1
|
Wu W, Ye W, He L, Wu M, Li J, Yue Z, Deng R. The restoration of zinc pollution in smelting site soil using nanohydroxyapatite-modified cyanobacterial biochar and its mechanism. ENVIRONMENTAL RESEARCH 2025; 277:121652. [PMID: 40254237 DOI: 10.1016/j.envres.2025.121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/03/2025] [Accepted: 04/18/2025] [Indexed: 04/22/2025]
Abstract
Heavy metal pollution in the soils at smelting sites must be effectively controlled. Recent advancements in stabilization technology have shown promising results in the remediation of heavy metal-contaminated soils. In this study, nanohydroxyapatite (nHAP) and cyanobacterial biochar were co-pyrolyzed to produce nHAP-modified cyanobacterial biochar (nHAP-CBC), which was applied to remediate Zn contamination of soils at smelting sites. The remediation effect of nHAP-CBC on Zn-contaminated soil was evaluated using batch experiments, and the materials were characterized using XRD, SEM, TEM, BET, and FTIR. These analyses confirmed the uniform dispersion of nHAP on the CBC to form a stable nHAP-CBC material. The results demonstrated that nHAP-CBC effectively converted Zn from an unstable state to a stable state, achieving a 65.79 % conversion rate and a 64.24 % stabilization rate during toxicity characteristic leaching after 45 days of treatment. nHAP-CBC was the most effective at fixing Zn and significantly increased the organic matter (OM) content, suggesting that OM played a key role in Zn fixation. In conclusion, the nHAP-CBC developed in this study can effectively stabilize heavy metals in smelting site soils and offers promising potential for expanding cyanobacterial resource utilization.
Collapse
Affiliation(s)
- Wentao Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Wanning Ye
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Liu He
- Donghua Engineering Technology Co., Ltd, Hefei, Anhui, 230024, China
| | - Mingru Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Jiaqi Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
2
|
Alshammari NAH, Elsayed NH, Alatawi RAS, Bukhari AAH, Alnawmasi JS, Alshareef SA, Alnahdi KM, Alhawiti AS, El-Binadary AA. Synthesis of pomegranate peel-activated carbon encapsulated onto carboxymethylcellulose and polyethylenimine for cadmium (II) adsorption: Optimization, kinetics and isotherm modeling. Int J Biol Macromol 2025; 310:143348. [PMID: 40262686 DOI: 10.1016/j.ijbiomac.2025.143348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
This research explores pomegranate peel as a precursor for activated carbon to eliminate cadmium (II) ions from aqueous solutions. The produced activated carbon was encapsulated with carboxymethylcellulose and polyethylenimine, then crosslinked with epichlorohydrin to form activated carbon carboxymethylcellulose and polyethyleneimine (ACCP) hydrogel beads. Numerous analytical methods were working to characterize the adsorbent, including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and nitrogen adsorption/desorption isotherms. The BET analysis revealed a surface area of 110.02 m2/g, indicating a highly porous material with numerous active adsorption sites. A pore volume of 0.13 cc/g shows significant capacity for retaining adsorbed ions. The average pore radius of 1.88 nm classifies as mesopores, typically found near the transition between micropores and mesopores. Examine the influence of various factors, including pH, concentration of Cd(II), amount of adsorbent, duration of contact, and temperature, on the adsorption process. The adsorption isotherm monitored the Langmuir equation, suggesting a specific adsorption procedure. Kinetics were defined by the pseudo-second-order model, linking the adsorption rate to the square of unoccupied sites. Thermodynamic parameters yielded ΔHo of 97.94 kJ/mol and ΔSo of 334.8 J/mol.K, indicating an endothermic and spontaneous adsorption process. Various mechanisms for Cd(II) interaction with ACCP may include ion exchange, electrostatic forces, or complexation. Data indicate that optimal parameters for efficient Cd(II) removal in water are a pH of 6, 0.02 g of ACCP per 25 mL solution, and an adsorption capacity of 301.6 mg/g. To enhance the adsorbent's efficacy, various influential parameters must be thoroughly examined. A Box-Behnken design (BBD) and response surface methodology (RSM) are used to help identify the ideal conditions for Cd(II) adsorption. An investigation of the adsorbent's reusability over five cycles shows a substantial reliability for removal applications.
Collapse
Affiliation(s)
- Nawaa Ali H Alshammari
- Department of Chemistry, Faculty of Science, Northern Border University, Arar 73222, Saudi Arabia
| | - Nadia H Elsayed
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia.
| | - Raedah A S Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | | | - Jawza Sh Alnawmasi
- Department of Chemistry, College of Science, Qassim University, Buraydah, 51452, Qassim, Saudi Arabia
| | | | - Kholoud M Alnahdi
- Physics Department, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Aliyah S Alhawiti
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - A A El-Binadary
- Chemical Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| |
Collapse
|
3
|
Cui M, Jiao H, Yuan S, Dong B, Xu Z. Develop Reusable Carbon Sub-Micrometer Composites with Record-High Cd(II) Removal Capacity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408295. [PMID: 39575508 PMCID: PMC11744635 DOI: 10.1002/advs.202408295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Indexed: 01/21/2025]
Abstract
Cd(II)-induced pollution across diverse water bodies severely threatens ecosystems and human health. Nevertheless, achieving ultra-efficient and cost-effective treatment of trace amounts of heavy metals remains a major challenge. Herein, the novel carbon sub-micrometer composites (CSMCs) supported Fe0@γ-Fe2O3 core-shell clusters nanostructures are designed and synthesized through a series of universally applicable methods. Research data on adsorption behavior clearly revealed that resorcinol/formaldehyde 1.25-basic ferric acetate (RF-1.25BFA) and RF-1.25BFA-540 have surprising adsorption capacities. Employing the adsorbent dosage of 0.025 g L-1, the adsorption capacities for 10 mg L-1 Cd(II) reached 400.00 mg g-1 with ultrafast adsorption kinetics, alongside theoretical maximum adsorption capacities for Cd(II) of 1108.87 and 1065.06 mg g-1 using 0.025 g L-1 adsorbent, respectively, setting a new record-high level. Additionally, they demonstrated exceptional stability and reusability, maintaining Cd(II) removal efficiency above 95% even after 15 adsorption-desorption cycles. Importantly, this study is the first to unveil a new ultrafast successive two-step enrichment-hydrolysis adsorption mechanism for Cd(II) removal, emphasizing the critical role played by iron clusters nanostructures in constructing a high-alkalinity adsorption microenvironment on the surface of the materials. The findings reported pioneered a new avenue for the rational design of high-performance environmental remediation materials, aiming to overcome the limitations of traditional mine drainage treatment.
Collapse
Affiliation(s)
- Mengke Cui
- State Key Laboratory of Pollution Control and Resource ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
| | - Huiting Jiao
- State Key Laboratory of Pollution Control and Resource ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
- Shanghai Institute of Pollution Control and Ecological SecurityTongji UniversityShanghai200092P. R. China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
- Shanghai Institute of Pollution Control and Ecological SecurityTongji UniversityShanghai200092P. R. China
- College of Environmental Science and EngineeringGuilin University of TechnologyGuilin541006P. R. China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
- Shanghai Institute of Pollution Control and Ecological SecurityTongji UniversityShanghai200092P. R. China
| |
Collapse
|
4
|
Yang Y, Guo W, Zhang J, Liang S, Liu Q, Liu J, Ngo HH, Zhang H. Applicability analysis of algae biochar for anaerobic membrane bioreactors in wastewater treatment: A review from a sustainability assessment perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177609. [PMID: 39577581 DOI: 10.1016/j.scitotenv.2024.177609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
The incorporation of biochar can significantly enhance the performance of anaerobic membrane bioreactors (AnMBRs), achieving up to a 95 % increase in pollutant removal efficiency and an 86 % improvement in methane production. Algae biochar, in particular, shows great promise as an effective additive in AnMBR systems because of its low cost (approximately $0.470/kg) and the abundance of raw material sources. This paper presents a comprehensive applicability analysis of algae biochar-AnMBRs from a sustainability assessment perspective, addressing technical, environmental, economic, and social dimensions. Key technical benefits include a reduction in membrane fouling by 92.1 % and an enhancement of energy recovery by 58.7 % compared to conventional AnMBRs. Following this, the paper evaluates algae biochar-AnMBRs from environmental, economic, and social viewpoints to emphasize the practical applicability and potential of this process. Finally, this review addresses the limitations related to the full-scale implementation of this technology and proposes strategic approaches to overcome these challenges. Overall, the review provides valuable insights into the practical application of algae biochar-AnMBR systems, with a strong focus on sustainability.
Collapse
Affiliation(s)
- Yuanying Yang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Technology, Shandong University, Qingdao 266237, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Technology, Shandong University, Qingdao 266237, China
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Huiying Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Kumar Mondal A, Hinkley C, Kondaveeti S, Vo PHN, Ralph P, Kuzhiumparambil U. Influence of pyrolysis time on removal of heavy metals using biochar derived from macroalgal biomass (Oedogonium sp.). BIORESOURCE TECHNOLOGY 2024; 414:131562. [PMID: 39357609 DOI: 10.1016/j.biortech.2024.131562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
In this study, pyrolysis was performed at different times to convert Oedogonium biomass into biochar. The physicochemical properties show that the pyrolysis time significantly impacts structural and morphological changes in biochar samples. The influence of pyrolysis time on the removal of multiple heavy metals was investigated. Owing to the presence of abundant functional groups, inorganic minerals and porous nature, biochar obtained from a 40 min pyrolysis time showed higher removal efficiency of heavy metals compared to biochars pyrolyzed at 20 mins and 60 mins even with higher concentrations of metal ions. The maximum adsorption capacity was observed 9.33, 10.74, 322.58, 13.70 and 9.11 mg/g with the biochar prepared at the pyrolysis time of 40 mins for Co, Ni, Cu, Zn and Cd, respectively. The adsorption isotherm is well fitted with the Langmuir adsorption model for heavy metals adsorption, and the kinetic study is well-defined by a pseudo second-order model.
Collapse
Affiliation(s)
- Anjon Kumar Mondal
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Cora Hinkley
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Stalin Kondaveeti
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Phong H N Vo
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Peter Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | | |
Collapse
|
6
|
Wang BY, Li B, Xu HY. Machine learning screening of biomass precursors to prepare biomass carbon for organic wastewater purification: A review. CHEMOSPHERE 2024; 362:142597. [PMID: 38889873 DOI: 10.1016/j.chemosphere.2024.142597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
In the past decades, the amount of biomass waste has continuously increased in human living environments, and it has attracted more and more attention. Biomass is regarded as the most high-quality and cost-effective precursor material for the preparation carbon of adsorbents and catalysts. The application of biomass carbon has extensively explored. The efficient application of biomass carbon in organic wastewater purification were reviewed. With briefly introducing biomass types, the latest progress of Machine learning in guiding the preparation and application of biomass carbon was emphasized. The key factors in constructing efficient biomass carbon for adsorption and catalytic applications were discussed. Based on the functional groups, rich pore structure and active site of biomass carbon, it exhibits high efficiency in water purification performance in the fields of adsorption and catalysis. In addition, out of a firm belief in the enormous potential of biomass carbon, the remaining challenges and future research directions were discussed.
Collapse
Affiliation(s)
- Bao-Ying Wang
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
| | - Bo Li
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
| | - Huan-Yan Xu
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China.
| |
Collapse
|
7
|
Li X, Lin S, Ouvrard S, Sirguey C, Qiu R, Wu B. Environmental remediation potential of a pioneer plant (Miscanthus sp.) from abandoned mine into biochar: Heavy metal stabilization and environmental application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121751. [PMID: 38972191 DOI: 10.1016/j.jenvman.2024.121751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Pyrolysis stands out as an effective method for the disposal of phytoremediation residues in abandoned mines, yielding a valuable by-product, biochar. However, the environmental application of biochar derived from such residues is limited by the potential environmental risks of heavy metals. Herein, Miscanthus sp. residues from abandoned mines were pyrolyzed into biochars at varied pyrolysis temperatures (300-700 °C) to facilitate the safe reuse of phytoremediation residues. The results showed that pyrolysis significantly stabilizes heavy metals in biomass, with Cd exhibiting the most notable stabilization effect. Acid-soluble/exchangeable and reducible fractions of Cd decreased significantly from 69.91 % to 2.52 %, and oxidizable and residue fractions increased approximately 3.24 times at 700 °C. The environmental risk assessment indicated that biochar pyrolyzed over 500 °C pose lower environmental risk (RI < 30), making them optimal for the safe utilization of phytoremediation residues. Additionally, adsorption experiments suggested that biochars prepared at higher temperature (500-700 °C) exhibit superior adsorption capacity, attributed to alkalinity and precipitation effect. This study highlights that biochars produced by pyrolyzing Miscanthus sp. from abandoned mines above 500 °C hold promise for environmental remediation, offering novel insight into the reutilization of metal-rich biomass.
Collapse
Affiliation(s)
- Xiao Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shukun Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | | | | | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Bohan Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Wang Y, Yan Y, He C, Feng Y, Darma A, Yang J. The immobilization of cadmium by rape straw derived biochar in alkaline conditions: Sorption isotherm, molecular binding mechanism, and in-situ remediation of Cd-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:123969. [PMID: 38615835 DOI: 10.1016/j.envpol.2024.123969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
The issue of cadmium (Cd) contamination in alkaline soils is escalating, necessitating the prompt implementation of effective passivation strategies. Biochar has gained significant attention for its potential in immobilizing heavy metals; however, the suitability of biochar as a remediation material and its micro-scale interaction mechanisms with Cd under alkaline conditions remain unclear. Rape straw (RS) were pyrolyzed at 400 °C (RB400) and 700 °C (RB700) to produce biochar. Adsorption and soil incubation experiments were carried out to assess the feasibility of using rape straw derived biochar pyrolyze at different temperatures and understanding their remediation mechanisms in alkaline environments. The sorption capacity for Cd immobilization was evaluated using sorption isotherms, revealing that RB700 exhibited enhanced Cd sorption performance with a maximum sorption capacity of 119.33 mg g-1 calculated from the Langmuir isotherm equation at pH 8. Cd L3-edge X-ray absorption near-edge structure (XANES) spectroscopy analysis confirmed that the dominant sorption species of Cd were organic Cd in RB400, with CdCO3 precipitation increased to 73.9% in RB700. Solid-state 13C nuclear magnetic resonance (13C-NMR) spectroscopy demonstrated that aromatic and carboxyl C functional groups are involved in the organic sorption of Cd through complexation and Cd2+-π interactions in alkaline solutions. The precipitation of CdCO3 in RB700 may resulted in a more effective passivation effect compared to RB400, leading to a significant 15.54% reduction in the DTPA-Cd content in Cd-contaminated soil. These findings highlight the effective Cd passivation Cd in alkaline environments by rape straw derived biochar, providing new molecular insights into the Cd retention mechanism of biochar. Furthermore, it presents novel ideas for improving remediation approaches for alkaline Cd-contaminated soils.
Collapse
Affiliation(s)
- Yihao Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yubo Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ya Feng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Aminu Darma
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences), Beijing, 100081, China
| | - Jianjun Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences), Beijing, 100081, China.
| |
Collapse
|
9
|
Wang Y, Yan X, Zhang Y, Qin X, Yu X, Jiang L, Li B. Efficient Removal of Nickel from Wastewater Using Copper Sulfate-Ammonia Complex Modified Activated Carbon: Adsorption Performance and Mechanism. Molecules 2024; 29:2405. [PMID: 38792266 PMCID: PMC11124251 DOI: 10.3390/molecules29102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/04/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The necessity to eliminate nickel (Ni) from wastewater stems from its environmental and health hazards. To enhance the Ni adsorption capacity, this research applied a copper sulfate-ammonia complex (tetraamminecopper (II) sulfate monohydrate, [Cu(NH3)4]SO4·H2O) as a modifying agent for a Phragmites australis-based activated carbon preparation. The physiochemical properties of powdered activated carbon (PAC) and a modified form ([Cu(NH3)4]-PAC) were examined by measuring their surface areas, analyzing their elemental composition, and using Boehm's titration method. Batch experiments were conducted to investigate the impact of various factors, such as Ni(II) concentration, contact time, pH, and ionic strength, on its substance adsorption capabilities. Additionally, the adsorption mechanisms of Ni(II) onto activated carbon were elucidated via Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The findings indicated that modified activated carbon ([Cu(NH3)4]-PAC) exhibited a lower surface area and total volume than the original activated carbon (PAC). The modification of PAC enhanced its surface's relative oxygen and nitrogen content, indicating the incorporation of functional groups containing these elements. Furthermore, the modified activated carbon, [Cu(NH3)4]-PAC, exhibited superior adsorption capacity relative to unmodified PAC. Both adsorbents' adsorption behaviors conformed to the Langmuir model and the pseudo-second-order kinetics model. The Ni(II) removal efficiency of PAC and [Cu(NH3)4]-PAC diminished progressively with rising ionic strength. Modified activated carbon [Cu(NH3)4]-PAC demonstrated notable pH buffering and adaptability. The adsorption mechanism for Ni(II) on activated carbon involves surface complexation, cation exchange, and electrostatic interaction. This research presents a cost-efficient preparation technique for preparing activated carbon with enhanced Ni(II) removal capabilities from wastewater and elucidates its underlying adsorption mechanisms.
Collapse
Affiliation(s)
- Yifei Wang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
- Department of Civil and Environmental Engineering E4130 Engineering Gateway Building, University of California, Irvine, CA 92697-2175, USA
| | - Xiaoxiao Yan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
| | - Yidi Zhang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
| | - Xiaoxin Qin
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
| | - Xubiao Yu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
| | - Li Jiang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
- College of Environmental and Resource Science, Zhejiang University, 866 Yuhuangtang Rd, Hangzhou 310058, China
| | - Bing Li
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; (Y.W.); (X.Y.); (Y.Z.); (X.Q.); (X.Y.)
| |
Collapse
|
10
|
Wang C, Lin X, Zhang X, Show PL. Research advances on production and application of algal biochar in environmental remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123860. [PMID: 38537803 DOI: 10.1016/j.envpol.2024.123860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/01/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Algae, comprising microalgae and macroalgae, have emerged as a promising feedstock for the production of functional biochar. Recently, the application of algal biochar in environmental remediation gains increasing attention. This review summarizes research advancements in the synthesis and application of algal biochar, a versatile and sustainable material for environmental remediation ranging from wastewater treatment to soil improvement. Algal biochar can be prepared by pyrolysis, microwave-assisted pyrolysis, and hydrothermal carbonization. Physical and chemical modifications have proven to be effective for improving biochar properties. Algal biochar is promising for removing diverse pollutants including heavy metals, organic pollutants, and microplastics. The role in soil improvement signifies a sustainable approach to enhancing soil structure, nutrient retention, and microbial activity. Research gaps are identified based on current understanding, necessitating further exploration into variations in biochar characteristics, the performance improvement, large-scale applications, and the long-term evaluation for environmental application. This review provides a better understanding of algal biochar as a sustainable and effective tool in environmental remediation.
Collapse
Affiliation(s)
- Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China
| | - Xiao Lin
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuxiu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
11
|
Yu R, Wang Y, Xu X, Zheng Q, Jiang W, Yu J, Wang H, Kong Y, Yu C, Huang X. Steam activation of porous concave polymer nanospheres for high-efficient chromium and cadmium removal. J Colloid Interface Sci 2024; 660:859-868. [PMID: 38277842 DOI: 10.1016/j.jcis.2024.01.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
The issue of heavy metal contamination in water is a global concern, and the development of highly efficient adsorbent materials is crucial for the removal and detoxification of heavy metals. Polymer-based materials have emerged as a promising class of adsorbents due to their ability to capture heavy metal pollutants and reduce them to less toxic forms. The limited surface area of conventional polymer adsorbents makes them less effective for high-capacity adsorption. Herein, we present a low-temperature steam activation approach to address this challenge. This activation approach leads to a remarkable increase of over 20 times in the surface area of concave aminophenol-formaldehyde (APF) polymer nanospheres (from 45 to 961 m2/g) while preserving their reductive functional groups. The activated concave APF nanospheres were evaluated for their adsorption capabilities towards two typical heavy metal ions (i.e., Cr(VI) and Cd(II)) in aqueous solutions. The maximum adsorption capacities achieved were 1054 mg g-1 for Cr(VI) and 342 mg g-1 for Cd(II), which are among the highest performances reported in the literature and are much higher than the capacities of the non-activated APF nanospheres. Additionally, approximately 71.5 % of Cr(VI) was simultaneously reduced to Cr(III) through the benzenoid amine pathway during adsorption, highlighting the crucial role of the steam activation strategy in enhancing the capability of polymer adsorbents.
Collapse
Affiliation(s)
- Rongtai Yu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, PR China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Yueyang Wang
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, PR China
| | - Xin Xu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, PR China
| | - Qiuyan Zheng
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, PR China
| | - Wen Jiang
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, PR China
| | - Jiaxin Yu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, PR China
| | - Haiyang Wang
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, PR China
| | - Yueqi Kong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Xiaodan Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
12
|
Truong QM, Nguyen TB, Chen CW, Chen WH, Bui XT, Dong CD. KHCO 3-activated high surface area biochar derived from brown algae: A case study for efficient adsorption of Cr(VI) in aqueous solution. ENVIRONMENTAL RESEARCH 2024; 247:118227. [PMID: 38253192 DOI: 10.1016/j.envres.2024.118227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
The current study aimed to assess the effectiveness of biochar formed from algae in the removal of Cr(VI) through the process of impregnating brown algae Sargassum hemiphyllum with KHCO3. The synthesis of KHCO3-activated biochar (KBAB-3), demonstrating remarkable adsorption capabilities for Cr(VI), was accomplished utilizing a mixture of brown algae and KHCO3 in a mass ratio of 1:3, followed by calcination at a temperature of 700 °C. Based on the empirical evidence, it can be observed that KBAB-3 shown a significant ability to adsorb Cr(VI) within a range of 60-160 mg g-1 across different environmental conditions. In addition, the KBAB-3 material demonstrated the advantageous characteristic of easy separation, allowing for the continued maintenance of a high efficiency in removing Cr(VI) even after undergoing numerous cycles of reuse. In conclusion, the application of KBAB-3, a novel adsorbent, exhibits considerable prospects for effective removal of Cr(VI) from diverse water sources in the near future.
Collapse
Affiliation(s)
- Quoc-Minh Truong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Management Science, Thu Dau Mot University, Binh Duong 75000, Viet Nam
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
13
|
Nama M, Satasiya G, Sahoo TP, Moradeeya PG, Sadukha S, Singhal K, Saravaia HT, Dineshkumar R, Anil Kumar M. Thermo-chemical behaviour of Dunaliella salina biomass and valorising their biochar for naphthalene removal from aqueous rural environment. CHEMOSPHERE 2024; 353:141639. [PMID: 38447902 DOI: 10.1016/j.chemosphere.2024.141639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Thermo-chemical behavior of a microalgal biomass; Dunaliella salina was investigated through thermo-gravimetric analyses. Fully-grown D. salina biomass were subjected for biochar conversion using pyrolytic treatment at three distinct heating rates such as 2.5, 5, and 15 °C min-1. The kinetic appraisals were explained by using model-free kinetics viz., Kissinger-Akahira-Sanose, Flynn-Waal-Ozawa and Starink iso-conversional correlations with concomitant evaluation of activation energies (Ea). The Ea value is 194.2 kJ mol-1 at 90% conversion in FWO model, which is higher as compared to other two models. Moisture, volatile substances, and other biochemical components of the biomass were volatilized between 400 and 1000 K in two separate thermo-chemical breakdown regimes. Microscopic and surface characterization analyses were carried out to elucidate the elemental and morphological characteristics of the biomass and biochar. Further, the proficiency of the prepared biochar was tested for removing naphthalene from the watery media. The novelty of the present study lies in extending the applicability of biochar prepared from D. salina for the removal of a model polyaromatic hydrocarbon, naphthalene.
Collapse
Affiliation(s)
- Muskan Nama
- Applied Phycology and Biotechnology Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Gopi Satasiya
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Tarini Prasad Sahoo
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Pareshkumar G Moradeeya
- Department of Environmental Science and Engineering, Marwadi University, Rajkot, 360 003, Gujarat, India
| | - Shreya Sadukha
- Applied Phycology and Biotechnology Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Kirti Singhal
- Applied Phycology and Biotechnology Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Hitesh T Saravaia
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Ramalingam Dineshkumar
- Applied Phycology and Biotechnology Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India.
| | - Madhava Anil Kumar
- Centre for Rural and Entrepreneurship Development, National Institute of Technical Teachers Training and Research, Chennai, 600 113, Tamil Nadu, India.
| |
Collapse
|
14
|
Xiong Q, Li Y, Hou C, Ma X, Zhou X, Zuo X, Chen C. An efficient and simple approach to remove Cd(II) in aqueous solution by using rice straw biochar: performance and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16782-16794. [PMID: 38324153 DOI: 10.1007/s11356-024-32222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
In recent years, cadmium pollution in water environment has become an environmental problem that could not be ignored. As a porous carbon rich solid material, biochar is an environment-friendly new material because of its ultra-high adsorption capacity and strong chemical stability. In this study, rice straw biochar (RS-Biochar) was successfully prepared at different temperatures for removal of Cd(II) from aqueous solution. Through a series of characterization and adsorption experiments, the adsorption principle of Cd(II) by RS-Biochar was deeply studied. The results showed that RS-Biochar prepared at 600 °C (BioC600) has high specific surface area (232.6 m2/g) and shows high Cd(II) removal rate of 91.23% with the maximum Cd(II) adsorption capacity of 8.62 mg/g. The Langmuir model fit well to describe the adsorption process of Cd(II) on the BioC600. The mechanism analysis showed that hydroxyl and carboxyl groups on the biochar surface were concerned in the removal of Cd(II). The formation of CdCO3 in the adsorption process was also be proven. Importantly, RS-Biochar could be conveniently produced with needed scale, displaying a promising approach for remediating Cd(II)-contaminated water environment and a huge application potential.
Collapse
Affiliation(s)
- Qiao Xiong
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, Hubei, China
- Huangshi Key Laboratory of Prevention and Control of Soil Pollution (Hubei Normal University), Huangshi, 435002, Hubei, China
| | - Yinqiu Li
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, Hubei, China
- Huangshi Key Laboratory of Prevention and Control of Soil Pollution (Hubei Normal University), Huangshi, 435002, Hubei, China
| | - Chaohua Hou
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, Hubei, China
- Huangshi Key Laboratory of Prevention and Control of Soil Pollution (Hubei Normal University), Huangshi, 435002, Hubei, China
| | - Xiao Ma
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, Hubei, China
| | - Xiangjun Zhou
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, Hubei, China
| | - Xiangru Zuo
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, Hubei, China
| | - Chang Chen
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resource and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
15
|
Meng Z, Wu J, Huang S, Xin L, Zhao Q. Competitive adsorption behaviors and mechanisms of Cd, Ni, and Cu by biochar when coexisting with microplastics under single, binary, and ternary systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169524. [PMID: 38142002 DOI: 10.1016/j.scitotenv.2023.169524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
In this study, the effects of coexistence with microplastics and co-ageing with the soil on adsorption behaviors and mechanisms of biochar for heavy metals were investigated. Adsorption experiments of Cd, Ni, and Cu by microplastics, biochar, and their combination were conducted in single, binary, and ternary systems. The results indicated that the heavy metal adsorption by microplastics was ranked as Ni > Cd > Cu, which increased with decreasing particle size, and the adsorption capacity of microplastics was enhanced after dry-wet and freeze-thaw ageing. Biochar preferentially adsorbed Cd in the single system, while the maximum adsorption of Cu was observed in the binary and ternary systems due to the minimizing impact of competition on the Cu adsorption by biochar. The heavy metal adsorption by the combination of microplastics and biochar was less than that by single biochar, and the smaller the particle size of microplastics, the greater the negative effects on heavy metal adsorption. Coexistence with microplastics reduced Cd adsorption of biochar by 0.72 %-50.35 %, Ni adsorption by 1.17 %-30.43 %, and Cu adsorption by 5.78 %-47.88 %, respectively. Moreover, coexistence with microplastics exacerbated the adverse impacts of competition on biochar adsorption for heavy metals. The contribution percentages of biochar mineral mechanisms for heavy metal adsorption were ranked as Cu > Cd > Ni. When coexisting with microplastics or after ageing, the mineral mechanisms of heavy metal adsorption by biochar significantly decreased. This study investigated the competitive adsorption behaviors and mechanisms of heavy metals by biochar when coexisting with microplastics, which highlighted that the application of biochar for the remediation of heavy metal pollution should be concerned with the impacts of microplastics.
Collapse
Affiliation(s)
- Zhuowen Meng
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
| | - Jingwei Wu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
| | - Shuang Huang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
| | - Lei Xin
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
| | - Qin Zhao
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Cong M, Wu K, Wang J, Li Z, Mao R, Niu Y, Chen H. Synthesis of Aminomethylpyridine-Decorated Polyamidoamine Dendrimer/Apple Residue for the Efficient Capture of Cd(II). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2320-2332. [PMID: 38236574 DOI: 10.1021/acs.langmuir.3c03447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Water contamination irritated by Cd(II) brings about severe damage to the ecosystem and to human health. The decontamination of Cd(II) by the adsorption method is a promising technology. Here, we construct aminomethylpyridine-functionalized polyamidoamine (PAMAM) dendrimer/apple residue biosorbents (AP-G1.0-AMP and AP-G2.0-AMP) for adsorbing Cd(II) from aqueous solution. The adsorption behaviors of the biosorbents for Cd(II) were comprehensively evaluated. The maximum adsorption capacities of AP-G1.0-AMP and AP-G2.0-AMP for Cd(II) are 1.40 and 1.44 mmol·g-1 at pH 6. The adsorption process for Cd(II) is swift and can reach equilibrium after 120 min. The film diffusion process dominates the adsorption kinetics, and a pseudo-second-order model is appropriate to depict this process. The uptake of Cd(II) can be promoted by increasing concentration and temperature. The adsorption isotherm follows the Langmuir model with a chemisorption mechanism. The biosorbents also display satisfied adsorption for Cd(II) in real aqueous media. The adsorption mechanism indicates that C-N, N═C, C-O, CONH, N-H, and O-H groups participate in the adsorption for Cd(II). The biosorbents display a good regeneration property and can be reused with practical value. The as-prepared biosorbents show great potential for removing Cd(II) from water solutions with remarkable significance.
Collapse
Affiliation(s)
- Mengchen Cong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Kaiyan Wu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, P. R. China
| | - Jiaxuan Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Ziwei Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Ruiyu Mao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| |
Collapse
|
17
|
Leong YK, Chang JS. Microalgae-based biochar production and applications: A comprehensive review. BIORESOURCE TECHNOLOGY 2023; 389:129782. [PMID: 37742815 DOI: 10.1016/j.biortech.2023.129782] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Biochar, a solid carbonaceous substance synthesized from the thermochemical degradation of biomass, holds significant potential in addressing global challenges such as soil degradation, environmental pollution, and climate change. Its potential as a carbon sequestration agent, together with its versatile applications in soil amendments, pollutant adsorption, and biofuel production, has garnered attention. On the other hand, microalgae, with their outstanding photosynthetic efficiency, adaptability, and ability to accumulate carbohydrates and lipids, have demonstrated potential as emerging feedstock for biochar production. However, despite the significant potential of microalgal biochar, our current understanding of its various aspects, such as the influence of parameters, chemical modifications, and applications, remains limited. Therefore, this review aims to provide a comprehensive analysis of microalgae-based biochar, covering topics such as production techniques, pollutant removal, catalytic applications, soil amendments, and synthesis of carbon quantum dots to bridge the existing knowledge gap in this field.
Collapse
Affiliation(s)
- Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407224, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407224, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407224, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407224, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
18
|
Tu X, Xu P, Zhu Y, Mi W, Bi Y. Molecular complexation properties of Cd 2+ by algal organic matter from Scenedesmus obliquus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115378. [PMID: 37598544 DOI: 10.1016/j.ecoenv.2023.115378] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/21/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
A detailed understanding the metals binding with algal organic matter (AOM) is essential to gain a deeper insight into the toxicity and migration of metals in algae cell. However, the molecular complexation mechanism of the metals binding with AOM remains unclear. In this study, cadmium ion (Cd2+) binding properties of AOMs from Scenedesmus obliquus, which included extracellular organic matter (EOM) and intracellular organic matter (IOM), were screened. When Cd2+ < 0.5 mg/L, the accumulation of Cd2+ could reach 40%, while Cd2+ > 0.5 mg/L, the accumulation of Cd2+ was only about 10%. EOM decreased gradually (from 8.51 to 3.98 mg/L), while IOM increased gradually (from 9.62 to 21.00 mg/L). The spectral characteristics revealed that IOM was richer in peptides/proteins and had more hydrophilic than EOM. Both EOM and IOM contained three protein-like components (containing tryptophan and tyrosine) and one humic-like component, and their contents in IOM were higher than that in EOM. The tryptophan protein-like substances changed greatly during Cd2+ binding, and that the tryptophan protein-like substances complexed to Cd2+ before tyrosine protein-like substances in IOM was identified. Moreover, the functional groups of N-H, O-H, and CO in AOM played an important role, and the N-H group was priority to interacts with Cd2+ in the complexing process. More functional groups (such as C-O and C-N) were involved in the metals complexing in EOM than in IOM. It could be concluded that Cd2+ stress promoted the secretion of AOM in Scenedesmus obliquus, and proteins in AOM could complex Cd2+ and alleviate its toxicity to algal cell. These findings provided deep insights into the interaction mechanism of AOM with Cd2+ in aquatic environments.
Collapse
Affiliation(s)
- Xiaojie Tu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Pingping Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxuan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wujuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
19
|
Zhao H, Li P. Immobilization of cadmium in paddy soil using a novel active silicon-potassium amendment: a field experimental study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1087. [PMID: 37615787 DOI: 10.1007/s10661-023-11714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
The rapid development of industrialization and agriculture has led to extensive environmental issues worldwide such as cadmium (Cd) pollution of paddy soils, posing a potential threat to environmental safety and food health. Therefore, there is an urgent need to reduce the Cd contents in paddy soils. In this study, a newly active silicon-potassium amendment was first prepared from potassium hydroxide-assisted potassium feldspar at a low temperature, and then was used to remediate a contaminated paddy soil by Cd over a long period. The obtained results demonstrated the effectiveness of the applied active silicon-potassium in promoting rice growth in the experimental field. In addition, soil pH values increased to 6.89-7.03, thus decreasing the bioavailability of Cd bioavailability by 8.61-13.7%. The soil enzyme activities and available nutrients (Si, Ca, Mg, N, and P) were also significantly increased. In particular, the Cd contents in the rice grains decreased from 0.279 to 0.179-0.194 mg/kg following the application of the active silicon-potassium amendment, reaching the food crop standard level of China (< 0.2 mg/kg). The detailed remediation mechanisms of the Cd-contaminated paddy soil involved several processes, including ion exchange, ligand complexation, electrostatic attraction, and precipitation. Overall, the active silicon-potassium material is a promising amendment for achieving effective control of Cd-contaminated paddy soils.
Collapse
Affiliation(s)
- Hanghang Zhao
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
20
|
Chen Q, Gao M, Miao Q, Xiao L, Li Z, Qiu W, Song Z. Characteristics of a Novel Decomposed Corn Straw-Sludge Biochar and Its Mechanism of Removing Cadmium from Water. ACS OMEGA 2023; 8:24912-24921. [PMID: 37483186 PMCID: PMC10357432 DOI: 10.1021/acsomega.3c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
The utilization of high-efficiency adsorption materials to reduce cadmium pollution in aquatic environments is the focus of current environmental remediation research. Straw waste and sludge, which are available in huge amounts, can be best utilized in the preparation of environmental remediation materials. In this study, six types of biochar (SBC, CBC, DBC, SD1BC, SRDBC, and SCDBC) were prepared from straw and sludge by co-pyrolysis, and their cadmium adsorption mechanisms were explored. Cd(II) adsorption isotherms and kinetics on the biochar were determined and fitted to different models. Kinetic modeling was used to characterize the Cd(II) adsorption of biochar, and findings revealed the process of sorption followed pseudo-second-order kinetics (R2 > 0.96). The Langmuir model accurately represented the isotherms of adsorption, indicating that the process was monolayer and controlled by chemical adsorption. SCDBC had the highest capacity for Cd(II) adsorption (72.2 mg g-1), 1.5 times greater than that of sludge biochar, and 3 times greater than that of corn straw biochar. As the pH level rose within the range of pH 5.0 to 7.0 and the ionic strength decreased, the adsorption capacity experienced an increase. SCDBC contained CaCO3 mineral crystals before Cd(II) adsorption, and CdCO3 was found in SCDBC after adsorbing Cd(II) via X-ray diffraction analysis; the peak of Cd could be observed by Fourier transform infrared spectroscopy after the adsorption of Cd(II). The possible adsorption of Cd(II) by SCDBC occurred primarily via surface complexation with active sorption sites, precipitation with inorganic anions, and coordination with π electrons. Collectively, the study suggested that the six types of biochar, particularly SCDBC, could be used as highly efficient adsorbents for Cd(II) removal from aquatic environments.
Collapse
Affiliation(s)
- Qiaoting Chen
- Department
of Material and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Minling Gao
- Department
of Material and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Qiyu Miao
- Department
of Material and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Ling Xiao
- Department
of Material and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Zhongyang Li
- Institute
of Farmland Irrigation of CAAS, Xinxiang 453002, China
| | - Weiwen Qiu
- The
New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Zhengguo Song
- Guangdong
Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| |
Collapse
|
21
|
Chen S, Hao HC, Zhang SZ, Jiang H. Selectively retaining nutrients in biochar in magnesium added two-zone staged copyrolysis of blue algae and corn gluten wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117583. [PMID: 36848804 DOI: 10.1016/j.jenvman.2023.117583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The disposal of blue algae (BA) and corn gluten (CG) wastes and the simultaneous recovery of abundant phosphorus (P) and nitrogen (N) by pyrolysis to obtain biochars with high fertility is a promising strategy. However, pyrolysis of BA or CG alone by a conventional reactor cannot reach the target. Herein, we propose a novel MgO-enhanced N and P recovery method by designing a two-zone staged pyrolysis reactor to highly efficiently recover N and P with easily available plant forms in BA and CG. The results show that a 94.58% total phosphorus (TP) retention rate was achieved by means of the special two-zone staged pyrolysis method, in which the effective P (Mg2PO4(OH) and R-NH-P) accounted for 52.9% of TP, while the total nitrogen (TN) reached 4.1 wt%. In this process, stable P was formed first at 400 °C to avoid rapid volatilization and then to form hydroxyl P at 800 °C. Meanwhile, Mg-BA char in the lower zone can efficiently absorb N-containing gas generated by the upper CG, forming dispersible N. This work is of great significance for improving the green utilization value of P and N in BA and CG.
Collapse
Affiliation(s)
- Shuo Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hong-Chao Hao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Zhe Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hong Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
22
|
Dang BT, Ramaraj R, Huynh KPH, Le MV, Tomoaki I, Pham TT, Hoang Luan V, Thi Le Na P, Tran DPH. Current application of seaweed waste for composting and biochar: A review. BIORESOURCE TECHNOLOGY 2023; 375:128830. [PMID: 36878373 DOI: 10.1016/j.biortech.2023.128830] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
To address the origins of ocean acidification, seaweed aquaculture is emerging as a key biosequestration strategy. Nevertheless, seaweed biomass is involved in developing food and animal feed, whereas seaweed waste from commercial hydrocolloid extraction is dumped in landfills, which together limit the carbon cycle and carbon sequestration. This work sought to evaluate the production, properties, and applications of seaweed compost and biochar to strengthen the "carbon sink" implications of aquaculture sectors. Due to their unique characteristics, the production of seaweed-derived biochar and compost, as well as their existing applications, are distinct when compared to terrestrial biomass. This paper outlines the benefits of composting and biochar production as well as proposes ideas and perspectives to overcome technical shortcomings. If properly synchronized, progression in the aquaculture sector, composting, and biochar production, potentially promote various Sustainable Development Goals.
Collapse
Affiliation(s)
- Bao-Trong Dang
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.
| | | | - Ky-Phuong-Ha Huynh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Minh-Vien Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Itayama Tomoaki
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Tan-Thi Pham
- Faculty of Applied Sciences, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Van Hoang Luan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Pham Thi Le Na
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Duyen P H Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan, ROC
| |
Collapse
|
23
|
Yan Y, Du M, Jing L, Zhang X, Li Q, Yang J. Green synthesized hydroxyapatite for efficient immobilization of cadmium in weakly alkaline environment. ENVIRONMENTAL RESEARCH 2023; 223:115445. [PMID: 36758915 DOI: 10.1016/j.envres.2023.115445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The development of cost-effective passivators for the remediation of heavy metal-contaminated soils has been a research hotspot and an unsolved challenge. Herein, a novel hydroxyapatite (GSCH) was synthesized by co-precipitating distiller effluent-derived Ca with (NH4)2HPO4 using straw-derived dissolved organic matter (S-DOM) as the dispersant. Batch adsorption experiments and soil incubation tests were performed to assess the immobilization efficiency of GSCH for Cd in weakly alkaline environments. As a result, GSCH showed an excellent adsorption efficiency to Cd with a maximum adsorption amount of ∼222 mg g-1, which was fairly competitive compared to other similar previously materials reported. The kinetic data indicated that the adsorption of Cd on GSCH was a chemical and irreversible process, while the thermodynamic data revealed a spontaneous (ΔG° < 0) and endothermic (ΔH° > 0) adsorption process. Based on mechanism analysis, both physisorption (e.g., electrostatic attraction and pore filling) and chemisorption (e.g., ion exchange and complexation) were responsible for Cd adsorption on GSCH. Particularly, the incorporated S-DOM and hydroxyapatite phase in GSCH acted synergistically in the adsorption process. The incubation results showed that GSCH application could significantly reduce the bioavailability, phytoavailability and bioaccessibility of Cd in soil by 48.4%-57.8%, 20.4%-28.6% and 12.6%-24.0%, respectively. Moreover, GSCH application also improved soil bacterial communities and enhanced soil nutrient availability. Overall, this is the first study to demonstrate the potential application value of GSCH in Cd immobilization, providing promising insights into the development of green and cost-effective hydroxyapatite-based passivators for the remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Yubo Yan
- Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing, 100081, China; Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N1N4, Canada
| | - Meng Du
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Liquan Jing
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N1N4, Canada
| | - Xiaoxin Zhang
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China
| | - Qiao Li
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China
| | - Jianjun Yang
- Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
24
|
Tian H, Peng S, Zhao L, Chen Y, Cui K. Simultaneous adsorption of Cd(II) and degradation of OTC by activated biochar with ferrate: Efficiency and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130711. [PMID: 36641845 DOI: 10.1016/j.jhazmat.2022.130711] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Biochar-supported zero-valent iron nanocomposites have received much attention due to their application potential in environmental pollution remediation. However, in many occasions, zero-valent iron loading improves the electron transfer efficiency and catalytic oxidation capacity of biochar while blocking the original pore structure of biochar, limiting its application potential. In this study, a zero-valent iron composites with large SSA (865.86 m2/g) was prepared in one step using pre-pyrolysis of biochar powder and K2FeO4 grinding for co-pyrolysis. The processes of ZVI generation and SSA expansion during the pyrolysis were investigated. The factors affecting the removal process of Cd and OTC in water by the composites were investigated. The mechanisms of Cd fixation and OTC degradation by the composites were explored by experiments, characterization, and DFT calculations. The OTC degradation pathway was proposed by theoretical predication and LC-MS spectrometry. The results indicate that ion exchange, complexation with oxygen-containing functional groups, electrostatic attraction, and interaction with π-electrons are the main mechanisms of Cd immobilization. The degradation pathways of OTC mainly include dehydroxylation, deamination and dealkylation.
Collapse
Affiliation(s)
- Haoran Tian
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shuchuan Peng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Lu Zhao
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230000, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230000, China
| |
Collapse
|
25
|
Yuan Q, Wang P, Wang X, Hu B, Wang C, Xing X. Nano-chlorapatite modification enhancing cadmium(II) adsorption capacity of crop residue biochars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161097. [PMID: 36587697 DOI: 10.1016/j.scitotenv.2022.161097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) contamination in rivers or lakes has attracted worldwide concerns. Biochar pyrolyzed form crop residues (CR) could adsorb Cd(II) from aquatic environments, while the removal capacity of single CR biochar is relatively low. Nano-chlorapatite (nClAP) modification can enhance metal scavenging ability, but little is known about the behaviors and mechanisms of Cd(II) adsorption by nClAP-modified CR biochars. In this study, the influences of feedstock type, pyrolysis temperature, nClAP modification and aquatic environments on Cd(II) adsorption of biochars derived from rice (RB) and wheat (WB) husks were investigated comprehensively. Results showed that the pristine RB and WB showed low and similar Cd(II) adsorption capacities, while the rise of pyrolysis temperatures from 300 to 600 °C significantly improved the adsorption capacities. The Cd(II) adsorption of both RB and WB was regarded as monolayer chemical processes controlled by chemical precipitation, surface complexation and cation exchange mechanisms. Moreover, the nClAP modification notably enhanced Cd(II) adsorption capacities from 13.2 to 39.9 mg·g-1 of pristine biochars to 25.2-60.7 mg·g-1 of modified biochars attributed to the improved contribution of Cd(II)-phosphate precipitation. Among all biochars, the nClAP-modified RB and WB pyrolyzed at 500 °C had the highest Cd(II) adsorption capacities with 60.7 and 48.3 mg·g-1, respectively. These biochars could maintain good adsorption performances under the neutral-alkaline (pH 6-8), low ionic strength, high dissolved organic matter and all oxidation-reduction potential conditions. In conclusion, this study reveals the importance of nClAP modification to optimize Cd(II) adsorption of CR biochars, which provides a promising future for its practical application in aquatic Cd(II) scavenging.
Collapse
Affiliation(s)
- Qiusheng Yuan
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China.
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Xiaolei Xing
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| |
Collapse
|
26
|
Quantitatively ion-exchange between Mg(II) and Pb(II)/Cd(II) during the highly efficient adsorption by MgO-loaded lotus stem biochar. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
27
|
Xia L, Tan J, Huang R, Zhang Z, Zhou K, Hu Y, Song S, Xu L, Farías ME, Sánchez RMT. Enhanced Cd(II) biomineralization induced by microalgae after cultivating modification in high-phosphorus culture. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130243. [PMID: 36308883 DOI: 10.1016/j.jhazmat.2022.130243] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
In this study, high-phosphorus beared microalgae was prepared by cultivating modification in high-phosphorus culture, and used for the enhanced Cd(II) biomineralization in soil. Batch experiment results showed that Chlorella sorokiniana FK was modified successfully in highly phosphate culture. Both intracellular P (Poly-P, 29.7 mg/kg) and surface P (phosphoryl based functional groups, 3.7 mol/kg) were greatly enhanced, and the Cd(II) removal capacity surged to 45.98 mg/g at equilibrium in the Langmuir simulation. The EXAFS analysis indicated that Cd tended to form a more stable bidentate complex (RPO4)2Cd when bounding with phosphate groups on the surface of the high-phosphorus microalgae. Moreover, high-phosphorus beared microalgae not only had higher immobilization amount of Cd(II), but also promoted immobilized Cd from adsorbed state to mineralized state. After high-phosphate cultured, increased density of P-related groups provided more adsorption sites, while the decomposition of intracellular Poly-P released phosphate ions into cell surface microenvironment, which combined and promoted the formation of Cd3(PO4)2/Cd(H2PO4)2 on cell surface. Cd-contaminated soil remediation experiments applying high-surface-phosphate beared microalgae further showed that more Cd stabilized as a residue fraction within 49 days. This study proposes that the high-phosphate culture strategy is a good way to improve the immobilization of heavy metals in soil induced by microorganisms.
Collapse
Affiliation(s)
- Ling Xia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Jiaqi Tan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Rong Huang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Zijia Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China; Instituto de Física de la Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| | - Keqiang Zhou
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China; Instituto de Física de la Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico.
| | - Yaxi Hu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Lei Xu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, Jiangsu, China.
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Rosa María Torres Sánchez
- CETMIC, CONICET, CCT La Plata, CICBA, Camino Centenario y 506, 1897 M. B. Gonnet, La Plata, Argentina
| |
Collapse
|
28
|
Effect of CeO 2-Reinforcement on Pb Absorption by Coconut Coir-Derived Magnetic Biochar. Int J Mol Sci 2023; 24:ijms24031974. [PMID: 36768305 PMCID: PMC9916585 DOI: 10.3390/ijms24031974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Magnetic separable biochar holds great promise for the treatment of Pb2+-contaminated wastewater. However, the absorption effect of unmodified magnetic biochar is poor. Considering this gap in knowledge, CeO2-doped magnetic coconut coir biochar (Ce-MCB) and magnetic coconut coir biochar (MCB) for Pb2+ absorption were prepared by the impregnation method, and the efficiency of Ce-MCB for Pb2+ absorption was evaluated in comparison with MCB. Conducting the absorption experiments, the study provided theoretical support for the exploration of the absorption mechanism. The quantitative analysis exposed that the enhanced absorption capacity of Ce-MCB was attributed to the increase in oxygen-containing functional groups and mineral precipitation. The Langmuir and Freundlich isotherm model showed that Ce-MCB is a suitable adsorbent for Pb2+. The absorption characteristics of Ce-MCB was fit well with the pseudo-second-order (PSO) and Langmuir models, which revealed that the absorption of Pb2+ in water was monolayer chemisorption with a maximum theoretical adsorption capacity of 140.83 mg·g-1. The adsorption capacity of Ce-MCB for Pb(II) was sustained above 70% after four cycles. In addition, the saturation magnetization intensity of Ce-MCB was 7.15 emu·g-1, which was sufficient to separate out from the solution. Overall, Ce-MCB has wide application prospects in terms of biomass resources recycling and environmental conservation.
Collapse
|
29
|
Cao Q, Wang C, Tang D, Zhang X, Wu P, Zhang Y, Liu H, Zheng Z. Enhanced elemental mercury removal in coal-fired flue gas by modified algal waste-derived biochar: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116427. [PMID: 36274339 DOI: 10.1016/j.jenvman.2022.116427] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
A novel biochar involving pyrolysis of dewatered algal waste combined with KOH and residual FeCl3 co-activation was synthesized as an efficient sorbent specifically for Hg0 removal from coal-fired flue gas. It was found that the SBET of biochar co-activated by KOH and FeCl3 (BCFK) was 195.82 m2 g-1, much higher than that of single FeCl3 activated biochar (BCF) of 133.38 m2 g-1 and un-activated biochar (UBC) of 20.36 m2 g-1. Furthermore, BCFK exhibited higher magnetization characteristics as well as elemental Fe and Cl contents of 2.71% and 10.33%, respectively, based on the combined characterization of XPS and VSM, etc., which is a jump of about 10-fold compared to BCF. This allows BCFK to show the best Hg0 removal capability of 689.66 μg g-1 under the inlet Hg0 concentration of 100 μg m-3 and 150 °C, according to pseudo-second-order kinetic model. Further analysis by XPS and Hg-TPD (Temperature Programmed Desorption) revealed that oxidation by Cl∗ radicals and C-Cl as well as weak chemisorption contributed to the removal of Hg0. Eventually, this efficient, simply prepared, low-cost and easily separable biochar distinguished itself in comparison to other materials. This will undoubtedly promote the valorization of algae and provide a reliable alternative material for the treatment of coal-fired flue gas.
Collapse
Affiliation(s)
- Qihao Cao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chang Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Daoyuan Tang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xuedong Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ping Wu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yan Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou, 215011, China
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou, 215011, China.
| | - Zhiyong Zheng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou, 215011, China.
| |
Collapse
|
30
|
Lai L, Liu X, Ren W, Zhou Z, Zhao X, Zeng X, Lin C, He M, Ouyang W. Efficient removal of Sb(III) from water using β-FeOOH-modified biochar:Synthesis, performance and mechanism. CHEMOSPHERE 2023; 311:137057. [PMID: 36328318 DOI: 10.1016/j.chemosphere.2022.137057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Since the toxicity of Sb(III) is 10 times as high as that of Sb(V) in the environment, it is urgent to find a way to cut down Sb(III). β-FeOOH-modified biochar (β-FeOOH/BC) was prepared and used to remove Sb(III). The characterization results suggested that oxygen-containing functional groups formed on β-FeOOH/BC, which increased the Sb(III) removal efficiency. Even under complex water matrix conditions, the outstanding adsorption performance of β-FeOOH/BC for Sb(III) was obtained. The adsorption reaction rapidly reached a high removal efficiency within 5 min and approached adsorption equilibrium in about 6 h. The adsorption process was fitted to pseudo-second-order kinetics. Amount of maximum adsorption was 202.53 mg g-1 at 308 K according to Langmuir model. β-FeOOH/BC removed Sb(III) mainly through pore-filling complexation, cation-π and coordination exchange. The CO sites and persistent free radicals (PFRs) acted as electron acceptors, facilitating the electron transfer. In brief, β-FeOOH/BC adsorbent material could adsorb and oxidize Sb(III), which showed excellent prospects for reducing the risk of Sb(III).
Collapse
Affiliation(s)
- Ling Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Wenbo Ren
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhou Zhou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; North China Power Engineering CO., Ltd of China Power Engineering Group, Beijing 100120, China
| | - Xiwang Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaofeng Zeng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
31
|
Qiu M, Liu L, Ling Q, Cai Y, Yu S, Wang S, Fu D, Hu B, Wang X. Biochar for the removal of contaminants from soil and water: a review. BIOCHAR 2022; 4:19. [DOI: doi.org/10.1007/s42773-022-00146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 06/25/2023]
Abstract
AbstractBiochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks and conducive physio-chemical surface characteristics. This review aims to highlight biochar production technologies, characteristics of biochar, and the latest advancements in immobilizing and eliminating heavy metal ions and organic pollutants in soil and water. Pyrolysis temperature, heat transfer rate, residence time, and type of feedstock are critical influential parameters. Biochar’s efficacy in managing contaminants relies on the pore size distribution, surface groups, and ion-exchange capacity. The molecular composition and physical architecture of biochar may be crucial when practically applied to water and soil. In general, biochar produced at relatively high pyrolysis temperatures can effectively manage organic pollutants via increasing surface area, hydrophobicity and microporosity. Biochar generated at lower temperatures is deemed to be more suitable for removing polar organic and inorganic pollutants through oxygen-containing functional groups, precipitation and electrostatic attraction. This review also presents the existing obstacles and future research direction related to biochar-based materials in immobilizing organic contaminants and heavy metal ions in effluents and soil.
Graphical Abstract
Collapse
|
32
|
Wang J, Wang Y, Wang J, Du G, Khan KY, Song Y, Cui X, Cheng Z, Yan B, Chen G. Comparison of cadmium adsorption by hydrochar and pyrochar derived from Napier grass. CHEMOSPHERE 2022; 308:136389. [PMID: 36099990 DOI: 10.1016/j.chemosphere.2022.136389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Biochar (e.g. pyrochar and hydrochar) is considered a promising adsorbent for Cd removal from aqueous solution. Considering the vastly different physicochemical properties between pyrochar and hydrochar, the Cd2+ sorption capacity and mechanisms of pyrochars and hydrochars should be comparatively determined to guide the production and application of biochar. In this study, the hydrochars and pyrochars were prepared from Napier grass by hydrothermal carbonization (200 and 240 °C) and pyrolysis (300 and 500 °C), respectively, and the physicochemical properties and Cd2+ sorption performances of biochars were systematically determined. The pyrochars had higher pH and ash content as well as better stability, while the hydrochars showed more oxygen-containing functional groups (OFGs) and greater energy density. The pseudo second order kinetic model best fitted the Cd2+ sorption kinetics data of biochars, and the isotherm data of pyrochar and hydrochar were well described by Langmuir and Freundlich models, respectively. In comparison with hydrochar, the pyrochar exhibited better Cd2+ sorption capacity (up to 71.47 mg/g). With increasing production temperature, the Cd2+ sorption capacity of pyrochar elevated, while the reduction was found for hydrochar. The mineral interaction, complexation with surface OFGs, and coordination with π electron were considered the main mechanisms of Cd2+ removal by biochars. The minerals interaction and the complexation with OFGs was the dominant mechanism of Cd2+ removal by pyrochars and hydrochars, respectively. Therefore, the preparation technique and temperature have significant impacts on the sorption capacity and mechanisms of biochar, and pyrochar has better potential for Cd2+ removal than the congenetic hydrochar.
Collapse
Affiliation(s)
- Jiangtao Wang
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Yuting Wang
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Junxia Wang
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Guiyue Du
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Kiran Yasmin Khan
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yanxing Song
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Xiaoqiang Cui
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China.
| | - Zhanjun Cheng
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Beibei Yan
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| |
Collapse
|
33
|
Development and optimization of high–performance nano–biochar for efficient removal Cd in aqueous: Absorption performance and interaction mechanisms. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
34
|
Zou M, Tian W, Chu M, Gao H, Zhang D. Biochar composite derived from cellulase hydrolysis apple branch for quinolone antibiotics enhanced removal: Precursor pyrolysis performance, functional group introduction and adsorption mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120104. [PMID: 36075339 DOI: 10.1016/j.envpol.2022.120104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 05/27/2023]
Abstract
In this study, magnetic biochar (MAB) and humic acid (HA)-coated magnetic biochar produced from apple branches without and after cellulase hydrolysis (HMAB and CHMAB, respectively) were prepared and tested as adsorbents of enrofloxacin (ENR) and moxifloxacin (MFX) in aqueous solution. Compared with MAB and HMAB, novel adsorbent CHMAB possessed a superior mesoporous structure, greater graphitization degree and abundant functional groups. When antibiotic solutions ranged from 2 to 20 mg L-1, the theoretical maximum adsorption capacities of CHMAB for ENR and MFX were 48.3 and 61.5 mg g-1 at 35 °C with adsorbent dosage of 0.4 g L-1, respectively, while those of MAB and HMAB were 39.6 and 54.4 mg g-1, and 44.7 and 59.0 mg g-1, respectively. The pseudo-second-order kinetic model and Langmuir model presented a better fitting to the spontaneous and endothermic adsorption process. The maximum adsorption capacity of ENR and MFX onto CHMAB was achieved at initial pH values of 5 and 8, respectively. Additionally, the adsorption capacity of ENR and MFX decreased with increasing concentrations of K+ and Ca2+ (0.02-0.1 mol L-1). Synergism between the pore-filling effect, π-π electron-donor-acceptor interactions, regular and negative charge-assisted H-bonding, surface complexation, electrostatic interactions and hydrophobic interactions may dominate the adsorption process. This study demonstrated that a novel magnetic biochar composite prepared through pyrolysis of agricultural waste lignocellulose hydrolyzed by cellulase in combination with HA coating was a promising adsorbent for eliminating quinolone antibiotics from aqueous media.
Collapse
Affiliation(s)
- Mengyuan Zou
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Weijun Tian
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266234, PR China.
| | - Meile Chu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Huizi Gao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Dantong Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| |
Collapse
|
35
|
Adsorption characteristics and mechanisms of Cd 2+ from aqueous solution by biochar derived from corn stover. Sci Rep 2022; 12:17714. [PMID: 36271027 PMCID: PMC9587245 DOI: 10.1038/s41598-022-22714-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023] Open
Abstract
Corn stover could be pyrolysed to prepare biochar for removing pollutants in water and realizing the resource utilization of biomass. The aims of the present study were to investigate the optimal preparation and adsorption conditions of biochar and to reveal the adsorption characteristics and mechanisms of Cd2+ in water by biochar. For this purpose, with Cd2+ as the target pollutant, the pyrolysis conditions involved in the pyrolysis temperature, retention time, and heating rate were evaluated and optimized. Additionally, the characteristics, mechanisms and optimal adsorption conditions of Cd2+ by biochar were determined. A series of characterization techniques was employed, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and specific surface area analysis (SBET). The optimum pyrolysis parameters were a pyrolysis temperature of 700 °C, a retention time of 2.5 h, and a heating rate of 5 °C/min. Acid/base modification did not improve the adsorption capacity of biochar. The Langmuir and the Elovich model were the most suitable isotherm and kinetic models for equilibrium data, respectively. The maximum adsorption capacity fitted by Langmuir model was 13.4 mg/g. Furthermore, mineral precipitation and π electron interactions were shown to be the main adsorption mechanisms of Cd2+. The optimum adsorption conditions for Cd2+ in water were a CaCl2 electrolyte solution of 0.01 mol/L, a pH level of 6.7, and a biochar dosage of 0.4 g. Our results indicated that corn stover biochar was an appropriate approach for improving the status of water with Cd2+ contamination in the short term and for promoting a new perspective for the rational utilization of corn stover and the low-cost pollution control of heavy metals in water.
Collapse
|
36
|
Wang C, Hansen HCB, Andersen ML, Strobel BW, Ma H, Dodge N, Jensen PE, Lu C, Holm PE. Fast peroxydisulfate oxidation of the antibiotic norfloxacin catalyzed by cyanobacterial biochar. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129655. [PMID: 35901634 DOI: 10.1016/j.jhazmat.2022.129655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Peroxydisulfate (PDS) is a common oxidant for organic contaminant remediation. PDS is typically activated by metal catalysts to generate reactive radicals. Unfortunately, as radicals are non-selective and metal catalysts may cause secondary contamination, alternative selective non-radical pathways and non-metal catalysts need attention. Here we investigated PDS oxidation of commonly detected antibiotic Norfloxacin (NOR) using cyanobacterial nitrogen rich biochars (CBs) as catalysts. NOR was fully degraded by CB pyrolysed at 950 °C (CB950) within 120 min. CB950 caused threefold faster degradation than low pyrolysis temperature (PT) CBs and achieved a maximum surface area normalized rate constant of 4.38 × 10-2 min-1 m-2 L compared to widely used metal catalysts. CB950 maintained full reactivity after four repeated uses. High defluorination (82%) and mineralization (>82%) were observed for CB950/PDS. CBs were active over a broad pH range (3-10), but with twice as high rates under alkaline compared with neutral conditions. NOR is degraded by organic, •OH and SO4•- radicals in low PT CBs/PDS systems, where the presence of MnII promotes radical generation. Electron transfer reactions with radicals supplemented dominate high PT CBs/PDS systems. This study demonstrates high PT biochars from algal bloom biomass may find use as catalysts for organic contaminant oxidation.
Collapse
Affiliation(s)
- Chen Wang
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Hans Christian Bruun Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Mogens Larsen Andersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Bjarne W Strobel
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Hui Ma
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Nadia Dodge
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Changyong Lu
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Peter E Holm
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
37
|
Zhang Z, Li Y, Zong Y, Yu J, Ding H, Kong Y, Ma J, Ding L. Efficient removal of cadmium by salts modified-biochar: Performance assessment, theoretical calculation, and quantitative mechanism analysis. BIORESOURCE TECHNOLOGY 2022; 361:127717. [PMID: 35926559 DOI: 10.1016/j.biortech.2022.127717] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Modified biochar is a feasible adsorbent to solve cadmium pollution in water. However, few studies could elucidate the mechanism of cadmium adsorption by biochar from a molecular perspective. Furthermore, traditional modification methods are costly and have the risk of secondary contamination. Hence, several environmentally friendly sodium salts were used to modify the water chestnut shell-based biochar and employ it in the Cd2+ adsorption in this work. The modification of sodium salt could effectively improve the specific surface area and aromaticity of biochar. Na3PO4 modified biochar exhibited the highest Cd2+ adsorption capacity (112.78 mg/g). The adsorption of Cd2+ onto biochar was an endothermic, monolayer, chemisorption process accompanied by intraparticle diffusion. Microscopically, the enhancement of aromatization after modification made Cd2+ more likely to interact with the regions rich in π electrons and lone pair electrons. This study provided a new research perspective and application guidance for heavy metal adsorption on biochar.
Collapse
Affiliation(s)
- Zhilin Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Yan Li
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China; Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
| | - Yiming Zong
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Jian Yu
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Heng Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Yanli Kong
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China.
| |
Collapse
|
38
|
Truong QM, Ho PNT, Nguyen TB, Chen WH, Bui XT, Kumar Patel A, Rani Singhania R, Chen CW, Dong CD. Magnetic biochar derived from macroalgal Sargassum hemiphyllum for highly efficient adsorption of Cu(II): Influencing factors and reusability. BIORESOURCE TECHNOLOGY 2022; 361:127732. [PMID: 35934247 DOI: 10.1016/j.biortech.2022.127732] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
In this study, the brown algae Sargassum Hemiphyllum was used as a carbon source for synthesis of magnetic porous biochar via pyrolyzing at high temperature and and doping iron oxide particles (Fe-BAB). Cu (II) species were removed from aqueous solutions using Fe-BAB under various conditions. Fe-BAB demonstrated superior Cu (II) adsorption (105.3 mg g-1) compared to other biochars. On the surface of Fe-BAB, there are several oxygen-containing functional groups, such as -COOH and -OH, which are likely responsible for the excellent heavy metal removal performance. By utilizing magnet, the Fe-BAB can be conveniently separated from the solution and ready for further usage. Multi-adsorption mechanisms were responsible for Cu adsorption on Fe-BAB. Using the magnetic algal biochar for heavy metal removal is feasible due to its high adsorption efficiency and simplicity of separation.
Collapse
Affiliation(s)
- Quoc-Minh Truong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Faculty of Management Science, Thu Dau Mot University, Binh Duong 75000, Viet Nam
| | - Phung-Ngoc-Thao Ho
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
39
|
Nie M, Li Y, Jia A, Zhang J, Ran W, Yang CZS, Wang W. Cadmium removal from wastewater by foamed magnetic solid waste-based sulfoaluminate composite biochar: preparation, performance, and mechanism. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Turning waste into adsorbent: Modification of discarded orange peel for highly efficient removal of Cd(II) from aqueous solution. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Jiang L, Chen Y, Wang Y, Lv J, Dai P, Zhang J, Huang Y, Lv W. Contributions of Various Cd(II) Adsorption Mechanisms by Phragmites australis-Activated Carbon Modified with Mannitol. ACS OMEGA 2022; 7:10502-10515. [PMID: 35382289 PMCID: PMC8973121 DOI: 10.1021/acsomega.2c00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/07/2022] [Indexed: 05/16/2023]
Abstract
Due to its high toxicity, persistence, and bioaccumulation in the food chain, controlling cadmium (Cd) pollution in wastewater is urgent. Activated carbon is a popular material for removing Cd. To improve the Cd(II) adsorption efficiency by increasing the number of oxygen-containing functional groups, Phragmites australis-activated carbon (PAAC) was modified with mannitol at a low temperature (150 °C). The textural and chemical characteristics of PAAC and modified PAAC (M-PAAC) were analyzed by surface area analysis, elemental analysis, Boehm's titration, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Batch adsorption experiments were conducted to investigate the influence of Cd(II) concentration, contact time, ionic strength, and pH on Cd(II) adsorption. The main adsorption mechanisms of Cd(II) on activated carbon were quantitatively calculated. The results showed that mannitol modification slightly decreased the S BET (5.30% of PAAC) and increased the content of carboxyl, lactone, and phenolic groups (total increase of 43.96% with PAAC), which enhanced the adsorption capacity of PAAC by 58.59%. The adsorption isotherms of PAAC and M-PAAC were described well using the Temkin model, while the intraparticle diffusion model fitted the Cd(II) adsorption kinetics best. Precipitation with minerals was a crucial factor for Cd(II) adsorption on activated carbon (50.40% for PAAC and 40.41% for M-PAAC). Meanwhile, the Cd(II) adsorption by M-PAAC was also dominated by complexation with oxygen-containing functional groups (33.60%). This research provides a method for recovering wetland plant biomass to prepare activated carbon and efficiently treat Cd-containing wastewater.
Collapse
Affiliation(s)
- Li Jiang
- School
of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Yating Chen
- School
of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Yifei Wang
- School
of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Jiayang Lv
- School
of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Peng Dai
- Department
of Civil & Environmental Engineering, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Jian Zhang
- College
of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, School
of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Ying Huang
- School
of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Wenzhou Lv
- School
of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
42
|
Abstract
The problem of global warming and the emission of greenhouse gases is already directly affecting the world’s energy. In the future, the impact of CO2 emissions on the world economy will constantly grow. In this paper, we review the available literature sources on the benefits of using algae cultivation for CO2 capture to decrease CO2 emission. CO2 emission accounts for about 77% of all greenhouse gases, and the calculation of greenhouse gas emissions is 56% of all CO2 imports. As a result of the study of various types of algae, it was concluded that Chlorella sp. is the best at capturing CO2. Various methods of cultivating microalgae were also considered and it was found that vertical tubular bioreactors are emerging. Moreover, for energy purposes, thermochemical methods for processing algae that absorb CO2 from flue gases were considered. Of all five types of thermochemical processes for producing synthesis gas, the most preferred method is the method of supercritical gasification of algae. In addition, attention is paid to the drying and flocculation of biofuels. Several different experiments were also reviewed on the use of flue gases through the cultivation of algae biomass. Based on this literature review, it can be concluded that microalgae are a third generation biofuel. With the absorption of greenhouse gases, the growth of microalgae cultures is accelerated. When a large mass of microalgae appears, it can be used for energy purposes. In the results, we present a plan for further studies of microalgae cultivation, a thermodynamic analysis of gasification and pyrolysis, and a comparison of the results with other biofuels and other algae cultures.
Collapse
|
43
|
Jiang X, Yin X, Tian Y, Zhang S, Liu Y, Deng Z, Lin Y, Wang L. Study on the mechanism of biochar loaded typical microalgae Chlorella removal of cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152488. [PMID: 34963608 DOI: 10.1016/j.scitotenv.2021.152488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Coconut shell activated carbon (Csac) is one of the most widely used materials to remove cadmium (Cd) from contaminated water. A large diversity of microorganisms exists in various aquatic systems and may aid Cd removal by Csac. In this study, we explored the reactions of Csac with microalgae (Chlorella) in Cd-containing media. The results of scanning electron microscope (SEM) imaging, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), superconducting pulse-Fourier transform nuclear magnetic resonance (pulse-FT NMR) and X-ray photoelectron spectroscopy (XPS) indicated that Chlorella could adhere in the micropores of Csac formed Csac@Chlorella composite adsorbent loading Chlorella. Furthermore, the composite adsorbent surface had abundant functional groups such -COOH, -OH and C-O-C, which served as active sites during the adsorption process. Compared with Csac, Csac@Chlorella had an enhanced Cd adsorption capacity evidently. The results showed that pH 8, 0.2 g Csac, OD680 of 0.1 for Chlorella were optimal conditions for maximum Cd adsorption capacity within one hour contact time. Furthermore, the Cd adsorption process was well described by the pseudo-second-order and Langmuir adsorption isotherm models. The models revealed that the adsorption process was mainly based on chemical adsorption of a single molecular layer, accompanied by electrostatic attraction, complexation and intracellular adsorption, amongst other parameters. Collectively, the findings illustrate that the microalgae (Chlorella)-Csac-Cd interaction is complex and will thus have immense interest to a broad range of biological, environmental, and geoscience communities.
Collapse
Affiliation(s)
- Xiyan Jiang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Xixiang Yin
- Shandong Jinan Eco-Environmental Monitoring Center, Jinan 250014, China.
| | - Yong Tian
- Shandong Jinan Eco-Environmental Monitoring Center, Jinan 250014, China
| | - Shuxi Zhang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Yuanyuan Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Zhiwen Deng
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Yunliang Lin
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Lihong Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China.
| |
Collapse
|
44
|
Sun J, Norouzi O, Mašek O. A state-of-the-art review on algae pyrolysis for bioenergy and biochar production. BIORESOURCE TECHNOLOGY 2022; 346:126258. [PMID: 34798254 DOI: 10.1016/j.biortech.2021.126258] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 05/18/2023]
Abstract
Algae, as a feedstock with minimum land footprint, is considered a promising biomass for sustainable fuels, chemicals, and materials. Unlike lignocellulosic biomass, algae consist mainly of lipids, carbohydrates, and proteins. This review focusses on the bio-oil and biochar co-products of algae-pyrolysis and presents the current state-of-the-art in the pyrolysis technologies and key applications of algal biochar. Algal biochar holds potential to be a cost-effective fertilizer, as it has high P, N and other nutrient contents. Beyond soil applications, algae-derived biochar has many other applications, such as wastewater-treatment, due to its porous structure and strong ion-exchange capacity. High specific capacitance and stability also make algal biochar a potential supercapacitor material. Furthermore, algal biochar can be great catalysts (or catalyst supports). This review sheds light on a wide range of algae-pyrolysis related topics, including advanced-pyrolysis techniques and the potential biochar applications in soil amendment, energy storage, catalysts, chemical industries, and wastewater-treatment plants.
Collapse
Affiliation(s)
- Jiacheng Sun
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| | - Omid Norouzi
- Mechanical Engineering Program, School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK.
| |
Collapse
|
45
|
Cheng S, Zhao S, Guo H, Xing B, Liu Y, Zhang C, Ma M. High-efficiency removal of lead/cadmium from wastewater by MgO modified biochar derived from crofton weed. BIORESOURCE TECHNOLOGY 2022; 343:126081. [PMID: 34610424 DOI: 10.1016/j.biortech.2021.126081] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The adsorption performance and mechanisms of Pb2+ and Cd2+ in wastewater using MgO modified biochar derived from crofton weed (MBCW600) are investigated. The Pb2+ and Cd2+ adsorption capacities of MBCW600 by the Hill model reach 384.08 mg/g and 207.02 mg/g, respectively, which is larger than that of original biochar. Pb2+ could be more easily captured by MBCW600 compared to Cd2+ in the multimetal system. Mg2+ contributes to Pb2+ and Cd2+ adsorption among coexisting cations. The exhausted MBCW600 could be well regenerated by simple method after use. The adsorption mechanism study indicates that Pb2+ and Cd2+ removal are primary contributed to mineral precipitation and ion exchange. The effective treatment volumes of Pb2+ and Cd2+ wastewater achieve 3050 mL and 2150 mL in the fixed-bed column experiment, respectively. Therefore, MBCW600 presents remarkable adsorption capability, excellent recoverability and large throughput, which shows the potential application in future treatment of wastewater containing heavy metal.
Collapse
Affiliation(s)
- Song Cheng
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo 454003, PR China
| | - Saidan Zhao
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China
| | - Hui Guo
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, PR China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo 454003, PR China
| | - Baolin Xing
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo 454003, PR China.
| | - Yongzhi Liu
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China
| | - Chuanxiang Zhang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo 454003, PR China
| | - Mingjie Ma
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China
| |
Collapse
|
46
|
Liu L, Li C, Liu X, Gao Y. Study on the regulation mechanism of cadmium adsorption system mediated by extraneous dissolved organic matter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112930. [PMID: 34717217 DOI: 10.1016/j.ecoenv.2021.112930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Adsorption of biochar on heavy metals is one of the hot spots in the application of biochar. However, the mediation of existing extraneous substances in the environment, such as dissolved organic matter (DOM), could regulate and affect the heavy metals adsorption process on biochar. In our study, we mainly focus on the regulation mechanism of modified biochar on the adsorption process of cadmium mediated by exogenous DOM. The modification significantly changed the functional groups composition on biochar, thus improving the adsorption capacity of cadmium on biochar. In the adsorption system concerned, the combination was formed between DOM and cadmium to a certain extent. The combination had a certain correlation with the influence on the adsorption capacity of cadmium onto biochar in the system.
Collapse
Affiliation(s)
- Le Liu
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Cheng Li
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoning Liu
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Gao
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
47
|
Bai X, Xing L, Liu N, Ma N, Huang K, Wu D, Yin M, Jiang K. Humulus scandens-Derived Biochars for the Effective Removal of Heavy Metal Ions: Isotherm/Kinetic Study, Column Adsorption and Mechanism Investigation. NANOMATERIALS 2021; 11:nano11123255. [PMID: 34947605 PMCID: PMC8704399 DOI: 10.3390/nano11123255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
Humulus scandens was first adopted as a biomass precursor to prepare biochars by means of a facile molten salt method. The optimized biochar exhibits a high specific surface area of ~450 m2/g, a rich porous structure and abundant oxygen functional groups, which demonstrate excellent adsorption performance for heavy metal ions. The isotherm curves fit well with the Langmuir models, indicating that the process is governed by the chemical adsorption, and that the maximum adsorption capacity can reach 748 and 221 mg/g for Pb2+ and Cu2+, respectively. In addition, the optimized biochar demonstrates good anti-interference ability and outstanding removal efficiency for Cu2+ and Pb2+ in simulated wastewater. The mechanism investigation and DFT calculation suggest that the oxygen functional groups play dominant roles in the adsorption process by enhancing the binding energy towards the heavy metal ions. Meanwhile, ion exchange also serves as the main reason for the effective removal.
Collapse
Affiliation(s)
- Xingang Bai
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Henan Key Laboratory for Environmental Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China; (X.B.); (K.H.); (M.Y.)
| | - Luyang Xing
- Key Laboratory of Green Chemistry Medias and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (L.X.); (N.M.)
| | - Ning Liu
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Henan Key Laboratory for Environmental Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China; (X.B.); (K.H.); (M.Y.)
- Correspondence: (N.L.); (D.W.); (K.J.)
| | - Nana Ma
- Key Laboratory of Green Chemistry Medias and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (L.X.); (N.M.)
| | - Kexin Huang
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Henan Key Laboratory for Environmental Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China; (X.B.); (K.H.); (M.Y.)
| | - Dapeng Wu
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Henan Key Laboratory for Environmental Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China; (X.B.); (K.H.); (M.Y.)
- Key Laboratory of Green Chemistry Medias and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (L.X.); (N.M.)
- Correspondence: (N.L.); (D.W.); (K.J.)
| | - Mengmeng Yin
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Henan Key Laboratory for Environmental Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China; (X.B.); (K.H.); (M.Y.)
| | - Kai Jiang
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Henan Key Laboratory for Environmental Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China; (X.B.); (K.H.); (M.Y.)
- Correspondence: (N.L.); (D.W.); (K.J.)
| |
Collapse
|
48
|
Zhao M, Ma D, Ye Y. Adsorption, separation and recovery properties of blocky zeolite-biochar composites for remediation of cadmium contaminated soil. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Liu L, Yue T, Liu R, Lin H, Wang D, Li B. Efficient absorptive removal of Cd(Ⅱ) in aqueous solution by biochar derived from sewage sludge and calcium sulfate. BIORESOURCE TECHNOLOGY 2021; 336:125333. [PMID: 34082334 DOI: 10.1016/j.biortech.2021.125333] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Biochar derived from co-pyrolysis of sewage sludge and calcium sulfate was used to remove Cd(II) from aqueous solution. The results showed that the Cd(Ⅱ) adsorption better followed Freundlich model, and the maximum adsorption capacities were 109.0 mg/g (288 K), 127.9 mg/g (298 K) and 145.4 mg/g (308 K). The Cd(Ⅱ) removal was a multi-layer adsorption process dominated by chemisorption, which was also a spontaneous and endothermic process. The contribution of physisorption gradually increased as the Cd(Ⅱ) initial concentration. The Cd(Ⅱ) removal process which better followed pseudo-second-order kinetic model, was divided into three stages. The first (0-0.3 h) and second stages (0.3-2 h) were separately controlled by liquid film diffusion/intraparticle diffusion/chemical reaction and liquid film diffusion/chemical reaction, while the third stage (0.3-24 h) was the dynamic equilibrium process. The speciation distribution of Cd on biochar surface was mainly CdCO3/CdOOC and CdO/CdSiO3, indicating coprecipitation, ion exchange and complexation contributed more to the Cd(Ⅱ) removal.
Collapse
Affiliation(s)
- Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Tiantian Yue
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Rui Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Baoxiang Li
- Office of Teaching Affairs, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
50
|
Liu T, Chen Z, Li Z, Chen G, Zhou J, Chen Y, Zhu J, Chen Z. Rapid Separation and Efficient Removal of Cd Based on Enhancing Surface Precipitation by Carbonate-Modified Biochar. ACS OMEGA 2021; 6:18253-18259. [PMID: 34308056 PMCID: PMC8296603 DOI: 10.1021/acsomega.1c02126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
The high buoyancy of biochar makes its application difficult in Cd removal. In this paper, the content of minerals was increased by modifying carbonate on the biochar surface using the vacuum impregnation method. Enhancing surface precipitation between minerals and Cd introduced a correspondingly great number of Cd precipitates on the biochar surface, leading to the rapid precipitation and separation of buoyant biochar. The physical and chemical properties of carbonate-modified biochar and the adsorption mechanism of Cd were comprehensively studied by jar tests, scanning electron microscopy-energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The results showed that the adsorption of Cd by carbonate-modified biochar was controlled by multiple mechanisms, including surface precipitation, surface complexation, and Cd-π interaction. Surface precipitation dominated the removal of Cd. The contributions of Cd removal mechanisms indicated that the contribution proportions of minerals increased from 89.73 to 97.9% when the pyrolysis temperature increased from 300 to 600 °C, while the contribution proportions of Cd-π binding decreased from 9.99 to 2.08%. Meanwhile, oxygen functional groups have only a marginal effect on Cd adsorption. Besides, the results revealed that the higher surface hydrophobicity and the lower polarity were conducive to biochar separation from water. The Cd removal method can provide efficient adsorption and rapid separation, making it possible to use biochar in water treatment.
Collapse
Affiliation(s)
- Tao Liu
- Hunan
Province Key Laboratory of Coal Resources Clean Utilization and Mine
Environment Protection, Hunan University
of Science and Technology, Xiangtan, Hunan 411201, China
- School
of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Zhenshan Chen
- Hunan
Province Key Laboratory of Coal Resources Clean Utilization and Mine
Environment Protection, Hunan University
of Science and Technology, Xiangtan, Hunan 411201, China
- School
of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Zhixian Li
- Hunan
Province Key Laboratory of Coal Resources Clean Utilization and Mine
Environment Protection, Hunan University
of Science and Technology, Xiangtan, Hunan 411201, China
- School
of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Guoliang Chen
- Hunan
Province Key Laboratory of Coal Resources Clean Utilization and Mine
Environment Protection, Hunan University
of Science and Technology, Xiangtan, Hunan 411201, China
- School
of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Jianlin Zhou
- Hunan
Province Key Laboratory of Coal Resources Clean Utilization and Mine
Environment Protection, Hunan University
of Science and Technology, Xiangtan, Hunan 411201, China
- School
of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Yuanqi Chen
- Hunan
Province Key Laboratory of Coal Resources Clean Utilization and Mine
Environment Protection, Hunan University
of Science and Technology, Xiangtan, Hunan 411201, China
- School
of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Jiawen Zhu
- School
of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Zhang Chen
- Hunan
Province Key Laboratory of Coal Resources Clean Utilization and Mine
Environment Protection, Hunan University
of Science and Technology, Xiangtan, Hunan 411201, China
- School
of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| |
Collapse
|