1
|
Rong L, Wang Y, Meidl P, Baqar M, Li A, Wang L, Sun H. Insights into soil microbial assemblages and nitrogen cycling function responses to conventional and biodegradable microplastics. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137889. [PMID: 40081053 DOI: 10.1016/j.jhazmat.2025.137889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Biodegradable microplastics (MPs) are proposed as sustainable alternatives to conventional MPs, yet their distinct effects on soil microbial communities and ecological functions remain insufficiently understood. This study compares the impacts of biodegradable polylactic acid (PLA) and conventional polyvinyl chloride (PVC) MPs on soil microbial assemblages and nitrogen cycling. Fluorescein diacetate hydrolase (FDAse) activity was temporarily stimulated by 2 % (w/w) PLA and PVC MPs, while 7 % (w/w) PVC MPs initially inhibited FDAse activity before promoting it. PLA MPs (2 % and 7 %, w/w) dramatically reduced bacterial diversity and altered community structure, enriching genera such as Nocardioides, Arthrobacter, Agromyces, Amycolatopsis, Saccharothrix, and Ramlibacter, known for degrading complex compounds. Conversely, PVC MPs (2 % and 7 %, w/w) showed minimal influence on bacterial diversity, with only temporary structural shifts at high concentrations (7 % w/w). Network analysis revealed greater microbial complexity with PLA MPs, where MPs-degrading taxa emerged as keystone species. PLA MPs at both concentrations notably increased the abundance of nitrogenase iron protein subunit H gene (nifH) and nitrogen-fixing bacteria, such as Bradyrhizobium, while also sustaining ammonia monooxygenase subunit A gene (AOB amoA) effects up to day 90. At higher doses (7 % w/w), PLA MPs enriched copper-containing nitrite reductase gene (nirK) and cytochrome cd1 nitrite reductase gene (nirS) abundance, boosting denitrifiers like Cupriavidus, Pseudarthrobacter, and Ensifer. In contrast, PVC MPs showed short-term effects on nitrogen cycling function. These findings have important implications for promoting sustainable agriculture and managing the environmental risks posed by MPs in soil ecosystems.
Collapse
Affiliation(s)
- Lili Rong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Peter Meidl
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin 14195, Germany
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Andi Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Yang JT, Zhang Y, Xiong SY, Wei HJ, Zhang WT, Lian XL, Xu XL, Jiang HX, Sun J. Microplastics reduced the natural attenuation of antibiotic resistance genes in fertilized soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126144. [PMID: 40154870 DOI: 10.1016/j.envpol.2025.126144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The prolonged application of mulch and manure in agriculture has led to significant microplastic (MP) pollution in fertilized soils, raising global concerns about its potential impacts on soil health and ecosystem function. However, the effects of MP exposure on antibiotic resistance genes (ARGs) and microbial communities in fertilized soils are unknown. Therefore, we comprehensively explored the trends and drivers of ARGs during their natural abatement under the stress of conventional and biodegradable MP addition in fertilized soils using a soil microcosm experiment and metagenomic. The findings indicated that the presence of polybutylene succinate MPs (PBS-MPs) reduced the natural attenuation rate of ARGs in fertilized soils while increasing the fraction of high-risk ARGs in soils. Microbial communities and mobile genetic elements (MGEs) mainly drove the inhibitory effect of MPs on ARG abatement. Interestingly, most potential hosts for the coexistence of ARGs, metal resistance genes (MRGs), and MGEs were annotated as pathogens, such as Escherichia spp., Salmonella spp., and Klebsiella spp. In addition, MP stress in fertilized soil may lead to long-term contamination by highly virulent and antibiotic-resistant Escherichia coli. MPs influence the distribution of carbon sources, which in turn reduces the diversity and stability of soil microbial communities, while simultaneously promoting the colonization of crucial ARG hosts, like Dyella spp. This ultimately prolonged the high-risk state for ARG proliferation in the soil. This study highlights the significant risk posed by MPs to the persistence and spread of ARGs in fertilized soils. These results provide valuable insights for managing MP contamination in agricultural systems, emphasizing the need for sustainable practices to mitigate the long-term environmental risks associated with MP pollution.
Collapse
Affiliation(s)
- Jin-Tao Yang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shi-Yu Xiong
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Hai-Jing Wei
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Wan-Ting Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin-Lei Lian
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiao-Li Xu
- Instrumental Analysis & Research Center, South China Agricultural University, Guangzhou, 510642, PR China
| | - Hong-Xia Jiang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
3
|
Liu X, Li H, Yang J, Yan S, Zhou Y, Jiang R, Li R, Wang M, Ren P. Different effects of bio/non-degradable microplastics on sewage sludge compost performance: Focusing on antibiotic resistance genes, virulence factors and key metabolic functions. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137329. [PMID: 39879766 DOI: 10.1016/j.jhazmat.2025.137329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Microplastics (MP) have aroused increasing concern due to the negative environmental impact. However, the impact of bio/non-biodegradable MPs on the sludge composting process has not been thoroughly investigated. This study examined antibiotic resistance genes (ARGs), virulence factors (VFs), and microbial community functions in sludge compost with the application of polylactic acid (PLA) and polypropylene (PP), using metagenomic sequencing. The findings indicated that both types of MPs could extend the thermophilic phase, enhance microbial activity, and inhibit the formation of humic acids. Compared to CK, the subtypes of ARGs decreased 4.22 % and 13.11 % in PLA and PP groups, respectively. But new ARGs emerged, particularly in the PLA group. The proportions of ARGs related to efflux and VFs associated with the adhesion system increased 1.62 %-2.27 % and 55.56 %-60.00 %, respectively, in MPs-added composts. The relative abundance of potential bacterial hosts (e.g., Psychrobacter) carrying multiple ARGs and VFs was much higher in PLA-added compost than in the other two. Moreover, PP facilitated denitrification process and PLA enhanced dissimilatory nitrate reduction to ammonium. Both types of MPs inhibited assimilatory nitrate reduction to ammonia but promoted inorganic nitrogen assimilation. This study broadens our understanding of the potential environmental risks posed by biodegradable and non-biodegradable microplastics on sludge compost and offers valuable insights for the management and application of compost products.
Collapse
Affiliation(s)
- Xiangyu Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huiyue Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Yang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shen Yan
- Staff Development Institute of China National Tobacco Corporation, Zhengzhou 450000, China
| | - Yufei Zhou
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Jiang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Renhe Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mengmeng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Peng Ren
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China
| |
Collapse
|
4
|
Jiang Z, Zeng J, Wang X, Yu H, Yue L, Wang C, Chen F, Wang Z. Biodegradable microplastics and dissemination of antibiotic resistance genes: An undeniable risk associated with plastic additives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125952. [PMID: 40032228 DOI: 10.1016/j.envpol.2025.125952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Biodegradable plastics (BDPs) represent a promising alternative to conventional plastics; however, the release of microplastics (MPs) during degradation necessitates an urgent investigation into their biological effects. The potential risks associated with MPs and additives released from BDPs, particularly in facilitating the dissemination of antibiotic resistance genes (ARGs), remain largely unknown. This study aims to investigate the effects of polylactic acid (PLA) MPs and their common plasticizer, dibutyl phthalate (DBP), on the horizontal gene transfer (HGT) of ARGs using conjugative transfer and transformation model systems. The viability of Escherichia coli (E. coli) cells after exposure to PLA MPs (0.01, 0.1, 1, and 10 mg L-1), DBP (0.01, 0.1, 1, and 10 μg L-1) alone, or in combination (1 mg L-1 PLA MPs + 1 μg L-1DBP) remained unaffected. Exposure to PLA MPs at environmentally relevant concentrations did not promote the HGT of ARGs. However, the addition of DBP significantly enhanced the transfer frequency by 1.5-1.8 folds compared to exposure to PLA MPs alone. The accelerated dissemination of ARGs was primarily attributed to the elevated levels of reactive oxygen species (by 26.2%), increased membrane permeability (by 19.4%), and the up-regulation of genes involved in mating pair formation (by 1.6-3.8 folds) and DNA translocation (by 1.5-3.4 folds). These findings underscore the critical role of additives and highlight the potential accumulative effects associated with prolonged exposure to high concentrations of PLA MPs, which should be considered for a comprehensive risk assessment of BDPs.
Collapse
Affiliation(s)
- Zhaoheng Jiang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China; Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Jianxiong Zeng
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Hanxiao Yu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Feiran Chen
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China; Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
5
|
Yu T, Cheng L, Zhang Q, Yang J, Zang H, Zeng Z, Yang Y. Characterization of antibiotic resistance genes and virulence factors in organic managed tea plantation soils in southwestern China by metagenomics. Front Microbiol 2025; 16:1580450. [PMID: 40376454 PMCID: PMC12078288 DOI: 10.3389/fmicb.2025.1580450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/14/2025] [Indexed: 05/18/2025] Open
Abstract
Sustainable organic management practices have gained significant attentions for its potential health and environmental benefits. However, the spread of antibiotic resistance genes (ARGs) and virulence factors (VFs) in soils, plants, and agricultural products has severely limited the development of organic managements on agriculture. At present, the distribution and assembly of ARGs and VFs in organic managed tea plantation systems remains largely unknown. Here, we used metagenomic analysis to explore soil microbial taxa, ARGs and VFs in 20 years of conventional managed (CM) and organic managed (OM) tea plantation soils. Results showed that total abundance of ARGs in OM was 16.9% (p < 0.001) higher than that in CM, and the increased ARGs were rpoB2, evgS, MuxB, TaeA, and efrA. As for VFs, OM significantly increased the abundance of adherence, stress protein and actin-based motility compared to CM. Moreover, OM increased the relative abundance of soil microbial taxa harboring ARGs and VFs, which were Streptomyces, Pseudomonas, and Terrabacter, compared to CM. Network analysis suggested that OM increased the positive interactions of microbial taxa-ARGs, microbial taxa-VFs and ARGs-VFs compared to CM. Impact of stochastic process on the assembly of soil microbial taxa, ARGs and VFs in OM was stronger than that in CM. Overall, these findings provide a basis for integrating ARGs, VFs and pathogen hosts to assess the ecological and health risks in long-term organic managed soils, and increased efforts need to be done in reducing ARGs, VFs and bacterial pathogens in fertilizers for organic managements on agriculture.
Collapse
Affiliation(s)
- Taobing Yu
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Lang Cheng
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qing Zhang
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jida Yang
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Huadong Zang
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhaohai Zeng
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yadong Yang
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Sun X, Tian S, You L, Huang X, Su JQ. UV-aging reduces the effects of biodegradable microplastics on soil sulfamethoxazole degradation and sul genes development. J Environ Sci (China) 2025; 150:422-431. [PMID: 39306417 DOI: 10.1016/j.jes.2024.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 10/01/2024]
Abstract
In recent years, the biodegradable plastics has extensively used in industry, agriculture, and daily life. Herein, the effects of two biodegradable microplastics (BMPs), poly(butyleneadipate-co-terephthalate) (PBAT) and polyhydroxyalkanoate (PHA), on soil sulfamethoxazole (SMX) degradation and sul genes development were comparatively studied based on the type, dosage, and state. The addition of virgin BMPs significantly increased soil DOC following a sequential order PBAT > PHA and high dose > low dose. Meanwhile virgin PBAT significantly reduced soil pH. In general, the addition of BMPs not only promoted soil SMX degradation but also increased the abundance of sul genes, with an exception that pH reduction in virgin PBAT inhibited the proliferation of sul genes. The driving effects of BMPs on soil microbial diversity following the same order as that on DOC. Specific bacteria stimulated by BMPs, such as Arthrobacter and two genera affiliated with phylum TM7, accounted for the accelerated degradation of SMX. Intriguingly, UV-aging hindered the release of DOC from BMPs and the reduction in pH, mitigated the stimulation of microbial communities, and ultimately reduced the promotion effect of BMPs on SMX degradation and sul genes proliferation. Our results suggest that more attention should be paid to the proliferation risk of ARGs in the environment affected by BMPs and UV-aging can be employed sometimes to reduce this risk.
Collapse
Affiliation(s)
- Xuecong Sun
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lelan You
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Liu L, Zhu G, Hu J, Chen H, Zhai Y. An unignorable human health risk posed by antibiotic resistome and microbiome in urban rivers: Insights from Beijing, China. ENVIRONMENTAL RESEARCH 2025; 268:120752. [PMID: 39755199 DOI: 10.1016/j.envres.2025.120752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Urban rivers are the main water bodies humans frequently come into contact with, so the risks posed are closely monitored. Antibiotic resistance genes (ARGs) residues in reclaimed water pose serious risks to human health. There are urgent needs to improve the understanding of distribution of and risks posed by ARGs in urban rivers. In this study, shotgun metagenomic approach was used to characterize ARGs, mobile genetic elements (MGEs), and virulence factors (VFs) in water and sediment from Xinfeng River in Beijing and to identify microbes, potential antibiotic resistant bacteria, and human pathogens (HPs). MGE, microbial community, VF, and ARG co-occurrences were used to assess the environmental risks posed by ARGs. The results indicated that quinolone was the most abundant ARG type and that tufA and fusA were the two dominant ARG subtypes. Wetland effluent increased ARG abundance in the river, and the effect was detected even 50 m downstream. ARG abundances and distribution in the river had difference in different seasons. The dominant bacteria in the river were Proteobacteria, Bacteroidetes, and Actinobacteria, and 59 HPs were detected. In total, 69 MGEs and 19 VFs were found. Co-occurrence networks indicated that potential antibiotic resistant bacteria, MGEs, VFs, and ARGs in the river significantly correlated, indicating the potential risks posed by ARGs. The results improve our understanding of ARG distribution and environmental risks in urban river water. More attention should be paid to controlling environmental risks posed by ARGs in urban river and reclaimed water.
Collapse
Affiliation(s)
- Linmei Liu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ganghui Zhu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100012, China
| | - Jingdan Hu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
8
|
Shen W, Wu Y, Li F, Zhang S, Jin H, Gao B. The impact of microplastic and sulfanilamide co-exposure on soil microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117968. [PMID: 40022827 DOI: 10.1016/j.ecoenv.2025.117968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Microplastics, as emerging contaminants, can absorb antibiotics, and their coexistence in soil ecosystems poses serious threats to soil health. While previous studies have primarily focused on the individual effects of microplastics or antibiotics, the interactions between these pollutants in soil environments remain poorly understood. In this study, we investigated the combined effects of sulfonamide antibiotics and microplastics-both non-degradable low-density polyethylene and degradable polylactic acid-on soil microbiota and physicochemical properties. Our findings revealed significant changes in soil properties under co-exposure conditions. Dissolved organic carbon emerged as the most influential factor affecting bacterial and fungal diversity. Co-exposure altered the composition of bacterial and fungal communities at both the phylum and genus levels, with soil bacteria showing stronger responses than fungi. Importantly, co-exposure exacerbated the ecological risks associated with individual contaminants. We also observed differences in how non-degradable and degradable microplastics impacted the stability and complexity of microbial community networks. Notably, co-exposure to degradable microplastics and sulfonamides led to a significant increase in the expression of antibiotic resistance genes (sul1 and int1). These findings enhance our understanding of the combined effects of microplastics and antibiotics on soil ecosystems and underscore the need for further research into their ecological risks.
Collapse
Affiliation(s)
- Weishou Shen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, and School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China
| | - Yang Wu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, and School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Futao Li
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Shirui Zhang
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hongmei Jin
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Bei Gao
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
9
|
Bao S, Wang X, Zeng J, Yue L, Xiao Z, Chen F, Wang Z. The fate of biodegradable polylactic acid microplastics in maize: impacts on cellular ion fluxes and plant growth. FRONTIERS IN PLANT SCIENCE 2025; 16:1544298. [PMID: 40070709 PMCID: PMC11893570 DOI: 10.3389/fpls.2025.1544298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
The widespread application of biodegradable microplastics (MPs) in recent years has resulted in a significant increase in their accumulation in the environment, posing potential threats to ecosystems. Thus, it is imperative to evaluate the distribution and transformation of biodegradable MPs in crops due to the utilization of wastewater containing MPs for irrigation and plastic films, which have led to a rising concentration of biodegradable MPs in agricultural soils. The present study analyzed the uptake and transformation of polylactic acid (PLA) MPs in maize. Seed germination and hydroponic experiments were conducted over a period of 5 to 20 days, during which the plants were exposed to PLA MPs at concentrations of 0, 1, 10, and 100 mg L-1. Low concentrations of PLA MPs (1 mg L-1 and 10 mg L-1) significantly enhanced maize seed germination rate by 52.6%, increased plant shoot height by 16.6% and 16.9%, respectively, as well as elevated aboveground biomass dry weight by 133.7% and 53.3%, respectively. Importantly, depolymerization of PLA MPs was observed in the nutrient solution, resulting in the formation of small-sized PLA MPs (< 2 μm). Interestingly, further transformation occurred within the xylem sap and apoplast fluid (after 12 h) with a transformation rate reaching 13.1% and 27.2%, respectively. The enhanced plant growth could be attributed to the increase in dissolved organic carbon resulting from the depolymerization of PLA MPs. Additionally, the transformation of PLA MPs mediated pH and increase in K+ flux (57.2%, 72 h), leading to acidification of the cell wall and subsequent cell expansion. Our findings provide evidence regarding the fate of PLA MPs in plants and their interactions with plants, thereby enhancing our understanding of the potential impacts associated with biodegradable plastics.
Collapse
Affiliation(s)
- Shijia Bao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Xi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Jianxiong Zeng
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Joo SH, Knauer K, Su C, Toborek M. Antibiotic resistance in plastisphere. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2025; 13:115217. [PMID: 40265125 PMCID: PMC12013715 DOI: 10.1016/j.jece.2024.115217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Microbial life on plastic debris, called plastisphere, has invoked special attention on aquatic ecosystems as emerging habitats for antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). There is scarce information concerning how properties of plastics influence ARGs and ARB, the effect of biofilms on enrichment of ARGs and ARB, and, especially, the influence of plastic transformation on ARGs and ARB. Limited research has shown that microplastic (MP) surfaces influence proliferation of antibiotic resistance (AR), aged MPs exhibit increased toxicity due to more adsorption-desorption of AR, and MP transformation is correlated with disseminating AR. Prevention measures of AR include minimizing MP releasing into aquatic environments and sewage treatment plants. The future research should aim to identify the interface mechanisms of transformed MNPs and antibiotics alone, or mixed with other contaminants, property changes of MNPs, and associated toxicity evaluation.
Collapse
Affiliation(s)
- Sung Hee Joo
- Department of Engineering & Engineering Technology, College of Aerospace, Computing, Engineering, and Design, Metropolitan State University of Denver, CO, USA
- National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO, USA
| | - Katrina Knauer
- National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO, USA
| | - Chunming Su
- Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, Office of Research and Development, US. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Miami, 1011 NW 15th Street, Miami, FL 33136, USA
| |
Collapse
|
11
|
Chen G, Guo S, Liu L, Zhang W, Tang J. Effects of microplastics on microbial community and greenhouse gas emission in soil: A critical review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117419. [PMID: 39615058 DOI: 10.1016/j.ecoenv.2024.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 01/26/2025]
Abstract
Microplastics (MPs) are ubiquitous in soil ecosystems and significantly impact soil microorganisms and greenhouse gas (GHG) emissions. Although some reviews have summarized their impact on greenhouse gas emissions, no systematic analysis has been conducted on how soil physicochemical and microbial properties affect these emissions. Firstly, this review details that MPs alter microbial abundance, structure, activity and gene expression, directly stimulating CO2 and N2O emissions, though their impact on CH4 remains inconclusive. Additionally, MPs change rhizosphere microbial growth, cause soil nutrient loss, and induce plant toxicity, indirectly affecting GHG emissions. Finally, this article suggests strengthening research on rhizosphere and MPs surface microbial communities, exploring interactions with clay and minerals, and investigating GHG emission mechanisms to understand the ecological effects of MPs.
Collapse
Affiliation(s)
- Guanlin Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Saisai Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wenzhu Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
12
|
Song J, Huang Z, Gao Y, Wang W, Guo G, Duan Y, Zhou S, Tang Z. Metagenomic insight into the enrichment of antibiotic resistance genes in activated sludge upon exposure to nanoplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125260. [PMID: 39510298 DOI: 10.1016/j.envpol.2024.125260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Activated sludge is an important reservoir for the co-occurring emerging contaminants including nanoplastics (NPs) and antibiotic resistance genes (ARGs). However, the impacts and potential mechanisms of NPs on the fate of ARGs in activated sludge are not fully understood. Herein, we used metagenomic approach to investigate the responses of ARGs, host bacteria, mobile genetic elements (MGEs), and functional genes to polystyrene (PS) NPs at environmentally relevant (0.5 mg/L) and high stress concentrations (50 mg/L) in activated sludge. The results showed that 0.5 and 50 mg/L PS NPs increased the relative abundance of ARGs in the activated sludge by 58.68% and 46.52%, respectively (p < 0.05). Host tracking analysis elucidated that the hosts of ARGs were significantly enriched by PS NPs (p < 0.05), with Proteobacteria being the predominant host bacteria. Additionally, the occurrence of new ARGs hosts and the enrichment of MGEs and functional genes (i.e., genes related to SOS response, cell membrane permeability, and secretion system, etc.) indicated that PS NPs promoted horizontal gene transfer (HGT) of ARGs. Finally, path modeling analysis revealed that the proliferation of ARGs caused by PS NPs was primarily attributed to the enhancement of HGT and the enrichment of host bacteria. Our findings contribute to a comprehensive understanding of the spread risk of ARGs in activated sludge under NPs pollution.
Collapse
Affiliation(s)
- Jian Song
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China.
| | - Zefeng Huang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Weigang Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Gang Guo
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yi Duan
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang, 421001, China.
| | - Zhenping Tang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China.
| |
Collapse
|
13
|
Zhuang Y, Liu S, Xiao J, Chen T, Gao D, Xu Y, Jiang W, Wang J, Hou G, Li S, Zhao X, Huang Y, Li S, Zhang S, Li M, Wang W, Li S, Cao Z. Metagenomics reveals the characteristics and potential spread of microbiomes and virulence factor genes in the dairy cattle production system. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136005. [PMID: 39369676 DOI: 10.1016/j.jhazmat.2024.136005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Virulence factor genes (VFGs) pose a potential threat to ecological security and animal health, and have attracted increasing attention in the livestock industry. As one of the primary livestock types, dairy cattle may be an important source of VFG transmission. However, the distribution, transmission, and evolution of VFGs in the gastrointestinal tract and surrounding environment of dairy cattle remain unclear. In the present study, a total of 263 samples were collected from cows, calves, colostrum, farm wastewater, and soil. Metagenomics was conducted to analyze changes in the microbiome and VFGs characteristics in these ecological niches. The VFGs of the cows showed distinct differences between the rumen and feces, and were influenced by the region. The dominant VFG hosts was regulated by their microbial structure. Colostrum administration of cows increased VFG abundance in their newborn calf feces sharply and Enterobacteriaceae became the primary host. While diet was the primary driving force for the temporal variation in calf VFGs. For samples of the surrounding environment, water and soil had higher VFG concentrations and were more structurally stable. Moreover, extensive interactions between the mobile genetic elements and VFGs and gene mobile analysis map based on metagenomic binning both displayed the potential horizontal transfer ability of VFGs in the cows and environment. Our study revealed the prevalence, diffusion, and regulatory factors of VFGs in dairy cattle production systems, providing novel insights into reducing livestock VFGs and limiting their spread.
Collapse
Affiliation(s)
- Yimin Zhuang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Duo Gao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yiming Xu
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region 830052, China
| | - Wen Jiang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region 830052, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guobin Hou
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Sumin Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinjie Zhao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanting Huang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shangru Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siyuan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region 830052, China
| | - Mengmeng Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Wang F, Hu Z, Wang W, Wang J, Xiao Y, Shi J, Wang C, Mai W, Li G, An T. Selective enrichment of high-risk antibiotic resistance genes and priority pathogens in freshwater plastisphere: Unique role of biodegradable microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135901. [PMID: 39305601 DOI: 10.1016/j.jhazmat.2024.135901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 12/01/2024]
Abstract
Microplastics (MPs) has been concerned as emerging vectors for spreading antibiotic resistance and pathogenicity in aquatic environments, but the role of biodegradable MPs remains largely unknown. Herein, field in-situ incubation method combined with metagenomic sequencing were employed to reveal the dispersal characteristics of microbial community, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and virulence factors (VFs) enriched by MPs biofilms. Results showed that planktonic microbes were more prone to enrich on biodegradable MPs (i.e., polyhydroxyalkanoate and polylactic acid) than non-biodegradable MPs (i.e., polystyrene, polypropylene and polyethylene). Distinctive microbial communities were assembled on biodegradable MPs, and the abundances of ARGs, MGEs, and VFs on biofilms of biodegradable MPs were much higher than that of non-biodegradable MPs. Notably, network analysis showed that the biodegradable MPs selectively enriched pathogens carrying ARGs, VFs and MGEs concurrently, suggesting a strong potential risks of co-spreading antibiotic resistance and pathogenicity through horizontal gene transfer. According to WHO priority list of Antibiotic Resistant Pathogens (ARPs) and ARGs health risk assessment framework, the highest abundances of Priority 1 ARPs and Rank I risk ARGs were found on polylactic acid and polyhydroxyalkanoate, respectively. These findings elucidate the unique and critical role of biodegradable MPs for selective enrichment of high-risk ARGs and priority pathogens in freshwater environments.
Collapse
Affiliation(s)
- Fan Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhixun Hu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Shenzhen Water Group Co., Ltd., Shenzhen 518031, China
| | - Wanjun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jiaxin Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongyin Xiao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jialin Shi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Weicong Mai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
15
|
Fei J, Bai X, Jiang C, Yin X, Ni BJ. A state-of-the-art review of environmental behavior and potential risks of biodegradable microplastics in soil ecosystems: Comparison with conventional microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176342. [PMID: 39312976 DOI: 10.1016/j.scitotenv.2024.176342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/03/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
As the use of biodegradable plastics becomes increasingly widespread, their environmental behaviors and impacts warrant attention. Unlike conventional plastics, their degradability predisposes them to fragment into microplastics (MPs) more readily. These MPs subsequently enter the terrestrial environment. The abundant functional groups of biodegradable MPs significantly affect their transport and interactions with other contaminants (e.g., organic contaminants and heavy metals). The intermediates and additives released from depolymerization of biodegradable MPs, as well as coexisting contaminants, induce alterations in soil ecosystems. These processes indicate that the impacts of biodegradable MPs on soil ecosystems might significantly diverge from conventional MPs. However, an exhaustive and timely comparison of the environmental behaviors and effects of biodegradable and conventional MPs within soil ecosystems remains scarce. To address this gap, the Web of Science database and bibliometric software were utilized to identify publications with keywords containing biodegradable MPs and soil. Moreover, this review comprehensively summarizes the transport behavior of biodegradable MPs, their role as contaminant carriers, and the potential risks they pose to soil physicochemical properties, nutrient cycling, biota, and CO2 emissions as compared with conventional MPs. Biodegradable MPs, due to their great transport and adsorption capacity, facilitate the mobility of coexisting contaminants, potentially inducing widespread soil and groundwater contamination. Additionally, these MPs and their depolymerization products can disrupt soil ecosystems by altering physicochemical properties, increasing microbial biomass, decreasing microbial diversity, inhibiting the development of plants and animals, and increasing CO2 emissions. Finally, some perspectives are proposed to outline future research directions. Overall, this study emphasizes the pronounced effects of biodegradable MPs on soil ecosystems relative to their conventional counterparts and contributes to the understanding and management of biodegradable plastic contamination within the terrestrial ecosystem.
Collapse
Affiliation(s)
- Jiao Fei
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Xue Bai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
16
|
Zhang G, Ren R, Yan X, Zhang H, Zhu Y. Effects of microplastics on dissipation of oxytetracycline and its relevant resistance genes in soil without and with Serratia marcescens: Comparison between biodegradable and conventional microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117235. [PMID: 39500253 DOI: 10.1016/j.ecoenv.2024.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 10/19/2024] [Indexed: 11/24/2024]
Abstract
The biodegradable (polybutylene adipate terephthalate: PBAT) and conventional (polyethylene: PE) microplastics (MPs) at 0.5 %, 1 %, and 2 % dosages (w/w) were added into soils with and without Serratia marcescens ZY01 (ZY01, a tet-host strain) to understand their different effects on the dissipation of oxytetracycline (OTC) and tet. The results showed that the dosages of PBAT MP exhibited different inhibition degrees of OTC biodegradation in soils regardless of ZY01, while the dosages of PE MP did not change the enhancement degree of OTC biodegradation in soils without ZY01. These differences were due to the higher adsorption capacity of OTC on PBAT MP and the stronger toxicity of PBAT MP to microorganisms. Besides soil organic matter, pH and total phosphorus were important factors regulating specific tet-host bacteria in soils with MPs (e.g., the nitrogen-cycling bacteria Steroidobacter and Nitrospira) and MPs + ZY01 (e.g., the phosphorus-cycling bacteria Saccharimonadales and Haliangium), respectively. Regardless of ZY01, a stronger selective harboring of tet-host bacteria in PE MP treatments than PBAT MP treatments was observed at the MP dosage of 1 % (w/w), while the opposite trend was true at the MP dosages of 0.5 % and 2 % (w/w). Some specific genera belonging to Actinobacteriota strongly associated with the class 1 integron-integrase gene (intI1), playing a critical role in the horizontal gene transfer of tet in soils especially for the co-existence of MPs and ZY01. This study will be helpful for understanding on how biodegradable and conventional MPs as hotspots affect the environmental behavior of antibiotics and ARGs in soil.
Collapse
Affiliation(s)
- Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, Shanxi Province 030006, China
| | - Rui Ren
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, Shanxi Province 030006, China
| | - Xiurong Yan
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan, Shanxi Province 030006, China; Shanxi Laboratory for Yellow River, Taiyuan, Shanxi Province 030006, China
| | - Hongyu Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, Shanxi Province 030006, China
| | - Yuen Zhu
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan, Shanxi Province 030006, China; Shanxi Laboratory for Yellow River, Taiyuan, Shanxi Province 030006, China.
| |
Collapse
|
17
|
Zhao S, Zhang Q, Huang Q, Zhang C, Li H, Siddique KHM. Polyvinyl chloride microplastics disseminate antibiotic resistance genes in Chinese soil: A metagenomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135727. [PMID: 39244980 DOI: 10.1016/j.jhazmat.2024.135727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
The widespread prevalence of microplastics (MPs) in the environment poses concerns as they are vectors of antibiotic resistance genes (ARGs). The relationships between antibiotic resistomes and MPs remain unexplored in soil which was considered as the reservoirs of MPs and ARGs. This study investigated the effects of polyvinyl chloride (PVC) MPs on soil bacterial communities and ARG abundance which soil samples sourced from 20 provinces across China. We found that PVC significantly influences soil bacterial community structure and ARG abundance. Structural equation modeling revealed that PVC alters soil characteristics, ultimately affecting soil bacterial communities, including ARG-containing bacterial hosts, and the relative abundance of ARGs. This study enhances our understanding of how MPs influence the proliferation and hosts of ARGs within diverse soil environments, offering crucial insights for future strategies in plastic management and disposal.
Collapse
Affiliation(s)
- Shuwen Zhao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qianru Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qilan Huang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuchen Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
18
|
Zhang X, Zhao B, Zhang Y, Zhang J, Li Y, Zhong J, Diao J, Ma F, Liu H, Duan K. Sources, interactions, influencing factors and ecological risks of microplastics and antibiotic resistance genes in soil: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175226. [PMID: 39098429 DOI: 10.1016/j.scitotenv.2024.175226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are gaining increasing attention as they pose a threat to the ecological environment and human health as emerging contaminants. MPs has been proved to be a hot spot in ARGs, and although it has been extensively studied in water environment, the results of bibliometrics statistical analysis in this paper showed that relevant studies in soil ecological environment are currently in the initial stage. In view of this, the paper provides a systematic review of the sources, interactions, influencing factors, and ecological risks associated with MPs and ARGs in soil environments. Additionally, the mechanism and influencing factors of plastisphere formation and resistance are elaborated in detail. The MPs properties, soil physicochemical properties, soil environmental factors and agricultural activities are the primarily factors affecting the interaction between MPs and ARGs in soil. Challenges and development directions of related research in the future are also prospected. It is hoped that the review could assist in a deeper comprehension and exploration of the interaction mechanism between MPs and ARGs in soil as well as the function of MPs in the transmission process of ARGs among diverse environmental media and organisms, and provide theory basis and reference for the MPs and ARGs pollution control and remediation in soil.
Collapse
Affiliation(s)
- Xin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Baowei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China.
| | - Yin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jian Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Yingquan Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jinkui Zhong
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jingru Diao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Fengfeng Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Hui Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Kaixiang Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| |
Collapse
|
19
|
Zhu T, Li S, Tao C, Chen W, Chen M, Zong Z, Wang Y, Li Y, Yan B. Understanding the mechanism of microplastic-associated antibiotic resistance genes in aquatic ecosystems: Insights from metagenomic analyses and machine learning. WATER RESEARCH 2024; 268:122570. [PMID: 39378744 DOI: 10.1016/j.watres.2024.122570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
The pervasive presence of microplastics (MPs) in aquatic systems facilitates the transmission of antibiotic resistance genes (ARGs), thereby posing risks to ecosystems and human well-being. However, owing to variations in environmental backgrounds and the limited scope of research subjects, studies on ARGs in MPs lack unified conclusions, particularly regarding whether different types of MPs selectively promote ARG enrichment. Analysing large-scale datasets can better encompass broad spatiotemporal scales and diverse samples, facilitating a more extensive exploration of the complex ecological relationships between MPs and ARGs. The present study integrated existing metagenomic datasets to conduct a comprehensive risk assessment and comparative analysis of resistance groups across various MPs. In addition, we endeavoured to elucidate potential associations between ARGs and bacterial taxa, as well as MP structural features, using machine learning (ML) methods. The findings of our research highlight the pivotal role of MP type in shaping plastispheres, accounting for 9.56 % of the biotic variation (Adonis index) and explaining 18.59 % of the ARG variance. Compared to conventional MPs, biodegradable MPs, such as polyhydroxyalkanoates (PHA) and polylactic acid (PLA), exhibit lower species uniformity and diversity but pose a higher risk of ARG occurrence. These ML approaches effectively forecasted ARG abundance by using the bacterial taxa and molecular structure descriptors (MDs) of MPs (average R2tra = 0.882, R2test = 0.759). Feature analysis showed that MDs associated with lipophilicity, solubility, toxicity, and surface potential significantly influenced the relative abundance of ARGs in the plastispheres. The interpretable multiple linear regression (MLR) model, particularly notable, elucidated a linear relationship between bacterial genera and ARGs, offering promise for identifying potential ARG hosts. This study offers novel insights into ARG dynamics and ecological risks within aquatic plastispheres, highlighting the importance of comprehensive MP monitoring initiatives.
Collapse
Affiliation(s)
- Tengyi Zhu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, PR China
| | - Shuyin Li
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, PR China
| | - Cuicui Tao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, PR China
| | - Wenxuan Chen
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research (UFZ), 04318, Leipzig, Germany
| | - Ming Chen
- School of Civil Engineering, Southeast University, Nanjing, 210096, PR China; Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Zhiyuan Zong
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Yajun Wang
- School of Civil Engineering, Lanzhou University of Technology, 730050, Lanzhou, PR China
| | - Yi Li
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, PR China
| | - Bipeng Yan
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, PR China.
| |
Collapse
|
20
|
Singh A, Rani PS, Bandsode V, Nyambero M, Qumar S, Ahmed N. Drivers of virulence and antimicrobial resistance in Gram-negative bacteria in different settings: A genomic perspective. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 124:105666. [PMID: 39242067 DOI: 10.1016/j.meegid.2024.105666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/13/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The human gut presents a complex ecosystem harboring trillions of microorganisms living in close association with each other and the host body. Any perturbation or imbalance of the normal gut microbiota may prove detrimental to human health. Enteric infections and treatment with antibiotics pose major threats to gut microbiota health. Recent genomics-driven research has provided insights into the transmission and evolutionary dynamics of major enteric pathogens such as Escherichia coli, Klebsiella pneumoniae, Vibrio cholerae, Helicobacter pylori and Salmonella spp. Studies entailing the identification of various dominant lineages of some of these organisms based on artificial intelligence and machine learning point to the possibility of a system for prediction of antimicrobial resistance (AMR) as some lineages have a higher propensity to acquire virulence and fitness advantages. This is pertinent in the light of emerging AMR being one of the immediate threats posed by pathogenic bacteria in the form of a multi-layered fitness manifesting as phenotypic drug resistance at the level of clinics and field settings. To develop a holistic or systems-level understanding of such devastating traits, present methodologies need to be advanced with the high throughput techniques integrating community and ecosystem/niche level data across different omics platforms. The next major challenge for public health epidemiologists is understanding the interactions and functioning of these pathogens at the community level, both in the gut and outside. This would provide new insights into the dimensions of enteric bacteria in different environments and niches and would have a plausible impact on infection control strategies in terms of tackling AMR. Hence, the aim of this review is to discuss virulence and AMR in Gram-negative pathogens, the spillover of AMR and methodological advancements aimed at addressing it through a unified One Health framework applicable to the farms, the environment, different clinical settings and the human gut.
Collapse
Affiliation(s)
- Anuradha Singh
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Pittu Sandhya Rani
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Viraj Bandsode
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Mahanga Nyambero
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Shamsul Qumar
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
21
|
Du C, Sang W, Abbas M, Xu C, Jiang Z, Ma Y, Shi J, Feng M, Ni L, Li S. The interaction mechanisms of algal organic matter (AOM) and various types and aging degrees of microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135273. [PMID: 39047561 DOI: 10.1016/j.jhazmat.2024.135273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Algal blooms can produce substantial amounts of algal organic matter (AOM). Microplastics (MPs) in aquatic environments inevitably interact with AOM. Meanwhile, the aging and type of MPs may increase the uncertainty surrounding interaction. This study focused on polyethylene (PE) and polylactic acid (PLA) to investigate their interaction with AOM before and after aging. The results shw that PLA has a stronger adsorption capacity for AOM than PE. Meanwhile, aging enhanced and weakened the adsorption of PE and PLA for AOM. Compared to unaged PE (UPE) and aged PLA (APLA), aged PE (APE) and unaged PLA (UPLA) more significantly promote the humification of AOM and alter its functional groups. 2D-IR-COS analysis reveals that the sequence of functional group changes in AOM interacting with MPs is influenced by the type and aging of MPs. After interacting with AOM, surface roughness increased for all MPs. FTIR and XPS analyses show that the addition of AOM accelerated the oxidation of MPs surfaces, especially for UPE and APLA, with oxygen content increasing by 9.32 % and 1 %. Aging enhances the interaction between PE and AOM, while weakening the interaction between PLA and AOM. These findings provide new insights into understanding the interplay between AOM and MPs.
Collapse
Affiliation(s)
- Cunhao Du
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Wenlu Sang
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Mohamed Abbas
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Chu Xu
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Zhiyun Jiang
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Yushen Ma
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Jiahui Shi
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Muyu Feng
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Lixiao Ni
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, 210097 Nanjing, China.
| |
Collapse
|
22
|
Li Y, Zhang S, Chen Z, Huang W, Liu Q, Fang H, Chi B, Yang N, Zhang Q. Deciphering the impact of organic loading rate and digestate recirculation on the occurrence patterns of antibiotics and antibiotic resistance genes in dry anaerobic digestion of kitchen waste. WATER RESEARCH 2024; 261:122005. [PMID: 38968733 DOI: 10.1016/j.watres.2024.122005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Organic loading rate (OLR) is crucial for determining the stability of dry anaerobic digestion (AD). Digestate recirculation contributes to reactor stability and enhances methane production. Nevertheless, the understanding of how OLR and digestate recirculation affect the abundance and diversity of antibiotics and antibiotic resistance genes (ARGs), as well as the mechanisms involved in the dissemination of ARGs, remains limited. This study thoroughly investigated this critical issue through a long-term pilot-scale experiment. The metabolome analyses revealed the enrichment of various antibiotics, such as aminoglycoside, tetracycline, and macrolide, under low OLR conditions (OLR ≤ 4.0 g·VS/L·d) and the reactor instability. Antibiotics abundance decreased by approximately 19.66-31.69 % during high OLR operation (OLR ≥ 6.0 g·VS/L·d) with digestate recirculation. The metagenome analyses demonstrated that although low OLR promoted reactor stability, it facilitated the proliferation of antibiotic-resistant bacteria, such as Pseudomonas, and triggered functional profiles related to ATP generation, oxidative stress response, EPS secretion, and cell membrane permeability, thereby facilitating horizontal gene transfer (HGT) of ARGs. However, under stable operation at an OLR of 6.0 g·VS/L·d, there was a decrease in ARGs abundance but a notable increase in human pathogenic bacteria (HPB) and mobile genetic elements (MGEs). Subsequently, during reactor instability, the abundance of ARGs and HPB increased. Notably, during digestate recirculation at OLR levels of 6.0 and 7.0 g·VS/L·d, the process attenuated the risk of ARGs spread by reducing the diversity of ARGs hosts, minimizing interactions among ARGs hosts, ARGs, and MGEs, and weakening functional profiles associated with HGT of ARGs. Overall, digestate recirculation aids in reducing the abundance of antibiotics and ARGs under high OLR conditions. These findings provide advanced insights into how OLR and digestate recirculation affect the occurrence patterns of antibiotics and ARGs in dry AD.
Collapse
Affiliation(s)
- Yanzeng Li
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenghua Zhang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China.
| | - Zhou Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weizhao Huang
- Xiamen Xinyuan Environmental Service Co., LTD., Xiamen 361000, China
| | - Qin Liu
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China
| | - Hongda Fang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China
| | - Bin Chi
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China
| | - Ningbo Yang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China
| | - Qian Zhang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
23
|
Sun J, Zhang D, Peng S, Yang X, Hua Q, Wang W, Wang Y, Lin X. Critical insights into the Hormesis of antibiotic resistome in saline soil: Implications from salinity regulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134616. [PMID: 38754232 DOI: 10.1016/j.jhazmat.2024.134616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Soil is recognized as an important reservoir of antibiotic resistance genes (ARGs). However, the effect of salinity on the antibiotic resistome in saline soils remains largely misunderstood. In this study, high-throughput qPCR was used to investigate the impact of low-variable salinity levels on the occurrence, health risks, driving factors, and assembly processes of the antibiotic resistome. The results revealed 206 subtype ARGs across 10 categories, with medium-salinity soil exhibiting the highest abundance and number of ARGs. Among them, high-risk ARGs were enriched in medium-salinity soil. Further exploration showed that bacterial interaction favored the proliferation of ARGs. Meanwhile, functional genes related to reactive oxygen species production, membrane permeability, and adenosine triphosphate synthesis were upregulated by 6.9%, 2.9%, and 18.0%, respectively, at medium salinity compared to those at low salinity. With increasing salinity, the driver of ARGs in saline soils shifts from bacterial community to mobile gene elements, and energy supply contributed 28.2% to the ARGs at extreme salinity. As indicated by the neutral community model, stochastic processes shaped the assembly of ARGs communities in saline soils. This work emphasizes the importance of salinity on antibiotic resistome, and provides advanced insights into the fate and dissemination of ARGs in saline soils.
Collapse
Affiliation(s)
- Jianbin Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Dan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Shuang Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China
| | - Xiaoqian Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingqing Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Agriculture, Ningxia University, Yinchuan 750021, China.
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
24
|
Zhou ZZ, Zhu J, Yin Y, Ding LJ. Seasonal variations of profiles of antibiotic resistance genes and virulence factor genes in household dust from Beijing, China revealed by the metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172542. [PMID: 38636860 DOI: 10.1016/j.scitotenv.2024.172542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Household-related microbiome is closely related with human health. However, the knowledge about profiles of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) which are carried by microbes inside homes and their temporal dynamics are rather limited. Here we monitored the seasonal changes of bacterial community (especially pathogenic bacteria), ARGs, and VFGs in household dust samples during two years. Based on metagenomic sequencing, the dust-related bacterial pathogenic community, ARGs, and VFGs all harbored the lowest richness in spring among four seasons. Their structure (except that of VFGs) also exhibited remarkable differences among the seasons. The structural variations of ARGs and VFGs were almost explained by mobile genetic elements (MGEs), bacterial pathogens, and particulate matter-related factors, with MGEs explaining the most. Moreover, the total normalized abundance of ARGs or VFGs showed no significant change across the seasons. Results of metagenomic binning and microbial network both showed that several pathogenic taxa (e.g., Ralstonia pickettii) were strongly linked with numerous ARGs (mainly resistant to multidrug) and VFGs (mainly encoding motility) simultaneously. Overall, these findings underline the significance of MGEs in structuring ARGs and VFGs inside homes along with seasonal variations, suggesting that household dust is a neglected reservoir for ARGs and VFGs.
Collapse
Affiliation(s)
- Zhi-Zi Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jasmine Zhu
- School of Journalism and Communication, Tsinghua University, Beijing 100084, China
| | - Yue Yin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Long-Jun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
25
|
Yu H, Liu X, Qiu X, Sun T, Cao J, Lv M, Sui Z, Wang Z, Jiao S, Xu Y, Wang F. Discrepant soil microbial community and C cycling function responses to conventional and biodegradable microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134176. [PMID: 38569347 DOI: 10.1016/j.jhazmat.2024.134176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Biodegradable microplastics (MPs) are promising alternatives to conventional MPs and are of high global concern. However, their discrepant effects on soil microorganisms and functions are poorly understood. In this study, polyethylene (PE) and polylactic acid (PLA) MPs were selected to investigate the different effects on soil microbiome and C-cycling genes using high-throughput sequencing and real-time quantitative PCR, as well as the morphology and functional group changes of MPs, using scanning electron microscopy and Fourier transform infrared spectroscopy, and the driving factors were identified. The results showed that distinct taxa with potential for MP degradation and nitrogen cycling were enriched in soils with PLA and PE, respectively. PLA, smaller size (150-180 µm), and 5% (w/w) of MPs enhanced the network complexity compared with PE, larger size (250-300 µm), and 1% (w/w) of MPs, respectively. PLA increased β-glucosidase by up to 2.53 times, while PE (150-180 µm) reduced by 38.26-44.01% and PE (250-300 µm) increased by 19.00-22.51% at 30 days. Amylase was increased by up to 5.83 times by PLA (150-180 µm) but reduced by 40.26-62.96% by PLA (250-300 µm) and 16.11-43.92% by PE. The genes cbbL, cbhI, abfA, and Lac were enhanced by 37.16%- 1.99 times, 46.35%- 26.46 times, 8.41%- 69.04%, and 90.81%- 5.85 times by PLA except for PLA1B/5B at 30 days. These effects were associated with soil pH, NO3--N, and MP biodegradability. These findings systematically provide an understanding of the impact of biodegradable MPs on the potential for global climate change.
Collapse
Affiliation(s)
- Hui Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xin Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xiaoguo Qiu
- Shandong Provincial Eco-Environment Monitoring Center, Jinan 250101, China
| | - Tao Sun
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Jianfeng Cao
- Taian Ecological Environment Monitoring Center of Shandong Province, Taian 271000, China
| | - Ming Lv
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Zhiyuan Sui
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Zhizheng Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shuying Jiao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yuxin Xu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Fenghua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China.
| |
Collapse
|
26
|
Greenman N, Hassouneh SAD, Abdelli LS, Johnston C, Azarian T. Improving Bacterial Metagenomic Research through Long-Read Sequencing. Microorganisms 2024; 12:935. [PMID: 38792764 PMCID: PMC11124196 DOI: 10.3390/microorganisms12050935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Metagenomic sequencing analysis is central to investigating microbial communities in clinical and environmental studies. Short-read sequencing remains the primary approach for metagenomic research; however, long-read sequencing may offer advantages of improved metagenomic assembly and resolved taxonomic identification. To compare the relative performance for metagenomic studies, we simulated short- and long-read datasets using increasingly complex metagenomes comprising 10, 20, and 50 microbial taxa. Additionally, we used an empirical dataset of paired short- and long-read data generated from mouse fecal pellets to assess real-world performance. We compared metagenomic assembly quality, taxonomic classification, and metagenome-assembled genome (MAG) recovery rates. We show that long-read sequencing data significantly improve taxonomic classification and assembly quality. Metagenomic assemblies using simulated long reads were more complete and more contiguous with higher rates of MAG recovery. This resulted in more precise taxonomic classifications. Principal component analysis of empirical data demonstrated that sequencing technology affects compositional results as samples clustered by sequence type, not sample type. Overall, we highlight strengths of long-read metagenomic sequencing for microbiome studies, including improving the accuracy of classification and relative abundance estimates. These results will aid researchers when considering which sequencing approaches to use for metagenomic projects.
Collapse
Affiliation(s)
- Noah Greenman
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (N.G.); (S.A.-D.H.); (C.J.)
| | - Sayf Al-Deen Hassouneh
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (N.G.); (S.A.-D.H.); (C.J.)
| | - Latifa S. Abdelli
- Department of Health Science, College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Catherine Johnston
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (N.G.); (S.A.-D.H.); (C.J.)
| | - Taj Azarian
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (N.G.); (S.A.-D.H.); (C.J.)
| |
Collapse
|
27
|
Adomako MO, Wu J, Lu Y, Adu D, Seshie VI, Yu FH. Potential synergy of microplastics and nitrogen enrichment on plant holobionts in wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170160. [PMID: 38244627 DOI: 10.1016/j.scitotenv.2024.170160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Wetland ecosystems are global hotspots for environmental contaminants, including microplastics (MPs) and nutrients such as nitrogen (N) and phosphorus (P). While MP and nutrient effects on host plants and their associated microbial communities at the individual level have been studied, their synergistic effects on a plant holobiont (i.e., a plant host plus its microbiota, such as bacteria and fungi) in wetland ecosystems are nearly unknown. As an ecological entity, plant holobionts play pivotal roles in biological nitrogen fixation, promote plant resilience and defense chemistry against pathogens, and enhance biogeochemical processes. We summarize evidence based on recent literature to elaborate on the potential synergy of MPs and nutrient enrichment on plant holobionts in wetland ecosystems. We provide a conceptual framework to explain the interplay of MPs, nutrients, and plant holobionts and discuss major pathways of MPs and nutrients into the wetland milieu. Moreover, we highlight the ecological consequences of loss of plant holobionts in wetland ecosystems and conclude with recommendations for pending questions that warrant urgent research. We found that nutrient enrichment promotes the recruitment of MPs-degraded microorganisms and accelerates microbially mediated degradation of MPs, modifying their distribution and toxicity impacts on plant holobionts in wetland ecosystems. Moreover, a loss of wetland plant holobionts via long-term MP-nutrient interactions may likely exacerbate the disruption of wetland ecosystems' capacity to offer nature-based solutions for climate change mitigation through soil organic C sequestration. In conclusion, MP and nutrient enrichment interactions represent a severe ecological risk that can disorganize plant holobionts and their taxonomic roles, leading to dysbiosis (i.e., the disintegration of a stable plant microbiome) and diminishing wetland ecosystems' integrity and multifunctionality.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jing Wu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China
| | - Ying Lu
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Daniel Adu
- School of Management Science and Engineering, Jiangsu University, Zhejiang 212013, Jiangsu, China
| | - Vivian Isabella Seshie
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
28
|
Xu JY, Ding J, Du S, Zhu D. Tire particles and its leachates: Impact on antibiotic resistance genes in coastal sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133333. [PMID: 38147751 DOI: 10.1016/j.jhazmat.2023.133333] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Tire particles (TPs), a significant group of microplastics, can be discharged into the coastal environments in various ways. However, our understanding of how TPs impact the antibiotic resistance and pathogenic risks of microorganisms in coastal sediments remains limited. In this study, we used metagenomics to investigate how TPs and their leachates could affect the prevalence of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and their potential risks to the living creatures such as soil invertebrates and microorganisms in the coastal sediments. We discovered that TP addition significantly increased the abundance and diversity of ARGs and VFGs in coastal sediments, with raw TPs displayed higher impacts than TP leachates and TPs after leaching on ARGs and VFGs. With increasing TP exposure concentrations, the co-occurrence frequency of ARGs and mobile genetic elements (MGEs) in the same contig also increased, suggesting that TPs could enhance the dispersal risk of ARGs. Our metagenome-based binning analysis further revealed that exposure to TPs increased the abundance of potentially pathogenic antibiotic-resistant bacteria (PARB). In addition, chemical additives of TP leachates (e.g., Zn and N-cyclohexylformamide) significantly affected the changes of ARGs in the pore water. In summary, our study provides novel insights into the adverse effects of TP pollutions on aggravating the dissemination and pathogenic risks of ARGs and PARB in the coastal environment.
Collapse
Affiliation(s)
- Jia-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People' s Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People' s Republic of China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, People' s Republic of China
| | - Shuai Du
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People' s Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People' s Republic of China.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People' s Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People' s Republic of China.
| |
Collapse
|
29
|
Li K, Xu L, Bai X, Zhang G, Zhang M, Huang Y. Potential environmental risks of field bio/non-degradable microplastic from mulching residues in farmland: Evidence from metagenomic analysis of plastisphere. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133428. [PMID: 38198862 DOI: 10.1016/j.jhazmat.2024.133428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/23/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
The plastisphere may act as reservoir of antibiotic resistome, accelerating global antimicrobial resistance dissemination. However, the environmental risks in the plastisphere of field microplastics (MPs) in farmland remain largely unknown. Here, antibiotic resistance genes (ARGs) and virulence factors (VFs) on polyethylene microplastics (PE-MPs) and polybutylene adipate terephthalate and polylactic acid microplastics (PBAT/PLA-MPs) from residues were investigated using metagenomic analysis. The results suggested that the profiles of ARG and VF in the plastisphere of PBAT/PLA-MPs had greater number of detected genes with statistically higher values of diversity and abundance than soil and PE-MP. Procrustes analysis indicated a good fitting correlation between ARG/VF profiles and bacterial community composition. Actinobacteria was the major host for tetracycline and glycopeptide resistance genes in the soil and PE-MP plastisphere, whereas the primary host for multidrug resistance genes changed to Proteobacteria in PBAT/PLA-MP plastisphere. Besides, three human pathogens, Sphingomonas paucimobilis, Lactobacillus plantarum and Pseudomonas aeruginosa were identified in the plastisphere. The PE-MP plastisphere exhibited a higher transfer potential of ARGs than PBAT/PLA-MP plastisphere. This work enhances our knowledge of potential environmental risks posed by microplastic in farmland and provides valuable insights for risk assessment and management of agricultural mulching applications.
Collapse
Affiliation(s)
- Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guangbao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mengjun Zhang
- Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
30
|
Ni B, Zhang TL, Cai TG, Xiang Q, Zhu D. Effects of heavy metal and disinfectant on antibiotic resistance genes and virulence factor genes in the plastisphere from diverse soil ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133335. [PMID: 38142651 DOI: 10.1016/j.jhazmat.2023.133335] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Antibiotic-resistance genes (ARGs) are world-wide contaminants posing potential health risks. Quaternary ammonium compounds (QACs) and heavy metals can apply selective pressure on antibiotic resistance. However, there is a lack of evidence regarding their coupled effect on changes in ARGs and virulence factor genes (VFGs) in various soil types and their plastispheres. Herein, we conducted a microcosm experiment to explore the abundances and profiles of ARGs and VFGs in soil plastispheres from three distinct types of soils amended with Cu and disinfectants. The plastispheres enriched the ARGs' abundance compared to soils and stimulated the coupling effect of combined pollutants on promoting the abundances of ARGs and VFGs. Horizontal gene transfer inevitably accelerates the propagation of ARGs and VFGs in plastispheres under pollutant stress. In plastispheres, combined exposure to disinfectants and Cu increased some potential pathogens' relative abundances. Moreover, the combined effect of disinfectants and Cu on ARGs and VFGs changed with soil type in plastispheres, emphasising the necessity to incorporate soil type considerations into health risk assessments for ARGs and VFGs. Overall, this study highlights the high health risks of ARGs under the selective pressure of combined pollutants in plastispheres and provides valuable insights for future risk assessments related to antibiotic resistance.
Collapse
Affiliation(s)
- Bang Ni
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Tian-Lun Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tian-Gui Cai
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China.
| |
Collapse
|
31
|
Lin D, Xu JY, Wang L, Du S, Zhu D. Long-term application of organic fertilizer prompting the dispersal of antibiotic resistance genes and their health risks in the soil plastisphere. ENVIRONMENT INTERNATIONAL 2024; 183:108431. [PMID: 38217904 DOI: 10.1016/j.envint.2024.108431] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Microplastic (MP) pollution is a rapidly growing global environmental concern that has led to the emergence of a new environmental compartment, the plastisphere, which is a hotspot for the accumulation of antibiotic resistance genes (ARGs) and human bacterial pathogens (HBPs). However, studies on the effects of long-term organic fertilizer application on the dispersal of ARGs and virulence factor genes (VFGs) in the plastisphere of farmland soil have been limited. Here, we performed a field culture experiment by burying nylon bags filled with MPs in paddy soil that had been treated with different fertilizers for over 30 years to explore the changes of ARGs and VFGs in soil plastisphere. Our results show that the soil plastisphere amplified the ARG and VFG pollution caused by organic fertilization by 1.5 and 1.4 times, respectively. And it also led to a 2.7-fold increase in the risk of horizontal gene transfer. Meanwhile, the plastisphere tended to promote deterministic process in the community assembly of HBPs, with an increase of 1.4 times. Network analysis found a significant correlation between ARGs, VFGs, and bacteria in plastisphere. Correlation analysis highlight the important role of mobile genetic elements (MGEs) and bacterial communities in shaping the abundance of ARGs and VFGs, respectively. Our findings provide new insights into the health risk associated with the soil plastisphere due ARGs and VFGs derived from organic fertilizers.
Collapse
Affiliation(s)
- Da Lin
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jia-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Lu Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Shuai Du
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
32
|
Zhang Y, Tao J, Bai Y, Wang F, Xie B. Incomplete degradation of aromatic-aliphatic copolymer leads to proliferation of microplastics and antibiotic resistance genes. ENVIRONMENT INTERNATIONAL 2023; 181:108291. [PMID: 37907056 DOI: 10.1016/j.envint.2023.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Biodegradable plastics (BDPs) have attracted extensive attention as an alternative to conventional plastics. BDPs could be mineralized by composting, while the quality of compost affected by the presence of BDPs and the residual microplastics (MPs) has not been well evaluated. This study aimed to explore the MPs release potential and environmental implications of commercial BDPs (aromatic-aliphatic copolymer) films in uncontrolled composting. Results showed that the molecular weight of BDPs decreased by >60% within 60 d. However, the non-extracted organic matter and wet-sieving measurements indicated that MPs continuously released and accumulated during regular composting. The average MPs release potential (0.1-5 mm) was 134.6 ± 18.1 particles/mg (BDPs), which resulted in 103-104 particles/g dw in compost. The plastisphere of MPs showed a significantly higher (0.95-16.76 times) abundance of antibiotic resistance genes (ARGs), which resulted in the rising (1.34-2.24 times) of ARGs in compost heaps, in comparison to the control groups. Overall, BDPs promote the spread of ARGs through the selective enrichment of bacteria and horizontal transfer from released MPs. These findings confirmed that BDPs could enhance the release potential of MPs and the dissemination of ARGs, which would promote the holistic understanding and environmental risk of BDPs.
Collapse
Affiliation(s)
- Yuchen Zhang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jianping Tao
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yudan Bai
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Feng Wang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
33
|
Huang F, Zhang Q, Wang L, Zhang C, Zhang Y. Are biodegradable mulch films a sustainable solution to microplastic mulch film pollution? A biogeochemical perspective. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132024. [PMID: 37572603 DOI: 10.1016/j.jhazmat.2023.132024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 08/14/2023]
Abstract
Mulch film residue contributes significantly to global plastic pollution, and consequently biodegradable mulch films (BDMs) are being adopted as a solution. BDMs decompose relatively quickly, but their complete biodegradation requires suitable conditions that are difficult to achieve in nature, causing biodegradable microplastics (bio-MPs) to be more likely to accumulate in soil than traditional microplastics (MPs). If BDMs are to be considered as a sustainable solution, long-term and in-depth studies to investigate the impact of bio-MPs on the biogeochemical processes are vital to agroecosystems operation and ecosystem services supply. Although bio-MP-derived carbon can potentially convert into biomass during decomposition, its contribution to soil carbon stocks is insignificant. Instead, given their biodegradability, bio-MPs can result in greater alterations of soil biodiversity and community composition. Their high carbon-nitrogen ratios may also significantly regulate various processes involved in the natural decomposition and transformation of soil organic matter, including the reduction of nutrient availability and increase in greenhouse gas emissions. Soil ecosystems are complex organic entities interconnected by disturbance-feedback mechanisms. Given the prevailing knowledge gaps regarding the impact of bio-MPs on soil biogeochemical cycles and ecosystem balance, this study emphasized the safety and sustainability assessment of bio-MPs and the prevailing comprehensive challenges.
Collapse
Affiliation(s)
- Fuxin Huang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Qiyu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Congyu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
34
|
Luo G, Liang B, Cui H, Kang Y, Zhou X, Tao Y, Lu L, Fan L, Guo J, Wang A, Gao SH. Determining the Contribution of Micro/Nanoplastics to Antimicrobial Resistance: Challenges and Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12137-12152. [PMID: 37578142 DOI: 10.1021/acs.est.3c01128] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Microorganisms colonizing the surfaces of microplastics form a plastisphere in the environment, which captures miscellaneous substances. The plastisphere, owning to its inherently complex nature, may serve as a "Petri dish" for the development and dissemination of antibiotic resistance genes (ARGs), adding a layer of complexity in tackling the global challenge of both microplastics and ARGs. Increasing studies have drawn insights into the extent to which the proliferation of ARGs occurred in the presence of micro/nanoplastics, thereby increasing antimicrobial resistance (AMR). However, a comprehensive review is still lacking in consideration of the current increasingly scattered research focus and results. This review focuses on the spread of ARGs mediated by microplastics, especially on the challenges and perspectives on determining the contribution of microplastics to AMR. The plastisphere accumulates biotic and abiotic materials on the persistent surfaces, which, in turn, offers a preferred environment for gene exchange within and across the boundary of the plastisphere. Microplastics breaking down to smaller sizes, such as nanoscale, can possibly promote the horizontal gene transfer of ARGs as environmental stressors by inducing the overgeneration of reactive oxygen species. Additionally, we also discussed methods, especially quantitatively comparing ARG profiles among different environmental samples in this emerging field and the challenges that multidimensional parameters are in great necessity to systematically determine the antimicrobial dissemination risk in the plastisphere. Finally, based on the biological sequencing data, we offered a framework to assess the AMR risks of micro/nanoplastics and biocolonizable microparticles that leverage multidimensional AMR-associated messages, including the ARGs' abundance, mobility, and potential acquisition by pathogens.
Collapse
Affiliation(s)
- Gaoyang Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuanyuan Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yu Tao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
35
|
Xu F, Guan J, Zhou Y, Song Z, Shen Y, Liu Y, Jia X, Zhang B, Guo P. Effects of freeze-thaw dynamics and microplastics on the distribution of antibiotic resistance genes in soil aggregates. CHEMOSPHERE 2023; 329:138678. [PMID: 37059196 DOI: 10.1016/j.chemosphere.2023.138678] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
This is the first study investigating the effects of freeze-thaw (FT) and microplastics (MPs) on the distribution of antibiotic resistance genes (ARGs) in soil aggregates (i.e., soil basic constituent and functional unit) via microcosm experiments. The results showed that FT significantly increased the total relative abundance of target ARGs in different aggregates due to the increase in intI1 and ARG host bacteria. However, polyethylene MPs (PE-MPs) hindered the increase in ARG abundance caused by FT. The host bacteria carrying ARGs and intI1 varied with aggregate size, and the highest number of hosts was observed in micro-aggregates (<0.25 mm). FT and MPs altered host bacteria abundance by affecting aggregate physicochemical properties and bacterial community and enhanced multiple antibiotic resistance via vertical gene transfer. Although the dominant factors affecting ARGs varied with aggregate size, intI1 was a co-dominant factor in various-sized aggregates. Furthermore, other than ARGs, FT, PE-MPs, and their integration promoted the proliferation of human pathogenic bacteria in aggregates. These findings suggested that FT and its integration with MPs significantly affected ARG distribution in soil aggregates. They amplified antibiotic resistance environmental risks, contributing to a profound understanding of soil antibiotic resistance in the boreal region.
Collapse
Affiliation(s)
- Fukai Xu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, PR China
| | - Jiunian Guan
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Yumei Zhou
- Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Ziwei Song
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, PR China
| | - Yanping Shen
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, PR China
| | - Yibo Liu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, PR China
| | - Xiaohui Jia
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, PR China
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, A1B 3X5, Canada.
| | - Ping Guo
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
36
|
Li YQ, Zhang CM, Yuan QQ, Wu K. New insight into the effect of microplastics on antibiotic resistance and bacterial community of biofilm. CHEMOSPHERE 2023:139151. [PMID: 37290506 DOI: 10.1016/j.chemosphere.2023.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Microplastics (MPs) could serve as substrates for microbial colonization and biofilm formation. However, research on the effects of different types of microplastics and natural substrates on biofilm formation and community structure in the presence of antibiotic-resistant bacteria (ARB) is limited. In this study, we employed by means of microcosm experiments to analyze the situation of biofilms conditions, bacterial resistance patterns, antibiotic resistance genes (ARGs) distribution, and bacterial community on different substrates using microbial cultivation, high throughtput sequencing and PCR. The result showed that biofilms on different substrates markedly increased with time, with MPs surfaces formed more biofilm than stone. Analyses of antibiotic resistant showed negligible differences in the resistance rate to the same antibiotic at 30 d, but tetB would be selectively enriched on PP and PET. The microbial communities associated with biofilms on MPs and stones exhibited variations during different stages of formation. Notably, phylum WPS-2 and Epsilonbacteraeota were identified as the dominant microbiomes of biofilms on MPs and stones at 30 d, respectively. Correlation analysis suggested that WPS-2 could potentially be a tetracycline-resistant bacterium, while Epsilonbacteraeota did not correlate with any detected ARB. Our results emphasized the potential threat posed by MPs as attachment carriers for bacteria, particularly ARB, in aquatic environments.
Collapse
Affiliation(s)
- Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Qiao-Qiao Yuan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kai Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
37
|
Baihetiyaer B, Jiang N, Li X, He B, Wang J, Fan X, Sun H, Yin X. Oxidative stress and gene expression induced by biodegradable microplastics and imidacloprid in earthworms (Eisenia fetida) at environmentally relevant concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121285. [PMID: 36796666 DOI: 10.1016/j.envpol.2023.121285] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The environmental issues caused by biodegradable microplastics (BMPs) from polylactic acid (PLA) as well as pesticides are of increasing concern nowadays. In this study, the toxicological effects of the single and combined exposure of PLA BMPs and imidacloprid (IMI), a neonicotinoid insecticide, on earthworms (Eisenia fetida) were investigated in terms of oxidative stress, DNA damage, and gene expression, respectively. The results showed that compared with the control, SOD, CAT and AChE activities in the single and combined treatments decreased significantly, and POD activity showed an "inhibition-activation" trend. SOD and CAT activities of combined treatments on day 28 and AChE activity of combined treatment on day 21 were significantly higher than those of the single treatments. For the rest of the exposure period, SOD, CAT and AChE activities in the combined treatments were lower than those in the single treatments. POD activity in the combined treatment was significantly lower than those of single treatments at day 7 and higher than that of single treatments at day 28. MDA content showed an "inhibition-activation-inhibition" trend, and the ROS level and 8-OHdG content increased significantly in both the single and combined treatments. This shows that both single and combined treatments led to oxidative stress and DNA damage. ANN and HSP70 were expressed abnormally, while the SOD and CAT mRNA expression changes were generally consistent with the corresponding enzyme activities. The integrated biomarker response (IBR) values were higher under combined exposures than single exposures at both biochemical and molecular levels, indicating that combined treatment exacerbated the toxicity. However, the IBR value of the combined treatment decreased consistently at the time axis. Overall, our results suggest that PLA BMPs and IMI induce oxidative stress and gene expression in earthworms at environmentally relevant concentrations, thereby increasing the risk of earthworms.
Collapse
Affiliation(s)
- Baikerouzi Baihetiyaer
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Nan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Bo He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712000, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712000, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712000, PR China.
| |
Collapse
|
38
|
Ouyang Z, Li S, Xue J, Liao J, Xiao C, Zhang H, Li X, Liu P, Hu S, Guo X, Zhu L. Dissolved organic matter derived from biodegradable microplastic promotes photo-aging of coexisting microplastics and alters microbial metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130564. [PMID: 37055972 DOI: 10.1016/j.jhazmat.2022.130564] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Dissolved organic matter (DOM) leaching from biodegradable microplastics (BMPs) and its characteristics and corresponding environmental implication are rarely investigated. In this study, the main component of DOM leachate from the two BMPs (polyadipate/butylene terephthalate (PBAT)/polycaprolactone (PCL)) was verified by using excitation-emission matrix-parallel factor analysis (EEM-PARAFAC). The PBAT-DOM (PBOM) was aromatized and terrestrial. Comparatively, PCL-DOM (PLOM) had low molecular weight. PBOM contained protein-like components while PLOM contained tryptophan and tyrosine components. Interestingly, both PBOM and PLOM could accelerate the decomposition and oxidation of coexisting polystyrene (PS) under light irradiation. Further, the difference in composition and the properties of BMPs-DOM significantly affected its photochemical activity. The high territoriality and protein-like component of PBOM significantly promoted the generation of 1O2 and O2•-, which caused faster disruptions to the backbone of PS. Simultaneously, the microbial community's richness, diversity, and metabolism were obviously improved under the combined pressure of aged PS and BMPs-DOM. This study threw light on the overlooked contribution of DOM derived from BMPs in the aging process of NMPs and their impact on the microbial community and provided a promising strategy for better understanding of combined MPs' fate and environmental risk.
Collapse
Affiliation(s)
- Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Shuxing Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jincheng Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinmo Liao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuanqi Xiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaohan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Shiwen Hu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China.
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
39
|
Kang X, Lü F, Wang Y, Duan H, Zhang H, He P. Metagenomic analysis of microbiological risk in bioaerosols during biowaste valorization using Musca domestica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121118. [PMID: 36681377 DOI: 10.1016/j.envpol.2023.121118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Bioconversion using insects has gradually become a promising technology for biowaste management and protein production. However, knowledge about microbiological risk of insect related bioaerosols is sparse and conventional methods failed to provide higher resolved information of environmental microbe. In this study, a metagenomic analysis including microorganisms, antibiotic resistance genes (ARGs), virulence factor genes (VFGs), mobile gene elements (MGEs), and endotoxin distribution in bioaerosols during biowaste conversion via Musca domestica revealed that bioaerosols in Fly rearing room possess the highest ARGs abundances and MGEs diversity. Through a metagenome-assembled genomes (MAGs)-based pipeline, compelling evidence of ARGs/VFGs host assignment and ARG-VFG co-occurrence pattern were provided from metagenomic perspective. Bioaerosols in Bioconversion and Maggot separation zone were identified to own high density of MAGs carrying both ARGs and VFGs. Bacteria in Proteobacteria, Actinobacteriota, and Firmicutes phyla were predominate hosts of ARGs and VFGs. Multidrug-Motility, Multidrug-Adherence, and Beta lactam-Motility pairs were the most common ARG-VFG co-occurrence pattern in this study. Results obtained are of great significance for microbiological risk assessment during housefly biowaste conversion process.
Collapse
Affiliation(s)
- Xinyue Kang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fan Lü
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China
| | - Yujing Wang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Haowen Duan
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hua Zhang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China
| | - Pinjing He
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China.
| |
Collapse
|
40
|
Li Z, Yang Y, Chen X, He Y, Bolan N, Rinklebe J, Lam SS, Peng W, Sonne C. A discussion of microplastics in soil and risks for ecosystems and food chains. CHEMOSPHERE 2023; 313:137637. [PMID: 36572363 DOI: 10.1016/j.chemosphere.2022.137637] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Microplastics are among the major contaminations in terrestrial and marine environments worldwide. These persistent organic contaminants composed of tiny particles are of concern due to their potential hazards to ecosystem and human health. Microplastics accumulates in the ocean and in terrestrial ecosystems, exerting effects on living organisms including microbiomes, fish and plants. While the accumulation and fate of microplastics in marine ecosystems is thoroughly studied, the distribution and biological effects in terrestrial soil call for more research. Here, we review the sources of microplastics and its effects on soil physical and chemical properties, including water holding capacity, bulk density, pH value as well as the potential effects to microorganisms and animals. In addition, we discuss the effects of microplastics in combination with other toxic environmental contaminants including heavy metals and antibiotics on plant growth and physiology, as well as human health and possible degradation and remediation methods. This reflect is an urgent need for monitoring projects that assess the toxicity of microplastics in soil and plants in various soil environments. The prospect of these future research activities should prioritize microplastics in agro-ecosystems, focusing on microbial degradation for remediation purposes of microplastics in the environment.
Collapse
Affiliation(s)
- Zhaolin Li
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yafeng Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangmeng Chen
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yifeng He
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, M079, Perth, WA, 6009, Australia
| | - Jörg Rinklebe
- University of Wuppertal, Faculty of Architecture and Civil Engineering, Institute of Soil Engineering, Waste- and Water Science, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Christian Sonne
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark.
| |
Collapse
|
41
|
Magnano San Lio R, Favara G, Maugeri A, Barchitta M, Agodi A. How Antimicrobial Resistance Is Linked to Climate Change: An Overview of Two Intertwined Global Challenges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1681. [PMID: 36767043 PMCID: PMC9914631 DOI: 10.3390/ijerph20031681] [Citation(s) in RCA: 230] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 05/13/2023]
Abstract
Globally, antimicrobial resistance (AMR) and climate change (CC) are two of the top health emergencies, and can be considered as two interlinked public health priorities. The complex commonalities between AMR and CC should be deeply investigated in a One Health perspective. Here, we provided an overview of the current knowledge about the relationship between AMR and CC. Overall, the studies included pointed out the need for applying a systemic approach to planetary health. Firstly, CC increasingly brings humans and animals into contact, leading to outbreaks of zoonotic and vector-borne diseases with pandemic potential. Although it is well-established that antimicrobial use in human, animal and environmental sectors is one of the main drivers of AMR, the COVID-19 pandemic is exacerbating the current scenario, by influencing the use of antibiotics, personal protective equipment, and biocides. This also results in higher concentrations of contaminants (e.g., microplastics) in natural water bodies, which cannot be completely removed from wastewater treatment plants, and which could sustain the AMR spread. Our overview underlined the lack of studies on the direct relationship between AMR and CC, and encouraged further research to investigate the multiple aspects involved, and its effect on human health.
Collapse
Affiliation(s)
| | | | | | | | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy
| |
Collapse
|
42
|
Sun Y, Li X, Ding C, Pan Q, Wang J. Host species and microplastics differentiate the crop root endophytic antibiotic resistome. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130091. [PMID: 36206714 DOI: 10.1016/j.jhazmat.2022.130091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The increasing One-Health concept calls for a more in-depth understanding of the dissemination of antibiotic resistance in plant microbiomes. While there is considerable published evidence that microplastics can promote the spread of antibiotic resistance genes (ARGs) in the environment, whether and how microplastics impact the plant endophytic resistome are largely unknown. Here we examined the ARGs along the soil-root continuum of maize and wheat under the pressure of microplastics. Amendment with heavy metals was also included as they can apply the selective pressure for ARG spread as well. The crop species and genotypes had significant effects on the root endophytic ARG abundance and diversity. The greatest ARG abundance was observed in the maize ZD958 endophytes (0.215 copies per 16S rRNA gene), followed by the maize XY335 (0.092 copies per 16S rRNA gene). For each crop genotype, amendment with microplastics and heavy metals significantly increased the ARG abundances and changed their profiles in root endophytes. The endophytic ARG variances were closely associated with the endophytic microbiome, the rhizosphere bacterial communities and resistome. Additionally, the level of endophytic ARGs was positively relevant to the abundance of mobile genetic elements (MGEs). These findings suggested that the root endophytic resistome was primarily affected by the crop species, and microplastics might show enhancement effects on the endophytic resistome via changing the root-associated microbiome and facilitating the MGE mediation. Overall, this study, for the first time, highlights the root endophytic ARG emergence and dissemination induced by microplastics.
Collapse
Affiliation(s)
- Yuanze Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xinfei Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Changfeng Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingchun Pan
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China.
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
43
|
Chah CN, Banerjee A, Gadi VK, Sekharan S, Katiyar V. A systematic review on bioplastic-soil interaction: Exploring the effects of residual bioplastics on the soil geoenvironment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158311. [PMID: 36037904 DOI: 10.1016/j.scitotenv.2022.158311] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Growing demand for plastic and increasing plastic waste pollution have led to significant environmental challenges and concerns in today's world. Bioplastics offer exciting new opportunities and possibilities where biodegradable and bio-based plastics are expected to be more eco-friendly and rely on renewable resources. With all its promises, evaluating its real impact and fate on the geoenvironment is paramount for promoting bioplastic use. This paper presents a systematic literature review to understand current bioplastic-soil research and the effects of its residues on the geoenvironment. 632 studies related to bioplastic research in soil since 1973 were identified and categorized into different relevant topics. Publication trend showed bioplastic-soil research grew exponentially after 2010 wherein field studies accounted to 33.1 % of the total studies and only about 9.7 % studied the effects of bioplastic residues on the geoenvironment. Majority of the lab studies were on development and subsequent stability of bioplastics in soil. Short-term studies (in months) dominated the longer-term studies and studies over 4 years were almost non-existent. Lab and field experiments often gave inconsistent results with seasonal, climatic and bio-geographical factors strongly influencing the field results and bioplastic stability in soil. Most existing studies reported significant effects for microbioplastic concentrations at or above 1 % w/w. Bioplastic residues were found to substantially affect soil C/N ratio, impact soil microbial diversity by favouring certain microbial taxa and alter soil physical structure by influencing soil aggregates formation. At higher concentrations, plant health and germination success were also negatively affected. Conclusively, the review found it important to focus more on long-term field experiments to better understand the degree and extent of bioplastic residue impact on soil physico-chemical properties, mechanical properties, soil biology, soil-bioplastic-plant response, nutrients and toxicity. There are also very few studies investigating contaminant transport and migration of micro or nano-bioplastics in soil.
Collapse
Affiliation(s)
- Charakho N Chah
- Department of Civil Engineering, Indian Institute of Technology Guwahati, 781039, India; Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, 781039, India
| | - Arnab Banerjee
- Department of Civil Engineering, Indian Institute of Technology Guwahati, 781039, India; Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, India
| | - Vinay Kumar Gadi
- Department of Civil Engineering, Indian Institute of Technology Guwahati, 781039, India
| | - Sreedeep Sekharan
- Department of Civil Engineering, Indian Institute of Technology Guwahati, 781039, India; Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, 781039, India.
| | - Vimal Katiyar
- Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, India
| |
Collapse
|
44
|
Chen X, Wang J, Xie Y, Ma Y, Zhang J, Wei H, Abdou AIE. Physiological response and oxidative stress of grass carp (Ctenopharyngodon idellus) under single and combined toxicity of polystyrene microplastics and cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114080. [PMID: 36152428 DOI: 10.1016/j.ecoenv.2022.114080] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
The harm of microplastics (MPs) to aquatic ecosystems is caused by their stable and non-degradable properties. Additionally, the pollutants such as heavy metals in the water are easy to be adsorbed on their surface with their small particle size and large specific surface area, resulting in environmental pollution. Therefore, the study on the mixture toxicity of MPs and heavy metals has theoretical significance for the risk assessment of aquatic ecosystems. In the present study, 10 nm polystyrene (PS) and cadmium (Cd) were used, and their individual and mixture acute toxicities on grass carp (Ctenopharyngodon idellus) were examined. The results indicated that the mortality of the fish increased with the concentration from 10 mg L-1 to 20 mg L-1, and the existence of PS-MPs elevated the Cd concentrations in the fish and accelerated the death. Whether the Cd and/or the PS-MPs concentrations caused varying degrees of damage to the gills, kidney, liver, and muscles of the grass carp, especially under the highest concentrations (20 mg L-1 Cd + 300 μg L-1 PS-MPs). Moreover, low concentrations of PS-MPs alone (30 μg L-1 PS-MPs) significantly increased the superoxide dismutase (SOD) activity in the kidney and liver, reaching 12.43% and 14.38%, respectively (P < 0.05). The peroxidase (POD) activity was increased only in the kidney, up to 25.95% (P < 0.05). Also, significant reductions in SOD and POD activities were observed in the combination of high concentration of Cd (20 mg L-1) and 300 μg L-1 PS-MPs (P < 0.05). To the best of our knowledge, there are few studies on the impact of combined toxicity of PS-MPs and Cd on grass carp under laboratory conditions. Therefore, these findings may provide a theoretical guarantee for pollution prevention and control in the aquatic ecosystem.
Collapse
Affiliation(s)
- Xuan Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jing Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yijie Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yibing Ma
- Guangdong-Hongkong-Macao Joint Laboratory of Collaborative Innovation for Environmental Quality, Macao Environmental Research Institute, Macau University of Science and Technology, 999078, China
| | - Jiaen Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China.
| | - Hui Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, China; Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Ahmed Ibrahim Elsayed Abdou
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
45
|
Li T, Li R, Cao Y, Tao C, Deng X, Ou Y, Liu H, Shen Z, Li R, Shen Q. Soil antibiotic abatement associates with the manipulation of soil microbiome via long-term fertilizer application. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129704. [PMID: 36104920 DOI: 10.1016/j.jhazmat.2022.129704] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The effects of different fertilization on microbial communities and resistome in agricultural soils with a history of fresh manure application remains largely unclear. Here, soil antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and microbial communities were deciphered using metagenomics approach from a long-term field experiment with different fertilizer inputs. A total of 541 ARG subtypes were identified, with Multidrug, Macrolides-Lincosamides-Streptogramins (MLS), and Bacitracin resistance genes as the most universal ARG types. The abundance of ARGs detected in manure (2.52 ARGs/16 S rRNA) treated soils was higher than chemical fertilizer (2.42 ARGs/16 S rRNA) or compost (2.37 ARGs/16 S rRNA) amended soils. The higher abundance of MGEs and the enrichment of Proteobacteria were observed in manure treated soils than in chemical fertilizer or compost amended soils. Proteobacter and Actinobacter were recognized as the main potential hosts of ARGs revealed by network analysis. Further soil pH was identified as the key driver in determining the composition of both microbial community and resistome. The present study investigated the mechanisms driving the microbial community, MGEs and ARG profiles of long-term fertilized soils with ARGs contamination, and our findings could support strategies to manage the dissemination of soil ARGs.
Collapse
Affiliation(s)
- Tingting Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Ruochen Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yifan Cao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yannan Ou
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
46
|
Zhou Q, Zhang J, Zhang M, Wang X, Zhang D, Pan X. Persistent versus transient, and conventional plastic versus biodegradable plastic? -Two key questions about microplastic-water exchange of antibiotic resistance genes. WATER RESEARCH 2022; 222:118899. [PMID: 35940152 DOI: 10.1016/j.watres.2022.118899] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/24/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The ubiquitous microplastics (MPs) in water environment play an important role in the dissemination of antibiotic resistance genes (ARGs) due to their exchange between floating MPs and receiving waters. However, whether the ARG exchange is persistent or transient and what are the differences in ARG exchange between conventional plastics and biodegradable plastics are the two key issues to be addressed. In this study, biodegradable PBAT and non-biodegradable PET MPs were chosen to explore the MP-water ARG exchange after the MPs floated to the receiving waters. The results demonstrated that the active exchange of ARGs between MPs and receiving waters occurred, which, however, were transient for most of ARGs. The relative abundance of ARGs both on the MPs and in the waters rapidly decreased to the initial or lower levels within 4 weeks. Approximately 25-50% (ARG subtype number ratio) of studied ARG subtypes were introduced into the receiving waters by MPs, and 35-65% of studied ARG subtypes went through fluctuation in terms of abundance on MPs and in the receiving water. ARGs tended to converge between MPs and the receiving waters with time. Furthermore, the ARG exchange between MPs and waters facilitated horizontal gene transfer (HGT). IntI1 and tnpA05 played the crucial roles in HGT, which was indicated by their correlated change with most ARGs; in contrast, tnpA04 showed the obvious lagging responses. The biodegradable MP of PBAT generally accumulated higher levels of most ARGs including multidrug resistant genes than the non-biodegradable MP of PET. The transient exchange of most ARGs between MPs and water implies that the on-off hitchhiking of ARGs on MPs in aquatic environment may not exert significant influence on ARG transmission. However, compared with the conventional plastics, the biodegradable MPs might pose much higher ARG dissemination risks due to the higher enrichment of ARGs particularly with people's ever-increasingly usage. Enough attention must be paid to this emerging issue.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaonan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|