1
|
Zavala-Méndez M, Sánchez-Pájaro A, Schilmann A, Calábria de Araújo J, Buitrón G, Carrillo-Reyes J. The potential of long-term wastewater-based surveillance to predict COVID-19 waves peak in Mexico. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70095. [PMID: 40396702 DOI: 10.1002/wer.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/13/2024] [Accepted: 05/13/2025] [Indexed: 05/22/2025]
Abstract
Wastewater-based surveillance (WBS) is valuable method for monitoring the dispersion of pathogens at a low cost. However, their impact on public health decision-making is limited because there is a lack of long-term analyses, especially in low- and middle-income countries. This study aimed to assess the effectiveness of using WBS to predict the occurrence of COVID-19 waves and estimate the prevalence of infection, emphasizing the impact of SARS-CoV-2 variants. During 17 months of influent monitoring of two wastewater treatment plants in Queretaro City, Mexico, wave prediction time was influenced by variant dispersion. Waves dominated by the Delta and Omicron variants circulation showed lead days values from 5 to 14 and 1 to 4 days, respectively. According to the Monte Carlo model, disease prevalence prediction by WBS aligned with clinically reported cases at wave onsets, but the variant's transmissibility explained the overestimation during peaks. This work provides new insights into the potential and limitations of using WBS as an epidemiological tool for detecting pathogens and predicting their occurrence. PRACTITIONER POINTS: Long-term wastewater monitoring allowed early prediction of COVID-19 case waves. The prediction capability is related to the variant presence and their infectivity. The prevalence estimated by wastewater surveillance was higher in all case waves. The prevalence estimation has limitations regarding variations in data input.
Collapse
Affiliation(s)
- Marcela Zavala-Méndez
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, México
| | - Andrés Sánchez-Pájaro
- Center for Population Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Astrid Schilmann
- Center for Population Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Juliana Calábria de Araújo
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Germán Buitrón
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, México
| | - Julián Carrillo-Reyes
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
2
|
Feng R, Mao K, Zhang H, Zhu H, Du W, Yang Z, Wang S. Portable microfluidic devices for monitoring antibiotic resistance genes in wastewater. Mikrochim Acta 2024; 192:19. [PMID: 39708170 DOI: 10.1007/s00604-024-06898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Antibiotic resistance genes (ARGs) pose serious threats to environmental and public health, and monitoring ARGs in wastewater is a growing need because wastewater is an important source. Microfluidic devices can integrate basic functional units involved in sample assays on a small chip, through the precise control and manipulation of micro/nanofluids in micro/nanoscale spaces, demonstrating the great potential of ARGs detection in wastewater. Here, we (1) summarize the state of the art in microfluidics for recognizing ARGs, (2) determine the strengths and weaknesses of portable microfluidic chips, and (3) assess the potential of portable microfluidic chips to detect ARGs in wastewater. Isothermal nucleic acid amplification and CRISPR/Cas are two commonly used identification elements for the microfluidic detection of ARGs. The former has better sensitivity due to amplification, but false positives due to inappropriate primer design and contamination; the latter has better specificity. The combination of the two can achieve complementarity to a certain extent. Compared with traditional microfluidic chips, low-cost and biocompatible paper-based microfluidics is a very attractive test for ARGs, whose fluid flow in paper does not require external force, but it is weaker in terms of repeatability and high-throughput detection. Due to that only a handful of portable microfluidics detect ARGs in wastewater, fabricating high-throughput microfluidic chips, developing and optimizing recognition techniques for the highly selective and sensitive identification and quantification of a wide range of ARGs in complex wastewater matrices are needed.
Collapse
Affiliation(s)
- Rida Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hongxiang Zhu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Shuangfei Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China
| |
Collapse
|
3
|
Chen C, Wang Y, Kaur G, Adiga A, Espinoza B, Venkatramanan S, Warren A, Lewis B, Crow J, Singh R, Lorentz A, Toney D, Marathe M. Wastewater-based epidemiology for COVID-19 surveillance and beyond: A survey. Epidemics 2024; 49:100793. [PMID: 39357172 DOI: 10.1016/j.epidem.2024.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
The pandemic of COVID-19 has imposed tremendous pressure on public health systems and social economic ecosystems over the past years. To alleviate its social impact, it is important to proactively track the prevalence of COVID-19 within communities. The traditional way to estimate the disease prevalence is to estimate from reported clinical test data or surveys. However, the coverage of clinical tests is often limited and the tests can be labor-intensive, requires reliable and timely results, and consistent diagnostic and reporting criteria. Recent studies revealed that patients who are diagnosed with COVID-19 often undergo fecal shedding of SARS-CoV-2 virus into wastewater, which makes wastewater-based epidemiology for COVID-19 surveillance a promising approach to complement traditional clinical testing. In this paper, we survey the existing literature regarding wastewater-based epidemiology for COVID-19 surveillance and summarize the current advances in the area. Specifically, we have covered the key aspects of wastewater sampling, sample testing, and presented a comprehensive and organized summary of wastewater data analytical methods. Finally, we provide the open challenges on current wastewater-based COVID-19 surveillance studies, aiming to encourage new ideas to advance the development of effective wastewater-based surveillance systems for general infectious diseases.
Collapse
Affiliation(s)
- Chen Chen
- Department of Computer Science, University of Virginia, Charlottesville, 22904, United States.
| | - Yunfan Wang
- Department of Computer Science, University of Virginia, Charlottesville, 22904, United States.
| | - Gursharn Kaur
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| | - Aniruddha Adiga
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| | - Baltazar Espinoza
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| | - Srinivasan Venkatramanan
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| | - Andrew Warren
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| | - Bryan Lewis
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| | - Justin Crow
- Virginia Department of Health, Richmond, 23219, United States.
| | - Rekha Singh
- Virginia Department of Health, Richmond, 23219, United States.
| | - Alexandra Lorentz
- Division of Consolidated Laboratory Services, Department of General Services, Richmond, 23219, United States.
| | - Denise Toney
- Division of Consolidated Laboratory Services, Department of General Services, Richmond, 23219, United States.
| | - Madhav Marathe
- Department of Computer Science, University of Virginia, Charlottesville, 22904, United States; Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| |
Collapse
|
4
|
Masachessi G, Castro GM, Marinzalda MDLA, Cachi AM, Sicilia P, Prez VE, Martínez LC, Giordano MO, Pisano MB, Ré VE, Del Bianco CM, Parisato S, Fernandez M, Ibarra G, Lopez L, Barbás G, Nates SV. Unveiling the silent information of wastewater-based epidemiology of SARS-CoV-2 at community and sanitary zone levels: experience in Córdoba City, Argentina. JOURNAL OF WATER AND HEALTH 2024; 22:2171-2183. [PMID: 39611676 DOI: 10.2166/wh.2024.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/04/2024] [Indexed: 11/30/2024]
Abstract
The emergence of COVID-19 in 2020 significantly enhanced the application of wastewater monitoring for detecting SARS-CoV-2 circulation within communities. From October 2021 to October 2022, we collected 406 wastewater samples weekly from the Córdoba Central Pipeline Network (BG-WWTP) and six specific sewer manholes from sanitary zones (SZs). Following WHO guidelines, we processed samples and detected SARS-CoV-2 RNA and variants using real-time PCR. Monitoring at the SZ level allowed for the development of a viral activity flow map, pinpointing key areas of SARS-CoV-2 circulation and tracking its temporal spread and variant evolution. Our findings demonstrate that wastewater-based surveillance acts as a sensitive indicator of viral activity, detecting imminent increases in COVID-19 cases before they become evident in clinical data. This study highlights the effectiveness of targeted wastewater monitoring at both municipal and SZ levels in identifying viral hotspots and assessing community-wide circulation. Importantly, the data shows that environmental wastewater studies provide valuable insights into virus presence, independent of clinical COVID-19 case records, and offer a robust tool for adapting to future public health challenges.
Collapse
Affiliation(s)
- Gisela Masachessi
- Instituto de Virología Dr J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina E-mail:
| | - Gonzalo Manuel Castro
- Instituto de Virología Dr J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, T. Cáceres de Allende 421, Córdoba X5000HVE, Argentina
| | - María de Los Angeles Marinzalda
- Instituto Nacional de Medicina Aeronáutica y Espacial, FAA, Av. Fuerza Aérea Argentina Km 6 1/2 S/N B.0 Cívico, Córdoba X5010, Argentina; Facultad de la Fuerza Aérea, Universidad de la Defensa Nacional, Av. Fuerza Aerea Argentina 5011, Córdoba X5000, Argentina
| | - Ariana Mariela Cachi
- Instituto Nacional de Medicina Aeronáutica y Espacial, FAA, Av. Fuerza Aérea Argentina Km 6 1/2 S/N B.0 Cívico, Córdoba X5010, Argentina; Facultad de la Fuerza Aérea, Universidad de la Defensa Nacional, Av. Fuerza Aerea Argentina 5011, Córdoba X5000, Argentina
| | - Paola Sicilia
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, T. Cáceres de Allende 421, Córdoba X5000HVE, Argentina
| | - Veronica Emilce Prez
- Instituto de Virología Dr J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Laura Cecilia Martínez
- Instituto de Virología Dr J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina
| | - Miguel Oscar Giordano
- Instituto de Virología Dr J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina
| | - María Belen Pisano
- Instituto de Virología Dr J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Viviana Elizabeth Ré
- Instituto de Virología Dr J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Carlos Martin Del Bianco
- Planta Municipal de tratamiento de efluente cloacales Bajo Grande-Laboratorio de análisis fisicoquímicos, bacteriológicos EDAR Bajo Grande, Cam. Chacra de la Merced 901, Córdoba X5000, Argentina
| | - Sofia Parisato
- Planta Municipal de tratamiento de efluente cloacales Bajo Grande-Laboratorio de análisis fisicoquímicos, bacteriológicos EDAR Bajo Grande, Cam. Chacra de la Merced 901, Córdoba X5000, Argentina
| | - Micaela Fernandez
- Planta Municipal de tratamiento de efluente cloacales Bajo Grande-Laboratorio de análisis fisicoquímicos, bacteriológicos EDAR Bajo Grande, Cam. Chacra de la Merced 901, Córdoba X5000, Argentina
| | - Gustavo Ibarra
- Planta Municipal de tratamiento de efluente cloacales Bajo Grande-Laboratorio de análisis fisicoquímicos, bacteriológicos EDAR Bajo Grande, Cam. Chacra de la Merced 901, Córdoba X5000, Argentina
| | - Laura Lopez
- Ministerio de Salud de la Provincia de Córdoba, Av. Vélez Sarsfield 2311 Ciudad Universitaria, Córdoba X5016 GCH, Argentina
| | - Gabriela Barbás
- Ministerio de Salud de la Provincia de Córdoba, Av. Vélez Sarsfield 2311 Ciudad Universitaria, Córdoba X5016 GCH, Argentina
| | - Silvia Viviana Nates
- Instituto de Virología Dr J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina
| |
Collapse
|
5
|
Chen C, Wang Y, Kaur G, Adiga A, Espinoza B, Venkatramanan S, Warren A, Lewis B, Crow J, Singh R, Lorentz A, Toney D, Marathe M. Wastewater-based Epidemiology for COVID-19 Surveillance and Beyond: A Survey. ARXIV 2024:arXiv:2403.15291v2. [PMID: 38562450 PMCID: PMC10984000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The pandemic of COVID-19 has imposed tremendous pressure on public health systems and social economic ecosystems over the past years. To alleviate its social impact, it is important to proactively track the prevalence of COVID-19 within communities. The traditional way to estimate the disease prevalence is to estimate from reported clinical test data or surveys. However, the coverage of clinical tests is often limited and the tests can be labor-intensive, requires reliable and timely results, and consistent diagnostic and reporting criteria. Recent studies revealed that patients who are diagnosed with COVID-19 often undergo fecal shedding of SARS-CoV-2 virus into wastewater, which makes wastewater-based epidemiology for COVID-19 surveillance a promising approach to complement traditional clinical testing. In this paper, we survey the existing literature regarding wastewater-based epidemiology for COVID-19 surveillance and summarize the current advances in the area. Specifically, we have covered the key aspects of wastewater sampling, sample testing, and presented a comprehensive and organized summary of wastewater data analytical methods. Finally, we provide the open challenges on current wastewater-based COVID-19 surveillance studies, aiming to encourage new ideas to advance the development of effective wastewater-based surveillance systems for general infectious diseases.
Collapse
Affiliation(s)
- Chen Chen
- Department of Computer Science, University of Virginia, Charlottesville, 22904, United States
| | - Yunfan Wang
- Department of Computer Science, University of Virginia, Charlottesville, 22904, United States
| | - Gursharn Kaur
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States
| | - Aniruddha Adiga
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States
| | - Baltazar Espinoza
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States
| | - Srinivasan Venkatramanan
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States
| | - Andrew Warren
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States
| | - Bryan Lewis
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States
| | - Justin Crow
- Virginia Department of Health, Richmond, 23219, United States
| | - Rekha Singh
- Virginia Department of Health, Richmond, 23219, United States
| | - Alexandra Lorentz
- Division of Consolidated Laboratory Services, Department of General Services, Richmond, 23219, United States
| | - Denise Toney
- Division of Consolidated Laboratory Services, Department of General Services, Richmond, 23219, United States
| | - Madhav Marathe
- Department of Computer Science, University of Virginia, Charlottesville, 22904, United States
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States
| |
Collapse
|
6
|
D'Arpino MC, Sineli PE, Goroso G, Watanabe W, Saavedra ML, Hebert EM, Martínez MA, Migliavacca J, Gerstenfeld S, Chahla RE, Bellomio A, Albarracín VH. Wastewater monitoring of SARS-CoV-2 gene for COVID-19 epidemiological surveillance in Tucumán, Argentina. J Basic Microbiol 2024; 64:e2300773. [PMID: 38712352 DOI: 10.1002/jobm.202300773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Wastewater-based epidemiology provides temporal and spatial information about the health status of a population. The objective of this study was to analyze and report the epidemiological dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the province of Tucumán, Argentina during the second and third waves of coronavirus disease 2019 (COVID-19) between April 2021 and March 2022. The study aimed to quantify SARS-CoV-2 RNA in wastewater, correlating it with clinically reported COVID-19 cases. Wastewater samples (n = 72) were collected from 16 sampling points located in three cities of Tucumán (San Miguel de Tucumán, Yerba Buena y Banda del Río Salí). Detection of viral nucleocapsid markers (N1 gene) was carried out using one-step reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Viral loads were determined for each positive sample using a standard curve. A positive correlation (p < 0.05) was observed between viral load (copies/mL) and the clinically confirmed COVID-19 cases reported at specific sampling points in San Miguel de Tucumán (SP4, SP7, and SP8) in both months, May and June. Indeed, the high viral load concurred with the peaks of COVID-19 cases. This method allowed us to follow the behavior of SARS-CoV-2 infection during epidemic outbreaks. Thus, wastewater monitoring is a valuable epidemiological indicator that enables the anticipation of increases in COVID-19 cases and tracking the progress of the pandemic. SARS-CoV-2 genome-based surveillance should be implemented as a routine practice to prepare for any future surge in infections.
Collapse
Affiliation(s)
- María Cecilia D'Arpino
- Laboratory of Molecular and Ultraestructural Microbiology, Centro Integral de Microscopía Electrónica, (CIME-UNT-CONICET), Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Pedro Eugenio Sineli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán, Argentina
| | - Gustavo Goroso
- Laboratorio de Processamento de Sinais e Modelagem de Sistemas Biológicos. Núcleo de Pesquisas Tecnológicas, Universidade Mogi das Cruzes, Sao Paulo, Brasil
| | - William Watanabe
- Laboratorio de Processamento de Sinais e Modelagem de Sistemas Biológicos. Núcleo de Pesquisas Tecnológicas, Universidade Mogi das Cruzes, Sao Paulo, Brasil
| | | | | | | | | | | | | | - Augusto Bellomio
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-Universidad Nacional de Tucumán), Tucumán, Argentina
| | - Virginia Helena Albarracín
- Laboratory of Molecular and Ultraestructural Microbiology, Centro Integral de Microscopía Electrónica, (CIME-UNT-CONICET), Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional Tucumán, Tucumán, Argentina
| |
Collapse
|
7
|
Murni IK, Oktaria V, McCarthy DT, Supriyati E, Nuryastuti T, Handley A, Donato CM, Wiratama BS, Dinari R, Laksono IS, Thobari JA, Bines JE. Wastewater-based epidemiology surveillance as an early warning system for SARS-CoV-2 in Indonesia. PLoS One 2024; 19:e0307364. [PMID: 39024238 PMCID: PMC11257287 DOI: 10.1371/journal.pone.0307364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Wastewater-based epidemiology (WBE) surveillance has been proposed as an early warning system (EWS) for community SARS-CoV-2 transmission. However, there is limited data from low-and middle-income countries (LMICs). This study aimed to assess the ability of WBE surveillance to detect SARS-CoV-2 in formal and informal environments in Indonesia using different methods of sample collection, to compare WBE data with patterns of clinical cases of COVID-19 within the relevant communities, and to assess the WBE potential to be used as an EWS for SARS-CoV-2 outbreaks within a community. MATERIALS AND METHODS We conducted WBE surveillance in three districts in Yogyakarta province, Indonesia, over eleven months (27 July 2021 to 7 January 2022 [Delta wave]; 18 January to 3 June 2022 [Omicron wave]). Water samples using grab, and/or passive sampling methods and soil samples were collected either weekly or fortnightly. RNA was extracted from membrane filters from processed water samples and directly from soil. Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) was performed to detect the SARS-CoV-2 N and ORF1ab genes. RESULTS A total of 1,582 samples were collected. Detection rates of SARS-CoV-2 in wastewater reflected the incidence of community cases, with rates of 85% at the peak to 2% at the end of the Delta wave and from 94% to 11% during the Omicron wave. A 2-week lag time was observed between the detection of SARS-CoV-2 in wastewater and increasing cases in the corresponding community. CONCLUSION WBE surveillance for SARS-CoV-2 in Indonesia was effective in monitoring patterns of cases of COVID-19 and served as an early warning system, predicting the increasing incidence of COVID-19 cases in the community.
Collapse
Affiliation(s)
- Indah Kartika Murni
- Center for Child Health – Pediatric Research Office, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Child Health Department, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Vicka Oktaria
- Center for Child Health – Pediatric Research Office, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Biostatistics, Epidemiology, and Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - David T. McCarthy
- Department of Civil Engineering, Environmental and Public Health Microbiology Lab (EPHM Lab), Monash University, Clayton, Victoria Australia
- School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology, Queensland, Australia
| | - Endah Supriyati
- Center for Tropical Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Titik Nuryastuti
- Department of Microbiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Amanda Handley
- Medicines Development for Global Health, Southbank, Victoria Australia
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Celeste M. Donato
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Bayu Satria Wiratama
- Department of Biostatistics, Epidemiology, and Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rizka Dinari
- Center for Child Health – Pediatric Research Office, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ida Safitri Laksono
- Center for Child Health – Pediatric Research Office, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Child Health Department, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jarir At Thobari
- Center for Child Health – Pediatric Research Office, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Julie E Bines
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Department of Gastroenterology and Clinical Nutrition, Royal Children’s Hospital Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Sovová K, Vašíčková P, Valášek V, Výravský D, Očenášková V, Juranová E, Bušová M, Tuček M, Bencko V, Mlejnková HZ. SARS-CoV-2 wastewater surveillance in the Czech Republic: Spatial and temporal differences in SARS-CoV-2 RNA concentrations and relationship to clinical data and wastewater parameters. WATER RESEARCH X 2024; 23:100220. [PMID: 38628304 PMCID: PMC11017050 DOI: 10.1016/j.wroa.2024.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
This study presents the results of systematic wastewater monitoring of SARS-CoV-2 RNA and basic wastewater parameters from four different wastewater treatment plants (WWTPs) in the Czech Republic over the 2020-2022 epidemic. Two-step reverse-transcription quantitative PCR targeting genes encoding the N and Nsp12 proteins was employed to detect SARS-CoV-2 RNA loading in 420 wastewater samples. The results obtained were used to evaluate the potential of wastewater analysis for describing the epidemiological situation in cities of different sizes and determining temporal differences based on the prevailing SARS-CoV-2 variant. Strong correlations between the number of active and hospitalised COVID-19 cases in each WWTP catchment area and the concentration of SARS-CoV-2 RNA detected in the wastewater clearly demonstrated the suitability of this wastewater-based epidemiological approach for WWTPs of different sizes and characteristics, despite differences in SARS-CoV-2 variant waves, with some WWTPs showing high predictive potential. This study demonstrated on the data from the Czech Republic that targeted systematic monitoring of wastewater provides sufficiently robust data for surveillance of viral loads in sample populations, and thus contributes to preventing the spread of infection and subsequent introduction of appropriate measures.
Collapse
Affiliation(s)
- Kateřina Sovová
- T. G. Masaryk Water Research Institute p.r.i., Brno Branch, Mojmírovo náměstí 16, 612 00 Brno, Czech Republic
| | - Petra Vašíčková
- Masaryk University, Faculty of Science, Kotlářská 267/2, 611 37 Brno, Czech Republic
| | - Vojtěch Valášek
- T. G. Masaryk Water Research Institute, Podbabská 30, 160 00 Prague, Czech Republic
| | - David Výravský
- T. G. Masaryk Water Research Institute p.r.i., Brno Branch, Mojmírovo náměstí 16, 612 00 Brno, Czech Republic
| | - Věra Očenášková
- T. G. Masaryk Water Research Institute, Podbabská 30, 160 00 Prague, Czech Republic
| | - Eva Juranová
- T. G. Masaryk Water Research Institute, Podbabská 30, 160 00 Prague, Czech Republic
| | - Milena Bušová
- Charles University, First Faculty of Medicine, Institute of Hygiene and Epidemiology, Studničkova 7, 128 00 Prague, Czech Republic
| | - Milan Tuček
- Charles University, First Faculty of Medicine, Institute of Hygiene and Epidemiology, Studničkova 7, 128 00 Prague, Czech Republic
| | - Vladimír Bencko
- Charles University, First Faculty of Medicine, Institute of Hygiene and Epidemiology, Studničkova 7, 128 00 Prague, Czech Republic
| | | |
Collapse
|
9
|
Díaz SM, Barrios ME, Galli L, Cammarata RV, Torres C, Fortunato MS, García López G, Costa M, Sanguino Jorquera DG, Oderiz S, Rogé A, Gentiluomo J, Carbonari C, Rajal VB, Korol SE, Gallego A, Blanco Fernández MD, Mbayed VA. Microbiological hazard identification in river waters used for recreational activities. ENVIRONMENTAL RESEARCH 2024; 247:118161. [PMID: 38220078 DOI: 10.1016/j.envres.2024.118161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Pathogenic bacteria, viruses, and parasites can cause waterborne disease outbreaks. The study of coastal water quality contributes to identifying potential risks to human health and to improving water management practices. The Río de la Plata River, a wide estuary in South America, is used for recreational activities, as a water source for consumption and as a site for sewage discharges. In the present study, as the first step of a quantitative microbial risk assessment of the coastal water quality of this river, a descriptive study was performed to identify the microbial pathogens prevalent in its waters and in the sewage discharged into the river. Two sites, representing two different potential risk scenarios, were chosen: a heavily polluted beach and an apparently safe beach. Conductivity and fecal contamination indicators including enterococci, Escherichia coli, F + RNA bacteriophages, and human polyomaviruses showed high levels. Regarding enterococci, differences between sites were significant (p-values <0.001). 93.3% and 56.5% of the apparently safe beach exceeded the recreational water limits for E. coli and enterococci. Regarding pathogens, diarrheagenic E. coli, Salmonella, and noroviruses were detected with different frequencies between sites. The parasites Cryptosporidium spp. and Giardia duodenalis were frequently detected in both sites. The results regarding viral, bacterial, and parasitic pathogens, even without correlation with conventional indicators, showed the importance of monitoring a variety of microorganisms to determine water quality more reliably and accurately, and to facilitate further studies of health risk assessment. The taxonomic description of microbial pathogens in river waters allow identifying the microorganisms that infect the population living on its shores but also pathogens not previously reported by the clinical surveillance system.
Collapse
Affiliation(s)
- Sofía Micaela Díaz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Melina Elizabeth Barrios
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía Galli
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina. Av. 60 y 118 (B1900), La Plata, Argentina
| | - Robertina Viviana Cammarata
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Torres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Susana Fortunato
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
| | - Guadalupe García López
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
| | - Magdalena Costa
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina. Av. 60 y 118 (B1900), La Plata, Argentina
| | - Diego Gastón Sanguino Jorquera
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150 (A4408FVY), Salta, Argentina
| | - Sebastian Oderiz
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563 (C1282AFF), Buenos Aires, Argentina
| | - Ariel Rogé
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563 (C1282AFF), Buenos Aires, Argentina
| | - Jimena Gentiluomo
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563 (C1282AFF), Buenos Aires, Argentina
| | - Carolina Carbonari
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563 (C1282AFF), Buenos Aires, Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150 (A4408FVY), Salta, Argentina; Facultad de Ingeniería. UNSa, Av. Bolivia 5150 (A4408FVY), Salta, Argentina
| | - Sonia Edith Korol
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alfredo Gallego
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Dolores Blanco Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Viviana Andrea Mbayed
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
10
|
Krogsgaard LW, Benedetti G, Gudde A, Richter SR, Rasmussen LD, Midgley SE, Qvesel AG, Nauta M, Bahrenscheer NS, von Kappelgaard L, McManus O, Hansen NC, Pedersen JB, Haimes D, Gamst J, Nørgaard LS, Jørgensen ACU, Ejegod DM, Møller SS, Clauson-Kaas J, Knudsen IM, Franck KT, Ethelberg S. Results from the SARS-CoV-2 wastewater-based surveillance system in Denmark, July 2021 to June 2022. WATER RESEARCH 2024; 252:121223. [PMID: 38310802 DOI: 10.1016/j.watres.2024.121223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/01/2023] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
The microbiological analysis of wastewater samples is increasingly used for the surveillance of SARS-CoV-2 globally. We described the setup process of the national SARS-CoV-2 wastewater-based surveillance system in Denmark, presented its main results during the first year of activities, from July 2021 to June 2022, and discussed their operational significance. The Danish SARS-CoV-2 wastewater-based surveillance system was designed to cover 85 % of the population in Denmark and it entailed taking three weekly samples from 230 sites. Samples were RT-qPCR tested for SARS-CoV-2 RNA, targeting the genetic markers N1, N2 and RdRp, and for two faecal indicators, Pepper Mild Mottle Virus and crAssphage. We calculated the weekly SARS-CoV-2 RNA concentration in the wastewater from each sampling site and monitored it in view of the results from individual testing, at the national and regional levels. We attempted to use wastewater results to identify potential local outbreaks, and we sequenced positive wastewater samples using Nanopore sequencing to monitor the circulation of viral variants in Denmark. The system reached its full implementation by October 2021 and covered up to 86.4 % of the Danish population. The system allowed for monitoring of the national and regional trends of SARS-CoV-2 infections in Denmark. However, the system contribution to the identification of potential local outbreaks was limited by the extensive information available from clinical testing. The sequencing of wastewater samples identified relevant variants of concern, in line with results from sequencing of human samples. Amidst the COVID-19 pandemic, Denmark implemented a nationwide SARS-CoV-2 wastewater-based surveillance system that integrated routine surveillance from individual testing. Today, while testing for COVID-19 at the community level has been discontinued, the system is on the frontline to monitor the occurrence and spread of SARS-CoV-2 in Denmark.
Collapse
Affiliation(s)
- Lene Wulff Krogsgaard
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Guido Benedetti
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark.
| | - Aina Gudde
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Stine Raith Richter
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Lasse Dam Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Sofie Elisabeth Midgley
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Amanda Gammelby Qvesel
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Maarten Nauta
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Naja Stolberg Bahrenscheer
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Lene von Kappelgaard
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Oliver McManus
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark; European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, Gustav III: s Boulevard 40, 16973 Solna, Sweden
| | - Nicco Claudio Hansen
- Test Centre Denmark, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Jan Bryla Pedersen
- Department of Finance, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Danny Haimes
- Danish Patient Safety Authority, Islands Brygge 67, 2300 Copenhagen, Denmark
| | - Jesper Gamst
- Eurofins Environment, Ladelundvej 85, 6600 Vejen, Denmark
| | | | | | | | | | - Jes Clauson-Kaas
- HOFOR - Greater Copenhagen Utility, Ørestads Boulevard 35, 2300 Copenhagen, Denmark
| | - Ida Marie Knudsen
- HOFOR - Greater Copenhagen Utility, Ørestads Boulevard 35, 2300 Copenhagen, Denmark
| | - Kristina Træholt Franck
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Steen Ethelberg
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark; Department of Public Health, Global Health Section, University of Copenhagen, Øster Farimagsgade 5, 1014 Copenhagen, Denmark
| |
Collapse
|
11
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Valdivia-Carrera CA, Ho-Palma AC, Munguia-Mercado A, Gonzalez-Pizarro K, Ibacache-Quiroga C, Dinamarca A, Stehlík M, Rusiñol M, Girones R, Lopez-Urbina MT, Basaldua Galarza A, Gonzales-Gustavson E. Surveillance of SARS-CoV-2, rotavirus, norovirus genogroup II, and human adenovirus in wastewater as an epidemiological tool to anticipate outbreaks of COVID-19 and acute gastroenteritis in a city without a wastewater treatment plant in the Peruvian Highlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167161. [PMID: 37730068 DOI: 10.1016/j.scitotenv.2023.167161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has demonstrated that Wastewater Based Epidemiology is a fast and economical alternative for monitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the community level in high-income countries. In the present study, wastewater from a city in the Peruvian Highlands, which lacks a wastewater treatment plant, was monitored for one year to assess the relationship between the concentration of SARS-CoV-2 and the reported cases of COVID-19 in the community. Additionally, we compared the relationship between rotavirus (RV), norovirus genogroup II (NoV GGII), and human adenovirus (HAdV) with the number of reported cases of acute gastroenteritis. Before commencing the analysis of the samples, the viral recovery efficacy of three processing methods was determined in spiked wastewater with SARS-CoV-2. This evaluation demonstrated the highest recovery rate with direct analysis (72.2 %), as compared to ultrafiltration (50.8 %) and skimmed milk flocculation (5.6 %). Wastewater monitoring revealed that 72 % (36/50) of the samples tested positive for SARS-CoV-2, with direct analysis yielding the highest detection frequency and quantification of SARS-CoV-2. Furthermore, a strong correlation was observed between the concentration of SARS-CoV-2 in wastewater and the reported cases of COVID-19, mainly when we shift the concentration of SARS-CoV-2 by two weeks, which allows us to anticipate the onset of the fourth and fifth waves of the pandemic in Peru up to two weeks in advance. All samples processed using the skimmed milk flocculation method tested positive and showed high concentrations of RV, NoV GGII, and HAdV. In fact, the highest RV concentrations were detected up to four weeks before outbreaks of acute gastroenteritis reported in children under four years of age. In conclusion, the results of this study suggest that periodic wastewater monitoring is an excellent epidemiological tool for surveillance and can anticipate outbreaks of infectious diseases, such as COVID-19, in low- and middle-income countries.
Collapse
Affiliation(s)
- Cesar A Valdivia-Carrera
- Tropical and Highlands Veterinary Research Institute, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Jr. 28 de Julio s/n, Km 34, margen izquierda, Carretera Central, El Mantaro, Jauja, Junin, Peru; Department of Animal Health and Public Health, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalacion 2800, San Borja, Lima, Peru.
| | - Ana C Ho-Palma
- Department of Human Medicine, School of Human Medicine, Universidad Nacional del Centro del Peru, Av. Mariscal Castilla 3909, Huancayo, Peru.
| | - Astrid Munguia-Mercado
- Tropical and Highlands Veterinary Research Institute, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Jr. 28 de Julio s/n, Km 34, margen izquierda, Carretera Central, El Mantaro, Jauja, Junin, Peru.
| | - Karoll Gonzalez-Pizarro
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso, Chile.
| | - Claudia Ibacache-Quiroga
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso, Chile; Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso, Chile.
| | - Alejandro Dinamarca
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso, Chile; Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso, Chile.
| | - Milan Stehlík
- Institute of Statistics, Universidad de Valparaiso, Av. Gran Bretana 1111, Valparaiso, Chile; Linz Institute of Technology & Department of Applied Statistics, Johannes Kepler University in Linz, Altenberger Straße 69, 4040 Linz, Austria.
| | - Marta Rusiñol
- Laboratory of Virus Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain.
| | - Rosina Girones
- Laboratory of Virus Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain.
| | - Maria T Lopez-Urbina
- Laboratory of Veterinary Epidemiology and Economics, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalacion 2800, San Borja, Lima, Peru.
| | - Anani Basaldua Galarza
- Department of Human Medicine, School of Human Medicine, Universidad Nacional del Centro del Peru, Av. Mariscal Castilla 3909, Huancayo, Peru; Dirección Ejecutiva de Epidemiología, Dirección Regional de Salud, Jr. Julio Cesar Tello 488, Huancayo 12004, Junin, Peru.
| | - Eloy Gonzales-Gustavson
- Tropical and Highlands Veterinary Research Institute, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Jr. 28 de Julio s/n, Km 34, margen izquierda, Carretera Central, El Mantaro, Jauja, Junin, Peru; Department of Animal Health and Public Health, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalacion 2800, San Borja, Lima, Peru.
| |
Collapse
|
13
|
Alex-Sanders N, Woodhall N, Farkas K, Scott G, Jones DL, Walker DI. Development and validation of a duplex RT-qPCR assay for norovirus quantification in wastewater samples. J Virol Methods 2023; 321:114804. [PMID: 37643662 DOI: 10.1016/j.jviromet.2023.114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 08/31/2023]
Abstract
Norovirus (NoV) is a highly contagious enteric virus that causes widespread outbreaks and a substantial number of deaths across communities. As clinical surveillance is often insufficient, wastewater-based epidemiology (WBE) may provide novel pathways of tracking outbreaks. To utilise WBE, it is important to use accurate and sensitive methods for viral quantification. In this study, we developed a one-step duplex RT-qPCR assay to simultaneously test the two main human pathogenic NoV genogroups, GI and GII, in wastewater samples. The assay had low limits of detection (LOD), namely 0.52 genome copies (gc)/µl for NoVGI and 1.37 gc/µl for NoVGII. No significant concentration-dependent interactions were noted for both NoVGI and for NoVGII when the two targets were mixed at different concentrations in the samples. When tested on wastewater-derived RNA eluents, no significant difference between duplex and singleplex concentrations were found for either target. Low levels of inhibition (up to 32 %) were noted due to organic matter present in the wastewater extracts. From these results we argue that the duplex RT-qPCR assay developed enables the sensitive detection of both NoVGI and NoVGII in wastewater-derived RNA eluents, in a time and cost-effective way and may be used for surveillance to monitor public and environmental health.
Collapse
Affiliation(s)
| | - Nick Woodhall
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - George Scott
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | - Davey L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - David I Walker
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| |
Collapse
|
14
|
López-Peñalver RS, Cañas-Cañas R, Casaña-Mohedo J, Benavent-Cervera JV, Fernández-Garrido J, Juárez-Vela R, Pellín-Carcelén A, Gea-Caballero V, Andreu-Fernández V. Predictive potential of SARS-CoV-2 RNA concentration in wastewater to assess the dynamics of COVID-19 clinical outcomes and infections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163935. [PMID: 37164095 PMCID: PMC10164651 DOI: 10.1016/j.scitotenv.2023.163935] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
Coronavirus disease 2019 - caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) -, has triggered a worldwide pandemic resulting in 665 million infections and over 6.5 million deaths as of December 15, 2022. The development of different epidemiological tools have helped predict new outbreaks and assess the behavior of clinical variables in different health contexts. In this study, we aimed to monitor concentrations of SARS-CoV-2 in wastewater as a tool to predict the progression of clinical variables during Waves 3, 5, and 6 of the pandemic in the Spanish city of Xátiva from September 2020 to March 2022. We estimated SARS-CoV-2 RNA concentrations in 195 wastewater samples using the RT-PCR Diagnostic Panel validated by the Center for Disease Control and Prevention. We also compared the trends of several clinical variables (14-day cumulative incidence, positive cases, hospital cases and stays, critical cases and stays, primary care visits, and deaths) for each study wave against wastewater SARS-CoV-2 RNA concentrations using Pearson's product-moment correlations, a two-sided Mann-Whitney U test, and a cross-correlation analysis. We found strong correlations between SARS-CoV-2 concentrations with 14-day cumulative incidence and positive cases over time. Wastewater RNA concentrations showed strong correlations with these variables one and two weeks in advance. There were significant correlations with hospitalizations and critical care during Wave 3 and Wave 6; cross-correlations were stronger for hospitalization stays one week before during Wave 6. No association between vaccination percentages and wastewater viral concentrations was observed. Our findings support wastewater SARS-CoV-2 concentrations as a potential surveillance tool to anticipate infection and epidemiological data such as 14-day cumulative incidence, hospitalizations, and critical care stays. Public health authorities could use this epidemiological tool on a similar population as an aid for health care decision-making during an epidemic outbreak.
Collapse
Affiliation(s)
- Raimundo Seguí López-Peñalver
- Faculty of Health Sciences, Valencian International University (VIU), 46002, Valencia, Spain; Global Omnium, Valencia, Spain
| | | | - Jorge Casaña-Mohedo
- Faculty of Health Sciences, Valencian International University (VIU), 46002, Valencia, Spain; Faculty of Health Sciences, Universidad Católica de Valencia San Vicente Mártir, 46001, Valencia, Spain
| | | | - Julio Fernández-Garrido
- Consellería de Sanidad Universal y Salud Pública, Generalitat Valenciana, Department of Nursing, University of Valencia, 46001 Jaume Roig St, Valencia, Spain
| | - Raúl Juárez-Vela
- Faculty of Health Sciences, La Rioja University, 26006 Logroño, Spain
| | - Ana Pellín-Carcelén
- Faculty of Health Sciences, Valencian International University (VIU), 46002, Valencia, Spain
| | - Vicente Gea-Caballero
- Faculty of Health Sciences, Valencian International University (VIU), 46002, Valencia, Spain
| | - Vicente Andreu-Fernández
- Faculty of Health Sciences, Valencian International University (VIU), 46002, Valencia, Spain; Biosanitary Research Institute, Valencian International University (VIU), 46002, Valencia, Spain.
| |
Collapse
|
15
|
de Graaf M, Langeveld J, Post J, Carrizosa C, Franz E, Izquierdo-Lara RW, Elsinga G, Heijnen L, Been F, van Beek J, Schilperoort R, Vriend R, Fanoy E, de Schepper EIT, Koopmans MPG, Medema G. Capturing the SARS-CoV-2 infection pyramid within the municipality of Rotterdam using longitudinal sewage surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163599. [PMID: 37100150 PMCID: PMC10125208 DOI: 10.1016/j.scitotenv.2023.163599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Despite high vaccination rates in the Netherlands, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to circulate. Longitudinal sewage surveillance was implemented along with the notification of cases as two parts of the surveillance pyramid to validate the use of sewage for surveillance, as an early warning tool, and to measure the effect of interventions. Sewage samples were collected from nine neighborhoods between September 2020 and November 2021. Comparative analysis and modeling were performed to understand the correlation between wastewater and case trends. Using high resolution sampling, normalization of wastewater SARS-CoV-2 concentrations, and 'normalization' of reported positive tests for testing delay and intensity, the incidence of reported positive tests could be modeled based on sewage data, and trends in both surveillance systems coincided. The high collinearity implied that high levels of viral shedding around the onset of disease largely determined SARS-CoV-2 levels in wastewater, and that the observed relationship was independent of variants of concern and vaccination levels. Sewage surveillance alongside a large-scale testing effort where 58 % of a municipality was tested, indicated a five-fold difference in the number of SARS-CoV-2-positive individuals and reported cases through standard testing. Where trends in reported positive cases were biased due to testing delay and testing behavior, wastewater surveillance can objectively display SARS-CoV-2 dynamics for both small and large locations and is sensitive enough to measure small variations in the number of infected individuals within or between neighborhoods. With the transition to a post-acute phase of the pandemic, sewage surveillance can help to keep track of re-emergence, but continued validation studies are needed to assess the predictive value of sewage surveillance with new variants. Our findings and model aid in interpreting SARS-CoV-2 surveillance data for public health decision-making and show its potential as one of the pillars of future surveillance of (re)emerging viruses.
Collapse
Affiliation(s)
- Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Centre Rotterdam and Delft, the Netherlands.
| | - Jeroen Langeveld
- Partners4urbanwater, Nijmegen, the Netherlands; Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
| | - Johan Post
- Partners4urbanwater, Nijmegen, the Netherlands
| | - Christian Carrizosa
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ray W Izquierdo-Lara
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Goffe Elsinga
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Leo Heijnen
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Frederic Been
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Janko van Beek
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Rianne Vriend
- Regional Public Health Service Rotterdam-Rijnmond, Rotterdam, the Netherlands
| | - Ewout Fanoy
- Regional Public Health Service Rotterdam-Rijnmond, Rotterdam, the Netherlands
| | - Evelien I T de Schepper
- Department of General Practice, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Centre Rotterdam and Delft, the Netherlands
| | - Gertjan Medema
- Pandemic and Disaster Preparedness Centre Rotterdam and Delft, the Netherlands; KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands; Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
| |
Collapse
|
16
|
Ciannella S, González-Fernández C, Gomez-Pastora J. Recent progress on wastewater-based epidemiology for COVID-19 surveillance: A systematic review of analytical procedures and epidemiological modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162953. [PMID: 36948304 PMCID: PMC10028212 DOI: 10.1016/j.scitotenv.2023.162953] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 05/13/2023]
Abstract
On March 11, 2020, the World Health Organization declared the coronavirus disease 2019 (COVID-19), whose causative agent is the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a pandemic. This virus is predominantly transmitted via respiratory droplets and shed via sputum, saliva, urine, and stool. Wastewater-based epidemiology (WBE) has been able to monitor the circulation of viral pathogens in the population. This tool demands both in-lab and computational work to be meaningful for, among other purposes, the prediction of outbreaks. In this context, we present a systematic review that organizes and discusses laboratory procedures for SARS-CoV-2 RNA quantification from a wastewater matrix, along with modeling techniques applied to the development of WBE for COVID-19 surveillance. The goal of this review is to present the current panorama of WBE operational aspects as well as to identify current challenges related to it. Our review was conducted in a reproducible manner by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for systematic reviews. We identified a lack of standardization in wastewater analytical procedures. Regardless, the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) approach was the most reported technique employed to detect and quantify viral RNA in wastewater samples. As a more convenient sample matrix, we suggest the solid portion of wastewater to be considered in future investigations due to its higher viral load compared to the liquid fraction. Regarding the epidemiological modeling, the data-driven approach was consistently used for the prediction of variables associated with outbreaks. Future efforts should also be directed toward the development of rapid, more economical, portable, and accurate detection devices.
Collapse
Affiliation(s)
- Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock 79409, TX, USA.
| | - Cristina González-Fernández
- Department of Chemical Engineering, Texas Tech University, Lubbock 79409, TX, USA; Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros, s/n, 39005 Santander, Spain.
| | | |
Collapse
|
17
|
Lanzarini NM, Mannarino CF, Ribeiro AVC, Prado T, Vahia LS, Siqueira MM, Resende PC, Quintaes BR, Miagostovich MP. SARS-CoV-2 surveillance-based on municipal solid waste leachate in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67368-67377. [PMID: 37101215 PMCID: PMC10132925 DOI: 10.1007/s11356-023-27019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/25/2023]
Abstract
Municipal solid waste leachate-based epidemiology is an alternative viral tracking tool that applies fresh truck leachate as an early warning of public health emergencies. This study aimed to investigate the potential of SARS-CoV-2 surveillance based on solid waste fresh truck leachate. Twenty truck leachate samples were ultracentrifugated, nucleic acid extracted, and real-time RT-qPCR SARS-CoV-2 N1/N2 applied. Viral isolation, variant of concern (N1/N2) inference, and whole genome sequencing were also performed. SARS-CoV-2 was detected on 40% (8/20) of samples, with a concentration from 2.89 to 6.96 RNA Log10 100 mL-1. The attempt to isolate SARS-CoV-2 and recover the whole genome was not successful; however, positive samples were characterized as possible pre-variant of concern (pre-VOC), VOC Alpha (B.1.1.7) and variant of interest Zeta (P.2). This approach revealed an alternative tool to infer SARS-CoV-2 in the environment and may help the management of local surveillance, health, and social policies.
Collapse
Affiliation(s)
- Natália Maria Lanzarini
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil.
| | - Camille Ferreira Mannarino
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - André Vinicius Costa Ribeiro
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Tatiana Prado
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Leonardo Saboia Vahia
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Marilda Mendonça Siqueira
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Paola Cristina Resende
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | | | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| |
Collapse
|
18
|
Kitakawa K, Kitamura K, Yoshida H. Monitoring Enteroviruses and SARS-CoV-2 in Wastewater Using the Polio Environmental Surveillance System in Japan. Appl Environ Microbiol 2023; 89:e0185322. [PMID: 36975804 PMCID: PMC10132113 DOI: 10.1128/aem.01853-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
In the global strategy for polio eradication, environmental surveillance (ES) has been established worldwide to monitor polioviruses. In addition, nonpolio enteroviruses are simultaneously isolated from wastewater under this ES program. Hence, ES can be used to monitor enteroviruses in sewage to supplement clinical surveillance. In response to the coronavirus disease 2019 (COVID-19) pandemic, we also monitored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in sewage using the polio ES system in Japan. Enterovirus and SARS-CoV-2 were detected in sewage from January 2019 to December 2021 and from August 2020 to November 2021, respectively. Enterovirus species such as echoviruses and coxsackieviruses were frequently detected by ES in 2019, indicating the circulation of these viruses. After the onset of the COVID-19 pandemic, sewage enterovirus detection and related patient reports were notably reduced in 2020 to 2021, suggesting changes in the hygiene behaviors of the human population in response to the pandemic. Our comparative experiment with a total of 520 reverse transcription-quantitative PCR (RT-qPCR) assays for SARS-CoV-2 detection demonstrated that the solid-based method had a significantly higher detection rate than that of the liquid-based method (24.6% and 15.9%, respectively). Moreover, the resulting RNA concentrations were correlated with the number of new COVID-19 cases (Spearman's r = 0.61). These findings indicate that the existing polio ES system can be effectively used for enterovirus and SARS-CoV-2 sewage monitoring using different procedures such as virus isolation and molecular-based detection. IMPORTANCE Long-term efforts are required to implement surveillance programs for the ongoing COVID-19 pandemic, and they will be required even in the postpandemic era. We adopted the existing polio environmental surveillance (ES) system for SARS-CoV-2 sewage monitoring in Japan as a practical and cost-effective approach. Moreover, the ES system routinely detects enteroviruses from wastewater and, therefore, can be used for enterovirus monitoring. The liquid fraction of the sewage sample is used for poliovirus and enterovirus detection, and the solid fraction can be used for SARS-CoV-2 RNA detection. The present study demonstrates how the existing ES system can be used for monitoring enteroviruses and SARS-CoV-2 in sewage.
Collapse
Affiliation(s)
- Kazuhiro Kitakawa
- Department of Microbiology, Fukushima Prefectural Institute of Public Health, Fukushima, Japan
| | - Kouichi Kitamura
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiromu Yoshida
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
19
|
Cruz MC, Sanguino-Jorquera D, Aparicio González M, Irazusta VP, Poma HR, Cristóbal HA, Rajal VB. Sewershed surveillance as a tool for smart management of a pandemic in threshold countries. Case study: Tracking SARS-CoV-2 during COVID-19 pandemic in a major urban metropolis in northwestern Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160573. [PMID: 36460114 PMCID: PMC9705263 DOI: 10.1016/j.scitotenv.2022.160573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Wastewater-based epidemiology is an economical and effective tool for monitoring the COVID-19 pandemic. In this study we proposed sampling campaigns that addressed spatial-temporal trends within a metropolitan area. This is a local study of detection and quantification of SARS-CoV-2 in wastewater during the onset, rise, and decline of COVID-19 cases in Salta city (Argentina) over the course of a twenty-one-week period (13 Aug to 30 Dec) in 2020. Wastewater samples were gathered from 13 sewer manholes specific to each sewershed catchment, prior to convergence or mixing with other sewer lines, resulting in samples specific to individual catchments with defined areas. The 13 sewershed catchments selected comprise 118,832 connections to the network throughout the city, representing 84.7 % (534,747 individuals) of the total population. The number of COVID19-related exposure and symptoms cases in each area were registered using an application developed for smartphones by the provincial government. Geographical coordinates provided by the devices were recorded, and consequently, it was possible to geolocalise all app-cases and track them down to which of the 13 sampling catchments belonged. RNA fragments of SARS-CoV-2 were detected in every site since the beginning of the monitoring, anticipating viral circulation in the population. Over the course of the 21-week study, the concentrations of SARS-CoV-2 ranged between 1.77 × 104 and 4.35 × 107 genome copies/L. There was a correspondence with the highest viral load in wastewater and the peak number of cases reported by the app for each catchment. The associations were evaluated with correlation analysis. The viral loads of SARS-CoV-2 in wastewater were a feasible means to describe the trends of COVID-19 infections. Surveillance at sewershed scale, provided reliable and strategic information that could be used by local health stakeholders to manage the COVID-19 pandemic.
Collapse
Affiliation(s)
- Mercedes Cecilia Cruz
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina.
| | - Diego Sanguino-Jorquera
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina
| | - Mónica Aparicio González
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina
| | - Verónica Patricia Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina
| | - Hugo Ramiro Poma
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina
| | - Héctor Antonio Cristóbal
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ingeniería, UNSa, Salta, Argentina; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
20
|
Li X, Zhang S, Sherchan S, Orive G, Lertxundi U, Haramoto E, Honda R, Kumar M, Arora S, Kitajima M, Jiang G. Correlation between SARS-CoV-2 RNA concentration in wastewater and COVID-19 cases in community: A systematic review and meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129848. [PMID: 36067562 PMCID: PMC9420035 DOI: 10.1016/j.jhazmat.2022.129848] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/26/2023]
Abstract
Wastewater-based epidemiology (WBE) has been considered as a promising approach for population-wide surveillance of coronavirus disease 2019 (COVID-19). Many studies have successfully quantified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentration in wastewater (CRNA). However, the correlation between the CRNA and the COVID-19 clinically confirmed cases in the corresponding wastewater catchments varies and the impacts of environmental and other factors remain unclear. A systematic review and meta-analysis were conducted to identify the correlation between CRNA and various types of clinically confirmed case numbers, including prevalence and incidence rates. The impacts of environmental factors, WBE sampling design, and epidemiological conditions on the correlation were assessed for the same datasets. The systematic review identified 133 correlation coefficients, ranging from -0.38 to 0.99. The correlation between CRNA and new cases (either daily new, weekly new, or future cases) was stronger than that of active cases and cumulative cases. These correlation coefficients were potentially affected by environmental and epidemiological conditions and WBE sampling design. Larger variations of air temperature and clinical testing coverage, and the increase of catchment size showed strong negative impacts on the correlation between CRNA and COVID-19 case numbers. Interestingly, the sampling technique had negligible impact although increasing the sampling frequency improved the correlation. These findings highlight the importance of viral shedding dynamics, in-sewer decay, WBE sampling design and clinical testing on the accurate back-estimation of COVID-19 case numbers through the WBE approach.
Collapse
Affiliation(s)
- Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shuxin Zhang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Samendrdra Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Unax Lertxundi
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Vitoria-Gasteiz, Spain
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Kofu, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, Jaipur, India
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Hokkaido, Japan
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
21
|
Maidana-Kulesza MN, Poma HR, Sanguino-Jorquera DG, Reyes SI, Del Milagro Said-Adamo M, Mainardi-Remis JM, Gutiérrez-Cacciabue D, Cristóbal HA, Cruz MC, Aparicio González M, Rajal VB. Tracking SARS-CoV-2 in rivers as a tool for epidemiological surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022. [PMID: 35908692 DOI: 10.1101/2021.06.17.21259122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The aim of this work was to evaluate if rivers could be used for SARS-CoV-2 surveillance. Five sampling points from three rivers (AR-1 and AR-2 in Arenales River, MR-1 and MR-2 in Mojotoro River, and CR in La Caldera River) from Salta (Argentina), two of them receiving discharges from wastewater plants (WWTP), were monitored from July to December 2020. Fifteen water samples from each point (75 in total) were collected and characterized physico-chemically and microbiologically and SARS-CoV-2 was quantified by RT-qPCR. Also, two targets linked to human contributions, human polyomavirus (HPyV) and RNase P, were quantified and used to normalize SARS-CoV-2 concentration, which was compared to reported COVID-19 cases. Statistical analyses allowed us to verify the correlation between SARS-CoV-2 and the concentration of fecal indicator bacteria (FIB), as well as to find similarities and differences between sampling points. La Caldera River showed the best water quality; FIBs were within acceptable limits for recreational activities. Mojotoro River's water quality was not affected by the northern WWTP of the city. Instead, Arenales River presented the poorest water quality; at AR-2 was negatively affected by the discharges of the southern WWTP, which contributed to significant increase of fecal contamination. SARS-CoV-2 was found in about half of samples in low concentrations in La Caldera and Mojotoro Rivers, while it was high and persistent in Arenales River. No human tracers were detected in CR, only HPyV was found in MR-1, MR-2 and AR-1, and both were quantified in AR-2. The experimental and normalized viral concentrations strongly correlated with reported COVID-19 cases; thus, Arenales River at AR-2 reflected the epidemiological situation of the city. This is the first study showing the dynamic of SARS-CoV-2 concentration in an urban river highly impacted by wastewater and proved that can be used for SARS-CoV-2 surveillance to support health authorities.
Collapse
Affiliation(s)
- María Noel Maidana-Kulesza
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Hugo Ramiro Poma
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Diego Gastón Sanguino-Jorquera
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Sarita Isabel Reyes
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - María Del Milagro Said-Adamo
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Juan Martín Mainardi-Remis
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Dolores Gutiérrez-Cacciabue
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Héctor Antonio Cristóbal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Mercedes Cecilia Cruz
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Mónica Aparicio González
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Verónica Beatriz Rajal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina; Singapore Centre for Environmental Life Science Engineering (SCELSE), Nanyang Technological University, Singapore.
| |
Collapse
|
22
|
Maidana-Kulesza MN, Poma HR, Sanguino-Jorquera DG, Reyes SI, Del Milagro Said-Adamo M, Mainardi-Remis JM, Gutiérrez-Cacciabue D, Cristóbal HA, Cruz MC, Aparicio González M, Rajal VB. Tracking SARS-CoV-2 in rivers as a tool for epidemiological surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157707. [PMID: 35908692 PMCID: PMC9334864 DOI: 10.1016/j.scitotenv.2022.157707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 07/04/2022] [Accepted: 07/26/2022] [Indexed: 05/22/2023]
Abstract
The aim of this work was to evaluate if rivers could be used for SARS-CoV-2 surveillance. Five sampling points from three rivers (AR-1 and AR-2 in Arenales River, MR-1 and MR-2 in Mojotoro River, and CR in La Caldera River) from Salta (Argentina), two of them receiving discharges from wastewater plants (WWTP), were monitored from July to December 2020. Fifteen water samples from each point (75 in total) were collected and characterized physico-chemically and microbiologically and SARS-CoV-2 was quantified by RT-qPCR. Also, two targets linked to human contributions, human polyomavirus (HPyV) and RNase P, were quantified and used to normalize SARS-CoV-2 concentration, which was compared to reported COVID-19 cases. Statistical analyses allowed us to verify the correlation between SARS-CoV-2 and the concentration of fecal indicator bacteria (FIB), as well as to find similarities and differences between sampling points. La Caldera River showed the best water quality; FIBs were within acceptable limits for recreational activities. Mojotoro River's water quality was not affected by the northern WWTP of the city. Instead, Arenales River presented the poorest water quality; at AR-2 was negatively affected by the discharges of the southern WWTP, which contributed to significant increase of fecal contamination. SARS-CoV-2 was found in about half of samples in low concentrations in La Caldera and Mojotoro Rivers, while it was high and persistent in Arenales River. No human tracers were detected in CR, only HPyV was found in MR-1, MR-2 and AR-1, and both were quantified in AR-2. The experimental and normalized viral concentrations strongly correlated with reported COVID-19 cases; thus, Arenales River at AR-2 reflected the epidemiological situation of the city. This is the first study showing the dynamic of SARS-CoV-2 concentration in an urban river highly impacted by wastewater and proved that can be used for SARS-CoV-2 surveillance to support health authorities.
Collapse
Affiliation(s)
- María Noel Maidana-Kulesza
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Hugo Ramiro Poma
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Diego Gastón Sanguino-Jorquera
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Sarita Isabel Reyes
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - María Del Milagro Said-Adamo
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Juan Martín Mainardi-Remis
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Dolores Gutiérrez-Cacciabue
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Héctor Antonio Cristóbal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Mercedes Cecilia Cruz
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Mónica Aparicio González
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Verónica Beatriz Rajal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina; Singapore Centre for Environmental Life Science Engineering (SCELSE), Nanyang Technological University, Singapore.
| |
Collapse
|
23
|
Xie Y, Challis JK, Oloye FF, Asadi M, Cantin J, Brinkmann M, McPhedran KN, Hogan N, Sadowski M, Jones PD, Landgraff C, Mangat C, Servos MR, Giesy JP. RNA in Municipal Wastewater Reveals Magnitudes of COVID-19 Outbreaks across Four Waves Driven by SARS-CoV-2 Variants of Concern. ACS ES&T WATER 2022; 2:1852-1862. [PMID: 37552734 PMCID: PMC8887651 DOI: 10.1021/acsestwater.1c00349] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 05/07/2023]
Abstract
There are no standardized protocols for quantifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater to date, especially for population normalization. Here, a pipeline was developed, applied, and assessed to quantify SARS-CoV-2 and key variants of concern (VOCs) RNA in wastewater at Saskatoon, Canada. Normalization approaches using recovery ratio and extraction efficiency, wastewater parameters, or population indicators were assessed by comparing to daily numbers of new cases. Viral load was positively correlated with daily new cases reported in the sewershed. Wastewater surveillance (WS) had a lead time of approximately 7 days, which indicated surges in the number of new cases. WS revealed the variant α and δ driving the third and fourth wave, respectively. The adjustment with the recovery ratio and extraction efficiency improved the correlation between viral load and daily new cases. Normalization of viral concentration to concentrations of the artificial sweetener acesulfame K improved the trend of viral load during the Christmas and New Year holidays when populations were dynamic and variable. Acesulfame K performed better than pepper mild mottle virus, creatinine, and ammonia for population normalization. Hence, quality controls to characterize recovery ratios and extraction efficiencies and population normalization with acesulfame are promising for precise WS programs supporting decision-making in public health.
Collapse
Affiliation(s)
- Yuwei Xie
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Jonathan K. Challis
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Femi F. Oloye
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Mohsen Asadi
- Department of Civil, Geological and Environmental
Engineering, College of Engineering, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5A9,
Canada
| | - Jenna Cantin
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Markus Brinkmann
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- School of Environment and Sustainability,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- Global Institute for Water Security,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 3H5,
Canada
| | - Kerry N. McPhedran
- Department of Civil, Geological and Environmental
Engineering, College of Engineering, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5A9,
Canada
- Global Institute for Water Security,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 3H5,
Canada
| | - Natacha Hogan
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- College of Agriculture and Bioresources, Department of
Animal and Poultry Sciences, University of Saskatchewan,
Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Mike Sadowski
- Wastewater Treatment Plant, Saskatoon Water Department,
City of Saskatoon, Saskatoon, Saskatchewan S7M 1X5,
Canada
| | - Paul D. Jones
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- School of Environment and Sustainability,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Chrystal Landgraff
- Division of Enteric Diseases, National Microbiology
Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
R3E 3R2, Canada
- Food Science Department, University of
Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Chand Mangat
- Antimicrobial Resistance and Nosocomial Infections,
National Microbiology Laboratory, Public Health Agency of
Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Mark R. Servos
- Department of Biology, University of
Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - John P. Giesy
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- Department of Veterinary Biomedical Sciences,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4,
Canada
- Department of Environmental Sciences,
Baylor University, Waco, Texas 76706, United
States
- Department of Zoology and Center for Integrative
Toxicology, Michigan State University, East Lansing, Michigan
48824, United States
| |
Collapse
|
24
|
Murni IK, Oktaria V, Handley A, McCarthy DT, Donato CM, Nuryastuti T, Supriyati E, Putri DAD, Sari HM, Laksono IS, Thobari JA, Bines JE. The feasibility of SARS-CoV-2 surveillance using wastewater and environmental sampling in Indonesia. PLoS One 2022; 17:e0274793. [PMID: 36240187 PMCID: PMC9565423 DOI: 10.1371/journal.pone.0274793] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Wastewater-based epidemiology (WBE) surveillance as an early warning system (EWS) for monitoring community transmission of SARS-CoV-2 in low- and middle-income country (LMIC) settings, where diagnostic testing capacity is limited, needs further exploration. We explored the feasibility to conduct a WBE surveillance in Indonesia, one of the global epicenters of the COVID-19 pandemic in the middle of 2021, with the fourth largest population in the world where sewer and non-sewered sewage systems are implemented. The feasibility and resource capacity to collect samples on a weekly or fortnightly basis with grab and/or passive sampling methods, as well as to conduct qualitative and quantitative identification of SARS-CoV-2 ribonucleic acid (RNA) using real-time RT-PCR (RT-qPCR) testing of environmental samples were explored. MATERIALS AND METHODS We initiated a routine surveillance of wastewater and environmental sampling at three predetermined districts in Special Region of Yogyakarta Province. Water samples were collected from central and community wastewater treatment plants (WWTPs), including manholes flowing to the central WWTP, and additional soil samples were collected for the near source tracking (NST) locations (i.e., public spaces where people congregate). RESULTS We began collecting samples in the Delta wave of the COVID-19 pandemic in Indonesia in July 2021. From a 10-week period, 54% (296/544) of wastewater and environmental samples were positive for SARS-CoV-2 RNA. The sample positivity rate decreased in proportion with the reported incidence of COVID-19 clinical cases in the community. The highest positivity rate of 77% in week 1, was obtained for samples collected in July 2021 and decreased to 25% in week 10 by the end of September 2021. CONCLUSION A WBE surveillance system for SARS-CoV-2 in Indonesia is feasible to monitor the community burden of infections. Future studies testing the potential of WBE and EWS for signaling early outbreaks of SARS-CoV-2 transmissions in this setting are required.
Collapse
Affiliation(s)
- Indah K. Murni
- Faculty of Medicine, Center for Child Health–Pediatric Research Office, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Medicine, Child Health Department, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- * E-mail: (IKM); (VO)
| | - Vicka Oktaria
- Faculty of Medicine, Center for Child Health–Pediatric Research Office, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Medicine, Department of Biostatistics, Epidemiology and Population Health, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- * E-mail: (IKM); (VO)
| | - Amanda Handley
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Medicines Development for Global Health, Southbank, Victoria, Australia
| | - David T. McCarthy
- Department of Civil Engineering, Environmental and Public Health Microbiology Lab (EPHM Lab), Monash University, Clayton, Victoria, Australia
| | - Celeste M. Donato
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Titik Nuryastuti
- Faculty of Medicine, Department of Microbiology, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Endah Supriyati
- Faculty of Medicine, Center for Tropical Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Astuti Dharma Putri
- Faculty of Medicine, Center for Child Health–Pediatric Research Office, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hendri Marinda Sari
- Faculty of Medicine, Center for Child Health–Pediatric Research Office, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ida Safitri Laksono
- Faculty of Medicine, Center for Child Health–Pediatric Research Office, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Medicine, Child Health Department, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jarir At Thobari
- Faculty of Medicine, Center for Child Health–Pediatric Research Office, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Julie E. Bines
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Department of Gastroenterology and Clinical Nutrition, Royal Children’s Hospital Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
de Freitas Bueno R, Claro ICM, Augusto MR, Duran AFA, Camillo LDMB, Cabral AD, Sodré FF, Brandão CCS, Vizzotto CS, Silveira R, de Melo Mendes G, Arruda AF, de Brito NN, Machado BAS, Duarte GRM, de Lourdes Aguiar-Oliveira M. Wastewater-based epidemiology: A Brazilian SARS-COV-2 surveillance experience. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:108298. [PMID: 35873721 PMCID: PMC9295330 DOI: 10.1016/j.jece.2022.108298] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 05/11/2023]
Abstract
Since 2020, developed countries have rapidly shared both publicly and academically relevant wastewater surveillance information. Data on SARS-CoV-2 circulation is pivotal for guiding public health policies and improving the COVID-19 pandemic response. Conversely, low- and middle-income countries, such as Latin America and the Caribbean, showed timid activities in the Wastewater-Based Epidemiology (WBE) context. In these countries, isolated groups perform viral wastewater monitoring, and the data are unevenly shared or accessible to health agencies and the scientific community. This manuscript aims to highlight the relevance of a multiparty effort involving research, public health, and governmental agencies to support usage of WBE methodology to its full potential during the COVID-19 pandemic as part of a joint One Health surveillance approach. Thus, in this study, we explored the results obtained from wastewater surveillance in different regions of Brazil as a part of the COVID-19 Wastewater Monitoring Network ANA (National Water Agency), MCTI (Ministry of Science, Technology, and Innovations) and MS (Ministry of Health). Over the epidemiological weeks of 2021 and early 2022, viral RNA concentrations in wastewater followed epidemiological trends and variations. The highest viral loads in wastewater samples were detected during the second Brazilian wave of COVID-19. Corroborating international reports, our experience demonstrated usefulness of the WBE approach in viral surveillance. Wastewater surveillance allows hotspot identification, and therefore, early public health interventions. In addition, this methodology allows tracking of asymptomatic and oligosymptomatic individuals, who are generally underreported, especially in emerging countries with limited clinical testing capacity. Therefore, WBE undoubtedly contributes to improving public health responses in the context of this pandemic, as well as other sanitary emergencies.
Collapse
Affiliation(s)
- Rodrigo de Freitas Bueno
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Ieda Carolina Mantovani Claro
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Matheus Ribeiro Augusto
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Adriana Feliciano Alves Duran
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | | | - Aline Diniz Cabral
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | | | | | - Carla Simone Vizzotto
- University of Brasilia, Department of Civil and Environmental Engineering, Brasília, Federal District, Brazil
| | - Rafaella Silveira
- University of Brasilia. Institute of Chemistry, Brasília, Federal District, Brazil
- University of Brasilia, Department of Civil and Environmental Engineering, Brasília, Federal District, Brazil
| | | | | | | | - Bruna Aparecida Souza Machado
- University Center SENAI/CIMATEC. SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), Salvador, Bahia, Brazil
| | | | - Maria de Lourdes Aguiar-Oliveira
- Laboratory of Respiratory Viruses and Measles, National/MoH and International/WHO Reference Laboratory in COVID-19, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Reno U, Regaldo L, Ojeda G, Schmuck J, Romero N, Polla W, Kergaravat SV, Gagneten AM. Wastewater-Based Epidemiology: Detection of SARS-CoV-2 RNA in Different Stages of Domestic Wastewater Treatment in Santa Fe, Argentina. WATER, AIR, AND SOIL POLLUTION 2022; 233:372. [PMID: 36090741 PMCID: PMC9440651 DOI: 10.1007/s11270-022-05772-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic affected human life at every level. In this study, we analyzed genetic markers (N and ORF1ab, RNA genes) of SARS-CoV-2 in domestic wastewaters (DWW) in San Justo City (Santa Fe, Argentina), using reverse transcription-quantitative real-time PCR. Out of the 30 analyzed samples, 30% were positive for SARS-CoV-2 RNA. Of the total positive samples, 77% correspond to untreated DWW, 23% to pre-chlorination, and no SARS-CoV-2 RNA was registered at the post-chlorination sampling site. The viral loads of N and OFR1ab genes decreased significantly along the treatment process, and the increase in the number of viral copies of the N gene could anticipate, by 6 days, the number of clinical cases in the population. The concentration of chlorine recommended by the WHO (≥ 0.5 mg L-1 after at least 30 min of contact time at pH 8.0) successfully removed SARS-CoV-2 RNA from DWW. The efficiency of wastewater-based epidemiology (WBE) confirms the need to control and increase DWW treatment systems on a regional and global scale. This work could contribute to building a network for WBE to monitor SARS-CoV-2 in wastewaters during the pandemic waves and the epidemic remission phase. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11270-022-05772-w.
Collapse
Affiliation(s)
- Ulises Reno
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
- National Council for Scientific and Technological Research (CONICET), 3000 Santa Fe, Argentina
| | - Luciana Regaldo
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
- National Council for Scientific and Technological Research (CONICET), 3000 Santa Fe, Argentina
| | - Guillermo Ojeda
- Central Laboratory, Ministry of Health, 3000 Santa Fe, Argentina
| | - Josefina Schmuck
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
- National Council for Scientific and Technological Research (CONICET), 3000 Santa Fe, Argentina
| | - Natalí Romero
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
- National Council for Scientific and Technological Research (CONICET), 3000 Santa Fe, Argentina
| | - Wanda Polla
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
| | - Silvina V. Kergaravat
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
- National Council for Scientific and Technological Research (CONICET), 3000 Santa Fe, Argentina
| | - Ana María Gagneten
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
| |
Collapse
|
27
|
Fahrenfeld NL, Morales Medina WR, D'Elia S, Deshpande AS, Ehasz G. Year-long wastewater monitoring for SARS-CoV-2 signals in combined and separate sanitary sewers. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10768. [PMID: 35918060 PMCID: PMC9350404 DOI: 10.1002/wer.10768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/07/2022] [Accepted: 07/01/2022] [Indexed: 05/14/2023]
Abstract
COVID-19 wastewater-based epidemiology has been performed in catchments of various sizes and sewer types with many short-term studies available and multi-seasonal studies emerging. The objective of this study was to compare weekly observations of SARS-CoV-2 genes in municipal wastewater across multiple seasons for different systems as a factor of sewer type (combined, separate sanitary) and system size. Sampling occurred following the first wave of SARS-CoV-2 cases in the study region (June 2020) and continued through the third wave (May 2021), the period during which clinical testing was widely available and different variants dominated clinical cases. The strongest correlations were observed between wastewater N1 concentrations and the cumulative clinical cases reported in the 2 weeks prior to wastewater sampling, followed by the week prior, new cases, and the week after wastewater sampling. Sewer type and size did not necessarily explain the strength of the correlations, indicating that other non-sewer factors may be impacting the observations. In-system sampling results for the largest system sampled are presented for 1 month. Removing wet weather days from the data sets improved even the flow-normalized correlations for the systems, potentially indicating that interpreting results during wet weather events may be more complicated than simply accounting for dilution. PRACTITIONER POINTS: SARS-CoV-2 in wastewater correlated best with total clinical cases reported in 2 weeks before wastewater sampling at the utility level. Study performed when clinical testing was widespread during the year after the first COVID-19 wave in the region. Sewer type and size did not necessarily explain correlation strength between clinical cases and wastewater-based epidemiology results. Removing wet weather days improved correlations for 3/4 utilities studied, including both separate sanitary and combined sewers.
Collapse
Affiliation(s)
- Nicole L. Fahrenfeld
- Department of Civil and Environmental EngineeringRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - William R. Morales Medina
- Department of Microbiology and Molecular GeneticsRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Present address:
American WaterDelranNew JerseyUSA
| | - Stephanie D'Elia
- Department of Biochemistry and MicrobiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Aishwarya S. Deshpande
- Department of Biochemistry and MicrobiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Genevieve Ehasz
- Department of Civil and Environmental EngineeringRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
28
|
Fahrenfeld NL, Morales Medina WR, D'Elia S, Deshpande AS, Ehasz G. Year-long wastewater monitoring for SARS-CoV-2 signals in combined and separate sanitary sewers. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10768. [PMID: 35918060 DOI: 10.1021/acsestwater.1c00345] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/07/2022] [Accepted: 07/01/2022] [Indexed: 05/27/2023]
Abstract
COVID-19 wastewater-based epidemiology has been performed in catchments of various sizes and sewer types with many short-term studies available and multi-seasonal studies emerging. The objective of this study was to compare weekly observations of SARS-CoV-2 genes in municipal wastewater across multiple seasons for different systems as a factor of sewer type (combined, separate sanitary) and system size. Sampling occurred following the first wave of SARS-CoV-2 cases in the study region (June 2020) and continued through the third wave (May 2021), the period during which clinical testing was widely available and different variants dominated clinical cases. The strongest correlations were observed between wastewater N1 concentrations and the cumulative clinical cases reported in the 2 weeks prior to wastewater sampling, followed by the week prior, new cases, and the week after wastewater sampling. Sewer type and size did not necessarily explain the strength of the correlations, indicating that other non-sewer factors may be impacting the observations. In-system sampling results for the largest system sampled are presented for 1 month. Removing wet weather days from the data sets improved even the flow-normalized correlations for the systems, potentially indicating that interpreting results during wet weather events may be more complicated than simply accounting for dilution. PRACTITIONER POINTS: SARS-CoV-2 in wastewater correlated best with total clinical cases reported in 2 weeks before wastewater sampling at the utility level. Study performed when clinical testing was widespread during the year after the first COVID-19 wave in the region. Sewer type and size did not necessarily explain correlation strength between clinical cases and wastewater-based epidemiology results. Removing wet weather days improved correlations for 3/4 utilities studied, including both separate sanitary and combined sewers.
Collapse
Affiliation(s)
- Nicole L Fahrenfeld
- Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - William R Morales Medina
- Department of Microbiology and Molecular Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Stephanie D'Elia
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Aishwarya S Deshpande
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Genevieve Ehasz
- Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
29
|
Grady SL, Sebeck NM, Theodore M, Meidenbauer KL. Routine Decontamination of Surfaces Relevant to Working Dogs: Neutralization of Superficial Coronavirus Contamination. Animals (Basel) 2022; 12:ani12141823. [PMID: 35883369 PMCID: PMC9312250 DOI: 10.3390/ani12141823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Given the increased deployment of working dogs to settings with pathogenic biological agents, a safe, effective, and logistically feasible surface decontamination protocol is essential to protect both the animals and their human handlers. Our group previously found that superficial contamination on surfaces relevant to the working dog community, including leashes and toys, could be significantly reduced using a standardized wiping protocol with various cleansing products. To expand upon this work, we analyzed the ability of this protocol to decontaminate surface-deposited bovine coronavirus, which was used as a BSL2 surrogate for SARS-CoV-2. Unsurprisingly, the physical characteristics of a given surface, including porosity and texture, had a significant effect on the ability to recover viable virus remaining on the surface post treatment. After correcting for these differences, however, wiping with 70% isopropyl alcohol (IPA) and 0.5% chlorhexidine performed best, reducing viral titers by >3 log on plastic bumper toys and nylon collars, and by >2 log on rubber toys and tennis balls. Leather leashes and Velcro proved more difficult to decontaminate, but both still showed significant loss of viral contamination following wiping with IPA or chlorhexidine. This work (i) validates the utility of a simple protocol for the neutralization of viruses on several surfaces, (ii) identifies materials that are more difficult to decontaminate, which should, thus, be considered for removal from field use, and (iii) highlights the need for further development of protocols testing porous or textured surfaces.
Collapse
|
30
|
Masachessi G, Castro G, Cachi AM, Marinzalda MDLÁ, Liendo M, Pisano MB, Sicilia P, Ibarra G, Rojas RM, López L, Barbás G, Cardozo D, Ré VE, Nates SV. Wastewater based epidemiology as a silent sentinel of the trend of SARS-CoV-2 circulation in the community in central Argentina. WATER RESEARCH 2022; 219:118541. [PMID: 35584586 PMCID: PMC9066365 DOI: 10.1016/j.watres.2022.118541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 05/08/2023]
Abstract
Monitoring wastewater for the traces of viruses allows effective surveillance of entire communities, including symptomatic and asymptomatic infected individuals, providing information on whether a specific pathogen is circulating in a population. In the context of the COVID-19 pandemic, 261 wastewater samples from six communities of the province of Córdoba, Argentina were analyzed. From mid-May 2020 to the end of August 2021, raw sewage samples were collected from the central network pipe that enters into the Wastewater Treatment Plants (WWTP) in Córdoba city and five communities in the Punilla Valley. SARS-CoV-2 was concentrated by using the polyethylene glycol-6000 precipitation method. Viral genomes were extracted from concentrated samples, and N- and E-SARS-CoV-2 genes were detected by using real time RT-PCR. Wastewater samples that resulted positive for SARS-CoV-2 genome detection were subjected to viral variants of concern (VOCs) identification by real time RT-PCR. Overall, just by using the identification of the N gene or E gene, the rates of viral genome detection were 43.4% (86/198) and 51.5% (102/198) respectively, and by using both methodologies (positivity criterion: detection of N and / or E gene), the detection rate was 71.2% (141/198). Thereby, the optimal strategy to study the SARS-CoV-2 genome in wastewater would be the use of the combined detection of both genes. Detection of SARS-CoV-2 variants in wastewater reflected their circulation in the community, showing no VOCs detection in the first COVID-19 wave and their co-circulation with Gamma, Alpha and Delta VOCs during 2021. Therefore, SARS-CoV-2 Wastewater Based Epidemiology (WBE) described the introduction, permanence and/or the co-circulation of viral variants in the community. In geographical areas with a stable population, SARS-CoV-2 WBE could be used as an early warning sign of new COVID-19 cases, whereas in localities with a low number of inhabitants and high tourist influx, WBE may only be useful to reflect the circulation of the virus in the community. Overall, the monitoring of SARS-CoV-2 in wastewater can become a silent sentinel of the trend of viral circulation in the community, providing supplementary information for clinical surveillance to support public health measures.
Collapse
Affiliation(s)
- Gisela Masachessi
- Instituto de Virología Dr. J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina.
| | - Gonzalo Castro
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, T. Cáceres de Allende 421, Córdoba X5000HVE, Argentina
| | - Ariana Mariela Cachi
- Instituto Nacional de Medicina Aeronáutica y Espacial, FAA, Av. Fuerza Aérea Argentina Km 6 1/2 S/N B.0 Civico, Córdoba X5010, Argentina; Facultad de la Fuerza Aérea, Universidad de la Defensa Nacional, Av. Fuerza Aerea Argentina 5011, Córdoba X5000, Argentina
| | - María de Los Ángeles Marinzalda
- Instituto Nacional de Medicina Aeronáutica y Espacial, FAA, Av. Fuerza Aérea Argentina Km 6 1/2 S/N B.0 Civico, Córdoba X5010, Argentina; Facultad de la Fuerza Aérea, Universidad de la Defensa Nacional, Av. Fuerza Aerea Argentina 5011, Córdoba X5000, Argentina
| | - Matías Liendo
- Instituto de Virología Dr. J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina
| | - María Belén Pisano
- Instituto de Virología Dr. J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Paola Sicilia
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, T. Cáceres de Allende 421, Córdoba X5000HVE, Argentina
| | - Gustavo Ibarra
- Planta Municipal de tratamiento de efluente cloacales Bajo Grande-Laboratorio de análisis fisicoquímicos, bacteriológicos EDAR Bajo Grande, Cam. Chacra de la Merced 901, Córdoba X5000, Argentina
| | - Ricardo Manuel Rojas
- Cooperativa Integral Regional de Provisión de Servicios Públicos, Vivienda y Consumo Limitada (COOPI), Moreno 78, Villa Carlos Paz, X5152 Córdoba, Argentina
| | - Laura López
- Área de Epidemiología, Ministerio de Salud de la Provincia de Córdoba, Av. Vélez Sarsfield 2311 Ciudad Universitaria, Córdoba X5016 GCH, Argentina
| | - Gabriela Barbás
- Secretaría de Prevención y Promoción de la Salud, Ministerio de Salud de la Provincia de Córdoba, Av. Vélez Sarsfield 2311 Ciudad Universitaria, Córdoba X5016 GCH, Argentina
| | - Diego Cardozo
- Ministerio de Salud de la Provincia de Córdoba, Argentina Av. Vélez Sarsfield 2311 Ciudad Universitaria, Córdoba X5016 GCH, Argentina
| | - Viviana Elisabeth Ré
- Instituto de Virología Dr. J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Silvia Viviana Nates
- Instituto de Virología Dr. J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina
| |
Collapse
|
31
|
Jiang G, Wu J, Weidhaas J, Li X, Chen Y, Mueller J, Li J, Kumar M, Zhou X, Arora S, Haramoto E, Sherchan S, Orive G, Lertxundi U, Honda R, Kitajima M, Jackson G. Artificial neural network-based estimation of COVID-19 case numbers and effective reproduction rate using wastewater-based epidemiology. WATER RESEARCH 2022; 218:118451. [PMID: 35447417 PMCID: PMC9006161 DOI: 10.1016/j.watres.2022.118451] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/02/2022] [Accepted: 04/10/2022] [Indexed: 05/06/2023]
Abstract
As a cost-effective and objective population-wide surveillance tool, wastewater-based epidemiology (WBE) has been widely implemented worldwide to monitor the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentration in wastewater. However, viral concentrations or loads in wastewater often correlate poorly with clinical case numbers. To date, there is no reliable method to back-estimate the coronavirus disease 2019 (COVID-19) case numbers from SARS-CoV-2 concentrations in wastewater. This greatly limits WBE in achieving its full potential in monitoring the unfolding pandemic. The exponentially growing SARS-CoV-2 WBE dataset, on the other hand, offers an opportunity to develop data-driven models for the estimation of COVID-19 case numbers (both incidence and prevalence) and transmission dynamics (effective reproduction rate). This study developed artificial neural network (ANN) models by innovatively expanding a conventional WBE dataset to include catchment, weather, clinical testing coverage and vaccination rate. The ANN models were trained and evaluated with a comprehensive state-wide wastewater monitoring dataset from Utah, USA during May 2020 to December 2021. In diverse sewer catchments, ANN models were found to accurately estimate the COVID-19 prevalence and incidence rates, with excellent precision for prevalence rates. Also, an ANN model was developed to estimate the effective reproduction number from both wastewater data and other pertinent factors affecting viral transmission and pandemic dynamics. The established ANN model was successfully validated for its transferability to other states or countries using the WBE dataset from Wisconsin, USA.
Collapse
Affiliation(s)
- Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| | - Jiangping Wu
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Jennifer Weidhaas
- University of Utah, Civil and Environmental Engineering, 110 Central Campus Drive, Suite 2000, Salt Lake City, UT, USA
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Yan Chen
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Australia
| | - Jiaying Li
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Australia
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, Jaipur, India
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Kofu, Japan
| | - Samendra Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, USA
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Unax Lertxundi
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, Hokkaido 060-8628, Japan
| | - Greg Jackson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 4102, Brisbane, Australia
| |
Collapse
|
32
|
Fahrenfeld NL, Morales Medina WR, D'Elia S, Modica M, Ruiz A, McLane M. Comparison of residential dormitory COVID-19 monitoring via weekly saliva testing and sewage monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:151947. [PMID: 34838560 PMCID: PMC8611854 DOI: 10.1016/j.scitotenv.2021.151947] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/05/2021] [Accepted: 11/20/2021] [Indexed: 05/09/2023]
Abstract
Wastewater surveillance has been used as a tool for COVID-19 outbreak detection particularly where there was not capability in place for routine and robust individual testing. Given clinical reports that earlier detection is possible following infection from throat/nasal samples compared to fecal samples for COVID-19 patients, the utility of wastewater testing where robust individual testing is possible is less clear. The objective of this study was to compare the results of weekly required COVID-19 saliva tests to weekly wastewater monitoring for residential buildings (i.e., dormitories) located across three college campuses capturing wastewater from 80 to 441 occupants per sampling location. Sampling occurred during the spring semester of the 2021 academic year which captured the third wave of SARS-CoV-2 cases in the study region. Comparison of the saliva and wastewater testing results indicated that the wastewater SARS-CoV-2 concentrations had a strong linear correlation with the previous week's percentage of positive saliva test results and a weak linear correlation with the saliva testing results surrounding the wastewater sampling (four days before and 3 days after). Given that no correlation was observed between the wastewater and the saliva testing from the following week, the weekly saliva testing captured spikes in COVID-19 cases earlier than the weekly wastewater sampling. Interestingly, the N1 gene was observed in buildings on all campuses, but N2 was observed in wastewater on only one of the campuses. N1 and N2 were also observed in sewer biofilm. The campus-specific challenges associated with implementation of wastewater surveillance are discussed. Overall, these results can help inform design of surveillance for early detection of SARS-CoV-2 in residential settings thereby informing mitigation strategies to slow or prevent the spread of the virus among residents in congregate living.
Collapse
Affiliation(s)
- N L Fahrenfeld
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ 08854, USA.
| | | | - Stephanie D'Elia
- Biochemistry and Microbiology, Rutgers, The State University of New Jersey, USA
| | - Maureen Modica
- Environmental Health and Safety, Rutgers, The State University of New Jersey, USA
| | - Alejandro Ruiz
- Environmental Health and Safety, Rutgers, The State University of New Jersey, USA
| | - Mark McLane
- Environmental Health and Safety, Rutgers, The State University of New Jersey, USA
| |
Collapse
|
33
|
Street R, Mathee A, Mangwana N, Dias S, Sharma JR, Ramharack P, Louw J, Reddy T, Brocker L, Surujlal-Naicker S, Berkowitz N, Malema MS, Nkambule S, Webster C, Mahlangeni N, Gelderblom H, Mdhluli M, Gray G, Muller C, Johnson R. Spatial and Temporal Trends of SARS-CoV-2 RNA from Wastewater Treatment Plants over 6 Weeks in Cape Town, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12085. [PMID: 34831841 PMCID: PMC8618134 DOI: 10.3390/ijerph182212085] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
Recent scientific trends have revealed that the collection and analysis of data on the occurrence and fate of SARS-CoV-2 in wastewater may serve as an early warning system for COVID-19. In South Africa, the first COVID-19 epicenter emerged in the Western Cape Province. The City of Cape Town, located in the Western Cape Province, has approximately 4 million inhabitants. This study reports on the monitoring of SARS-CoV-2 RNA in the wastewater of the City of Cape Town's wastewater treatment plants (WWTPs) during the peak of the epidemic. During this period, the highest overall median viral RNA signal was observed in week 1 (9200 RNA copies/mL) and declined to 127 copies/mL in week 6. The overall decrease in the amount of detected viral SARS-CoV-2 RNA over the 6-week study period was associated with a declining number of newly identified COVID-19 cases in the city. The SARS-CoV-2 early warning system has now been established to detect future waves of COVID-19.
Collapse
Affiliation(s)
- Renée Street
- Environment & Health Research Unit, South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (A.M.); (M.S.M.); (S.N.); (C.W.); (N.M.)
| | - Angela Mathee
- Environment & Health Research Unit, South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (A.M.); (M.S.M.); (S.N.); (C.W.); (N.M.)
- Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2092, South Africa
| | - Noluxabiso Mangwana
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (N.M.); (S.D.); (J.R.S.); (P.R.); (J.L.); (C.M.); (R.J.)
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (N.M.); (S.D.); (J.R.S.); (P.R.); (J.L.); (C.M.); (R.J.)
| | - Jyoti Rajan Sharma
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (N.M.); (S.D.); (J.R.S.); (P.R.); (J.L.); (C.M.); (R.J.)
| | - Pritika Ramharack
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (N.M.); (S.D.); (J.R.S.); (P.R.); (J.L.); (C.M.); (R.J.)
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (N.M.); (S.D.); (J.R.S.); (P.R.); (J.L.); (C.M.); (R.J.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Tarylee Reddy
- Biostatistics Unit, South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa;
| | - Ludwig Brocker
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - Swastika Surujlal-Naicker
- Scientific Services, Water and Sanitation Department, City of Cape Town Metropolitan Municipality, Cape Town 8000, South Africa;
| | - Natacha Berkowitz
- Community Services and Health, City Health, City of Cape Town, Hertzog Boulevard, Cape Town 8001, South Africa;
| | - Mokaba Shirley Malema
- Environment & Health Research Unit, South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (A.M.); (M.S.M.); (S.N.); (C.W.); (N.M.)
| | - Sizwe Nkambule
- Environment & Health Research Unit, South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (A.M.); (M.S.M.); (S.N.); (C.W.); (N.M.)
| | - Candice Webster
- Environment & Health Research Unit, South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (A.M.); (M.S.M.); (S.N.); (C.W.); (N.M.)
| | - Nomfundo Mahlangeni
- Environment & Health Research Unit, South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (A.M.); (M.S.M.); (S.N.); (C.W.); (N.M.)
| | - Huub Gelderblom
- COVID-19 Prevention Network (COVPN), Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Mongezi Mdhluli
- Office of the President, South African Medical Research Council, Tygerberg 7050, South Africa;
| | - Glenda Gray
- Chief Research Operations Office, South African Medical Research Council, Tygerberg 7050, South Africa;
| | - Christo Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (N.M.); (S.D.); (J.R.S.); (P.R.); (J.L.); (C.M.); (R.J.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (N.M.); (S.D.); (J.R.S.); (P.R.); (J.L.); (C.M.); (R.J.)
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
34
|
High Intensity Violet Light (405 nm) Inactivates Coronaviruses in Phosphate Buffered Saline (PBS) and on Surfaces. PHOTONICS 2021. [DOI: 10.3390/photonics8100414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It has been proven that visible light with a wavelength of about 405 nm exhibits an antimicrobial effect on bacteria and fungi if the irradiation doses are high enough. Hence, the question arises as to whether this violet light would also be suitable to inactivate SARS-CoV-2 coronaviruses. Therefore, a high-intensity light source was developed and applied to irradiate bovine coronaviruses (BCoV), which are employed as SARS-CoV-2 surrogates for safety reasons. Irradiation is performed in virus solutions diluted with phosphate buffered saline and on steel surfaces. Significant virus reduction by several log levels was observed both in the liquid and on the surface within half an hour with average log reduction doses of 57.5 and 96 J/cm2, respectively. Therefore, it can be concluded that 405 nm irradiation has an antiviral effect on coronaviruses, but special attention should be paid to the presence of photosensitizers in the virus environment in future experiments. Technically, visible violet radiation is therefore suitable for coronavirus reduction, but the required radiation doses are difficult to achieve rapidly.
Collapse
|