1
|
Abedi D, Niari MH, Ramavandi B, De-la-Torre GE, Renner G, Schmidt TC, Dobaradaran S. Microplastics and phthalate esters in yogurt and buttermilk samples: characterization and health risk assessment. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2025; 23:14. [PMID: 40226515 PMCID: PMC11992273 DOI: 10.1007/s40201-025-00939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/26/2025] [Indexed: 04/15/2025]
Abstract
The contamination of yogurt and buttermilk (doogh), two widely consumed dairy products, with microplastics (MPs) and phthalic acid esters (PAEs), and subsequently the health effects caused by the contamination of these products on humans, is a potential concern. In this study, the abundance and characteristics of MPs as well as the PAEs concentration in different types of yogurts and buttermilk available in the Iranian market were investigated. The average abundance of MPs in different types of yogurts and buttermilk was between 0.63 and 0.76 and 0.52-0.7 items/mL, respectively. Most detected MPs in yogurt and buttermilk samples were in the size range of 1000-5000 μm with the predominant color and shape of transparent and fiber, respectively. Polyethylene terephthalate (PET) and polyamide (PA) were the dominant polymers in yogurt and buttermilk samples, respectively. The average concentrations of PAEs in different types of yogurt and buttermilk samples were between 5.79 and 11.36 and 1.46-6.93 µg/L, respectively. The findings showed that Di(2-ethylhexyl) phthalate (DEHP) levels in yogurt and buttermilk samples may have a carcinogenic risk for adults and adolescents. According to the results of this study, the intake of MPs and PAEs through high consumption of yogurt and buttermilk should be recognized as a significant source of MPs in the human body. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-025-00939-z.
Collapse
Affiliation(s)
- Delaram Abedi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Hazrati Niari
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Gabriel E. De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Gerrit Renner
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, , University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Torsten C. Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, , University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, , University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| |
Collapse
|
2
|
Gheisari L, Ebrahimpour K, Fowzi M, Pourzamani H. Assessment of microplastic contamination in compost leachate: insights from a municipal compost plant in Isfahan, Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:637. [PMID: 40338391 DOI: 10.1007/s10661-025-14079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
The increasing production of waste has become one of the major environmental challenges of our time, particularly in waste management. While the composting process can transform municipal waste into a valuable product, the presence of plastics and microplastics (MPs) (< 5 mm) in the waste and their integration into the final compost and leachate pose significant environmental concerns. This is the first study to analyze the abundance of MP in the compost leachate from one of the Isfahan compost plant (S1), located in one of Iran's major cities with high population density, during the summer season. MPs were counted using a stereomicroscope, and fourier transform infrared spectroscopy (FTIR) was utilized to identify polymer types. The results revealed an average abundance of MPs in the S1 leachate during the summer of 992.66 ± 100.85 items/L. Over 62% of the MPs identified in this study fell within the 1000-5000 μm size range, with a concentration of 610.28 ± 59.26 items/L. Polystyrene and polyamide emerged as the most frequently identified polymers (18.46% and 16.8%), and fragments were the most commonly observed shape among the MPs. This study underscores that compost leachate contains high concentrations of MPs that can disseminate into various environmental compartments such as groundwater, surface water, soil, and even air. Consequently, compost leachate should be recognized as a significant source of MPs entering the environment.
Collapse
Affiliation(s)
- Leila Gheisari
- Department of Environmental Health Engineering, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahimpour
- Department of Environmental Health Engineering, Faculty of Health, Environmental Research Center, Non-Communicable Disease Prevention Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Hamidreza Pourzamani
- Department of Environmental Health Engineering, Faculty of Health, Environmental Research Center, Non-Communicable Disease Prevention Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Haritwal DK, Singh P, Ramana GV, Datta M. Application of high-resolution site characterisation tools and sampling methods for assessing microplastic migration beneath MSW dumpsites. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137384. [PMID: 39892145 DOI: 10.1016/j.jhazmat.2025.137384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
The study addresses a significant environmental issue: the accumulation of microplastics (MPs) in municipal solid waste (MSW) dumpsites and their migration into deeper soil and groundwater (GW). Given the global increase in plastic production and limited waste management, this topic is highly relevant. Furthermore, many studies lack robust methodologies for tracking MP movement through complex soil strata. This study presents an innovative approach, employing advanced site characterisation and sampling techniques, including cone penetration test (CPT), hydraulic profiling tool (HPT), continuous soil sampling, and discrete GW sampling. This integrated method facilitates the identification of high-permeability zones, enabling large-depth sampling while reducing cross-contamination risk. Key findings reveal a substantial MSW layer containing plastics, textiles, and metals in specific zones, while natural soils dominate other areas. Unsaturated zones are mainly sandy, with occasional low-compressibility clay layers. MP concentrations are notably high at the MSW-soil interface 6600-8800 items/kg and decrease significantly with depth to 300-700 items/kg in saturated zones. Smaller MPs (<500 µm), mainly polyethylene, polypropylene, polyamide, and polyester, dominate soil samples. In GW, MP levels range from 26 to 171 items/L, with fibers (<250 µm) comprising about 80 % of MPs, highlighting subsurface soils as partial barriers to MP migration.
Collapse
Affiliation(s)
- Deepak Kumar Haritwal
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Pranjal Singh
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - G V Ramana
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Manoj Datta
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
4
|
Tao Y, Gu Y, Wang H, Zhong G, Wang A, Qu J, Feng J, Zhang Y. Persistent effects of early-life exposure to dibutyl phthalate on zebrafish: Immune system dysfunction via HPA axis. ENVIRONMENT INTERNATIONAL 2025; 198:109386. [PMID: 40117685 DOI: 10.1016/j.envint.2025.109386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/17/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
The plasticizer dibutyl phthalate (DBP) is one of the common contaminants in the aquatic environment and has been verified to be detrimental to aquatic organisms. In this research, zebrafish was employed to explore the toxic mechanism of DBP at environmental concentrations. The findings indicated that DBP led to abnormal development of zebrafish larvae, encompassing an increase in heart rate and malformation rate, as well as a reduction in survival rate and hatching rate. DBP also induced HPA axis activation, increased glucocorticoid content and microglia activation in zebrafish larvae. Moreover, adult zebrafish in the early-life exposure and long-term exposure groups demonstrated anxiety-like and depression-like behaviors. RNA-seq analysis revealed that early embryonic exposure to DBP led to persistent damage in zebrafish that could not be recovered in adulthood. The HPA axis was more severely disorganized in males than in females, and sex-specific differences were also shown in immunotoxicity. It is speculated that the immune system disorder could partially attribute to the out-of-control HPA axis, while the activation of inflammatory cells and inflammatory factors will further exacerbate the situation of HPA axis dysregulation.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yanyan Gu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Haorui Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Guanyu Zhong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiayi Feng
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
5
|
Lodh A, Shafi M, Goel S. Microplastics in municipal solid waste landfill leachate and their removal in treatment units: A perspective of controlled and uncontrolled landfills. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125853. [PMID: 39952586 DOI: 10.1016/j.envpol.2025.125853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Leachate produced from municipal solid waste landfill serves as a potential pathway for microplastics (MPs) release into the environment with a high potential for soil, surface water, and groundwater contamination. These MPs not only persist for longer duration of time in the landfill but also interact with toxic chemical contaminants. These interactions arise from the hydrophobic characteristics and minuscule size of MPs, which absorb a variety of emerging toxic contaminants present in these systems thereby amplifying the risk to surrounding environment. This study was performed to investigate the abundance, characteristics, and pollution risk of MPs in leachate from two contrasting landfill systems in the cities of Chandannagar and Baidyabati, India. A total of 8 leachate samples from an uncontrolled landfill (UCL), i.e., open dump, and 24 samples from different leachate treatment units (LTUs) of a controlled landfill (CL) were evaluated. Particle sizes of 1-5 mm (41.9%) in UCL and 0.025-0.5 mm (46.2%) in CL were predominant. Seven different types of polymers were identified in untreated leachate samples from UCL having concentration 53.4 ± 6.69 p/L (mean ± standard deviation) and in CL 34.7 ± 4.73 p/L. The predominant shapes were films, fragments, and fibers in UCL, whereas fragments and fibers dominated in CL. Polyethylene and polypropylene were the most frequent types of polymers observed in both sites. In CL, collection well, aeration lagoon, and sedimentation pond were used for LTUs, in which overall 83.3% MPs removal was achieved. High removal in LTUs highlights the importance of engineered systems for leachate management. However, optimization of these units is needed for enhanced removal of particles <0.5 mm. For UCL the findings suggest urgent need for implementing basic containment and treatment systems, particularly given their higher pollution risk indices. Varying landfill designs, waste compositions, and weather conditions of specific locations restrict generalisation of the findings to other regions. Therefore, long-term monitoring studies across different geographical and climatic conditions are recommended to develop more comprehensive management strategies.
Collapse
Affiliation(s)
- Ayan Lodh
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Mozim Shafi
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Sudha Goel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India; Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
6
|
Chen L, Fu S, Zheng X. Distribution and risks of microplastics and phthalate esters in the transition from inland river systems to estuarine and nearshore regions of the Yellow Sea, China. MARINE ENVIRONMENTAL RESEARCH 2025; 205:107029. [PMID: 40020617 DOI: 10.1016/j.marenvres.2025.107029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/03/2025]
Abstract
Microplastics (MPs) and phthalate esters (PAEs) are emerging pollutants of significant environmental and health concern. The Yellow Sea, a semi-enclosed marginal sea with dense coastal populations and industrial activities, serves as a critical region for studying MP and PAE pollution due to its ecological sensitivity, role in pollutant transport, and relevance to global marine pollution challenges. The distribution and characteristics of MPs and PAEs in surface water and sediment transitioning from an inland river system to estuarine and nearshore regions of the Yellow Sea in China were investigated. MP concentrations in water samples ranged from 0.89 ± 0.15 to 11.47 ± 1.80 items/L and in sediments from 93.33 ± 23.09 to 653.33 ± 50.33 items/kg dw. The main colors of MPs found in water and sediment samples were white and transparent, with fibers being the predominant shape. The primary size range was 0-0.5 mm, and the main polymer components were rayon and polyethylene. The characteristics of MPs in clams were similar to those in water and sediment, except that their predominant colors were black and blue. The total of six PAEs (Σ6 PAEs) was detected at concentrations between 0.30 and 1.29 μg/L in water and 25.75-163.61 ng/g in sediments. The concentrations of both pollutants demonstrated a distinct spatial gradient, with the highest levels observed in upstream urban areas, followed by progressively decreasing levels in downstream rural zones, and reaching their minimum concentrations in nearshore regions. Variations in the morphological characteristics (color, shape, and size) and polymer composition of MPs were observed between the aquatic phase and sediment phase along the direction of water flow. A significant correlation was found between MP abundance and Σ6 PAEs across both matrices. Ecological risk assessments revealed substantial risks associated with the presence of these pollutants, particularly in urban areas where contamination peaked. Clams collected from the nearshore regions exhibited MP counts of 1.91 ± 0.47 to 2.49 ± 0.63 items/individual and PAEs from 0.51 to 0.91 μg/g, posing high polymer risk from MPs yet no significant health risk from PAEs for human consumers. This study underscores the transition of MP and PAE pollution from riverine to marine environments, providing valuable insights into the critical sources and potential risks associated with marine MPs and PAEs.
Collapse
Affiliation(s)
- Lei Chen
- College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Shiyu Fu
- College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xinyi Zheng
- College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
7
|
Yang Z, Nagashima H, Hasegawa N, Futai N, Koike Y, Arakawa H. Onboard measurement of polyethylene microplastics on a research vessel using Raman micro-spectroscopy: A preliminary study for testing feasibility. MARINE POLLUTION BULLETIN 2025; 212:117588. [PMID: 39864352 DOI: 10.1016/j.marpolbul.2025.117588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Microplastic pollution in marine environments poses significant environmental risks due to its widespread presence. Traditional micro-imaging measurement of microplastics often rely on post-cruise laboratory analyses. In this study, we explored the feasibility of onboard microplastic measurement using Raman spectroscopy, with a focus on polyethylene (PE). A measurement system was developed, and two concentration estimation approaches were proposed. To evaluate recovery and validate the methodology, artificial microplastic samples were prepared, yielding a recovery rate of 94.8 % ± 10.4 %. Environmental samples were then analyzed using the developed system, with results validated against conventional Fourier-transform infrared (FTIR) spectroscopy. The estimated PE concentration was 583 pieces/m3 (95% confidence interval: [2, 1542] pieces/m3) using the direct approach and 1453 pieces/m3 (95% credible interval: [291, 92,837] pieces/m3) using the Bayesian approach. Both estimates were consistent with the 333 pieces/m3 obtained through validation with FTIR, indicating adequate accuracy. However, the wide confidence intervals highlight the need for improved precision. While challenges remain, this study provides a comprehensive experimental procedure and introduces a robust data analysis framework, which could offer a foundational methodology for future onboard microplastic measurement research.
Collapse
Affiliation(s)
- Zijiang Yang
- Faculty of Marine Resources and Environment, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| | - Hiroya Nagashima
- Faculty of Marine Resources and Environment, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| | - Natsuo Hasegawa
- Department of Mechanical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan.
| | - Nobuyuki Futai
- Department of Mechanical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan.
| | - Yoshikazu Koike
- Department of Mechanical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan.
| | - Hisayuki Arakawa
- Faculty of Marine Resources and Environment, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| |
Collapse
|
8
|
Asadi MJ, Ghayebzadeh M, Maryam Seyed Mousavi S, Taghipour H, Aslani H. Investigating the amount of macro, meso, and microplastics in the surface soil around the landfill of Tabriz and the effect of the prevailing wind on their distribution. Heliyon 2025; 11:e42143. [PMID: 39911420 PMCID: PMC11795091 DOI: 10.1016/j.heliyon.2025.e42143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Environmental pollution with plastic and microplastics (MPs) is a global problem. This study investigates macro, meso, and MPs in the soil around the Tabriz landfill in northwest Iran and the effect of prevailing wind on their distribution. One control sample and one sample from the landfill itself, 20 samples in four directions at regular intervals in the direction of the prevailing wind and against it, and two perpendicular directions (22 samples) were taken and analyzed. The results showed that the landfill is poorly managed, and in fact, it is an unsanitary landfill/dump site. The soil around it is polluted with the average abundance of macro, meso, and MPs equal to 6.5 ± 10.4 item/kg(dw), 15.5 ± 28.3 item/kg(dw), and 470 ± 193 item/kg(dw) respectively. The prevailing wind in the region has had no significant effect on the dispersion and distribution of MPs. The most abundant MPs in the soil of the studied area belonged to fragment and film-shaped particles, respectively, and the most abundant color was white. Indiscriminate use of plastics, especially single-use plastics, lack of attention to the hierarchy of waste management, as well as the lack of proper management of the landfill and turning it into a waste dump, are among the most important reasons for the presence of macro, meso, and MPs in the soil of the studied landfill.
Collapse
Affiliation(s)
- Mohamad Javad Asadi
- Department of Environmental Health Engineering, School of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Ghayebzadeh
- Department of Environmental Health Engineering, School of Health, Zahedan University of Medical Sciences, Zahedan, Iran
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyedeh Maryam Seyed Mousavi
- Department of Environmental Health Engineering, School of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Taghipour
- Health and Environment Research Center, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Aslani
- Department of Environmental Health Engineering, School of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Liu H, Liu X, Wang K, Ma X, Gao H, Liu X, Yan C. The occurrence and safety evaluation of phthalic acid esters in Oasis agricultural soils of Xinjiang, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117593. [PMID: 39953690 DOI: 10.1016/j.ecoenv.2024.117593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 02/17/2025]
Abstract
Soil pollution caused by plastic residues containing additives (e.g. phthalic acid esters (PAEs)) is ubiquitous and has become a global concern. However, the distribution, accumulation, and potential risks associated with PAEs in agricultural soils have not been fully explored. This study quantified the types, concentrations, and distribution patterns of common PAEs in 29 agricultural soil samples collected from the Xinjiang Oasis, China. The results indicated that no significant variation in PAE concentrations across the oasis farmlands in Xinjiang. The PAEs were predominantly concentrated in the topsoil layer (0-20 cm), with an average concentration of 102.3 μg/kg, with some migration observed to the deeper soil layer (20-40 cm). The most abundant PAEs detected were Di (2-ethylhexyl) phthalate (DEHP), diisobutyl phthalate (DIBP), and diethyl phthalate (DEP), which accounted for 49.82 %, 23.74 %, and 20.96 % of the total, respectively. Furthermore, the concentrations of all PAEs were below China's soil quality risk control standards, and the non-carcinogenic risks to both adults and children were below the current threshold, indicating relatively low risks to both the human health and the environment. These findings are crucial for understanding the presence and safety evaluation of PAEs in Xinjiang Oasis farmland, and they provide important reference data for managing and controlling PAE contamination in agricultural soils.
Collapse
Affiliation(s)
- Hejiang Liu
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, PR China.
| | - Xiuting Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Kai Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China.
| | - Xingwang Ma
- Institute of Soil, Fertilizer and Water-saving, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, PR China.
| | - Haihe Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Xuejun Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China.
| | - Changrong Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
10
|
Guo J, Yang M, Huang R, Yu J, Peng K, Cai C, Huang X, Wu Q, Liu J. The combined effects of microplastics and their additives on mangrove system: From the sinks to the sources of carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178336. [PMID: 39754942 DOI: 10.1016/j.scitotenv.2024.178336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Mangrove ecosystems, a type of blue carbon ecosystems (BCEs), are vital to the global carbon cycle. However, the combined effects of microplastics (MPs) and plastic additives on carbon sequestration (CS) in mangroves remain unclear. Here, we comprehensively review the sources, occurrence, and environmental behaviors of MPs and representative plastic additives in mangrove ecosystems, including flame retardants, such as polybrominated diphenyl ethers (PBDEs), and plasticizers, such as phthalate esters (PAEs). Mangrove ecosystems have a complex influence on the behaviors of MPs and additives. Under the action of natural and unnatural factors, these pollutants exhibit complex behaviors including migration, interception, deposition and transformation, that are closely linked to those of particulate carbon, particularly carbon sequestration processes. MPs and additives hinder the CS function of mangroves by harming the growth of flora and fauna, influencing microbial nitrogen and sulfur cycles, and enhancing the degradation of organic matter in the sediment. The increasing accumulation and widespread occurrence of MPs and additives will greatly influence the carbon cycle. Future work is encouraged on systematic investigation of new alternatives to plastics and additives, and research methods to uncover the impact mechanisms of MPs and additives on BCEs. The developments of management measures and engineering technologies are also required to enhance pollutant control and mangrove CS.
Collapse
Affiliation(s)
- Junru Guo
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Mingqing Yang
- Fuzhou Urban and Rural Construction Group Company Limited, Fuzhou 350007, China
| | - Ruohan Huang
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Junyi Yu
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Kaiming Peng
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China
| | - Chen Cai
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China
| | - Qiaofeng Wu
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Fuzhou City Construction Investment Group Company Limited, Fuzhou 350014, China.
| | - Jia Liu
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China.
| |
Collapse
|
11
|
Haritwal DK, Singh P, Ramana GV, Datta M. Advanced characterisation of groundwater contamination at a dumpsite: Methodology and assessment - Case study of a municipal solid waste dumpsite in India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177642. [PMID: 39579892 DOI: 10.1016/j.scitotenv.2024.177642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/24/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Groundwater (GW) contamination due to municipal solid waste (MSW) disposal in open dumpsites is a pressing global issue. Traditional GW assessment studies are limited to single-depth sampling from nearby wells/handpumps, providing limited insights into subsurface soil characteristics and are prone to cross-contamination. The present study introduces an innovative methodology integrating advanced techniques: Cone Penetration Testing (CPT), Hydraulic Profiling Tool (HPT), Continuous Soil Sampling, and Discrete GW Sampling. Conducted at an operational dumpsite in New Delhi, India, from January to February 2023, the site investigation program covered seven distinct locations to incorporate the entire dumpsite area. The investigation proceeded in stages, starting with subsurface soil characterisation using CPT and HPT, followed by extracting soil and GW samples using CPT and HPT data. Due to restrictions in the northeast direction, GW samples were directly extracted from borewells. The results revealed maximum and minimum concentrations of 171 items/l and 26 items/l of MPs, while ionic concentration reached 13,200 ppm for Cl- and 4437 ppm for SO4-2. A maximum of 0.721 ppm, 0.663 ppm and 0.948 ppm concentration was observed for Ni, Cu and Mo in GW samples. Spearman correlation and principal component analysis underscore the influence of Ec, TDS, Na+1 and Cl-1 on GW quality. This integrated approach effectively identifies high-permeability layers, which are crucial for understanding contaminant dispersion, and ensures precise sampling at various depths with minimal cross-contamination. This research demonstrates the proposed methodology's effectiveness in providing more profound and precise insights into GW contamination dynamics and suggests its utility in forming the basis for more effective remediation and regulatory strategies.
Collapse
Affiliation(s)
- Deepak Kumar Haritwal
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Pranjal Singh
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Gunturi Venkata Ramana
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Manoj Datta
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
12
|
Dou Y, Hu W, Wang J, Cong J, Nie B, Guo R, Duan Z. Spatial Distribution and Chronic Ecological risk Assessment of Typical Phthalate Esters in the Surface Waters of China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 114:11. [PMID: 39676106 DOI: 10.1007/s00128-024-03988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
The chronic ecological risks posed by residual PAEs in China remain unclear. In this study, we analyzed the spatial distribution of five typical PAEs in the surface waters of China, dibutyl phthalate (DBP), diethylhexyl phthalate (DEHP), butylbenzyl phthalate (BBP), diethyl phthalate (DEP), and dimethyl phthalate (DMP). The highest concentration of PAEs were detected in the Liao River, ranging from 5 to 79.8 µg/L. DBP was of the PAEs type with the highest concentration in the surface waters in China. By fitting the species sensitivity distribution curves base on the collected data over the past decade, the chronically hazardous concentrations affecting 5% of the aquatic species were calculated to be 0.018, 0.022, 0.062, 0.851, and 9.437 mg/L for DBP, DEHP, BBP, DEP, and DMP, respectively. Thus, DBP, DEHP, and BBP pose the greatest threat to aquatic organisms, and PAEs pose high ecological risks in the Liao, Huangpu, and Pearl Rivers.
Collapse
Affiliation(s)
- Yuhang Dou
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China
| | - Weixuan Hu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China
| | - Jing Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China
| | - Jiaoyue Cong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China
| | - Boyan Nie
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China
| | - Ruru Guo
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China
| | - Zhenghua Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China.
| |
Collapse
|
13
|
Yang N, Zhang Y, Yang N, Men C, Zuo J. Distribution characteristics and relationship of microplastics, phthalate esters, and bisphenol A in the Beiyun River basin of Beijing. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136190. [PMID: 39490169 DOI: 10.1016/j.jhazmat.2024.136190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Urban rivers are closely related to human life, and due to the widespread use of plastic products, rivers have become important carriers of pollutants such as microplastics (MP), phthalate esters (PAEs), and bisphenol A (BPA). However, our understanding of the distribution characteristics and relationships of MP, PAEs, and BPA in rivers is limited. In this study, MP, six PAEs and BPA were detected in the water and sediments of the Beiyun River basin. Polyvinyl chloride (PVC) was the most abundant type of microplastic, while di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) were the most abundant PAEs. MP, PAEs, and BPA in both water and sediment showed positive correlations, with stronger correlations and higher pollution levels in sediment than in water. The tendency for PAE congeners to partition into sediments increased with a higher octanol-water partition coefficient (Kow). There was a significant positive correlation between the distribution tendency of ∑6PAEs and TOC in sediments with a pearson correlation coefficient of 0.717. Rivers with more frequent human activities and higher levels of urbanization in the vicinity had a higher abundance of various pollutants and a greater diversity of MP types.
Collapse
Affiliation(s)
- Nina Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanyan Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Nijuan Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
| | - Cong Men
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrialpollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
14
|
Zhong S, Li R, Tian Y, Wei Z, Zhang L, Chen Y, Zhou R, Zhang Q, Ru X. Integrative models for environmental forecasting of phthalate migration from microplastics in aquaculture environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136194. [PMID: 39447233 DOI: 10.1016/j.jhazmat.2024.136194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The pervasive utilization of plastic tools in aquaculture introduces significant volumes of microplastic fibers, presenting a consequential risk through the leaching of additives such as phthalates. This study scrutinizes the leaching dynamics of six prevalent phthalate esters (PAEs) from thirteen plastic aquaculture tools comprising polyethylene terephthalate (PET), polypropylene (PP), and polyethylene (PE), with ΣPAEs ranging from 0.24 to 4.26 mg g-1. Di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) emerged as predominant, marking significant environmental concern. Over a 30-day period, leaching quantities of Σ6PAEs from PET, PP, and PE fibers reached 36.65 μg g-1, 21.87 μg g-1 and 19.11 μg g-1, respectively, influenced by factors such as time, temperature, turbulence, and salinity. Notably, turbulence exerted the most pronounced effect, followed by temperature, with negligible influence from salinity. The kinetic models aligning with interface diffusion control was developed, predicting PAEs' leaching behavior with activation energies (Ea) indicative of the process's thermodynamic nature. The application of this model to real-world aquaculture waters forecasted significant risks, corroborating with empirical data and underscoring the pressing need for regulatory and mitigation strategies against PAEs contamination from aquaculture practices.
Collapse
Affiliation(s)
- Shan Zhong
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ruiyue Li
- Beijing China Sciences Runyu Environmental Technology Co., Ltd, Beijing 100080, China
| | - Yaowen Tian
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zengxian Wei
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Lishan Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Yan Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ruyue Zhou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Qian Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xuan Ru
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
15
|
Chen J, Huo L, Yuan Y, Jiang Y, Wang H, Hui K, Li Y, Huang Z, Xi B. Interactions between microplastics and heavy metals in leachate: Implications for landfill stabilization process. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135830. [PMID: 39276746 DOI: 10.1016/j.jhazmat.2024.135830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The emission of microplastics and heavy metals in landfills has attracted widespread attention for its stabilization process. Microplastics have become carriers of heavy metals due to their adsorption properties, affecting their environmental behavior. However, the effects of landfill stabilization on the interaction between microplastics and heavy metals in leachate are ambiguous. This work explored the abundance characteristics of microplastics and heavy metals in leachate from 10 landfills in Beijing. Overall, the average abundance of microplastics was 196.3 items/L, dominated by small particle size (20-50 µm) and film microplastics. The levels of Cr and As were much higher than other heavy metals. The average abundance of microplastics and polymer types tended to decrease as the landfill stabilization proceeded, and the surface composition of microplastics became more complex. Statistical analysis revealed that the correlations between microplastics and heavy metals in the leachate of landfill stabilization presented significant parabolic characteristics, and Cr and As were more susceptible to landfill stabilization with significant positive correlation with a wide range of microplastics such as 20-30 µm. These results were intended to provide a scientific basis for the treatment and disposal of waste leachate and the synergistic prevention and control of new and traditional pollutants.
Collapse
Affiliation(s)
- Jiabao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Lin Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanjiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zekai Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
16
|
Chen S, Liu C, Liu Y, Liu J, Wang Z, Liu H, Li Y, Liu M. Characterization and mechanism of phthalic acid esters bioaccumulation in dominant mangrove fish at different habitats in the mangrove ecosystem of Dongzhai Harbor, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176221. [PMID: 39304146 DOI: 10.1016/j.scitotenv.2024.176221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
With the wide application of phthalic acid esters (PAEs) in the manufacturing of plastic products, a large number of PAEs were discharged into marine ecosystem and accumulated in fish, which has posed a serious threat to marine ecological environment and fishery resources. However, the bioaccumulation of PAEs in fish in mangrove ecosystem, the most productive marine ecosystem, has not been well characterized. In this study, dominant fish and their potential food sources (including particulate organic matter (POM), sedimentary organic matter (SOM), Metapenaeus ensis (Shrimp) and Oreochromis (Ore) were collected from Dongzhai Harbor, a typical mangrove ecosystem. The concentrations of nine PAEs in fish and their potential food sources were determined. Then stable nitrogen and carbon isotope analysis, combined with a new Bayesian mixing model (MixSIMMR) was used to quantify the diet compositions of fish and elucidate the effect of dietary habit on PAEs bioaccumulation in fish. The results indicated that the median concentration of ∑9PAEs in fish was 1119 μg/kg ww, positioning it at a moderate to low level in comparison to other regions. di-n-butyl phthalate (DBP) and diisononyl ortho-phthalate (DINP) were the dominant PAEs in fish. The PAEs concentration in demersal fish was significantly higher than that of pelagic fish, which may be attributed to the substantial contributions of shrimp (28.5 %) and POM (25.3 %) to the diet of demersal fish. This study provided new insights on the bioaccumulation of PAEs in dominant mangrove fish and confirmed that habitat preferences and food sources could significantly influence the bioaccumulation of PAEs in fish.
Collapse
Affiliation(s)
- Siwen Chen
- School of Geography adnd Environmental Sciences, Hainan Normal University, Haikou, Hainan 571158, PR China; Key Laboratory of Earth Surface Processes and Environmental Change of Tropical Islands, Hainan Province, PR China
| | - Cheng Liu
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong 256603, PR China
| | - Yuyan Liu
- School of Geography adnd Environmental Sciences, Hainan Normal University, Haikou, Hainan 571158, PR China; Key Laboratory of Earth Surface Processes and Environmental Change of Tropical Islands, Hainan Province, PR China.
| | - Jianan Liu
- School of Geography adnd Environmental Sciences, Hainan Normal University, Haikou, Hainan 571158, PR China; Key Laboratory of Earth Surface Processes and Environmental Change of Tropical Islands, Hainan Province, PR China
| | - Zefeng Wang
- School of Geography adnd Environmental Sciences, Hainan Normal University, Haikou, Hainan 571158, PR China; Key Laboratory of Earth Surface Processes and Environmental Change of Tropical Islands, Hainan Province, PR China
| | - Haofeng Liu
- School of Geography adnd Environmental Sciences, Hainan Normal University, Haikou, Hainan 571158, PR China; Key Laboratory of Earth Surface Processes and Environmental Change of Tropical Islands, Hainan Province, PR China
| | - Ye Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, PR China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, PR China
| |
Collapse
|
17
|
Liu H, Zheng D, Liu X, Hou J, Wu Q, Li Y. Environmental microplastic and phthalate esters co-contamination, interrelationships, co-toxicity and mechanisms. A review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:525. [PMID: 39570433 DOI: 10.1007/s10653-024-02309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Plastics have been pervasive in society for decades, causing extensive environmental contamination. The co-occurrence of microplastics (MPs) and phthalate esters (PAEs) in the environment has significant implications for the global population. This review focuses on the simultaneous presence of MPs and PAEs, exploring co-pollution, leaching, adsorption, correlation, and co-toxicity. Both MPs and PAEs are found in various environmental compartments, including water, sediments, aquatic organisms, pig feed, masks, gloves, and liquid waste from garbage infiltration. Factors such as time, temperature, UV light exposure, and the type of MPs can influence the leaching and adsorption of PAEs onto MPs. The correlation between MPs and PAEs allows for the use of PAEs as indicators for the presence of MPs. However, current constraints, like limited data availability and regional coverage, impede the feasibility of comprehensive tracking. Additionally, the combined effects of MPs and PAEs demonstrate synergistic toxicity, leading to adverse health effects such as reproductive toxicity, neurotoxicity, hepatotoxicity, nephrotoxicity, and other toxicities, primarily mediated by oxidative stress processes. Consequently, the findings provide valuable insights for future researchers and regulatory bodies, enabling the development of more effective strategies to address the simultaneous presence of microplastics and PAEs and mitigate their harmful impacts on human health.
Collapse
Affiliation(s)
- Huan Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, China.
| | - Dongdong Zheng
- Logistics Group Catering Center, Hubei Normal University, Huangshi, 435002, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, China
| | - Yongshu Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, China
| |
Collapse
|
18
|
Wang N, Ding D, Zhang H, Ding X, Zhang D, Yao C, Fan X, Ding R, Wang H, Jiang T. Anthropogenic activity shapes the assemble and co-occurrence pattern of microbial communities in fishing harbors around the Bohai economic circle. ENVIRONMENTAL RESEARCH 2024; 259:119563. [PMID: 38971358 DOI: 10.1016/j.envres.2024.119563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
This study aimed to elucidate the effects of coastal environmental stress on the composition of sediment bacterial communities and their cooccurrence patterns in fishing harbors around the Bohai Economic Circle, China. Compared with the natural sea area, fishing harbors contained higher levels of organic pollution (organic pollution index = 0.12 ± 0.026) and considerably reduced bacterial richness and evenness. The distributions of sediment microbial communities clustered along the pollutant concentration gradients across fishing harbors. Betaproteobacteria dominated (76%) organically polluted fishing harbors, which were mostly disturbed by anthropogenic activities. However, the harbors also revealed the absence of numerous pathogenic (Coxiella and Legionella) and photosynthetic (Synechococcus and Leptolyngbya) bacteria. Abundant genera, including Thiobacillus and Arenimonas, exhibited a positive correlation with total phosphorus and a negative correlation with total nitrogen in sediments. Meanwhile, Sulfurovum, Psychrobacter, and Woeseia showed the opposite trend. Pollutant accumulation and anthropogenic activities caused the decrease in the sediment microbial diversity and dispersal ability and promoted convergent evolution. Severely polluted harbors with simplified cooccurrence networks revealed the presence of destabilized microbial communities. In addition, the modularity of bacterial networks decreased with organic pollution. Our results provide important insights into the adjustment mechanism of microbial communities to community organization and functions under environmental pollution stress. Overall, this study enhanced our understanding of how microbial communities in coastal sediments adapted and survived amidst anthropogenic activities like oily effluent discharges from large ships, wash water, domestic sewage, garbage, and fisheries wastes. It also examined their resilience to future contamination.
Collapse
Affiliation(s)
- Nan Wang
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Dongsheng Ding
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Huihui Zhang
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Xiaokun Ding
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Di Zhang
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Chenghao Yao
- Shandong Hongxin Environmental Protection Technology Co., Ltd, China
| | - Xiao Fan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - RenYe Ding
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Hualong Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China.
| | - Tao Jiang
- School of Ocean, Yantai University, Yantai, 264005, China.
| |
Collapse
|
19
|
Zhong Z, Shang W, Yang P, Wang S, Chen L, Chen Z, Li L, Khalil MF, Hu M, Xu X, Wang Y. Bio-based microplastic polylactic acid exerts the similar toxic effects to traditional petroleum-based microplastic polystyrene in mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174386. [PMID: 38960152 DOI: 10.1016/j.scitotenv.2024.174386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Microplastics (MPs) have accumulated in the oceans, causing adverse effects on marine organisms and the environment. Biodegradable polylactic acid (PLA) is considered as an excellent substitute for traditional petroleum-based plastics, but it is difficult to degrade completely and easily become MPs in the marine environment. To test the ecological risk of bio-based PLA, we exposed thick-shelled mussels (Mytilus coruscus) to bio-based PLA and petroleum-based polystyrene (PS) (at 102, 104, and 106 particles/L) for 14 days. The significant increase in enzyme activities related to oxidative stress and immune response showed that mussels were under physiological stress after MP ingestion. While enzyme activities of nerve conduction and energy metabolism were significantly disturbed after exposure. Meanwhile, normal physiological activities in respiration, ingestion and assimilation were also suppressed in association with enzyme changes. The negative effects of PS and PLA in mussels were not differentiated, and further integration analysis of integrated biomarker response (IBR) and principal component analysis (PCA) also showed that PLA would induce adverse effects in mussels and ecological risks as PS, especially at environmental concentrations. Therefore, it is necessary to pay more attention to the environmental and ecological risk of bio-based MP PLA accumulating in the marine environment.
Collapse
Affiliation(s)
- Zhen Zhong
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Wenrui Shang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Peiwen Yang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Shixiu Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Zhaowen Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Li'ang Li
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Muhammad Faisal Khalil
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China.
| |
Collapse
|
20
|
Sun Y, Guo M, Hu S, Jia Y, Zhu W, Yamauchi Y, Wang C. A carbon-based bifunctional heterogeneous enzyme: toward sustainable pollution control. Chem Sci 2024:d4sc03752a. [PMID: 39386913 PMCID: PMC11459632 DOI: 10.1039/d4sc03752a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
We present a study on an immobilized functional enzyme (IFE), a novel biomaterial with exceptional sustainability in enzyme utility, widely employed across various fields worldwide. However, conventional carriers are prone to eroding the active functional domain of the IFE, thereby weakening its intrinsic enzyme activity. Consequently, there is a burgeoning interest in developing next-generation IFEs. In this study, we engineered a carbon-based bifunctional heterogeneous enzyme (MIP-AMWCNTs@lipase) for the intelligent recognition of di(2-ethylhexyl)phthalate (DEHP), a common plasticizer. The heterogeneous enzyme contains a bifunctional structural domain that both enriches and degrades DEHP. We investigated its dual-response performance for the enrichment and specific removal of DEHP. The imprinting factor of the carrier for DEHP was 3.4, demonstrating selectivity for DEHP. The removal rate reached up to 94.2% over a short period. The heterogeneous enzyme exhibited robust activity, catalytic efficiency, and excellent stability under harsh environmental conditions, retaining 77.7% of its initial lipase activity after 7 cycles. Furthermore, we proposed a stepwise heterogeneous enzyme reaction kinetic model based on the Michaelis-Menten equation to enhance our understanding of enzyme reaction kinetics. Our study employs a dual-effect recognition strategy of molecular blotting and enzyme immobilization to establish a method for the removal of organic pollutants. These findings hold significant implications for the fields of biomaterials and environmental science.
Collapse
Affiliation(s)
- Yuting Sun
- College of Environmental and Resource Sciences, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Shengnan Hu
- College of Chemistry and Materials Engineering, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Yankun Jia
- College of Chemistry and Materials Engineering, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Wenkai Zhu
- College of Chemistry and Materials Engineering, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8601 Japan
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104 South Korea
| | - Chaohai Wang
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction Pingdingshan Henan 467036 China
| |
Collapse
|
21
|
Wen H, Gao J, Wang X, He Y, Li J, Gu L, Zhao Z, Yu H, Xu S. Mechanistic insights into temperature-driven retention and speciation changes of heavy metals (HMs) in ash residues from Co-combustion of refuse-derived fuel (RDF) and red mud. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:121967. [PMID: 39116818 DOI: 10.1016/j.jenvman.2024.121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Red mud is a promising candidate for promoting the incineration of Refuse Derived Fuel (RDF) and stabilizing the resulting incineration ash. The combustion conditions, notably temperature, significantly steers the migration and transformation of harmful metal components during combustion, and ultimately affect their retention and speciation in the ash residue. The study attempted to investigate the effect of co-combustion temperature on the enrichment and stability of Cr, Ni, Cu, Zn, Cd and Pb within bottom ashes, and to reveal the underlined promotion mechanism of red mud addition. As temperature increased, red mud's active components formed a robust matrix, helping the formation, melting, and vitrification of silicates and aluminosilicates in the bottom ashes. The process significantly contributed to the encapsulation and stabilization of heavy metals such as Ni, Cu, Zn, Cd, and Pb, with their residual fractions ascending to 71.37%, 55.75%, 74.78%, 84.24%, and 93.54%, respectively. Conversely, high temperatures led to an increase in the proportion of Cr in the extremely unstable acid-soluble fraction of the bottom ashes, reaching 31.52%, posing a heightened risk of environmental migration. Considering the stability of heavy metals in the bottom ashes and the combustion characteristics, 800 °C is identified as the optimal temperature for the co-combustion of RDF and red mud, balancing efficiency and environmental safety. The findings will provide valuable insights for the co-utilization strategy of RDF and red mud, contributing to more informed decision-making in waste-to-energy processes.
Collapse
Affiliation(s)
- Haifeng Wen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Jingjing Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; Shanghai Pudong Veolia Water Corporation Limited, Pudong Xinqu, Shanghai, 200126, PR China.
| | - Xin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Yiyang He
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Jixin Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Lin Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Ziyu Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Haixiang Yu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| |
Collapse
|
22
|
Huang Y, Chen K, Chen Y, Chen P, Ge C, Wang X, Huang C. Distribution of microplastics and phthalic acid esters during dry anaerobic digestion of food waste and potential microbial degradation analysis. BIORESOURCE TECHNOLOGY 2024; 408:131221. [PMID: 39111396 DOI: 10.1016/j.biortech.2024.131221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/22/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Food waste (FW) and its biogas residue were considered as sources of terrestrial microplastics (MPs) and phthalic acid esters (PAEs) contamination. However, there was a lack of research and understanding of the MPs and PAEs pollution problem in FW dry anaerobic digestion process (DADP). The MPs and PAEs in three stages of the DADP with the largest monomer disposal scale in China were identified. At the biogas residue extrusion stage, MPs abundance and PAEs concentration reached the highest values, which were 3.63 ± 0.45 × 103 N·kg-1 and 3.62 ± 0.72 mg·kg-1, respectively. Furthermore, there was a significant positive correlation between MPs and PAEs throughout the process (p < 0.05). Although bacteria and fungi with plastic degradation potential were present in all stages, the contamination problem of MPs and PAEs cannot be completely solved through DADP. This study provides a scientific basis for preventing and controlling the pollution of MPs and PAEs.
Collapse
Affiliation(s)
- Yuhuizi Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Kejin Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yanhua Chen
- Chongqing Environment and Sanitation Group Co., Ltd., Chongqing 401122, China
| | - Pengpeng Chen
- Beijing Environmental Sanitation Engineering Group Co., Ltd., Beijing 100079, China
| | - Chunling Ge
- Beijing Environmental Sanitation Engineering Group Co., Ltd., Beijing 100079, China
| | - Xiang Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Chuan Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
23
|
Sun X, He Q, Gao Q, Gu L, Miao Y. Smart RNA Sequencing Reveals the Toxicological Effects of Diisobutyl Phthalate (DiBP) in Porcine Oocytes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39140966 DOI: 10.1021/acs.est.4c05462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Diisobutyl phthalate (DiBP) is commonly used in the plastics industry, and recent studies have shown that environmental exposure and accumulation in the food chain caused inflammation in some organs. However, the underlying mechanisms by which DiBP affects oocyte quality have not yet been fully defined. We used immunostaining and fluorescence to evaluate the effects of DiBP exposure and demonstrated that it impaired the morphology of matured porcine oocytes through generation of cytoplasmic fragmentation, accompanied by the perturbed dynamics of the spindle and actin cytoskeleton, misdistributed endoplasmic reticulum, as well as partial exocytosis of cortical granules and ovastacin. Moreover, analysis of Smart RNA-seq found that DiBP-induced aberrant oocyte maturation could be induced by abnormal mitochondrial function and apoptosis. Importantly, we discovered that supplementation with pyrroloquinoline quinone (PQQ) significantly attenuated the meiotic abnormalities induced by DiBP exposure through the modulation of reactive oxygen species levels. Our findings demonstrated that DiBP exposure adversely affects oocyte meiotic maturation and that PQQ supplementation was an effective strategy to protect oocyte quality against DiBP exposure.
Collapse
Affiliation(s)
- Xiaofan Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qinyuan He
- Department of Obstetrics and Gynecology, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu, China
| | - Qian Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Gu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Li Z, Wang Q, Wang Y, Chen J, Lei X, Jiu R, Liu H, Bai T, Liu J. Degradation of Di (2-ethylhexyl) phthalic acid plasticizer in baijiu by a foam titanium flow reactor attached with hairpin-like structured peptide enzyme mimics. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134596. [PMID: 38820744 DOI: 10.1016/j.jhazmat.2024.134596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/02/2024]
Abstract
Because of the significant environmental and health hazards imposed by di(2-ethylhexyl) phthalate (DEHP), a common plasticizer, developing safe and green techniques to degrade DEHP plasticizer is of huge scientific significance. It has been observed that environmental contamination of DEHP may also induce serious food safety problems because crops raised in plasticizers contaminated soils would transfer the plasticizer into foods, such as Baijiu. Additionally, when plastic packaging or vessels are used during Baijiu fermentation and processing, plasticizer compounds frequently migrate and contaminate the product. In this study, hairpin-like structured peptides with catalytically active sites containing serine, histidine and aspartic acid were found to degrade DEHP. Furthermore, after incorporating caffeic acid molecules at the N-terminus, the peptides could be attached onto foam titanium (Ti) surfaces via enediol-metal interactions to create an enzyme-mimicking flow reactor for the degradation of DEHP in Baijiu. The structure and catalytic activity of peptides, their interaction with DEHP substrate and the hydrolysis mechanism of DEHP were discussed in this work. The stability and reusability of the peptide-modified foam Ti flow reactor were also investigated. This approach provides an effective technique for the degradation of plasticizer compounds.
Collapse
Affiliation(s)
- Zongda Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qiuying Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yunyao Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jianan Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiangmin Lei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ruiqing Jiu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Haochi Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tianhou Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
25
|
Iqbal A, Yasar A, Nizami AS, Sultan IA, Haider R, Tabinda AB, Kedwii AA, Chaudhary MM, Ghori MU. Modelling the Nexus of municipal solid waste sector for climate resilience and adaptation to nature-based solutions: A case study of Pakistan. Heliyon 2024; 10:e31235. [PMID: 38845869 PMCID: PMC11153102 DOI: 10.1016/j.heliyon.2024.e31235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Municipal solid waste management is a major concern in developing economies, requiring collective international efforts to achieve carbon neutrality by diverting waste from disposal facilities. This study aims to highlight the importance of the waste sector as it has the potential to significantly contribute to climate change and its toxicity impact on the local ecosystem. Out of the total municipal solid waste generated, only 78 % is collected, either open dumped or thrown in sanitary landfills. The waste sector's ecological impact value is calculated for the Earth's regions, and it is very high at >50 % in Africa, Asia, Latin America and the Caribbean. This sectoral impact value is mainly responsible for greenhouse gas emissions and degradation of the local ecosystem health. Current business‒as‒usual practices attribute 3.42 % of global emissions to the waste sector. Various scenarios are developed based on waste diversion and related emissions modelling, and it is found that scenarios 3 and 4 will support the policymakers of the regions in attaining zero carbon footprints in the waste sector. Our findings conclude that cost-effective nature-based solutions will help low‒income countries reduce emissions from disposal sites and significantly improve the local ecosystem's health. Developed economies have established robust waste‒handling policies and implementation frameworks, and there is a need for collaboration and knowledge sharing with developing economies at the regional level to sustain the sector globally.
Collapse
Affiliation(s)
- Asif Iqbal
- Sustainable Development Study Center (SDSC), Government College University, Lahore 54000, Pakistan
| | - Abdullah Yasar
- Sustainable Development Study Center (SDSC), Government College University, Lahore 54000, Pakistan
| | - Abdul-Sattar Nizami
- Sustainable Development Study Center (SDSC), Government College University, Lahore 54000, Pakistan
| | - Imran Ali Sultan
- Civil Services Academy, Government of Pakistan, Lahore 54000, Pakistan
| | - Rafia Haider
- Deputy Commissioner Office, Government of the Punjab, Lahore 54000, Pakistan
| | - Amtul Bari Tabinda
- Sustainable Development Study Center (SDSC), Government College University, Lahore 54000, Pakistan
| | - Aman Anwer Kedwii
- The Urban Unit, Planning & Development Department, Government of the Punjab, Lahore 54000, Pakistan
| | - Muhammad Murtaza Chaudhary
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Muhammad Usman Ghori
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| |
Collapse
|
26
|
Wang Q, Chen H, Gu W, Wang S, Li Y. Biodegradation of aged polyethylene (PE) and polystyrene (PS) microplastics by yellow mealworms (Tenebrio molitor larvae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172243. [PMID: 38582118 DOI: 10.1016/j.scitotenv.2024.172243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Globally, over 287 million tons of plastic are disposed in landfills, rivers, and oceans or are burned every year. The results are devastating to our ecosystems, wildlife and human health. One promising remedy is the yellow mealworm (Tenebrio molitor larvae), which has proved capable of degrading microplastics (MPs). This paper presents a new investigation into the biodegradation of aged polyethylene (PE) film and polystyrene (PS) foam by the Tenebrio molitor larvae. After a 35 - day feeding period, both pristine and aged MPs can be consumed by larvae. Even with some inhibitions in larvae growth due to the limited nutrient supply of aged MPs, when compared with pristine MPs, the aged MPs were depolymerized more efficiently in gut microbiota based on gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) analysis. With the change in surface chemical properties, the metabolic intermediates of aged MPs contained more oxygen-containing functional groups and shortened long-chain alkane, which was confirmed by gas chromatography and mass spectrometry (GC-MS). High-throughput sequencing revealed that the richness and diversity of gut microbes were restricted in the MPs-fed group. Although MPs had a negative effect on the relative abundance of the two dominant bacteria Enterococcaceae and Lactobacillaceae, the aged MPs may promote the relative abundance of Enterobacteriaceae and Streptococcaceae. Redundancy analysis (RDA) further verified that the aged MPs are effectively biodegraded by yellow mealworm. This work provides new insights into insect-mediated mechanisms of aged MP degradation and promising strategies for MP sustainable and efficient solutions.
Collapse
Affiliation(s)
- Qiongjie Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China.
| | - Huijuan Chen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Wanqing Gu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Shurui Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Yinghua Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| |
Collapse
|
27
|
Aghadadashi V, Mehdinia A, Rezaei M, Molaei S, Seyed Hashtroudi M, Ahmadian F, Hamzehpour A, Rahnama R. Basin scale monitoring of microplastics and phthalates in sediments from the Persian Gulf and the Gulf of Makran using GIS-based algorithms: Insights towards spatial variation and potential risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171950. [PMID: 38537822 DOI: 10.1016/j.scitotenv.2024.171950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Information on sedimentary microplastics and phthalates has been restricted to the coastal regions of the Persian Gulf and the Gulf of Makran. Our basin-wide study monitored their levels, spatial behaviors, and potential risks using GIS-based techniques. Microplastics and phthalates ranged from 5 to 75 particles/kg d.w and 0.004-1.219 μg g-1 d.w, respectively. Microplastics were in the size category of 100 μm to 3 mm, and black microfibers (< 1 mm) and high-density polymers were dominant. The total number of microplastics was between 356.333 × 1012 and 469.075 × 1012 particles in the surface sediments of the studied regions (confidence interval = 99 %). Diethylhexyl phthalate (DEHP) and Di-isobutyl phthalate contributed 88 % of detected phthalates. Significant correlations among microplastic abundance, total phthalates, and DEHP were distinguished (p < 0.05). Overall, the findings reiterated the widespread presence of microplastics and a potential link between phthalates and microplastics. Semi-variogram, cluster Voronoi polygons, and Trend analysis identified spatial outliers and major deposition sites of microplastics and phthalates and consequently outlined the localities where upcoming studies should be concentrated. A hotspot of potential risks was marked using Fuzzy logic and GIS-based algorithms in the Sea of Makran, covering an area equal to 342. 99 km2.
Collapse
Affiliation(s)
- Vahid Aghadadashi
- Department of Marine Living Science, Ocean Science Research Center, Iranian National Institute for Oceanography and Atmospheric Sciences, INIOA, Tehran, Iran.
| | - Ali Mehdinia
- Department of Marine Living Science, Ocean Science Research Center, Iranian National Institute for Oceanography and Atmospheric Sciences, INIOA, Tehran, Iran
| | - Mahdie Rezaei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Saeideh Molaei
- Department of Chemistry, Kharazmi University, Tehran, Iran
| | - Mehri Seyed Hashtroudi
- Department of Marine Living Science, Ocean Science Research Center, Iranian National Institute for Oceanography and Atmospheric Sciences, INIOA, Tehran, Iran
| | - Fatemeh Ahmadian
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Ali Hamzehpour
- Department of Marine Living Science, Ocean Science Research Center, Iranian National Institute for Oceanography and Atmospheric Sciences, INIOA, Tehran, Iran
| | - Reza Rahnama
- Department of Marine Living Science, Ocean Science Research Center, Iranian National Institute for Oceanography and Atmospheric Sciences, INIOA, Tehran, Iran
| |
Collapse
|
28
|
Jaafarzadeh N, Talepour N. Microplastics as carriers of antibiotic resistance genes and pathogens in municipal solid waste (MSW) landfill leachate and soil: a review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:1-12. [PMID: 38887766 PMCID: PMC11180052 DOI: 10.1007/s40201-023-00879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/25/2023] [Indexed: 06/20/2024]
Abstract
Landfill leachate contains antibiotic resistance genes (ARGs) and microplastics (MPs), making it an important reservoir. However, little research has been conducted on how ARGs are enriched on MPs and how the presence of MPs affects pathogens and ARGs in leachates and soil. MPs possess the capacity to establish unique bacterial populations and assimilate contaminants from their immediate surroundings, generating a potential environment conducive to the growth of disease-causing microorganisms and antibiotic resistance genes (ARGs), thereby exerting selection pressure. Through a comprehensive analysis of scientific literature, we have carried out a practical assessment of this topic. The gathering of pollutants and the formation of dense bacterial communities on microplastics create advantageous circumstances for an increased frequency of ARG transfer and evolution. Additional investigations are necessary to acquire a more profound comprehension of how pathogens and ARGs are enriched, transported, and transferred on microplastics. This research is essential for evaluating the health risks associated with human exposure to these pollutants. Graphical Abstract
Collapse
Affiliation(s)
- Neamatollah Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Talepour
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
29
|
Lin H, Li X, Hu W, Yu S, Li X, Lei L, Yang F, Luo Y. Landscape and risk assessment of microplastic contamination in farmed oysters and seawater along the coastline of China. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134169. [PMID: 38565022 DOI: 10.1016/j.jhazmat.2024.134169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Microplastic (MP) pollution poses a significant threat to marine ecosystem and seafood safety. However, comprehensive and comparable assessments of MP profiles and their ecological and health in Chinese farming oysters are lacking. This study utilized laser infrared imaging spectrometer (LDIR) to quantify MPs in oysters and its farming seawater at 18 sites along Chinese coastlines. Results revealed a total of 3492 MPs in farmed oysters and seawater, representing 34 MP types, with 20-100 µm MP fragments being the dominant. Polyurethane (PU) emerged as the predominant MP type in oysters, while polysulfones were more commonly detected in seawater. Notably, oysters from the Bohai Sea exhibited a higher abundance of MPs (13.62 ± 2.02 items/g) and estimated daily microplastic intake (EDI, 2.14 ± 0.26 items/g/kg·bw/day), indicating a greater potential health risk in the area. Meanwhile, seawater from the Yellow Sea displayed a higher level (193.0 ± 110.7 items/L), indicating a greater ecological risk in this region. Given the pervasiveness and abundance of PU and its high correlation with other MP types, we proposed PU as a promising indicator for monitoring and assessing the risk MP pollution in mariculture in China. These findings provide valuable insights into the extent and characteristics of MP pollution in farmed oysters and seawater in China.
Collapse
Affiliation(s)
- Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Xin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Wenjin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Shenbo Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Xi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Liusheng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Tural Affairs, Tianjin 300191, China.
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
30
|
Zhou Y, Zhang Z, Bao F, Du Y, Dong H, Wan C, Huang Y, Zhang H. Considering microplastic characteristics in ecological risk assessment: A case study for China. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134111. [PMID: 38581870 DOI: 10.1016/j.jhazmat.2024.134111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Microplastics (MPs) pose a significant global concern, requiring a multifaceted approach to their risk assessment procedures, especially concerning their characteristics in the environment. The Horqin Left Middle Banner in Northeast China was chosen for the research region to investigate the abundance, composition, distribution, and ecological impact of MPs in surface agricultural soils. The concentrations of MPs ranged from 300 to 12800 items/kg, with a median concentration of 1550 items/kg (average = 1994 items/kg). The normal-sized MPs (500-5000 µm) had a higher relative abundance than small MPs (<500 µm). MPs were mainly derived from textiles and packaging and were affected by atmospheric transportation. Rayon and PET fibers were the main polymers identified. Furthermore, the potential environmental risks posed by the fundamental characteristics (abundance, chemical composition, and size) of MPs were quantified using multiple risk assessment models. The conditional fragmentation model indicated a propensity for MPs to degrade into smaller particles. Ecological risk assessments using pollution load index, pollution hazard index, and potential ecological risk index models revealed varying levels of risk. This study conducted a comprehensive assessment of the ecological risks of MPs based on their environmental characteristics, emphasizing the importance of considering multiple factors in the risk assessment process. ENVIRONMENT IMPLICATION: This study investigates the occurrence, distribution, and ecological risk of microplastics (MPs) in agricultural soils of the Northeast Plain of China, a major food production area. MPs are persistent organic pollutants that can pose threats to soil health, crop quality, and food security. By analyzing the composition, size, and source of MPs, as well as their fragmentation and stability in soil, this study provides valuable data for assessing the environmental risk of MPs in agricultural regions. The study also suggests strategies for mitigating MPs pollution and protecting soil ecosystems.
Collapse
Affiliation(s)
- Yang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Zhengyu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Feifei Bao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yuhan Du
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Huiying Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Chengrui Wan
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yuanfang Huang
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Hongyan Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
31
|
Zhang L, Zhao W, Yan R, Yu X, Barceló D, Sui Q. Microplastics in different municipal solid waste treatment and disposal systems: Do they pose environmental risks? WATER RESEARCH 2024; 255:121443. [PMID: 38492313 DOI: 10.1016/j.watres.2024.121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Microplastic (MP) pollution is a significant worldwide environmental and health challenge. Municipal solid waste (MSW) can be an important source of MPs in the environment if treated and disposed of inappropriately, causing potential ecological risks. MSW treatment and disposal methods have been gradually shifting from landfilling/dumping to more sustainable approaches, such as incineration or composting. However, previous studies on MP characteristics in different MSW treatment and disposal systems have mainly focused either on landfills/dumpsites or composts. The lack of knowledge of multiple MSW treatment and disposal systems makes it difficult to ensure effective MP pollution control during MSW treatment and disposal. Therefore, this study systematically summarizes the occurrence of MPs in different MSW treatment and disposal systems (landfill/dumpsite, compost, and incineration) on the Eurasian scale, and discusses the factors that influence MPs in individual MSW treatment and disposal systems. In addition, the paper assesses the occurrence of MPs in the surrounding environment of MSW treatment and disposal systems and their ecological risks using the species sensitivity distribution approach. The study also highlights recommendations for future research, to more comprehensively describe the occurrence and fate of MPs during MSW treatment and disposal processes, and to develop appropriate pollution control measures to minimize MP pollution.
Collapse
Affiliation(s)
- Lei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ruiqi Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona 08034, Spain
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
32
|
Gholaminejad A, Mehdizadeh G, Dolatimehr A, Arfaeinia H, Farjadfard S, Dobaradaran S, Bonyadi Z, Ramavandi B. Phthalate esters pollution in the leachate, soil, and water around a landfill near the sea, Iran. ENVIRONMENTAL RESEARCH 2024; 248:118234. [PMID: 38272296 DOI: 10.1016/j.envres.2024.118234] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/09/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
This investigation aimed to scrutinize the level of phthalate esters (PEs) in the landfill leachate of a coastal city in the north of the Persian Gulf and the sensitive ecosystem (soil and water) around it. Soil (two depths) and water samples were prepared from 5 stations in wet and dry seasons. The studied landfill leachate contained 114-303 μg/L of phthalates. The highest concentration of phthalates was related to bis (2-ethylhexyl) phthalate (3257 ng/g) in the wet season at surface soil (0-5 cm) in the landfill site, while the lowest one (6 ng/g) belonged to dimethyl phthalate at sub-surface soil at 700 m from the landfill in the dry season. A significant change in the level of Σ6PEs in the dry (303 μg/L) and wet (114 μg/L) seasons (P ≤ 0.05) was observed for water samples. The PE concentrations in wet times were higher in all soil depths than in dry times. With increasing depth, the content of phthalates decreased in all studied environments. A direct relationship was observed between the phthalates concentration and the pH value of leachate/water and soil. The PEs concentration was linked to electrical conductivity (leachate: R2 = 0.65, P < 0.01 and surface soil: R2 = 0.77, P < 0.05) and the soil organic content. The ecological risk of di-n-butyl phthalate, benzyl butyl phthalate, bis (2-ethylhexyl) phthalate, and di-n-octyl phthalate in the wet season was greater than one. The results showed that significant levels of phthalate esters are released from landfills to the surrounding environment, which requires adequate measures to maintain the health of the ecosystem and nearby residents.
Collapse
Affiliation(s)
- Ali Gholaminejad
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ghazal Mehdizadeh
- Division of Atmospheric Science, University of Nevada, Reno, United States
| | - Armin Dolatimehr
- Civil and Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Hosein Arfaeinia
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sima Farjadfard
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
33
|
Esmaeili Nasrabadi A, Ramavandi B, Bonyadi Z, Farjadfard S, Fattahi M. Landfill leachates as a significant source for emerging pollutants of phthalic acid esters: Identification, occurrence, characteristics, fate, and transport. CHEMOSPHERE 2024; 356:141873. [PMID: 38593958 DOI: 10.1016/j.chemosphere.2024.141873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
Phthalic acid esters (PAEs) are byproducts released from various sources, including microplastics, cosmetics, personal care products, pharmaceuticals, waxes, inks, detergents, and insecticides. This review article provides an overview of the literature on PAEs in landfill leachates, exploring their identification, occurrence, characteristics, fate, and transport in landfills across different countries. The study emphasizes the influence of these substances on the environment, especially on water and soil. Various analytical techniques, such as GC-MS, GC-FID, and HPLC, are commonly employed to quantify concentrations of PAEs. Studies show significant variations in levels of PAEs among different countries, with the highest concentration observed in landfill leachates in Brazil, followed by Iran. Among the different types of PAE, the survey highlights DEHP as the most concentrated PAE in the leachate, with a concentration of 89.6 μg/L. The review also discusses the levels of other types of PAEs. The data shows that DBP has the highest concentration at 6.8 mg/kg, while DOP has the lowest concentration (0.04 mg/kg). The concentration of PAEs typically decreases as the depth in the soil profile increases. In older landfills, concentrations of PAE decrease significantly, possibly due to long-term degradation and conversion of PAE into other chemical compounds. Future research should prioritize evaluating the effectiveness of landfill liners and waste management practices in preventing the release of PAE and other pollutants into the environment. It is also possible to focus on developing efficient physical, biological, and chemical methods for removing PAEs from landfill leachates. Additionally, the effectiveness of existing treatment processes in removing PAEs from landfill leachates and the necessity for new treatment processes can be considered.
Collapse
Affiliation(s)
- Afsaneh Esmaeili Nasrabadi
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sima Farjadfard
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
34
|
Chandra S, Walsh KB. Microplastics in water: Occurrence, fate and removal. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104360. [PMID: 38729026 DOI: 10.1016/j.jconhyd.2024.104360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
A global study on tap water samples has found that up to 83% of these contained microplastic fibres. These findings raise concerns about their potential health risks. Ingested microplastic particles have already been associated with harmful effects in animals, which raise concerns about similar outcomes in humans. Microplastics are ubiquitous in the environment, commonly found disposed in landfills and waste sites. Within indoor environments, the common sources are synthetic textiles, plastic bottles, and packaging. From the various point sources, they are globally distributed through air and water and can enter humans through various pathways. The finding of microplastics in fresh snow in the Antarctic highlights just how widely they are dispersed. The behaviour and health risks from microplastic particles are strongly influenced by their physicochemical properties, which is why their surfaces are important. Surface interactions are also important in pollutant transport via adsorption onto the microplastic particles. Our review covers the latest findings in microplastics research including the latest statistics in their abundance, their occurrence and fate in the environment, the methods of reducing microplastics exposure and their removal. We conclude by proposing future research directions into more effective remediation methods including new technologies and sustainable green remediation methods that need to be explored to achieve success in microplastics removal from waters at large scale.
Collapse
Affiliation(s)
- Shaneel Chandra
- College of Science and Sustainability, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton North, QLD 4702, Australia; Coastal Marine Ecosystems Research Centre, Central Queensland University, Gladstone Marina Campus, Bryan Jordan Drive, Gladstone, QLD 4680, Australia.
| | - Kerry B Walsh
- College of Science and Sustainability, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton North, QLD 4702, Australia
| |
Collapse
|
35
|
Yesildagli B, Göktaş RK, Ayaz T, Olgun B, Dokumacı EN, Özkaleli M, Erdem A, Yurtsever M, Doğan G, Yurdakul S, Yılmaz Civan M. Phthalate ester levels in agricultural soils of greenhouses, their potential sources, the role of plastic cover material, and dietary exposure calculated from modeled concentrations in tomato. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133710. [PMID: 38364582 DOI: 10.1016/j.jhazmat.2024.133710] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Soil samples collected from 50 greenhouses (GHs) cultivated with tomatoes (plastic-covered:24, glass-covered:26), 5 open-area tomato growing farmlands, and 5 non-agricultural areas were analyzed in summer and winter seasons for 13 PAEs. The total concentrations (Σ13PAEs) in the GHs ranged from 212 to 2484 ng/g, wheeas the concentrations in open-area farm soils were between 240 and 1248 ng/g. Σ13PAE in non-agricultural areas was lower (35.0 - 585 ng/g). PAE exposure through the ingestion of tomatoes cultivated in GH soils and associated risks were estimated with Monte Carlo simulations after calculating the PAE concentrations in tomatoes using a partition-limited model. DEHP was estimated to have the highest concentrations in the tomatoes grown in both types of GHs. The mean carcinogenic risk caused by DEHP for tomato grown in plastic-covered GHs, glass-covered GHs, and open-area soils were 2.4 × 10-5, 1.7 × 10-5 and 1.1 × 10-5, respectively. Based on Positive Matrix Factorization results, plastic material usage in GHs (including plastic cover material source for plastic-GHs) was found to be the highest contributing source in both types of GHs. Microplastic analysis indicated that the ropes and irrigation pipes inside the GHs are important sources of PAE pollution. Pesticide application is the second highest contributing source.
Collapse
Affiliation(s)
- Berkay Yesildagli
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41001 Kocaeli, Turkey
| | - Recep Kaya Göktaş
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41001 Kocaeli, Turkey.
| | - Tuğba Ayaz
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41001 Kocaeli, Turkey
| | - Bihter Olgun
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Ebru Nur Dokumacı
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Merve Özkaleli
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Ayça Erdem
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Meral Yurtsever
- Department of Environmental Engineering, Sakarya University, 54187, Sakarya, Turkey
| | - Güray Doğan
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Sema Yurdakul
- Department of Environmental Engineering, Süleyman Demirel University, Isparta, Turkey
| | - Mihriban Yılmaz Civan
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41001 Kocaeli, Turkey
| |
Collapse
|
36
|
Hong Y, Xie H, Jin X, Naraginti S, Xu D, Guo C, Feng C, Wu F, Giesy JP. Prediction of HC 5s for phthalate esters by use of the QSAR-ICE model and ecological risk assessment in Chinese surface waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133642. [PMID: 38330644 DOI: 10.1016/j.jhazmat.2024.133642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/01/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Due to their endocrine-disrupting effects and the risks posed in surface waters, in particular by chronic low-dose exposure to aquatic organisms, phthalate esters (PAEs) have received significant attention. However, most assessments of risks posed by PAEs were performed at a selection level, and thus limited by empirical data on toxic effects and potencies. A quantitative structure activity relationship (QSAR) and interspecies correlation estimation (ICE) model was constructed to estimate hazardous concentrations (HCs) of selected PAEs to aquatic organisms, then they were used to conduct a multiple-level environmental risk assessment for PAEs in surface waters of China. Values of hazardous concentration for 5% of species (HC5s), based on acute lethality, estimated by use of the QSAR-ICE model were within 1.25-fold of HC5 values derived from empirical data on toxic potency, indicating that the QSAR-ICE model predicts the toxicity of these three PAEs with sufficient accuracy. The five selected PAEs may be commonly measured in China surface waters at concentrations between ng/L and μg/L. Risk quotients according to median concentrations of the five PAEs ranged from 3.24 for di(2-ethylhexhyl) phthalate (DEHP) to 4.10 × 10-3 for dimethyl phthalate (DMP). DEHP and dibutyl phthalate (DBP) had risks to the most vulnerable aquatic biota, with the frequency of exceedances of the predicted no-effect concentration (PNECs) of 75.5% and 38.0%, respectively. DEHP and DBP were identified as having "high" or "moderate" risks. Results of the joint probability curves (JPC) method indicated DEHP posed "intermediate" risk to freshwater species with a maximum risk product of 5.98%. The multiple level system introduced in this study can be used to prioritize chemicals and other new pollutant in the aquatic ecological.
Collapse
Affiliation(s)
- Yajun Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Huiyu Xie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| | - Saraschandra Naraginti
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, USA; Department of Integrative Biology and Centre for Integrative Toxicology, Michigan State University, East Lansing, MI 48895, USA
| |
Collapse
|
37
|
Guo W, Zhang Z, Zhu R, Li Z, Liu C, Xiao H, Xiao H. Pollution characteristics, sources, and health risks of phthalate esters in ambient air: A daily continuous monitoring study in the central Chinese city of Nanchang. CHEMOSPHERE 2024; 353:141564. [PMID: 38417490 DOI: 10.1016/j.chemosphere.2024.141564] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
In recent years, the atmospheric pollution caused by phthalate esters (PAEs) has been increasing due to the widespread use of PAE-containing materials. Existing research on atmospheric PAEs lacks long-term continuous observation and samples from cities in central China. To investigate the pollution characteristics, sources, and health risks of PAEs in the ambient air of a typical city in central China, daily PM2.5 samples were collected in Nanchang from November 2020 to October 2021. In this study, the detection and quantification of six significant PAE contaminants, namely diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), diisobutyl phthalate (DIBP), Di-2-ethylhexyl phthalate (DEHP), di-n-octyl phthalate (DnOP), and diisodecyl phthalate (DIDP), were accomplished using gas chromatography and mass spectrometry. The results revealed that the concentrations of DEP, DnBP, DEHP, and DnOP were relatively high. Higher temperatures promote the volatilization of PAEs, leading to an increase in the gaseous and particulate PAE concentrations in warm seasons and winter pollution scenarios. The results of principal component analysis show that PAEs mainly come from volatile products and polyvinylchloride plastics. Using positive matrix factorization analysis, it is shown that these two sources contribute 67.0% and 33.0% in atmosphere PAEs, respectively. Seasonally, the contribution of volatile products to both gaseous and particulate PAEs substantially increases during warm seasons. The residents in Nanchang exposed to PAEs have a negligible non-cancer risk and a potential low cancer risk. During the warm seasons, more PAEs are emitted into the air, which will increase the toxicity of PAEs and their impact on human health.
Collapse
Affiliation(s)
- Wei Guo
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Ziyue Zhang
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Renguo Zhu
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Zicong Li
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Cheng Liu
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Hongwei Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huayun Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
38
|
Chen L, Yu L, Han B, Li Y, Zhang J, Tao S, Liu W. Pollution characteristics and affecting factors of phthalate esters in agricultural soils in mainland China. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133625. [PMID: 38295727 DOI: 10.1016/j.jhazmat.2024.133625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/15/2024]
Abstract
Phthalate esters (PAEs), the most commonly produced and used plasticizers, are widely used in plastic products and agroecosystems, posing risks to agricultural products and human health. However, current research on PAE pollution characteristics in agricultural soils in China is not comprehensive; affecting factors and relationships with microplastics and plasticizer organophosphate esters have not been sufficiently considered. In this study, farmland soil samples were collected with field questionnaires on a national scale across mainland China. The results showed that the detection rate of PAEs was 100% and the Σ16PAEs concentrations were 23.5 - 903 μg/kg. The level of PAEs was highest in the greenhouse, and significantly higher than that in mulched farmland (p < 0.05). The PAE concentration in northwestern China was the lowest among different physical geographic zones. PAEs in farmlands posed a low cancer risk to Chinese people. PAE pollution in farmlands was significantly (p < 0.05) affected by agronomic measures (such as disposal method), environmental factors, and socioeconomic factors. Overall, PAEs were significantly and positively correlated (p < 0.05) with organophosphate esters but not with microplastics. This study aims to provide scientific data for relevant prevention and control policies, as well as actionable recommendations for pollution reduction.
Collapse
Affiliation(s)
- LiYuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Yu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - BingJun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - YuJun Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - JiaoDi Zhang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - WenXin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
39
|
Kek HY, Tan H, Othman MHD, Nyakuma BB, Ho WS, Sheng DDCV, Kang HS, Chan YT, Lim NHAS, Leng PC, Wahab NHA, Wong KY. Critical review on airborne microplastics: An indoor air contaminant of emerging concern. ENVIRONMENTAL RESEARCH 2024; 245:118055. [PMID: 38154562 DOI: 10.1016/j.envres.2023.118055] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Airborne Microplastics (MPs), an emerging environmental issue, have gained recent attention due to their newfound presence in indoor environments. Utilizing the Web of Science database for literature collection, the paper presents a comprehensive review of airborne MPs including emission sources, assessment methods, exposure risks, and mitigation strategies. This review delves into the diverse sources and mechanisms influencing indoor airborne MP pollution, underscoring the complex interplay between human activities, ventilation systems, and the characteristics of indoor environments. Major sources include the abrasion of synthetic textiles and the deterioration of flooring materials, with factors like carpeting, airflow, and ventilation significantly impacting MP levels. Human activities, such as increased movement in indoor spaces and the intensive use of plastic-based personal protective equipment (PPE) post-pandemic, notably elevate indoor MP concentrations. The potential health impacts of airborne MPs are increasingly concerning, with evidence suggesting their role in respiratory, immune, and nervous system diseases. Despite this, there is a scarcity of information on MPs in diverse indoor environments and the inhalation risks associated with the frequent use of PPE. This review also stresses the importance of developing effective strategies to reduce MP emissions, such as employing HEPA-filtered vacuums, minimizing the use of synthetic textiles, and enhancing indoor ventilation. Several future research directions were proposed, including detailed temporal analyses of indoor MP levels, interactions of MP with other atmospheric pollutants, the transport dynamics of inhalable MPs (≤10 μm), and comprehensive human exposure risk assessments.
Collapse
Affiliation(s)
- Hong Yee Kek
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Huiyi Tan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Bemgba Bevan Nyakuma
- Department of Chemical Sciences, Faculty of Science and Computing, Pen Resource University, P. M. B. 086, Gombe, Gombe State, Nigeria
| | - Wai Shin Ho
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | | - Hooi Siang Kang
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Marine Technology Centre, Institute for Vehicle System & Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Yoon Tung Chan
- Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | | - Pau Chung Leng
- Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | | - Keng Yinn Wong
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
40
|
Sun H, Hu J, Wu Y, Gong H, Zhu N, Yuan H. Leachate from municipal solid waste landfills: A neglected source of microplastics in the environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133144. [PMID: 38056251 DOI: 10.1016/j.jhazmat.2023.133144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Over the past decade or so, microplastics (MPs) have received increasing attention due to their ubiquity and potential risk to the environment. Waste plastics usually end up in landfills. These plastics in landfills undergo physical compression, chemical oxidation, and biological decomposition, breaking down into MPs. As a result, landfill leachate stores large amounts of MPs, which can negatively impact the surrounding soil and water environment. However, not enough attention has been given to the occurrence and removal of MPs in landfill leachate. This lack of knowledge has led to landfills being an underestimated source of microplastics. In order to fill this knowledge gap, this paper collects relevant literature on MPs in landfill leachate from domestic and international sources, systematically summarizes their presence within Asia and Europe, assesses the impacts of landfill leachate on MPs in the adjacent environment, and particularly discusses the possible ecotoxicological effects of MPs in leachate. We found high levels of MPs in the soil and water around informal landfills, and the MPs themselves and the toxic substances they carry can have toxic effects on organisms. In addition, this paper summarizes the potential impact of MPs on the biochemical treatment stage of leachate, finds that the effects of MPs on the biochemical treatment stage and membrane filtration are more significant, and proposes some novel processes for MPs removal from leachate. This analysis contributes to the removal of MPs from leachate. This study is the first comprehensive review of the occurrence, environmental impact, and removal of MPs in leachate from landfills in Asia and Europe. It offers a comprehensive theoretical reference for the field, providing invaluable insights.
Collapse
Affiliation(s)
- Haoyu Sun
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinwen Hu
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - You Wu
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Huabo Gong
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
41
|
Bahrani F, Mohammadi A, Dobaradaran S, De-la-Torre GE, Arfaeinia H, Ramavandi B, Saeedi R, Tekle-Röttering A. Occurrence of microplastics in edible tissues of livestock (cow and sheep). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22145-22157. [PMID: 38403824 DOI: 10.1007/s11356-024-32424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
Plastic contamination is widely recognized as a major environmental concern due to the entry of small plastic particles into the food chain, thereby posing potential hazards to human health. However, the current understanding of microplastic (MP; < 5 mm) particles in livestock, which serve as an important food source, is limited. This study aims to investigate the concentration and characteristics of MPs in edible tissues of cow and sheep, namely liver, meat, and tripe, obtained from butcher shops in five areas of Bushehr port, Iran. The mean concentration of MPs in different tissues of cow and sheep were 0.14 and 0.13 items/g, respectively. Among the examined tissues, cow meat exhibited the highest concentration of MPs, with a concentration of 0.19 items/g. Nylon and fiber were identified as the predominant polymer types and shapes of MPs found in cow and sheep tissues, respectively. Furthermore, no statistically significant difference was observed in MP concentration across different tissues of cow and sheep. Significantly, this study highlights the elevated hazards associated with exposure to MPs through the consumption of edible cow and sheep tissues, particularly for children who consume meat. The results underscore the potential transfer of MPs from the environment to livestock bodies through their food, contamination during meat processing, and subsequent health hazards for consumers.
Collapse
Affiliation(s)
- Farkhondeh Bahrani
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Azam Mohammadi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
- Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.
| | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Health and Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Agnes Tekle-Röttering
- Westfälische Hochschule Gelsenkirchen, Neidenburger Strasse 43, 45877, Gelsenkirchen, Germany
| |
Collapse
|
42
|
Xu Y, Sun Y, Lei M, Hou J. Phthalates contamination in sediments: A review of sources, influencing factors, benthic toxicity, and removal strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123389. [PMID: 38246215 DOI: 10.1016/j.envpol.2024.123389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/18/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Sediments provide habitat and food for benthos, and phthalates (PAEs) have been detected in numerous river and marine sediments as a widely used plastic additive. PAEs in sediments is not only toxic to benthos, but also poses a threat to pelagic fish and human health through the food chain, so it is essential to comprehensively assess the contamination of sediments with PAEs. This paper presents a critical evaluation of PAEs in sediments, which is embodied in the analysis of the sources of PAEs in sediments from multiple perspectives. Biological production is indispensable, while artificial synthesis is the most dominant, thus the focus was on analyzing the industrial and commercial sources of synthetic PAEs. In addition, since the content of PAEs in sediments varies, some factors affecting the content of PAEs in sediments are summarized, such as the properties of PAEs, the properties of plastics, and environmental factors (sediments properties and hydrodynamic conditions). As endocrine disruptors, PAEs can produce toxicity to its direct contacts. Therefore, the effects of PAEs on benthos immunity, endocrinology, reproduction, development, and metabolism were comprehensively analyzed. In addition, we found that reciprocal inhibition and activation of the systems lead to genotoxicity and apoptosis. Finally, the paper discusses the feasible measures to control PAEs in wastewater and leachate from the perspective of source control, and summarizes the in-situ treatment measures for PAEs contamination in sediments. This paper provides a comprehensive review of PAEs contamination in sediments, toxic effects and removal strategies, and provides an important reference for reducing the contamination and toxicity of PAEs to benthos.
Collapse
Affiliation(s)
- Yanli Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Yuqiong Sun
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Ming Lei
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
43
|
Ragesh S, Abdul Jaleel KU, Nikki R, Abdul Razaque MA, Muhamed Ashraf P, Ravikumar CN, Abdulaziz A, Dinesh Kumar PK. Environmental and ecological risk of microplastics in the surface waters and gastrointestinal tract of skipjack tuna (Katsuwonus pelamis) around the Lakshadweep Islands, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22715-22735. [PMID: 38411916 DOI: 10.1007/s11356-024-32564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
The presence of microplastics (MPs) in marine ecosystems is widespread and extensive. They have even reached the deepest parts of the ocean and polar regions. The number of articles on plastic pollution has increased in recent years, but few have investigated the MPs from oceanic islands which are biodiversity hotspots. We investigated the possible microplastic contamination their source and characteristics in surface waters off Kavaratti Island and in the gastrointestinal tract (GT) of skipjack tuna, Katsuwonus pelamis collected from Kavaratti Island of the Lakshadweep archipelago. A total of 424 MP particles were isolated from the surface water samples collected from off Kavaratti Island with an average abundance of 5 ± 1nos./L. A total of 117 MPs were recovered from the GT of skipjack tuna from 30 individual fishes. This points to a potential threat of MP contamination in seafood around the world since this species has a high value in local and international markets. Fiber and blue color were the most common microplastic morphotypes and colors encountered, respectively, both from surface water and GT of fish. Smaller MPs (0.01-1 mm) made up a greater portion of the recovered materials, and most of them were secondary MPs. Polyethylene and polypropylene were the most abundant polymers found in this study. The Pollution Load Index (1.3 ± 0.21) of the surface water and skipjack tuna (1 ± 0.7) indicates a minor ecological risk for the coral islands, while the Polymer Hazard Index highlights the ecological risk of polymers, even at low MP concentrations. This pioneer study sheds preliminary light on the abundance, properties, and environmental risks of MPs to this highly biodiverse ecosystem.
Collapse
Affiliation(s)
- Saraswathi Ragesh
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, 682018, Kerala, India
| | | | - Ramachandran Nikki
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, 682018, Kerala, India
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science & Technology (CUSAT), Cochin, 682016, Kerala, India
| | - Mannayath Abdulazeez Abdul Razaque
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, 682018, Kerala, India
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science & Technology (CUSAT), Cochin, 682016, Kerala, India
| | | | | | - Anas Abdulaziz
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, 682018, Kerala, India
| | | |
Collapse
|
44
|
Mao S, He C, Niu G, Ma Y. Effect of aging on the release of di-(2-ethylhexyl) phthalate from biodegradable and petroleum-based microplastics into soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116006. [PMID: 38295739 DOI: 10.1016/j.ecoenv.2024.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024]
Abstract
Due to microplastics (MPs) being widely distributed in soil, the use of advanced oxidation to remediate organic-contaminated soils may accelerate the aging of MPs in soil and impact the release of di-(2-ethylhexyl) phthalate (DEHP), a potential carcinogen used as a plasticizer in plastics, from MPs. In this study, persulfate oxidation (PO) and temperature treatment (TT) were used to treat biodegradable and petroleum-based MPs, including polylactic acid (PLA), polyvinyl chloride (PVC), and polystyrene (PS). The methods used for evaluating the characteristics changes of MP were X-ray diffraction (XRD) analysis and water contact angle measurement. The effects of aging on DEHP release from MPs were investigated via soil incubation. The results showed PO and TT led to increased surface roughness, oxygen-containing functional group content, and hydrophilicity of the MPs with prolonged aging, consequently accelerating the release of DEHP from the MPs. Interestingly, PLA aged faster than PVC and PS under similar conditions. After 30 days of PO treatment, DEHP release from PLA into the soil increased 0.789-fold, exceeding the increase from PVC (0.454-fold) and PS (0.287-fold). This suggests that aged PLA poses a higher ecological risk than aged PVC or PS. Furthermore, PO treatment resulted in the oxidation and degradation of DEHP on the MP surface. After 30 days of PO treatment, the DEHP content in PLA, PVC, and PS decreased by 19.1%, 25.8%, and 23.5%, respectively. Specifying the types of MPs studied and the environmental conditions would provide a more precise context for the results. These findings provide novel insights into the fate of biodegradable and petroleum-based MPs and the potential ecotoxicity arising from advanced oxidation remediation in contaminated soils.
Collapse
Affiliation(s)
- Shaohua Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chiquan He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Guoyao Niu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yangyang Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
45
|
Qin ZH, Siddiqui MA, Xin X, Mou JH, Varjani S, Chen G, Lin CSK. Identification of microplastics in raw and treated municipal solid waste landfill leachates in Hong Kong, China. CHEMOSPHERE 2024; 351:141208. [PMID: 38219986 DOI: 10.1016/j.chemosphere.2024.141208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Plastics are indispensable in modern society but also pose a persistent threat to the environment. In particular, microplastics (MPs) have a substantial environmental impact on ecosystems. Municipal solid waste landfill leachates are a source of MPs, but leakage of MPs from leachates has only been reported in a few studies. As a modern city, Hong Kong has a remarkably high population density and a massive plastic waste generation. However, it depends on conventional landfilling for plastic waste management and traditional thermal ammonia stripping for leachate treatment. Yet, the MP leakage from landfill leachates in Hong Kong has not been disclosed. This is the first study that aimed to identify, quantify, and characterise MPs in raw and treated leachates, respectively, from major landfill sites in Hong Kong. The concentrations of MPs varied from 49.0 ± 24.3 to 507.6 ± 37.3 items/L among the raw leachate samples, and a potential correlation was found between the concentration of MPs in the raw leachate sample from a given landfill site and the annual leachate generation of the site. Most MPs were 100-500 μm fragments or filaments and were transparent or yellow. Regarding the polymeric materials among the identified MPs, poly(ethylene terephthalate) and polyethylene were the most abundant types, comprising 45.30% and 21.37% of MPs, respectively. Interestingly, leachates treated by ammonia stripping contained higher concentrations of MPs than raw leachate samples, which demonstrated that the traditional treatment process may not be sufficient regarding the removal of emerging pollutants, such as MPs. Overall, our findings provide a more comprehensive picture of the pollution of MPs in landfill leachates in Hong Kong and highlight the urgent need for adopting the consideration of MPs into the conventional mindset of waste management systems in Hong Kong.
Collapse
Affiliation(s)
- Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Muhammad Ahmar Siddiqui
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China; Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiayin Xin
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Jin-Hua Mou
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
46
|
Wang MH, Chen CF, Albarico FPJB, Lin SL, Chen CW, Dong CD. Phthalate esters and nonylphenol concentrations correspond with microplastic distribution in anthropogenically polluted river sediments. MARINE POLLUTION BULLETIN 2024; 199:116031. [PMID: 38237245 DOI: 10.1016/j.marpolbul.2024.116031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 02/08/2024]
Abstract
This paper presents the phthalate esters (PAEs), nonylphenol (NPs), and microplastics (MPs) in river sediments. Results showed that sediments near residential areas were mainly composed of fine particles, potentially influencing the adsorption of PAEs and NPs in the area. The concentrations of Σ10 PAEs in the sediments ranged between 2448 and 63,457 μg/kg dw, dominated by DEHP and DnOP. Microplastics were detected in all samples, with higher abundances found in sediments near residential areas dominated by polypropylene. Toxicological risk assessment indicated potential risks to sensitive aquatic organisms exposed to the sediments. Correlations between MPs, PAEs, and NPs suggest that MPs may serve as possible sources of PAEs in the sediments. Principal component analysis explained 95.4 % of the pollutant variability in the sediments. Overall, this study emphasizes the significance of monitoring and understanding the presence and interactions of PAEs and MPs in river sediments to assess their potential impacts on aquatic ecosystems.
Collapse
Affiliation(s)
- Ming-Huang Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Frank Paolo Jay B Albarico
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Shan-Lu Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
47
|
Billings A, Jones KC, Pereira MG, Spurgeon DJ. Emerging and legacy plasticisers in coastal and estuarine environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168462. [PMID: 37963532 DOI: 10.1016/j.scitotenv.2023.168462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
The occurrence of plastic waste in the environment is an emerging and ongoing concern. In addition to the physical impacts of macroplastics and microplastics on organisms, the chemical effects of plastic additives such as plasticisers have also received increasing attention. Research concerning plasticiser pollution in estuaries and coastal environments has been a particular focus, as these environments are the primary entry point for anthropogenic contaminants into the wider marine environment. Additionally, the conditions in estuarine environments favour the sedimentation of suspended particulate matter, with which plasticisers are strongly associated. Hence, estuary systems may be where some of the highest concentrations of these pollutants are seen in freshwater and marine environments. Recent studies have confirmed emerging plasticisers and phthalates as pollutants in estuaries, with the relative abundance of these compounds controlled primarily by patterns of use, source intensity, and fate. Plasticiser profiles are typically dominated by mid-high molecular weight compounds such as DnBP, DiBP, and DEHP. Plasticisers may be taken up by estuarine and marine organisms, and some phthalates can cause negative impacts in marine organisms, although further research is required to assess the impacts of emerging plasticisers. This review provides an overview of the processes controlling the release and partitioning of emerging and legacy plasticisers in aqueous environments, in addition to the sources of plasticisers in estuarine and coastal environments. This is followed by a quantitative analysis and discussion of literature concerning the (co-)occurrence and concentrations of emerging plasticisers and phthalates in these environments. We end this review with a discussion the fate (degradation and uptake by biota) of these compounds, in addition to identification of knowledge gaps and recommendations for future research.
Collapse
Affiliation(s)
- Alex Billings
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - M Glória Pereira
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - David J Spurgeon
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| |
Collapse
|
48
|
Zhang H, Huang Y, An S, Wang P, Xie C, Jia P, Huang Q, Wang B. Mulch-derived microplastic aging promotes phthalate esters and alters organic carbon fraction content in grassland and farmland soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132619. [PMID: 37757559 DOI: 10.1016/j.jhazmat.2023.132619] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Agricultural plastic mulch is a major microplastics (MPs) source in terrestrial ecosystems. However, knowledge about the aging characteristics of mulch-derived MPs entering natural and agricultural soils and their effects on phthalate esters (PAEs) and organic carbon fractions is still limited. Black (contains black masterbatches) and white polyethylene (PE) and biodegradable (Bio, Poly propylene carbonate and Polybutylene adipate terephthalate synthetic material (PPC+PBAT)) mulch-derived MPs, at 0.3% (w/w) dose, were added to grassland and farmland soils for eight-week incubation. Microplastic (MP) aging degree was explored by quantifying the carbonyl index (CI). The soil PAEs and organic carbon fractions were also analyzed. After incubation, black and white PE-MP aged greater in farmland than in grassland. PAEs accumulated highest in PE-MP treatment (5.27-6.41 mg kg-1) followed by Bio-MP (1.88-2.38 mg kg-1). Soil organic carbon (SOC), particulate organic carbon (POC), and microbial biomass carbon (MBC) were reduced by 5.3%-8.2%, 31.8%-41.6%, and 39.7%-63.0%, dissolved organic carbon (DOC) was increased by 10.1%-27.6% in grassland containing MP compared to control. MPs' aging degree promoted PAEs content or altered nutrients, then regulated soil microbial biomass and extracellular enzyme activity directly or indirectly, ultimately affecting SOC. ENVIRONMENTAL IMPLICATION: Microplastics are persistent environmental pollutants that gradually undergo surface aging in response to extracellular enzymes secreted by microorganisms. As microplastics age, their surface roughness and functional groups change; thus, organochemical contaminants gradually leach out. Therefore, this study analyzed the aging of mulch film-derived microplastics under the action of diverse microorganisms in farmland and grassland soils and the effect on plasticizer and organic carbon fractions. The results proved that polyethylene microplastic aging degree was highest in farmland soil. Besides, biodegradable microplastic caused lower contamination of phthalate esters than polyethylene, but they affected soil carbon balance in grassland and farmland soils. STATEMENT OF ENVIRONMENTAL IMPLICATION: This study highlights that MPs affect organic carbon fractions by influencing the PAEs, available nutrients, and extracellular enzyme activity.
Collapse
Affiliation(s)
- Haixin Zhang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China.
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pan Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Chunjiao Xie
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Penghui Jia
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Qian Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Baorong Wang
- College of Grassland Agriculture, Northwest A&F University, Shaanxi 712100, China
| |
Collapse
|
49
|
Zendehboudi A, Mohammadi A, Dobaradaran S, De-la-Torre GE, Ramavandi B, Hashemi SE, Saeedi R, Tayebi EM, Vafaee A, Darabi A. Analysis of microplastics in ships ballast water and its ecological risk assessment studies from the Persian Gulf. MARINE POLLUTION BULLETIN 2024; 198:115825. [PMID: 38029669 DOI: 10.1016/j.marpolbul.2023.115825] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Transport of ballast water is considered a significant vector for dispersion of different pollutants, including microplastics (MPs), throughout the world's oceans. However, there is limited information on MPs in ballast water. Size distribution, polymer type, and ecological risks of MPs in ballast water were investigated for the first time in this study. The mean levels of MPs in ballast water and seawater samples were 12.53 and 11.80 items/L, respectively. MPs with a size category of 50-300 μm was the most abundant. Fiber, black, and polycarbonate (PC) were the predominant shape, color, and polymer type of identified MPs in ballast water and seawater, respectively. The pollution load index (PLI), hazard index (HI), and risk quotient (RQ) indicated high levels of MP pollution, potentially indicating an ecological risk. These findings increase our understanding of the major sources (such as ballast water), transportation routes, and related ecological risks of MPs to marine ecosystems.
Collapse
Affiliation(s)
- Atefeh Zendehboudi
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Azam Mohammadi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, Germany.
| | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Enayat Hashemi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health and Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Vafaee
- Department of Bushehr Ports & Maritime Authority, Iran
| | - AmirHossein Darabi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
50
|
Mubin AN, Islam ARMT, Hasan M, Islam MS, Ali MM, Siddique MAB, Alam MS, Rakib MRJ, Islam MS, Momtaz N, Senapathi V, Idris AM, Malafaia G. The path of microplastics through the rare biodiversity estuary region of the northern Bay of Bengal. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104271. [PMID: 38056088 DOI: 10.1016/j.jconhyd.2023.104271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Due to its harmful effects on ecosystems and human health, microplastic (MP) pollution has become a significant environmental problem on a global scale. Although MPs' pollution path and toxic effects on marine habitats have been examined worldwide, the studies are limited to the rare biodiversity estuary region of Hatiya Island from the northern Bay of Bengal. This study aimed to investigate the MP pollution path and its influencing factors in estuarine sediments and water in rare biodiversity Hatiya Island in the northern Bay of Bengal. Sixty water and sediment samples were collected from 10 sampling sites on the Island and analyzed for MPs. The abundance of MPs in sediment ranged from 67 to 143 pieces/kg, while the abundance in water ranged from 24.34 to 59 pieces/m3. The average concentrations of MPs in sediment and water were 110.90 ± 20.62 pieces/kg and 38.77 ± 10.09 pieces/m3, respectively. Most identified MPs from sediment samples were transparent (51%), while about 54.1% of the identified MPs from water samples were colored. The fragment was the most common form of MP in both compartments, with a value of 64.6% in sediment samples and 60.6% in water samples. In sediment and water samples, almost 74% and 80% of MP were <0.5 mm, respectively. Polypropylene (PP) was the most abundant polymer type, accounting for 51% of all identified polymers. The contamination factor, pollution load index, polymer risk score, and pollution risk score values indicated that the study area was moderately polluted with MPs. The spatial distribution patterns and hotspots of MPs echoed profound human pathways. Based on the results, sustainable management strategies and intervention measures were proposed to reduce the pollution level in the ecologically diverse area. This study provides important insights into evaluating estuary ecosystem susceptibility and mitigation policies against persistent MP issues.
Collapse
Affiliation(s)
- Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher - e - Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Sha Alam
- Institute of Mining, Mineralogy & Metallurgy (IMMM), Bangladesh Council of Scientific & Industrial Research (BCSIR), Joypurhat 5900, Bangladesh
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Nasima Momtaz
- Biological Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|