1
|
Romero-Leiton JP, Laison EK, Alfaro R, Parmley EJ, Arino J, Acharya KR, Nasri B. Exploring Zika's dynamics: A scoping review journey from epidemic to equations through mathematical modelling. Infect Dis Model 2025; 10:536-558. [PMID: 39897087 PMCID: PMC11786632 DOI: 10.1016/j.idm.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/24/2024] [Accepted: 12/29/2024] [Indexed: 02/04/2025] Open
Abstract
Zika virus (ZIKV) infection, along with the concurrent circulation of other arboviruses, presents a great public health challenge, reminding the utilization of mathematical modelling as a crucial tool for explaining its intricate dynamics and interactions with co-circulating pathogens. Through a scoping review, we aimed to discern current mathematical models investigating ZIKV dynamics, focusing on its interplay with other pathogens, and to identify underlying assumptions and deficiencies supporting attention, particularly regarding the epidemiological attributes characterizing Zika outbreaks. Following the PRISMA-Sc guidelines, a systematic search across PubMed, Web of Science, and MathSciNet provided 137 pertinent studies from an initial pool of 2446 papers, showing a diversity of modelling approaches, predominantly centered on vector-host compartmental models, with a notable concentration on the epidemiological landscapes of Colombia and Brazil during the 2015-2016 Zika epidemic. While modelling studies have been important in explaining Zika transmission dynamics and their intersections with diseases such as Dengue, Chikungunya, and COVID-19 so far, future Zika models should prioritize robust data integration and rigorous validation against diverse datasets to improve the accuracy and reliability of epidemic prediction. In addition, models could benefit from adaptable frameworks incorporating human behavior, environmental factors, and stochastic parameters, with an emphasis on open-access tools to foster transparency and research collaboration.
Collapse
Affiliation(s)
- Jhoana P. Romero-Leiton
- Department of Mathematical Sciences, University of Puerto Rico at Mayagüez, Puerto Rico, PR 00681-9000, USA
| | - Elda K.E. Laison
- Département de Médecine Sociale et Préventive, École de Santé Publique de L’Université de Montréal, Montréal, QC Québec, H3N 1X9, Canada
| | - Rowin Alfaro
- Département de Médecine Sociale et Préventive, École de Santé Publique de L’Université de Montréal, Montréal, QC Québec, H3N 1X9, Canada
| | - E. Jane Parmley
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Julien Arino
- Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 1E9, Canada
| | - Kamal R. Acharya
- Asia-Pacific Center for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010 Australia
| | - Bouchra Nasri
- Département de Médecine Sociale et Préventive, École de Santé Publique de L’Université de Montréal, Montréal, QC Québec, H3N 1X9, Canada
- Centre de Recherches Mathématiques, Montréal, Canada
- Centre de Recherche en Santé Publique, Montréal, Canada
- Data Informatics Center of Epidemiology, PathCheck, Cambridge, USA
| |
Collapse
|
2
|
Charnley GE, Alcayna T, Almuedo-Riera A, Antoniou C, Badolo A, Bartumeus F, Boodram LL, Bueno-Marí R, Codeço C, Codeço Coelho F, Costa F, Cox H, Haddad N, Hamid NA, Kittayapong P, Korukluoğlu G, Michaelakis A, Maciel-de-Freitas R, Montalvo T, Muñoz J, Oliveras SS, Palmer JR, Barboza Pizard CJ, Ribeiro GS, Lowe R. Strengthening resilience to emerging vector-borne diseases in Europe: lessons learnt from countries facing endemic transmission. THE LANCET REGIONAL HEALTH. EUROPE 2025; 53:101271. [PMID: 40247854 PMCID: PMC12002787 DOI: 10.1016/j.lanepe.2025.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 04/19/2025]
Abstract
Emerging vector-borne diseases (VBDs) are a major public health concern worldwide. Climate change, environmental degradation and globalisation have led to an expansion in the range of many vectors and an erosion of transmission barriers, increasing human exposure to new pathogens and the risk for emerging VBD outbreaks. Europe is potentially underprepared for the increasing threat of VBDs, due to attention and funding being diverted to other public health priorities. Proactive, rather than reactive, prevention and control approaches can greatly reduce the socio-economic toll of VBDs. Endemic countries globally have decades of experience in controlling VBDs, and Europe has much to learn from this knowledge. Here, we advocate for the expansion of transdisciplinary knowledge-sharing partnerships, to co-create proactive measures against VBDs. We present the experiences and expertise of our diverse international team and explore how an array of interventions can be applied and adapted to the European context.
Collapse
Affiliation(s)
- Gina E.C. Charnley
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- School of Public Health, Imperial College London, London, United Kingdom
| | - Tilly Alcayna
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- London School of Hygiene & Tropical Medicine, London, United Kingdom
- Red Cross Red Crescent Climate Centre, The Hague, the Netherlands
| | - Alex Almuedo-Riera
- Barcelona Institute for Global Health (ISGlobal), Universitat de Barcelona, Barcelona, Spain
- International Health Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Athanase Badolo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Frederic Bartumeus
- Centre for Advanced Studies of Blanes (CEAB-CSIC), Girona, Spain
- Catalan Institution for Research & Advanced Studies (ICREA), Barcelona, Spain
| | - Laura-Lee Boodram
- The Caribbean Public Health Agency, Port of Spain, Trinidad & Tobago
| | - Rubén Bueno-Marí
- European Vector Control Center of Excellence, Rentokil Initial, Madrid, Spain
- Parasites and Health Research Group, Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjassot, València, Spain
| | - Claudia Codeço
- Programa de Computação Cientifica, Fiocruz, Rio de Janeiro, Brazil
| | | | - Federico Costa
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
| | - Horace Cox
- The Caribbean Public Health Agency, Port of Spain, Trinidad & Tobago
| | - Nabil Haddad
- Medical Laboratory Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Nurulhusna Ab Hamid
- Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia
| | - Pattamaporn Kittayapong
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand
| | - Gülay Korukluoğlu
- University of Health Sciences, Ankara Bilkent City Hospital, Türkiye
| | | | - Rafael Maciel-de-Freitas
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Tomas Montalvo
- Agència de Salut Pública de Barcelona, Barcelona, Spain
- CIBER Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain
| | - Jose Muñoz
- Barcelona Institute for Global Health (ISGlobal), Universitat de Barcelona, Barcelona, Spain
| | | | | | | | - Guilherme S. Ribeiro
- Instituto Gonçalo Moniz, Fiocruz, Salvador, Brazil
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Rachel Lowe
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- London School of Hygiene & Tropical Medicine, London, United Kingdom
- Catalan Institution for Research & Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
Zhu Q, Li Z, Dong J, Fu P, Cheng Q, Cai J, Gurgel H, Yang L. Spatiotemporal dataset of dengue influencing factors in Brazil based on geospatial big data cloud computing. Sci Data 2025; 12:712. [PMID: 40301332 PMCID: PMC12041567 DOI: 10.1038/s41597-025-05045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/22/2025] [Indexed: 05/01/2025] Open
Abstract
Dengue fever has been spreading rapidly worldwide, with a notably high prevalence in South American countries such as Brazil. Its transmission dynamics are governed by the vector population dynamics and the interactions among humans, vectors, and pathogens, which are further shaped by environmental factors. Calculating these environmental indicators is challenging due to the limited spatial coverage of weather station observations and the time-consuming processes involved in downloading and processing local data, such as satellite imagery. This issue is exacerbated in large-scale studies, making it difficult to develop comprehensive and publicly accessible datasets of disease-influencing factors. Addressing this challenge necessitates the efficient data integration methods and the assembly of multi-factorial datasets to aid public health authorities in understanding dengue transmission mechanisms and improving risk prediction models. In response, we developed a population-weighted dataset of 12 dengue risk factors, covering 558 microregions in Brazil over 1252 epidemiological weeks from 2001 to 2024. This dataset and the associated methodology streamline data processing for researchers and can be adapted for other vector-borne disease studies.
Collapse
Affiliation(s)
- Qixu Zhu
- Key Laboratory for Resource Use and Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- School of Geographical Sciences, University of Nottingham Ningbo China, Ningbo, China
| | - Zhichao Li
- Key Laboratory for Resource Use and Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jinwei Dong
- Key Laboratory for Resource Use and Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ping Fu
- School of Geographical Sciences, University of Nottingham Ningbo China, Ningbo, China
| | - Qu Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Cai
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Helen Gurgel
- Laboratory of Geography, Environment and Health (LAGAS), Geography Department, Brasília University (UnB), Brasília, DF, Brazil
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
4
|
Menegon M, Severini F, Toma L, Martignoni M, Di Luca M. Rapid molecular method for early detection of the invasive mosquito Aedes aegypti (Linnaeus, 1762) at Points of Entry. Acta Trop 2025; 264:107605. [PMID: 40164403 DOI: 10.1016/j.actatropica.2025.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
In recent years, globalization and climate change have led to a rise in the number of imported cases of Aedes-diseases in Europe, resulting in increased frequency and magnitude of local transmissions due to the presence of competent vectors. Recently, Italy has experienced the establishment of three exotic Aedes mosquitoes relevant to human health, Aedes albopictus, Aedes koreicus and Aedes japonicus. Aedes aegypti, the primary vector of dengue and yellow fever, distributed in tropical and subtropical regions, has recently reappeared in Europe and the risk for its re-introduction in Italy is high given the climatic conditions suitable for the species. To address the risk of introduction and spread of Aedes-diseases, the Health Authorities recommend the strengthening of entomological surveillance at regional level, particularly in strategic areas and Points of Entry, such as ports and airports. In 2021, a Korean research team developed a multiplex-PCR assay for the identification of six Aedini species, not including Ae. aegypti. In the present study, the previous diagnostic test was improved by designing reverse primers for the identification of Ae. aegypti and Aedes geniculatus. This latter native mosquito lays eggs morphologically similar to those of invasive species with which it can sometimes be found in sympatry. Furthermore, a ten-minute DNA extraction method was implemented. The results obtained demonstrate a perfect diagnostic capacity and sensitivity of the method in discriminating the five species tested. Here, findings of a sensitive, rapid and cost-effective molecular assay developed for the early identification of invasive species at high-risk sites are shown.
Collapse
Affiliation(s)
- Michela Menegon
- Unit of Vector-Borne Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - Francesco Severini
- Unit of Vector-Borne Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Luciano Toma
- Unit of Vector-Borne Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
| | | | - Marco Di Luca
- Unit of Vector-Borne Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
| |
Collapse
|
5
|
Soliman MM, El-Hawagry MSA, Samy AM. Re-emergence of Aedes aegypti (Linnaeus) in Egypt: Predicting distribution shifts under climate changes. MEDICAL AND VETERINARY ENTOMOLOGY 2025. [PMID: 39888057 DOI: 10.1111/mve.12794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Aedes aegypti, the primary vector of several medically significant arboviruses-including dengue fever, yellow fever, chikungunya and Zika-was successfully eradicated from Egypt in 1963. However, since 2011, there have been increasing reports of its re-emergence, alongside dengue outbreaks in southern Egyptian governorates, raising significant public health concerns. This study aimed to model the current and future distribution of Ae. aegypti in Egypt. Local occurrence data were integrated with bioclimatic, anthropogenic and biological environmental variables to identify key factors influencing the distribution of Ae. aegypti. Maximum entropy (MaxEnt) modelling demonstrated strong predictive performance (area under the receiver operating characteristic curve [AUC] mean = 0.975; true skill statistic [TSS] mean = 0.789). The key determinants of habitat suitability were identified as human population density, annual precipitation and the normalised difference vegetation index (NDVI). Current predictions indicate that suitable habitats for Ae. aegypti are concentrated in the Nile Valley, Nile Delta, Fayoum Basin, Red Sea coast and South Sinai. Projections under future climate change scenarios suggest an expansion of suitable habitats, particularly in the Nile Delta region. By 2050, the model predicts a 61%-68% increase in suitable habitat area, with a further 64%-69% increase by 2070, depending on the future climate scenarios. These findings are crucial for informing vector control and disease prevention strategies, particularly considering Egypt's status as one of the world's leading tourist destinations.
Collapse
Affiliation(s)
- Mustafa M Soliman
- Entomology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Abdallah M Samy
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
- Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Benaoune S, Merzougui A, Remmani R, Bouzidi N, Ruiz-Canales A, Akacha I, Djellouli A. Dual-Activated Tamarix Gallica-Derived Carbons for Enhanced Glyphosate Adsorption: A Comparative Study of Phosphoric and Sulfuric Acid Activation. MATERIALS (BASEL, SWITZERLAND) 2025; 18:511. [PMID: 39942177 PMCID: PMC11818085 DOI: 10.3390/ma18030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
This study investigates the efficacy of activated carbons (ACs) derived from Tamarix gallica (TG) leaves for glyphosate removal from aqueous solutions. Two chemical activation methods, using phosphoric acid (H3PO4) and sulfuric acid (H2SO4), were compared to optimize adsorbent performance. The resulting materials, labeled AC-H3PO4 and AC-H2SO4, were comprehensively characterized using XRD, FTIR, SEM-EDS, BET analysis, and pHpzc determination, revealing distinct physicochemical properties. AC-H3PO4 exhibited a larger surface area (580.37 m2/g) and more developed pore structure compared to AC-H2SO4 (241.58 m2/g). Adsorption kinetics were best described by the pseudo-first-order model for both adsorbents. Isothermal studies demonstrated that AC-H3PO4 followed a pore-filling mechanism best described by the Dubinin-Radushkevich model, while AC-H2SO4 showed multilayer adsorption fitting the Freundlich model. Both adsorbents exhibited high glyphosate removal capacities, with maximum Langmuir adsorption capacities of 247.58 mg/g and 235.13 mg/g for AC-H3PO4 and AC-H2SO4, respectively. The mean free energy of adsorption (E) values confirmed physisorption as the dominant mechanism. This research highlights the potential of TG-derived activated carbons as sustainable and effective adsorbents for glyphosate remediation in water treatment applications, demonstrating the impact of activation methods on adsorption performance.
Collapse
Affiliation(s)
- Saliha Benaoune
- Research Laboratory in Civil Engineering, Hydraulics, Sustainable Development and Environment (LAR-GHYDE), University Mohamed Khider, Biskra 07000, Algeria; (S.B.); (A.M.); (I.A.)
| | - Abdelkarim Merzougui
- Research Laboratory in Civil Engineering, Hydraulics, Sustainable Development and Environment (LAR-GHYDE), University Mohamed Khider, Biskra 07000, Algeria; (S.B.); (A.M.); (I.A.)
| | - Rania Remmani
- Department of Engineering, Miguel Hernández University, 03312 Alicante, Spain;
| | - Narimene Bouzidi
- Scientific and Technical Research Center on Arid Regions Omar El-Bernaoui, Biskra 07000, Algeria; (N.B.); (A.D.)
| | | | - Imane Akacha
- Research Laboratory in Civil Engineering, Hydraulics, Sustainable Development and Environment (LAR-GHYDE), University Mohamed Khider, Biskra 07000, Algeria; (S.B.); (A.M.); (I.A.)
| | - Amir Djellouli
- Scientific and Technical Research Center on Arid Regions Omar El-Bernaoui, Biskra 07000, Algeria; (N.B.); (A.D.)
| |
Collapse
|
7
|
Modjarrad K, Scott PT, McCauley M, Ober-Shepherd B, Sondergaard E, Amare MF, Parikh AP, Omar B, Minutello AM, Adhikarla H, Wu Y, P AR, Delore V, Mantel N, Morrison MN, Kourbanova KS, Martinez ME, Guzman I, Greenleaf ME, Darden JM, Koren MA, Hamer MJ, Lee CE, Hutter JN, Peel SA, Robb ML, Vangelisti M, Feroldi E. Safety and immunogenicity of a next-generation live-attenuated yellow fever vaccine produced in a Vero cell line in the USA: a phase 1 randomised, observer-blind, active-controlled, dose-ranging clinical trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:1393-1402. [PMID: 39153488 DOI: 10.1016/s1473-3099(24)00406-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Recent outbreaks between 2015-17 and production delays have led to a yellow fever vaccine shortage. Therefore, there is an urgent need for new yellow fever vaccines with improved production scalability. A next-generation live-attenuated yellow fever vaccine candidate (vYF), produced in a Vero cell line has shown similar immunogenicity to licensed yellow fever vaccines in preclinical studies. In this study, we aimed to report the safety and immunogenicity of vYF in human clinical trial participants. METHODS In this first in-human, phase 1 randomised, observer-blind, active-controlled, dose-ranging clinical trial conducted at a single centre in the USA (Walter Reed Army Institute of Research, Silver Spring, MD, USA), 72 healthy adults (aged 18-60 years), without a known history of flavivirus infection or vaccination were randomly assigned (1:1:1:1) using interactive response technology to receive one dose of either vYF at 4, 5 or 6 Log CCID50 or the licensed YF-VAX (18 individuals per group). The primary outcomes were safety, neutralising antibody (NAb) titres through D180 post-vaccination in the per-protocol analysis set (comprised of yellow fever-naive participants who received their intended vaccine and provided a valid post-vaccination blood sample), and occurrence, and level of yellow fever viraemia in each vaccine group through D14 post-vaccination. FINDINGS All vYF doses had a safety and tolerability profile similar to YF-VAX. The most frequently reported solicited injection site reactions (vYF groups vs YF-VAX group) were pain (22% [12 of 54 participants, 95% CI 12-36] vs 28% [five of 18 participants, 10-54]), and erythema (13% [seven of 54 participants, 5-25] vs 39% [seven of 18 participants, 17-64]), with headache (32% [17 of 54 participants, 20-46] vs 44% [eight of 18 participants, 22-69]) and malaise (26% [14 of 54 participants, 15-40] vs 33% [six of 18 participants, 13-59]) as the most frequently reported solicited systemic reactions. One grade 3 solicited reaction (erythema) reported in the YF-VAX group resolved spontaneously. No serious unsolicited adverse events or deaths were reported. Viraemia was transiently detected in 50 participants between D4 and D10 in all groups and was observed in more participants or for a longer time in the vYF 6 Log CCID50 and YF-VAX groups. All yellow fever-naive vaccine recipients across the study groups seroconverted yielding four-fold increase from baseline in yellow fever NAb titres measured by yellow fever microneutralisation assay by D28 and were seroprotected with yellow fever NAb titres of at least 10 [1/dil]). Overall, 100% (18 of 18 participants, 95% CI 82-100), 89% (16 participants, 65-99), 100% (18 participants, 82-100), and 94% (17 participants, 73-100) of participants in the vYF 4 Log, vYF 5 Log, vYF 6 Log CCID50 groups, and YF-VAX group, respectively, remained seroprotected through D180. INTERPRETATION vYF has a similar safety and immunogenicity profile to YF-VAX. In general, the vYF 5 Log CCID50 dose appeared to show optimal viraemia, safety, and immunogenicity, and was chosen for subsequent development. FUNDING Sanofi.
Collapse
Affiliation(s)
- Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Paul T Scott
- Emerging Infectious Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Melanie McCauley
- Emerging Infectious Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Brittany Ober-Shepherd
- Emerging Infectious Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Erica Sondergaard
- Emerging Infectious Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Mihret F Amare
- Emerging Infectious Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ajay P Parikh
- Emerging Infectious Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Badryah Omar
- Emerging Infectious Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | | | | | | | | | | | - Meshell N Morrison
- Clinical Trials Center, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Kamila S Kourbanova
- Clinical Trials Center, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Melissa E Martinez
- Clinical Trials Center, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Ivelese Guzman
- Clinical Trials Center, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Melissa E Greenleaf
- Clinical Trials Center, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Janice M Darden
- Diagnostics and Countermeasures Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Michael A Koren
- Clinical Trials Center, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Melinda J Hamer
- Clinical Trials Center, Walter Reed Army Institute of Research, Bethesda, MD, USA; Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD, USA; Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Christine E Lee
- Clinical Trials Center, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Jack N Hutter
- Clinical Trials Center, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Sheila A Peel
- Diagnostics and Countermeasures Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Merlin L Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | | |
Collapse
|
8
|
Zhang Y, Wang M, Huang M, Zhao J. Innovative strategies and challenges mosquito-borne disease control amidst climate change. Front Microbiol 2024; 15:1488106. [PMID: 39564491 PMCID: PMC11573536 DOI: 10.3389/fmicb.2024.1488106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
The revival of the transmission dynamics of mosquito-borne diseases grants striking challenges to public health intensified by climate change worldwide. This inclusive review article examines multidimensional strategies and challenges linked to climate change and the epidemiology of mosquito-borne diseases such as malaria, dengue, Zika, chikungunya, and yellow fever. It delves into how the biology, pathogenic dynamics, and vector distribution of mosquitoes are influenced by continuously rising temperatures, modified rainfall patterns, and extreme climatic conditions. We also highlighted the high likelihood of malaria in Africa, dengue in Southeast Asia, and blowout of Aedes in North America and Europe. Modern predictive tools and developments in surveillance, including molecular gears, Geographic Information Systems (GIS), and remote sensing have boosted our capacity to predict epidemics. Integrated data management techniques and models based on climatic conditions provide a valuable understanding of public health planning. Based on recent data and expert ideas, the objective of this review is to provide a thoughtful understanding of existing landscape and upcoming directions in the control of mosquito-borne diseases regarding changing climate. This review determines emerging challenges and innovative vector control strategies in the changing climatic conditions to ensure public health.
Collapse
Affiliation(s)
- Yuan Zhang
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo, China
| | - Minhao Wang
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Mingliu Huang
- Chou Io Insect Museum, Ningbo Yinzhou Cultural Relics Protection and Management Center, Ningbo, China
| | - Jinyi Zhao
- Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Pardo-Araujo M, Eritja R, Alonso D, Bartumeus F. Present and future suitability of invasive and urban vectors through an environmentally driven mosquito reproduction number. Proc Biol Sci 2024; 291:20241960. [PMID: 39500373 PMCID: PMC11537753 DOI: 10.1098/rspb.2024.1960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/09/2024] Open
Abstract
Temperature and water availability significantly influence mosquito population dynamics. We have developed a method, integrating experimental data with insights from mosquito and thermal biology, to calculate the basic reproduction number ([Formula: see text]) for urban mosquito species Aedes albopictus and Aedes aegypti. [Formula: see text] represents the number of female mosquitoes produced by one female during her lifespan, indicating suitability for growth. Environmental conditions, including temperature, rainfall and human density, influence [Formula: see text] by altering key mosquito life cycle traits. Validation using data from Spain and Europe confirms the approach's reliability. Our analysis suggests that temperature increases may not uniformly benefit Ae. albopictus proliferation but could boost Ae. aegypti expansion. We suggest using vector [Formula: see text] maps, leveraging climate and environmental data, to predict areas susceptible to invasive mosquito population growth. These maps aid resource allocation for intervention strategies, supporting effective vector surveillance and management efforts.
Collapse
Affiliation(s)
| | - Roger Eritja
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Spain
| | - David Alonso
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Spain
| | - Frederic Bartumeus
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Barcelona, Spain
| |
Collapse
|
10
|
Vinauger C, Chandrasegaran K. Context-specific variation in life history traits and behavior of Aedes aegypti mosquitoes. FRONTIERS IN INSECT SCIENCE 2024; 4:1426715. [PMID: 39386346 PMCID: PMC11461241 DOI: 10.3389/finsc.2024.1426715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
Aedes aegypti, the vector for dengue, chikungunya, yellow fever, and Zika, poses a growing global epidemiological risk. Despite extensive research on Ae. aegypti's life history traits and behavior, critical knowledge gaps persist, particularly in integrating these findings across varied experimental contexts. The plasticity of Ae. aegypti's traits throughout its life cycle allows dynamic responses to environmental changes, yet understanding these variations within heterogeneous study designs remains challenging. A critical aspect often overlooked is the impact of using lab-adapted lines of Ae. aegypti, which may have evolved under laboratory conditions, potentially altering their life history traits and behavioral responses compared to wild populations. Therefore, incorporating field-derived populations in experimental designs is essential to capture the natural variability and adaptability of Ae. aegypti. The relationship between larval growing conditions and adult traits and behavior is significantly influenced by the specific context in which mosquitoes are studied. Laboratory conditions may not replicate the ecological complexities faced by wild populations, leading to discrepancies in observed traits and behavior. These discrepancies highlight the need for ecologically relevant experimental conditions, allowing mosquito traits and behavior to reflect field distributions. One effective approach is semi-field studies involving field-collected mosquitoes housed for fewer generations in the lab under ecologically relevant conditions. This growing trend provides researchers with the desired control over experimental conditions while maintaining the genetic diversity of field populations. By focusing on variations in life history traits and behavioral plasticity within these varied contexts, this review highlights the intricate relationship between larval growing conditions and adult traits and behavior. It underscores the significance of transstadial effects and the necessity of adopting study designs and reporting practices that acknowledge plasticity in adult traits and behavior, considering variations due to larval rearing conditions. Embracing such approaches paves the way for a comprehensive understanding of contextual variations in mosquito life history traits and behavior. This integrated perspective enables the synthesis of research findings across laboratory, semi-field, and field-based investigations, which is crucial for devising targeted intervention strategies tailored to specific ecological contexts to combat the health threat posed by this formidable disease vector effectively.
Collapse
Affiliation(s)
- Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | | |
Collapse
|
11
|
Frasca F, Sorrentino L, Fracella M, D’Auria A, Coratti E, Maddaloni L, Bugani G, Gentile M, Pierangeli A, d’Ettorre G, Scagnolari C. An Update on the Entomology, Virology, Pathogenesis, and Epidemiology Status of West Nile and Dengue Viruses in Europe (2018-2023). Trop Med Infect Dis 2024; 9:166. [PMID: 39058208 PMCID: PMC11281579 DOI: 10.3390/tropicalmed9070166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, increases in temperature and tropical rainfall have facilitated the spread of mosquito species into temperate zones. Mosquitoes are vectors for many viruses, including West Nile virus (WNV) and dengue virus (DENV), and pose a serious threat to public health. This review covers most of the current knowledge on the mosquito species associated with the transmission of WNV and DENV and their geographical distribution and discusses the main vertebrate hosts involved in the cycles of WNV or DENV. It also describes virological and pathogenic aspects of WNV or DENV infection, including emerging concepts linking WNV and DENV to the reproductive system. Furthermore, it provides an epidemiological analysis of the human cases of WNV and DENV reported in Europe, from 1 January 2018 to 31 December 2023, with a particular focus on Italy. The first autochthonous cases of DENV infection, with the most likely vector being Aedes albopictus, have been observed in several European countries in recent years, with a high incidence in Italy in 2023. The lack of treatments and effective vaccines is a serious challenge. Currently, the primary strategy to prevent the spread of WNV and DENV infections in humans remains to limit the spread of mosquitoes.
Collapse
Affiliation(s)
- Federica Frasca
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Leonardo Sorrentino
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Matteo Fracella
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Alessandra D’Auria
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Eleonora Coratti
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Luca Maddaloni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Ginevra Bugani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Massimo Gentile
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Alessandra Pierangeli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| |
Collapse
|
12
|
Fox TP, Raka YP, Smith K, Harrison JF. Mesocosm Studies Suggest Climate Change May Release Aedes aegypti (Diptera: Culicidae) Larvae from Cold Inhibition and Enable Year-Round Development in a Desert City. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:250-261. [PMID: 39270329 DOI: 10.1086/731710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
AbstractGlobal warming trends, human-assisted transport, and urbanization have allowed poleward expansion of many tropical vector species, but the specific mechanisms responsible for thermal mediation of range changes and ecological success of invaders remain poorly understood. Aedes aegypti (Diptera: Culicidae) is a tropical mosquito currently expanding into many higher-latitude regions, including the urban desert region of Maricopa County, Arizona. Here, adult populations virtually disappear in winter and spring and then increase exponentially through summer and fall, indicating that winter conditions remain a barrier to the development of some life stages of A. aegypti. To determine whether cold limits the winter development of A. aegypti larvae in Maricopa County, we surveyed for larval abundance and tested their capacity to develop in ambient and warmed conditions. Aedes aegypti larvae were not observed in artificial aquatic habitats in winter and spring but were abundant in summer and fall, suggesting winter suppression of adults, larvae, or both. Water temperatures in winter months fluctuated strongly; larvae were usually cold paralyzed at night but active during the day. Despite daytime temperatures that allowed activity and achieving similar degree-days as warmed mesocosms, larvae reared under ambient winter conditions were unable to develop to adulthood, perhaps due to repetitive cold damage. However, warming average temperature by 1.7°C allowed many larvae to successfully develop to adults. Because daytime highs in winter will often allow adult flight, it is likely that relatively minor additional winter warming may allow A. aegypti populations to develop and reproduce year-round in Maricopa County.
Collapse
|
13
|
Abbas S, Abbas M, Alam A, Hussain N, Irshad M, Khaliq M, Han X, Hafeez F, Romano D, Chen RZ. Mitigating dengue incidence through advanced Aedes larval surveillance and control: A successful experience from Pakistan. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:444-453. [PMID: 38769861 DOI: 10.1017/s0007485324000269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dengue fever is a viral disease caused by one of four dengue stereotypes (Flavivirus: Flaviviridae) that are primarily transmitted by Aedes albopictus (Skuse) and Aedes aegypti (L.). To safeguard public health, it is crucial to conduct surveys that examine the factors favouring the presence of these species. Our study surveyed 42 councils across four towns within the Bhakkar district of Punjab Province, by inspecting man-made or natural habitats containing standing water. First, door-to-door surveillance teams from the district health department were assigned to each council to surveillance Aedes species and dengue cases. Second, data collection through surveillance efforts, and validation procedures were implemented, and the verified data was uploaded onto the Dengue Tracking System by Third Party Validation teams. Third, data were analysed to identify factors influencing dengue fever cases. The findings demonstrated the following: (1) Predominantly, instances were discerned among individuals who had a documented history of having travelled beyond the confines of the province. (2) Containers associated with evaporative air coolers and tyre shops were responsible for approximately 30% of the Aedes developmental sites. (4) Variability in temperature was responsible for approximately 45% of the observed differences in the quantity of recorded Aedes mosquito developmental sites. (5) Implementation of dengue prevention initiatives precipitated a 50% reduction in Aedes-positive containers, alongside a notable 70% decline in reported cases of dengue fever during the period spanning 2019 to 2020, while the majority of reported cases were of external origin. Aedes control measures substantially curtailed mosquito populations and lowered vector-virus interactions. Notably, local dengue transmission was eliminated through advanced and effective Aedes control efforts, emphasising the need for persistent surveillance and eradication of larval habitats in affected regions.
Collapse
Affiliation(s)
- Sohail Abbas
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, 130118, PR China
| | - Muneer Abbas
- Arid Zone Research Institute, Bhakkar, Punjab 30004, Pakistan
| | - Aleena Alam
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, 130118, PR China
| | - Niaz Hussain
- Arid Zone Research Institute, Bhakkar, Punjab 30004, Pakistan
| | - Muhammad Irshad
- Arid Zone Research Institute, Bhakkar, Punjab 30004, Pakistan
| | - Mudassar Khaliq
- Arid Zone Research Institute, Bhakkar, Punjab 30004, Pakistan
| | - Xiao Han
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, 130118, PR China
| | - Faisal Hafeez
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, Punjab 38000, Pakistan
| | - Donato Romano
- The BioRobotics Institute & Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, 56127, Pisa, Italy
| | - Ri Zhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, 130118, PR China
| |
Collapse
|
14
|
Laverdeur J, Desmecht D, Hayette MP, Darcis G. Dengue and chikungunya: future threats for Northern Europe? FRONTIERS IN EPIDEMIOLOGY 2024; 4:1342723. [PMID: 38456075 PMCID: PMC10911022 DOI: 10.3389/fepid.2024.1342723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024]
Abstract
Arthropod-borne viral diseases are likely to be affected by the consequences of climate change with an increase in their distribution and intensity. Among these infectious diseases, chikungunya and dengue viruses are two (re)emergent arboviruses transmitted by Aedes species mosquitoes and which have recently demonstrated their capacity for rapid expansion. They most often cause mild diseases, but they can both be associated with complications and severe forms. In Europe, following the establishment of invasive Aedes spp, the first outbreaks of autochtonous dengue and chikungunya have already occurred. Northern Europe is currently relatively spared, but climatic projections show that the conditions are permissive for the establishment of Aedes albopictus (also known as the tiger mosquito) in the coming decades. It is therefore essential to question and improve the means of surveillance in northern Europe, at the dawn of inevitable future epidemics.
Collapse
Affiliation(s)
- Justine Laverdeur
- Department of General Practice, University Hospital of Liège, Liège, Belgium
| | - Daniel Desmecht
- Department of Animal Pathology, Fundamental and Applied Research for Animals & Health, University of Liège, Liège, Belgium
| | - Marie-Pierre Hayette
- Department of Clinical Microbiology, University Hospital of Liège, Liège, Belgium
| | - Gilles Darcis
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
15
|
Zardini A, Menegale F, Gobbi A, Manica M, Guzzetta G, d'Andrea V, Marziano V, Trentini F, Montarsi F, Caputo B, Solimini A, Marques-Toledo C, Wilke ABB, Rosà R, Marini G, Arnoldi D, Pastore Y Piontti A, Pugliese A, Capelli G, Della Torre A, Teixeira MM, Beier JC, Rizzoli A, Vespignani A, Ajelli M, Merler S, Poletti P. Estimating the potential risk of transmission of arboviruses in the Americas and Europe: a modelling study. Lancet Planet Health 2024; 8:e30-e40. [PMID: 38199719 DOI: 10.1016/s2542-5196(23)00252-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Estimates of the spatiotemporal distribution of different mosquito vector species and the associated risk of transmission of arboviruses are key to design adequate policies for preventing local outbreaks and reducing the number of human infections in endemic areas. In this study, we quantified the abundance of Aedes albopictus and Aedes aegypti and the local transmission potential for three arboviral infections at an unprecedented spatiotemporal resolution in areas where no entomological surveillance is available. METHODS We developed a computational model to quantify the daily abundance of Aedes mosquitoes, leveraging temperature and precipitation records. The model was calibrated on mosquito surveillance data collected in 115 locations in Europe and the Americas between 2007 and 2018. Model estimates were used to quantify the reproduction number of dengue virus, Zika virus, and chikungunya in Europe and the Americas, at a high spatial resolution. FINDINGS In areas colonised by both Aedes species, A aegypti was estimated to be the main vector for the transmission of dengue virus, Zika virus, and chikungunya, being associated with a higher estimate of R0 when compared with A albopictus. Our estimates highlighted that these arboviruses were endemic in tropical and subtropical countries, with the highest risks of transmission found in central America, Venezuela, Colombia, and central-east Brazil. A non-negligible potential risk of transmission was also estimated for Florida, Texas, and Arizona (USA). The broader ecological niche of A albopictus could contribute to the emergence of chikungunya outbreaks and clusters of dengue autochthonous cases in temperate areas of the Americas, as well as in mediterranean Europe (in particular, in Italy, southern France, and Spain). INTERPRETATION Our results provide a comprehensive overview of the transmission potential of arboviral diseases in Europe and the Americas, highlighting areas where surveillance and mosquito control capacities should be prioritised. FUNDING EU and Ministero dell'Università e della Ricerca, Italy (Piano Nazionale di Ripresa e Resilienza Extended Partnership initiative on Emerging Infectious Diseases); EU (Horizon 2020); Ministero dell'Università e della Ricerca, Italy (Progetti di ricerca di Rilevante Interesse Nazionale programme); Brazilian National Council of Science, Technology and Innovation; Ministry of Health, Brazil; and Foundation of Research for Minas Gerais, Brazil.
Collapse
Affiliation(s)
- Agnese Zardini
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy
| | - Francesco Menegale
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy; Department of Mathematics, University of Trento, Trento, Italy
| | - Andrea Gobbi
- Digital Industry Center, Fondazione Bruno Kessler, Trento, Italy
| | - Mattia Manica
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy; Epilab-Joint Research Unit, Fondazione Edmund Mach-Fondazione Bruno Kessler Joint Research Unit, Trento, Italy
| | - Giorgio Guzzetta
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy; Epilab-Joint Research Unit, Fondazione Edmund Mach-Fondazione Bruno Kessler Joint Research Unit, Trento, Italy
| | - Valeria d'Andrea
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy
| | | | - Filippo Trentini
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy; Dondena Centre for Research on Social Dynamics and Public Policy, Bocconi University, Milan, Italy; Department of Decision Sciences, Bocconi University, Milan, Italy
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Beniamino Caputo
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Angelo Solimini
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Cecilia Marques-Toledo
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - André B B Wilke
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Roberto Rosà
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy; Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Trento, Italy
| | - Giovanni Marini
- Epilab-Joint Research Unit, Fondazione Edmund Mach-Fondazione Bruno Kessler Joint Research Unit, Trento, Italy; Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Daniele Arnoldi
- Epilab-Joint Research Unit, Fondazione Edmund Mach-Fondazione Bruno Kessler Joint Research Unit, Trento, Italy; Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Ana Pastore Y Piontti
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA, USA
| | - Andrea Pugliese
- Department of Mathematics, University of Trento, Trento, Italy
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Alessandra Della Torre
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Annapaola Rizzoli
- Epilab-Joint Research Unit, Fondazione Edmund Mach-Fondazione Bruno Kessler Joint Research Unit, Trento, Italy; Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Alessandro Vespignani
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA, USA
| | - Marco Ajelli
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Stefano Merler
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy; Epilab-Joint Research Unit, Fondazione Edmund Mach-Fondazione Bruno Kessler Joint Research Unit, Trento, Italy
| | - Piero Poletti
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy; Epilab-Joint Research Unit, Fondazione Edmund Mach-Fondazione Bruno Kessler Joint Research Unit, Trento, Italy.
| |
Collapse
|
16
|
Nie P, Feng J. Niche and Range Shifts of Aedes aegypti and Ae. albopictus Suggest That the Latecomer Shows a Greater Invasiveness. INSECTS 2023; 14:810. [PMID: 37887822 PMCID: PMC10607146 DOI: 10.3390/insects14100810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
The yellow fever (Aedes aegypti) and Asian tiger (Ae. albopictus) mosquitos are major vectors of global mosquito-borne pathogens. However, their niche and range shifts, the underlying mechanisms, and related relative invasion rates remain scarcely known. We examined the niche and range shifts between the native and invasive Ae. aegypti and Ae. albopictus populations through dynamic niche and range models and the largest occurrence record datasets to date. We detected substantial niche and range expansions in both species, probably because the introduced populations have more opportunities to acclimate to diverse environmental conditions than their native counterparts. Mitigating climate change could effectively control their future invasions, given that future climate changes could promote their invasiveness. Additionally, compared to the introduced Ae. aegypti, the more recent invader Ae. albopictus had greater niche and range expansion over its shorter invasion history. In terms of the range shifts, Ae. albopictus had an invasion rate approximately 13.3 times faster than that of Ae. aegypti, making it a more invasive vector of global mosquito-borne pathogens. Therefore, considering its higher invasion rate, much more attention should be paid to Ae. albopictus in devising our strategies against prevailing global mosquito-borne pathogens than Ae. aegypti. Since small niche shifts could result in their large range shifts, niche shifts might be a more important indicator for biological invasion assessments.
Collapse
Affiliation(s)
| | - Jianmeng Feng
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| |
Collapse
|
17
|
Vasquez MI, Notarides G, Meletiou S, Patsoula E, Kavran M, Michaelakis A, Bellini R, Toumazi T, Bouyer J, Petrić D. Two invasions at once: update on the introduction of the invasive species Aedes aegypti and Aedes albopictus in Cyprus - a call for action in Europe. Parasite 2023; 30:41. [PMID: 37772845 PMCID: PMC10540676 DOI: 10.1051/parasite/2023043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/02/2023] [Indexed: 09/30/2023] Open
Abstract
Aedes aegypti, the yellow fever mosquito and Aedes albopictus, the tiger mosquito, continue to expand their geographical distribution, reshaping the European epidemiological risks for mosquito-borne diseases. The reintroduction of Aedes aegypti near the airport and port in Larnaka and the detection of Aedes albopictus near the marina and old port of the Limassol area in Cyprus are reported herein. The measures taken to investigate these events included (i) communication to health authorities, (ii) expert on-site visits and verification of findings, (iii) enhanced active surveillance, and (iv) development of an Emergency Action Plan followed by a Contingency Plan. These emergency action plans were developed to delimitate the infested areas and to prevent the spreading of the mosquito populations into new areas. The general principles are presented along with their rationale to serve as guidelines for other geographical regions targeting suppression/eradication with a sterile insect technique component. In parallel, this manuscript serves as a call for action at the European level to impede the further spread of these species and support the activities being undertaken in Cyprus to combat the incursions of Aedes invasive species.
Collapse
Affiliation(s)
- Marlen Ines Vasquez
-
Department of Chemical Engineering, Cyprus University of Technology 3020 Limassol Cyprus
| | - Gregoris Notarides
-
Department of Chemical Engineering, Cyprus University of Technology 3020 Limassol Cyprus
| | - Sotiris Meletiou
-
Department of Chemical Engineering, Cyprus University of Technology 3020 Limassol Cyprus
| | - Eleni Patsoula
-
Faculty of Public Health Policy, Laboratory for Surveillance of Infectious Diseases, School of Public Health, University of West Attica 11521 Athens Greece
| | - Mihaela Kavran
-
University of Novi Sad, Faculty of Agriculture, Center of Excellence One Health – Vectors and Climate 21101 Novi Sad Serbia
| | - Antonios Michaelakis
-
Laboratory of Insects and Parasites of Medical Importance, Benaki Phytopathological Institute 14561 Athens Greece
| | - Romeo Bellini
-
Centro Agricoltura Ambiente “G. Nicoli” 40014 Crevalcore Italy
| | - Toumazis Toumazi
-
Department of Chemical Engineering, Cyprus University of Technology 3020 Limassol Cyprus
| | - Jeremy Bouyer
-
UMR Astre (Animals, Health, Territories, Risks, Ecosystems), Cirad, Inrae, Univ. Montpellier 34398 Montpellier France
-
Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency A-1400 Vienna Austria
| | - Dušan Petrić
-
University of Novi Sad, Faculty of Agriculture, Center of Excellence One Health – Vectors and Climate 21101 Novi Sad Serbia
| |
Collapse
|
18
|
Kouroupis D, Charisi K, Pyrpasopoulou A. The Ongoing Epidemic of West Nile Virus in Greece: The Contribution of Biological Vectors and Reservoirs and the Importance of Climate and Socioeconomic Factors Revisited. Trop Med Infect Dis 2023; 8:453. [PMID: 37755914 PMCID: PMC10536956 DOI: 10.3390/tropicalmed8090453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
Emerging infectious diseases have inflicted a significant health and socioeconomic burden upon the global population and governments worldwide. West Nile virus, a zoonotic, mosquito-borne flavivirus, was originally isolated in 1937 from a febrile patient in the West Nile Province of Uganda. It remained confined mainly to Africa, the Middle East, and parts of Europe and Australia until 1999, circulating in an enzootic mosquito-bird transmission cycle. Since the beginning of the 21st century, a new, neurotropic, more virulent strain was isolated from human outbreaks initially occurring in North America and later expanding to South and South-eastern Europe. Since 2010, when the first epidemic was recorded in Greece, annual incidence has fluctuated significantly. A variety of environmental, biological and socioeconomic factors have been globally addressed as potential regulators of the anticipated intensity of the annual incidence rate; circulation within the zoonotic reservoirs, recruitment and adaptation of new potent arthropod vectors, average winter and summer temperatures, precipitation during the early summer months, and socioeconomic factors, such as the emergence and progression of urbanization and the development of densely populated areas in association with insufficient health policy measures. This paper presents a review of the biological and socioenvironmental factors influencing the dynamics of the epidemics of West Nile virus (WNV) cases in Greece, one of the highest-ranked European countries in terms of annual incidence. To date, WNV remains an unpredictable opponent as is also the case with other emerging infectious diseases, forcing the National Health systems to develop response strategies, control the number of infections, and shorten the duration of the epidemics, thus minimizing the impact on human and material resources.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Konstantina Charisi
- Infectious Diseases Unit, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Athina Pyrpasopoulou
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
- Infectious Diseases Unit, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| |
Collapse
|