1
|
Alvarez-Mora I, Muratuly A, Johann S, Arturi K, Jünger F, Huber C, Hollert H, Krauss M, Brack W, Muz M. High-Throughput Effect-Directed Analysis of Androgenic Compounds in Hospital Wastewater: Identifying Effect Drivers through Non-Target Screening Supported by Toxicity Prediction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 39779692 DOI: 10.1021/acs.est.4c09942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The increasing number of contaminants released into the environment necessitates innovative strategies for their detection and identification, particularly in complex environmental matrices like hospital wastewater. Hospital effluents contain both natural and synthetic hormones that might significantly contribute to endocrine disruption in aquatic ecosystems. In this study, HT-EDA has been implemented to identify the main effect-drivers (testosterone, androsterone and norgestrel) from hospital effluent using microplate fractionation, the AR-CALUX bioassay and an efficient data processing workflow. Through nontargeted screening, over 5000 features (ESI+) were initially detected, but our workflow's prioritization based on androgenic activity prediction reduced the number of features requiring further analysis by over 95%, significantly streamlining the workload. In addition, the semiquantitative nontarget analysis allowed for the calculation of the contribution of an identified compound to the total activity of the sample without the need for reference standards. While this contribution was low (∼4.3%) and applicable to only one compound (1,4-androstadiene-3,17-dione), it presents the first approach for calculating such contributions without relying on standards. Compared to the available alternatives our workflow demonstrates clear environmental relevance by enhancing HT-EDA for more efficient identification and prioritization of effect-drivers in hospital effluents, and it can be adapted to address other environmental threats in complex mixtures.
Collapse
Affiliation(s)
- Iker Alvarez-Mora
- Department Exposure Science, Helmholtz Centre for Environmental Research─UFZ, 04318 Leipzig, Germany
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
| | - Aset Muratuly
- Department Exposure Science, Helmholtz Centre for Environmental Research─UFZ, 04318 Leipzig, Germany
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
| | - Sarah Johann
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Katarzyna Arturi
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Florian Jünger
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Carolin Huber
- Department Exposure Science, Helmholtz Centre for Environmental Research─UFZ, 04318 Leipzig, Germany
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 57392 Schmallenberg, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt am Main, Germany
- Kompetenzzentrum Wasser Hessen, 60438 Frankfurt am Main, Germany
| | - Martin Krauss
- Department Exposure Science, Helmholtz Centre for Environmental Research─UFZ, 04318 Leipzig, Germany
| | - Werner Brack
- Department Exposure Science, Helmholtz Centre for Environmental Research─UFZ, 04318 Leipzig, Germany
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Melis Muz
- Department Exposure Science, Helmholtz Centre for Environmental Research─UFZ, 04318 Leipzig, Germany
| |
Collapse
|
2
|
Klein M, Reibold M, Reinders P, Itzel F, Jaehne M, Gehrmann L, Klaßen MD, Schmidt TC, Türk J. Effect-based analysis of endocrine effects in surface and ground water with focus on progestagenicity using Arxula yeast-based reporter gene assays. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:220-231. [PMID: 39837804 DOI: 10.1093/etojnl/vgae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/20/2024] [Accepted: 10/27/2024] [Indexed: 01/23/2025]
Abstract
The use of effect-based methods in water monitoring for identifying risks to aquatic organisms and human health is important for aiding regulatory decisions. In the past decades, the database on monitoring, especially in surface waters, has grown as this aquatic environment is openly exposed to various contamination sources. With regard to endocrine disruption, estrogenic and androgenic effects have been primarily investigated. Here, yeast-based bioassays emerged as potent tools, offering sensitivity to environmentally relevant concentrations and high robustness. The objectives of this study were to investigate further endocrine endpoints and extend the monitoring to ground waters. The inclusion of progestagenic effects is crucial due to their multifaceted roles in various functions of organisms. Hence, three different Arxula-yeast hormone screens (estrogen, androgen, and progesterone receptors) were applied, revealing simultaneous exposure to diverse endocrine effects in surface and ground water matrices. Although effect profiles in surface waters showed mainly activation of hormone receptors, in-ground water samples inhibitory effects clearly predominate. Although toxicological thresholds are not yet legally binding, they are essential for effective regulatory measures and risk management to ensure the good ecological status of aquatic ecosystems. The results were compared with effect-based trigger values for ecological as well as human risk assessment depending on the sample matrix, none of which were exceeded.
Collapse
Affiliation(s)
- Michelle Klein
- Instrumentelle Analytische Chemie (IAC), Fakultät für Chemie, Universität Duisburg-Essen, Essen, Germany
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Duisburg, Germany
- Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, Essen, Germany
| | - Melissa Reibold
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Duisburg, Germany
| | - Petra Reinders
- Linksniederrheinische Entwässerungs-Genossenschaft (LINEG), Kamp-Lintfort, Germany
| | - Fabian Itzel
- Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, Essen, Germany
- Linksniederrheinische Entwässerungs-Genossenschaft (LINEG), Kamp-Lintfort, Germany
| | | | - Linda Gehrmann
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Duisburg, Germany
- Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, Essen, Germany
| | - Martin Daniel Klaßen
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Duisburg, Germany
| | - Torsten Claus Schmidt
- Instrumentelle Analytische Chemie (IAC), Fakultät für Chemie, Universität Duisburg-Essen, Essen, Germany
- Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, Essen, Germany
| | - Jochen Türk
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Duisburg, Germany
- Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Baetz N, Cunha JR, Itzel F, Schmidt TC, Tuerk J. Effect-directed analysis of endocrine and neurotoxic effects in stormwater depending discharges. WATER RESEARCH 2024; 265:122169. [PMID: 39128332 DOI: 10.1016/j.watres.2024.122169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/06/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024]
Abstract
The investigation of pollutant inputs via stormwater runoff and subsequent effects in receiving waters is becoming increasingly urgent in view of climate change with accompanying extreme weather situations such as heavy rainfall events. In this study, two sampling areas, one urban and one rural but dominated by a highway, were investigated using effect-directed analysis to identify endocrine and neurotoxic effects and potentially responsible substances in stormwater structures and receiving waters. For this purpose, a transgenic yeast cell assay for the simultaneous detection of estrogenic, androgenic, and progestogenic effects (YMEES) was performed directly on high-performance thin-layer chromatography (HPTLC) plates. Concomitantly, estrogens were analyzed by GC-MS/MS and other micropollutants typical for wastewater and stormwater by LC-MS/MS. Discharges from the combined sewer overflow (CSO) contribute a large portion of the endocrine load to the studied water body, even surpassing the load from a nearby wastewater treatment plant (WWTP). An effect pattern similar to the CSO sample was shown in the receiving water after the CSO with lower intensities, consisting of an estrogenic, androgenic, and progestogenic effect. In contrast, after the WWTP, only one estrogenic effect with a lower intensity was detected. Concentrations of E1, 17α-E2, 17β-E2, EE2, and E3 in the CSO sample were 2000, 410, 1100, 560, and 2700 pg/L, respectively. HPTLC-YMEES and GC-MS/MS complement each other very well and help to elucidate endocrine stresses. An Acetylcholinesterase (AChE) inhibitory effect could not be assigned to a causative compound by suspect and non-target analysis using LC-HRMS. However, the workflow showed how information from HPTLC separation, effect-based methods, and other meta-information on the sampling area and substance properties can contribute to an identification of effect-responsible substances. Overall, the study demonstrated that effect-based methods in combination with HPTLC and instrumental analysis can be implemented to investigate pollution by stormwater run-off particularly regarding heavy rain events due to climate change.
Collapse
Affiliation(s)
- Nicolai Baetz
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany; Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Jorge Ricardo Cunha
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany
| | - Fabian Itzel
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany; Linksniederrheinische Entwässerungs-Genossenschaft (LINEG), Körperschaft des öffentlichen Rechts, Friedrich-Heinrich-Allee 64, 47475 Kamp-Lintfort, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Jochen Tuerk
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany.
| |
Collapse
|
4
|
Trejos Delgado C, Dombrowski A, Oehlmann J. Assessing the impact of two conventional wastewater treatment plants on small streams with effect-based methods. PeerJ 2024; 12:e17326. [PMID: 39670086 PMCID: PMC11636737 DOI: 10.7717/peerj.17326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/11/2024] [Indexed: 12/14/2024] Open
Abstract
Sixty percent of discrete surface water bodies in Europe do not meet the requirements for good ecological and chemical status and in Germany, the situation is even worse with over 90% of surface water bodies failing to meet the threshold. In addition to hydromorphological degradation, intensive land use and invasive species, chemical pollution is primarily considered to be responsible for the inadequate ecological status of the water bodies. As a quantitatively important source of micropollutants, wastewater treatment plants (WWTPs) represent an important entry path for chemical stressors. It is therefore important to analyze the effectiveness of the WWTPs in eliminating micropollutants and other chemical stressors to mitigate the negative impacts of the treated wastewater (WW) in aquatic ecosystems. Accordingly, in this study, we evaluated the impacts of two conventional, medium-sized WWTPs on their small receiving water systems in the southwestern region of Hessen in Germany during two sampling campaigns (spring and fall) using effect-based methods (EBM). We hypothesized that due to the insufficient elimination of micropollutants, a broad spectrum of toxic effects would be detected in conventionally treated WW and also in the receiving surface waters downstream the WWTPs. As EBMs a battery of in vitro assays and active biomonitoring using two in vivo assays were applied. The results supported our hypothesis and showed that the untreated WW had a very high baseline toxicity and also high endocrine and mutagenic activities. Conventional WW treatment, consisting of mechanical and biological treatment with nitrification, denitrification and phosphate precipitation, reduced baseline toxicity by more than 90% and endocrine activities by more than 80% in both WWTPs. Despite these high elimination rates, the remaining baseline toxicity, the endocrine, dioxin-like and mutagenic activities of the conventionally treated WW were so high that negative effects on the two receiving waters were to be expected. This was confirmed in the active monitoring with the amphipod Gammarus fossarum and the mudsnail Potamopyrgus antipodarum, as mortality of both species increased downstream of the WWTPs and reproduction in P. antipodarum was also affected. These results indicate that advanced WW treatment is needed to more effectively eliminate chemical stressors to prevent negative impacts of treated WW particularly in small receiving waters.
Collapse
Affiliation(s)
- Catalina Trejos Delgado
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt, Germany
| | - Andrea Dombrowski
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt, Germany
- Kompetenzzentrum Wasser Hessen, Frankfurt, Germany
| |
Collapse
|
5
|
Faulstich L, Wollenweber S, Reinhardt-Imjela C, Arendt R, Schulte A, Hollert H, Schiwy S. Ecotoxicological evaluation of surface waters in Northern Namibia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:456. [PMID: 38630192 PMCID: PMC11024038 DOI: 10.1007/s10661-024-12613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
The increasing pressure on freshwater systems due to intensive anthropogenic use is a big challenge in central-northern Namibia and its catchment areas, the Kunene and the Kavango Rivers, and the Cuvelai-Etosha Basin, that provide water for more than 1 million people. So far, there is no comprehensive knowledge about the ecological status and only few knowledge about the water quality. Therefore, it is crucial to learn about the state of the ecosystem and the ecological effects of pollutants to ensure the safe use of these resources. The surface waters of the three systems were sampled, and three bioassays were applied on three trophic levels: algae, daphnia, and zebrafish embryos. Additionally, in vitro assays were performed to analyze mutagenicity (Ames fluctuation), dioxin-like potential (micro-EROD), and estrogenicity (YES) by mechanism-specific effects. The results show that acute toxicity to fish embryos and daphnia has mainly been detected at all sites in the three catchment areas. The systems differ significantly from each other, with the sites in the Iishana system showing the highest acute toxicity. At the cellular level, only weak effects were identified, although these were stronger in the Iishana system than in the two perennial systems. Algae growth was not inhibited, and no cytotoxic effects could be detected in any of the samples. Mutagenic effects and an estrogenic potential were detected at three sites in the Iishana system. These findings are critical in water resource management as the effects can adversely impact the health of aquatic ecosystems and the organisms within them.
Collapse
Affiliation(s)
- L Faulstich
- Freie Universität Berlin, Berlin, Germany.
- Goethe-Universität Frankfurt, Frankfurt, Germany.
| | | | | | - R Arendt
- Freie Universität Berlin, Berlin, Germany
| | - A Schulte
- Freie Universität Berlin, Berlin, Germany
| | - H Hollert
- Goethe-Universität Frankfurt, Frankfurt, Germany
| | - S Schiwy
- Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
6
|
Fan S, Xu H, Zhang Q, Xu A, Geissen SU, Lebedev AT, Zhang Y. Kinetic constants and transformation products of ornidazole during ozonation. CHEMOSPHERE 2024; 349:140783. [PMID: 38043618 DOI: 10.1016/j.chemosphere.2023.140783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Ornidazole (ONZ), a nitroimidazole antibiotic detected in water bodies, may negatively impact the aquatic ecosystem. Its reaction kinetics during ozonation which is a feasible and applicable technology to control the contamination of emerging contaminants, however, has not been reported in literature. In this study, we measured the apparent second-order kinetic constant of ONZ with ozone molecules via the excessive ozone method and the competing method which led to an average value of 103.8 ± 2.7 M-1 s-1 at pH 7. The apparent second-order kinetic constant of ONZ with HO• was calculated to be 4.65 × 109 M-1 s-1 with the concept of Rct measured via para-chlorobenzoic acid as a probe. The transformation products (TPs) of ONZ during ozonation at pH 3 and pH 11 were separately analyzed with HPLC-MS/MS and some unique products were found at pH 11, reflecting the influence of HO•. The toxicity of individual TPs was predicted with the tool of T.E.S.T. It was found that 62% of 21 identified TPs could be more toxic than ONZ in terms of at least one acute toxicity endpoint, including chlorinated amines and N-oxides. The analysis with a respirometer further revealed that the toxicity of mixing TPs generated at HO• rich conditions was slightly lower than O3 dominated conditions. In general, this study provides the basic kinetic data for designing ozonation processes to eliminate ONZ and the important reference for understanding the toxicity evolution of ONZ during ozonation.
Collapse
Affiliation(s)
- Siyan Fan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Haiyang Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qiqi Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Anlin Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Sven Uwe Geissen
- Technische Universität Berlin, Chair of Environmental Process Engineering, Sekr. KF2, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Albert T Lebedev
- Department of Organic Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
7
|
Rispo F, De Negri Atanasio G, Demori I, Costa G, Marchese E, Perera-Del-Rosario S, Serrano-Candelas E, Palomino-Schätzlein M, Perata E, Robino F, Ferrari PF, Ferrando S, Letasiova S, Markus J, Zanotti-Russo M, Grasselli E. An extensive review on phenolic compounds and their potential estrogenic properties on skin physiology. Front Cell Dev Biol 2024; 11:1305835. [PMID: 38250328 PMCID: PMC10798251 DOI: 10.3389/fcell.2023.1305835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Polyphenolic compounds constitute a diverse group of natural components commonly occurring in various plant species, known for their potential to exert both beneficial and detrimental effects. Additionally, these polyphenols have also been implicated as endocrine-disrupting (ED) chemicals, raising concerns about their widespread use in the cosmetics industry. In this comprehensive review, we focus on the body of literature pertaining to the estrogenic properties of ED chemicals, with a particular emphasis on the interaction of isoflavones with estrogen receptors. Within this review, we aim to elucidate the multifaceted roles and effects of polyphenols on the skin, exploring their potential benefits as well as their capacity to act as ED agents. By delving into this intricate subject matter, we intend to provoke thoughtful consideration, effectively opening a Pandora's box of questions for the reader to ponder. Ultimately, we invite the reader to contemplate whether polyphenols should be regarded as friends or foes in the realm of skincare and endocrine disruption.
Collapse
Affiliation(s)
- Francesca Rispo
- Department of Earth, Environment and Life Science, University of Genoa, Genova, Italy
| | | | - Ilaria Demori
- Department of Pharmacy, University of Genoa, Genova, Italy
| | - Giosuè Costa
- Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Emanuela Marchese
- Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Simón Perera-Del-Rosario
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras (CEEI), Parque Tecnológico de Valencia, Valencia, Spain
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Eva Serrano-Candelas
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras (CEEI), Parque Tecnológico de Valencia, Valencia, Spain
| | | | | | | | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genova, Italy
| | - Sara Ferrando
- Department of Earth, Environment and Life Science, University of Genoa, Genova, Italy
| | | | - Jan Markus
- MatTek In Vitro Life Science Laboratories, Bratislava, Slovakia
| | | | - Elena Grasselli
- Department of Earth, Environment and Life Science, University of Genoa, Genova, Italy
- Interuniversity Center for the Promotion of 3R Principles in Teaching and Research (Centro 3R), Pisa, Italy
- National Center for the Development of New Technologies in Agriculture (Agritech), Napoli, Italy
| |
Collapse
|
8
|
Singh BJ, Chakraborty A, Sehgal R. A systematic review of industrial wastewater management: Evaluating challenges and enablers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119230. [PMID: 37832302 DOI: 10.1016/j.jenvman.2023.119230] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
The study provides a systematic literature review (SLR) encompassing industrial wastewater management research from the past decade, examining enablers, challenges, and prevailing practices. Originating from manufacturing, energy production, and diverse industrial processes, industrial wastewater's handling is critical due to its potential to impact the environment and public health. The research aims to comprehend the current state of industrial wastewater management, pinpoint gaps, and outline future research prospects. The SLR methodology involves scouring the Scopus database, yielding an initial pool of 253 articles. Refinement via search code leaves 101 articles, followed by abstract screening that reduces articles to 79, and finally 66 well-focused articles left for thorough full-text examination. Results underscore the significance of regulatory frameworks, technological innovation, and sustainability considerations as cornerstones for effective wastewater management. However, substantial impediments like; inadequate infrastructure, resource constraints and the necessity for stakeholder collaboration still exist. The study highlights emerging research domains, exemplified by advanced technologies like nanotechnology and bioremediation, alongside the pivotal role of circular economy principles in wastewater management. The SLR offers an exhaustive view of contemporary industrial wastewater management, accentuating the imperative of an all-encompassing approach that integrates regulatory, technological, and sustainability facets. Notably, the research identifies gaps and opportunities for forthcoming exploration, advocating for interdisciplinary research and intensified stakeholder collaboration. The study's insights cater to policymakers, practitioners, and researchers, equipping them to address the challenges and capitalize on prospects in industrial wastewater management effectively.
Collapse
Affiliation(s)
- Bikram Jit Singh
- Mechanical Engineering Dept., MM Engineering College, Maharishi Markandeshwar Deemed to be University, Mullana, 133207, Ambala, Haryana, India
| | | | - Rippin Sehgal
- Department of Biotechnology Engineering, Ambala College of Engineering and Applied Research, Devsthali, Ambala-133101, Haryana, India
| |
Collapse
|
9
|
Gubó E, Plutzer J, Molnár T, Pordán-Háber D, Szabó L, Szalai Z, Gubó R, Szakál P, Szakál T, Környei L, Bede-Fazekas Á, Kalocsai R. A 4-year study of bovine reproductive hormones that are induced by pharmaceuticals and appear as steroid estrogenic pollutants in the resulting slurry, using in vitro and instrumental analytical methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125596-125608. [PMID: 38006481 PMCID: PMC10754748 DOI: 10.1007/s11356-023-31126-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
The main objective of the research was to study the environmental "price" of the large-scale, milk production from a rarely known perspective, from the mapping of the estrogenic footprint (the amount of oestrus-inducer hormonal products, and the generated endoestrogens) in the resulting slurry in a dairy cow farm. These micropollutants are endocrine-disrupting chemicals (EDCs) and can be dangerous to the normal reproductive functions even at ng/kg concentration. One of them, 17ß-estradiol, has a 20,000 times stronger estrogenic effect than bisphenol-A, a widely known EDC of industrial origin. While most studies on EDCs are short-term and/or laboratory based, this study is longitudinal and field-based. We sampled the slurry pool on a quarterly basis between 2017 and 2020. Our purpose was testing the estrogenic effects using a dual approach. As an effect-based, holistic method, we developed and used the YES (yeast estrogen screen) test employing the genetically modified Saccharomyces cerevisiae BJ3505 strain which contains human estrogenic receptor. For testing exact molecules, UHPLC-FLD was used. Our study points out that slurry contains a growing amount of EDCs with the risk of penetrating into the soil, crops and the food chain. Considering the Green Chemistry concept, the most benign ways to prevent of the pollution of the slurry is choosing appropriate oestrus-inducing veterinary pharmaceuticals (OIVPs) and the separation of the solid and liquid parts with adequate treatment methods. To our knowledge, this is the first paper on the adaptation of the YES test for medicine and slurry samples, extending its applicability. The adapted YES test turned out to be a sensitive, robust and reliable method for testing samples with potential estrogenic effect. Our dual approach was successful in evaluating the estrogenic effect of the slurry samples.
Collapse
Affiliation(s)
- Eduárd Gubó
- Albert Kázmér Faculty, Széchenyi István University, Vár Tér 2, 9200, Mosonmagyaróvár, Hungary.
- reAgro Research and Development Ltd., Győrújbarát, Hungary.
| | - Judit Plutzer
- Albert Kázmér Faculty, Széchenyi István University, Vár Tér 2, 9200, Mosonmagyaróvár, Hungary
| | - Tibor Molnár
- Albert Kázmér Faculty, Széchenyi István University, Vár Tér 2, 9200, Mosonmagyaróvár, Hungary
| | - Dóra Pordán-Háber
- Albert Kázmér Faculty, Széchenyi István University, Vár Tér 2, 9200, Mosonmagyaróvár, Hungary
- reAgro Research and Development Ltd., Győrújbarát, Hungary
| | - Lili Szabó
- Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Geographical Institute, Budapest, Hungary
| | - Zoltán Szalai
- Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Geographical Institute, Budapest, Hungary
| | - Richard Gubó
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Huairou District, Beijing, 101407, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing, 101400, China
| | - Pál Szakál
- Albert Kázmér Faculty, Széchenyi István University, Vár Tér 2, 9200, Mosonmagyaróvár, Hungary
| | - Tamás Szakál
- Albert Kázmér Faculty, Széchenyi István University, Vár Tér 2, 9200, Mosonmagyaróvár, Hungary
| | - László Környei
- Department of Mathematics and Computational Sciences, Széchenyi István University, Győr, Hungary
| | - Ákos Bede-Fazekas
- Department of Environmental and Landscape Geography, Eötvös Lóránd University, Budapest, Hungary
| | - Renátó Kalocsai
- Albert Kázmér Faculty, Széchenyi István University, Vár Tér 2, 9200, Mosonmagyaróvár, Hungary
| |
Collapse
|
10
|
Zhang L, Zhang Y, Zhu M, Chen L, Wu B. A critical review on quantitative evaluation of aqueous toxicity in water quality assessment. CHEMOSPHERE 2023; 342:140159. [PMID: 37716564 DOI: 10.1016/j.chemosphere.2023.140159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Conventional chemical techniques have inherent limitations in detecting unknown chemical substances in water. As a result, effect-based methods have emerged as a viable alternative to overcome these limitations. These methods provide more accurate and intuitive evaluations of the toxic effects of water. While numerous studies have been conducted, only a few have been applied to national water quality monitoring. Therefore, it is crucial to develop toxicity evaluation methods and establish thresholds based on quantifying toxicity. This article provides an overview of the development and application of bioanalytical tools, including in vitro and in vivo bioassays. The available methods for quantifying toxicity are then summarized. These methods include aquatic life criteria for assessing the toxicity of a single compound, comprehensive wastewater toxicity testing for all contaminants in a water sample (toxicity units, whole effluent toxicity, the potential ecotoxic effects probe, the potential toxicology method, and the lowest ineffective dilution), methods based on mechanisms and relative toxicity ratios for substances with the same mode of action (the toxicity equivalency factors, toxic equivalents, bioanalytical equivalents), and effect-based trigger values for micropollutants. The article also highlights the advantages and disadvantages of each method. Finally, it proposes potential areas for applying toxicity quantification methods and offers insights into future research directions. This review emphasizes the significance of enhancing the evaluation methods for assessing aqueous toxicity in water quality assessment.
Collapse
Affiliation(s)
- Linyu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Mengyuan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Kim F, Pablo GF, Lubertus B, Lutz A, Karin W, Félix H, Agneta O, Johan L. Effect-based evaluation of water quality in a system of indirect reuse of wastewater for drinking water production. WATER RESEARCH 2023; 242:120147. [PMID: 37320875 DOI: 10.1016/j.watres.2023.120147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Indirect potable reuse of wastewater is a practice that is gaining attention, aiming to increase freshwater supplies to meet water scarcity. However, reusing effluent wastewater for drinking water production comes with a paired risk of adverse health effects, due to the potential presence of pathogenic microorganisms and hazardous micropollutants. Disinfection is an established method to reduce microbial hazards in drinking water, but it has been associated with formation of disinfection by-products (DBPs). In this study, we performed an effect-based assessment of chemical hazards in a system wherein a full-scale trial of disinfection by chlorination, of the treated wastewater was performed prior discharge to the reciepient river. The presence of bioactive pollutants was assessed along the entire treatment system, starting from incoming wastewater to finished drinking water at seven sites in and around the Llobregat River in Barcelona, Spain. Samples were collected in two campaigns, with and without applied chlorination treatment (13 mg Cl2/L) to the effluent wastewater. The water samples were analysed for cell viability, oxidative stress response (Nrf2 activity), estrogenicity, androgenicity, aryl hydrocarbon receptor (AhR) activity and activation of NFĸB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling using stably transfected mammalian cell lines. Nrf2 activity, estrogen receptor activation and AhR activation was detected in all investigated samples. Overall, removal efficiencies were high in both wastewater treatment and drinking water treatment samples for most of the studied endpoints. No increase in oxidative stress (Nrf2 activity) could be attributed to the additional chlorination treatment of the effluent wastewater. However, we found an increase in AhR activity and a reduction of ER agonistic activity after chlorination treatment of effluent wastewater. The bioactivity detected in finished drinking water was considerably lower compared to what was found in effluent wastewater. We could thus conclude that indirect reuse of treated wastewater for drinking water production can be possible without compromising drinking water quality. This study contributed important knowledge in efforts to increase the reuse of treated wastewater as a source for drinking water production.
Collapse
Affiliation(s)
- Frieberg Kim
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, Uppsala SE-750 07, Sweden.
| | - Gago-Ferrero Pablo
- Department of Environmental Chemistry, Spanish Council of Scientific Research (CSIC), Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Jordi Girona, 18-26, Barcelona 08034, Spain; Edifici H20 - Parc Cientific i Tecnològic de Girona, Catalan Institute for Water Research (ICRA), Institut Català de Recerca de l'Aigua (ICRA), Carrer Emili Grahit, 101, Girona E-17003, Spain
| | - Bijlsma Lubertus
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón E-12071, Spain
| | - Ahrens Lutz
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050 SE, Uppsala 750 07, Sweden
| | - Wiberg Karin
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050 SE, Uppsala 750 07, Sweden
| | - Hernández Félix
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón E-12071, Spain
| | - Oskarsson Agneta
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, Uppsala SE-750 07, Sweden
| | - Lundqvist Johan
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, Uppsala SE-750 07, Sweden
| |
Collapse
|
12
|
Finckh S, Buchinger S, Escher BI, Hollert H, König M, Krauss M, Leekitratanapisan W, Schiwy S, Schlichting R, Shuliakevich A, Brack W. Endocrine disrupting chemicals entering European rivers: Occurrence and adverse mixture effects in treated wastewater. ENVIRONMENT INTERNATIONAL 2022; 170:107608. [PMID: 36343551 PMCID: PMC9720157 DOI: 10.1016/j.envint.2022.107608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
In the present study on endocrine disrupting chemicals (EDCs) in treated wastewater, we used chemical and effect-based tools to analyse 56 wastewater treatment plant (WWTP) effluents from 15 European countries. The main objectives were (i) to compare three different receptor-based estrogenicity assays (ERα-GeneBLAzer, p-YES, ERα-CALUX®), and (ii) to investigate a combined approach of chemical target analysis and receptor-based testing for estrogenicity, glucocorticogenic activity, androgenicity and progestagenic activity (ERα-, GR-, AR- and PR-GeneBLAzer assays, respectively) in treated wastewater. A total of 56 steroids and phenols were detected at concentrations ranging from 25 pg/L (estriol, E3) up to 2.4 μg/L (cortisone). WWTP effluents, which passed an advanced treatment via ozonation or via activated carbon, were found to be less contaminated, in terms of lower or no detection of steroids and phenols, as well as hormone receptor-mediated effects. This result was confirmed by the effect screening, including the three ERα-bioassays. In the GeneBLAzer assays, ERα-activity was detected in 82 %, and GR-activity in 73 % of the samples, while AR- and PR-activity were only measured in 14 % and 21 % of the samples, respectively. 17β-estradiol was confirmed as the estrogen dominating the observed estrogenic mixture effect and triamcinolone acetonide was the dominant driver of glucocorticogenic activity. The comparison of bioanalytical equivalent concentrations (BEQ) predicted from the detected concentrations and the relative effect potency (BEQchem) with measured BEQ (BEQbio) demonstrated good correlations of chemical target analysis and receptor-based testing results with deviations mostly within a factor of 10. Bioassay-specific effect-based trigger values (EBTs) from the literature, but also newly calculated EBTs based on previously proposed derivation options, were applied and allowed a preliminary assessment of the water quality of the tested WWTP effluent samples. Overall, this study demonstrates the high potential of linking chemical with effect-based analysis in water quality assessment with regard to EDC contamination.
Collapse
Affiliation(s)
- Saskia Finckh
- Department of Effect-Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main, Germany.
| | - Sebastian Buchinger
- Department of Biochemistry and Ecotoxicology, Federal Institute for Hydrology - BfG, Koblenz, Germany
| | - Beate I Escher
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University, Tübingen, Germany
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Maria König
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin Krauss
- Department of Effect-Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Warich Leekitratanapisan
- Environmental Toxicology Unit - GhEnToxLab, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sabrina Schiwy
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Rita Schlichting
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Aliaksandra Shuliakevich
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Werner Brack
- Department of Effect-Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Gwak J, Lee J, Cha J, Kim M, Hur J, Cho J, Kim MS, Jang KS, Giesy JP, Hong S, Khim JS. Molecular Characterization of Estrogen Receptor Agonists during Sewage Treatment Processes Using Effect-Directed Analysis Combined with High-Resolution Full-Scan Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13085-13095. [PMID: 35973975 DOI: 10.1021/acs.est.2c03428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endocrine-disrupting potential was evaluated during the sewage treatment process using in vitro bioassays. Aryl hydrocarbon receptor (AhR)-, androgen receptor (AR)-, glucocorticoid receptor (GR)-, and estrogen receptor (ER)-mediated activities were assessed over five steps of the treatment process. Bioassays of organic extracts showed that AhR, AR, and GR potencies tended to decrease through the sewage treatment process, whereas ER potencies did not significantly decrease. Bioassays on reverse-phase high-performance liquid chromatography fractions showed that F5 (log KOW 2.5-3.0) had great ER potencies. Full-scan screening of these fractions detected two novel ER agonists, arenobufagin and loratadine, which are used pharmaceuticals. These compounds accounted for 3.3-25% of the total ER potencies and 4% of the ER potencies in the final effluent. The well-known ER agonists, estrone and 17β-estradiol, accounted for 60 and 17% of the ER potencies in F5 of the influent and primary treatment, respectively. Fourier transform ion cyclotron resonance mass spectrometry analysis showed that various molecules were generated during the treatment process, especially CHO and CHOS (C: carbon, H: hydrogen, O: oxygen, and S: sulfur). This study documented that widely used pharmaceuticals are introduced into the aquatic environments without being removed during the sewage treatment process.
Collapse
Affiliation(s)
- Jiyun Gwak
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihyun Cha
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mungi Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Min Sung Kim
- Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Kyoung-Soon Jang
- Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon SK S7N5B3, Canada
- Department of Environmental Science, Baylor University, Waco, Texas 76798-7266, United States
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Hader JD, Lane T, Boxall ABA, MacLeod M, Di Guardo A. Enabling forecasts of environmental exposure to chemicals in European agriculture under global change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156478. [PMID: 35667426 DOI: 10.1016/j.scitotenv.2022.156478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
European agricultural development in the 21st century will be affected by a host of global changes, including climate change, changes in agricultural technologies and practices, and a shift towards a circular economy. The type and quantity of chemicals used, emitted, and cycled through agricultural systems in Europe will change, driven by shifts in the use patterns of pesticides, veterinary pharmaceuticals, reclaimed wastewater used for irrigation, and biosolids. Climate change will also impact the chemical persistence, fate, and transport processes that dictate environmental exposure. Here, we review the literature to identify research that will enable scenario-based forecasting of environmental exposures to organic chemicals in European agriculture under global change. Enabling exposure forecasts requires understanding current and possible future 1.) emissions, 2.) persistence and transformation, and 3.) fate and transport of agricultural chemicals. We discuss current knowledge in these three areas, the impact global change drivers may have on them, and we identify knowledge and data gaps that must be overcome to enable predictive scenario-based forecasts of environmental exposure under global change. Key research gaps identified are: improved understanding of relationships between global change and chemical emissions in agricultural settings; better understanding of environment-microbe interactions in the context of chemical degradation under future conditions; and better methods for downscaling climate change-driven intense precipitation events for chemical fate and transport modelling. We introduce a set of narrative Agricultural Chemical Exposure (ACE) scenarios - augmenting the IPCC's Shared Socio-economic Pathways (SSPs) - as a framework for forecasting chemical exposure in European agriculture. The proposed ACE scenarios cover a plausible range of optimistic to pessimistic 21st century development pathways. Filling the knowledge and data gaps identified within this study and using the ACE scenario approach for chemical exposure forecasting will support stakeholder planning and regulatory intervention strategies to ensure European agricultural practices develop in a sustainable manner.
Collapse
Affiliation(s)
- John D Hader
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
| | - Taylor Lane
- Department of Environment and Geography, University of York, Heslington, York, North Yorkshire YO10 5NG, United Kingdom
| | - Alistair B A Boxall
- Department of Environment and Geography, University of York, Heslington, York, North Yorkshire YO10 5NG, United Kingdom
| | - Matthew MacLeod
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden.
| | - Antonio Di Guardo
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, CO, Italy
| |
Collapse
|
15
|
Gollong G, Neuwald IJ, Kuckelkorn J, Junek R, Zahn D. Assessing the protection gap for mobile and persistent chemicals during advanced water treatment - A study in a drinking water production and wastewater treatment plant. WATER RESEARCH 2022; 221:118847. [PMID: 35841789 DOI: 10.1016/j.watres.2022.118847] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/27/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Persistent and mobile (PM) chemicals spread quickly in the water cycle and can reach drinking water. If these chemicals are also toxic (PMT) they may pose a threat to the aquatic environment and drinking water alike, and thus measures to prevent their spread are necessary. In this study, nontarget screening and cell-based toxicity tests after a polarity-based fractionation into polar and non-polar chemicals are utilized to assess and compare the effectiveness of ozonation and filtration through activated carbon in a wastewater treatment and drinking water production plant. Especially during wastewater treatment, differences in removal efficiency were evident. While median areas of non-polar features were reduced by a factor of 270, median areas for polar chemicals were only reduced by a factor of 4. Polar features showed significantly higher areas than their non-polar counterparts in wastewater treatment plant effluent and finished drinking water, implying a protection gap for these chemicals. Toxicity tests revealed higher initial toxicities (especially oxidative stress and estrogenic activity) for the non-polar fraction, but also showed a more pronounced decrease during treatment. Generally, the toxicity of the effluent was low for both fractions. Combined, these results imply a less effective removal but also a lower toxicity of polar chemicals. The behaviour of features during advanced waste and drinking water treatment was used to classify them as either PM chemicals or mobile transformation products (M-TPs). A suspect screening of the 476 highest intensity PM chemicals and M-TPs in 57 environmental and tap water samples showed high frequencies of detection (median >80%), which indicates the wide distribution of these chemicals in the aquatic environment and thus supports the chosen classification approach and the more generally applicability of obtained insights.
Collapse
Affiliation(s)
- Grete Gollong
- Hochschule Fresenius gem. GmbH, Limburger Str. 2, Idstein, 65510, Germany
| | - Isabelle J Neuwald
- Hochschule Fresenius gem. GmbH, Limburger Str. 2, Idstein, 65510, Germany
| | - Jochen Kuckelkorn
- Umweltbundesamt, Section Toxicology of Drinking Water and Swimming Pool Water, Heinrich-Heine-Strasse 12, Bad Elster, 08645, Germany
| | - Ralf Junek
- Umweltbundesamt, Section Toxicology of Drinking Water and Swimming Pool Water, Heinrich-Heine-Strasse 12, Bad Elster, 08645, Germany
| | - Daniel Zahn
- Hochschule Fresenius gem. GmbH, Limburger Str. 2, Idstein, 65510, Germany.
| |
Collapse
|
16
|
Possibilities of Real Time Monitoring of Micropollutants in Wastewater Using Laser-Induced Raman & Fluorescence Spectroscopy (LIRFS) and Artificial Intelligence (AI). SENSORS 2022; 22:s22134668. [PMID: 35808163 PMCID: PMC9268973 DOI: 10.3390/s22134668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
The entire water cycle is contaminated with largely undetected micropollutants, thus jeopardizing wastewater treatment. Currently, monitoring methods that are used by wastewater treatment plants (WWTP) are not able to detect these micropollutants, causing negative effects on aquatic ecosystems and human health. In our case study, we took collective samples around different treatment stages (aeration tank, membrane bioreactor, ozonation) of a WWTP and analyzed them via Deep-UV laser-induced Raman and fluorescence spectroscopy (LIRFS) in combination with a CNN-based AI support. This process allowed us to perform the spectra recognition of selected micropollutants and thus analyze their reliability. The results indicated that the combination of sensitive fluorescence measurements with very specific Raman measurements, supplemented with an artificial intelligence, lead to a high information gain for utilizing it as a monitoring purpose. Laser-induced Raman spectroscopy reaches detections limits of alert pharmaceuticals (carbamazepine, naproxen, tryptophan) in the range of a few µg/L; naproxen is detectable down to 1 × 10−4 mg/g. Furthermore, the monitoring of nitrate after biological treatment using Raman measurements and AI support showed a reliable assignment rate of over 95%. Applying the fluorescence technique seems to be a promising method in observing DOC changes in wastewater, leading to a correlation coefficient of R2 = 0.74 for all samples throughout the purification processes. The results also showed the influence of different extraction points in a cleaning stage; therefore, it would not be sensible to investigate them separately. Nevertheless, the interpretation suffers when many substances interact with one another and influence their optical behavior. In conclusion, the results that are presented in our paper elucidate the use of LIRFS in combination with AI support for online monitoring.
Collapse
|
17
|
Kienle C, Werner I, Fischer S, Lüthi C, Schifferli A, Besselink H, Langer M, McArdell CS, Vermeirssen ELM. Evaluation of a full-scale wastewater treatment plant with ozonation and different post-treatments using a broad range of in vitro and in vivo bioassays. WATER RESEARCH 2022; 212:118084. [PMID: 35114528 DOI: 10.1016/j.watres.2022.118084] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Micropollutants present in the effluent of wastewater treatment plants (WWTPs) after biological treatment are largely eliminated by effective advanced technologies such as ozonation. Discharge of contaminants into freshwater ecosystems can thus be minimized, while simultaneously protecting drinking water resources. However, ozonation can lead to reactive and potentially toxic transformation products. To remove these, the Swiss Federal Office for the Environment recommends additional "post-treatment" of ozonated WWTP effluent using sand filtration, but other treatments may be similarly effective. In this study, 48 h composite wastewater samples were collected before and after full-scale ozonation, and after post-treatments (full-scale sand filtration, pilot-scale fresh and pre-loaded granular activated carbon, and fixed and moving beds). Ecotoxicological tests were performed to quantify the changes in water quality following different treatment steps. These included standard in vitro bioassays for the detection of endocrine, genotoxic and mutagenic effects, as well as toxicity to green algae and bacteria, and flow-through in vivo bioassays using oligochaetes and early life stages of rainbow trout. Results show that ozonation reduced a number of ecotoxicological effects of biologically treated wastewater by 66 - 93%: It improved growth and photosynthesis of green algae, decreased toxicity to luminescent bacteria, reduced concentrations of hormonally active contaminants and significantly changed expression of biomarker genes in rainbow trout liver. Bioassay results showed that ozonation did not produce problematic levels of reaction products overall. Small increases in toxicity observed in a few samples were reduced or eliminated by post-treatments. However, only relatively fresh granular activated carbon (analyzed at 13,000 - 20,000 bed volumes) significantly reduced effects additionally (by up to 66%) compared to ozonation alone. Inhibition of algal photosynthesis, rainbow trout liver histopathology and biomarker gene expression proved to be sufficiently sensitive endpoints to detect the change in water quality achieved by post-treatment.
Collapse
Affiliation(s)
- Cornelia Kienle
- Swiss Centre for Applied Ecotoxicology, CH-8600 Dübendorf, CH-1015 Lausanne, Switzerland.
| | - Inge Werner
- Swiss Centre for Applied Ecotoxicology, CH-8600 Dübendorf, CH-1015 Lausanne, Switzerland
| | - Stephan Fischer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Christina Lüthi
- Swiss Centre for Applied Ecotoxicology, CH-8600 Dübendorf, CH-1015 Lausanne, Switzerland
| | - Andrea Schifferli
- Swiss Centre for Applied Ecotoxicology, CH-8600 Dübendorf, CH-1015 Lausanne, Switzerland
| | - Harrie Besselink
- BioDetection Systems B.V. (BDS), Amsterdam, 1098 XH, Netherlands
| | - Miriam Langer
- Swiss Centre for Applied Ecotoxicology, CH-8600 Dübendorf, CH-1015 Lausanne, Switzerland
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | | |
Collapse
|
18
|
Shuliakevich A, Muz M, Oehlmann J, Nagengast L, Schröder K, Wolf Y, Brückner I, Massei R, Brack W, Hollert H, Schiwy S. Assessing the genotoxic potential of freshwater sediments after extensive rain events - Lessons learned from a case study in an effluent-dominated river in Germany. WATER RESEARCH 2022; 209:117921. [PMID: 34923444 DOI: 10.1016/j.watres.2021.117921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Wastewater treatment plant effluents and releases from rainwater overflow basins can contribute to the input of genotoxic micropollutants in aquatic ecosystems. Predominantly lipophilic genotoxic compounds tend to sorb to particulate matter, making sediment a source and a sink of pollution. Therefore, the present study aims to investigate the genotoxic potential of freshwater sediments (i) during the dry period and (ii) after extensive rain events by collecting sediment samples in one small anthropogenically impacted river in Germany up- and downstream of the local wastewater treatment plant. The Micronucleus and Ames fluctuation assays with Salmonella typhimurium strains TA98, TA100, YG1041, and YG1042 were used to assess the genotoxic potential of organic sediment extracts. For evaluation of possible genotoxicity drivers, target analysis for 168 chemical compounds was performed. No clastogenic effects were observed, while the genotoxic potential was observed at all sampling sites primarily driven by polycyclic aromatic hydrocarbons, nitroarenes, aromatic amines, and polycyclic heteroarenes. Freshwater sediments' genotoxic potential increased after extensive rain events due to sediment perturbation and the rainwater overflow basin release. In the present study, the rainwater overflow basin was a significant source for particle-bound pollutants from untreated wastewater, suggesting its role as a possible source of genotoxic potential. The present study showed high sensitivity and applicability of the bacterial Salmonella typhimurium strains YG1041 and YG1042 to organic sediment extracts to assess the different classes of genotoxic compounds. A combination of effect-based methods and a chemical analysis was shown as a suitable tool for a genotoxic assessment of freshwater sediments.
Collapse
Affiliation(s)
- Aliaksandra Shuliakevich
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| | - Melis Muz
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| | - Laura Nagengast
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Katja Schröder
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Yvonne Wolf
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Ira Brückner
- Eifel-Rur Waterboard (WVER), Eisenbahnstr. 5, 52354 Düren, Germany
| | - Riccardo Massei
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Werner Brack
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany; Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany.
| | - Sabrina Schiwy
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| |
Collapse
|