1
|
Wang Y, Amarasiri M, Oishi W, Kuwahara M, Kataoka Y, Kurita H, Narita F, Chen R, Li Q, Sano D. Aptamer-based biosensors for wastewater surveillance of influenza virus, SARS-CoV-2, and norovirus: A comprehensive review. WATER RESEARCH 2025; 279:123484. [PMID: 40120190 DOI: 10.1016/j.watres.2025.123484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Wastewater-based epidemiological (WBE) surveillance has emerged as a crucial tool for monitoring infectious diseases within communities. However, its broader application is frequently constrained by the high costs, labor-intensive processes, and extended timeframes required for sample collection, transportation, and processing. Aptamer-based biosensors offer a promising alternative, leveraging the specific binding properties of aptamers to biomolecules for the on-site and rapid quantification of disease biomarkers in wastewater. This review systematically evaluates recent advancements in the application of aptamer-based biosensors for the detection of key pathogens, including influenza viruses, SARS-CoV-2, and norovirus, within wastewater matrices. The discussion encompasses the technical stability and reliability of signal transmission associated with these biosensors, as well as the current challenges faced in real-world implementation. Noteworthy progress has been made in the development of these biosensors for WBE, achieving detection limits as low as femtomolar (fM) levels in buffer and linear dynamic ranges extending up to five orders of magnitude for viruses such as influenza and SARS-CoV-2. Despite this progress, considerable hurdles remain to be addressed before these technologies can be effectively deployed in practical settings, especially within complex wastewater environments. Key factors affecting detection performance include matrix interference, environmental variability, and the diminished stability of both viral targets and aptamer-target interactions in wastewater. This review not only highlights these challenges but also outlines potential avenues for future research aimed at enhancing the functionality and applicability of aptamer-based biosensors in WBE, ultimately contributing to more effective public health surveillance and disease monitoring strategies.
Collapse
Affiliation(s)
- Yilei Wang
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Mohan Amarasiri
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Wakana Oishi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Masayasu Kuwahara
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Yuka Kataoka
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Hiroki Kurita
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Fumio Narita
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| |
Collapse
|
2
|
Omatola CA, Ogunsakin RE, Olaniran AO, Kumari S. Monkeypox Virus Occurrence in Wastewater Environment and Its Correlation with Incidence Cases of Mpox: A Systematic Review and Meta-Analytic Study. Viruses 2025; 17:308. [PMID: 40143239 PMCID: PMC11945618 DOI: 10.3390/v17030308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
The COVID-19 pandemic has increased the interest in the use of wastewater-based surveillance (WBS) strategy for infectious disease monitoring, especially when clinical cases are underreported. The excretion of monkey virus (MPXV) in the feces of both symptomatic and preclinical individuals has further driven the interest in WBS applicability to MPXV monitoring in wastewater to support its mitigation efforts. We performed a systematic review with meta-analysis, using six databases to assess MPXV detection in wastewater. We performed a random-effects model meta-analysis to calculate the pooled prevalence at a 95% confidence interval (95% CI). Also, we carried out a subgroup analysis according to the country regions and a sensitivity analysis excluding studies classified as having a high risk of bias. The overall MPXV positivity rate in wastewater was estimated at 22% (95% CI: 14-30%; I2 = 94.8%), with more detection rate in North America (26%, 95% CI: 8-43%) compared to Europe and Asia (22%, 95% CI: 12-31%). The MPXV detection rate was significantly higher in 2022 studies (22%, 95% CI: 13-31%) compared to 2023 (19%, 95% CI: 14-25%). The real-time PCR platform significantly detected more MPXV (24%, 95% CI: 14-34%) than the digital droplet PCR-based studies (17%, 95% CI: 4-31%), which was used less frequently. Viral concentration with centrifugation procedure indicated higher detection rates (21%, 95% CI: 10-33%) than other known sample concentration protocols. Generally, MPXV detection rates in wastewater samples strongly correlate with incidence cases of mpox (range of R = 0.78-0.94; p < 0.05). Findings from this study suggest that WBS of MPXV could be employed as an epidemiological early warning tool for disease monitoring and mpox outbreak prediction similar to the clinical case-based surveillance strategies.
Collapse
Affiliation(s)
- Cornelius A. Omatola
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa;
- Department of Microbiology, Kogi State University, Anyigba 272102, Nigeria
| | - Ropo E. Ogunsakin
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa;
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa;
| |
Collapse
|
3
|
Devianto LA, Amarasiri M, Wang L, Iizuka T, Sano D. Identification of protein biomarkers in wastewater linked to the incidence of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175649. [PMID: 39168326 DOI: 10.1016/j.scitotenv.2024.175649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/19/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Wastewater-based epidemiological (WBE) surveillance is a viable disease surveillance technique capable of monitoring the spread of infectious disease agents in sewershed communities. In addition to detecting viral genomes in wastewater, WBE surveillance can identify other endogenous biomarkers that are significantly elevated and excreted in the saliva, urine, and/or stool of infected individuals. Human protein biomarkers allow the realization of real-time WBE surveillance using highly sensitive biosensors. In this study, we analyzed endogenous protein biomarkers present in wastewater influent through liquid chromatography-tandem mass spectrophotometry and scaffold data-independent acquisition to identify candidate target protein biomarkers for WBE surveillance of SARS-CoV-2. We found that out of the 1382 proteins observed in the wastewater samples, 44 were human proteins associated with infectious diseases. These included immune response substances such as immunoglobulins, cytokine-chemokines, and complements, as well as proteins belonging to antimicrobial and antiviral groups. A significant correlation was observed between the intensity of human infectious disease-related protein biomarkers in wastewater and COVID-19 case numbers. Real-time WBE surveillance using biosensors targeting immune response proteins, such as antibodies or immunoglobulins, in wastewater holds promise for expediting the implementation of relevant policies for the effective prevention of infectious diseases in the near future.
Collapse
Affiliation(s)
- Luhur Akbar Devianto
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan; Department of Environmental Engineering, Faculty of Agriculture Technology, Brawijaya University, Malang 65145, Indonesia
| | - Mohan Amarasiri
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Luyao Wang
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Takehito Iizuka
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Daisuke Sano
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan; Wastewater Information Research Center, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan; New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
4
|
Wannigama DL, Amarasiri M, Phattharapornjaroen P, Hurst C, Modchang C, Besa JJV, Miyanaga K, Cui L, Fernandez S, Huang AT, Ounjai P, Singer AC, Ragupathi NKD, Furukawa T, Sei K, Nanbo A, Leelahavanichkul A, Kanjanabuch T, Chatsuwan T, Higgins PG, Sano D, Kicic A, Rockstroh JK, Siow R, Trowsdale S, Hongsing P, Khatib A, Shibuya K, Abe S. Community-based mpox and sexually transmitted disease surveillance using discarded condoms in the global south. THE LANCET. INFECTIOUS DISEASES 2024; 24:e610-e613. [PMID: 39181146 DOI: 10.1016/s1473-3099(24)00514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Dhammika Leshan Wannigama
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan; Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata, Japan; Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia; Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, UK; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
| | - Mohan Amarasiri
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan
| | - Phatthranit Phattharapornjaroen
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan; Faculty of Health Science Technology, Chulabhorn Royal Academy, Bangkok, Thailand; HRH Princess Chulabhorn Disaster and Emergency Medicine Center, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Cameron Hurst
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan; Department of Clinical Epidemiology, Faculty of Medicine, Thammasat University, Rangsit, Thailand; Center of Excellence in Applied Epidemiology, Thammasat University, Rangsit, Thailand; Molly Wardaguga Research Centre, Charles Darwin University, Brisbane, QLD, Australia
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand; Centre of Excellence in Mathematics, MHESI, Bangkok, Thailand; Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand
| | - John Jefferson V Besa
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan; College of Medicine, University of the Philippines and Philippine General Hospital, Medicine, Manila, Philippines
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Stefan Fernandez
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Angkana T Huang
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Naveen Kumar Devanga Ragupathi
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, UK; Division of Microbial Interactions, Department of Research and Development, Bioberrys Healthcare and Research Centre, Vellore, India
| | - Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences/Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences/Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa, Japan
| | - Asuka Nanbo
- The National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Asada Leelahavanichkul
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Tanittha Chatsuwan
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, Medical School, University of Western Australia, Nedlands, WA, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia; School of Population Health, Curtin University, Bentley, WA, Australia
| | - Jürgen Kurt Rockstroh
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne/Bonn, Germany; Department of Medicine I, University Hospital Bonn, Bonn, Germany
| | - Richard Siow
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK; Ageing Research at King's (ARK), King's College London, London, UK; Department of Physiology, Anatomy & Genetics, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Sam Trowsdale
- School of Environment, University of Auckland, Auckland, New Zealand
| | - Parichart Hongsing
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan; Mae Fah Luang University Hospital, Chiang Rai, Thailand; School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Aisha Khatib
- Department of Family & Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Kenji Shibuya
- Tokyo Foundation for Policy Research, Minato-ku, Tokyo, Japan
| | - Shuichi Abe
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan.
| |
Collapse
|
5
|
Rožanec J, Kranjec N, Obid I, Steyer A, Cerar Kišek T, Koritnik T, Fafangel M, Galičič A. Wastewater Surveillance of Mpox during the Summer Season of 2023 in Slovenia. Infect Dis Rep 2024; 16:836-845. [PMID: 39311206 PMCID: PMC11417806 DOI: 10.3390/idr16050065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Since COVID-19, mpox was the first emerging pathogen to have spread globally in 2022. Wastewater-based surveillance (WBS) has proven to be an efficient early warning system for detecting potential resurgences. This report aims to provide insight into the development and implementation of WBS of mpox in Slovenia and to incorporate the surveillance results into the development of public health interventions. WBS of mpox was conducted during the period from 1 June 2023 to 30 September 2023 at the wastewater treatment plant (WWTP) Ljubljana and WWTP Koper. The selected detection method of the monkeypox virus (MPXV) in the wastewater sample was based on PCR analysis. The implemented laboratory method showed that the sample preparation and concentration method enables a stable procedure for MPXV detection in wastewater samples. The laboratory analysis of wastewater samples from the selected WWTPs did not detect the MPXV during the monitoring period. In the event of MPXV detection in a wastewater sample, targeted public health interventions would be implemented, focusing on increasing awareness among the groups of men who have sex with other men and searching for positive mpox cases. We recommend that the developed system be retained in the case of an emergency epidemiological situation.
Collapse
Affiliation(s)
- Jan Rožanec
- National Institute of Public Health, Trubarjeva ulica 2, SI-1000 Ljubljana, Slovenia
| | - Natalija Kranjec
- National Institute of Public Health, Trubarjeva ulica 2, SI-1000 Ljubljana, Slovenia
| | - Ivana Obid
- National Institute of Public Health, Trubarjeva ulica 2, SI-1000 Ljubljana, Slovenia
| | - Andrej Steyer
- National Laboratory of Health, Environment and Food, Prvomajska ulica 1, SI-2000 Maribor, Slovenia
| | - Tjaša Cerar Kišek
- National Laboratory of Health, Environment and Food, Prvomajska ulica 1, SI-2000 Maribor, Slovenia
| | - Tom Koritnik
- National Laboratory of Health, Environment and Food, Prvomajska ulica 1, SI-2000 Maribor, Slovenia
| | - Mario Fafangel
- National Institute of Public Health, Trubarjeva ulica 2, SI-1000 Ljubljana, Slovenia
| | - An Galičič
- National Institute of Public Health, Trubarjeva ulica 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Wyler E, Lauber C, Manukyan A, Deter A, Quedenau C, Teixeira Alves LG, Wylezich C, Borodina T, Seitz S, Altmüller J, Landthaler M. Pathogen dynamics and discovery of novel viruses and enzymes by deep nucleic acid sequencing of wastewater. ENVIRONMENT INTERNATIONAL 2024; 190:108875. [PMID: 39002331 DOI: 10.1016/j.envint.2024.108875] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Wastewater contains an extensive reservoir of genetic information, yet largely unexplored. Here, we analyzed by high-throughput sequencing total nucleic acids extracted from wastewater samples collected during a 17 month-period in Berlin, Germany. By integrating global wastewater datasets and applying a novel computational approach to accurately identify viral strains within sewage RNA-sequencing data, we demonstrated the emergence and global dissemination of a specific astrovirus strain. Astrovirus abundance and sequence variation mirrored temporal and spatial patterns of infection, potentially serving as footprints of specific timeframes and geographical locations. Additionally, we revealed more than 100,000 sequence contigs likely originating from novel viral species, exhibiting distinct profiles in total RNA and DNA datasets and including undescribed bunyaviruses and parvoviruses. Finally, we identified thousands of new CRISPR-associated protein sequences, including Transposase B (TnpB), a class of compact, RNA-guided DNA editing enzymes. Collectively, our findings underscore the potential of high-throughput sequencing of total nucleic acids derived from wastewater for a broad range of applications.
Collapse
Affiliation(s)
- Emanuel Wyler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Chris Lauber
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, A Joint Venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Artür Manukyan
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Aylina Deter
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Claudia Quedenau
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Luiz Gustavo Teixeira Alves
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Tatiana Borodina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Stefan Seitz
- Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Janine Altmüller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany; Berlin Institute of Health at Charité, Berlin, Germany
| | - Markus Landthaler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Wannigama DL, Amarasiri M, Phattharapornjaroen P, Hurst C, Modchang C, Chadsuthi S, Anupong S, Miyanaga K, Cui L, Werawatte WKCP, Ali Hosseini Rad SM, Fernandez S, Huang AT, Vatanaprasan P, Saethang T, Luk-In S, Storer RJ, Ounjai P, Tacharoenmuang R, Ragupathi NKD, Kanthawee P, Cynthia B, Besa JJV, Leelahavanichkul A, Kanjanabuch T, Higgins PG, Nanbo A, Kicic A, Singer AC, Chatsuwan T, Trowsdale S, Furukawa T, Sei K, Sano D, Ishikawa H, Shibuya K, Khatib A, Abe S, Hongsing P. Wastewater-based epidemiological surveillance of SARS-CoV-2 new variants BA.2.86 and offspring JN.1 in South and Southeast Asia. J Travel Med 2024; 31:taae040. [PMID: 38438141 DOI: 10.1093/jtm/taae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
Discover the shifting landscape of SARS-CoV-2 variants from October to December 2023, with JN.1 dominating South and Southeast Asia wastewater samples, increasing from <10% to >90%. Experience the dynamic evolution of viral strains in this period.
Collapse
Affiliation(s)
- Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences/Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Phatthranit Phattharapornjaroen
- Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg 40530, Sweden
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Queensland 4000, Australia
- Statistics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Centre of Excellence in Mathematics, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Suparinthon Anupong
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - W K C P Werawatte
- Faculty of Medicine, Wayamba University of Sri Lanka, Teaching Hospital Kuliyapitiya, Kuliyapitiya 60200, Sri Lanka
| | - S M Ali Hosseini Rad
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Stefan Fernandez
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok 10330, Thailand
| | - Angkana T Huang
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Porames Vatanaprasan
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan
- Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Thammakorn Saethang
- Department of Computer Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Sirirat Luk-In
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ratana Tacharoenmuang
- Department of Medical Sciences, National Institute of Health, Nonthaburi 11000, Thailand
| | - Naveen Kumar Devanga Ragupathi
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Division of Microbial Interactions, Department of Research and Development, Bioberrys Healthcare and Research Centre, Vellore 632009, India
| | - Phitsanuruk Kanthawee
- Public Health Major, School of Health Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Bernadina Cynthia
- Department of General Medicine, St. Carolus Hospital, Jakarta 10440, Indonesia
| | - John Jefferson V Besa
- College of Medicine, University of the Philippines and Philippine General Hospital, Medicine, Manila 1000, Philippines
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50923, Germany
- German Centre for Infection Research, Partner site Bonn-Cologne, Cologne 50923, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne 50923, Germany
| | - Asuka Nanbo
- The National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki 852-8131, Japan
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Western Australia 6009, Australia
- School of Population Health, Curtin University, Bentley, Western Australia 6102, Australia
| | - Andrew C Singer
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sam Trowsdale
- School of Environment, University of Auckland, Auckland 1010, New Zealand
| | - Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences/Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences/Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata 990-2212, Japan
| | - Kenji Shibuya
- Tokyo Foundation for Policy Research, Minato-ku, Tokyo 106-6234, Japan
| | - Aisha Khatib
- Department of Family & Community Medicine, University of Toronto, Toronto, Ontario, M5R 0A3, Canada
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai 57100, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
8
|
Wannigama DL, Hurst C, Phattharapornjaroen P, Hongsing P, Sirichumroonwit N, Chanpiwat K, Rad S.M. AH, Storer RJ, Ounjai P, Kanthawee P, Ngamwongsatit N, Kupwiwat R, Kupwiwat C, Brimson JM, Devanga Ragupathi NK, Charuluxananan S, Leelahavanichkul A, Kanjanabuch T, Higgins PG, Badavath VN, Amarasiri M, Verhasselt V, Kicic A, Chatsuwan T, Pirzada K, Jalali F, Reiersen AM, Abe S, Ishikawa H. Early treatment with fluvoxamine, bromhexine, cyproheptadine, and niclosamide to prevent clinical deterioration in patients with symptomatic COVID-19: a randomized clinical trial. EClinicalMedicine 2024; 70:102517. [PMID: 38516100 PMCID: PMC10955208 DOI: 10.1016/j.eclinm.2024.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Background Repurposed drugs with host-directed antiviral and immunomodulatory properties have shown promise in the treatment of COVID-19, but few trials have studied combinations of these agents. The aim of this trial was to assess the effectiveness of affordable, widely available, repurposed drugs used in combination for treatment of COVID-19, which may be particularly relevant to low-resource countries. Methods We conducted an open-label, randomized, outpatient, controlled trial in Thailand from October 1, 2021, to June 21, 2022, to assess whether early treatment within 48-h of symptoms onset with combinations of fluvoxamine, bromhexine, cyproheptadine, and niclosamide, given to adults with confirmed mild SARS-CoV-2 infection, can prevent 28-day clinical deterioration compared to standard care. Participants were randomly assigned to receive treatment with fluvoxamine alone, fluvoxamine + bromhexine, fluvoxamine + cyproheptadine, niclosamide + bromhexine, or standard care. The primary outcome measured was clinical deterioration within 9, 14, or 28 days using a 6-point ordinal scale. This trial is registered with ClinicalTrials.gov (NCT05087381). Findings Among 1900 recruited, a total of 995 participants completed the trial. No participants had clinical deterioration by day 9, 14, or 28 days among those treated with fluvoxamine plus bromhexine (0%), fluvoxamine plus cyproheptadine (0%), or niclosamide plus bromhexine (0%). Nine participants (5.6%) in the fluvoxamine arm had clinical deterioration by day 28, requiring low-flow oxygen. In contrast, most standard care arm participants had clinical deterioration by 9, 14, and 28 days. By day 9, 32.7% (110) of patients in the standard care arm had been hospitalized without requiring supplemental oxygen but needing ongoing medical care. By day 28, this percentage increased to 37.5% (21). Additionally, 20.8% (70) of patients in the standard care arm required low-flow oxygen by day 9, and 12.5% (16) needed non-invasive or mechanical ventilation by day 28. All treated groups significantly differed from the standard care group by days 9, 14, and 28 (p < 0.0001). Also, by day 28, the three 2-drug treatments were significantly better than the fluvoxamine arm (p < 0.0001). No deaths occurred in any study group. Compared to standard care, participants treated with the combination agents had significantly decreased viral loads as early as day 3 of treatment (p < 0.0001), decreased levels of serum cytokines interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) as early as day 5 of treatment, and interleukin-8 (IL-8) by day 7 of treatment (p < 0.0001) and lower incidence of post-acute sequelae of COVID-19 (PASC) symptoms (p < 0.0001). 23 serious adverse events occurred in the standard care arm, while only 1 serious adverse event was reported in the fluvoxamine arm, and zero serious adverse events occurred in the other arms. Interpretation Early treatment with these combinations among outpatients diagnosed with COVID-19 was associated with lower likelihood of clinical deterioration, and with significant and rapid reduction in the viral load and serum cytokines, and with lower burden of PASC symptoms. When started very soon after symptom onset, these repurposed drugs have high potential to prevent clinical deterioration and death in vaccinated and unvaccinated COVID-19 patients. Funding Ped Thai Su Phai (Thai Ducks Fighting Danger) social giver group.
Collapse
Affiliation(s)
- Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, United Kingdom
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata, 990-2212, Japan
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Queensland, Australia
| | - Phatthranit Phattharapornjaroen
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, Gothenburg University, 40530, Gothenburg, Sweden
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Natchalaikorn Sirichumroonwit
- Institute of Medical Research and Technology Assessment, Department of Medical Services, Ministry of Public Health, Thailand
| | | | - Ali Hosseini Rad S.M.
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9010, Otago, New Zealand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Phitsanuruk Kanthawee
- Public Health Major, School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Rosalyn Kupwiwat
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chaisit Kupwiwat
- Department of Critical Care Medicine, Vibhavadi Hospital, Bangkok, Thailand
| | - James Michael Brimson
- Department of Innovation and International Affair, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, United Kingdom
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom
- Division of Microbial Interactions, Department of Research and Development, Bioberrys Healthcare and Research Centre, Vellore, 632009, India
| | - Somrat Charuluxananan
- Department of Anesthesiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935, Cologne, Germany
| | - Vishnu Nayak Badavath
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, 509301, India
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Valerie Verhasselt
- Centre of Research for Immunology and Breastfeeding (CIBF), Medical School and School of Biomedical Science, University of Western Australia, Perth, Western Australia, 6009, Australia
- Immunology and Breastfeeding Group, Neonatal and Life Course Health Program, Telethon Kids Institute, Perth, Western Australia, 6009, Australia
| | - Anthony Kicic
- Telethon Kids Institute, University of Western Australia, Nedlands, 6009, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia
- School of Public Health, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kashif Pirzada
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Family and Community Medicine, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Farid Jalali
- Department of Gastroenterology, Saddleback Medical Group, Laguna Hills, CA, United States
| | - Angela M. Reiersen
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata, 990-2212, Japan
| |
Collapse
|
9
|
Anupong S, Chadsuthi S, Hongsing P, Hurst C, Phattharapornjaroen P, Rad S.M. AH, Fernandez S, Huang AT, Vatanaprasan P, Saethang T, Luk-in S, Storer RJ, Ounjai P, Devanga Ragupathi NK, Kanthawee P, Ngamwongsatit N, Badavath VN, Thuptimdang W, Leelahavanichkul A, Kanjanabuch T, Miyanaga K, Cui L, Nanbo A, Shibuya K, Kupwiwat R, Sano D, Furukawa T, Sei K, Higgins PG, Kicic A, Singer AC, Chatsuwan T, Trowsdale S, Abe S, Ishikawa H, Amarasiri M, Modchang C, Wannigama DL. Exploring indoor and outdoor dust as a potential tool for detection and monitoring of COVID-19 transmission. iScience 2024; 27:109043. [PMID: 38375225 PMCID: PMC10875567 DOI: 10.1016/j.isci.2024.109043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
This study investigated the potential of using SARS-CoV-2 viral concentrations in dust as an additional surveillance tool for early detection and monitoring of COVID-19 transmission. Dust samples were collected from 8 public locations in 16 districts of Bangkok, Thailand, from June to August 2021. SARS-CoV-2 RNA concentrations in dust were quantified, and their correlation with community case incidence was assessed. Our findings revealed a positive correlation between viral concentrations detected in dust and the relative risk of COVID-19. The highest risk was observed with no delay (0-day lag), and this risk gradually decreased as the lag time increased. We observed an overall decline in viral concentrations in public places during lockdown, closely associated with reduced human mobility. The effective reproduction number for COVID-19 transmission remained above one throughout the study period, suggesting that transmission may persist in locations beyond public areas even after the lockdown measures were in place.
Collapse
Affiliation(s)
- Suparinthon Anupong
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Brisbane, QLD, Australia
- Statistics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Phatthranit Phattharapornjaroen
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, Gothenburg University, 40530 Gothenburg, Sweden
| | - Ali Hosseini Rad S.M.
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago 9010, New Zealand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Stefan Fernandez
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Angkana T. Huang
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Thammakorn Saethang
- Department of Computer Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sirirat Luk-in
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
- Division of Microbial Interactions, Department of Research and Development, Bioberrys Healthcare and Research Centre, Vellore 632009, India
| | - Phitsanuruk Kanthawee
- Public Health Major, School of Health Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Vishnu Nayak Badavath
- School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad 509301, India
| | - Wanwara Thuptimdang
- Institute of Biomedical Engineering, Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Asuka Nanbo
- The National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Kenji Shibuya
- Tokyo Foundation for Policy Research, Minato-ku, Tokyo, Japan
| | - Rosalyn Kupwiwat
- Department of Dermatology. Faculty of Medicine Siriraj Hospital. Mahidol University, Bangkok, Thailand
| | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Minato City, Tokyo 108-8641, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Minato City, Tokyo 108-8641, Japan
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands WA 6009, Australia
- School of Population Health, Curtin University, Bentley WA 6102, Australia
| | | | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sam Trowsdale
- Department of Environmental Science, University of Auckland, Auckland 1010, New Zealand
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata 990-2212, Japan
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Minato City, Tokyo 108-8641, Japan
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Centre of Excellence in Mathematics, MHESI, Bangkok 10400, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Dhammika Leshan Wannigama
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata 990-2212, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Pathogen Hunter’s Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| |
Collapse
|
10
|
Brighton K, Fisch S, Wu H, Vigil K, Aw TG. Targeted community wastewater surveillance for SARS-CoV-2 and Mpox virus during a festival mass-gathering event. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167443. [PMID: 37793442 DOI: 10.1016/j.scitotenv.2023.167443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Wastewater surveillance has emerged recently as a powerful approach to understanding infectious disease dynamics in densely populated zones. Wastewater surveillance, while promising as a public health tool, is often hampered by slow turn-around times, complex analytical protocols, and resource-intensive techniques. In this study, we evaluated an affinity capture method and microfluidic digital PCR as a rapid approach to quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mpox (formerly known as monkeypox) virus, and fecal indicator, pepper mild mottle virus (PMMoV) in wastewater during a mass-gathering event. Wastewater samples (n = 131) were collected from residential and commercial manholes, pump stations, and a city's wastewater treatment plant. The use of Nanotrap® Microbiome Particles and microfluidic digital PCR produced comparable results to other established methodologies, with reduced process complexity and analytical times, providing same day results for public health preparedness and response. Using indigenous SARS-CoV-2 and PMMoV in wastewater, the average viral recovery efficiency was estimated at 10.1 %. Both SARS-CoV-2 N1 and N2 genes were consistently detected throughout the sampling period, with increased RNA concentrations mainly in wastewater samples collected from commercial area after festival mass gatherings. The mpox virus was sporadically detected in wastewater samples during the surveillance period, without distinct temporal trends. SARS-CoV-2 RNA concentrations in the city's wastewater mirrored the city's COVID-19 cases, confirming the predictive properties of wastewater surveillance. Wastewater surveillance continues to be beneficial for tracking diseases that display gastrointestinal symptoms, including SARS-CoV-2, and can be a powerful tool for sentinel surveillance. However, careful site selection and a thorough understanding of community dynamics are necessary when performing targeted surveillance during temporary mass-gathering events as potential confirmation bias may occur.
Collapse
Affiliation(s)
- Keegan Brighton
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Samuel Fisch
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Huiyun Wu
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Katie Vigil
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
11
|
Taha AM, Katamesh BE, Hassan AR, Abdelwahab OA, Rustagi S, Nguyen D, Silva-Cajaleon K, Rodriguez-Morales AJ, Mohanty A, Bonilla-Aldana DK, Sah R. Environmental detection and spreading of mpox in healthcare settings: a narrative review. Front Microbiol 2023; 14:1272498. [PMID: 38179458 PMCID: PMC10764434 DOI: 10.3389/fmicb.2023.1272498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024] Open
Abstract
Monkeypox virus (MPXV), which causes Monkeypox (Mpox), has recently been found outside its usual geographic distribution and has spread to 117 different nations. The World Health Organization (WHO) designated the epidemic a Public Health Emergency of International Concern (PHEIC). Humans are at risk from MPXV's spread, which has raised concerns, particularly in the wake of the SARS-CoV-2 epidemic. The risk of virus transmission may rise due to the persistence of MPXV on surfaces or in wastewater. The risk of infection may also increase due to insufficient wastewater treatment allowing the virus to survive in the environment. To manage the infection cycle, it is essential to investigate the viral shedding from various lesions, the persistence of MPXV on multiple surfaces, and the length of surface contamination. Environmental contamination may contribute to virus persistence and future infection transmission. The best possible infection control and disinfection techniques depend on this knowledge. It is thought to spread mainly through intimate contact. However, the idea of virus transmission by environmental contamination creates great concern and discussion. There are more cases of environmental surfaces and wastewater contamination. We will talk about wastewater contamination, methods of disinfection, and the present wastewater treatment in this review as well as the persistence of MPXV on various environmental surfaces.
Collapse
Affiliation(s)
- Amira Mohamed Taha
- Faculty of Medicine, Fayoum University, Fayoum, Egypt
- Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, United States
| | - Basant E. Katamesh
- Faculty of Medicine, Tanta University, Tanta, Egypt
- Mayo Clinic, Rochester, MN, United States
| | | | - Omar Ahmed Abdelwahab
- Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, United States
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Dang Nguyen
- Massachusetts General Hospital, Corrigan Minehan Heart Center and Harvard Medical School, Boston, MA, United States
| | | | - Alfonso J. Rodriguez-Morales
- Faculty of Environmental Sciences, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de lasAméricas-Institución Universitaria Visión de las Américas, Pereira, Colombia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Aroop Mohanty
- Department of Clinical Microbiology, All India Institute of Medical Sciences, Gorakhpur, India
| | | | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Kathmandu, Nepal
- Department of Clinical Microbiology, DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, India
| |
Collapse
|
12
|
Bowes DA, Henke KB, Driver EM, Newell ME, Block I, Shaffer G, Varsani A, Scotch M, Halden RU. Enhanced detection of mpox virus in wastewater using a pre-amplification approach: A pilot study informing population-level monitoring of low-titer pathogens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166230. [PMID: 37574063 PMCID: PMC10592092 DOI: 10.1016/j.scitotenv.2023.166230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
A recent outbreak of the mpox virus (MPXV) occurred in non-endemic regions of the world beginning in May 2022. Pathogen surveillance systems faced pressure to quickly establish response protocols, offering an opportunity to employ wastewater-based epidemiology (WBE) for population-level monitoring. The pilot study reported herein aimed to: (i) develop a reliable protocol for MPXV DNA detection in wastewater which would reduce false negative reporting, (ii) test this protocol on wastewater from various regions across the United States, and (iii) conduct a state of the science review of the current literature reporting on experimental methods for MPXV detection using WBE. Twenty-four-hour composite samples of untreated municipal wastewater were collected from the states of New Jersey, Georgia, Illinois, Texas, Arizona, and Washington beginning July 3rd, 2022 through October 16th, 2022 (n = 60). Samples underwent vacuum filtration, DNA extraction from captured solids, MPXV DNA pre-amplification, and qPCR analysis. Of the 60 samples analyzed, a total of eight (13%) tested positive for MPXV in the states of Washington, Texas, New Jersey, and Illinois. The presence of clade IIb MPXV DNA in these samples was confirmed via Sanger sequencing and integration of pre-amplification prior to qPCR decreased the rate of false negative detections by 87% as compared to qPCR analysis alone. Wastewater-derived detections of MPXV were compared to clinical datasets, with 50% of detections occurring as clinical cases were increasing/peaking and 50% occurring as clinical cases waned. Results from the literature review (n = 9 studies) revealed successful strategies for the detection of MPXV DNA in wastewater, however also emphasized a need for further method optimization and standardization. Overall, this work highlights the use of pre-amplification prior to qPCR detection as a means to capture the presence of MPXV DNA in community wastewater and offers guidance for monitoring low-titer pathogens via WBE.
Collapse
Affiliation(s)
- Devin A Bowes
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, USA
| | - Katherine B Henke
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, USA
| | - Erin M Driver
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, USA
| | - Melanie Engstrom Newell
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, USA
| | - Izabella Block
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, USA
| | - Gray Shaffer
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, USA
| | - Arvind Varsani
- The Biodesign Institute Center for Fundamental and Applied Microbiomics, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, USA; School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85281, USA; Center of Evolution and Medicine, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85281, USA
| | - Matthew Scotch
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, USA; College of Health Solutions, Arizona State University, 550 N. 3rd St., Phoenix, AZ 85004, USA
| | - Rolf U Halden
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, USA; School for Sustainable Engineering and the Built Environment, Arizona State University, 660 S. College Ave., Tempe, AZ 85281, USA; OneWaterOneHealth, The Arizona State University Foundation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, USA; Global Futures Laboratory, Arizona State University, 800 S. Cady Mall, Tempe, AZ 85281, USA.
| |
Collapse
|
13
|
Bartáčková J, Kouba V, Dostálková A, Čermáková E, Lopez Marin MA, Chmel M, Milanová M, Demnerová K, Rumlová M, Sýkora P, Bartáček J, Zdeňková K. Monitoring of monkeypox viral DNA in Prague wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166110. [PMID: 37567313 DOI: 10.1016/j.scitotenv.2023.166110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Monkeypox virus (Mpxv) is a dsDNA virus that has become a global concern for human health in 2022. As both infected people and non-human hosts can shed the virus from their skin, faeces, urine and other body fluids, and the resulting sewage contains viral load representative of the whole population, it is highly promising to detect the spread of monkeypox virus in municipal wastewater. We established a methodology for sewage-based monitoring of Mpxv in Prague and analysed samples (n = 24) already early August-October of 2022 in a municipality with 1.4 million inhabitants that only reported 29 cumulative cases in this period. We isolated Mpxv DNA with the Wizard Enviro Total Nucleic Acid Kit, and thereafter detected Mpxv DNA using the EliGene® Monkeypox RT-PCR Kit. Prague wastewater was positive for Mpxv (in total 9 positive samples in periods with 1-9 new cases per week, coinciding with a weekly incidence of 0.07-0.64 per 100,000 inhabitants. The method for confirmation of wastewater positivity via semi-nested PCR and Sanger sequencing was successfully confirmed on positive controls including Mpxv particles and Mpxv-positive wastewater from the Netherlands. However, for Prague wastewater samples, amplification of Mpxv DNA via semi-semi-nested PCR was unsuccessful. This was probably due to extremely low case count, leading to the amplification of non-target bacterial DNA. Compared to other studies with much higher Mpxv prevalence, we show the outstanding sensitivity of our approach for monitoring the spread of monkeypox using wastewater.
Collapse
Affiliation(s)
- Jana Bartáčková
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czechia
| | - Vojtěch Kouba
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czechia.
| | - Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology Prague, Czechia
| | - Eliška Čermáková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Czechia
| | - Marco A Lopez Marin
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czechia
| | - Martin Chmel
- Military Health Institute, Military Medical Agency, Czechia; Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czechia
| | - Marcela Milanová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Kateřina Demnerová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Czechia
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology Prague, Czechia
| | - Petr Sýkora
- Prazske vodovody a kanalizace, a.s., Czechia
| | - Jan Bartáček
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czechia
| | - Kamila Zdeňková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Czechia
| |
Collapse
|
14
|
Wannigama DL, Amarasiri M, Phattharapornjaroen P, Hurst C, Modchang C, Chadsuthi S, Anupong S, Miyanaga K, Cui L, Fernandez S, Huang AT, Ounjai P, Tacharoenmuang R, Ragupathi NKD, Sano D, Furukawa T, Sei K, Leelahavanichkul A, Kanjanabuch T, Higgins PG, Nanbo A, Kicic A, Singer AC, Chatsuwan T, Trowsdale S, Khatib A, Shibuya K, Abe S, Ishikawa H, Hongsing P. Tracing the new SARS-CoV-2 variant BA.2.86 in the community through wastewater surveillance in Bangkok, Thailand. THE LANCET. INFECTIOUS DISEASES 2023; 23:e464-e466. [PMID: 37813112 DOI: 10.1016/s1473-3099(23)00620-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Affiliation(s)
- Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia; Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, UK; Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences/Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami 252-0373, Japan.
| | - Phatthranit Phattharapornjaroen
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, QLD, Australia; Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Centre of Excellence in Mathematics, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand; Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand.
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Suparinthon Anupong
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Stefan Fernandez
- Department of Virology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Angkana T Huang
- Department of Virology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Naveen Kumar Devanga Ragupathi
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, UK; Division of Microbial Interactions, Department of Research and Development, Bioberrys Healthcare and Research Centre, Vellore, India
| | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan; Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences/Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami 252-0373, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences/Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami 252-0373, Japan
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand; Translational Research in Inflammation and Immunology Research Unit, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Dialysis Policy and Practice Program, School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Centre for Infection Research, partner site Bonn-Cologne, Cologne, Germany
| | - Asuka Nanbo
- The National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, WA, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia; School of Population Health, Curtin University, Bentley, WA, Australia
| | | | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sam Trowsdale
- School of Environment, University of Auckland, Auckland, New Zealand
| | - Aisha Khatib
- Department of Family & Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Kenji Shibuya
- Tokyo Foundation for Policy Research, Minato-ku, Tokyo, Japan
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata, Japan
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand; School of Integrative Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand.
| |
Collapse
|
15
|
Sherchan SP, Solomon T, Idris O, Nwaubani D, Thakali O. Wastewater surveillance of Mpox virus in Baltimore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 891:164414. [PMID: 37230346 PMCID: PMC10256456 DOI: 10.1016/j.scitotenv.2023.164414] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
This study aimed to utilize wastewater surveillance for monitoring Mpox cases at a community level. Untreated wastewater samples were collected once a week from two wastewater treatment plants (A and B) in Baltimore City from July 27, 2022-September 22, 2022. The samples were concentrated via an adsorption-elution (AE) method and Polyethylene Glycol (PEG) precipitation method followed by quantitative polymerase chain reaction (qPCR). Monkeypox virus (MPXV) was detected in 89 % (8/9) samples from WWTP A and 55 % (5/9) samples from WWTP B with at least one concentration method. Higher detection rate in samples concentrated with PEG precipitation compared to AE method was observed, indicating that PEG precipitation is a more effective virus concentration method for MPXV. To our knowledge, this is the first study reporting the detection of MPXV in wastewater in Baltimore. The results highlight that wastewater surveillance could be used as a complementary early warning tool for monitoring future Mpox outbreaks.
Collapse
Affiliation(s)
- Samendra P Sherchan
- Department of Environmental Health, Tulane University, New Orleans, LA 70112, United States of America; BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America.
| | - Tamunobelema Solomon
- BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Oladele Idris
- BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Daniel Nwaubani
- BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
16
|
Wannigama DL, Amarasiri M, Phattharapornjaroen P, Hurst C, Modchang C, Chadsuthi S, Anupong S, Miyanaga K, Cui L, Thuptimdang W, Ali Hosseini Rad SM, Fernandez S, Huang AT, Vatanaprasan P, Jay DJ, Saethang T, Luk-In S, Storer RJ, Ounjai P, Ragupathi NKD, Kanthawee P, Sano D, Furukawa T, Sei K, Leelahavanichkul A, Kanjanabuch T, Higgins PG, Nanbo A, Kicic A, Singer AC, Chatsuwan T, Trowsdale S, Siow R, Shibuya K, Abe S, Ishikawa H, Hongsing P. Tracing the transmission of mpox through wastewater surveillance in Southeast Asia. J Travel Med 2023; 30:taad096. [PMID: 37462504 DOI: 10.1093/jtm/taad096] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023]
Abstract
High population density and tourism in Southeast Asia increase the risk of mpox due to frequent interpersonal contacts. Our wastewater surveillance in six Southeast Asian countries revealed positive signals for Monkeypox virus (MPXV) DNA, indicating local transmission. This alerts clinicians and helps allocate resources like testing, vaccines and therapeutics in resource-limited countries.
Collapse
Affiliation(s)
- Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Aoyagi, Yamagata, Japan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Pathum Wan, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, South Yorkshire, UK
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Aoyagi, Yamagata, Japan
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences/Graduate School of Medical Sciences, Kitasato University, Sagamihara-Minami, Kanagawa, Japan
| | - Phatthranit Phattharapornjaroen
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Bangkok, Thailand
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, Gothenburg University, Universitetsplatsen 1, 405 30 Gothenburg, Sweden
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Brisbane, Queensland, Australia
- Statistics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand
- Centre of Excellence in Mathematics, MHESI, Ratchathewi, Bangkok, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Ratchathewi, Bangkok, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Mueang Phitsanulok District, Phitsanulok, Thailand
| | - Suparinthon Anupong
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Wanwara Thuptimdang
- Institute of Biomedical Engineering, Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - S M Ali Hosseini Rad
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Pathum Wan Bangkok, Thailand
| | - Stefan Fernandez
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Ratchathewi, Bangkok, Thailand
| | - Angkana T Huang
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Ratchathewi, Bangkok, Thailand
| | - Porames Vatanaprasan
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Dylan John Jay
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Aoyagi, Yamagata, Japan
| | - Thammakorn Saethang
- Department of Computer Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Sirirat Luk-In
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Phutthamonthon District, Nakhon Pathom, Thailand
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, South Yorkshire, UK
| | - Phitsanuruk Kanthawee
- Public Health major, School of Health Science, Mae Fah Luang University, Mueang Chiang Rai District, Chiang Rai, Thailand
| | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences/Graduate School of Medical Sciences, Kitasato University, Sagamihara-Minami, Kanagawa, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences/Graduate School of Medical Sciences, Kitasato University, Sagamihara-Minami, Kanagawa, Japan
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Pathum Wan, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
- Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
- Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Pathum Wan, Bangkok, Thailand
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Albertus-Magnus-Platz, Cologne, Germany
- German Centre for Infection Research, Partner site Bonn-Cologne, Albertus-Magnus-Platz, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Albertus-Magnus-Platz, Cologne, Germany
| | - Asuka Nanbo
- The National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Western Australia, Australia
- School of Population Health, Curtin University, Bentley, Bentley, 6102, Western Australia, Australia
| | - Andrew C Singer
- UK Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford, UK
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Pathum Wan, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | - Sam Trowsdale
- School of Environmental Science, University of Auckland, Auckland CBD, Auckland, New Zealand
| | - Richard Siow
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, Denmark Hill Campus, The James Black Centre, 125 Coldharbour Lane, London, UK
- Vascular Biology and Inflammation Section, School of Cardiovascular Medicine and Sciences, King's College London, Denmark Hill Campus, The James Black Centre, 125 Coldharbour Lane, London, UK
- Department of Physiology, Anatomy & Genetics, University of Oxford, Broad St, Oxford, UK
| | | | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Aoyagi, Yamagata, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Aoyagi, Yamagata, Japan
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Mueang Chiang Rai,Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Mueang Chiang Rai,Chiang Rai, Thailand
| |
Collapse
|
17
|
Wannigama DL, Amarasiri M, Hongsing P, Hurst C, Modchang C, Chadsuthi S, Anupong S, Phattharapornjaroen P, Rad S. M. AH, Fernandez S, Huang AT, Vatanaprasan P, Jay DJ, Saethang T, Luk-in S, Storer RJ, Ounjai P, Devanga Ragupathi NK, Kanthawee P, Sano D, Furukawa T, Sei K, Leelahavanichkul A, Kanjanabuch T, Hirankarn N, Higgins PG, Kicic A, Singer AC, Chatsuwan T, Trowsdale S, Abe S, McLellan AD, Ishikawa H. COVID-19 monitoring with sparse sampling of sewered and non-sewered wastewater in urban and rural communities. iScience 2023; 26:107019. [PMID: 37351501 PMCID: PMC10250052 DOI: 10.1016/j.isci.2023.107019] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
Equitable SARS-CoV-2 surveillance in low-resource communities lacking centralized sewers is critical as wastewater-based epidemiology (WBE) progresses. However, large-scale studies on SARS-CoV-2 detection in wastewater from low-and middle-income countries is limited because of economic and technical reasons. In this study, wastewater samples were collected twice a month from 186 urban and rural subdistricts in nine provinces of Thailand mostly having decentralized and non-sewered sanitation infrastructure and analyzed for SARS-CoV-2 RNA variants using allele-specific RT-qPCR. Wastewater SARS-CoV-2 RNA concentration was used to estimate the real-time incidence and time-varying effective reproduction number (Re). Results showed an increase in SARS-CoV-2 RNA concentrations in wastewater from urban and rural areas 14-20 days earlier than infected individuals were officially reported. It also showed that community/food markets were "hot spots" for infected people. This approach offers an opportunity for early detection of transmission surges, allowing preparedness and potentially mitigating significant outbreaks at both spatial and temporal scales.
Collapse
Affiliation(s)
- Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, UK
- Pathogen Hunter’s Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Brisbane, QLD, Australia
- Statistics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Centre of Excellence in Mathematics, MHESI, Bangkok 10400, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Suparinthon Anupong
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phatthranit Phattharapornjaroen
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, Gothenburg University, 40530 Gothenburg, Sweden
| | - Ali Hosseini Rad S. M.
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago 9010, New Zealand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Stefan Fernandez
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Angkana T. Huang
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Dylan John Jay
- Pathogen Hunter’s Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Thammakorn Saethang
- Department of Computer Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sirirat Luk-in
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Phitsanuruk Kanthawee
- Public Health major, School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Asada Leelahavanichkul
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- School of Population Health, Curtin University, Bentley, WA 6102, Australia
| | | | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sam Trowsdale
- Department of Environmental Science, University of Auckland, Auckland 1010, New Zealand
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Alexander D. McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago 9010, New Zealand
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata 990-2212, Japan
| |
Collapse
|
18
|
Das SK, Bhattarai A, KC S, Shah S, Paudel K, Timsina S, Tharu S, Rawal L, Leon-Figueroa DA, Rodriguez-Morales AJ, Barboza JJ, Sah R. Socio-demographic determinants of the knowledge and attitude of Nepalese healthcare workers toward human monkeypox: a cross-sectional study. Front Public Health 2023; 11:1161234. [PMID: 37293610 PMCID: PMC10244767 DOI: 10.3389/fpubh.2023.1161234] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Human monkeypox is an infectious zoonotic disease and since May 2022, there has been a spike in cases worldwide. In this regard, a global health emergency has been declared by the World Health Organization (WHO) on July 23rd, 2022. Although there have been no confirmed human monkeypox cases in Nepal yet, the nation is undeniably at risk of an outbreak. Despite all preventive efforts and preparedness for monkeypox, there still remain several challenges including the literacy and knowledge of our healthcare workers regarding monkeypox. The aim of this study was to assess the level of knowledge and attitude of Nepalese healthcare workers regarding monkeypox. A cross-sectional study was performed on different healthcare workers at Tribhuvan University Teaching Hospital on the month of October 2022 using a set of validated questionnaires used previously in a Saudi Arabian study. An in-person survey was conducted where a total of 220 questionnaires were distributed. The response rate was 93%. Knowledge was categorized into high or low based on the mean knowledge score. The attitude was assessed using a 3-point Likert scale. The association of the knowledge and attitude of the respondents in accordance with their socio-demographics was statistically evaluated using Pearson's Chi-square test. The mean knowledge score was 13. A larger proportion of the respondents (60.4%) demonstrated a high knowledge and 51.1% demonstrated a positive attitude. Studying monkeypox during medical education possessed a significant difference in the attitude (p = 0.025). Knowledge did not vary based on socio-demographic characteristics. Despite almost half a year into the monkeypox outbreak, Nepalese healthcare workers still have an unsatisfying degree of knowledge and a negative attitude regarding its control which shows the need for education and awareness.
Collapse
Affiliation(s)
- Santa Kumar Das
- Tribhuvan University Teaching Hospital, Institute of Medicine, Tribhuvan University, Tribhuvan, Nepal
| | - Abhinav Bhattarai
- Tribhuvan University Teaching Hospital, Institute of Medicine, Tribhuvan University, Tribhuvan, Nepal
| | - Simran KC
- Central Department of Public Health, Institute of Medicine, Tribhuvan University, Tribhuvan, Nepal
| | - Sangam Shah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Tribhuvan University, Tribhuvan, Nepal
| | - Kiran Paudel
- Tribhuvan University Teaching Hospital, Institute of Medicine, Tribhuvan University, Tribhuvan, Nepal
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas - Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia
| | - Sakchhyam Timsina
- Tribhuvan University Teaching Hospital, Institute of Medicine, Tribhuvan University, Tribhuvan, Nepal
| | - Sunraj Tharu
- Tribhuvan University Teaching Hospital, Institute of Medicine, Tribhuvan University, Tribhuvan, Nepal
| | - Laba Rawal
- Tribhuvan University Teaching Hospital, Institute of Medicine, Tribhuvan University, Tribhuvan, Nepal
| | | | - Alfonso J. Rodriguez-Morales
- Facultad de Medicina Humana, Universidad San Martín de Porres, Chiclayo, Peru
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas - Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia
- Master's Program in Clinical Epidemiology and Biostatistics, Universidad Cientifica del Sur, Lima, Peru
| | | | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Tribhuvan University, Tribhuvan, Nepal
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas - Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia
- Master's Program in Clinical Epidemiology and Biostatistics, Universidad Cientifica del Sur, Lima, Peru
| |
Collapse
|
19
|
Begum JPS, Ngangom L, Semwal P, Painuli S, Sharma R, Gupta A. Emergence of monkeypox: a worldwide public health crisis. Hum Cell 2023; 36:877-893. [PMID: 36749539 PMCID: PMC9903284 DOI: 10.1007/s13577-023-00870-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/28/2023] [Indexed: 02/08/2023]
Abstract
The human monkeypox virus (MPV), a zoonotic illness that was hitherto solely prevalent in Central and West Africa, has lately been discovered to infect people all over the world and has become a major threat to global health. Humans unintentionally contract this zoonotic orthopoxvirus, which resembles smallpox, when they come into contact with infected animals. Studies show that the illness can also be transferred through frequent proximity, respiratory droplets, and household linens such as towels and bedding. However, MPV infection does not presently have a specified therapy. Smallpox vaccinations provide cross-protection against MPV because of antigenic similarities. Despite scant knowledge of the genesis, epidemiology, and ecology of the illness, the incidence and geographic distribution of monkeypox outbreaks have grown recently. Polymerase chain reaction technique on lesion specimens can be used to detect MPV. Vaccines like ACAM2000, vaccinia immune globulin intravenous (VIG-IV), and JYNNEOS (brand name: Imvamune or Imvanex) as well as FDA-approved antiviral medications such as brincidofovir (brand name: Tembexa), tecovirimat (brand name: TPOXX or ST-246), and cidofovir (brand name: Vistide) are used as therapeutic medications against MPV. In this overview, we provide an outline of the MPV's morphology, evolution, mechanism, transmission, diagnosis, preventative measures, and therapeutic approaches. This study offers the fundamental information required to prevent and manage any further spread of this emerging virus.
Collapse
Affiliation(s)
- J. P. Shabaaz Begum
- Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand 248002 India
| | - Leirika Ngangom
- Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand 248002 India
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand 248002 India
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology (UCB), Prem Nagar, Dehradun, Uttarakhand 248007 India
| | - Rohit Sharma
- Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043 USA
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045 USA
- BioIntegrate, Lawrenceville, GA 30043 USA
- Regenerative Orthopaedics, Uttar Pradesh, Noida, 201301 India
| |
Collapse
|
20
|
Al-Raeei M. The study of human monkeypox disease in 2022 using the epidemic models: herd immunity and the basic reproduction number case. Ann Med Surg (Lond) 2023; 85:316-321. [PMID: 36845803 PMCID: PMC9949786 DOI: 10.1097/ms9.0000000000000229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/25/2022] [Indexed: 02/28/2023] Open
Abstract
As of May 2022, a new outbreak of the human monkeypox (MPOX) disease appeared in multiple countries, where the 2022 human MPOX disease spread to more than 109 cases, excluding the suspected cases up to the end of 2022. The deaths of the 2022 human MPOX exceeded 200 cases up to the same date. The human MPOX is not a new disease, this disease was once endemic in some countries on the African continent. Despite this, this disease began to spread in a number of countries around the world in 2022. The first case of the 2022 human MPOX was recorded in the United Kingdom in May. After that date, this disease began to become a pandemic in a number of other countries, such as the United States, Spain, and Brazil. The 2022 human MPOX is a type of viral disease caused by a viral virus, the MPOX virus, and this virus causes rashes and lesions over the skin of the patient, as well as in the mouth of the patient. Multiple effective indicators are employed for the study of the 2022 of the human MPOX, such as the herd immunity of the human MPOX (HIhMPOX), the basic reproduction number of the human MPOX (BRNhMPOX), and the infection period of the human MPOX. This study focuses on the study of the herd immunity of, and the basic reproduction number of the 2022 outbreak of human MPOX in multiple countries around the world. This study employed the semianalytical method of the Susceptible compartment S, Infectious compartment I, Recovered compartment R (SIR) pandemic model including the mortality for the study of the herd immunity, and the basic reproduction number of the 2022 human MPOX disease. It is found that the average value of the herd immunity for the human MPOX disease in 2022 equals to 0.2194, that is, 21.94% for multiple countries, and equals to 35.52% for the United States, and 30.99% for Spain. Also, it is found that the average value of the basic reproduction number of the 2022 human MPOX disease equals to 1.2810 for multiple countries. It is concluded from these values that 21.94% of the total susceptible population has to be immunized in an effective way to prevent the spreading of the disease. Also, based on the previous values, it is concluded that the status of the 2022 MPOX disease is spreading as a pandemic.
Collapse
Affiliation(s)
- Marwan Al-Raeei
- Faculty of Sciences, Damascus University, Damascus, the Syrian Arab Republic
| |
Collapse
|