1
|
Budiarso FS, Leong YK, Chang JJ, Chen CY, Chen JH, Yen HW, Chang JS. Current advances in microalgae-based fucoxanthin production and downstream processes. BIORESOURCE TECHNOLOGY 2025; 428:132455. [PMID: 40157580 DOI: 10.1016/j.biortech.2025.132455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Fucoxanthin, a marine carotenoid primarily found in brown algae and microalgae, offers significant health benefits, including antioxidant, anti-obesity, and anti-cancer effects. While brown algae remain the dominant commercial source, microalgae such as Phaeodactylum tricornutum are emerging as promising candidates for large-scale, sustainable fucoxanthin production. This review explores advancements in fucoxanthin biosynthesis, focusing on cultivation methods, extraction techniques, and genetic engineering strategies. Different cultivation systems - including autotrophic, heterotrophic, and mixotrophic approaches - have been assessed for their biomass yield, cost-effectiveness, and scalability, together with a quantitative meta-analysis to highlight specific trends or correlations in fucoxanthin production. The efficiency and environmental impact of extraction methods, such as supercritical fluid extraction, ultrasound-assisted extraction, and microwave-assisted extraction, have also been evaluated. In addition, synthetic biology and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genetic modifications show potential for enhancing fucoxanthin biosynthesis. However, challenges remain in terms of cost, scalability, and regulatory constraints. This review highlights the need for integrated biotechnological solutions to enhance commercial viability, combining metabolic engineering, efficient extraction techniques, and optimized cultivation strategies. As demand continues to grow in the nutraceutical, pharmaceutical, and cosmetic industries, ongoing advancements in microalgae-based fucoxanthin production will be critical for ensuring sustainable and cost-effective manufacturing.
Collapse
Affiliation(s)
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan; Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Jih-Heng Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Hong-Wei Yen
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan.
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
2
|
Gallego I, Medic N, Pedersen JS, Ramasamy PK, Robbens J, Vereecke E, Romeis J. The microalgal sector in Europe: Towards a sustainable bioeconomy. N Biotechnol 2025; 86:1-13. [PMID: 39778767 DOI: 10.1016/j.nbt.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Microalgae are a diverse group of photosynthetic microorganisms that can be exploited to produce sustainable food and feed products, alleviate environmental pollution, or sequester CO2 to mitigate climate change, among other uses. To optimize resource use and integrate industrial waste streams, it is essential to consider factors such as the biology and cultivation parameters of the microalgal strains, as well as the cultivation system and processing technologies employed. This paper reviews the main commercial applications of microalgae (including cyanobacteria) and examines the biological and biotechnological aspects critical to the sustainable processing of microalgal biomass and its derived compounds. We also provide an up-to-date overview of the microalgal sector in Europe considering the strain, cultivation system and commercial application. We have identified 146 different microalgal-derived products from 66 European microalgae producers, and 49 additional companies that provide services and technologies, such as optimization and scalability of the microalgal production. The most widely cultivated microalga is 'spirulina' (Limnospira spp.), followed by Chlorella spp. and Nannochloropsis spp., mainly for human consumption and cosmetics. The preferred cultivation system in Europe is the photobioreactor. Finally, we discuss the logistic and regulatory challenges of producing microalgae at industrial scale, particularly in the European Union, and explore the potential of new genomic techniques and bioprocessing to foster a sustainable bioeconomy in the microalgal sector.
Collapse
Affiliation(s)
- Irene Gallego
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland.
| | - Nikola Medic
- Center for Bioresources, Danish Technological Institute (DTI), Taastrup, Denmark
| | - Jakob Skov Pedersen
- Center for Bioresources, Danish Technological Institute (DTI), Taastrup, Denmark
| | | | - Johan Robbens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Belgium
| | - Elke Vereecke
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Belgium
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| |
Collapse
|
3
|
Haider MN, O'Higgins L, O'Shea R, Archer L, Wall DM, Verma N, Rodero MDR, Mehmood MA, Murphy JD, Bose A. Selecting optimal algal strains for robust photosynthetic upgrading of biogas under temperate oceanic climates. Biotechnol Adv 2025; 82:108581. [PMID: 40258525 DOI: 10.1016/j.biotechadv.2025.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
Biogas generated from anaerobic digestion can be upgraded to biomethane by photosynthetic biogas upgrading, using CO2 as a bioresource for algal (cyanobacteria and microalgae) cultivation. This allows the upgrading technology to offer economic and environmental benefits to conventional physiochemical upgrading techniques (which can be energy-intensive and costly) by co-generating biomethane with high-value biomass. However, a critical challenge in implementing this technology in temperate oceanic climatic conditions (as found in Japan, and the northwest coasts of Europe and of North America, with average temperatures ranging between 5 and 20 °C) is the selection of algal strains that must be capable of sustained growth under lower ambient temperatures. Accordingly, this paper investigated the selection of algae that met seven key criteria: optimal growth at high pH (9-11); at alkalinity of 1.5-2.5 g inorganic carbon per litre; operation at low temperature (5-20 °C); tolerance to high CO2 concentrations (above 20 %); capability for mixotrophic cultivation; ability to accumulate high-value metabolites such as photosynthetic pigments and bioactive fatty acids; and ease of harvesting. Of the twenty-six algal species assessed and ranked using a Pugh Matrix, Anabaena sp. and Phormidium sp. were assessed as the most favourable species, followed by Oscillatoria sp., Spirulina subsalsa, and Leptolyngbya sp. Adaptive laboratory evolution together with manipulation of abiotic factors could be effectively utilised to increase the efficiency and economic feasibility of the use of the selected strain in a photosynthetic biogas upgrading system, through improvement of growth and yield of high-value compounds.
Collapse
Affiliation(s)
- Muhammad Nabeel Haider
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Linda O'Higgins
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Richard O'Shea
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Lorraine Archer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - David M Wall
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Nikita Verma
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - María Del Rosario Rodero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Muhammad Aamer Mehmood
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Jerry D Murphy
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Archishman Bose
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland.
| |
Collapse
|
4
|
de Lima Barizão AC, Brandão LL, de Oliveira Gomes LE, Gonçalves RF, de Oliveira JP, Cassini ST. Optimizing magnetic flocculation of Chlorella sp. using magnetite nanoparticles functionalized with tannin from Rhizophora mangle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6750-6760. [PMID: 40014244 DOI: 10.1007/s11356-025-36149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Microalgae biomass is considered a rich source of biomolecules and can be applied in different ways, such as in biofuel production, which includes biodiesel, biogas, and biochar. However, the complex and costly harvesting step can impair their industrial potential. To improve harvesting, tannins are highly applied flocculants for microalgae flocculation but stay attached to the microalgae biomass after harvesting, which is not interesting for some applications. This issue can be solved using associated tannins with magnetic nanoparticles (MNPs). Thus, we synthesized (chemical precipitation) and functionalized MNPs with tannin from Rhizophora mangle and applied them to harvest Chlorella sp. The functionalized MNPs (MNP-TNs) were characterized using X-ray diffraction (XDR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDS), Fourier transform infrared (FTIR), and Zeta potential. At the optimum point, the adsorbent achieved a HE% of 92.6% (MNP-TNs concentration = 1000 mg L-1; pH = 4), maintaining this efficiency during six reuse cycles. The Langmuir isotherm model adjusted best to the data, indicating monolayer adsorption. The process was considered exothermic, favorable, and spontaneous. These results make this material a good candidate for application in larger scales of microalgae harvesting. The high harvesting efficiency, which is particularly impressive given the short time it was achieved in, and the possibility of reusing the particles for several cycles are essential indicators of harvesting optimization; however, some feasibility studies still need to be carried out.
Collapse
Affiliation(s)
- Ana Carolina de Lima Barizão
- Department of Environmental Engineering, Federal University of Espírito Santo, Av. Fernando Ferrari, Vitória, ES, 514, 29075-910, Brazil
- Laboratory of Physical, Chemical and Microbiological Characterization, Research, Innovation and Development Center, Av. Eliezer Batista, Cariacica, ES, 29140-500, Brazil
| | - Larissa Lamburghini Brandão
- Laboratory of Physical, Chemical and Microbiological Characterization, Research, Innovation and Development Center, Av. Eliezer Batista, Cariacica, ES, 29140-500, Brazil
- Department of Industrial Chemistry, Federal Institute of Espírito Santo, Min. Salgado Filho Avenue, Vila Velha, ES, 1000, 29106-010, Brazil
| | - Luiz Eduardo de Oliveira Gomes
- OceanPact Serviços Marítimos S.A., R. da Glória, 122, Rio de Janeiro, RJ, 20241-180, Brazil
- Guardiões Do Mar NGO - Guanabara Verde, Rua Alfredo Azamor, São Gonçalo, RJ, 739, Brazil
- Programa de Pós-Graduação Em Oceanografia Ambiental (PPGOAM), Departamento de Oceanografia E Ecologia, Universidade Federal Do Espírito Santo, Vitória, ES, Brazil
| | - Ricardo Franci Gonçalves
- Department of Environmental Engineering, Federal University of Espírito Santo, Av. Fernando Ferrari, Vitória, ES, 514, 29075-910, Brazil
- Laboratory of Physical, Chemical and Microbiological Characterization, Research, Innovation and Development Center, Av. Eliezer Batista, Cariacica, ES, 29140-500, Brazil
| | - Jairo Pinto de Oliveira
- Laboratory of Physical, Chemical and Microbiological Characterization, Research, Innovation and Development Center, Av. Eliezer Batista, Cariacica, ES, 29140-500, Brazil
- Department of Morphology, Federal University of Espírito Santo, Av. Maruípe, Vitória, ES, 29053-360, Brazil
| | - Sérvio Túlio Cassini
- Department of Environmental Engineering, Federal University of Espírito Santo, Av. Fernando Ferrari, Vitória, ES, 514, 29075-910, Brazil.
- Laboratory of Physical, Chemical and Microbiological Characterization, Research, Innovation and Development Center, Av. Eliezer Batista, Cariacica, ES, 29140-500, Brazil.
| |
Collapse
|
5
|
Puente-Padilla BL, Romero-Villegas GI, Sánchez-Estrada A, Cira-Chávez LA, Estrada-Alvarado MI. Effect of Marine Microalgae Biomass ( Nannochloropsis gaditana and Thalassiosira sp.) on Germination and Vigor on Bean ( Phaseolus vulgaris L.) Seeds "Higuera". Life (Basel) 2025; 15:386. [PMID: 40141731 PMCID: PMC11943941 DOI: 10.3390/life15030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
The production of marine microalgae provides a sustainable solution for agriculture, acting as biostimulants to enhance seed germination, vigor, and early growth. In the present work, the parameters of pH, airflow, and dilution speed were established to produce biomass of two species of marine algae (Nannochloropsis gaditana and Thalassiosira sp.); in addition, its capacity to stimulate the germination of bean seeds was evaluated. The experimental treatments included three biomass concentrations (Cb) of both microalgae species (0.5, 1, and 1.5 g·L-1) and a control (distilled water) at two temperatures (25 and 35 °C). The rate, index, average time, time at 50% germination, and vigor were evaluated. The results indicated that the highest yield of microalgae biomass was obtained with D = 0.3 day-1 for N. gaditana and 0.2 day-1 for Thalassiosira sp. Microalgae biomass showed activity as a biostimulant on germination, improving the germination rate and reducing the germination time with better vigor for the seedlings at each of the evaluated concentrations.
Collapse
Affiliation(s)
- Brisia Lizbeth Puente-Padilla
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, Calle 5 de Febrero 818, Ciudad Obregón 85000, Sonora, Mexico; (B.L.P.-P.); (L.A.C.-C.)
| | | | - Alberto Sánchez-Estrada
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Luis Alberto Cira-Chávez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, Calle 5 de Febrero 818, Ciudad Obregón 85000, Sonora, Mexico; (B.L.P.-P.); (L.A.C.-C.)
| | - María I. Estrada-Alvarado
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, Calle 5 de Febrero 818, Ciudad Obregón 85000, Sonora, Mexico; (B.L.P.-P.); (L.A.C.-C.)
| |
Collapse
|
6
|
Wu M, Wen H, Yin H, Qin W, Wang Y, Liu X, Zheng X, He J, Wei K, Xiao B, Kong X. Re-frying oil emulsion as buoy-bead for microalgae harvesting: A promising approach for blooms of microalgae management. MARINE POLLUTION BULLETIN 2025; 210:117296. [PMID: 39579596 DOI: 10.1016/j.marpolbul.2024.117296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Blooms of microalgae can pose a major threat to ecological balance and human health. Therefore, a novel method of harvesting microalgae was investigated, using re-frying oil to make buoy-bead for the harvesting process. The effectiveness of the method was evaluated by water samples from the Huaihe River basin and Chaohu Lake. The results showed that the buoy-bead flotation method achieved a harvesting efficiency of 97.21 %.The climate change emissions for harvesting 1 m3 of microalgae are 0.33 kg CO2 eq, and with a positive NPV, the economic feasibility of the microalgae harvesting plan is preliminarily assessed.
Collapse
Affiliation(s)
- Meili Wu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Hao Wen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China.
| | - Hongwei Yin
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Wei Qin
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Yue Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Xu Liu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Xichen Zheng
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Jia He
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Kemin Wei
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Baiqing Xiao
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Xiaomin Kong
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China.
| |
Collapse
|
7
|
Chan MZA, Hau VJH, Perez B, Haberkorn I, Mathys A, Liu SQ. Soy whey and brewer's spent grain hydrolysates wholly replace conventional medium for microalgae growth: Process performance and economic considerations. BIORESOURCE TECHNOLOGY 2024; 413:131460. [PMID: 39255947 DOI: 10.1016/j.biortech.2024.131460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
To enhance circularity in heterotrophic microalgal bioprocesses, this study completely substituted glucose and Bold's basal medium (BBM) with brewer's spent grain (BSG) and soy whey (SW) hydrolysates. Mild acid hydrolysis conditions of BSG (0.2 M H2SO4, 130 °C, 36 min) and SW (0.1 M HCl, 95 °C, 30 min) were optimised for glucose release, and their hydrolysates were optimally mixed (15 % SW-85 % BSG) to obtain a medium that best supported Auxenochlorella protothecoides growth. Maximum biomass production (Xmax) and productivity (PXmax) obtained in the hydrolysate medium containing 50.75 g/L endogenous glucose (Xmax: 22.17 g/L; PXmax: 7.06 g/L/day) were comparable to that in BBM containing 50.44 g/L exogenous glucose (Xmax: 20.02 g/L; PXmax: 6.34 g/L/day). Moreover, estimated hydrolysate medium production costs were within an order of magnitude to BBM. Overall, the integrated approach of tailored hydrolytic treatments and complementary side-streams presents a promising technical and economic feasibility, with applications extending beyond A. protothecoides.
Collapse
Affiliation(s)
- Mei Zhi Alcine Chan
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Vivian Jing Han Hau
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Byron Perez
- ETH Singapore SEC Ltd, CREATE Tower #06-01, 1 Create Way, Singapore 138602, Singapore; ETH Zürich, Department of Health Science and Technology, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Iris Haberkorn
- ETH Singapore SEC Ltd, CREATE Tower #06-01, 1 Create Way, Singapore 138602, Singapore
| | - Alexander Mathys
- ETH Singapore SEC Ltd, CREATE Tower #06-01, 1 Create Way, Singapore 138602, Singapore; ETH Zürich, Department of Health Science and Technology, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Shao-Quan Liu
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
8
|
Chatzopoulou N, Chaikali C, Mourkogianni E, Mikelis CM, Andriopoulos V, Kornaros M, Avgoustakis K, Lamari FN, Hatziantoniou S. Encapsulation of Microalgae Tisochrysis lutea Extract in Nanostructured Lipid Carriers (NLCs) and Evaluation of Their Sunscreen, Wound Healing, and Skin Hydration Properties. Mar Drugs 2024; 22:487. [PMID: 39590769 PMCID: PMC11595965 DOI: 10.3390/md22110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Traditional sunscreens have relied on synthetic compounds to protect against harmful ultraviolet (UV) radiation. However, there is increasing interest in utilizing the natural photoprotective properties of microalgae extracts. This approach does not only aim to enhance the stability and efficacy of sun protection formulae but also seeks to reduce the reliance on synthetic sunscreens. This study investigates the encapsulation of Tisochrysis lutea extract (TL) in nanostructured lipid carriers (NLCs) to create a combination (NLC-TL) with enhanced physicochemical stability, antioxidant activity, SPF efficacy, wound healing capacity, and skin hydration. The particle size and ζ-potential were approximately 100 nm and -50 mV, respectively, and both formulations successfully passed the stability tests. The antioxidant activity, measured via DPPH assay, revealed that NLC-TL achieved the highest free radical scavenging activity across all tested concentrations, indicating a synergistic effect. The incorporation of TL in NLCs maintained the sun protection factor (SPF) of a 2% extract solution (1.53 ± 0.13). The wound healing assay indicated that NLC-TLs significantly enhanced wound closure compared to controls and TL alone. Additionally, skin hydration tests on healthy volunteers revealed that NLC-TLs provided superior and sustained hydration effects. These results highlight NLC-TLs' potential as a multifunctional topical agent for cosmetic and therapeutic applications.
Collapse
Affiliation(s)
- Natalia Chatzopoulou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Life Sciences, University of Patras, 26 504 Rion, Greece (C.C.); (K.A.)
| | - Chrysi Chaikali
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Life Sciences, University of Patras, 26 504 Rion, Greece (C.C.); (K.A.)
| | - Eleni Mourkogianni
- Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Life Sciences, University of Patras, 26 504 Rion, Greece; (E.M.); (C.M.M.)
| | - Constantinos M. Mikelis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Life Sciences, University of Patras, 26 504 Rion, Greece; (E.M.); (C.M.M.)
| | - Vasilis Andriopoulos
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26 504 Patras, Greece; (V.A.); (M.K.)
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26 504 Patras, Greece; (V.A.); (M.K.)
| | - Konstantinos Avgoustakis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Life Sciences, University of Patras, 26 504 Rion, Greece (C.C.); (K.A.)
| | - Fotini N. Lamari
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Life Sciences, University of Patras, 26 504 Rion, Greece;
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Life Sciences, University of Patras, 26 504 Rion, Greece (C.C.); (K.A.)
| |
Collapse
|
9
|
Nagarajan D, Chen CW, Ponnusamy VK, Dong CD, Lee DJ, Chang JS. Sustainable aquaculture and seafood production using microalgal technology - A circular bioeconomy perspective. CHEMOSPHERE 2024; 366:143502. [PMID: 39384130 DOI: 10.1016/j.chemosphere.2024.143502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
The aquaculture industry is under the framework of the food-water-energy nexus due to the extensive use of water and energy. Sustainable practices are required to support the tremendous growth of this sector. Currently, the aquaculture industry is challenged by its reliance on capture fisheries for feed, increased use of pharmaceuticals, infectious outbreaks, and solid/liquid waste management. This review posits microalgal technology as a comprehensive solution for the current predicaments in aquaculture in a sustainable way. Microalgae are microscopic, freshwater and marine photosynthetic organisms, capable of carbon mitigation and bioremediation. They are indispensable in aquaculture due to their key role in marine productivity and their position in the marine food chain. Microalgae are nutritious and are currently used as feed in specific sectors of aquaculture. Due to their bioremediation potential, direct application of microalgae in shellfish ponds and in recirculating systems have been adopted to improve water quality and aquatic animal health. The potential of microalgae for integration into various aspects of aquaculture processes, namely hatcheries, feed, and waste management has been critically analyzed. Seamless integration of microalgal technology in aquaculture is feasible, and this review will provide new insights into using microalgal technology for sustainable aquaculture.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan; Department of Medicinal and Applied Chemistry & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan.
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, ROC, Taiwan; Research Center for Smart and Sustainable Circular Economy, Tunghai University, Tainan, 407224, ROC, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, 407224, ROC, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
10
|
Panchal SK, Heimann K, Brown L. Improving Undernutrition with Microalgae. Nutrients 2024; 16:3223. [PMID: 39339823 PMCID: PMC11435262 DOI: 10.3390/nu16183223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Undernutrition is an important global health problem, especially in children and older adults. Both reversal of maternal and child undernutrition and heathy ageing have become United Nations-supported global initiatives, leading to increased attention to nutritional interventions targeting undernutrition. One feasible option is microalgae, the precursor of all terrestrial plants. Most commercially farmed microalgae are photosynthetic single-celled organisms producing organic carbon compounds and oxygen. This review will discuss commercial opportunities to grow microalgae. Microalgae produce lipids (including omega-3 fatty acids), proteins, carbohydrates, pigments and micronutrients and so can provide a suitable and underutilised alternative for addressing undernutrition. The health benefits of nutrients derived from microalgae have been identified, and thus they are suitable candidates for addressing nutritional issues globally. This review will discuss the potential benefits of microalgae-derived nutrients and opportunities for microalgae to be converted into food products. The advantages of microalgae cultivation include that it does not need arable land or pesticides. Additionally, most species of microalgae are still unexplored, presenting options for further development. Further, the usefulness of microalgae for other purposes such as bioremediation and biofuels will increase the knowledge of these microorganisms, allowing the development of more efficient production of these microalgae as nutritional interventions.
Collapse
Affiliation(s)
- Sunil K Panchal
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
| | - Kirsten Heimann
- College of Medicine and Public Health, Flinders University, Health Science Building, Building 4, Registry Road, Bedford Park, Adelaide, SA 5042, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
11
|
Camarena-Bernard C, Pozzobon V. Evolving perspectives on lutein production from microalgae - A focus on productivity and heterotrophic culture. Biotechnol Adv 2024; 73:108375. [PMID: 38762164 DOI: 10.1016/j.biotechadv.2024.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
Increased consumer awareness for healthier and more sustainable products has driven the search for naturally sourced compounds as substitutes for chemically synthesized counterparts. Research on pigments of natural origin, such as carotenoids, particularly lutein, has been increasing for over three decades. Lutein is recognized for its antioxidant and photoprotective activity. Its ability to cross the blood-brain barrier allows it to act at the eye and brain level and has been linked to benefits for vision, cognitive function and other conditions. While marigold flower is positioned as the only crop from which lutein is extracted from and commercialized, microalgae are proposed as an alternative with several advantages over this terrestrial crop. The main barrier to scaling up lutein production from microalgae to the commercial level is the low productivity compared to the high costs. This review explores strategies to enhance lutein production in microalgae by emphasizing the overall productivity over lutein content alone. Evaluation of how culture parameters, such as light quality, nitrogen sufficiency, temperature and even stress factors, affect lutein content and biomass development in batch phototrophic cultures was performed. Overall, the total lutein production remains low under this metabolic regime due to the low biomass productivity of photosynthetic batch cultures. For this reason, we describe findings on microalgal cultures grown under different metabolic regimes and culture protocols (fed-batch, pulse-feed, semi-batch, semi-continuous, continuous). After a careful literature examination, two-step heterotrophic or mixotrophic cultivation strategies are suggested to surpass the lutein productivity achieved in single-step photosynthetic cultures. Furthermore, this review highlights the urgent need to develop technical feasibility studies at a pilot scale for these cultivation strategies, which will strengthen the necessary techno-economic analyses to drive their commercial production.
Collapse
Affiliation(s)
- Cristobal Camarena-Bernard
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres 51110 Pomacle, France; Instituto de Estudios Superiores de Occidente (ITESO), 45604 Tlaquepaque, Jalisco, Mexico.
| | - Victor Pozzobon
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres 51110 Pomacle, France
| |
Collapse
|
12
|
Gao L, Qin Y, Zhou X, Jin W, He Z, Li X, Wang Q. Microalgae as future food: Rich nutrients, safety, production costs and environmental effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172167. [PMID: 38580118 DOI: 10.1016/j.scitotenv.2024.172167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
The improvement of food security and nutrition has attracted wide attention, and microalgae as the most promising food source are being further explored. This paper comprehensively introduces basic and functional nutrients rich in microalgae by elaborated tables incorporating a wide variety of studies and summarizes factors influencing their accumulation effects. Subsequently, multiple comparisons of nutrients were conducted, indicating that microalgae have a high protein content. Moreover, controllable production costs and environmental friendliness prompt microalgae into the list that contains more promising and reliable future food. However, microalgae and -based foods approved and sold are limited strictly, showing that safety is a key factor affecting dietary consideration. Notably, sensory profiles and ingredient clarity play an important role in improving the acceptance of microalgae-based foods. Finally, based on the bottleneck in the microalgae food industry, suggestions for its future development were discussed.
Collapse
Affiliation(s)
- Le Gao
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yujia Qin
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xu Zhou
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Wenbiao Jin
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhongqi He
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
13
|
Fayaz T, Rana SS, Goyal E, Ratha SK, Renuka N. Harnessing the potential of microalgae-based systems for mitigating pesticide pollution and its impact on their metabolism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120723. [PMID: 38565028 DOI: 10.1016/j.jenvman.2024.120723] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Due to increased pesticide usage in agriculture, a significant concentration of pesticides is reported in the environment that can directly impact humans, aquatic flora, and fauna. Utilizing microalgae-based systems for pesticide removal is becoming more popular because of their environmentally friendly nature, ability to degrade pesticide molecules into simpler, nontoxic molecules, and cost-effectiveness of the technology. Thus, this review focused on the efficiency, mechanisms, and factors governing pesticide removal using microalgae-based systems and their effect on microalgal metabolism. A wide range of pesticides, like atrazine, cypermethrin, malathion, trichlorfon, thiacloprid, etc., can be effectively removed by different microalgal strains. Some species of Chlorella, Chlamydomonas, Scenedesmus, Nostoc, etc., are documented for >90% removal of different pesticides, mainly through the biodegradation mechanism. The antioxidant enzymes such as ascorbate peroxidase, superoxide dismutase, and catalase, as well as the complex structure of microalgae cell walls, are mainly involved in eliminating pesticides and are also crucial for the defense mechanism of microalgae against reactive oxygen species. However, higher pesticide concentrations may alter the biochemical composition and gene expression associated with microalgal growth and metabolism, which may vary depending on the type of strain, the pesticide type, and the concentration. The final section of this review discussed the challenges and prospects of how microalgae can become a successful tool to remediate pesticides.
Collapse
Affiliation(s)
- Tufail Fayaz
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Soujanya S Rana
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Esha Goyal
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Sachitra Kumar Ratha
- Algology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Nirmal Renuka
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
14
|
Wagner H, Schad A, Höhmann S, Briol TA, Wilhelm C. Carbon and energy balance of biotechnological glycolate production from microalgae in a pre-industrial scale flat panel photobioreactor. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:42. [PMID: 38486283 PMCID: PMC10941469 DOI: 10.1186/s13068-024-02479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
Glycolate is produced by microalgae under photorespiratory conditions and has the potential for sustainable organic carbon production in biotechnology. This study explores the glycolate production balance in Chlamydomonas reinhardtii, using a custom-built 10-L flat panel bioreactor with sophisticated measurements of process factors such as nutrient supply, gassing, light absorption and mass balances. As a result, detailed information regarding carbon and energy balance is obtained to support techno-economic analyses. It is shown how nitrogen is a crucial element in the biotechnological process and monitoring nitrogen content is vital for optimum performance. Moreover, the suitable reactor design is advantageous to efficiently adjust the gas composition. The oxygen content has to be slightly above 30% to induce photorespiration while maintaining photosynthetic efficiency. The final volume productivity reached 27.7 mg of glycolate per litre per hour, thus, the total process capacity can be calculated to 13 tonnes of glycolate per hectare per annum. The exceptional volume productivity of both biomass and glycolate production is demonstrated, and consequently can achieve a yearly CO2 sequestration rate of 35 tonnes per hectare. Although the system shows such high productivity, there are still opportunities to enhance the achieved volume productivity and thus exploit the biotechnological potential of glycolate production from microalgae.
Collapse
Affiliation(s)
- Heiko Wagner
- Department of Algal Biotechnology, Institute for Biology, University of Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany.
| | - Antonia Schad
- Department of Algal Biotechnology, Institute for Biology, University of Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Sonja Höhmann
- Department of Solar Materials, Helmholtz Center for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Tim Arik Briol
- Department of Solar Materials, Helmholtz Center for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Christian Wilhelm
- Department of Algal Biotechnology, Institute for Biology, University of Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
15
|
Mosibo OK, Ferrentino G, Udenigwe CC. Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges. Foods 2024; 13:733. [PMID: 38472846 DOI: 10.3390/foods13050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Microalgae are receiving increased attention in the food sector as a sustainable ingredient due to their high protein content and nutritional value. They contain up to 70% proteins with the presence of all 20 essential amino acids, thus fulfilling human dietary requirements. Microalgae are considered sustainable and environmentally friendly compared to traditional protein sources as they require less land and a reduced amount of water for cultivation. Although microalgae's potential in nutritional quality and functional properties is well documented, no reviews have considered an in-depth analysis of the pros and cons of their addition to foods. The present work discusses recent findings on microalgae with respect to their protein content and nutritional quality, placing a special focus on formulated food products containing microalgae proteins. Several challenges are encountered in the production, processing, and commercialization of foods containing microalgae proteins. Solutions presented in recent studies highlight the future research and directions necessary to provide solutions for consumer acceptability of microalgae proteins and derived products.
Collapse
Affiliation(s)
- Ornella Kongi Mosibo
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| | - Giovanna Ferrentino
- Faculty of Agriculture, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| |
Collapse
|
16
|
Guieysse B, Plouviez M. Microalgae cultivation: closing the yield gap from laboratory to field scale. Front Bioeng Biotechnol 2024; 12:1359755. [PMID: 38419726 PMCID: PMC10901112 DOI: 10.3389/fbioe.2024.1359755] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Affiliation(s)
- Benoit Guieysse
- Massey Agrifood Digital Laboratory, Massey University, Palmerston North, New Zealand
| | - Maxence Plouviez
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|
17
|
Barboza-Rodríguez R, Rodríguez-Jasso RM, Rosero-Chasoy G, Rosales Aguado ML, Ruiz HA. Photobioreactor configurations in cultivating microalgae biomass for biorefinery. BIORESOURCE TECHNOLOGY 2024; 394:130208. [PMID: 38113947 DOI: 10.1016/j.biortech.2023.130208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Microalgae, highly prized for their protein, lipid, carbohydrate, phycocyanin, and carotenoid-rich biomass, have garnered significant industrial attention in the context of third-generation (3G) biorefineries, seeking sustainable alternatives to non-renewable resources. Two primarily cultivation methods, open ponds and closed photobioreactors systems, have emerged. Open ponds, favored for their cost-effectiveness in large-scale industrial production, although lacking precise environmental control, contrast with closed photobioreactors, offering controlled conditions and enhanced biomass production at the laboratory scale. However, their high operational costs challenge large-scale deployment. This review comprehensively examines the strength, weakness, and typical designs of both outdoor and indoor microalgae cultivation systems, with an emphasis on their application in terms of biorefinery concept. Additionally, it incorporates techno-economic analyses, providing insights into the financial aspects of microalgae biomass production. These multifaceted insights, encompassing both technological and economic dimensions, are important as the global interest in harnessing microalgae's valuable resources continue to grow.
Collapse
Affiliation(s)
- Regina Barboza-Rodríguez
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico.
| | - Gilver Rosero-Chasoy
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Miriam L Rosales Aguado
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Héctor A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico.
| |
Collapse
|
18
|
Masojídek J, Lhotský R, Štěrbová K, Zittelli GC, Torzillo G. Solar bioreactors used for the industrial production of microalgae. Appl Microbiol Biotechnol 2023; 107:6439-6458. [PMID: 37725140 DOI: 10.1007/s00253-023-12733-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023]
Abstract
Microalgae are excellent sources of biomass containing several important compounds for human and animal nutrition-proteins, lipids, polysaccharides, pigments and antioxidants as well as bioactive secondary metabolites. In addition, they have a great biotechnological potential for nutraceuticals, and pharmaceuticals as well as for CO2 sequestration, wastewater treatment, and potentially also biofuel and biopolymer production. In this review, the industrial production of the most frequently used microalgae genera-Arthrospira, Chlorella, Dunaliella, Haematococcus, Nannochloropsis, Phaeodactylum, Porphyridium and several other species is discussed as concerns the applicability of the most widely used large-scale systems, solar bioreactors (SBRs)-open ponds, raceways, cascades, sleeves, columns, flat panels, tubular systems and others. Microalgae culturing is a complex process in which bioreactor operating parameters and physiological variables closely interact. The requirements of the biological system-microalgae culture are crucial to select the suitable type of SBR. When designing a cultivation process, the phototrophic production of microalgae biomass, it is necessary to employ SBRs that are adequately designed, built and operated to satisfy the physiological requirements of the selected microalgae species, considering also local climate. Moreover, scaling up microalgae cultures for commercial production requires qualified staff working out a suitable cultivation regime. KEY POINTS: • Large-scale solar bioreactors designed for microalgae culturing. • Most frequently used microalgae genera for commercial production. • Scale-up requires suitable cultivation conditions and well-elaborated protocols.
Collapse
Affiliation(s)
- Jiří Masojídek
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Science, Třeboň, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Richard Lhotský
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Science, Třeboň, Czech Republic
| | - Karolína Štěrbová
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Science, Třeboň, Czech Republic
| | | | - Giuseppe Torzillo
- Istituto Per La Bioeconomia, CNR, Sesto Fiorentino, Florence, Italy
- Centro de Investigation en Ciencias del Mar Y Limnologia (CIMAR), Ciudad de La Investigation, Universidad de Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
19
|
Oliveira APDS, Assemany P, Covell L, Calijuri ML. Copper multifaceted interferences during swine wastewater treatment in high-rate algal ponds: alterations on nutrient removal, biomass composition and resource recovery. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121364. [PMID: 36849087 DOI: 10.1016/j.envpol.2023.121364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/15/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Microalgae cultivation in swine wastewater (SW) allows the removal of nutrients and biomass production. However, SW is known for its Cu contamination, and its effects on algae cultivation systems such as high-rate algal ponds (HRAPs) are poorly understood. This gap in the literature limits the proposition of adequate concentrations of Cu to optimise SW treatment and resource recovery in HRAPs. For this assessment, 12 HRAPs installed outdoors were operated with 800 L of SW with different Cu concentrations (0.1-4.0 mg/L). Cu's interferences on the growth and composition of biomass and nutrient removal from SW were investigated through mass balance and experimental modelling. The results showed that the concentration of 1.0 mg Cu/L stimulated microalgae growth, and above 3.0 mg Cu/L caused inhibition accompanied by an accumulation of H2O2. Furthermore, Cu affected the contents of lipids and carotenoids observed in the biomass; the highest concentration was observed in the control (16%) and 0.5 mg Cu/L (1.6 mg/g), respectively. An innovative result was verified for nutrient removal, in which increased Cu concentration reduced the N-NH4+ removal rate. In contrast, the soluble P removal rate was enhanced by 2.0 mg Cu/L. Removal of soluble Cu in treated SW reached 91%. However, the action of microalgae in this process was not associated with assimilation but with a pH increase resulting from photosynthesis. A preliminary evaluation of economic viability showed that the commercialisation of biomass considering the concentration of carotenoids obtained in HRAPs with 0.5 mg Cu/L could be economically attractive. In conclusion, Cu affected the different parameters evaluated in this study in a complex way. This can help managers consort nutrient removal, biomass production, and resource recovery, providing information for possible industrial exploitation of the generated bioproducts.
Collapse
Affiliation(s)
| | - Paula Assemany
- Department of Environmental Engineering, Federal University of Lavras (Universidade Federal de Lavras), Lavras, MG, Brazil
| | - Lidiane Covell
- Department of Plant Biology, Federal University of Viçosa (Universidade Federal de Viçosa), Viçosa, MG, Brazil
| | - Maria Lúcia Calijuri
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa), Viçosa, MG, Brazil
| |
Collapse
|
20
|
Cao TND, Mukhtar H, Le LT, Tran DPH, Ngo MTT, Pham MDT, Nguyen TB, Vo TKQ, Bui XT. Roles of microalgae-based biofertilizer in sustainability of green agriculture and food-water-energy security nexus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161927. [PMID: 36736400 DOI: 10.1016/j.scitotenv.2023.161927] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
For years, agrochemical fertilizers have been used in agriculture for crop production. However, intensive utilization of chemical fertilizers is not an ecological and environmental choice since they are destroying soil health and causing an emerging threat to agricultural production on a global scale. Under the circumstances of the increasing utilization of chemical fertilizers, cultivating microalgae to produce biofertilizers would be a wise solution since desired environmental targets will be obtained including (1) replacing chemical fertilizer while improving crop yields and soil health; (2) reducing the harvest of non-renewable elements from limited natural resources for chemical fertilizers production, and (3) mitigating negative influences of climate change through CO2 capture through microalgae cultivation. Recent improvements in microalgae-derived-biofertilizer-applied agriculture will be summarized in this review article. At last, the recent challenges of applying biofertilizers will be discussed as well as the perspective regarding the concept of circular bio-economy and sustainable development goals (SDGs).
Collapse
Affiliation(s)
- Thanh Ngoc-Dan Cao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Linh-Thy Le
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ward 11, District 5, Ho Chi Minh city 72714, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Phuc-Hanh Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan, ROC; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - My Thi Tra Ngo
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Mai-Duy-Thong Pham
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNUT.HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan, ROC
| | - Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tan Phu district, Ho Chi Minh city 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNUT.HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
21
|
Conceptual Design of an Autotrophic Multi-Strain Microalgae-Based Biorefinery: Preliminary Techno-Economic and Life Cycle Assessments. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Microalgae represent a promising solution in addressing the impacts associated with the current agricultural and manufacturing practices which are causing irreparable environmental damage. Microalgae have considerable biosynthetic potential, being a rich source of lipids, proteins, and high-value compounds. Under the scope of the H2020-BBI MULTI-STR3AM project, an innovative large-scale production system of valuable commodities for the food, feed, and fragrance sectors is being developed on the basis of microalgae, reducing costs, increasing the scale of production, and boosting value chain sustainability. In this work, we aimed to create a process model that can mimic an industrial plant to estimate mass and energy balances, optimize scheduling, and calculate production costs for a large-scale plant. Three autotrophic microalgae strains (Nannochloropsis sp., Dunaliella sp. and Spirulina sp.) were considered for this assessment, as well as the use of locally sourced CO2 (flue gas). The developed process model is a useful tool for obtaining the data required for techno-economic analysis (TEA) and life cycle assessment (LCA) of industrial biorefinery-based processes. Nannochloropsis sp. was the most economic option, whereas Dunaliella sp. was the most expensive strain to produce due to its lower productivity. Preliminary environmental assessments of the climate change impact category revealed that water recirculation and the use of flue gas could lead to values of 5.6, 10.6, and 9.2 kgCO2eq·kgAFDW−1 for Nannochloropsis sp., Dunaliella sp., and Spirulina sp., respectively, with electricity and NaCl as the main contributors. The obtained data allow for the quantification of the production costs and environmental impacts of the microalgal biomass fractions produced, which will be fundamental for future comparison studies and in determining if they are higher or lower than those of the replaced products. The process model developed in this work provides a useful tool for the evaluation and optimization of large-scale microalgae production systems.
Collapse
|
22
|
De Bhowmick G, Guieysse B, Everett DW, Reis MG, Thum C. Novel source of microalgal lipids for infant formula. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
23
|
Barbosa MJ, Janssen M, Südfeld C, D'Adamo S, Wijffels RH. Hypes, hopes, and the way forward for microalgal biotechnology. Trends Biotechnol 2023; 41:452-471. [PMID: 36707271 DOI: 10.1016/j.tibtech.2022.12.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/26/2023]
Abstract
The urge for food security and sustainability has advanced the field of microalgal biotechnology. Microalgae are microorganisms able to grow using (sun)light, fertilizers, sugars, CO2, and seawater. They have high potential as a feedstock for food, feed, energy, and chemicals. Microalgae grow faster and have higher areal productivity than plant crops, without competing for agricultural land and with 100% efficiency uptake of fertilizers. In comparison with bacterial, fungal, and yeast single-cell protein production, based on hydrogen or sugar, microalgae show higher land-use efficiency. New insights are provided regarding the potential of microalgae replacing soy protein, fish oil, and palm oil and being used as cell factories in modern industrial biotechnology to produce designer feed, recombinant proteins, biopharmaceuticals, and vaccines.
Collapse
Affiliation(s)
- Maria J Barbosa
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700, AA, The Netherlands.
| | - Marcel Janssen
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700, AA, The Netherlands
| | - Christian Südfeld
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700, AA, The Netherlands
| | - Sarah D'Adamo
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700, AA, The Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, Wageningen, 6700, AA, The Netherlands; Biosciences and Aquaculture, Nord University, Bodø, N-8049,Norway
| |
Collapse
|
24
|
Vilatte A, Spencer-Milnes X, Jackson HO, Purton S, Parker B. Spray Drying Is a Viable Technology for the Preservation of Recombinant Proteins in Microalgae. Microorganisms 2023; 11:microorganisms11020512. [PMID: 36838478 PMCID: PMC9967251 DOI: 10.3390/microorganisms11020512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Microalgae are promising host organisms for the production of encapsulated recombinant proteins such as vaccines. However, bottlenecks in bioprocess development, such as the drying stage, need to be addressed to ensure feasibility at scale. In this study, we investigated the potential of spray drying to produce a recombinant vaccine in microalgae. A transformant line of Chlamydomonas reinhardtii carrying a subunit vaccine against salmonid alphavirus was created via chloroplast engineering. The integrity of the recombinant protein after spray drying and its stability after 27 months storage at -80 °C, +4 °C and room temperature were assessed by immunoblotting. The protein withstood spray drying without significant losses. Long-term storage at +4 °C and room temperature resulted in 50% and 92% degradation, respectively. Optimizing spray drying and storage conditions should minimize degradation and favour short-term storage at positive temperatures. Using data on yield and productivity, the economics of spray drying- and freeze drying-based bioprocesses were compared. The drying stage corresponded to 41% of the total production cost. Process optimization, genetic engineering and new market strategies were identified as potential targets for cost reduction. Overall, this study successfully demonstrates the suitability of spray drying as a process option for recombinant protein production in microalgae at the industrial scale.
Collapse
Affiliation(s)
- Anaëlle Vilatte
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Xenia Spencer-Milnes
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Harry Oliver Jackson
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Saul Purton
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Brenda Parker
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
- Correspondence:
| |
Collapse
|
25
|
Osorio-Reyes JG, Valenzuela-Amaro HM, Pizaña-Aranda JJP, Ramírez-Gamboa D, Meléndez-Sánchez ER, López-Arellanes ME, Castañeda-Antonio MD, Coronado-Apodaca KG, Gomes Araújo R, Sosa-Hernández JE, Melchor-Martínez EM, Iqbal HMN, Parra-Saldivar R, Martínez-Ruiz M. Microalgae-Based Biotechnology as Alternative Biofertilizers for Soil Enhancement and Carbon Footprint Reduction: Advantages and Implications. Mar Drugs 2023; 21:93. [PMID: 36827134 PMCID: PMC9958754 DOI: 10.3390/md21020093] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
Due to the constant growth of the human population and anthropological activity, it has become necessary to use sustainable and affordable technologies that satisfy the current and future demand for agricultural products. Since the nutrients available to plants in the soil are limited and the need to increase the yields of the crops is desirable, the use of chemical (inorganic or NPK) fertilizers has been widespread over the last decades, causing a nutrient shortage due to their misuse and exploitation, and because of the uncontrolled use of these products, there has been a latent environmental and health problem globally. For this reason, green biotechnology based on the use of microalgae biomass is proposed as a sustainable alternative for development and use as soil improvers for crop cultivation and phytoremediation. This review explores the long-term risks of using chemical fertilizers for both human health (cancer and hypoxia) and the environment (eutrophication and erosion), as well as the potential of microalgae biomass to substitute current fertilizer using different treatments on the biomass and their application methods for the implementation on the soil; additionally, the biomass can be a source of carbon mitigation and wastewater treatment in agro-industrial processes.
Collapse
Affiliation(s)
| | | | | | - Diana Ramírez-Gamboa
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Ma. Dolores Castañeda-Antonio
- Centro de Investigaciones en Ciencias Microbiológicas del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72490, Mexico
| | - Karina G. Coronado-Apodaca
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Rafael Gomes Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
26
|
Bhatia SK, Rajesh Banu J, Singh V, Kumar G, Yang YH. Algal biomass to biohydrogen: Pretreatment, influencing factors, and conversion strategies. BIORESOURCE TECHNOLOGY 2023; 368:128332. [PMID: 36414137 DOI: 10.1016/j.biortech.2022.128332] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen has gained attention as an alternative source of energy because of its non-polluting nature as on combustion it produces only water. Biological methods are eco-friendly and have benefits in waste management and hydrogen production simultaneously. The use of algal biomass as feedstock in dark fermentation is advantageous because of its low lignin content, high growth rate, and carbon-fixation ability. The major bottlenecks in biohydrogen production are its low productivity and high production costs. To overcome these issues, many advances in the area of biomass pretreatment to increase sugar release, understanding of algal biomass composition, and development of fermentation strategies for the complete recovery of nutrients are ongoing. Recently, mixed substrate fermentation, multistep fermentation, and the use of nanocatalysts to improve hydrogen production have increased. This review article evaluates the current progress in algal biomass pretreatment, key factors, and possible solutions for increasing hydrogen production.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
27
|
Wan Mahari WA, Wan Razali WA, Manan H, Hersi MA, Ishak SD, Cheah W, Chan DJC, Sonne C, Show PL, Lam SS. Recent advances on microalgae cultivation for simultaneous biomass production and removal of wastewater pollutants to achieve circular economy. BIORESOURCE TECHNOLOGY 2022; 364:128085. [PMID: 36220529 DOI: 10.1016/j.biortech.2022.128085] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Microalgae are known for containing high value compounds and its significant role in sequestering carbon dioxide. This review mainly focuses on the emerging microalgae cultivation technologies such as nanomaterials technology that can improve light distribution during microalgae cultivation, attached cultivation and co-cultivation approaches that can improve growth and proliferation of algal cells, biomass yield and lipid accumulation in microalgal. This review includes a comprehensive discussion on the use of microbubbles technology to enhance aerated bubble capacity in photobioreactor to improve microalgal growth. This is followed by discussion on the role of microalgae as phycoremediation agent in removal of contaminants from wastewater, leading to better water quality and high productivity of shellfish. The review also includes techno-economic assessment of microalgae biorefinery technology, which is useful for scaling up the microalgal biofuel production system or integrated microalgae-shellfish cultivation system to support circular economy.
Collapse
Affiliation(s)
- Wan Adibah Wan Mahari
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Henan 450002, Zhengzhou, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia
| | - Wan Aizuddin Wan Razali
- Faculty of Fisheries & Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Hidayah Manan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia
| | - Mursal Abdulkadir Hersi
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia
| | - Sairatul Dahlianis Ishak
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia
| | - Wee Cheah
- Insitute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Pau Loke Show
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Selangor, Malaysia
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Henan 450002, Zhengzhou, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310, Johor, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
28
|
Low KL, Idris A, Yusof NM. An optimized strategy for lutein production via microwave-assisted microalgae wet biomass extraction process. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Abstract
Whole-cell microalgae biomass and their specific metabolites are excellent sources of renewable and alternative feedstock for various products. In most cases, the content and quality of whole-cell biomass or specific microalgal metabolites could be produced by both fresh and marine microalgae strains. However, a large water footprint for freshwater microalgae strain is a big concern, especially if the biomass is intended for non-food applications. Therefore, if any marine microalgae could produce biomass of desired quality, it would have a competitive edge over freshwater microalgae. Apart from biofuels, recently, microalgal biomass has gained considerable attention as food ingredients for both humans and animals and feedstock for different bulk chemicals. In this regard, several technologies are being developed to utilize marine microalgae in the production of food, feed, and biofuels. Nevertheless, the production of suitable and cheap biomass feedstock using marine microalgae has faced several challenges associated with cultivation and downstream processing. This review will explore the potential pathways, associated challenges, and future directions of developing marine microalgae biomass-based food, feed, and fuels (3F).
Collapse
|