1
|
Beggs C, Neelamraju C, Kaserzon SL, VanderGragt ML. Exposure and combined risk of pesticide mixtures in tropical wetland waters, Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 979:179454. [PMID: 40267645 DOI: 10.1016/j.scitotenv.2025.179454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Located within the Great Barrier Reef Catchment Area (GBRCA), the Herbert River Floodplain is designated as an area of nationally important wetlands. Furthermore, these wetlands provide a range of critical ecosystem services which protect the Great Barrier Reef World Heritage area ecosystem from land-based effects including agricultural runoff. The surrounding intensive agricultural land use puts these wetlands at risk of excessive loading of pesticides, which may result in species decline, loss of value and reduced function of ecosystem services. The aim of this study is to investigate the combined risk from the co-occurrence of pesticides in wetlands of the Herbert River Floodplain. Waters of five freshwater wetlands were monitored for 55 pesticides using a combination of grab and passive sampling techniques between February 2021 and March 2023. The combined mixture toxicity for up to 19 commonly detected pesticide active ingredients (PAIs) was estimated using the pesticide risk metric (PRM) model, calculated as the combined percentage of species affected (PAF). Thirty-six pesticides were detected in waters across five wetlands, eight of which exceeded regulatory guidelines at least once. Site-specific species protection goals were exceeded at least once at four of the five studied wetlands. Average monthly PAF (from passive sampling) was found to be increased during the wet season, though no increase in instantaneous PAF (from grab sampling) was detected in the wet season. Our findings indicate wetlands of the broader GBRCA are likely to be at risk due to pesticide exposure, and that this risk occurs during both wet and dry seasons. Risk periods in wetlands are not consistent with those previously observed in nearby rivers and creeks and should be monitored accordingly.
Collapse
Affiliation(s)
- Carly Beggs
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
| | - Catherine Neelamraju
- Reef Catchments Science Partnership, School of Earth and Environmental Sciences, The University of Queensland, Campbell Rd, St Lucia, Queensland 4067, Australia; Department of Environment and Science, Ecosciences Precinct, 41 Boggo Road, Dutton Park, Queensland 4102, Australia
| | - Sarit L Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Maria L VanderGragt
- Department of Environment and Science, Ecosciences Precinct, 41 Boggo Road, Dutton Park, Queensland 4102, Australia
| |
Collapse
|
2
|
Guo X, Luo Y, Xie H, Chen M, Xu J, Wang Y, Johnson AC, Jin X. Beyond agriculture: Land use thresholds governing pesticide mixture risks in megacity surface waters. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138657. [PMID: 40408968 DOI: 10.1016/j.jhazmat.2025.138657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/28/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
Growing concerns have emerged regarding the risks of pesticide mixtures in surface water ecosystems, yet the mechanisms through which human activities, especially land use patterns, affect these risks remain inadequately studied. This research presents an innovative approach, combining multi-scale land use analysis with pesticide risk assessment, quantifying relationships between mixed pesticide ecological risks and land use patterns. Findings indicate that the impacts of urban land use on pesticide ecological risks surpass the traditionally recognized agricultural effects, demonstrating significant spatial scale-dependent effects. Generalized additive model analysis reveals that 1-3 km and 2-3 km buffer zones represent the critical ranges where urban land use and cropland, respectively, have significant impacts on pesticide risks. Non-parametric change point analysis determined critical land use thresholds triggering significant ecological risk increases: 10-25 % for cropland and 10-30 % for urban areas. These discoveries provide crucial quantitative foundations for landscape planning and pesticide risk management. The results not only challenge traditional views of agricultural activities as primary pesticide sources but also provide new perspectives for pesticide pollution control and water quality management in large cities.
Collapse
Affiliation(s)
- Xinying Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; China National Environmental Monitoring Centre, Beijing 100012, China
| | - Ying Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Huiyu Xie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Miao Chen
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yeyao Wang
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Andrew C Johnson
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, UK
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| |
Collapse
|
3
|
Tourinho PS, Hochmanová Z, Kukučka P, Jegede O, Silva V, Aparicio V, Hofman J. Effects of realistic pesticide mixtures on the springtail Folsomia candida. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:1347-1356. [PMID: 40037586 PMCID: PMC12047021 DOI: 10.1093/etojnl/vgaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
The application of multiple pesticides over the last decades has resulted in their frequent and in some cases long-term presence in soils as complex mixtures. This work assessed the toxicity of realistic pesticide mixtures to the springtail Folsomia candida observed in 11 case study sites. Each mixture was composed of five pesticides (as active substances or metabolites), chosen based on their occurrence in soil and expected risk to soil invertebrates. Reproduction tests were conducted in natural agricultural soil, and the springtails were exposed to three concentrations of the selected pesticides: the median environmental concentration (MEC), the predicted environmental concentration (PEC), and five times PEC (5PEC). No significant effect was observed at MEC exposure in any case study sites; however, effects on reproduction, adult survival, and adult size were observed at PEC and 5PEC exposures in five case study sites. Risk quotients (RQs) of individual pesticides were calculated by dividing the exposure concentrations (MEC, PEC, and 5PEC) by the no observed effect concentration values from the literature, and the sum of the five pesticides was calculated as ∑RQ in each case study site. The toxicity at PEC exposure was higher than expected based on the ∑RQ in two case study sites, indicating a possible synergistic mixture effect. This work provides new information on the effects of realistic pesticide mixtures. Further research is required to clarify whether the current risk assessment of individual pesticides adequately protects soil species from exposure to multiple pesticide residues that may occur in even more complex mixtures.
Collapse
Affiliation(s)
- Paula S Tourinho
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Hochmanová
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Kukučka
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Olukayode Jegede
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Virginia Aparicio
- INTA, Instituto Nacional de Tecnologías Agropecuaria, Buenos Aires, Argentina
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Riedo J, Rillig MC, Walder F. Beyond Dosage: The Need for More Realistic Research Scenarios to Understand Pesticide Impacts on Agricultural Soils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10093-10100. [PMID: 40238705 PMCID: PMC12046603 DOI: 10.1021/acs.jafc.4c12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Pesticides play a crucial role in modern agriculture, yet they pose considerable risks to soil health and ecosystem integrity. Current risk assessment research often relies on simplified models, focusing on single substances under standardized conditions and failing to reflect realistic exposure scenarios. We call for a paradigm shift toward incorporating agroecological research that evaluates pesticide effects under more complex and dynamic conditions, including mixtures, application frequency, diverse soil properties, and interactions with other environmental stressors. Additionally, multiseasonal exposure and long-term persistence of pesticides in soils must be considered. By integrating these multidimensional factors, such experimental research can yield valuable insights that improve environmental risk assessment frameworks, ensuring they more accurately represent the complexity of agricultural systems and support more sustainable soil management practices.
Collapse
Affiliation(s)
- Judith Riedo
- Institute
of Biology, Freie Universität Berlin, Altensteinstraße 6, 14195 Berlin, Germany
| | - Matthias C. Rillig
- Institute
of Biology, Freie Universität Berlin, Altensteinstraße 6, 14195 Berlin, Germany
| | - Florian Walder
- Agroecology
and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| |
Collapse
|
5
|
Conseil G, Cardoso O, Felten V, Rosin C, Pasquini L, Huguet-Cizo M, Milla S, Banas D. Caging Gammarus roeseli to track pesticide contamination: How agricultural practices shape water quality in small waterbodies? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118143. [PMID: 40185031 DOI: 10.1016/j.ecoenv.2025.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Contaminant monitoring in agroecosystems is increasingly revealing overlooked molecules, particularly within complex pesticide mixtures. This study assessed the effectiveness of chemical and ecotoxicological methods for evaluating contamination and biological responses in Gammarus roeseli exposed to pesticides and transformation products (TPs) in lentic small water bodies (LSWBs) near agricultural zones. We examined 7 LSWBs, finding variable contamination levels shaped by watershed composition differences. Analysis of 136 compounds identified key TPs, including chlorothalonil R471811, metazachlor ESA, and OXA, which collectively represented 86.2 % of the total quantified contaminants. These results underscore the persistence of both current and banned pesticides in the ponds studied. While G. roeseli showed favorable survival rates, significant reductions in locomotion and ventilation were observed at heavily contaminated sites, with biochemical analyses suggesting neurotoxic effects and activation of detoxification mechanisms in response to contaminants. Multivariate analyses revealed site-specific variations, highlighting the complex interactions between contamination levels and environmental conditions. Biomarker responses in gammarids served as sensitive indicators of residual toxicity in LSWBs, with frequent associations with historical contamination or current pesticide applications. This in situ caging approach across a contamination gradient demonstrates strong potential for biomonitoring and ecotoxicological assessments in agroecosystems. Extending exposure durations and including more heavily contaminated ponds could further enhance risk evaluation, thereby improving biomonitoring accuracy in headwater aquatic ecosystems. By integrating site-specific environmental conditions, contamination profiles, and biological responses, this study provides valuable insights into the influence of agricultural practices on LSWBs contamination and underscores the critical need to incorporate TPs into future risk assessment frameworks.
Collapse
Affiliation(s)
- Gaspard Conseil
- Université de Lorraine, INRAE, L2A, Nancy F-54500, France; LTSER-Zone Atelier Moselle, Nancy F-57000, France.
| | - Olivier Cardoso
- Office Français de la Biodiversité (OFB), Direction de la Recherche et de l'Appui Scientifique, 9 avenue Buffon, Orléans F45071, France
| | - Vincent Felten
- Université de Lorraine, CNRS, LIEC, Metz F-57000, France
| | - Christophe Rosin
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, Nancy F-54000, France
| | - Laure Pasquini
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, Nancy F-54000, France
| | | | - Sylvain Milla
- Université de Lorraine, INRAE, L2A, Nancy F-54500, France
| | - Damien Banas
- Université de Lorraine, INRAE, L2A, Nancy F-54500, France.
| |
Collapse
|
6
|
Zhang H, Wang Y, Chen W, Xu Y, Ren H, Chen S, Peng X, Li D, Wang J, Zhang Q. Enzymatic activity and gene expression changes in the earthworms induced by co-exposure to beta-cypermethrin and triadimefon. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:496-509. [PMID: 39777608 DOI: 10.1007/s10646-025-02852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Pesticides often exist as complex mixtures in soil environments, yet the toxicity of these combinations has not been thoroughly investigated. In light of this, the current study aimed to assess the enzymatic activity and gene expression responses in the earthworm Eisenia fetida when exposed to a mixture of beta-cypermethrin (BCY) and triadimefon (TRI). The findings revealed that co-exposure to BCY and TRI triggered acute synergistic toxicity in E. fetida, emphasizing the potential risk they pose to soil health. Significant elevations in MDA, Cu/Zn-SOD, and CAT levels were observed across most individual and combined treatments. Additionally, the expression of crt was notably upregulated under most exposure conditions, while the expression levels of tctp and sod were significantly downregulated. These changes suggested the occurrence of oxidative stress and potential carcinogenic effects upon exposure to BCY, TRI, and their combination. Notably, the activities of CAT, caspase-9, and CarE, along with the transcriptional levels of mt, displayed more pronounced variations in response to the pesticide mixture compared to individual exposures. These results indicated that the combined exposure to BCY and TRI intensified oxidative stress, promoted cellular apoptosis, and disrupted detoxification processes more than exposure to either chemical alone. Molecular docking results showed that these two pesticides could interact with CAT, SOD, and GST. These data provided critical insights into the biochemical and molecular toxicity caused by BCY and TRI on E. fetida, offering a deeper understanding of the ecological risks posed by chemical mixtures to soil organisms. This study shed light on the toxicological implications of BCY and TRI co-occurrence and underscored the importance of evaluating the environmental impact of pesticide mixtures to safeguard soil ecosystems.
Collapse
Affiliation(s)
- Hai Zhang
- Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Ying Wang
- Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Wen Chen
- Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Yuhang Xu
- Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Huixiang Ren
- Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Siyao Chen
- Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Xin Peng
- Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Dan Li
- Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Jingwen Wang
- Hangzhou Agricultural Technology Extension Center, Hangzhou, Zhejiang, China.
| | - Quan Zhang
- Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China.
| |
Collapse
|
7
|
Michel A, Lebrun JD, Chaumont C, Girondin M, Tournebize J, Archaimbault V, Jeliazkov A. Benthic macroinvertebrate diversity and function in an agricultural constructed wetland affected by agrochemical pressure (Seine-et-Marne, France). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3679-3697. [PMID: 39825063 DOI: 10.1007/s11356-024-35722-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/01/2024] [Indexed: 01/20/2025]
Abstract
Constructed wetlands (CWs), originally designed to mitigate chemical water pollution, often host noticeable aquatic fauna. However, little is known about the impact of the contaminants circulating within CWs on this local fauna, questioning the role of CWs as ecological refuges or traps. We aimed to assess the potential of an agricultural CWs in northern France to act as an ecological trap for aquatic fauna and the potential consequences on wetland functioning. We made faunistic inventories of benthic macroinvertebrates, using litterbags, from March to June 2022 in two zones within the CWs with contrasting levels of agrochemical contamination and in one unpolluted comparison pond. We calculated community diversity and sensitivity indices (e.g., species at risk, SPEARpesticides index). We measured wetland functioning by monitoring the leaf-litter breakdown. Results showed that pesticide fluxes were related to community composition changes and had negative effects on taxonomic diversity (Shannon index) and functional traits (shredder/scraper feeding mode). The negative link between pesticides and the leaf-litter breakdown was less clear, mainly because of the high level of integration of this response. This study reveals that CWs under agrochemical pressure may act as potential ecological traps for benthic macroinvertebrates and highlights the relevance of studying this group as an early-warning indicator of chemical risk in nature-based solutions.
Collapse
Affiliation(s)
- Alexandre Michel
- University Paris-Saclay, INRAE, HYCAR, 1 Rue Pierre-Gilles de Gennes, 10030, 92761, Antony Cedex, CS, France.
| | - Jérémie D Lebrun
- University Paris-Saclay, INRAE, HYCAR, 1 Rue Pierre-Gilles de Gennes, 10030, 92761, Antony Cedex, CS, France
| | - Cédric Chaumont
- University Paris-Saclay, INRAE, HYCAR, 1 Rue Pierre-Gilles de Gennes, 10030, 92761, Antony Cedex, CS, France
| | - Mathieu Girondin
- University Paris-Saclay, INRAE, HYCAR, 1 Rue Pierre-Gilles de Gennes, 10030, 92761, Antony Cedex, CS, France
| | - Julien Tournebize
- University Paris-Saclay, INRAE, HYCAR, 1 Rue Pierre-Gilles de Gennes, 10030, 92761, Antony Cedex, CS, France
| | - Virginie Archaimbault
- University Paris-Saclay, INRAE, HYCAR, 1 Rue Pierre-Gilles de Gennes, 10030, 92761, Antony Cedex, CS, France
| | - Alienor Jeliazkov
- University Paris-Saclay, INRAE, HYCAR, 1 Rue Pierre-Gilles de Gennes, 10030, 92761, Antony Cedex, CS, France
| |
Collapse
|
8
|
Honert C, Mauser K, Jäger U, Brühl CA. Exposure of insects to current use pesticide residues in soil and vegetation along spatial and temporal distribution in agricultural sites. Sci Rep 2025; 15:1817. [PMID: 39838035 PMCID: PMC11751026 DOI: 10.1038/s41598-024-84811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/27/2024] [Indexed: 01/23/2025] Open
Abstract
Current use pesticides (CUPs) are recognised as the largest deliberate input of bioactive substances into terrestrial ecosystems and one of the main factors responsible for the current decline in insects in agricultural areas. To quantify seasonal insect exposure in the landscape at a regional scale (Rhineland-Palatine in Germany), we analysed the presence of multiple (93) active ingredients in CUPs across three different agricultural cultivation types (with each three fields: arable, vegetable, viticulture) and neighbouring meadows. We collected monthly soil and vegetation samples over a year. A total of 71 CUP residues in different mixtures was detected, with up to 28 CUPs in soil and 25 in vegetation in single samples. The concentrations and numbers of CUPs in vegetation fluctuated over the sampling period, peaking in the summer months in the vegetation but remaining almost constant in topsoil. We calculated in-field additive risks for earthworms, collembola, and soil-living wild bees using the measured soil concentrations of CUPs. Our results call for the need to assess CUP mixture risks at low concentrations, as multiple residues are chronically present in agricultural areas. Since this risk is not addressed in regulation, we emphasise the urgent need to implement global pesticide reduction targets.
Collapse
Affiliation(s)
- Carolina Honert
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau, Landau, Germany.
| | - Ken Mauser
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau, Landau, Germany
| | - Ursel Jäger
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau, Landau, Germany
| | - Carsten A Brühl
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau, Landau, Germany
| |
Collapse
|
9
|
Schuhmann A, Scheiner R. Mixture of neonicotinoid and fungicide affects foraging activity of honeybees. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104613. [PMID: 39674529 DOI: 10.1016/j.etap.2024.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
The use of plant protection products (PPPs) is a major factor contributing to global insect decline. We here use the honeybee (Apis mellifera) as a model to study combined effects of the last neonicotinoid in the EU (acetamiprid) and different fungicides on live-long foraging flights using radio frequency identification. The mixture of the sterol-biosynthesis-inhibiting fungicide difenoconazole and the insecticide acetamiprid significantly reduced the number of foraging trips per day compared to the control and each PPP alone, while a mixture of the insecticide with the non-sterol-biosynthesis inhibiting fungicide boscalid/dimoxystrobin did not affect behaviour. This potential synergistic effect of the fungicide/insecticide mixture supports the notion that some fungicides can enhance the effect of insecticides, which did not lead to significant changes in behaviour when applied on their own. Our results emphasize the need for more studies on the interaction of different PPPs.
Collapse
Affiliation(s)
- Antonia Schuhmann
- Biocenter, Behavioral Physiology and Sociobiology, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Ricarda Scheiner
- Biocenter, Behavioral Physiology and Sociobiology, University of Würzburg, Am Hubland, Würzburg 97074, Germany.
| |
Collapse
|
10
|
Conseil G, Milla S, Cardoso O, Pasquini L, Rosin C, Banas D. Occurrence, dispersal, and associated environmental risk assessment of pesticides and their transformation products in small water bodies of Northeastern France. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66643-66666. [PMID: 39636537 DOI: 10.1007/s11356-024-35573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
The widespread use of pesticides, specifically plant protection products (PPPs), has led to their transformation products (TPs) being increasingly detected in various environmental compartments, notably surface waters. This study integrates field-detected TPs into an environmental risk assessment of lentic small water bodies (LSWBs). For this purpose, measured environmental concentrations (MECs) of PPPs and TPs in 12 LSWBs, influenced by tributaries under varying agricultural pressures, were collected. Ecotoxicological data from multiple sources were compiled to calculate risk quotients (RQs) and identify potentially harmful PPPs and TPs. Among 86 molecules investigated, 17 PPPs and 30 TPs were detected, representing nearly half of those initially targeted. Ponds exhibited diverse PPP and TP compositions and levels with 12 substances posing high pesticide risk, primarily atrazine-2-hydroxy, MCPA, and metolachlor. Various pond conditions indicated moderate to high risk to aquatic organisms at corresponding MECs. Despite diverse agricultural pressures, only one site was deemed low-risk, highlighting widespread contamination risk due to co-occurring molecules. Given the prevalence of TPs in water bodies, urgent efforts are needed to gather ecotoxicological data on these contaminants to enhance environmental risk assessments. This study provides novel insights into pesticide risks in a less-studied yet common European landscape, focusing on TPs.
Collapse
Affiliation(s)
- Gaspard Conseil
- Université de Lorraine, INRAE, L2A, F-54500, Nancy, France.
- LTSER-Zone Atelier Moselle, 57000, Nancy, France.
| | - Sylvain Milla
- Université de Lorraine, INRAE, L2A, F-54500, Nancy, France
| | - Olivier Cardoso
- Office Français de La Biodiversité (OFB), Direction de la Recherche et de l'Appui Scientifique, 9 Avenue Buffon, 45071, Orléans, France
| | - Laure Pasquini
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, 54000, Nancy, France
| | - Christophe Rosin
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, 54000, Nancy, France
| | - Damien Banas
- Université de Lorraine, INRAE, L2A, F-54500, Nancy, France
- LTSER-Zone Atelier Moselle, 57000, Nancy, France
| |
Collapse
|
11
|
Chen J, Zhao L, Wang B, He X, Duan L, Yu G. Uncovering global risk to human and ecosystem health from pesticides in agricultural surface water using a machine learning approach. ENVIRONMENT INTERNATIONAL 2024; 194:109154. [PMID: 39615255 DOI: 10.1016/j.envint.2024.109154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 12/22/2024]
Abstract
Pesticides typically co-occur in agricultural surface waters and pose a potential threat to human and ecosystem health. As pesticide screening in global agricultural surface waters is an immense analytical challenge, a detailed risk picture of pesticides in global agricultural surface waters is largely missing. Here, we create the first global maps of human health and ecological risk from pesticides in agricultural surface waters using random forest models based on 27,411 measurements of 309 pesticides and 30 geospatial parameters. Our global risk maps identify the hotspots, mainly in Southern Asia and Africa, with extensive pesticide use and poor wastewater management infrastructure. We identify 4 and 5 priority pesticides for protecting the human and ecosystem health, respectively. Importantly, we estimate that 305 million people worldwide are at potential health risk associated with the surface-water pesticide mixture exposure, with the vast majority (86%) being in Asia. We further identify the hotspots in the Ganges River basin in India, where more than 170 million people are at potential health risk. As pesticides are increasingly used to ensure the food production due to future population growth and climate change, our findings have implications for raising awareness of pesticide pollution, identifying the hotspots and helping to prioritize testing.
Collapse
Affiliation(s)
- Jian Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Li Zhao
- Guangdong Institute for Drug Control, Guangdong, Guangzhou 510180, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xinyi He
- School of Biomedical Sciences, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Lei Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China; Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
12
|
Abrantes N, Pereira JL, González ABM, Campos I, Navarro I, de la Torre A, Martínez MÁ, Osman R, Khurshid C, Harkes P, Lwanga EH, Alcon F, Contreras J, Baldi I, Bureau M, Alaoui A, Christ F, Mandrioli D, Sgargi D, Pasković I, Pasković MP, Glavan M, Hofman J, Norgaard T, Aparicio V, Silva V. Towards a comprehensive methodology for ecotoxicological assessment: Prioritizing plant protection products for mixture testing in edge-of-field surface waterbodies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177322. [PMID: 39489438 DOI: 10.1016/j.scitotenv.2024.177322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Pesticide applications in agriculture result in complex mixtures of Plant Protection Products (PPPs) in the environment. The ecotoxicological effects of these mixtures can occur at concentrations considered safe for individual chemicals, indicating potential risks underestimated by current regulatory assessments focused on individual active ingredients. To address this challenge, our study introduces a methodology for identifying priority PPPs for formulating mixtures, enabling further ecotoxicological testing in water and sediment compartments of edge-of-field surface water bodies, targeting pelagic and benthic organisms. This methodology was primarily based on the actual quantification of PPPs present in these compartments from selected case study sites (CSSs) in Europe and Argentina (11 and 4 for water and sediments, respectively). A conceptual framework was developed that discriminates and selects concerning PPPs based on their individual risk quotient and frequency of occurrence in each CSS, drawing upon two EU regulatory risk assessment approaches, i.e., the general approach under REACH for any environmental contaminant of concern - the European Chemicals Agency (ECHA) approach; and that specifically focusing on PPPs - the European Food Safety Authority (EFSA) approach. Irrespective of whether the focus is on water or sediments, the study revealed disparities in PPP rankings depending on the approach used to identify PPPs of concern, with the ECHA approach being more conservative than the EFSA approach. Despite this, the EFSA approach follows a more standardized assessment factor definition strategy, potentially allowing avoidance of risk overestimation, as well as resulting in a more balanced representation of different PPP classes for subsequent mixtures testing. Overall, the methodological development reported herein, along with the inconsistencies found when comparing different regulatory approaches to assess the risk of environmental contaminants, highlight the need for further discussion on the most appropriate directions towards the standardization of the regulatory risk assessment of PPP mixtures.
Collapse
Affiliation(s)
- Nelson Abrantes
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal.
| | | | - Ana-Belén Muñiz González
- CESAM and Department of Environment and Planning, University of Aveiro, Aveiro, Portugal; cDepartment of Physics, Mathematics, and Fluids, National Distance Education University (UNED), Madrid, Spain
| | - Isabel Campos
- CESAM and Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Irene Navarro
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Adrián de la Torre
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - María Ángeles Martínez
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Rima Osman
- Soil Physics and Land Management Group, Wageningen University & Research, the Netherlands
| | - Chrow Khurshid
- Soil Physics and Land Management Group, Wageningen University & Research, the Netherlands
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, the Netherlands
| | | | - Francisco Alcon
- Agricultural Engineering School, Universidad Politécnica de Cartagena, Spain
| | - Josefa Contreras
- Agricultural Engineering School, Universidad Politécnica de Cartagena, Spain
| | - Isabelle Baldi
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
| | - Mathilde Bureau
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
| | - Abdallah Alaoui
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | - Florian Christ
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | | | - Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Italy
| | - Igor Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Huguesa 8, 52440 Poreč, Croatia
| | - Marija Polić Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Huguesa 8, 52440 Poreč, Croatia
| | - Matjaž Glavan
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Trine Norgaard
- Department of Agroecology, Aarhus University, Aarhus, Denmark
| | - Virginia Aparicio
- National Institute of Agricultural Technology (INTA) Balcarce, Buenos Aires, Argentina
| | - Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, the Netherlands
| |
Collapse
|
13
|
Chen L, Jin J, Shao K, Xu Z, Lv L, Wu C, Wang Y. Mixture toxic mechanism of phoxim and prochloraz in the hook snout carp Opsariichthysbidens. CHEMOSPHERE 2024; 364:143217. [PMID: 39216554 DOI: 10.1016/j.chemosphere.2024.143217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Pesticides are usually found as mixtures in surface water bodies, even though their regulation in aquatic ecosystems is usually approached individually. In this context, this work aimed to investigate the enzymatic- and transcriptional-level responses after the mixture exposure of phoxim (PHX) and prochloraz (PRC) in the livers of hook snout carp Opsariichthys bidens. These data exhibited that co-exposure to PHX and PRC induced an acute synergistic impact on O. bidens. The activities of catalase (CAT), superoxide dismutase (SOD), carboxylesterase (CarE), and caspase3 varied significantly in most of the individual and combined challenges relative to basal values, indicating the activation of oxidative stress, detoxification dysfunction, as well as cell apoptosis. Besides, the transcriptional levels of five genes (gst, erα, mn-sod, cxcl-c1c, and il-8) exhibited more pronounced changes when subjected to combined pesticide exposure in contrast to the corresponding individual compounds. The findings revealed the manifestation of endocrine dysfunction and immune disruption. These results underscored the potential biochemical and molecular toxicity posed by the combination of PHX and PRC to O. bidens, thereby contributing to a deeper comprehension of the ecological toxicity of pesticide mixtures on aquatic organisms. Importantly, the concurrent presence of PHX and PRC might exacerbate hepatocellular damage in hook snout carps, potentially attributable to their synergistic toxic interactions. This study underscored the toxicological potency inherent in the co-occurrence of PHX and PRC in influencing fish development, thereby offering valuable insights for the risk assessment of pesticide mixtures and the safeguarding of aquatic organisms.
Collapse
Affiliation(s)
- Liping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jiansheng Jin
- Huzhou Agricultural Technology Extension Service Center, Zhejiang Province, 313000, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, 47405, USA
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Changxin Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
14
|
Liu X, Jia F, Lv L, Mao L, Chu T, Wang Y. Joint toxic mechanism of clothianidin and prochloraz in the earthworm (Eisenia fetida). CHEMOSPHERE 2024; 359:142250. [PMID: 38710415 DOI: 10.1016/j.chemosphere.2024.142250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Pesticides are typically present as combinations within soil ecosystems and have detrimental effects on untamed surroundings. However, the collective impacts and fundamental mechanisms of pesticides on soil living beings are currently inadequately assessed. In our current work, we evaluated the interactive consequences of clothianidin (CLO) and prochloraz (PRO) on earthworms (Eisenia fetida) using several toxicological tests, such as acute adverse effects, biocatalytic activity, and alterations in transcriptional activity. The findings revealed that CLO (with a 14-day LC50 value of 6.08 mg kg-1) exhibited greater toxicity compared to PRO (with a 14-day LC50 value of 79.41 mg kg-1). Moreover, the combinations of CLO and PRO had synergistic acute effects on E. fetida. Additionally, the activities of POD, CAT, and GST were significantly varied in most instances of single and mixed treatments when compared to the control. Surprisingly, the transcriptional levels of four genes (gst, sod, crt, and ann), related to oxidative load, metabolic detoxification systems, endoplasmic reticulum, and oxytocin neuropeptide, respectively, were also altered in response to single and mixture exposures, as compared to the control. Alterations in enzyme activity and gene transcriptional level could serve as early indicators for detecting co-exposure to pesticides. The findings of this research offered valuable holistic understanding regarding the toxicity of pesticide combinations on earthworms. Further research should be conducted to investigate the persistent effects of pesticide mixtures on terrestrial invertebrates in order to draw definitive conclusions about the associated risks.
Collapse
Affiliation(s)
- Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Fangzhao Jia
- Zunyi City Company Suiyang Branch, Guizhou Province Tobacco Company, Suiyang, 563300, Guizhou, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tianfen Chu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
15
|
Ruan W, Peng Y, Liao R, Man Y, Tai Y, Tam NFY, Zhang L, Dai Y, Yang Y. Removal, transformation and ecological risk assessment of pesticide in rural wastewater by field-scale horizontal flow constructed wetlands of treated effluent. WATER RESEARCH 2024; 256:121568. [PMID: 38593607 DOI: 10.1016/j.watres.2024.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Constructed wetlands (CWs) are widely used in sewage treatment in rural areas, but there are only a few studies on field-scale CWs in treating wastewater-borne pesticides. In this study, the treatment and metabolic transformation of 29 pesticides in rural domestic sewage by 10 field-scale horizontal flow CWs (HF-CWs), each with a treatment scale of 36‒5000 m3/d and operated for 2‒10 years, in Guangzhou, Southern China was investigated. The risk of pesticides in treated effluent and main factors influencing such risk were evaluated. Results demonstrated that HF-CWs could remove pesticides in sewage and reduce their ecological risk in effluent, but the degree varied among types of pesticides. Herbicides had the highest mean removal rate (67.35 %) followed by insecticides (60.13 %), and the least was fungicides (53.22 %). In terms of single pesticide compounds, the mean removal rate of butachlor was the highest (73.32 %), then acetochlor (69.41 %), atrazine (68.28 %), metolachlor (58.40 %), and oxadixyl (53.28 %). The overall removal rates of targeted pesticides in each HF-CWs ranged from 11 %‒57 %, excluding two HF-CWs showing increases in pesticides in treated effluent. Residues of malathion, phorate, and endosulfan in effluent had high-risks (RQ > 5). The pesticide concentration in effluent was mainly affected by that in influent (P = 0.042), and source control was the key to reducing risk. The main metabolic pathways of pesticide in HF-CWs were oxidation, with hydroxyl group to carbonyl group or to form sulfones, the second pathways by hydrolysis, aerobic condition was conducive to the transformation of pesticides. Sulfones were generally more toxic than the metabolites produced by hydrolytic pathways. The present study provides a reference on pesticides for the purification performance improvement, long-term maintenance, and practical sustainable application of field-scale HF-CWs.
Collapse
Affiliation(s)
- Weifeng Ruan
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Yanqin Peng
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Ruomei Liao
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Ying Man
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yiping Tai
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| | - Nora Fung-Yee Tam
- School of Science and Technology, The Hong Kong Metropolitan University, Ho Man Tin, Kowloon 999077, Hong Kong, China
| | - Longzhen Zhang
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yunv Dai
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Yang Yang
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| |
Collapse
|
16
|
Gomarasca S, Stefani F, Fasola E, La Porta CA, Bocchi S. Regional evaluation of glyphosate pollution in the minor irrigation network. CHEMOSPHERE 2024; 355:141679. [PMID: 38527632 DOI: 10.1016/j.chemosphere.2024.141679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Due to its low cost, its ease of use and to the "mild action" declared for long time by the Control and Approval Agencies towards it, the herbicide Glyphosate, is one of the currently best-selling and most-used agricultural products worldwide. In this work, we evaluated the presence and spread of Glyphosate in the Po River Basin (Northern Italy), one of the regions with the most intensified agriculture in Europe and where, by now for decades, a strong and general loss of aquatic biodiversity is observed. In order to carry out a more precise study of the real presence of this herbicide in the waters, samples were collected from the minor water network for two consecutive years, starting in 2022, at an interval time coinciding with those of the spring and summer crop treatments. In contrast to the sampling strategies generally adopted by Environmental Protection Agencies, a more focused sampling strategy was adopted to highlight the possible high concentrations in minor watercourses in direct contact with cultivated fields. Finally, we investigated the possible consequences that the higher amounts of Glyphosate found in our monitoring activities can have on stress reactions in plant (Groenlandia densa) and animal (Daphnia magna) In all the monitoring campaigns we detected exceeding European Environmental Quality Standard - EQS limits (0.1 μg/L) values. Furthermore, in some intensively agricultural areas, concentrations reached hundreds of μg/L, with the highest peaks during spring. In G. densa and D. magna, the exposition to increasing doses of herbicide showed a clear response linked to metabolic stress. Overall, our results highlight how, after several decades of its use, the Glyphosate use efficiency is still too low, leading to economic losses for the farm and to strong impacts on ecosystem health. Current EU policy indications call for an agroecological approach necessary to find alternatives to chemical weed control, which farms can develop in different contexts in order to achieve the sustainability goals set by the Farm to Fork strategy.
Collapse
Affiliation(s)
- Stefano Gomarasca
- Dep. of Environmental Science and Policy (ESP), University of Milan, Via Celoria 2, 20133, Milano, Italy.
| | - Fabrizio Stefani
- Water Research Institute-National Research Council (IRSA-CNR), Via del Mulino 19, 20861, Brugherio, MB, Italy.
| | - Emanuele Fasola
- Water Research Institute-National Research Council (IRSA-CNR), Via del Mulino 19, 20861, Brugherio, MB, Italy.
| | - Caterina Am La Porta
- Dep. of Environmental Science and Policy (ESP), University of Milan, Via Celoria 2, 20133, Milano, Italy.
| | - Stefano Bocchi
- Dep. of Environmental Science and Policy (ESP), University of Milan, Via Celoria 2, 20133, Milano, Italy.
| |
Collapse
|
17
|
Morrissey C, Fritsch C, Fremlin K, Adams W, Borgå K, Brinkmann M, Eulaers I, Gobas F, Moore DRJ, van den Brink N, Wickwire T. Advancing exposure assessment approaches to improve wildlife risk assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:674-698. [PMID: 36688277 DOI: 10.1002/ieam.4743] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The exposure assessment component of a Wildlife Ecological Risk Assessment aims to estimate the magnitude, frequency, and duration of exposure to a chemical or environmental contaminant, along with characteristics of the exposed population. This can be challenging in wildlife as there is often high uncertainty and error caused by broad-based, interspecific extrapolation and assumptions often because of a lack of data. Both the US Environmental Protection Agency (USEPA) and European Food Safety Authority (EFSA) have broadly directed exposure assessments to include estimates of the quantity (dose or concentration), frequency, and duration of exposure to a contaminant of interest while considering "all relevant factors." This ambiguity in the inclusion or exclusion of specific factors (e.g., individual and species-specific biology, diet, or proportion time in treated or contaminated area) can significantly influence the overall risk characterization. In this review, we identify four discrete categories of complexity that should be considered in an exposure assessment-chemical, environmental, organismal, and ecological. These may require more data, but a degree of inclusion at all stages of the risk assessment is critical to moving beyond screening-level methods that have a high degree of uncertainty and suffer from conservatism and a lack of realism. We demonstrate that there are many existing and emerging scientific tools and cross-cutting solutions for tackling exposure complexity. To foster greater application of these methods in wildlife exposure assessments, we present a new framework for risk assessors to construct an "exposure matrix." Using three case studies, we illustrate how the matrix can better inform, integrate, and more transparently communicate the important elements of complexity and realism in exposure assessments for wildlife. Modernizing wildlife exposure assessments is long overdue and will require improved collaboration, data sharing, application of standardized exposure scenarios, better communication of assumptions and uncertainty, and postregulatory tracking. Integr Environ Assess Manag 2024;20:674-698. © 2023 SETAC.
Collapse
Affiliation(s)
- Christy Morrissey
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Katharine Fremlin
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Markus Brinkmann
- School of Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Igor Eulaers
- FRAM Centre, Norwegian Polar Institute, Tromsø, Norway
| | - Frank Gobas
- School of Resource & Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | | | - Nico van den Brink
- Division of Toxicology, University of Wageningen, Wageningen, The Netherlands
| | - Ted Wickwire
- Woods Hole Group Inc., Bourne, Massachusetts, USA
| |
Collapse
|
18
|
Schuhmann A, Schulte J, Feldhaar H, Scheiner R. Bumblebees are resilient to neonicotinoid-fungicide combinations. ENVIRONMENT INTERNATIONAL 2024; 186:108608. [PMID: 38554503 DOI: 10.1016/j.envint.2024.108608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
Bumblebees are among the most important wild bees for pollination of crops and securing wildflower diversity. However, their abundance and diversity have been on a steady decrease in the last decades. One of the most important factors leading to their decline is the frequent use of plant protection products (PPPs) in agriculture, which spread into forests and natural reserves. Mixtures of different PPPs pose a particular threat because of possible synergistic effects. While there is a comparatively large body of studies on the effects of PPPs on honeybees, we still lack data on wild bees. We here investigated the influence of the frequent fungicide Cantus® Gold (boscalid/dimoxystrobin), the neonicotinoid insecticide Mospilan® (acetamiprid) and their combination on bumblebees. Cognitive performance and foraging flights of bumblebees were studied. They are essential for the provisioning and survival of the colony. We introduce a novel method for testing four treatments simultaneously on the same colony, minimizing inter-colony differences. For this, we successfully quartered the colony and moved the queen daily between compartments. Bumblebees appeared astonishingly resilient to the PPPs tested or they have developed mechanisms for detoxification. Neither learning capacity nor flight activity were inhibited by treatment with the single PPPs or their combination.
Collapse
Affiliation(s)
- Antonia Schuhmann
- Biocenter, Behavioral Physiology and Sociobiology, University of Würzburg, 97074 Würzburg, Germany.
| | - Janna Schulte
- Institute of Biology and Environmental Sciences, University of Oldenburg, 26129 Oldenburg, Germany
| | - Heike Feldhaar
- Department of Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95447 Bayreuth, Germany
| | - Ricarda Scheiner
- Biocenter, Behavioral Physiology and Sociobiology, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
19
|
Izma G, Raby M, Prosser R, Rooney R. Urban-use pesticides in stormwater ponds and their accumulation in biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170534. [PMID: 38301793 DOI: 10.1016/j.scitotenv.2024.170534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Stormwater ponds frequently receive urban runoff, increasing the likelihood of pesticide contamination. Biofilms growing in surface waters of these ponds are known to accumulate a range of aquatic contaminants, paradoxically providing both water purification services and potentially posing a threat to urban wildlife. Thus, sampling biofilms in stormwater ponds may be a critical and biologically relevant tool for characterizing pesticide contamination and toxicity in urban environments. Here, we aimed to investigate pesticide occurrences at 21 stormwater ponds in Brampton, ON, one of Canada's fastest growing municipalities, and quantify their accumulation in biofilm. Over nine weeks, we collected time-integrated composite water and biofilm samples for analysis of ∼500 current-use and legacy pesticides. Thirty-two pesticide compounds were detected across both matrices, with 2,4-D, MCPA, MCPP, azoxystrobin, bentazon, triclopyr, and diuron having near-ubiquitous occurrences. Several compounds not typically monitored in pesticide suites (e.g., melamine and nicotine) were also detected, but only in biofilms. Overall, 56 % of analytes detected in biofilms were not found in water samples, indicating traditional pesticide monitoring practices fail to capture all exposure routes, as even when pesticides are below detection levels in water, organisms may still be exposed via dietary pathways. Calculated bioconcentration factors ranged from 4.2 to 1275 and were not predicted by standard pesticide physicochemical properties. Monitoring biofilms provides a sensitive and comprehensive supplement to water sampling for pesticide quantification in urban areas, and identifying pesticide occurrences in stormwater could improve source-tracking efforts in the future. Further research is needed to understand the mechanisms driving pesticide accumulation, to investigate toxicity risks associated with pesticide-contaminated biofilm, and to evaluate whether pesticide accumulation in stormwater pond biofilms represents a route through which contaminants are mobilized into the surrounding terrestrial and downstream aquatic environments.
Collapse
Affiliation(s)
- Gab Izma
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Melanie Raby
- Ontario Ministry of Environment, Conservation, and Parks, Etobicoke, ON, Canada
| | - Ryan Prosser
- School of Environmental Science, University of Guelph, Guelph, ON, Canada
| | - Rebecca Rooney
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
20
|
Markert N, Schürings C, Feld CK. Water Framework Directive micropollutant monitoring mirrors catchment land use: Importance of agricultural and urban sources revealed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170583. [PMID: 38309347 DOI: 10.1016/j.scitotenv.2024.170583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
River monitoring programs worldwide consistently unveil micropollutant concentrations (pesticide, pharmaceuticals, and industrial chemicals) exceeding regulatory quality targets with deteriorating effects on aquatic communities. However, both the composition and individual concentrations of micropollutants are likely to vary with the catchment land use, in particular regarding urban and agricultural area as the primary sources of micropollutants. In this study, we used a dataset of 109 governmental monitoring sites with micropollutants monitored across the Federal State of North Rhine-Westphalia, Germany, to investigate the relationship between high-resolution catchment land use (distinguishing urban, forested and grassland area as well as 22 different agricultural crop types) and 39 micropollutants using Linear Mixed Models (LMMs). Ecotoxicological risks were indicated for mixtures of pharmaceutical and industrial chemicals for 100 % and for pesticides for 55 % of the sites. The proportion of urban area in the catchment was positively related with concentrations of most pharmaceuticals and industrial chemicals (R2 up to 0.54), whereas the proportions of grassland and forested areas generally showed negative relations. Cropland overall showed weak positive relationships with micropollutant concentrations (R2 up to 0.29). Individual crop types, particularly vegetables and permanent crops, showed higher relations (R2 up to 0.46). The findings suggest that crop type-specific pesticide applications are mirrored in the detected micropollutant concentrations. This highlights the need for high-resolution spatial land use to investigate the magnitude and dynamics of micropollutant exposure and relevant pollution sources, which would remain undetected with highly aggregated land use classifications. Moreover, the findings imply the need for tailored management measures to reduce micropollutant concentrations from different sources and their related ecological effects. Urban point sources, could be managed by advanced wastewater treatment. The reduction of diffuse pollution from agricultural land uses requires additional measures, to prevent pesticides from entering the environment and exceeding regulatory quality targets.
Collapse
Affiliation(s)
- Nele Markert
- University Duisburg-Essen, Faculty of Biology, Aquatic Ecology, Universitätsstr. 5, 45141 Essen, Germany; North Rhine-Westphalia Office of Nature, Environment and Consumer Protection (LANUV NRW), 40208 Düsseldorf, Germany
| | - Christian Schürings
- University Duisburg-Essen, Faculty of Biology, Aquatic Ecology, Universitätsstr. 5, 45141 Essen, Germany.
| | - Christian K Feld
- University Duisburg-Essen, Faculty of Biology, Aquatic Ecology, Universitätsstr. 5, 45141 Essen, Germany; University Duisburg-Essen, Centre for Water and Environmental Research (ZWU), Universitätsstr. 5, 45141 Essen, Germany
| |
Collapse
|
21
|
Akter M, Alam MS, Yang X, Nunes JP, Zomer P, Rahman MM, Mol H, Ritsema CJ, Geissen V. Hidden risk of terrestrial food chain contamination from organochlorine insecticides in a vegetable cultivation area of Northwest Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169343. [PMID: 38097076 DOI: 10.1016/j.scitotenv.2023.169343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Organochlorine insecticide (OCI) exposures in terrestrial food chains from historical or current applications were studied in a vegetable production area in northwest Bangladesh. A total of 57 subsoil, 57 topsoil, and 57 vegetable samples, as well as 30 cow's milk samples, were collected from 57 farms. Multiple OCI residues were detected using GC-MS/MS with modified QuEChERS in 20 % of subsoils, 21 % of topsoils, 23 % of vegetables, and 7 % of cow's milk samples. Diversified OCI residues were detected in subsoils (17 residues with a concentration of 179.15 ± 148.61 μg kg-1) rather than in topsoils (3 DDT residues with a concentration of 25.76 ± 20.19 μg kg-1). Isomeric ratios indicate intensive historical applications of OCIs. According to Dutch and Chinese standards, the lower concentrations of individual OCI residues in the soil indicate negligible to slight soil pollution, assuming local farmers follow local pesticide use regulations. However, a maximum of 78.24 μg kg-1 ΣAldrines and 35.57 μg kg-1 ΣHCHs were detected (1-4 residues) in 60 % of brinjal, 28 % of cucumber, 29 % of sponge gourd, and 20 % of lady's finger samples, which could be a result of either historical or current OCI applications, or both. A strong positive correlation between aldrines in subsoils and cucurbit vegetables indicates greater bioaccumulation. Cow milk samples contained up to 6.96 μg kg-1 ΣDDTs, which resulted either from rationing contaminated vegetables or grazing on contaminated land. Individual OCI in both vegetables and cow's milk was below the respective maximum residue limits of US and FAO/WHO CODEX and poses little or no risk to human health. However, combined exposure to multiple pesticides could increase human health risks. A cumulative health risk assessment of multiple pesticide residues is suggested to assess the suitability of those soils for cultivation and grazing, as well as the safety of vegetables and cow's milk for human consumption.
Collapse
Affiliation(s)
- Mousumi Akter
- Soil Physics and Land Management, Wageningen University & Research, 6700AA Wageningen, the Netherlands; Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Md Shohidul Alam
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Xiaomei Yang
- Soil Physics and Land Management, Wageningen University & Research, 6700AA Wageningen, the Netherlands
| | - João Pedro Nunes
- Soil Physics and Land Management, Wageningen University & Research, 6700AA Wageningen, the Netherlands
| | - Paul Zomer
- Wageningen Food Safety Research, 6700AE Wageningen, the Netherlands
| | - Md Mokhlesur Rahman
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Hans Mol
- Wageningen Food Safety Research, 6700AE Wageningen, the Netherlands
| | - Coen J Ritsema
- Soil Physics and Land Management, Wageningen University & Research, 6700AA Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management, Wageningen University & Research, 6700AA Wageningen, the Netherlands
| |
Collapse
|
22
|
García Carriquiry I, Silva V, Raevel F, Harkes P, Osman R, Bentancur O, Fernandez G, Geissen V. Effects of mixtures of herbicides on nutrient cycling and plant support considering current agriculture practices. CHEMOSPHERE 2024; 349:140925. [PMID: 38086451 DOI: 10.1016/j.chemosphere.2023.140925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The use of mixtures of pesticides and consecutive pesticide applications challenge current regulations aimed at protecting ecosystem health due to unpredictable effects of complex and dynamic mixtures. In this study, we tested the ecotoxicological effects of mixtures of herbicides, applied following a real application scheme of soybean production on soil health in a mesocosm experiment. The experiment included two sequential applications; first, glyphosate + dicamba + clethodim, and 30 days later, flumioxazin + metolachlor. Commercial products were used at the recommended doses and at two other concentrations: half and double the recommended dose. Soybean plants were exposed to the herbicide-contaminated soil from the time of sowing to the beginning of pod formation. Half of the plants were harvested at the vegetative stage and the remaining plants at the reproductive stage to evaluate endpoints related to plant support and nutrient cycling. Plant biomass was significantly affected during the vegetative stage at the recommended and double the recommended dose, with the effects being mixture-dose dependent. Lower total and arbuscular colonization of mycorrhizas were also observed in double the recommended dose, and intermediate results were observed for the recommended dose. Nodule mass and phosphorous concentration in plants decreased with increasing herbicide doses. By the end of the experiment, nodule mass and total mycorrhizal colonization were low in the plants treated with double the recommended dose of herbicides. However, both endpoints reached similar values to the control at lower herbicide doses. Plant height and phenology were only lower at double the recommended dose during the experiment. The use of non-standard endpoints evidenced that important soil functions were transiently or permanently affected, while the realistic application scheme accounted for the impact of the management practice currently used. Pesticide risk assessment should therefore, incorporate both issues to effectively protect the ecosystems.
Collapse
Affiliation(s)
- I García Carriquiry
- Soil Physics & Land Management Group, Wageningen University & Research, Netherlands; CENUR Litoral Norte, Universidad de la República, Uruguay.
| | - V Silva
- Soil Physics & Land Management Group, Wageningen University & Research, Netherlands
| | - F Raevel
- Soil Physics & Land Management Group, Wageningen University & Research, Netherlands
| | - P Harkes
- Soil Physics & Land Management Group, Wageningen University & Research, Netherlands
| | - R Osman
- Soil Physics & Land Management Group, Wageningen University & Research, Netherlands
| | - O Bentancur
- Facultad de Agronomía, Universidad de la República, Uruguay
| | - G Fernandez
- Facultad de Agronomía, Universidad de la República, Uruguay
| | - V Geissen
- Soil Physics & Land Management Group, Wageningen University & Research, Netherlands
| |
Collapse
|
23
|
Liang R, Maltby L. Spatial variation in the recovery potential of freshwater macroinvertebrate assemblages: Moving towards spatially defined assemblage vulnerability to chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168402. [PMID: 37939950 DOI: 10.1016/j.scitotenv.2023.168402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
The vulnerability of freshwater biodiversity to chemical stressors is dependent on its ability to resist chemical stress and recover from any stress-induced effects. Spatial variation in recovery has the potential to exacerbate or mitigate assemblage vulnerability but this has not been explored in detail. By combining information on assemblage-specific recovery potential with information on assemblage-specific chemical sensitivity, we have demonstrated that the vulnerability of 3307 macroinvertebrate assemblages to 18 different chemicals is spatially dependent and that recovery potential may reduce chemical risk. The recovery potential of each assemblage was quantified based on trait information and landscape factors using a weighted sum method, but it did not consider succession processes. Recovery potential varied by river type with assemblages in mid-altitude siliceous rivers with small catchments in the west of England having the lowest recovery potential. For 17 or the 18 chemicals investigated, there was a positive correlation between the recovery potential and sensitivity and this was strongest for assemblages exposed to metals. More sensitive assemblages had a higher recovery potential and were therefore potentially less vulnerable than would be expected based on sensitivity alone. Assemblages in rivers with small catchments were the most vulnerable to chemical exposure. Furthermore, assemblages with high vulnerability to insecticide exposure were more prevalent in mid-altitude rivers with siliceous geology in the west of England, whereas assemblages with high vulnerability to metals were more prevalent in lowland rivers with calcareous or mixed geology in the midlands. This study: (i) highlights the importance of spatial context in determining the risk of chemical pollution to freshwater biodiversity; (ii) demonstrates how spatial variation in taxonomic composition influences both the internal and external recovery of assemblages and how landscape factors modify trait-based recovery capabilities; (iii) provides the foundations for spatially-defined vulnerability assessment by identifying ecological scenarios for assessing chemical risk.
Collapse
Affiliation(s)
- Ruoyu Liang
- School of Biosciences, The University of Sheffield, Alfred Denny Building, Western Bank, S10 2TN Sheffield, United Kingdom.
| | - Lorraine Maltby
- School of Biosciences, The University of Sheffield, Alfred Denny Building, Western Bank, S10 2TN Sheffield, United Kingdom
| |
Collapse
|
24
|
Lorenz S. Sediment characteristics mediate mixture effect of metconazole and thiacloprid on the activity behavior of the amphipod Hyalella azteca. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106781. [PMID: 38043484 DOI: 10.1016/j.aquatox.2023.106781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Pesticide mixtures occur frequently in freshwaters. Here, pesticides can persist over long periods and alter aquatic communities and ecosystems by causing chronic indirect effects. Particularly effects on activity behavior of organisms can be considered as starting points of cascading effects as they provide the basis for further sublethal responses such as reproduction or feeding. Therefore, the impact of two pesticides in combination, the fungicide metconazole and the insecticide thiacloprid, was evaluated on the immobilization and activity behavior of Hyalella azteca with varying sediment conditions. The results showed a change from additive effects to synergism in the mobility tests for sediment with higher contents of total carbon but not for the activity behavior tests using a Multispecies Freshwater Biomonitoring system. However, sediments with high carbon, nitrogen and phosphorous contents led to comparable activity behavior of H. azteca to control conditions after three days of contaminant exposure which was not the case in all other treatments. The autoregressive integrated moving average (ARIMA) forecast approach used showed that this activity behavior remained constant after recovery to pre-exposure levels at least for a time period of 16 h. This study showed that mobility and activity of H. azteca are largely affected by the exposure to pesticides, which is mediated by the structure of the sediment. However, further studies are needed that test activity behavior impairments in environments where the individuals are in direct contact with the sediment that may buffer the pesticide exposure from the water column.
Collapse
Affiliation(s)
- Stefan Lorenz
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Königin-Luise-Str. 19, Berlin 14195, Germany.
| |
Collapse
|
25
|
Huszarik M, Roodt AP, Wernicke T, Chávez F, Metz A, Link M, Lima-Fernandes E, Schulz R, Entling MH. Increased bat hunting at polluted streams suggests chemical exposure rather than prey shortage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167080. [PMID: 37722422 DOI: 10.1016/j.scitotenv.2023.167080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Streams and their riparian areas are important habitats and foraging sites for bats feeding on emergent aquatic insects. Chemical pollutants entering freshwater streams from agricultural and wastewater sources have been shown to alter aquatic insect emergence, yet little is known about how this impacts insectivorous bats in riparian areas. In this study, we investigate the relationships between the presence of wastewater effluent, in-stream pesticide toxicity, the number of emergent and flying aquatic insects, and the activity and hunting behaviour of bats at 14 streams in southwestern Germany. Stream sites were located in riparian forests, sheltered from direct exposure to pollutants from agricultural and urban areas. We focused on three bat species associated with riparian areas: Myotis daubentonii, M. cf. brandtii, and Pipistrellus pipistrellus. We found that streams with higher pesticide toxicity and more frequent detection of wastewater also tended to be warmer and have higher nutrient and lower oxygen concentrations. We did not observe a reduction of insect emergence, bat activity or hunting rates in association with pesticide toxicity and wastewater detections. Instead, the activity and hunting rates of Myotis spp. were higher at more polluted sites. The observed increase in bat hunting at more polluted streams suggests that instead of reduced prey availability, chemical pollution at the levels measured in the present study could expose bats to pollutants transported from the stream by emergent aquatic insects.
Collapse
Affiliation(s)
- Maike Huszarik
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany.
| | - Alexis P Roodt
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Teagan Wernicke
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Fernanda Chávez
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Annika Metz
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Moritz Link
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Eva Lima-Fernandes
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Ralf Schulz
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany; Eußerthal Ecosystem Research Station, RPTU Kaiserslautern-Landau, Birkenthalstr. 13, 76857 Eußerthal, Germany
| | - Martin H Entling
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| |
Collapse
|
26
|
Jeninga AJ, Kooij N, Harrahy E, King-Heiden TC. Binary mixtures of imidacloprid and thiamethoxam do not appear to cause additive toxicity in fathead minnow larvae ( Pimephales promelas). FRONTIERS IN TOXICOLOGY 2023; 5:1282817. [PMID: 38053752 PMCID: PMC10694295 DOI: 10.3389/ftox.2023.1282817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction: Considerable use of neonicotinoid insecticides has resulted in their detection in surface waters globally, with imidacloprid (IM) and thiamethoxam (TM) frequently found together. Neonicotinoids are selective agonists for invertebrate nicotinic acetylcholine receptors (nAChR) leading to paralysis and death. While not overtly toxic to vertebrates, growing evidence suggests that chronic exposure to individual neonicotinoids can cause adverse health effects in fish. This work examined whether chronic exposure to binary mixtures of imidacloprid (IM) and thiamethoxam (TM) would be more toxic to fathead minnow (Pimephales promelas) larvae than either insecticide alone. Materials and Methods: Embryos were exposed to a 1:1 mixture of IM and TM (0.2, 2, 20, 200 or 2,000 μg/L of each pesticide) or a 1:5, 1:10, or 1:20 mixture of IM and TM (0.02 μg/L of IM with 0.1, 0.2, or 0.4 μg/L of TM) for a total of 8 days. Survival, developmental toxicity, embryonic motor activity, and startle escape responses were quantified. Results: Survival and growth were reduced, and hatching induced by exposure to a 1:1 mixture containing > 2 μg/L of each insecticide, but not following exposure to mixtures containing environmentally-relevant concentrations. Acute exposure to a 1:1 mixture did not alter embryonic motor activity; however, chronic exposure to these mixtures resulted in a slight but significant decrease in embryonic movements. Only 1:1 mixtures of high concentrations of IM and TM altered the startle escape response by increasing latency of response; however, a significant proportion of fish exposed to 1:1 mixtures had altered latency and burst speed. Taken together, these behavioral indicators of nAChR activation suggest that in mixtures, neonicotinoids could interfere with nAChR signaling despite their low affinity for the nAChR. Conclusion: Our findings suggest that toxicity of binary mixtures of IM and TM is primarily driven by IM, and that mixtures of IM with TM do not appear to cause significant additive toxicity when compared with our previous studies evaluating each neonicotinoid alone. Given the limited toxicological data available for mixtures of neonicotinoid insecticides in fish, further study is required to better understand the ecological risks these insecticides may pose to aquatic ecosystems.
Collapse
Affiliation(s)
- Anya J. Jeninga
- Department of Biology and River Studies Center, University of Wisconsin-La Crosse, La Crosse, WI, United States
| | - Nicole Kooij
- Department of Biology and River Studies Center, University of Wisconsin-La Crosse, La Crosse, WI, United States
| | - Elisabeth Harrahy
- Department of Biological Sciences, University of Wisconsin-Whitewater, La Crosse, WI, United States
| | - Tisha C. King-Heiden
- Department of Biology and River Studies Center, University of Wisconsin-La Crosse, La Crosse, WI, United States
| |
Collapse
|
27
|
Schuster HS, Taylor NS, Sur R, Weyers A. Analysis and management of herbicidal mixtures in a high-intensity agricultural landscape in Belgium. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1297-1306. [PMID: 36541121 DOI: 10.1002/ieam.4727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Water bodies located in anthropogenically influenced environments, such as agricultural landscapes, may be exposed to different chemicals simultaneously or sequentially. Yet, current environmental risk assessments focus on single active substances for unintended mixtures. For 3.5 years, the present study monitored the mixture of herbicides, within an intensively managed agricultural catchment, accompanied by a stewardship program. Twelve herbicides and one metabolite were monitored on a daily to sub-daily basis, generating a unique, high temporal resolution data set, enabling an assessment of cumulative exposure in a worst-case scenario. Analyses focused on the number of events at which the herbicide mixture concentration exceeded the regulatory accepted concentration for algae and macrophytes, based on concentration addition, and the potential factors influencing the frequency of these events are considered. A low number of individual herbicides drove the toxicity and only two of these overlapped for the two organism groups, algae and macrophytes. The observed exceedance events coincided with seasonal influences, and low rainfall during the 2011 season correlated with a highly reduced number of these events. The major influence was found to be the implementation of the stewardship program, which directed farmers to use more advanced farming techniques, avoid spillages, and other point sources. The number of exceedance events was reduced by more than half for algae (9% of the daily mean samples in 2010 and 4% in 2013) and by approximately 10 times for macrophytes (36% in 2010 to 3% in 2013). This high-resolution monitoring data set illustrates how knowledge of the influencing factors can help reduce unintended exposure to chemicals and achieve real-world improvements. Overall, a single-substance assessment is protective of mixture effects. Where mixture effects do play a role, local measures to manage point sources are more effective than changes to the desk-based environmental risk assessments that focus on diffuse sources. Integr Environ Assess Manag 2023;19:1297-1306. © 2022 Cambridge Environmental Assessments RSK ADAS Ltd and Bayer AG. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Hanna S Schuster
- Cambridge Environmental Assessments (RSK ADAS Ltd.), Cambridge, UK
| | - Nadine S Taylor
- Cambridge Environmental Assessments (RSK ADAS Ltd.), Cambridge, UK
| | - Robin Sur
- Bayer AG, Crop Science Division, Environmental Safety, Monheim, Germany
| | - Arnd Weyers
- Bayer AG, Crop Science Division, Environmental Safety, Monheim, Germany
| |
Collapse
|
28
|
Schäfer RB, Jackson M, Juvigny-Khenafou N, Osakpolor SE, Posthuma L, Schneeweiss A, Spaak J, Vinebrooke R. Chemical Mixtures and Multiple Stressors: Same but Different? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1915-1936. [PMID: 37036219 DOI: 10.1002/etc.5629] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023]
Abstract
Ecosystems are strongly influenced by multiple anthropogenic stressors, including a wide range of chemicals and their mixtures. Studies on the effects of multiple stressors have largely focussed on nonchemical stressors, whereas studies on chemical mixtures have largely ignored other stressors. However, both research areas face similar challenges and require similar tools and methods to predict the joint effects of chemicals or nonchemical stressors, and frameworks to integrate multiple chemical and nonchemical stressors are missing. We provide an overview of the research paradigms, tools, and methods commonly used in multiple stressor and chemical mixture research and discuss potential domains of cross-fertilization and joint challenges. First, we compare the general paradigms of ecotoxicology and (applied) ecology to explain the historical divide. Subsequently, we compare methods and approaches for the identification of interactions, stressor characterization, and designing experiments. We suggest that both multiple stressor and chemical mixture research are too focused on interactions and would benefit from integration regarding null model selection. Stressor characterization is typically more costly for chemical mixtures. While for chemical mixtures comprehensive classification systems at suborganismal level have been developed, recent classification systems for multiple stressors account for environmental context. Both research areas suffer from rather simplified experimental designs that focus on only a limited number of stressors, chemicals, and treatments. We discuss concepts that can guide more realistic designs capturing spatiotemporal stressor dynamics. We suggest that process-based and data-driven models are particularly promising to tackle the challenge of prediction of effects of chemical mixtures and nonchemical stressors on (meta-)communities and (meta-)food webs. We propose a framework to integrate the assessment of effects for multiple stressors and chemical mixtures. Environ Toxicol Chem 2023;42:1915-1936. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Ralf B Schäfer
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | | | - Noel Juvigny-Khenafou
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Stephen E Osakpolor
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Leo Posthuma
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
| | - Anke Schneeweiss
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Jürg Spaak
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Rolf Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Stehle S, Ovcharova V, Wolfram J, Bub S, Herrmann LZ, Petschick LL, Schulz R. Neonicotinoid insecticides in global agricultural surface waters - Exposure, risks and regulatory challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161383. [PMID: 36621497 DOI: 10.1016/j.scitotenv.2022.161383] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Neonicotinoids are the most widely used insecticides worldwide. However, the widespread usage of neonicotinoids has sparked concerns over their effects on non-target ecosystems including surface waters. We present here a comprehensive meta-analysis of 173 peer-reviewed studies (1998-2022) reporting measured insecticide concentrations (MICs; n = 3983) for neonicotinoids in global surface waters resulting from agricultural nonpoint source pollution. We used compound-specific regulatory threshold levels for water (RTLSW) and sediment (RTLSED) defined for pesticide authorization in Canada, the EU and the US, and multispecies endpoints (MSESW) to assess acute and chronic risks of global neonicotinoid water-phase (MICSW; n = 3790) and sediment (MICSED; n = 193) concentrations. Results show a complete lack of exposure information for surface waters in >90 % of agricultural areas globally. However, available data indicates for MICSW overall acute risks to be low (6.7 % RTLSW_acute exceedances), but chronic risks to be of concern (20.7 % RTLSW_chronic exceedances); exceedance frequencies were particularly high for chronic MSESW (63.3 %). We found RTLSW exceedances to be highest for imidacloprid and in less regulated countries. Linear model analysis revealed risks for global agricultural surface waters to decrease significantly over time, potentially biased by the lack of sensitive analytical methods in early years of neonicotinoid monitoring. The Canadian, EU and US RTLSW differ considerably (up to factors of 223 for RTLSW_acute and 13,889 for RTLSW_chronic) for individual neonicotinoids, indicating large uncertainties and regulatory challenges in defining robust and protective RTLs. We conclude that protective threshold levels, in concert with increasing monitoring efforts targeting agricultural surface waters worldwide, are essential to further assess the ecological consequences from anticipated increases of agricultural neonicotinoid uses.
Collapse
Affiliation(s)
- Sebastian Stehle
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany.
| | - Viktoriia Ovcharova
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Jakob Wolfram
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Sascha Bub
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Larissa Zoë Herrmann
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Lara Luisa Petschick
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany; Eusserthal Ecosystem Research Station, University Koblenz-Landau, 76857 Eusserthal, Germany
| |
Collapse
|
30
|
Hardy F, Takser L, Gillet V, Baccarelli AA, Bellenger JP. Characterization of childhood exposure to environmental contaminants using stool in a semi-urban middle-class cohort from eastern Canada. ENVIRONMENTAL RESEARCH 2023; 222:115367. [PMID: 36709028 DOI: 10.1016/j.envres.2023.115367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Children are exposed to various environmental organic and inorganic contaminants with effects on health outcomes still largely unknown. Many matrices (e.g., blood, urine, nail, hair) have been used to characterize exposure to organic and inorganic contaminants. The sampling of feces presents several advantages; it is non-invasive and provides a direct evaluation of the gut microbiome exposure to contaminants. The gut microbiome is a key factor in neurological development through the brain-gut axis. Its composition and disturbances can affect the neurodevelopment of children. Characterization of children exposure to contaminants is often performed on vulnerable populations (e.g., from developing countries, low-income neighborhoods, and large urban centers). Data on the exposure of children from middle-class, semi-urban, and mid-size populations to contaminants is scarce despite representing a significant fraction of the population in North America. In this study, 73 organics compounds from different chemical classes and 22 elements were analyzed in 6 years old (n = 84) and 10 years old (n = 119) children's feces from a middle-class, semi-urban, mid-size population cohort from Eastern Canada. Results show that 67 out of 73 targeted organics compounds and all elements were at least detected in one child's feces. Only caffeine (97% & 80%) and acetaminophen (28% & 48%) were detected in more than 25% of the children's feces, whereas all elements besides titanium were detected in more than 50% of the children.
Collapse
Affiliation(s)
- Félix Hardy
- Department of Chemistry, Faculty of Sciences, Sherbrooke University, Quebec, Canada.
| | - Larissa Takser
- Department of Pediatrics, Faculty of Medicine, Sherbrooke University, Quebec, Canada
| | - Viginie Gillet
- Department of Pediatrics, Faculty of Medicine, Sherbrooke University, Quebec, Canada
| | | | | |
Collapse
|
31
|
Cang T, Lou Y, Zhu YC, Li W, Weng H, Lv L, Wang Y. Mixture toxicities of tetrachlorantraniliprole and tebuconazole to honey bees (Apis mellifera L.) and the potential mechanism. ENVIRONMENT INTERNATIONAL 2023; 172:107764. [PMID: 36689864 DOI: 10.1016/j.envint.2023.107764] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The extensive use of pesticides has negative effects on the health of insect pollinators. Although pollinators in the field are seldom exposed to individual pesticides, few reports have assessed the toxic impacts of pesticide combinations on them. In this work, we purposed to reveal the combined impacts of tetrachlorantraniliprole (TET) and tebuconazole (TEB) on honey bees (Apis mellifera L.). Our data exhibited that TET had greater toxicity to A. mellifera (96-h LC50 value of 298.2 mg a.i. L-1) than TEB (96-h LC50 value of 1,841 mg a.i. L-1). The mixture of TET and TEB displayed acute synergistic toxicity to the pollinators. Meanwhile, the activities of CarE, CYP450, trypsin, and sucrase, as well as the expressions of five genes (ppo, abaecin, cat, CYP4G11, and CYP6AS14) associated with immune response, oxidative stress, and detoxification metabolism, were conspicuously altered when exposed to the mixture relative to the individual exposures. These results provided an overall comprehension of honey bees upon the challenge of sublethal toxicity between neonicotinoid insecticides and triazole fungicides and could be used to assess the intricate toxic mechanisms in honey bees when exposed to pesticide mixtures. Additionally, these results might guide pesticide regulation strategies to enhance the honey bee populations.
Collapse
Affiliation(s)
- Tao Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Yancen Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Yu-Cheng Zhu
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - Wenhong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China; Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, PR China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China.
| |
Collapse
|
32
|
Wang D, Lv L, Gao Z, Zhu YC, Weng H, Yang G, Wang Y. Joint toxic effects of thiamethoxam and flusilazole on the adult worker honey bees (Apis mellifera L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120806. [PMID: 36470454 DOI: 10.1016/j.envpol.2022.120806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Insect pollinators are routinely exposed to a complex mixture of many pesticides. However, traditional environmental risk assessment is only carried out based on ecotoxicological data of single substances. In this context, we aimed to explore the potential effects when worker honey bees (Apis mellifera L.) were simultaneously challenged by thiamethoxam (TMX) and flusilazole (FSZ). Results displayed that TMX possessed higher toxicity to A. mellifera (96-h LC50 value of 0.11 mg a. i. L-1) than FSZ (96-h LC50 value of 738 mg a. i. L-1). Furthermore, the mixture of TMX and FSZ exhibited an acute synergistic impact on the pollinators. Meanwhile, the activities of SOD, caspase 3, caspase 9, and PPO, as well as the expressions of six genes (abaecin, dorsal-2, defensin-2, vtg, caspase-1, and CYP6AS14) associated with oxidative stress, immune response, lifespan, cell apoptosis, and detoxification metabolism were noteworthily varied in the individual and mixture challenges than at the baseline level. These data revealed that it is imminently essential to investigate the combined toxicity of pesticides since the toxicity evaluation from individual compounds toward honey bees may underestimate the toxicity in realistic conditions. Overall, the present results could help understand the potential contribution of pesticide mixtures to the decline of bee populations.
Collapse
Affiliation(s)
- Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Zhongwen Gao
- Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Cheng Zhu
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS, 38776, USA
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China.
| |
Collapse
|
33
|
Soares C, Fernandes B, Paiva C, Nogueira V, Cachada A, Fidalgo F, Pereira R. Ecotoxicological relevance of glyphosate and flazasulfuron to soil habitat and retention functions - Single vs combined exposures. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130128. [PMID: 36303338 DOI: 10.1016/j.jhazmat.2022.130128] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate (GLY) and flazasulfuron (FLA) are two non-selective herbicides commonly applied together. However, research focused on their single and combined ecotoxicological impacts towards non-target organisms is still inconclusive. Therefore, this study aimed to test their single effects on soil's habitat and retention functions, and to unravel their combined impacts to earthworms and terrestrial plants. For this, ecotoxicological assays were performed with plants (Medicago sativa), oligochaetes (Eisenia fetida) and collembola (Folsomia candida). Soil elutriates were also prepared and tested in macrophytes (Lemna minor) and microalgae (Raphidocelis subcapitata). FLA (82-413 µg kg-1) reduced earthworms' and collembola's reproduction and severely impaired M. sativa growth, being much more toxic than GLY (up to 30 mg kg-1). In fact, the latter only affected plant growth (≥ 9 mg kg-1) and earthworms (≥ 13 mg kg-1), especially at high concentrations, with no effects on collembola. Moreover, only elutriates from FLA-contaminated soils significantly impacted L. minor and R. sucapitata. The experiments revealed that the co-exposure to GLY and FLA enhanced the toxic effects of contaminated soils not only on plants but also on earthworms'. However, such increase in toxicity was dependent on GLY residual concentrations in soils. Overall, this work underpins that herbicides risk assessment should consider herbicides co-exposures, since the evaluation of single exposures is not representative of current phytosanitary practices and of the potential effects under field conditions, where residues of different compounds may persist in soils.
Collapse
Affiliation(s)
- Cristiano Soares
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Beatriz Fernandes
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine & Environmental Research, Rua dos Bragas, n. 289, 4050-123 Porto, Portugal
| | - Cristiana Paiva
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Verónica Nogueira
- CIIMAR - Interdisciplinary Centre of Marine & Environmental Research, Rua dos Bragas, n. 289, 4050-123 Porto, Portugal; Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Anabela Cachada
- CIIMAR - Interdisciplinary Centre of Marine & Environmental Research, Rua dos Bragas, n. 289, 4050-123 Porto, Portugal; Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Fidalgo
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ruth Pereira
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
34
|
Monticelli Barizon RR, Kummrow F, Fernandes de Albuquerque A, Assalin MR, Rosa MA, Cassoli de Souza Dutra DR, Almeida Pazianotto RA. Surface water contamination from pesticide mixtures and risks to aquatic life in a high-input agricultural region of Brazil. CHEMOSPHERE 2022; 308:136400. [PMID: 36116631 DOI: 10.1016/j.chemosphere.2022.136400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/13/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The environmental risks of pesticides found in surface waters of an important agricultural basin in Brazil were estimated by adopting two approaches: individual pesticides risk quotients (RQ) and concentration addition model for pesticide mixtures (∑RQs) contained in each water sample. Monitoring was carried out in the Mogi Guaçu River basin, Brazil, from October 2017 to May 2018. Four sampling points were selected in the Mogi Guaçu River and seven in its tributaries A multiresidue method with solid-phase extraction and subsequent analysis by UPLC-ESI-QqQ-MS/MS was developed to quantify 19 pesticides. Herbicides, except for simazine, presented the highest detection frequencies with values above 70%. Tebuthiuron was found in all 55 analyzed samples, presenting the highest concentration (6437 ng L-1) over the monitoring period. Fungicides and insecticides showed similar detection frequency (DF) values, ranging from 1.8% to 21.8%. Tebuconazole and carbofuran were the fungicides and insecticides most frequently detected, respectively. January 2018 sampling showed the highest total concentration of pesticides, differing from March 2018 and May 2018 (p < 0.05). The MG2 > TMG8 > MG1 > TMG6 sites showed the highest concentration total of pesticides while MG4 > TMG4 > TMG3 (p < 0.05) sites showed the lowest values: MG4 > TMG4 > TMG3 (p < 0.05). Most pesticide occurrences presented no risks to aquatic organisms. Only 19 out of the 175 pesticide occurrences > LOQ presented individual risks to aquatic biota. Contrary to the results obtained by the individual risk assessment, most pesticide mixtures presented risks to aquatic biota. In 36 out of the 55 samples analyzed during monitoring, pesticide mixtures presented risks to aquatic life.
Collapse
Affiliation(s)
| | - Fábio Kummrow
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo (Unifesp) - Campus Diadema, Rua São Nicolau, 210 - Centro, Diadema, SP, Brazil.
| | | | - Márcia Regina Assalin
- Brazilian Agricultural Research Corporation - Embrapa, SP 340 Road, Km 127.5, Jaguaríúna, SP, Brazil.
| | - Maria Aparecida Rosa
- Brazilian Agricultural Research Corporation - Embrapa, SP 340 Road, Km 127.5, Jaguaríúna, SP, Brazil.
| | | | | |
Collapse
|
35
|
Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G, Arumugam N, Almansour AI, Keerthana M, Perumal K. Bioaccumulation of organochlorine pesticide residues (OCPs) at different growth stages of pacific white leg shrimp (Penaeus vannamei): First report on ecotoxicological and human health risk assessment. CHEMOSPHERE 2022; 308:136459. [PMID: 36150495 DOI: 10.1016/j.chemosphere.2022.136459] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Pesticide residues (PRs) in farmed shrimps are concerning food safety risks. Globally, India is a major exporter of pacific white leg shrimp (P. vannamei). This study was undertaken to analyze PRs in the water, sediments, shrimps, and feed at different growth stages to evaluate the ecotoxicological and human health risks. PRs in the seawater and sediments ranged from not detected (ND) to 0.027 μg/L and 0.006-12.39 μg/kg, and the concentrations were within the maximum residual limits (MRLs) and sediment quality guidelines prescribed by the World Health Organization and Canadian Environment Guidelines, respectively. PRs in shrimps at three growth stages viz. Postlarvae, juvenile, and adults, ranged from ND to 0.522 μg/kg, below the MRLs set by Codex Alimentarius Commission and European Commission. Most of the PRs in water, sediments, and shrimps did not vary significantly (p > 0.05) from days of culture (DOC-01) to DOC-90. The hazard quotient (HQ) and hazard ratio (HR) were found to be < 1, indicating that consumption of shrimps has no noncarcinogenic and carcinogenic risks. PRs in shrimp feed ranged from ND to 0.777 μg/kg and were found to be below the MRLs set by EC, which confirms that the feed fed is safe for aquaculture practices and does not biomagnify in animals. The risk quotient (RQ) and toxic unit (TU) ranged from insignificant level (ISL) to 0.509 and ISL to 0.022, indicating that PRs do not pose acute and chronic ecotoxicity to aquatic organisms. The study suggested no health risk due to PRs in shrimps cultured in India and exported to the USA, China, and Japan. However, regular monitoring of PRs is recommended to maintain a sustainable ecosystem.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India
| | | | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muruganantham Keerthana
- Department of Fisheries and Fishermen Welfare, Department of Fisheries (AD Office), Thoothukudi, 628 008, Tamil Nadu, India
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151W. Woodruff Ave, Columbus, OH, 43210, USA
| |
Collapse
|
36
|
Fuller N, Magnuson JT, Huff Hartz KE, Whitledge GW, Acuña S, McGruer V, Schlenk D, Lydy MJ. Dietary exposure to environmentally relevant pesticide mixtures impairs swimming performance and lipid homeostatic gene expression in Juvenile Chinook salmon at elevated water temperatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120308. [PMID: 36181938 DOI: 10.1016/j.envpol.2022.120308] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Aquatic organisms are exposed to complex mixtures of pesticides in the environment, but traditional risk assessment approaches typically only consider individual compounds. In conjunction with exposure to pesticide mixtures, global climate change is anticipated to alter thermal regimes of waterways, leading to potential co-exposure of biota to elevated temperatures and contaminants. Furthermore, most studies utilize aqueous exposures, whereas the dietary route of exposure may be more important for fish owing to the hydrophobicity of many pesticides. Consequently, the current study aimed to determine the effects of elevated temperatures and dietary pesticide mixtures on swimming performance and lipid metabolism of juvenile Chinook salmon, Oncorhynchus tshawytscha. Fish were fed pesticide-dosed pellets at three concentrations and three temperatures (11, 14 and 17 °C) for 14 days and swimming performance (Umax) and expression of genes involved in lipid metabolism and energetics were assessed (ATP citrate lyase, fatty acid synthase, farnesoid x receptor and liver x receptor). The low-pesticide pellet treatment contained five pesticides, p,p'-DDE, bifenthrin, esfenvalerate, chlorpyrifos and fipronil at concentrations based on prey items collected from the Sacramento River (CA, USA) watershed, with the high-pesticide pellet treatment containing a six times higher dose. Temperature exacerbated effects of pesticide exposure on swimming performance, with significant reductions in Umax of 31 and 23% in the low and high-pesticide pellet groups relative to controls at 17 °C, but no significant differences in Umax among pesticide concentrations at 11 or 14 °C. At 14 °C there was a significant positive relationship between juvenile Chinook salmon pesticide body residues and expression of ATP citrate lyase and fatty acid synthase, but an inverse relationship and significant downregulation at 17 °C. These findings suggest that temperature may modulate effects of environmentally relevant pesticide exposure on salmon, and that pesticide-induced impairment of swimming performance may be exacerbated under future climate scenarios.
Collapse
Affiliation(s)
- Neil Fuller
- Center for Fisheries, Aquaculture, and Aquatic Sciences; Department of Zoology; Southern Illinois University; Carbondale, Illinois, 62901, USA
| | - Jason T Magnuson
- Department of Environmental Sciences; University of California, Riverside; Riverside, CA, 92521, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture, and Aquatic Sciences; Department of Zoology; Southern Illinois University; Carbondale, Illinois, 62901, USA
| | - Gregory W Whitledge
- Center for Fisheries, Aquaculture, and Aquatic Sciences; Department of Zoology; Southern Illinois University; Carbondale, Illinois, 62901, USA
| | - Shawn Acuña
- Metropolitan Water District of Southern California, Sacramento, CA, 95814, USA
| | - Victoria McGruer
- Department of Environmental Sciences; University of California, Riverside; Riverside, CA, 92521, USA
| | - Daniel Schlenk
- Department of Environmental Sciences; University of California, Riverside; Riverside, CA, 92521, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture, and Aquatic Sciences; Department of Zoology; Southern Illinois University; Carbondale, Illinois, 62901, USA.
| |
Collapse
|
37
|
Badry A, Rüdel H, Göckener B, Nika MC, Alygizakis N, Gkotsis G, Thomaidis NS, Treu G, Dekker RWRJ, Movalli P, Walker LA, Potter ED, Cincinelli A, Martellini T, Duke G, Slobodnik J, Koschorreck J. Making use of apex predator sample collections: an integrated workflow for quality assured sample processing, analysis and digital sample freezing of archived samples. CHEMOSPHERE 2022; 309:136603. [PMID: 36174727 DOI: 10.1016/j.chemosphere.2022.136603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Using monitoring data from apex predators for chemicals risk assessment can provide important information on bioaccumulating as well as biomagnifying chemicals in food webs. A survey among European institutions involved in chemical risk assessment on their experiences with apex predator data in chemical risk assessment revealed great interest in using such data. However, the respondents indicated that constraints were related to expected high costs, lack of standardisation and harmonised quality criteria for exposure assessment, data access, and regulatory acceptance/application. During the Life APEX project, we demonstrated that European sample collections (i.e. environmental specimen banks (ESBs), research collection (RCs), natural history museums (NHMs)) archive a large variety of biological samples that can be readily used for chemical analysis once appropriate quality assurance/control (QA/QC) measures have been developed and implemented. We therefore issued a second survey on sampling, processing and archiving procedures in European sample collections to derive key quality QA/QC criteria for chemical analysis. The survey revealed great differences in QA/QC measures between ESBs, NHMs and RCs. Whereas basic information such as sampling location, date and biometric data were mostly available across institutions, protocols to accompany the sampling strategy with respect to chemical analysis were only available for ESBs. For RCs, the applied QA/QC measures vary with the respective research question, whereas NHMs are generally less aware of e.g. chemical cross-contamination issues. Based on the survey we derived key indicators for assessing the quality of biota samples that can be easily implemented in online databases. Furthermore, we provide a QA/QC workflow not only for sampling and processing but also for the chemical analysis of biota samples. We focussed on comprehensive analytical techniques such as non-target screening and provided insights into subsequent storage of high-resolution chromatograms in online databases (i.e. digital sample freezing platform) to ultimately support chemicals risk assessment.
Collapse
Affiliation(s)
- Alexander Badry
- German Environment Agency (Umweltbundesamt), 06813, Dessau-Roßlau, Germany.
| | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), 57392, Schmallenberg, Germany
| | - Bernd Göckener
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), 57392, Schmallenberg, Germany
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece; Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - Georgios Gkotsis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Gabriele Treu
- German Environment Agency (Umweltbundesamt), 06813, Dessau-Roßlau, Germany
| | - Rene W R J Dekker
- Naturalis Biodiversity Center, Darwinweg 2, 2333, CR, Leiden, the Netherlands
| | - Paola Movalli
- Naturalis Biodiversity Center, Darwinweg 2, 2333, CR, Leiden, the Netherlands
| | - Lee A Walker
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, LA1 4PQ, United Kingdom
| | - Elaine D Potter
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, LA1 4PQ, United Kingdom
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - Tania Martellini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - Guy Duke
- UK Centre for Ecology & Hydrology, MacLean Bldg, Benson Ln, Crowmarsh Gifford, Wallingford, OX10 8BB, United Kingdom
| | | | - Jan Koschorreck
- German Environment Agency (Umweltbundesamt), 06813, Dessau-Roßlau, Germany
| |
Collapse
|
38
|
Carafa R, Gallé T, Massarin S, Huck V, Bayerle M, Pittois D, Braun C. Combining Polar Organic Chemical Integrative Samplers (POCIS) with Toxicity Testing on Microalgae to Evaluate the Impact of Herbicide Mixtures in Surface Waters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2667-2678. [PMID: 35959884 PMCID: PMC9826030 DOI: 10.1002/etc.5461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/27/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Pesticide risk assessment within the European Union Water Framework Directive is largely deficient in the assessment of the actual exposure and chemical mixture effects. Pesticide contamination, in particular herbicidal loading, has been shown to exert pressure on surface waters. Such pollution can have direct impact on autotrophic species, as well as indirect impacts on freshwater communities through primary production degradation. The present study proposes a screening method combining polar organic chemical integrative samplers (POCIS) with mode of action-specific toxicity testing on microalgae exposed to POCIS extracts as a standard approach to effectively address the problem of herbicide mixture effects detection. This methodology has been tested using Luxembourgish rivers as a case study and has proven to be a fast and reliable information source that is complementary to chemical analysis, allowing assessment of missing target analytes. Pesticide pressure in the 24 analyzed streams was mainly exerted by flufenacet, terbuthylazine, nicosulfuron, and foramsulfuron, with occasional impacts by the nonagricultural biocide diuron. Algae tests were more sensitive to endpoints affecting photosystem II and reproduction than to growth and could be best predicted with the concentration addition model. In addition, analysis revealed that herbicide mixture toxicity is correlated with macrophyte disappearance in the field, relating mainly to emissions from maize cultures. Combining passive sampler extracts with standard toxicity tests offers promising perspectives for ecological risk assessment. The full implementation of the proposed approach, however, requires adaptation of the legislation to scientific progress. Environ Toxicol Chem 2022;41:2667-2678. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Tom Gallé
- Luxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - Sandrine Massarin
- Luxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - Viola Huck
- Luxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - Michael Bayerle
- Luxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - Denis Pittois
- Luxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - Christian Braun
- Luxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| |
Collapse
|
39
|
Zhan W, Weng H, Liu F, Han M, Lou B, Wang Y. Joint toxic effects of phoxim and lambda-cyhalothrin on the small yellow croaker (Larimichthys polyactis). CHEMOSPHERE 2022; 307:136203. [PMID: 36037960 DOI: 10.1016/j.chemosphere.2022.136203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Although pesticides commonly exist as combinations in real-life situations of the aquatic ecosystem, the impact of the toxicity of their mixtures has remained largely unclear. In this study, we investigated the combined effects of two neurotoxic pesticides, including one organophosphate insecticide phoxim (PHO) and one pyrethroid insecticide lambda-cyhalothrin (LCY), on the embryos of the small yellow croaker (Larimichthys polyactis), and their potential pathways. LCY exhibited higher toxicity relative to PHO, with a 72-h LC50 value of 0.0074 mg a.i. L-1, while the corresponding value for PHO was 0.12 mg a.i. L-1. The mixture of PHO and LCY exerted a synergistic effect on the embryos of L. polyactis. The activities of antioxidant enzyme CAT and apoptotic enzyme caspase 3 were substantially changed in most single and combined exposure groups relative to the baseline value. Under both single and combined exposures, more significant changes were found in the mRNA expression of five genes, including the immunosuppression gene ngln2, the apoptosis gene P53, the endocrine system gene cyp19a1b, as well as neurodevelopment genes of ap and acp2, relative to the baseline value. Furthermore, the non-target metabolomic analysis demonstrated that hundreds of differential metabolites, including two bile acids (taurodeoxycholic acid and tauroursodeoxycholic acid), were significantly increased in the exposure groups. The bile acids were closely associated with the gut microbiota, and 16S rRNA sequencing results demonstrated dysfunction of the gut microbiota after exposure, especially in the combined exposure group. Our findings indicated that there might be a potential risk connected to the co-occurrence of these two pesticides in aquatic vertebrates. Consequently, future ecological risk assessments should incorporate synergistic mixtures because the current risk assessments do not consider them.
Collapse
Affiliation(s)
- Wei Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Feng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Mingming Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
40
|
Fritsch C, Appenzeller B, Burkart L, Coeurdassier M, Scheifler R, Raoul F, Driget V, Powolny T, Gagnaison C, Rieffel D, Afonso E, Goydadin AC, Hardy EM, Palazzi P, Schaeffer C, Gaba S, Bretagnolle V, Bertrand C, Pelosi C. Pervasive exposure of wild small mammals to legacy and currently used pesticide mixtures in arable landscapes. Sci Rep 2022; 12:15904. [PMID: 36151261 PMCID: PMC9508241 DOI: 10.1038/s41598-022-19959-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
Knowledge gaps regarding the potential role of pesticides in the loss of agricultural biodiversity worldwide and mixture-related issues hamper proper risk assessment of unintentional impacts of pesticides, rendering essential the monitoring of wildlife exposure to these compounds. Free-ranging mammal exposure to legacy (Banned and Restricted: BRPs) and currently used (CUPs) pesticides was investigated, testing the hypotheses of: (1) a background bioaccumulation for BRPs whereas a "hot-spot" pattern for CUPs, (2) different contamination profiles between carnivores and granivores/omnivores, and (3) the role of non-treated areas as refuges towards exposure to CUPs. Apodemus mice (omnivore) and Crocidura shrews (insectivore) were sampled over two French agricultural landscapes (n = 93). The concentrations of 140 parent chemicals and metabolites were screened in hair samples. A total of 112 compounds were detected, showing small mammal exposure to fungicides, herbicides and insecticides with 32 to 65 residues detected per individual (13-26 BRPs and 18-41 CUPs). Detection frequencies exceeded 75% of individuals for 13 BRPs and 25 CUPs. Concentrations above 10 ng/g were quantified for 7 BRPs and 29 CUPs (in 46% and 72% of individuals, respectively), and above 100 ng/g for 10 CUPs (in 22% of individuals). Contamination (number of compounds or concentrations) was overall higher in shrews than rodents and higher in animals captured in hedgerows and cereal crops than in grasslands, but did not differ significantly between conventional and organic farming. A general, ubiquitous contamination by legacy and current pesticides was shown, raising issues about exposure pathways and impacts on ecosystems. We propose a concept referred to as "biowidening", depicting an increase of compound diversity at higher trophic levels. This work suggests that wildlife exposure to pesticide mixtures is a rule rather than an exception, highlighting the need for consideration of the exposome concept and questioning appropriateness of current risk assessment and mitigation processes.
Collapse
Affiliation(s)
- Clémentine Fritsch
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France.
- LTSER "Zone Atelier Arc Jurassien", 25030, Besançon Cedex, France.
| | - Brice Appenzeller
- Department of Population Health, Luxembourg Institute of Health, 29 Rue Henri Koch, 4354, Esch-sur Alzette, Luxembourg
| | - Louisiane Burkart
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Michael Coeurdassier
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Renaud Scheifler
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Francis Raoul
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Vincent Driget
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Thibaut Powolny
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Candice Gagnaison
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Dominique Rieffel
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Eve Afonso
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Anne-Claude Goydadin
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Emilie M Hardy
- Department of Population Health, Luxembourg Institute of Health, 29 Rue Henri Koch, 4354, Esch-sur Alzette, Luxembourg
| | - Paul Palazzi
- Department of Population Health, Luxembourg Institute of Health, 29 Rue Henri Koch, 4354, Esch-sur Alzette, Luxembourg
| | - Charline Schaeffer
- Department of Population Health, Luxembourg Institute of Health, 29 Rue Henri Koch, 4354, Esch-sur Alzette, Luxembourg
| | - Sabrina Gaba
- UMR 7372 CEBC, CNRS-La Rochelle Université, USC INRAE, 405 Route de Prissé la Charrière, 79360, Villiers-en-Bois, France
- LTSER "Zone Atelier Plaine & Val De Sèvre", 79360, Beauvoir Sur Niort, France
| | - Vincent Bretagnolle
- UMR 7372 CEBC, CNRS-La Rochelle Université, USC INRAE, 405 Route de Prissé la Charrière, 79360, Villiers-en-Bois, France
- LTSER "Zone Atelier Plaine & Val De Sèvre", 79360, Beauvoir Sur Niort, France
| | - Colette Bertrand
- UMR 1402 EcoSys, INRAE-AgroParisTech-Université Paris-Saclay, RD 10 Route de St Cyr, 78026, Versailles Cedex, France
| | - Céline Pelosi
- UMR 1402 EcoSys, INRAE-AgroParisTech-Université Paris-Saclay, RD 10 Route de St Cyr, 78026, Versailles Cedex, France
- UMR EMMAH, INRAE-Avignon Université, 84000, Avignon, France
| |
Collapse
|
41
|
Parkinson RH, Fecher C, Gray JR. Chronic exposure to insecticides impairs honeybee optomotor behaviour. FRONTIERS IN INSECT SCIENCE 2022; 2:936826. [PMID: 38468783 PMCID: PMC10926483 DOI: 10.3389/finsc.2022.936826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/11/2022] [Indexed: 03/13/2024]
Abstract
Honeybees use wide-field visual motion information to calculate the distance they have flown from the hive, and this information is communicated to conspecifics during the waggle dance. Seed treatment insecticides, including neonicotinoids and novel insecticides like sulfoxaflor, display detrimental effects on wild and managed bees, even when present at sublethal quantities. These effects include deficits in flight navigation and homing ability, and decreased survival of exposed worker bees. Neonicotinoid insecticides disrupt visual motion detection in the locust, resulting in impaired escape behaviors, but it had not previously been shown whether seed treatment insecticides disrupt wide-field motion detection in the honeybee. Here, we show that sublethal exposure to two commonly used insecticides, imidacloprid (a neonicotinoid) and sulfoxaflor, results in impaired optomotor behavior in the honeybee. This behavioral effect correlates with altered stress and detoxification gene expression in the brain. Exposure to sulfoxaflor led to sparse increases in neuronal apoptosis, localized primarily in the optic lobes, however there was no effect of imidacloprid. We propose that exposure to cholinergic insecticides disrupts the honeybee's ability to accurately encode wide-field visual motion, resulting in impaired optomotor behaviors. These findings provide a novel explanation for previously described effects of neonicotinoid insecticides on navigation and link these effects to sulfoxaflor for which there is a gap in scientific knowledge.
Collapse
Affiliation(s)
- Rachel H. Parkinson
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA, United States
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Caroline Fecher
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA, United States
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - John R. Gray
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
42
|
Schmidt TS, Miller JL, Mahler BJ, Van Metre PC, Nowell LH, Sandstrom MW, Carlisle DM, Moran PW, Bradley PM. Ecological consequences of neonicotinoid mixtures in streams. SCIENCE ADVANCES 2022; 8:eabj8182. [PMID: 35417236 PMCID: PMC9007503 DOI: 10.1126/sciadv.abj8182] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Neonicotinoid mixtures are common in streams worldwide, but corresponding ecological responses are poorly understood. We combined experimental and observational studies to narrow this knowledge gap. The mesocosm experiment determined that concentrations of the neonicotinoids imidacloprid and clothianidin (range of exposures, 0 to 11.9 μg/liter) above the hazard concentration for 5% of species (0.017 and 0.010 μg/liter, respectively) caused a loss in taxa abundance and richness, disrupted adult emergence, and altered trophodynamics, while mixtures of the two neonicotinoids caused dose-dependent synergistic effects. In 85 Coastal California streams, neonicotinoids were commonly detected [59% of samples (n = 340), 72% of streams], frequently occurred as mixtures (56% of streams), and potential toxicity was dominated by imidacloprid (maximum = 1.92 μg/liter) and clothianidin (maximum = 2.51 μg/liter). Ecological responses in the field were consistent with the synergistic effects observed in the mesocosm experiment, indicating that neonicotinoid mixtures pose greater than expected risks to stream health.
Collapse
Affiliation(s)
- Travis S. Schmidt
- Wyoming-Montana Water Science Center, U.S. Geological Survey, Helena, MT 59601, USA
- Corresponding author.
| | - Janet L. Miller
- National Operations Center, Bureau of Land Management, Denver, CO 80225, USA
| | - Barbara J. Mahler
- Texas Water Science Center, U.S. Geological Survey, Austin, TX 78754, USA
| | - Peter C. Van Metre
- Texas Water Science Center, U.S. Geological Survey, Austin, TX 78754, USA
| | - Lisa H. Nowell
- California Water Science Center, U.S. Geological Survey, Sacramento, CA 95819, USA
| | - Mark W. Sandstrom
- National Water Quality Laboratory, U.S. Geological Survey, Denver, CO 80225, USA
| | - Daren M. Carlisle
- Earth System Processes Division, U.S. Geological Survey, Lawrence, KS 66049, USA
| | - Patrick W. Moran
- Washington Water Science Center, U.S. Geological Survey, Tacoma, WA 98402, USA
| | - Paul M. Bradley
- South Atlantic Water Science Center, U.S. Geological Survey, Columbia, SC 29210, USA
| |
Collapse
|
43
|
Wijntjes C, Weber Y, Höger S, Hollert H, Schäffer A. Effects of algae and fungicides on the fate of a sulfonylurea herbicide in a water-sediment system. CHEMOSPHERE 2022; 290:133234. [PMID: 34902390 DOI: 10.1016/j.chemosphere.2021.133234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The impact of pesticide mixtures on various soil parameters has been extensively studied, whereas research on effects in the aquatic environment is scarce. Furthermore, investigations on the consequences of chemical mixtures on the biodegradation kinetics of parent compounds remain deficient. Our research intended to evaluate potential effects by combined application of an agriculturally employed tank mixture to aquatic sediment systems under controlled laboratory conditions. The mixture contained two fungicides and one radiolabeled herbicide of which the route and rate of degradation was followed. One set of aquatic sediment vessels was incubated in the dark. A second set of vessels was controlled under identical conditions, except for being continuously irradiated to promote algal growth. In addition, the algal biomass in irradiated aquatic sediment was monitored to determine its effects and a potential role in the biodegradation of iodosulfuron-methyl-sodium. The study results showed that the herbicide, although hydro- and photolytically stable throughout the study, metabolized faster (DT50 1.1-1.2-fold and DT90 2.8-4.5-fold) when continuously irradiated in comparison to dark aquatic sediment. Both fungicides had a significant prolonging effect on the biodegradation rate of the herbicide. In the presence of fungicides, DT90 values increased 1.5-fold in the irradiated, and 2.5-fold in the dark systems. Additionally, algae may have influenced the metabolization of the herbicide in the irradiated systems, where shorter DT90 values were evaluated. Even so, the algal influence was concluded to be indirect.
Collapse
Affiliation(s)
- Christiaan Wijntjes
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; Innovative Environmental Services (IES) Ltd, Benkenstrasse 260, 4108, Witterswil, Switzerland.
| | - Yanik Weber
- Innovative Environmental Services (IES) Ltd, Benkenstrasse 260, 4108, Witterswil, Switzerland
| | - Stefan Höger
- Innovative Environmental Services (IES) Ltd, Benkenstrasse 260, 4108, Witterswil, Switzerland
| | - Henner Hollert
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Strasse 13, 60438, Frankfurt Am Main, Germany
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
44
|
Groh K, Vom Berg C, Schirmer K, Tlili A. Anthropogenic Chemicals As Underestimated Drivers of Biodiversity Loss: Scientific and Societal Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:707-710. [PMID: 34974706 DOI: 10.1021/acs.est.1c08399] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Ksenia Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Colette Vom Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Ahmed Tlili
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
45
|
Weisner O, Arle J, Liebmann L, Link M, Schäfer RB, Schneeweiss A, Schreiner VC, Vormeier P, Liess M. Three reasons why the Water Framework Directive (WFD) fails to identify pesticide risks. WATER RESEARCH 2022; 208:117848. [PMID: 34781190 DOI: 10.1016/j.watres.2021.117848] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
The Water Framework Directive (WFD) demands that good status is to be achieved for all European water bodies. While governmental monitoring under the WFD mostly concludes a good status with regard to pesticide pollution, numerous scientific studies have demonstrated widespread negative ecological impacts of pesticide exposure in surface waters. To identify reasons for this discrepancy, we analysed pesticide concentrations measured in a monitoring campaign of 91 agricultural streams in 2018 and 2019 using methodologies that exceed the requirements of the WFD. This included a sampling strategy that takes into account the periodic occurrence of pesticides and a different analyte spectrum designed to reflect current pesticide use. We found that regulatory acceptable concentrations (RACs) were exceeded for 39 different pesticides at 81% of monitoring sites. In comparison, WFD-compliant monitoring of the same sites would have detected only eleven pesticides as exceeding the WFD-based environmental quality standards (EQS) at 35% of monitoring sites. We suggest three reasons for this underestimation of pesticide risk under the WFD-compliant monitoring: (1) The sampling approach - the timing and site selection are unable to adequately capture the periodic occurrence of pesticides and investigate surface waters particularly susceptible to pesticide risks; (2) the measuring method - a too narrow analyte spectrum (6% of pesticides currently approved in Germany) and insufficient analytical capacities result in risk drivers being overlooked; (3) the assessment method for measured concentrations - the protectivity and availability of regulatory thresholds are not sufficient to ensure a good ecological status. We therefore propose practical and legal refinements to improve the WFD's monitoring and assessment strategy in order to gain a more realistic picture of pesticide surface water pollution. This will enable more rapid identification of risk drivers and suitable risk management measures to ultimately improve the status of European surface waters.
Collapse
Affiliation(s)
- Oliver Weisner
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ) Leipzig, Permoser Str. 15, Leipzig 04318, Germany; Institute for Environmental Sciences, University of Koblenz-Landau, Landau in der Pfalz 76829, Germany.
| | - Jens Arle
- German Environment Agency (UBA), Dessau-Roßlau 06844, Germany
| | - Liana Liebmann
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ) Leipzig, Permoser Str. 15, Leipzig 04318, Germany; Department of Evolutionary Ecology and Environmental Toxicology (E3T), Institute of Ecology, Diversity and Evolution, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Moritz Link
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau in der Pfalz 76829, Germany
| | - Ralf B Schäfer
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau in der Pfalz 76829, Germany
| | - Anke Schneeweiss
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau in der Pfalz 76829, Germany
| | - Verena C Schreiner
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau in der Pfalz 76829, Germany
| | - Philipp Vormeier
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ) Leipzig, Permoser Str. 15, Leipzig 04318, Germany; Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - Matthias Liess
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ) Leipzig, Permoser Str. 15, Leipzig 04318, Germany; Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| |
Collapse
|