, biocides, disinfectants and various other compounds. Concentrations of these contaminants are detected ranging from ng/L to μg/L. Even at trace levels, these contaminants can pose significant risks to ecosystems and human health. This article systematically summarises and categorizes data on the concentrations of 54 common emerging contaminants found in the influent and effluent of wastewater treatment plants across various geographical regions: North America, Europe, Oceania, Africa, and Asia. It reviews the occurrence and distribution of these contaminants, providing spatial and causal analyses based on data from these regions. Notably, the maximum concentrations of the pollutants observed vary significantly across different regions. The data from Africa, in particular, show more frequent detection of pharmaceutical maxima in wastewater treatment plants.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenyong Wu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Meng Ma
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Yaqi Hu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Ruoxi Li
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| |
Collapse
|
10
|
Ceolotto N, Jagadeesan K, Xu L, Standerwick R, Robertson M, Barden R, Barnett J, Kasprzyk-Hordern B. Personal care products use during SARS-CoV-2 pandemic: Environmental and public health impact assessment using wastewater-based epidemiology. WATER RESEARCH 2024; 268:122624. [PMID: 39490091 DOI: 10.1016/j.watres.2024.122624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
The recent SARS-CoV-2 pandemic had profound consequences on people's wellbeing, societies and economy worldwide. This manuscript discusses public exposure to chemicals of concern in personal care products (parabens and benzophenones) during SARS-CoV-2 pandemic. These were monitored for two years in four catchments (two cities and two towns) in South West England accounting for >1 million people. Results showed slightly higher usage of personal care products in small towns than big cities. Major changes in usage of parabens (p values < 0.05) were observed during national lockdowns (NLs). This is likely due to increased awareness towards personal hygiene. In contrast, benzophenones showed seasonal trends; there were higher correlations with sunshine prevalence and temperature rather than NLs reflecting their usage in sunscreen products. Estimation of per capita intake of parabens and benzophenones using WBE revealed lower intake than the Acceptable Daily Intake (ADI) established by the EFSA; however, the metabolism factor used was considered putative due to the lack of pharmacokinetic studies. Prediction of environmental exposure revealed peaks of higher impact during NLs and first year of pandemic, nevertheless the overall predicted values were below Predicted No Effect Concentrations (PNEC).
Collapse
Affiliation(s)
- Nicola Ceolotto
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Institute for Sustainability, University of Bath, Bath BA2 7AY, UK; Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, UK
| | - Kishore Jagadeesan
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, UK
| | - Like Xu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Richard Standerwick
- Wessex Water, Bath BA2 7WW, UK; Environment Agency, Horizon House, Deanery Road, Bristol, UK
| | - Megan Robertson
- Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, UK; Wessex Water, Bath BA2 7WW, UK
| | - Ruth Barden
- Institute for Sustainability, University of Bath, Bath BA2 7AY, UK; Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, UK; Wessex Water, Bath BA2 7WW, UK
| | - Julie Barnett
- Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, UK; Department of Psychology, University of Bath, Bath BA2 7AY, UK
| | - Barbara Kasprzyk-Hordern
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Institute for Sustainability, University of Bath, Bath BA2 7AY, UK; Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
11
|
Pearson AJ, Mukherjee K, Fattori V, Lipp M. Opportunities and challenges for global food safety in advancing circular policies and practices in agrifood systems. NPJ Sci Food 2024; 8:60. [PMID: 39237595 PMCID: PMC11377707 DOI: 10.1038/s41538-024-00286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/21/2024] [Indexed: 09/07/2024] Open
Abstract
Sustainable agrifood systems are needed to provide safe and nutritious food for the growing world's population. To improve sustainability, transforming linear policies and practices in agrifood systems into circularity will be critical, with food safety considerations key for the success of this shift. This review provides a synthesis of the current and emerging risks, data gaps, and opportunities for food safety in agrifood initiatives aiming to advance circular economy models.
Collapse
Affiliation(s)
- Andrew J Pearson
- Agrifood Systems and Food Safety Division, Food and Agriculture Organization of the United Nations, Rome, Italy.
- Tonkin + Taylor Ltd, Wellington, New Zealand.
| | - Keya Mukherjee
- Agrifood Systems and Food Safety Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Vittorio Fattori
- Agrifood Systems and Food Safety Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Markus Lipp
- Agrifood Systems and Food Safety Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| |
Collapse
|
12
|
Alqarni AM. Analytical Methods for the Determination of Pharmaceuticals and Personal Care Products in Solid and Liquid Environmental Matrices: A Review. Molecules 2024; 29:3900. [PMID: 39202981 PMCID: PMC11357415 DOI: 10.3390/molecules29163900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Among the various compounds regarded as emerging contaminants (ECs), pharmaceuticals and personal care products (PPCPs) are of particular concern. Their continuous release into the environment has a negative global impact on human life. This review summarizes the sources, occurrence, persistence, consequences of exposure, and toxicity of PPCPs, and evaluates the various analytical methods used in the identification and quantification of PPCPs in a variety of solid and liquid environmental matrices. The current techniques of choice for the analysis of PPCPs are state-of-the-art liquid chromatography coupled to mass spectrometry (LC-MS) or tandem mass spectrometry (LC-MS2). However, the complexity of the environmental matrices and the trace levels of micropollutants necessitate the use of advanced sample treatments before these instrumental analyses. Solid-phase extraction (SPE) with different sorbents is now the predominant method used for the extraction of PPCPs from environmental samples. This review also addresses the ongoing analytical method challenges, including sample clean-up and matrix effects, focusing on the occurrence, sample preparation, and analytical methods presently available for the determination of environmental residues of PPCPs. Continuous development of innovative analytical methods is essential for overcoming existing limitations and ensuring the consistency and diversity of analytical methods used in investigations of environmental multi-class compounds.
Collapse
Affiliation(s)
- Abdulmalik M Alqarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
13
|
Rafeletou A, Niemi JVL, Lagunas-Rangel FA, Liu W, Kudłak B, Schiöth HB. The exposure to UV filters: Prevalence, effects, possible molecular mechanisms of action and interactions within mixtures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:170999. [PMID: 38458461 DOI: 10.1016/j.scitotenv.2024.170999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
Substances that can absorb sunlight and harmful UV radiation such as organic UV filters are widely used in cosmetics and other personal care products. Since humans use a wide variety of chemicals for multiple purposes it is common for UV filters to co-occur with other substances either in human originating specimens or in the environment. There is increasing interest in understanding such co-occurrence in form of potential synergy, antagonist, or additive effects of biological systems. This review focuses on the collection of data about the simultaneous occurrence of UV filters oxybenzone (OXYB), ethylexyl-methoxycinnamate (EMC) and 4-methylbenzylidene camphor (4-MBC) as well as other classes of chemicals (such as pesticides, bisphenols, and parabens) to understand better any such interactions considering synergy, additive effect and antagonism. Our analysis identified >20 different confirmed synergies in 11 papers involving 16 compounds. We also highlight pathways (such as transcriptional activation of estrogen receptor, promotion of estradiol synthesis, hypothalamic-pituitary-gonadal (HPG) axis, and upregulation of thyroid-hormone synthesis) and proteins (such as Membrane Associated Progesterone Receptor (MAPR), cytochrome P450, and heat shock protein 70 (Hsp70)) that can act as important key nodes for such potential interactions. This article aims to provide insight into the molecular mechanisms on how commonly used UV filters act and may interact with other chemicals.
Collapse
Affiliation(s)
- Alexandra Rafeletou
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jenni Viivi Linnea Niemi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Yao L, Liu YH, Zhou X, Yang JH, Zhao JL, Chen ZY. Uptake, tissue distribution, and biotransformation pattern of triclosan in tilapia exposed to environmentally-relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171270. [PMID: 38428603 DOI: 10.1016/j.scitotenv.2024.171270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Although triclosan has been ubiquitously detected in aquatic environment and is known to have various adverse effects to fish, details on its uptake, bioconcentration, and elimination in fish tissues are still limited. This study investigated the uptake and elimination toxicokinetics, bioconcentration, and biotransformation potential of triclosan in Nile tilapia (Oreochromis niloticus) exposed to environmentally-relevant concentrations under semi-static regimes for 7 days. For toxicokinetics, triclosan reached a plateau concentration within 5-days of exposure, and decreased to stable concentration within 5 days of elimination. Approximately 50 % of triclosan was excreted by fish through feces, and up to 29 % of triclosan was excreted through the biliary excretion. For fish exposed to 200 ng·L-1, 2000 ng·L-1, and 20,000 ng·L-1, the bioconcentration factors (log BCFs) of triclosan in fish tissues obeyed similar order: bile ≈ intestine > gonad ≈ stomach > liver > kidney ≈ gill > skin ≈ plasma > brain > muscle. The log BCFs of triclosan in fish tissues are approximately maintained constants, no matter what triclosan concentrations in exposure water. Seven biotransformation products of triclosan, involved in both phase I and phase II metabolism, were identified in this study, which were produced through hydroxylation, bond cleavages, dichlorination, and sulfation pathways. Metabolite of triclosan-O-sulfate was detected in all tissues of tilapia, and more toxic product of 2,4-dichlorophenol was also found in intestine, gonad, and bile of tilapia. Meanwhile, two metabolites of 2,4-dichlorophenol-O-sulfate and monohydroxy-triclosan-O-sulfate were firstly discovered in the skin, liver, gill, intestine, gonad, and bile of tilapia in this study. These findings highlight the importance of considering triclosan biotransformation products in ecological assessment. They also provide a scientific basis for health risk evaluation of triclosan to humans, who are associated with dietary exposure through ingesting fish.
Collapse
Affiliation(s)
- Li Yao
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Yue-Hong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xi Zhou
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Jia-Hui Yang
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Zhi-Yong Chen
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| |
Collapse
|
15
|
Duny M, Cortéjade A, Wiest L, Nicolas M, Vulliet E. Single injection LC-MS/MS analytical method for the quantification of diverse families of micropollutants, including PFAS and organotins, in Gammarus fossarum. J Chromatogr A 2024; 1720:464778. [PMID: 38432107 DOI: 10.1016/j.chroma.2024.464778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Since the last decades, light has been shed on the pollution of aquatic ecosystems. Considering apolar compounds in water, analysis of the dissolved phase is not sufficient due to their possible bioaccumulation. Additional analysis of sediments, biota, or sentinel species is necessary. Among sentinel species, Gammarus fossarum is a small shrimp of 30 mg that lives naturally in the river. Its ability to bioaccumulate makes it a good bioindicator of river pollution. Nevertheless, micropollutants are difficult to extract from gammarids due to their small size and their high level of lipids. Extracted interferences can lead to analytical difficulties. Targeted micropollutants in this work were organotins, personal and pharmaceutical care products (PPCPs), pesticides, flame retardants, and perfluorinated compounds. A sample preparation based on QuEChERS followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was developed: different salts (acetate and citrate) and purification (addition of hexane, dispersive SPE) were tested and validated. Targeted molecules used to be analyzed by LC-MS/MS, except organotins which are principally analyzed in gas chromatography. One of the main challenges was to quantify them also in LC-MS/MS to implement an original multi-residue method. The analysis of 40 compounds was finally validated according to ICH guidelines, with LOQs ranging from 0.04 ng.g-1 to 313.5 ng.g-1. Regarding Perfluorooctanesulfonic acid (PFOS) and the sum of hexabromocyclododecane, LOQs reached the environmental quality standards in biota which are respectively of 9.1 and 167 ng.g-1. Finally, the method was applied to 15 real samples. Many compounds were quantified: perfluorinated compounds, drugs such as ketoprofen, and even cosmetics products such as octocrylene. This is the first study to quantify as many emerging compounds, especially organotins, in a sentinel species such as G. fossarum.
Collapse
Affiliation(s)
- Mathilde Duny
- CARSO-LSEHL, 4 avenue Jean Moulin, Vénissieux 69633, France; Universite Claude Bernard Lyon 1 ISA, UMR 5280 CNRS, 5 rue de la Doua, Villeurbanne 69100, France
| | | | - Laure Wiest
- Universite Claude Bernard Lyon 1 ISA, UMR 5280 CNRS, 5 rue de la Doua, Villeurbanne 69100, France
| | | | - Emmanuelle Vulliet
- Universite Claude Bernard Lyon 1 ISA, UMR 5280 CNRS, 5 rue de la Doua, Villeurbanne 69100, France.
| |
Collapse
|
16
|
Gonkowski S, Tzatzarakis M, Vakonaki E, Meschini E, Könyves L, Rytel L. Biomonitoring of parabens in wild boars through hair samples analysis. PLoS One 2024; 19:e0297938. [PMID: 38381722 PMCID: PMC10880979 DOI: 10.1371/journal.pone.0297938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Parabens are compounds widely utilized in the industry as preservative additives to personal care products, cosmetics and food. They pollute the environment and penetrate to the living organisms through the digestive tract, respiratory system and skin. Till now the knowledge about exposure of terrestrial wild mammals to parabens is extremely scarce. Therefore, this study for the first time assessed the concentration levels of five parabens commonly used in industry (methylparaben-MeP, ethylparaben-EtP propylparaben-PrP, benzylparaben -BeP and butylparaben-BuP). Substances have been analyzed in hair samples collected from wild boars using liquid chromatography-mass spectrometry (LC-MS) method. The hair is a matrix, which allows to study long-term exposure of organisms to parabens. During this study MeP was noted in 96.3% of samples with mean 88.3±72.9 pg/mg, PrP in 87.0% of samples with mean 8.5±3.3 pg/mg, BeP in 44.4% of samples with mean 17.2±12.3 pg/mg and EtP in 11.1% of samples with mean 17.2±4.8 pg/mg. In turn BuP was noted only in 3.7% of samples with concentration levels below limit of quantification (2.6 pg/mg). Statistically significant intragender differences in parabens levels have not been noted. Only BeP concentration levels depended on industrialization and density of human population of area, where the animals lived. This study indicates that wild boars are exposed to parabens, especially to MeP and PrP, and analysis of the hair seems to be a useful tool of biomonitoring of parabens in wild mammals.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Manolis Tzatzarakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Elena Meschini
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - László Könyves
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, Budapest, Hungary
| | - Liliana Rytel
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
17
|
Wilschnack K, Homer B, Cartmell E, Yates K, Petrie B. Targeted multi-analyte UHPLC-MS/MS methodology for emerging contaminants in septic tank wastewater, sludge and receiving surface water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:709-720. [PMID: 38214144 DOI: 10.1039/d3ay01201h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Septic tanks treat wastewater of individual houses and small communities (up to 2000 people in Scotland) in rural and semi-urban areas and are understudied sources of surface water contamination. A multi-analyte methodology with solid phase extraction (SPE), ultra-sonic extraction, and direct injection sample preparation methods was developed to analyse a comprehensive range of emerging contaminants (ECs) including prescription and over-the-counter pharmaceuticals and related metabolites, natural and synthetic hormones, and other human wastewater marker compounds in septic tank influent and effluent, river water, suspended solids, and septic tank sludge by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The number of quantifiable compounds in each matrix varied from 68 in septic tank wastewater to 59 in sludge illustrating its applicability across a range of matrices. Method quantification limits were 2.9 × 10-5-1.2 μg L-1 in septic tank influent, effluent and river water, with ≤0.01 μg L-1 achieved for 60% of ECs in all three water matrices, and 0.080-49 μg kg-1 in sludge. The developed method was applied to a septic tank (292 population equivalents) and the receiving river in the North-East of Scotland. Across all samples analysed, 43 of 68 ECs were detected in at least one matrix, demonstrating the method's sensitivity. The effluent concentrations suggest limited removal of ECs in septic tanks and a potential impact to river water quality for some ECs. However, further monitoring is required to better appreciate this. The developed methodology for a wide variety of ECs in a range of liquid and solid phases will allow, for the first time, a comprehensive assessment of ECs fate and removal in septic tanks, and their impact to surface water quality.
Collapse
Affiliation(s)
- Kai Wilschnack
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
| | - Bess Homer
- Scottish Water, 55 Buckstone Terrace, Edinburgh EH10 6XH, UK
| | - Elise Cartmell
- Scottish Water, 55 Buckstone Terrace, Edinburgh EH10 6XH, UK
| | - Kyari Yates
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
| | - Bruce Petrie
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
| |
Collapse
|
18
|
Hernández-Tenorio R. Hydroxylated transformation products of pharmaceutical active compounds: Generation from processes used in wastewater treatment plants and its environmental monitoring. CHEMOSPHERE 2024; 349:140753. [PMID: 38006923 DOI: 10.1016/j.chemosphere.2023.140753] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Pharmaceutical active compounds (PhACs) are organic pollutants detected in wastewater and aquatic environments worldwide in concentrations ranging from ng L-1 to μg L-1. Wastewater effluents containing PhACs residues is discharged in municipal sewage and, subsequently collected in municipal wastewater treatment plants (WWTPs) where are not entirely removed. Thus, PhACs and its transformation products (TPs) are discharged into water bodies. In the current work, the transformation of PhACs under treatments used in municipal WWTPs such as biological, photolysis, chlorination, and ozonation processes was reviewed. Data set of the major transformation pathways were obtained of studies that performed the PhACs removal and TPs monitoring during batch-scale experiments using gas and liquid chromatography coupled with tandem mass spectrometry (GC/LC-MS/MS). Several transformation pathways as dealkylation, hydroxylation, oxidation, acetylation, aromatic ring opening, chlorination, dehalogenation, photo-substitution, and ozone attack reactions were identified during the transformation of PhACs. Especially, hydroxylation reaction was identified as transformation pathway in all the processes. During the elucidation of hydroxylated TPs several isobaric compounds as monohydroxylated and dihydroxylated were identified. However, hydroxylated TPs monitoring in wastewater and aquatic environments is a topic scarcely studied due to that has no environmental significance, lack of available analytic standars of hydroxylated TPs and lack of analytic methods for their identification. Thus, screening strategy for environmental monitoring of hydroxylated TPs was proposed through target and suspect screening using GC/LC-MS/MS systems. In the next years, more studies on the hydroxylated TPs monitoring are necessary for its detection in WWTPs effluents as well as studies on their environmental effects in aquatic environments.
Collapse
Affiliation(s)
- Rafael Hernández-Tenorio
- Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco A.C., Sede Noreste, Vía de La Innovación 404, Autopista Monterrey-Aeropuerto Km 10, Parque PIIT, Apodaca, Nuevo León, C.P. 66628, Mexico.
| |
Collapse
|
19
|
Pereira AR, Simões M, Gomes IB. Parabens as environmental contaminants of aquatic systems affecting water quality and microbial dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167332. [PMID: 37758132 DOI: 10.1016/j.scitotenv.2023.167332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Among different pollutants of emerging concern, parabens have gained rising interest due to their widespread detection in water sources worldwide. This occurs because parabens are used in personal care products, pharmaceuticals, and food, in which residues are generated and released into aquatic environments. The regulation of the use of parabens varies across different geographic regions, resulting in diverse concentrations observed globally. Concentrations of parabens exceeding 100 μg/L have been found in wastewater treatment plants and surface waters while drinking water (DW) sources typically exhibit concentrations below 6 μg/L. Despite their low levels, the presence of parabens in DW is a potential exposure route for humans, raising concerns for both human health and environmental microbiota. Although a few studies have reported alterations in the functions and characteristics of microbial communities following exposure to emerging contaminants, the impact of the exposure to parabens by microbial communities, particularly biofilm colonizers, remains largely understudied. This review gathers the most recent information on the occurrence of parabens in water sources, as well as their effects on human health and aquatic organisms. The interactions of parabens with microbial communities are reviewed for the first time, filling the knowledge gaps on the effects of paraben exposure on microbial ecosystems and their impact on disinfection tolerance and antimicrobial resistance, with potential implications for public health.
Collapse
Affiliation(s)
- Ana Rita Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
20
|
Honti M, Zsugyel M, Seller C, Fenner K. Benchmarking the Persistence of Active Pharmaceutical Ingredients in River Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14684-14693. [PMID: 37729605 DOI: 10.1021/acs.est.3c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Assessing the persistence of organic micropollutants from field data has been notoriously laborious, requiring extensive data including emissions and chemical properties, and the application of detailed mass-balance models, which often contain parameters that are impossible to measure. To overcome some of these obstacles, we developed the concept of persistence benchmarking for large rivers that receive numerous emissions and provide enough residence time to observe the dissipation of compounds. We estimated the dissipation rate constants of 41 compounds (mostly active pharmaceutical ingredients) from five measurement campaigns in the Rhine and Danube rivers using concentration rate profiles with respect to carbamazepine. Dissipation rates clearly distinguished between known fast- and slow-degrading compounds, and campaign-specific boundary conditions had an influence on a minor subset of compounds only. Benchmarking provided reasonable estimates on summer total system half-lives in the Rhine compared to previous laboratory experiments and a mass-balance modeling study. Consequently, benchmarking can be a straightforward persistence assessment method of continuously emitted organic micropollutants in large river systems, especially when it is supported by field monitoring campaigns of proper analytical quality and spatial resolution.
Collapse
Affiliation(s)
- Mark Honti
- ELKH-BME Water Research Group, Eötvös Loránd Research Network, 1111 Budapest, Hungary
| | - Márton Zsugyel
- ELKH-BME Water Research Group, Eötvös Loránd Research Network, 1111 Budapest, Hungary
| | - Carolin Seller
- Eawag Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Kathrin Fenner
- Eawag Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
21
|
Liu J, Ge S, Shao P, Wang J, Liu Y, Wei W, He C, Zhang L. Occurrence and removal rate of typical pharmaceuticals and personal care products (PPCPs) in an urban wastewater treatment plant in Beijing, China. CHEMOSPHERE 2023; 339:139644. [PMID: 37495050 DOI: 10.1016/j.chemosphere.2023.139644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
The occurrence and removal rate of 52 typical pharmaceuticals and personal care products (PPCPs) were investigated in a wastewater treatment plant in Beijing, China. Thirty-three PPCPs were found in the influent, with caffeine (CF, 11387.0 ng L-1) being the most abundant, followed by N,N-diethyl-meta-toluamide (DEET, 9568.4 ng L-1), metoprolol (MTP, 930.2 ng L-1), and diclofenac (DF, 710.3 ng L-1). After treatment processes, the cumulative concentration of PPCPs decreased from 2.54 × 104 ng L-1 to 1.44 × 103 ng L-1, with the overall removal efficiency (RE) of 94.3%. Different treatment processes showed varying contributions in removing PPCPs. PPCPs were efficiently removed in sedimentation, anoxic, and ultraviolet units. For individual compounds, a great variation in RE (52.1-100%) was observed. Twenty-two PPCPs were removed by more than 90%. The highly detected PPCPs in the influent were almost completely removed. Aerated grit chamber removed nearly 50% of fluoroquinolone (FQs) and more than 60% of sulfonamides. Most PPCPs showed low or negative removals during anaerobic treatment, except for CF which was eliminated by 64.9%. Anoxic treatment demonstrated positive removals for most PPCPs, with the exceptions of DF, MTP, bisoprolol, carbamazepine (CBZ), and sibutramine. DEET and bezafibrate were efficiently removed during the secondary sedimentation. Denitrification biological filter and membrane filtration also showed positive effect on most PPCPs removals. The remaining compounds were oxidized by 16-100% in ozonation. DF, sulpiride, ofloxacin (OFL), trimethoprim, and phenolphthalein were not amenable to ultraviolet. After the treatment, the residue OFL, CBZ, and CF in receiving water were identified to pose high risk to aquatic organisms. Considering the complex mixtures emitted into the environment, therapeutic groups psychotropics, stimulant, and FQs were classified as high risk. These findings provide valuable insights into adopting appropriate measures for more efficient PPCPs removals, and emphasize the importance of continued monitoring specific PPCPs and mixtures thereof to safeguard the ecosystem.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China.
| | - Simin Ge
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Peng Shao
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China.
| | - Jianfeng Wang
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Yanju Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Wei Wei
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Can He
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, People's Republic of China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| |
Collapse
|
22
|
Zhao J, Lu J, Zhao H, Yan Y, Dong H. In five wastewater treatment plants in Xinjiang, China: Removal processes for illicit drugs, their occurrence in receiving river waters, and ecological risk assessment. CHEMOSPHERE 2023; 339:139668. [PMID: 37517667 DOI: 10.1016/j.chemosphere.2023.139668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Residues of illicit drugs are frequently detected in wastewater, but data on their removal efficiency by wastewater treatment plants (WWTPs) and the ecological risks to the aquatic environment are lacking in this study. The research evaluates the residues, mass load, drug removal efficiency, and risk assessment of illicit drugs in WWTPs and aquatic environments (lakes) in Xinjiang, China. Initially, the concentration (incidence) and mass load of 10 selected illicit drugs were analyzed through wastewater analysis. The detected substances included methamphetamine (METH), morphine (MOR), 3,4-methylenedioxy methamphetamine (MDMA), methadone (MTD), cocaine (COC), benzoylecgonine (BE), ketamine (KET), and codeine (COD), with concentrations ranging from 0.11 ± 0.01 ng/L (methadone) to 48.26 ± 25.05 ng/L (morphine). Notably, morphine (59.74 ± 5.82 g/day) and methamphetamine (41.81 ± 4.91 g/day) contributed significantly to the WWTPs. Next, the drug removal efficiency by different sewage treatment processes was ranked as follows: Anaerobic-Oxic (A/O) combined Membrane Bio-Reactor (MBR) treatment process > Oxidation ditch treatment process > Anaerobic-Anoxic-Oxic (A2/O) treatment process > Anaerobic-Anoxic-Oxic combined Membrane Bio-Reactor treatment process. Finally, the research reviewed the concentration and toxicity assessments of these substances in the aquatic environment (lakes). The results indicated that Lake1 presented a medium risk level concerning the impact of illicit drugs on the aquatic environment, whereas the other lakes exhibited a low risk level. As a result, it is recommended to conduct long-term monitoring and source analysis of illicit drugs, specifically in Lake1, for further investigation. In conclusion, to enhance the understanding of the effects of illicit drugs on the environment, future research should expand the list of target analytes.
Collapse
Affiliation(s)
- Jie Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.
| | - Haijun Zhao
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832003, China
| | - Yujun Yan
- School of Chemistry and Chemical Engineering, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Hongyu Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
23
|
Zhao JH, Hu LX, Xiao S, Zhao JL, Liu YS, Yang B, Zhang QQ, Ying GG. Screening and prioritization of organic chemicals in a large river basin by suspect and non-target analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122098. [PMID: 37352960 DOI: 10.1016/j.envpol.2023.122098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Many organic chemicals are present in aquatic environments, but how to screen and prioritize these chemicals has always been a difficult task. Here we investigated organic chemicals in the West River Basin by using a developed non-target identification workflow. A total of 957 chemicals were tentatively identified, with 96 assigned as high confidence levels by matching with reference standards, MassBank spectral library, and using CompTox Chemistry Dashboard database as the compound library for MetFrag. More pesticides and their transformation products (e.g., metolachlor ESA, acetochlor ESA, deethylatrazine, and hydroxyatrazine) were detected in the wet season due to the increasing usage. High detection of pharmaceutical and personal care products and their transformation products in the tributaries was linked to rural farming and human activities. Irbesartan that is used to treat high blood pressure was recognized in the river and positive correlations between some detected chemicals and irbesartan were observed, indicating a domestic wastewater source. Ecological risks of the identified chemicals were calculated by toxicological prioritization ranking schemes, and 24 chemicals showed high ToxPi scores in the river. The results from this study show the presence of a large number of emerging organic chemicals in our waterways, and demonstrated conceptual schemes for integrating risk assessment into a non-target screening workflow.
Collapse
Affiliation(s)
- Jia-Hui Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Sheng Xiao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Bin Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
24
|
Tyumina E, Subbotina M, Polygalov M, Tyan S, Ivshina I. Ketoprofen as an emerging contaminant: occurrence, ecotoxicity and (bio)removal. Front Microbiol 2023; 14:1200108. [PMID: 37608946 PMCID: PMC10441242 DOI: 10.3389/fmicb.2023.1200108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Ketoprofen, a bicyclic non-steroidal anti-inflammatory drug commonly used in human and veterinary medicine, has recently been cited as an environmental contaminant that raises concerns for ecological well-being. It poses a growing threat due to its racemic mixture, enantiomers, and transformation products, which have ecotoxicological effects on various organisms, including invertebrates, vertebrates, plants, and microorganisms. Furthermore, ketoprofen is bioaccumulated and biomagnified throughout the food chain, threatening the ecosystem function. Surprisingly, despite these concerns, ketoprofen is not currently considered a priority substance. While targeted eco-pharmacovigilance for ketoprofen has been proposed, data on ketoprofen as a pharmaceutical contaminant are limited and incomplete. This review aims to provide a comprehensive summary of the most recent findings (from 2017 to March 2023) regarding the global distribution of ketoprofen in the environment, its ecotoxicity towards aquatic animals and plants, and available removal methods. Special emphasis is placed on understanding how ketoprofen affects microorganisms that play a pivotal role in Earth's ecosystems. The review broadly covers various approaches to ketoprofen biodegradation, including whole-cell fungal and bacterial systems as well as enzyme biocatalysts. Additionally, it explores the potential of adsorption by algae and phytoremediation for removing ketoprofen. This review will be of interest to a wide range of readers, including ecologists, microbiologists, policymakers, and those concerned about pharmaceutical pollution.
Collapse
Affiliation(s)
- Elena Tyumina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maria Subbotina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maxim Polygalov
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Semyon Tyan
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Irina Ivshina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| |
Collapse
|
25
|
Sapkota B, Pariatamby A. Pharmaceutical waste management system - Are the current techniques sustainable, eco-friendly and circular? A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:83-97. [PMID: 37285639 DOI: 10.1016/j.wasman.2023.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/14/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Most households and healthcare facilities usually dispose of contaminated, unused, or expired (CUE) medicines with municipal wastes, the disposal of which usually amounts to $790/ton in the USA and £450/ton in the UK. Solid (e.g., tablets, capsules, powders) and semi-solid (e.g., ointment, creams) pharmaceuticals are managed with incineration/pyrolysis, encapsulation, and engineered landfills, whereas wastewater treatment plants (WWTPs) are recommended for liquid pharmaceutical wastes (PWs). However, to date, the sustainability and eco-friendliness profile of these techniques are only subjectively ensured, leading to controversial viewpoints in many guidelines. Each technique has relative strengths and weaknesses, and their comparative weighting to maximize these profiles is sought after. The present comprehensive review aims to fulfil knowledge gaps in this regard. Four electronic databases (e.g., PubMed/MEDLINE, Scopus, and ScienceDirect) were searched for PW management (PWM)-related qualitative and quantitative articles published till December 31, 2022. Articles without details of waste disposal techniques and their health and environmental impacts were excluded. Based on the literature review, we determine that incineration can be considered a sustainable option for solid and semi-solid PWs, and WWTPs can be eco-friendly for liquid PWs, whereas encapsulation and landfilling are less sustainable. It is high time that objectively proven sustainable and eco-friendly techniques be implemented for PWM based on their dosage forms or nature of hazards. Medicine take-back, eco-pharmacovigilance, extended producer responsibility, co-payment, and life cycle analysis of pharmaceuticals focusing on reduction, reuse/re-dispensing can be integrated to make existing models sustainable, circular, and eco-friendly.
Collapse
Affiliation(s)
- Binaya Sapkota
- Jeffrey Sachs Center on Sustainable Development, Sunway University, 5 Jalan University, 47500 Sunway, Selangor, Malaysia.
| | - Agamuthu Pariatamby
- Jeffrey Sachs Center on Sustainable Development, Sunway University, 5 Jalan University, 47500 Sunway, Selangor, Malaysia
| |
Collapse
|
26
|
Li B, Xu D, Zhou X, Yin Y, Feng L, Liu Y, Zhang L. Environmental behaviors of emerging contaminants in freshwater ecosystem dominated by submerged plants: A review. ENVIRONMENTAL RESEARCH 2023; 227:115709. [PMID: 36933641 DOI: 10.1016/j.envres.2023.115709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/25/2023] [Accepted: 03/15/2023] [Indexed: 05/08/2023]
Abstract
Persistent exposure of emerging contaminants (ECs) in freshwater ecosystem has initiated intense global concerns. Freshwater ecosystem dominated by submerged plants (SP-FES) has been widely constructed to control eutrophic water. However, the environmental behaviors (e.g. migration, transformation, and degradation) of ECs in SP-FES have rarely been concerned and summarized. This review briefly introduced the sources of ECs, the pathways of ECs entering into SP-FES, and the constituent elements of SP-FES. And then the environmental behaviors of dissolved ECs and refractory solid ECs in SP-FES were comprehensively summarized, and the feasibility of removing ECs from SP-FES was critically evaluated. Finally, the challenges and perspectives on the future development for ECs removal from SP-FES were prospected, giving possible research gaps and key directions. This review will provide theoretical and technical support for the effective removal of ECs in freshwater ecosystem, especially in SP-FES.
Collapse
Affiliation(s)
- Benhang Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China; School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Dandan Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohong Zhou
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Yijun Yin
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
27
|
Kumar M, Silori R, Mazumder P, Tauseef SM. Screening of pharmaceutical and personal care products (PPCPs) along wastewater treatment system equipped with root zone treatment: A potential model for domestic waste leachate management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117494. [PMID: 36871357 DOI: 10.1016/j.jenvman.2023.117494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
We present the use of root zone treatment (RZT) based system for the removal of pharmaceutical and personal care products (PPCPs) from domestic wastewater. The occurrence of more than a dozen PPCPs were detected in an academic institution wastewater treatment plant (WWTP) at three specific locations, i.e., influent, root treatment zone, and effluents. The comparisons of observed compounds detected at various stages of WWTP suggest that the presence of PPCPs, like homatropine, cytisine, carbenoxolone, 4,2',4',6'-tetrahydroxychalcone, norpromazine, norethynodrel, fexofenadine, indinavir, dextroamphetamine, 3-hydroxymorphinan, phytosphingosine, octadecanedioic acid, meradimate, 1-hexadecanoyl-sn-glycerol, and 1-hexadecylamine, are unusual than the usual reported PPCPs in the WWTPs. In general, carbamazepine, ibuprofen, acetaminophen, trimethoprim, sulfamethoxazole, caffeine, triclocarban, and triclosan are often reported in wastewater systems. The normalized abundances of PPCPs range between 0.037-0.012, 0.108-0.009, and 0.208-0.005 in main influent, root zone effluent, and main effluents, respectively, of the WWTP. In addition, the removal rates of PPCPs were observed from -200.75% to ∼100% at RZT phase in the plant. Interestingly, we observed several PPCPs at later stages of treatment which were not detected in the influent of the WWTP. This is probably owing to the presence of conjugated metabolites of various PPCPs present in the influent, which subsequently got deconjugated to reform the parent compounds during the biological wastewater treatment. In addition, we suspect the potential release of earlier absorbed PPCPs in the system, which were absent on that particular day of sampling but have been part of earlier influents. In essence, RZT-based WWTP was found to be effective in removing the PPCPs and other organic contaminants in the study but results in stress the need for further comprehensive research on RZT system to conclude the exact removal efficacy and fate of PPCPs during treatment in the system. As a current research gap, the study also recommended RZT to be appraised for PPCPs in-situ remediation from landfill leachates, an underestimated source of PPCPs intrusion in the environment.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, UPES, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico.
| | - Rahul Silori
- Sustainability Cluster, School of Engineering, UPES, Dehradun, Uttarakhand, 248007, India
| | - Payal Mazumder
- Sustainability Cluster, School of Engineering, UPES, Dehradun, Uttarakhand, 248007, India
| | - Syed Mohammad Tauseef
- Sustainability Cluster, School of Engineering, UPES, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
28
|
Silva AR, Mesquita DP, Salomé Duarte M, Lado Ribeiro AR, Pereira MFR, Madalena Alves M, Monteiro S, Santos R, Cunha MV, Jorge S, Vieira J, Vilaça J, Lopes LC, Carvalho M, Brito C, Martins A, Pereira L. Exploring the correlations between epi indicators of COVID-19 and the concentration of pharmaceutical compounds in wastewater treatment plants in Northern Portugal. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 10:100315. [PMID: 37193121 PMCID: PMC10171898 DOI: 10.1016/j.hazadv.2023.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/18/2023]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus led to changes in the lifestyle and human behaviour, which resulted in different consumption patterns of some classes of pharmaceuticals including curative, symptom-relieving, and psychotropic drugs. The trends in the consumption of these compounds are related to their concentrations in wastewater systems, since incompletely metabolised drugs (or their metabolites back transformed into the parental form) may be detected and quantified by analytical methods. Pharmaceuticals are highly recalcitrant compounds and conventional activated sludge processes implemented in wastewater treatment plants (WWTP) are ineffective at degrading these substances. As a results, these compounds end up in waterways or accumulate in the sludge, being a serious concern given their potential effects on ecosystems and public health. Therefore, it is crucial to evaluate the presence of pharmaceuticals in water and sludge to assist in the search for more effective processes. In this work, eight pharmaceuticals from five therapeutic classes were analysed in wastewater and sludge samples collected in two WWTP located in the Northern Portugal, during the third COVID-19 epidemic wave in Portugal. The two WWTP demonstrated a similar pattern with respect to the concentration levels in that period. However, the drugs loads reaching each WWTP were dissimilar when normalising the concentrations to the inlet flow rate. Acetaminophen (ACET) was the compound detected at highest concentrations in aqueous samples of both WWTP (98. 516 μg L - 1 in WWTP2 and 123. 506 μg L - 1in WWTP1), indicating that this drug is extensively used without the need of a prescription, known of general public knowledge as an antipyretic and analgesic agent to treat pain and fever. The concentrations determined in the sludge samples were below 1.65 µg g - 1 in both WWTP, the highest value being found for azithromycin (AZT). This result may be justified by the physico-chemical characteristics of the compound that favour its adsorption to the sludge surface through ionic interactions. It was not possible to establish a clear relationship between the incidence of COVID-19 cases in the sewer catchment and the concentration of drugs detected in the same period. However, looking at the data obtained, the high incidence of COVID-19 in January 2021 is in line with the high concentration of drugs detected in the aqueous and sludge samples but prediction of drug load from viral load data was unfeasible.
Collapse
Affiliation(s)
- Ana R Silva
- CEB, Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães 4800-122, Portugal
| | - Daniela P Mesquita
- CEB, Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães 4800-122, Portugal
| | - M Salomé Duarte
- CEB, Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães 4800-122, Portugal
| | - Ana R Lado Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - M Fernando R Pereira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - M Madalena Alves
- CEB, Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães 4800-122, Portugal
| | - Sílvia Monteiro
- Laboratório de Análises de Águas, Técnico Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo Santos
- Laboratório de Análises de Águas, Técnico Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | | | | | | | | | | | - António Martins
- AdP VALOR- Serviços Ambientais, S.A, Portugal
- Água do Algarve, S.A, Portugal
| | - Luciana Pereira
- CEB, Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães 4800-122, Portugal
| |
Collapse
|
29
|
Carstensen L, Beil S, Schwab E, Banke S, Börnick H, Stolte S. Primary and ultimate degradation of benzophenone-type UV filters under different environmental conditions and the underlying structure-biodegradability relationships. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130634. [PMID: 36599278 DOI: 10.1016/j.jhazmat.2022.130634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Ten common benzophenone-based UV filters (BPs), sharing the same basic structure and differing only in their substituents, were investigated with respect to their primary and ultimate biodegradability. This study was carried out in order to gain deeper insights into the relationship between structure and biodegradability. The primary biodegradation of the selected BPs was studied in river water at environmentally relevant concentrations (1 µg/L) while varying specific, crucial environmental conditions (aerobic, suboxic, supplementation of nutrients). For this purpose, both batch and column degradation tests were performed, which allowed a systematic study of the effects. Subsequently, the ultimate biodegradation, i.e. the potential to achieve full mineralization of BPs, was examined according to OECD guideline 301 F. The results indicate that mineralization is limited to derivatives in which both aromatic rings contain substituents. This hypothesis was supported by docking simulations showing systematic differences in the orientation of BPs within the active site of the cytochrome P450 enzyme. These differences in orientation correspond to the substitution pattern of the BPs. This study provides valuable insights for assessing the environmental hazards of this class of trace organic compounds.
Collapse
Affiliation(s)
- Lale Carstensen
- Institute of Water Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Ekaterina Schwab
- Institute of Water Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Sophie Banke
- Institute of Water Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Hilmar Börnick
- Institute of Water Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Technical University of Dresden, 01069 Dresden, Germany.
| |
Collapse
|
30
|
Rapp-Wright H, Regan F, White B, Barron LP. A year-long study of the occurrence and risk of over 140 contaminants of emerging concern in wastewater influent, effluent and receiving waters in the Republic of Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160379. [PMID: 36427717 DOI: 10.1016/j.scitotenv.2022.160379] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Despite being a developed country in the European Union (EU), knowledge of the nature and extent of contamination of water bodies with contaminants of emerging concern (CECs) in Ireland is limited. In this study, >140 CECs including pharmaceuticals, pesticides and personal care products were monitored in monthly samples of wastewater treatment plant (WWTP) influent, effluent and receiving surface waters at both an urban and a rural location (72 samples in total) in Ireland over a 12-month period in 2018-2019. In total, 58 CECs were detected, including several EU Water Framework Directive Watch List compounds. Of all classes, the highest concentrations were measured for pharmaceuticals across all media, i.e., propranolol in surface waters (134 ng·L-1), hydrochlorothiazide in effluent (1067 ng·L-1) and venlafaxine in influent wastewater (8273 ng·L-1). Overall, high wastewater treatment removal was observed and a further reduction in CEC occurrence and concentration was measured via dilution in the receiving river environment. Lastly, an environmental risk assessment (ERA) was performed using risk quotients (RQ), which revealed that in surface waters, total RQ for all CECs was an order of magnitude lower than in effluents. The majority of CECs in surface waters posed a lower risk except E2 and EE2 which presented a medium risk (RQs of 3.5 and 1.1, respectively) in the rural area. This work represents the most comprehensive CEC monitoring dataset to date for Ireland which allowed for an ERA prioritisation to be performed for the first time.
Collapse
Affiliation(s)
- Helena Rapp-Wright
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, Wood Lane, London W12 0BZ, United Kingdom; DCU Water Institute and School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Fiona Regan
- DCU Water Institute and School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Blánaid White
- DCU Water Institute and School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Leon P Barron
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, Wood Lane, London W12 0BZ, United Kingdom
| |
Collapse
|
31
|
Niu X, Chen G, Chen Y, Luo N, Wang M, Hu X, Gao Y, Ji Y, An T. Estrogenic Effect Mechanism and Influencing Factors for Transformation Product Dimer Formed in Preservative Parabens Photolysis. TOXICS 2023; 11:186. [PMID: 36851060 PMCID: PMC9959869 DOI: 10.3390/toxics11020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The environmental transformation and health effects of endocrine disruptors (EDCs) need urgent attention, particularly the formation of transformation products with higher toxicity than parent EDCs. In this paper, an important transformation product dimer (short for ethyl 4-hydroxy-3-(2-((4-hydroxybenzoyl) oxy) ethyl) benzoate) with estrogenic activity was investigated and detected in the photolysis of preservative ethyl-paraben (EPB) dissolved in actual water. The environmental factors, such as the higher initial concentration of EPB, the stronger optical power and the lower pH could stimulate the formation of the dimer. Simultaneously, the interaction of multiple environmental factors was significant, especially the initial concentration and pH using the response surface methodology. Furthermore, the relationship between the environmental factors and the formation of the product dimer was further explained and the empirical model equation was built for predicting the amount of dimer in actual water. Quantum chemical and toxicological calculations showed the estrogenic effect mechanism of the product dimer and it was revealed further that the hydrogen bonds of the dimer and ERα proteins (ARG-394, Glu-353, His-524, GYY-521) were formed, with a lowest binding energy of -8.38 Kcal/mol during molecular docking. In addition, the health effect risk of the product dimer was higher than the parent compound in the blood, cardiovascular system, gastrointestinal system, kidney and liver. In short, the present study was of great significance for the transformation product in pollution control and health effects in the photolysis of EDCs.
Collapse
Affiliation(s)
- Xiaolin Niu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guanhui Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Na Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyi Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuemeng Ji
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
32
|
Archer E, Holton E, Fidal J, Kasprzyk-Hordern B, Carstens A, Brocker L, Kjeldsen TR, Wolfaardt GM. Occurrence of contaminants of emerging concern in the Eerste River, South Africa: Towards the optimisation of an urban water profiling approach for public- and ecological health risk characterisation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160254. [PMID: 36402343 DOI: 10.1016/j.scitotenv.2022.160254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The study evaluated the presence and fate of various contaminants of emerging concern (CECs) from a South African wastewater treatment works (WWTW) and surface waters located around an urban setting. A total of 45 CECs were quantified from nine sampling locations over an 11-month period. Daily loads (g/day) of the target analytes in the WWTW showed persistence of some CECs, along with population-normalised daily loads (mg/day/1000inh) of pharmaceuticals and drugs of abuse (DOA) that were estimated for the first time in the study area. Multiple chemical markers were recorded in river water located upstream of the WWTW discharge throughout the study period, suggesting a high degree of diffuse pollution from urban communities in the study area that are not connected to sewage networks or where sanitation services are limited. The potential of using defined surface water locations to perform community-wide substance use profiling for non-sewered communities was also explored. Environmental risk characterisation for the WWTW effluent and surface waters throughout the study period provided multiple risk quotients (RQ) for the target list of CECs spanning over various sentinel trophic levels. High risk profiles (RQ > 1.0) with a frequency of exceedance (FoE) larger than 75 % were recorded for several CECs in both WWTW effluent and surface water locations that suggest potential long-term ecological health risk impacts of pollution hotspot areas in the river catchment situated around the urban area. We present challenges in surface water quality within the study area that is relatable, or may even present more challenging, in other low- or middle-income country (LMICs) settings. The study also highlighted some challenges and limitations associated with the much-needed application of wastewater-based epidemiology (WBE) intervention in non-sewered communities that can inform on public health and communal substance use profiles of the entire urban setting.
Collapse
Affiliation(s)
- E Archer
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa.
| | - E Holton
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - J Fidal
- Department of Architecture and Civil Engineering, University of Bath, Bath BA2 7AY, UK
| | | | - A Carstens
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - L Brocker
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - T R Kjeldsen
- Department of Architecture and Civil Engineering, University of Bath, Bath BA2 7AY, UK
| | - G M Wolfaardt
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
33
|
Wang Y, Tang T, Ren J, Zhao Y, Hou Y, Nie X. Hypoxia aggravates the burden of yellowstripe goby (Mugilogobius chulae) under atorvastatin exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106381. [PMID: 36587518 DOI: 10.1016/j.aquatox.2022.106381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
In the present study, an estuarine benthic fish, Mugilogobius chulae (M. chulae), was exposed to hypoxia, atorvastatin (ATV), a highly used and widely detected lipid-lowering drug in aquatic environment, and the combination of hypoxia and ATV for 7 days, respectively, so as to address and compare the effects of the combination of hypoxia and ATV exposure on M. chulae. The results showed that lipid metabolism in M. chulae was greatly affected: lipid synthesis was blocked and catabolism was enhanced, exhibiting that lipids content were heavily depleted. The combined exposure of hypoxia and ATV caused oxidative stress and induced massive inflammatory response in the liver of M. chulae. Signaling pathways involving in energy metabolism and redox responses regulated by key factors such as HIF, PPAR, p53 and sirt1 play important regulatory roles in hypoxia-ATV stress. Critically, we found that the response of M. chulae to ATV was more sensitive under hypoxia than normoxia. ATV exposure to aquatic non-target organisms under hypoxic conditions may make a great impact on the detoxification and energy metabolism, especially lipid metabolism, and aggravate the oxidative pressure of the exposed organisms.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Tianli Tang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Jinzhi Ren
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yingshi Hou
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
34
|
Ren T, Perdana MC, Kříženecká S, Sochacki A, Vymazal J. Constructed wetlands for the treatment of household organic micropollutants with contrasting degradation behaviour: Partially-saturated systems as a performance all-rounder. CHEMOSPHERE 2023; 314:137645. [PMID: 36572365 DOI: 10.1016/j.chemosphere.2022.137645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The degradability of specific organic micropollutants in constructed wetlands (CWs) may differ depending on the prevalence of oxic or anoxic conditions. These conditions are governed, among other factors, by the water saturation level in the system. This study investigated the removal of three environmentally-relevant organic micropollutants: bisphenol-group plasticizer bisphenol S (BPS), household-use insecticide fipronil (FPN) and non-steroidal anti-inflammatory drug ketoprofen (KTP) in the model CWs set up in an outdoor column system. BPS and KTP, in contrast to FPN, exhibit higher biodegradability potential under oxic conditions. The experimental CWs were operated under various saturation conditions: unsaturated, partially saturated and saturated, and mimicked the conditions occurring in unsaturated, partially-saturated intermittent vertical-flow CWs and in horizontal-flow CWs, respectively. The CWs were fed with synthetic household wastewater with the concentration of the micropollutants at the level of 30-45 μg/L. BPS and KTP exhibited contrasting behaviour against FPN in the CWs in the present experiment. Namely, BPS and KTP were almost completely removed in the unsaturated CWs without a considerable effect of plants, but their removal in saturated CWs was only moderate (approx. 50%). The plants had only a pronounced effect on the removal of BPS in saturated systems, in which they enhanced the removal by 46%. The removal of FPN (approx. 90%) was the highest in the saturated and partially-saturated CWs, with moderate removal (66.7%) in unsaturated systems. Noteworthy, partially-saturated CWs provided high or very high removal of all three studied substances despite their contrasting degradability under saturated and unsaturated conditions. Namely, their removal efficiencies in planted CWs were 95.9%, 94.5% and 81.6%, for BPS, KTP and FPN, respectively. The removal of the micropollutants in partially-saturated CWs was comparable or only slightly lower than in the best treatment option making it the performance all-rounder for the compounds with contrasting biodegradability properties.
Collapse
Affiliation(s)
- Tongxin Ren
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 00, Prague 6, Czech Republic
| | - Mayang Christy Perdana
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 00, Prague 6, Czech Republic
| | - Sylvie Kříženecká
- J.E. Purkyně University in Ústí nad Labem, Faculty of the Environment, Pasteurova 3632/15, 400 96, Ústí nad Labem, Czech Republic
| | - Adam Sochacki
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 00, Prague 6, Czech Republic.
| | - Jan Vymazal
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 00, Prague 6, Czech Republic
| |
Collapse
|
35
|
Mohd Hanafiah Z, Wan Mohtar WHM, Abd Manan TS, Bachi NA, Abu Tahrim N, Abd Hamid HH, Ghanim A, Ahmad A, Wan Rasdi N, Abdul Aziz H. Determination and risk assessment of pharmaceutical residues in the urban water cycle in Selangor Darul Ehsan, Malaysia. PeerJ 2023; 11:e14719. [PMID: 36748091 PMCID: PMC9899055 DOI: 10.7717/peerj.14719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/19/2022] [Indexed: 02/04/2023] Open
Abstract
The environmental fate of non-steroidal anti-inflammatory drugs (NSAIDs) in the urban water cycle is still uncertain and their status is mainly assessed based on specific water components and information on human risk assessments. This study (a) explores the environmental fate of NSAIDs (ibuprofen, IBU; naproxen, NAP; ketoprofen, KET; diazepam, DIA; and diclofenac, DIC) in the urban water cycle, including wastewater, river, and treated water via gas chromatography-mass spectrophotometry (GCMS), (b) assesses the efficiency of reducing the targeted NSAIDs in sewage treatment plant (STP) using analysis of variance (ANOVA), and (c) evaluates the ecological risk assessment of these drugs in the urban water cycle via teratogenic index (TI) and risk quotient (RQ). The primary receptor of contaminants comes from urban areas, as a high concentration of NSAIDs is detected (ranging from 5.87 × 103 to 7.18 × 104 ng/L). The percentage of NSAIDs removal in STP ranged from 25.6% to 92.3%. The NAP and KET were still detected at trace levels in treated water, indicating the persistent presence in the water cycle. The TI values for NAP and DIA (influent and effluent) were more than 1, showing a risk of a teratogenic effect. The IBU, KET, and DIC had values of less than 1, indicating the risk of lethal embryo effects. The NAP and DIA can be classified as Human Pregnancy Category C (2.1 > TI ≥ 0.76). This work proved that these drugs exist in the current urban water cycle, which could induce adverse effects on humans and the environment (RQ in high and low-risk categories). Therefore, they should be minimized, if not eliminated, from the primary sources of the pollutant (i.e., STPs). These pollutants should be considered a priority to be monitored, given focus to, and listed in the guideline due to their persistent presence in the urban water cycle.
Collapse
Affiliation(s)
- Zarimah Mohd Hanafiah
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
| | - Wan Hanna Melini Wan Mohtar
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
- Environmental Management Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, Selangor Darul Ehsan, Malaysia
| | - Teh Sabariah Abd Manan
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu Darul Iman, Malaysia
- School of Civil Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
| | - Nur Aina Bachi
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
| | - Nurfaizah Abu Tahrim
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
| | - Haris Hafizal Abd Hamid
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
| | - Abdulnoor Ghanim
- Department of Civil Engineering, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Amirrudin Ahmad
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu Darul Iman, Malaysia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu Darul Iman, Malaysia
| | - Nadiah Wan Rasdi
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu Darul Iman, Malaysia
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu Darul Iman, Malaysia
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
36
|
Gonkowski S, Martín J, Aparicio I, Santos JL, Alonso E, Rytel L. Evaluation of Parabens and Bisphenol A Concentration Levels in Wild Bat Guano Samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1928. [PMID: 36767313 PMCID: PMC9916121 DOI: 10.3390/ijerph20031928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Parabens and bisphenol A are synthetic compounds found in many everyday objects, including bottles, food containers, personal care products, cosmetics and medicines. These substances may penetrate the environment and living organisms, on which they have a negative impact. Till now, numerous studies have described parabens and BPA in humans, but knowledge about terrestrial wild mammals' exposure to these compounds is very limited. Therefore, during this study, the most common concentration levels of BPA and parabens were selected (such as methyl paraben-MeP, ethyl paraben-EtP, propyl paraben-PrP and butyl paraben-BuP) and analyzed in guano samples collected in summer (nursery) colonies of greater mouse-eared bats (Myotis myotis) using liquid chromatography with the tandem mass spectrometry (LC-MS-MS) method. MeP has been found in all guano samples and its median concentration levels amounted to 39.6 ng/g. Other parabens were present in smaller number of samples (from 5% for BuP to 62.5% for EtP) and in lower concentrations. Median concentration levels of these substances achieved 0.95 ng/g, 1.45 ng/g and 15.56 ng/g for EtP, PrP and BuP, respectively. BPA concentration levels did not exceed the method quantification limit (5 ng/g dw) in any sample. The present study has shown that wild bats are exposed to parabens and BPA, and guano samples are a suitable matrix for studies on wild animal exposure to these substances.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland
| | - Julia Martín
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Liliana Rytel
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 14, 10-719 Olsztyn, Poland
| |
Collapse
|
37
|
Di Marcantonio C, Chiavola A, Gioia V, Leoni S, Cecchini G, Frugis A, Ceci C, Spizzirri M, Boni MR. A step forward on site-specific environmental risk assessment and insight into the main influencing factors of CECs removal from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116541. [PMID: 36419300 DOI: 10.1016/j.jenvman.2022.116541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The presence of Contaminants of Emerging Concern (CECs) in water systems has been recognized as a potential source of risk for human health and the ecosystem. The present paper aims at evaluating the effects of different characteristics of full-scale Wastewater Treatment Plants (WWTPs) on the removal of 14 selected CECs belonging to the classes of caffeine, illicit drugs and pharmaceuticals. Particularly, the investigated plants differed because of the treatment lay-out, the type of biological process, the value of the operating parameters, the fate of the treated effluent (i.e. release into surface water or reuse), and the treatment capacity. The activity consisted of measuring concentrations of the selected CECs and also traditional water quality parameters (i.e. COD, phosphorous, nitrogen species and TSS) in the influent and effluent of 8 plants. The study highlights that biodegradable CECs (cocaine, methamphetamine, amphetamine, benzoylecgonine, 11-nor-9carboxy-Δ9-THC, lincomycin, trimethoprim, sulfamethoxazole, sulfadiazine, sulfadimethoxine, carbamazepine, ketoprofen, warfarin and caffeine) were well removed by all the WWTPs, with the best performance achieved by the MBR for antibiotics. Carbamazepine was removed at the lowest extent by all the WWTPs. The environmental risk assessed by using the site-specific value of the dilution factor resulted to be high in 3 out of 8 WWTPs for carbamazepine and less frequently for caffeine. However, the risk was reduced when the dilution factor was assumed equal to the default value of 10 as proposed by EU guidelines. Therefore, a specific determination of this factor is needed taking into account the hydraulic characteristics of the receiving water body.
Collapse
Affiliation(s)
- Camilla Di Marcantonio
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, Rome, Italy, Zip code 00184.
| | - Agostina Chiavola
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, Rome, Italy, Zip code 00184
| | | | - Simone Leoni
- ACEA ELABORI SpA, Via Vitorchiano 165, Rome, Italy
| | | | | | - Claudia Ceci
- ACEA ATO 2 SpA, Viale di Porta Ardeatina 129, 00154, Rome, Italy
| | | | - Maria Rosaria Boni
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, Rome, Italy, Zip code 00184
| |
Collapse
|
38
|
Sharma J, Joshi M, Bhatnagar A, Chaurasia AK, Nigam S. Pharmaceutical residues: One of the significant problems in achieving 'clean water for all' and its solution. ENVIRONMENTAL RESEARCH 2022; 215:114219. [PMID: 36057333 DOI: 10.1016/j.envres.2022.114219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
With the rapid emergence of various metabolic and multiple-drug-resistant infectious diseases, new pharmaceuticals are continuously being introduced in the market. The excess production and use of pharmaceuticals and their untreated/unmetabolized release in the environment cause the contamination of aquatic ecosystem, and thus, compromise the environment and human-health. The present review provides insights into the classification, sources, occurrence, harmful impacts, and existing technologies to curb these problems. A comprehensive detail of various biological and nanotechnological strategies for the removal of pharmaceutical residues from water is critically discussed focusing on their efficiencies, and current limitations to design improved-technologies for their lab-to-field applications. Furthermore, the review highlights and suggests the scope of integrated bionanotechnological methods for enhanced removal of pharmaceutical residues from water to fulfill the United Nations Sustainable Development Goal (UN-SDG) for providing clean potable water for all.
Collapse
Affiliation(s)
- Jyoti Sharma
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Monika Joshi
- Amity Institute of Nanotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Akhilesh K Chaurasia
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
| | - Subhasha Nigam
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| |
Collapse
|
39
|
Oluwalana AE, Musvuugwa T, Sikwila ST, Sefadi JS, Whata A, Nindi MM, Chaukura N. The screening of emerging micropollutants in wastewater in Sol Plaatje Municipality, Northern Cape, South Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120275. [PMID: 36167166 DOI: 10.1016/j.envpol.2022.120275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Although pollutants pose environmental and human health risks, the majority are not routinely monitored and regulated. Organic pollutants emanate from a variety of sources, and can be classified depending on their chemistry and environmental fate. Classification of pollutants is important because it informs fate processes and apposite removal technologies. The occurrence of emerging contaminants (ECs) in water bodies is a source of environmental and human health concern globally. Despite being widely reported, data on the occurrence of ECs in South Africa are scarce. Specifically, ECS in wastewater in the Northern Cape in South Africa are understudied. In this study, various ECs were screened in water samples collected from three wastewater treatment plants (WWTPs) in the province. The ECs were detected using liquid chromatography coupled to high resolution Orbitrap mass spectrometry following Oasis HLB solid-phase extraction. The main findings were: (1) there is a wide variety of ECs in the WWTPs, (2) physico-chemical properties such as pH, total dissolved solids, conductivity, and dissolved organic content showed reduced values in the outlet compared to the inlet which confirms the presence of less contaminants in the treated wastewater, (3) specific ultraviolet absorbance of less than 2 was observed in the WWTPs samples, suggesting the presence of natural organic matter (NOM) that is predominantly non-humic in nature, (4) most of the ECs were recalcitrant to the treatment processes, (5) pesticides, recreational drugs, and analgesics constitute a significant proportion of pollutants in wastewater, and (6) NOM removal ranged between 35 and 90%. Consequently, a comprehensive database of ECs in wastewater in Sol Plaatje Municipality was created. Since the detected ECs pose ecotoxicological risks, there is a need to monitor and quantify ECs in WWTPs. These data are useful in selecting suitable monitoring and control strategies at WWTPs.
Collapse
Affiliation(s)
- Abimbola E Oluwalana
- Risk and Vulnerability Science Centre. Sol Plaatje University, Private Bag X5008, Kimberley, 8300, South Africa; Department of Physical and Earth Sciences, School of Natural and Applied Sciences. Sol Plaatje University, Private Bag X5008, Kimberley, 8300, South Africa
| | - Tendai Musvuugwa
- Department of Biological and Agricultural Sciences. Sol Plaatje University, Private Bag X5008, Kimberley, 8300, South Africa
| | - Stephen T Sikwila
- Department of Mathematical Sciences, School of Natural and Applied Sciences. Sol Plaatje University, Private Bag X5008, Kimberley, 8300, South Africa
| | - Jeremia S Sefadi
- Department of Physical and Earth Sciences, School of Natural and Applied Sciences. Sol Plaatje University, Private Bag X5008, Kimberley, 8300, South Africa
| | - Albert Whata
- Department of Mathematical Sciences, School of Natural and Applied Sciences. Sol Plaatje University, Private Bag X5008, Kimberley, 8300, South Africa
| | - Mathew M Nindi
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, South Africa
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, School of Natural and Applied Sciences. Sol Plaatje University, Private Bag X5008, Kimberley, 8300, South Africa.
| |
Collapse
|
40
|
Chaves MDJS, Kulzer J, Pujol de Lima PDR, Barbosa SC, Primel EG. Updated knowledge, partitioning and ecological risk of pharmaceuticals and personal care products in global aquatic environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1982-2008. [PMID: 36124562 DOI: 10.1039/d2em00132b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the last few decades, the occurrence of pharmaceuticals and personal care products (PPCPs) in aquatic environments has generated increasing public concern. In this review, data on the presence of PPCPs in environmental compartments from the past few years (2014-2022) are summarized by carrying out a critical survey of the partitioning among water, sediment, and aquatic organisms. From the available articles on PPCP occurrence in the environment, in Web of Science and Scopus databases, 185 articles were evaluated. Diclofenac, carbamazepine, caffeine, ibuprofen, ciprofloxacin, and sulfamethoxazole were reported to occur in 85% of the studies in at least one of the mentioned matrices. Risk assessment showed a moderate to high environmental risk for these compounds worldwide. Moreover, bioconcentration factors showed that sulfamethoxazole and trimethoprim can bioaccumulate in aquatic organisms, while ciprofloxacin and triclosan present bioaccumulation potential. Regarding spatial distribution, the Asian and European continents presented most studies on the occurrence and effects of PPCPs on the environment, while Africa and Asia are the most contaminated continents. In addition, the impact of COVID-19 on environmental contamination by PPCPs is discussed.
Collapse
Affiliation(s)
- Marisa de Jesus Silva Chaves
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Jonatas Kulzer
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Paula da Rosa Pujol de Lima
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Sergiane Caldas Barbosa
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Ednei Gilberto Primel
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| |
Collapse
|
41
|
Bolesta W, Głodniok M, Styszko K. From Sewage Sludge to the Soil-Transfer of Pharmaceuticals: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10246. [PMID: 36011880 PMCID: PMC9408069 DOI: 10.3390/ijerph191610246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Sewage sludge, produced in the process of wastewater treatment and managed for agriculture, poses the risk of disseminating all the pollutants contained in it. It is tested for heavy metals or parasites, but the concentration of pharmaceuticals in the sludge is not controlled. The presence of these micropollutants in sludge is proven and there is no doubt about their negative impact on the environment. The fate of these micropollutants in the soil is a new and important issue that needs to be known to finally assess the safety of the agricultural use of sewage sludge. The article will discuss issues related to the presence of pharmaceuticals in sewage sludge and their physicochemical properties. The changes that pharmaceuticals undergo have a significant impact on living organisms. This is important for the implementation of a circular economy, which fits perfectly into the agricultural use of stabilized sewage sludge. Research should be undertaken that clearly shows that there is no risk from pharmaceuticals or vice versa: they contribute to the strict definition of maximum allowable concentrations in sludge, which will become an additional criterion in the legislation on municipal sewage sludge.
Collapse
Affiliation(s)
- Wioleta Bolesta
- Faculty of Energy and Fuels, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
- Water and Sewage Company in Żory, ul. Wodociągowa 10, 44-240 Zory, Poland
| | - Marcin Głodniok
- Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
| | - Katarzyna Styszko
- Faculty of Energy and Fuels, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
| |
Collapse
|
42
|
Bouzas‐Monroy A, Wilkinson JL, Melling M, Boxall ABA. Assessment of the Potential Ecotoxicological Effects of Pharmaceuticals in the World's Rivers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2008-2020. [PMID: 35730333 PMCID: PMC9544786 DOI: 10.1002/etc.5355] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 05/10/2023]
Abstract
During their production, use, and disposal, active pharmaceutical ingredients (APIs) are released into aquatic systems. Because they are biologically active molecules, APIs have the potential to adversely affect nontarget organisms. We used the results of a global monitoring study of 61 APIs alongside available ecotoxicological and pharmacological data to assess the potential ecotoxicological effects of APIs in rivers across the world. Approximately 43.5% (461 sites) of the 1052 sampling locations monitored across 104 countries in a recent global study had concentrations of APIs of concern based on apical, nonapical, and mode of action-related endpoints. Approximately 34.1% of the 137 sampling campaigns had at least one location where concentrations were of ecotoxicological concern. Twenty-three APIs occurred at concentrations exceeding "safe" concentrations, including substances from the antidepressant, antimicrobial, antihistamine, β-blocker, anticonvulsant, antihyperglycemic, antimalarial, antifungal, calcium channel blocker, benzodiazepine, painkiller, progestin, and lifestyle compound classes. At the most polluted sites, effects are predicted on different trophic levels and on different endpoint types. Overall, the results show that API pollution is a global problem that is likely negatively affecting the health of the world's rivers. To meet the United Nations' Sustainable Development Goals, work is urgently needed to tackle the problem and bring concentrations down to an acceptable level. Environ Toxicol Chem 2022;41:2008-2020. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Molly Melling
- Department of Environment and GeographyUniversity of YorkYorkUK
| | | |
Collapse
|
43
|
The impact of sewage sludge processing on the safety of its use. Sci Rep 2022; 12:12227. [PMID: 35851096 PMCID: PMC9293921 DOI: 10.1038/s41598-022-16354-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022] Open
Abstract
Particular attention is devoted to pharmaceutical residues in sewage sludge caused by their potential ecotoxicological effects. Diclofenac, ibuprofen and carbamazepine, 17-α-ethinylestradiol, β-estradiol, were analysed in four types of fertilizers, based on sewage sludge commercial products, in compliance with Polish requirements. The release of active pharmaceutical compounds from fertilizers to water the phase after 24 h and 27 days was analysed. Solid-water partition coefficients (Kd) and partitioning coefficient values normalized on organic carbon content (log KOC) were evaluated. The environmental risk to terrestrial ecosystems, due to the application of fertilizers onto soils, was estimated. Cumulative mass of pharmaceuticals emitted to water from fertilizers ranged from 0.4 to 30.8 µg/kg after 24 h contact. The greatest amount of the material that was released, over 70%, was observed for carbamazepine. No presence of compounds except ibuprofen was observed after 27 days of testing. The highest environmental risk in fertilizers is due to carbamazepine, risk quotation, RQ = 0.93 and diclofenac RQ = 0.17. The values of risk quotation estimated for soil were below RQ = 0.01. This fact means that no risk to terrestrial ecosystems is expected to occur. The important decrease of the concentrations of active compounds after passing from sewage sludge to fertilizers [and] to fertilized soil could be observed.
Collapse
|
44
|
Li Y, Thompson J, Wang Z, Bräunig J, Zheng Q, Thai PK, Mueller JF, Yuan Z. Transformation and fate of pharmaceuticals, personal care products, and per- and polyfluoroalkyl substances during aerobic digestion of anaerobically digested sludge. WATER RESEARCH 2022; 219:118568. [PMID: 35598466 DOI: 10.1016/j.watres.2022.118568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Post-anaerobic aerobic digestion (PAAD) is a promising strategy to further reduce the volume and improve the quality of anaerobically digested sludge (ADS). However, the effect of PAAD process on the fate of pharmaceuticals and personal care products (PPCPs) and per- and polyfluoroalkyl substances (PFAS) remains largely unknown. In this study, fourteen PPCPs and fifteen PFAS were detected in ADS and evaluated regarding their fate and transformation in a laboratory aerobic digester operated with a hydraulic retention time of 13 days under 22 ℃. Twelve PPCPs demonstrated significant (p < 0.05) decrease in their total concentrations (dissolved and adsorbed fractions combined) with six compounds presenting substantial transformation (> 80%) after aerobic digestion. On the contrary, PFAS were not removed and their concentrations were either increased (increasing ratio: 91 - 571%) or consistent in the sludge during PAAD process, suggesting their recalcitrance to post aerobic digestion. More than half of PPCPs and PFAS demonstrated medium to strong sorption onto solids with their solid fraction higher than 50% in the ADS. After PAAD process, sorption of four PPCPs and three PFAAs to solids was enhanced in sludge.
Collapse
Affiliation(s)
- Yijing Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jack Thompson
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Zhiyao Wang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
45
|
Abstract
METHs are drugs that enter wastewater through the feces and urine of users. Conventional wastewater treatment plants are not capable of removing this type of emerging contaminant, but, in recent years, techniques have been developed to abate drugs of abuse. The present investigation focused on obtaining the technique that keeps the best balance between the comparison criteria considered: efficiency; costs; development stage; and waste generation. That is why a bibliographic review was carried out in the scientific databases of the last eight years, concluding that the six most popular techniques are: SBR, Fenton reaction, mixed-flow bioreactor, ozonation, photocatalysis, and UV disinfection. Subsequently, the Saaty and Modified Saaty methods were applied, obtaining a polynomial equation containing the four comparison criteria for the evaluation of the techniques. It is concluded that the UV disinfection method is the one with the best relationship between the analyzed criteria, reaching a score of 0.8591/1, followed by the Fenton method with a score of 0.6925/1. This research work constitutes a practical and easy-to-use tool for decision-makers, since it allows finding an optimal treatment for the abatement of METHs.
Collapse
|
46
|
Monitoring of a Broad Set of Pharmaceuticals in Wastewaters by High-Resolution Mass Spectrometry and Evaluation of Heterogenous Catalytic Ozonation for Their Removal in a Pre-Industrial Level Unit. ANALYTICA 2022. [DOI: 10.3390/analytica3020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The removal of contaminants of emerging concern (CECs) occurring in wastewater effluents, such as pharmaceutically active substances (PhACs) and personal care products, pose a big research challenge since they can be a major source of pollution for water bodies and a danger to public health. The objective of this work was to perform a comprehensive monitoring of a broad set of PhACs (>130) in a wastewater treatment plant (WWTP) close to Thessaloniki (Greece), as well as to evaluate the potential of heterogeneous catalytic ozonation for the removal of CECs from wastewater through a continuous flow system. The high-resolution mass spectrometry analysis revealed the highest average concentrations for irbesartan (1817 ng/L). Antihypertensives along with antibiotics, psychiatrics, and β-blockers were found to aggravate the effluents. Removal efficiency after conventional treatment was >30%. The results from catalytic ozonation unit operation indicate that the introduction of a proper solid material that acts as catalyst can enhance the removal of CECs. A preliminary risk assessment using the risk quotient (RQ) revealed that irbesartan and telmisartan entail high acute risk. The overall results underline the urgent need to incessantly monitor PhACs and expand the toxicological studies to establish the sublethal and chronic effects on aquatic organisms.
Collapse
|
47
|
The Presence of Triclosan in Human Hair Samples in Poland-A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19073796. [PMID: 35409481 PMCID: PMC8998057 DOI: 10.3390/ijerph19073796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023]
Abstract
Triclosan (TCS) is an organic substance showing antibacterial action, which is commonly used in many branches of industry, including, among others, cosmetics, pharmaceuticals and the food industry. TCS may penetrate into living organisms and negatively affect the health of humans and animals. The majority of previous investigations on TCS biomonitoring in humans have been performed on urine, but currently, studies on hair samples are becoming increasingly important. The aim of this study was to evaluate TCS concentration levels in residents of Olsztyn, a city in northeastern Poland, using a liquid chromatography-mass spectrometry technique. The presence of TCS was observed in 96.7% of samples tested, with concentration levels from 37.9 pg/mg to 3386.5 pg/mg. The mean concentration level of TCS in the present study was 402.6 (±803.6) pg/mg, and the median value was 103.3 pg/mg. Although there were some differences in TCS concentration levels between males and females, humans of various ages and humans with colored and natural hair had no statistically significant differences in TCS concentration levels. The obtained results have clearly indicated that people living in northeastern Poland are exposed to TCS to a large degree, and hair analysis, despite some limitations, is a suitable method for TCS biomonitoring in humans.
Collapse
|
48
|
Priya AK, Gnanasekaran L, Rajendran S, Qin J, Vasseghian Y. Occurrences and removal of pharmaceutical and personal care products from aquatic systems using advanced treatment- A review. ENVIRONMENTAL RESEARCH 2022; 204:112298. [PMID: 34717947 DOI: 10.1016/j.envres.2021.112298] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals, personal care items, steroid hormones, and agrochemicals are among the synthetic and indigenous products that make up micropollutants, also known as emerging contaminants. Pharmaceutical and personal care products (PPPs) are a class of developing micropollutants that can harm living organisms even at low concentrations. Many are detected in surface water and wastewater from the treatment process, with quantities ranging from ng L-1 to gL-1; however, residual PPPs at dangerously high levels have indeed recently been recognized in the ecosystem. Residential sewage treatment plant (STP) dump the largest majority of these pollutants into the environment on a regular basis. As a result of its robust structure, it has a longer lifespan in the environment. This review article discusses how surface water pollutants such pesticides, petroleum hydrocarbons, and perfluorinated compounds affect water quality, as well as the most cost-effective adsorbents for removing these PPPs. The goal of this study is to provide information about the origins of PPP, as well as diagnostic procedures and treatment options. Research on developing contaminants is also aimed at evaluating the efficacy and affordability of adsorption.
Collapse
Affiliation(s)
- A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Jiaqian Qin
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
49
|
Khalaf DM, Cruzeiro C, Schröder P. Removal of tramadol from water using Typha angustifolia and Hordeum vulgare as biological models: Possible interaction with other pollutants in short-term uptake experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151164. [PMID: 34695465 DOI: 10.1016/j.scitotenv.2021.151164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Tramadol (TRD) is widely detected in aquatic ecosystems as a result of massive abuse and insufficient removal from wastewater facilities. As a result, TRD can contaminate groundwater sources and/or agricultural soils. While TRD toxicity has been reported from aquatic biota, data about TRD detection in plants are scarce. Moreover, information regarding plant capability for TRD removal is lacking. To understand the fate of this opioid, we have investigated the uptake, translocation and removal capacity of TRD by plants, addressing short-term and long-term uptake. The uptake rates of TRD, in excised barley and cattail roots, were 5.18 and 5.79 μg g-1 root fresh weight day-1, respectively. However, TRD uptake was strongly inhibited after co-exposing these roots either with the drug venlafaxine (similar molecular structure as TRD) or with quinidine (an inhibitor of cellular organic cation transporters). When barley seedlings were exposed to TRD in a hydroponic experiment a removal efficiency up to 90% (within 15 days) was obtained, with bioconcentration and translocation factors close to 9 and 1, respectively. The combination of results from both plants and the inhibition observed after treatment with quinidine revealed that organic cation transporters may be involved in the uptake of TRD by plants.
Collapse
Affiliation(s)
- David Mamdouh Khalaf
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Botany and Microbiology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Catarina Cruzeiro
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Peter Schröder
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
50
|
Makowska K, Martín J, Rychlik A, Aparicio I, Santos JL, Alonso E, Gonkowski S. Biomonitoring parabens in dogs using fur sample analysis - Preliminary studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150757. [PMID: 34619184 DOI: 10.1016/j.scitotenv.2021.150757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Parabens are widely used in the food, cosmetics and pharmaceutical industry and are widespread in the environment. As endocrine disruptors, parabens have adverse effects on living organisms. However, knowledge of the exposure of domestic animals to parabens is extremely scarce. Therefore, this study assessed the exposure level of dogs to three parabens commonly used in industry (i.e. methylparaben - MeP, ethylparaben - EtP and propylparaben - PrP) using fur sample analysis in liquid chromatography-tandem mass spectrometry. The presence of parabens has been noted in the samples collected from all dogs included in the study (n = 30). Mean concentrations of MeP, EtP and PrP in the fur of dogs were 176 (relative standard deviation - RSD = 127.48%) ng/g dry weight (dw), 48.4 (RSD = 163.64%) ng/g dw and 79.8 ng/g dw (RSD = 151.89%), respectively. The highest concentrations were found for MeP (up to 1023 ng/g dw). Concentrations of MeP and EtP in males were statistically higher than those in females (p < 0.05). Statistically significantly higher concentration levels of PrP in young animals (up to three years old) were also found. This is the first study concerning the use of fur samples to evaluate the exposure of domestic animals to parabens. The results indicate that an analysis of the fur may be a useful tool of paraben biomonitoring in dogs. The presence of parabens in the canine fur also suggests that these substances may play a role in veterinary toxicology. However, many aspects connected with this issue are not clear and require further study.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland.
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| | - Andrzej Rychlik
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| | - Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| |
Collapse
|