1
|
Dai Q, Wang Q, Zhang J, Zhang Z, Cao G, Zeng Z, Tan H, Xu X, Wang W, Lei B, Huo X, Cai Z. Child exposure to N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its derived quinone (6PPDQ) in e-waste areas: Urinary concentrations, sources, and health effect assessment. J Environ Sci (China) 2025; 153:217-228. [PMID: 39855793 DOI: 10.1016/j.jes.2024.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/23/2024] [Accepted: 07/10/2024] [Indexed: 01/27/2025]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPDQ) and its parent 6PPD are ubiquitous in the environment and may induce multi-endpoint toxicity. Electronic waste (e-waste) dismantling is an under-recognized source of 6PPD and 6PPDQ emissions, and there is a lack of epidemiological investigations into their presence and health effects in local populations. This study aimed to determine the urinary concentrations of 6PPD and 6PPDQ in children aged 2-7 years from e-waste dismantling areas and evaluate their potential risk to physical growth. We found that children from the e-waste area had significantly elevated urinary concentrations of 6PPD and 6PPDQ (median: 0.073 and 2.34 ng/mL) compared to those in the reference area (0.020 and 0.24 ng/mL, respectively). The estimated urinary excretions of 6PPDQ in the e-waste exposure group were considerably higher than that in the reference group (p < 0.001). Furthermore, a borderline significant association of co-exposure to high levels of 6PPD and 6PPDQ with lower BMI z-score (OR = 1.99, 95% Cl: 1.04, 3.82) was observed in the crude model and the model adjusted for age and gender. In conclusion, our study first reported the urinary 6PPD and 6PPDQ concentrations in children from e-waste dismantling areas. The result indicated that e-waste recycling activities contribute to significantly elevated body burdens of 6PPD and 6PPDQ in children, which may be a potential risk factor for physical growth. Further epidemiological and toxicological studies are needed to investigate the exposure and health risks, especially in vulnerable populations.
Collapse
Affiliation(s)
- Qingyuan Dai
- Beijing Normal University-Hong Kong Baptist University United International College, Guangdong 519087, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, Guangdong, China; Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Jing Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, Guangdong, China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, Guangdong, China
| | - Hongli Tan
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Guangdong 515041, China
| | - Wei Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Bo Lei
- Beijing Normal University-Hong Kong Baptist University United International College, Guangdong 519087, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, Guangdong, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
2
|
Yu H, Luo L, Wu B, He J, Wang H, Chen R, Ji M, Yang Q, Zeng G, Wu W, Sun D. Efficient catalytic degradation and detoxification of 6PPD-quinone by the multifunctional enzyme system of phanerochaete chrysosporium. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138634. [PMID: 40393293 DOI: 10.1016/j.jhazmat.2025.138634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025]
Abstract
The widespread environmental presence and toxicity of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone, 6PPD-q), a rubber-derived pollutant, necessitates effective degradation strategies. This study demonstrates for the first time that Phanerochaete chrysosporium (P. chrysosporium) achieves a 99.06 % removal rate of 6PPD-q within 7 days through adsorption combined with enzyme catalysis. The breakdown of the quinone structure, primarily driven by lignin peroxidase isoenzymes, is accompanied by carbon chain shortening and structural simplification, which enhance the bioavailability of degradation products. These metabolites are assimilated and further mineralized by the P. chrysosporium metabolic system. Comprehensive toxicity assessments using zebrafish and Escherichia coli confirmed the biosafety of all degradation products. This study provides mechanistic insights into the fungal degradation of 6PPD-q and presents a sustainable approach for mitigating the environmental risks posed by other pollutants. Furthermore, a new generation of innovative bioremediation technologies can be developed by engineering fungi to regulate extracellular electric potential and enhance catalytic enzyme activity.
Collapse
Affiliation(s)
- Haiyang Yu
- State & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Luo
- Department of Critical Care Medicine, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Baihui Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiaxuan He
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, 999077, Hong Kong
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong
| | - Mingxia Ji
- Department of Critical Care Medicine, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Guoming Zeng
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Wei Wu
- Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Da Sun
- State & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
3
|
Sherman A, Masset T, Wimmer L, Maruschka LK, Dailey LA, Hüffer T, Breider F, Hofmann T. The Invisible Footprint of Climbing Shoes: High Exposure to Rubber Additives in Indoor Facilities. ACS ES&T AIR 2025; 2:930-942. [PMID: 40370931 PMCID: PMC12070412 DOI: 10.1021/acsestair.5c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025]
Abstract
There is growing concern about rubber-derived compounds (RDCs), predominantly originating from tire and road wear particles. Other consumer products, including sports equipment, also contain RDCs, and human exposure to these compounds is of particular interest due to demonstrated toxicity to animal species. In this study, we investigated RDCs intentionally incorporated into climbing shoes for enhanced performance. We found high concentrations of 15 RDCs in shoe sole samples (Σ15 RDCs: 25-3405 μg/g), aerosol particulate matter (Σ15 RDCs: 2.6-37 μg/g), and settled dust (Σ15 RDCs: 1.5-55 μg/g) in indoor climbing halls. The estimated daily intake via inhalation/ingestion of Σ15 RDCs for climbers and employees in some of these facilities ranged from 1.7 to 48 ng/kg/day, exceeding known intake levels of RDCs from other sources. Abrasion powder resulting from friction between climbing shoes and footholds is the likeliest source of high concentrations of RDCs observed in aerosol particulate matter and settled dust. These findings reveal a previously unknown human exposure route of RDCs.
Collapse
Affiliation(s)
- Anya Sherman
- University
of Vienna, Centre for Microbiology
and Environmental Systems Science, Environmental Geosciences EDGE, 1090 Vienna, Austria
- University
of Vienna, Doctoral School in Microbiology
and Environmental Science, 1090 Vienna, Austria
- University
of Vienna, Research Platform Plastics in
the Environment and Society (PLENTY), 1090 Vienna, Austria
| | - Thibault Masset
- EPFL
- Ecole Polytechnique Fédérale de Lausanne, Central
Environmental Laboratory, Institute of Environmental
Engineering, ENAC, station
2, CH-1015 Lausanne, Switzerland
| | - Lukas Wimmer
- University
of Vienna, Department of Pharmaceutical
Sciences, 1090 Vienna, Austria
- University
of Vienna, Doctoral School of Pharmaceutical,
Nutritional and Sport Sciences, 1090 Vienna, Austria
| | - Leah K. Maruschka
- University
of Vienna, Centre for Microbiology
and Environmental Systems Science, Environmental Geosciences EDGE, 1090 Vienna, Austria
| | - Lea Ann Dailey
- University
of Vienna, Department of Pharmaceutical
Sciences, 1090 Vienna, Austria
| | - Thorsten Hüffer
- University
of Vienna, Centre for Microbiology
and Environmental Systems Science, Environmental Geosciences EDGE, 1090 Vienna, Austria
- University
of Vienna, Research Platform Plastics in
the Environment and Society (PLENTY), 1090 Vienna, Austria
| | - Florian Breider
- EPFL
- Ecole Polytechnique Fédérale de Lausanne, Central
Environmental Laboratory, Institute of Environmental
Engineering, ENAC, station
2, CH-1015 Lausanne, Switzerland
| | - Thilo Hofmann
- University
of Vienna, Centre for Microbiology
and Environmental Systems Science, Environmental Geosciences EDGE, 1090 Vienna, Austria
- University
of Vienna, Research Platform Plastics in
the Environment and Society (PLENTY), 1090 Vienna, Austria
| |
Collapse
|
4
|
Chen X, Le Y, Wang W, Ding Y, Wang SQ, Chen R, Xiang H, Qiu XW, Feng H. p-Phenylenediamines and their derived quinones: A review of their environmental fate, human exposure, and biological toxicity. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137373. [PMID: 39869976 DOI: 10.1016/j.jhazmat.2025.137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
p-Phenylenediamines (PPDs) are widely used as antioxidants in numerous rubber products to prevent or delay oxidation and corrosion. However, their derived quinones (PPD-Qs), generated through reactions with ozone, are ubiquitous in the environment and raise significant health and toxicity concerns. This review summarizes the current state of knowledge on environmental distribution and fate, human exposure, and biological toxicity of PPDs and PPD-Qs, and makes recommendations for future research directions. Although PPDs and PPD-Qs have been monitored in a variety of environmental matrices, studies on soil, sediment, and organisms remain limited. This shortcoming hinders our understanding of their distribution patterns and migration mechanisms in these specific environments. These contaminants can enter the human body through various exposure routes, but toxicological studies have not yielded sufficient results to derive risk thresholds for the assessment of human health. Most studies examining biological and toxicological effects have focused on acute exposure scenarios, which do not accurately reflect the long-term interactions that occur in natural settings. The toxic effects of PPDs and PPD-Qs on zebrafish, nematodes, and mammals include neurobehavioral changes, reproductive dysfunction, and digestive damage, which are linked to mitochondrial stress, DNA adduct formation, and disrupted lipid metabolism, respectively. However, the underlying toxicological mechanisms remain poorly understood. Future research should prioritize the investigation of the impacts of PPDs and PPD-Qs on various organizational levels within biota to provide a scientific basis for developing effective risk management measures.
Collapse
Affiliation(s)
- Xuefei Chen
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou 311300, China
| | - Yanna Le
- Hangzhou Hospital for Occupational Disease Prevention and Treatment, Hangzhou 310014, China
| | - Wanyue Wang
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou 311300, China
| | - Yangcheng Ding
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou 311300, China
| | - Si-Qi Wang
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Ruya Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hai Xiang
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou 311300, China.
| | - Xia-Wen Qiu
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou 311300, China; Jinhua Academy, Zhejiang Chinese Medical University, Jinhua 321015, China.
| | - Huajun Feng
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
5
|
Yu H, Zhang W, Wang D, Shi B, Zhu Y, Hu W, He J, Hong J, Xu X, Zheng X, Chen W, Wang F, Qu F. Exposure to 6PPD-Q induces dysfunctions of ovarian granulosa cells: Its potential role in PCOS. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137037. [PMID: 39764971 DOI: 10.1016/j.jhazmat.2024.137037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/14/2024] [Accepted: 12/28/2024] [Indexed: 03/12/2025]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), an environmental pollutant derived from the ozonolysis of the widely used tire rubber antioxidant 6PPD, has been found to accumulate in air, dust, and water, posing significant health risks. While its reproductive toxicity in male organisms has been established, its effects on female reproductive health remain unclear. Polycystic ovary syndrome (PCOS), a common endocrine disorder in premenopausal women, is known to be influenced by environmental pollutants. In this study, we exposed BALB/c mice intraperitoneally to 6PPD-Q, and they exhibited PCOS-like changes after 40 days, including alterations in hormone levels, estrous cycle arrest, and polycystic ovarian morphology. Then we identified significantly elevated levels of 6PPD-Q in the follicular fluid of PCOS patients compared to those with tubal infertility, and these levels were associated with clinical parameters. In the human ovarian granulosa cell line (KGN) studies, we demonstrated that 6PPD-Q induced granulosa cell apoptosis by inhibiting the PI3K/AKT/FOXO1 pathway, leading to ovarian damage and fertility decline. To our knowledge, this is the first study to report 6PPD-Q levels in human follicular fluid and its detrimental effects on female reproductive health, underscoring the need for further research on environmental impacts on PCOS.
Collapse
Affiliation(s)
- Hanxi Yu
- School of Medicine, Zhejiang University, Hangzhou 310003, China; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Weichen Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Danyun Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Biwei Shi
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yuhang Zhu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Weihuan Hu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Jiayi He
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Jiawei Hong
- School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Xiaolin Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key laboratory for accurate diagnosis and treatment of abdominal infection in Zhejiang province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xiaoxiao Zheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key laboratory for accurate diagnosis and treatment of abdominal infection in Zhejiang province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wei Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key laboratory for accurate diagnosis and treatment of abdominal infection in Zhejiang province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| | - Fangfang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
6
|
Li X, Wu C, Yang P, Li Y, Wang S, Dan Cai, Wei R, Gao J, Wen X, Luo J, Wang R, Bai X, Chen S, Guo P. Environmental factors ultraviolet a and ozone exacerbate the repeated inhalation toxicity of 6PPD in mice via accelerating the aging reaction. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137000. [PMID: 39733749 DOI: 10.1016/j.jhazmat.2024.137000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/15/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
The burden of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its oxidized products on human health can no longer be ignored due to the detection types and concentrations in the environment continue to increase. Environmental ozone (O3) and ultraviolet A (UVA) may induce ozonation and photoaging of 6PPD to produce toxic products. However, the impact of specific environmental conditions on the aging and toxic effects of 6PPD is unclear. This study investigated the aging effects of O3 and UVA on 6PPD, and compared the repeated inhalation toxicity of differently aging 6PPDs in C57BL/6 male mice. The result showed that UVA and O3 accelerated 6PPD aging, and the aging products varied depending on the O3 and irradiation conditions. After 10 weeks of inhalation intoxication at human comparable level, mice exhibited significant neurobehavior alterations, respiratory dysfunction, and DNA damage in the blood, showing significant heterogeneity among groups. Notably, 6PPD treated with perozonation and UVA aging may be the most toxic. The study suggests inhalation health risks of transportation derived tire pollutants under the influence of ground-level ozone and ultraviolet light need more attention, and provides new insights into risk assessment and pollution control of 6PPD and other pollutants from the perspective of environmental factors.
Collapse
Affiliation(s)
- Xianjie Li
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Caixia Wu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Ping Yang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Yanxi Li
- South China Institute of Environmental Sciences, Guangzhou, 510655, China
| | - Shuai Wang
- Shandong University Cheeloo College of Medicine, Jinan, 250012, China
| | - Dan Cai
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ran Wei
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Jinfeng Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Xuemei Wen
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Jieping Luo
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Rui Wang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Xueyuan Bai
- South China Institute of Environmental Sciences, Guangzhou, 510655, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ping Guo
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
7
|
Kuang L, Wang X, He Z, Zhang Y, Luo J, Zhang W, Fu Z, Tuo X. Explore the toxicological mechanism of 6PPD-Q on human health through a novel perspective: The interaction between lactate dehydrogenase and 6PPD-Q. Int J Biol Macromol 2025; 293:139266. [PMID: 39733892 DOI: 10.1016/j.ijbiomac.2024.139266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), an oxidative derivative of tire anti-degradant, has been linked to mortality in coho salmon (Oncorhynchus kisutch) and has exhibited potential human toxicity. Hence, exploring how 6PPD-Q interacts with biomacromolecules like enzymes is indispensable to assess its human toxicity and elucidate its mechanism of action. This investigation aims to explore the impact of 6PPD-Q on lactate dehydrogenase (LDH) through various methods. The findings indicate that 6PPD-Q can spontaneously embed in the coenzyme site of LDH and obviously change the biological activity of LDH by non-competitive inhibition. Simultaneously, this inhibitory effect is concentration-dependent. 6PPD-Q can affect both the level of LDH and the transcription of Ldha in AML-12 cells. Hydrogen bonding and van der Waals forces serve as the primary driving forces in LDH-6PPD-Q combination process. The apparent binding constant (Ka) value is (9.773 ± 0.699) × 103 L/mol (298 K). The presence of 6PPD-Q alters the conformation of LDH and decreases its structural stability. Moreover, the results of molecular docking indicate that the interaction of 6PPD-Q with Asp51 and Arg98 of LDH may be the reason that 6PPD-Q inhibits the biological activity of LDH. Meanwhile, the energy decomposition of residue analyses for LDH-6PPD-Q formation further highlight the energy contribution of Asp51 and Arg98 in this combination process.
Collapse
Affiliation(s)
- Lin Kuang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiaowei Wang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Zimeng He
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yue Zhang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jiaqing Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Wei Zhang
- Jiangxi Academy of Water Science and Engineering, Nanchang 330029, China; Jiangxi Provincial Technology Innovation Center for Ecological Water Engineering in Poyang Lake Basin, Nanchang 330029, China; Jiangxi Key Laboratory of Flood and Drought Disaster Defense, Nanchang 330029, China
| | - Zhengjiang Fu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xun Tuo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
8
|
Geng N, Hou S, Sun S, Cao R, Zhang H, Lu X, Zhang S, Chen J, Zhang Y. A Nationwide Investigation of Substituted p-Phenylenediamines (PPDs) and PPD-Quinones in the Riverine Waters of China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3183-3192. [PMID: 39927714 DOI: 10.1021/acs.est.4c09519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) has been identified as the cause of the "urban runoff mortality syndrome." Thus, the ecological risks of substituted p-phenylenediamines (PPDs) and their quinone derivatives (PPD-Qs) in water have gained global attention. However, large-scale observation of their pollution characteristics in surface water is still lacking. Herein, a nationwide investigation revealed the pervasive occurrence of PPDs and PPD-Qs in riverine waters across China, with the mean concentration of ∑5PPD-Qs being 4.9 times higher than their parent ∑5PPDs. Notably, the 6PPD-Q concentrations at eight sampling sites exceeded the median lethal concentration for coho salmon. National annual riverine fluxes were estimated at 113.1 and 276.2 tonnes/year for PPDs and PPD-Qs, respectively, with the Yangtze River contributing more than one-third of the total fluxes. The transformation of PPDs to PPD-Qs was dependent on atmospheric hydroxylation rates and the half-lives of PPDs. A combined multimedia exposure assessment revealed that water exposure accounted for 82.5% of human exposure to PPDs and PPD-Qs, surpassing the contributions from dust and air exposure. This study provides a comprehensive spatial picture of PPDs and PPD-Qs in China. The national atlas highlights their potential ecological risks and implies that targeted actions should be taken to mitigate potential exposure to PPDs and PPD-Qs.
Collapse
Affiliation(s)
- Ningbo Geng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shijiao Hou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai Sun
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Rong Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haijun Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xianbo Lu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jiping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanhao Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Calle L, Le Du-Carrée J, Martínez I, Sarih S, Montero D, Gómez M, Almeda R. Toxicity of tire rubber-derived pollutants 6PPD-quinone and 4-tert-octylphenol on marine plankton. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136694. [PMID: 39637807 DOI: 10.1016/j.jhazmat.2024.136694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The impacts of tire wear particles and their associated chemicals on the aquatic systems are a major environmental concern. In this study, we investigated the acute toxicity of two pollutants derived from tire rubber, 6PPD-quinone and 4-tert-octylphenol, on marine plankton. Specifically, we determined the acute effects of these pollutants on various organisms within the plankton food web: the microalgae Rhodomonas salina, the adult copepod Acartia tonsa, and the early life stages of the echinoderms Arbacia lixula and Paracentrotus lividus and the fish Sparus aurata. Exposure to 6PPD-quinone did not affect the microalgae growth, copepod survival, or fish embryo viability after 48 h of exposure at concentrations up to 1000 µgL-1. However, 6PPD-quinone significantly inhibited the growth of early developmental stages of both echinoderm species, with median effective concentrations of 7 and 8 µgL-1. Conversely, 4-tert-octylphenol was toxic to all studied organisms, with median lethal and effective concentrations ranging from 21 to 79 µgL-1 depending on the species and endpoints. The most sensitive planktonic organisms to 4-tert-octylphenol were echinoderm embryos and copepods, which exhibited negative effects at concentrations as low as 1 and 25 µgL-1, respectively. Our results demonstrate that acute exposure to 6PPD-quinone and 4-tert-octylphenol can cause harmful effects on key planktonic organisms at environmentally relevant concentrations. Overall, our findings highlight the need for develop ecologically safer tire rubber additives and reduce traffic-related tire particle emissions to mitigate their entry and potential impacts on aquatic ecosystems.
Collapse
Affiliation(s)
- Lisseth Calle
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jessy Le Du-Carrée
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Ico Martínez
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Samira Sarih
- GIA, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Daniel Montero
- GIA, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - May Gómez
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Rodrigo Almeda
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain.
| |
Collapse
|
10
|
Lee JG, Lee SM, Hyun M, Heo JD. Tire rubber-derived contaminants 6PPD and 6PPD-quinone reduce attachment and outgrowth of trophoblast spheroids onto endometrial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117744. [PMID: 39818141 DOI: 10.1016/j.ecoenv.2025.117744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a synthetic additive widely used in the rubber industry, and its oxidized product 6PPD-quinone (6PPDQ), have garnered widespread attention as an emerging hazardous chemicals owing to their potential detrimental effects on aquatic ecosystem and human health. The effects of 6PPD and 6PPDq on the female reproductive tract, especially embryo implantation, remain unknown and were investigated in this study. We used the spheroid attachment and outgrowth models of BeWo trophoblastic spheroids and Ishikawa cells as surrogates for the human blastocyst and endometrial epithelium, respectively. Treatment with the chemicals for up to 48 h decreased the viability of the cells in a dose- and cell line-dependent manner (20-100 μM 6PPD and 10-100 μM 6PPDQ for both the cell lines). At a noncytotoxic concentration, exposure of Ishikawa cells to 1 and 10 μM 6PPD reduced the attachment of BeWo spheroids and further inhibited their invasion and outgrowth on the endometrial epithelial monolayer. A similar result was observed in 1 μM 6PPDQ-exposed groups. Gene expression profiling of 6PPD- and 6PPDQ-exposed endometrial epithelial cells revealed that both 6PPD and 6PPDQ differentially regulated a panel of transcript markers toward overall downregulation of receptivity and invasion. The study provides the first proof of the adverse effects of 6PPD and 6PPDQ on human endometrial receptivity and trophoblast invasion during the window of implantation, warranting the need for further in vivo and clinical studies.
Collapse
Affiliation(s)
- Jong Geol Lee
- Center for Bio-Health Research, Division of Gyeongnam Bio-Environmental Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea.
| | - Seon Min Lee
- Center for Bio-Health Research, Division of Gyeongnam Bio-Environmental Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Moonjung Hyun
- Center for Bio-Health Research, Division of Gyeongnam Bio-Environmental Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Jeong Doo Heo
- Korea Institute of Toxicology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
11
|
Shi R, Zhang Z, Zeb A, Fu X, Shi X, Liu J, Wang J, Wang Q, Chen C, Sun W, Liu W. Environmental occurrence, fate, human exposure, and human health risks of p-phenylenediamines and their quinones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177742. [PMID: 39608260 DOI: 10.1016/j.scitotenv.2024.177742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/03/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
P-phenylenediamine antioxidants (PPDs) are widely used in the rubber industry and their release and transformation in the environment has become one of the current environmental research hotspots. PPDs are readily oxidized in the environment to form quinone transformation products (PPD-Qs), some of which (e.g. 6PPD-Q) have been shown to be highly toxic and persistent in the environment, posing a potential threat to aquatic organisms and ecosystems. The present study provides an overview of the physicochemical properties, environmental distribution, and potential human exposure and toxicological effects of PPDs and PPD-Qs. PPDs and PPD-Qs are found in water, air, dust and soil around the world, and humans are inevitably exposed to them by inhaling, ingesting and through dermal contact. There is growing evidence indicates that PPDs and PPD-Qs are present in human body fluids and tissues, where they are subject to metabolic and transformational processes in the liver and blood. Furthermore, PPDs and PPD-Qs have the potential to induce adverse health effects, including digestive, respiratory, neurotoxic and reproductive toxicity. Nevertheless, there is a paucity of evidence concerning the direct effects of PPDs and PPD-Qs on human health. Consequently, future research should concentrate on this area in order to provide quantitative support for the assessment of the risk posed by PPDs and PPD-Qs to human health.
Collapse
Affiliation(s)
- Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhao Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin 300000, China.
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiuping Fu
- Department of Intelligent Medical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China.
| | - Xinwei Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Cuihong Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wei Sun
- Laboratory of Molecular Genetics, School of Medicine, Nankai University, Tianjin 300071, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
12
|
Obanya HE, Khan FR, Carrasco-Navarro V, Rødland ES, Walker-Franklin I, Thomas J, Cooper A, Molden N, Amaeze NH, Patil RS, Kukkola A, Michie L, Green-Ojo B, Rauert C, Couceiro F, Hutchison GR, Tang J, Ugor J, Lee S, Hofmann T, Ford AT. Priorities to inform research on tire particles and their chemical leachates: A collective perspective. ENVIRONMENTAL RESEARCH 2024; 263:120222. [PMID: 39490547 DOI: 10.1016/j.envres.2024.120222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Concerns over the ecological impacts of urban road runoff have increased, partly due to recent research into the harmful impacts of tire particles and their chemical leachates. This study aimed to help the community of researchers, regulators and policy advisers in scoping out the priority areas for further study. To improve our understanding of these issues an interdisciplinary, international network consisting of experts (United Kingdom, Norway, United States, Australia, South Korea, Finland, Austria, China and Canada) was formed. We synthesised the current state of the knowledge and highlighted priority research areas for tire particles (in their different forms) and their leachates. Ten priority research questions with high importance were identified under four themes (environmental presence and detection; chemicals of concern; biotic impacts; mitigation and regulation). The priority research questions include the importance of increasing the understanding of the fate and transport of these contaminants; better alignment of toxicity studies; obtaining the holistic understanding of the impacts; and risks they pose across different ecosystem services. These issues have to be addressed globally for a sustainable solution. We highlight how the establishment of the intergovernmental science-policy panel on chemicals, waste, and pollution prevention could further address these issues on a global level through coordinated knowledge transfer of car tire research and regulation. We hope that the outputs from this research paper will reduce scientific uncertainty in assessing and managing environmental risks from TP and their leachates and aid any potential future policy and regulatory development.
Collapse
Affiliation(s)
- Henry E Obanya
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Farhan R Khan
- Norwegian Research Centre (NORCE), Nygårdsporten 112, NO-5008, Bergen, Norway
| | - Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211, Kuopio, Finland
| | | | | | - Jomin Thomas
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Adam Cooper
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nick Molden
- Emissions Analytics, Unit 2 CR Bates Industrial Estate, Stokenchurch, High Wycombe, Buckinghamshire, HP14 3PD, UK
| | - Nnamdi H Amaeze
- School of the Environment, Memorial Hall, University of Windsor, 401 Sunset Avenue Windsor, Ontario, N9B 3P4, Canada
| | - Renuka S Patil
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Anna Kukkola
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura Michie
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Bidemi Green-Ojo
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Fay Couceiro
- School of Civil Engineering and Surveying at the University of Portsmouth, Hampshire, PO1 3AH, UK
| | - Gary R Hutchison
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Joshua Ugor
- School of the Environment, Geography and Geosciences, University of Portsmouth, UK
| | - Seokhwan Lee
- Environment System Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Thilo Hofmann
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Environmental Geosciences, Josef-Holaubek-Platz 2, 1090, Vienna, Austria; University of Vienna, Research Platform Plastics in the Environment and Society (Plenty), Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Alex T Ford
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK.
| |
Collapse
|
13
|
Li P, Han Y, Wang M, Yan H. An advanced sensitive detection method for internal and external exposures assessment of para-phenylenediamines and their quinone derivatives based on hierarchical pore-structured nitro-microporous organic networks. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136434. [PMID: 39531824 DOI: 10.1016/j.jhazmat.2024.136434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
para-Phenylenediamines (PPDs) and their quinone derivatives (PPD-Qs) are emerging pollutants that are associated with neurotoxicity, reproductive toxicity, and genetic toxicity, raising significant public health concerns globally. In this study, a novel hierarchical pore-structured nitro-microporous organic networks (NO2-MONs) characterized by multiple adsorption interactions and rapid mass transfer rates was synthesized. Model fitting and adsorption experiments confirmed diverse interaction mechanisms, including pore effects, hydrogen bonding, π-π stacking, and hydrophobic interactions. Utilizing these advantages, NO2-MONs-coated solid-phase microextraction fibers facilitated the effective extraction of trace PPDs and PPD-Qs. Subsequently, a highly sensitive analytical approach was developed for detecting trace amounts of PPDs and PPD-Qs using GC-MS/MS analysis. This method significantly improved upon existing techniques, addressing the low accuracy associated with current semi-quantitative methods and enhancing sensitivity by two orders of magnitude. Notably, the achieved detection limits ranged from 0.38 to 2.6 pg mL-1, with recovery rates between 75.7 % and 117.5 % (RSD ≤ 9.8 %). This proposed approach provides technical support for investigating concentration-dose-effect relationships related to the environmental presence of PPDs and PDD-Qs, facilitating the development of relevant regulatory standards.
Collapse
Affiliation(s)
- Pengfei Li
- Hebei Key Laboratory of Analytical Science and Technology, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Public Health Safety, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Public Health, Hebei University, Baoding 071002, China
| | - Yehong Han
- Hebei Key Laboratory of Analytical Science and Technology, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Mingwei Wang
- Hebei Key Laboratory of Analytical Science and Technology, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Analytical Science and Technology, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Public Health Safety, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Public Health, Hebei University, Baoding 071002, China.
| |
Collapse
|
14
|
Jin L, Cheng S, Ge M, Ji L. Evidence for the formation of 6PPD-quinone from antioxidant 6PPD by cytochrome P450. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136273. [PMID: 39471629 DOI: 10.1016/j.jhazmat.2024.136273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) as a rubber antioxidant has attracted global concern, since its ozone-oxidation product 6PPD-quinone (6PPDQ) was found to be the primary toxicant responsible for urban runoff mortality syndrome in coho salmon. However, the biotransformation fate and associated toxicological mechanism of 6PPD have not received much study yet. In this work, the in vitro assays showed 6PPD can be transformed into 6PPDQ by cytochromes P450 (CYP450) in human liver microsomes (HLMs) with 0.98 % production rate, and the adducts of 6PPDQ with calf thymus DNA and the N-N coupling product between 6PPD and 6PPDQ were further identified after 6PPD incubation in HLMs. Further evidence for the 6PPDQ formation can be obtained from the in vivo assays that the 6PPDQ-DNA adducts and 6PPD-N-N-6PPDQ dimer were detected in mice by oral gavage with 6PPD, and the latter dimer species was detected as well in 6PPD exposure to zebrafish larvae. Especially, the bioaccumulation property and high reactivity of 6PPDQ result in the continuous formation of the significant DNA adducts and 6PPD-N-N-6PPDQ dimer even in case of low production rate of biotransformation of 6PPD to 6PPDQ, which may provide potentially effective biomarkers for such process. DFT computations revealed the formation mechanism of 6PPDQ is the (N)H-abstraction of 6PPD by CYP450, followed by amino radical rebound at the nearby ortho-carbon, yielding a quinol intermediate due to spin delocalization, that might readily undergo further oxidation by CYP450 into 6PPDQ.
Collapse
Affiliation(s)
- Lingmin Jin
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Shiyang Cheng
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Mintong Ge
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Li Ji
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
15
|
Zhang S, Cheng Z, Li X, Shi Y, Zhu H, Zhang T, Wang L, Sun H. Trans-Placental Transfer Mechanisms of Aromatic Amine Antioxidants (AAs) and p-Phenylenediamine Quinones (PPD-Qs): Evidence from Human Gestation Exposure and the Rat Uterine Perfusion Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39558173 DOI: 10.1021/acs.est.4c09416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Aromatic amine antioxidants (AAs), as rubber additives, and their ozone photochemical oxidation products of p-phenylenediamine quinone (PPD-Qs) have attracted great attention recently due to their wide environmental occurrences and toxicity. However, there is currently no research on the exposure risks during pregnancy and their trans-placental transfer mechanisms. Herein, 20 AAs and six PPD-Qs were analyzed in 60 maternal urine and fifty-six amniotic fluid samples (n = 53 pairs). ΣAAs (median: 8.57 and 15.4 ng/mL) and ΣPPD-Qs (0.236 and 2.29 ng/mL) were both observed, where the median concentration of PPD-Qs was significantly (p < 0.05) higher than that of the parent PPDs (0.130 and 0.092 ng/mL) in the maternal urine and amniotic fluid samples, respectively. The result of the self-established rat uterine perfusion model and molecular docking analysis suggested that passive diffusion and active transport patterns were involved in the trans-placental transfer. This study will raise concerns regarding intrauterine exposure and the trans-placental transfer mechanisms to AAs/PPD-Qs during pregnancy.
Collapse
Affiliation(s)
- Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian Liaoning 116026, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
16
|
Ge Y, Liu J, Shi R, Li X, Zeb A, Wang Q, Wang J, Zhao Y, Yu M, Yin C, Xiong H, Liu W. Environmental concentrations of 6PPD and 6PPD-Q cause oxidative damage and alter metabolism in Eichhornia crassipes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175736. [PMID: 39182783 DOI: 10.1016/j.scitotenv.2024.175736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
N-(1,3-dimethylbutyl)-N '-phenyl-p-phenylenediamine (6PPD) and N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) are ubiquitous in the environment and can cause toxicity to aquatic animals. However, research on the toxicological effects of 6PPD and 6PPD-Q on aquatic plants remains limited. The present study investigated the physiological, biochemical, and metabolic responses of the floating aquatic plant Eichhornia crassipes (E. crassipes) to environmentally relevant concentrations (0.1, 1, and 10 μg·L-1) of 6PPD and 6PPD-Q. We found that 6PPD and 6PPD-Q elicited minimal effects on plant growth, but 6PPD induced a concentration-dependent decrease in the content of photosynthetic pigments. Low doses (0.1 μg·L-1 and 1 μg·L-1) of 6PPD-Q significantly elevated Reactive Oxygen Species (ROS) content in E. crassipes roots, indicating oxidative damage. Furthermore, 6PPD-Q induced a more pronounced osmotic stress compared to 6PPD. Metabolic analyses revealed that carbohydrates were significantly altered under 6PPD and 6PPD-Q treatments. The findings of this study enhance the understanding of the environmental risks posed by 6PPD and 6PPD-Q to plants and reveal the potential mechanisms of phytotoxicity.
Collapse
Affiliation(s)
- Yichen Ge
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuexing Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chuan Yin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongxia Xiong
- Tianjin Research Institute for Water Transport Engineering, Laboratory of Environmental Protection in Water Transport Engineering, Tianjin 300456, China.
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
17
|
Ren S, Xia Y, Wang X, Zou Y, Li Z, Man M, Yang Q, Lv M, Ding J, Chen L. Development and application of diffusive gradients in thin-films for in-situ monitoring of 6PPD-Quinone in urban waters. WATER RESEARCH 2024; 266:122408. [PMID: 39260193 DOI: 10.1016/j.watres.2024.122408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
The occurrence and risk of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), derived from the oxidation of the tire antidegradant 6PPD, has raised significant concern since it was found to cause acute mortality in coho salmon when exposed to urban runoff. Given the short half-life period and low solubility of 6PPD-Q, reliable in situ measurement techniques are required to accurately understand its occurrence and behaviour in aquatic environments. Here, using the diffusive gradients in thin-films (DGT) method with HLB as a binding agent, we developed a new methodology to measure 6PPD-Q in urban waters. 6PPD-Q was rapidly and strongly adsorbed on the HLB-binding gel and was efficiently extracted using organic solvents. The HLB-DGT accumulated 6PPD-Q linearly for >7 d and its performance was not significantly affected by pH (6.5-8.5), ionic strength (0.0001-0.5 M) or dissolved organic matter (0-20 mg L-1). Field evaluation of the DGT method demonstrated its effectiveness in urban runoff, detecting 6PPD-Q levels of 15.8-39.5 ng L-1 in rivers. In snowmelt, DGT detected 6PPD-Q levels of 210 ng L-1 which is two times higher than the value obtained by grab sampling. 6PPD-Q levels were much higher in snowmelt than those in rivers. This indicates that snowfall constitutes an important transport pathway for 6PPD-Q and that DGT effectively captured the fraction continuously released from dust particles in the snow samples. 6PPD-Q posed a substantial risk to migratory fish in urban waters, and its release from tire wear particles requires further investigation. This study is the first to develop a DGT-based method for 6PPD-Q determination in urban waters, and the method can ensure an accurate measurement of the release of 6PPD-Q to the environment, particularly in rainfall or snowmelt, important pathways for its entry into the aquatic environment.
Collapse
Affiliation(s)
- Suyu Ren
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yuxiang Xia
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xinlei Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yangquan Zou
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Zhenping Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Mingsan Man
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Qixia Yang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
18
|
Liu J, Yu M, Shi R, Ge Y, Li J, Zeb A, Cheng Z, Liu W. Comparative toxic effect of tire wear particle-derived compounds 6PPD and 6PPD-quinone to Chlorella vulgaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175592. [PMID: 39154997 DOI: 10.1016/j.scitotenv.2024.175592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/04/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a widely used antioxidant in rubber products, and its corresponding ozone photolysis product N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), have raised public concerns due to their environmental toxicity. However, there is an existing knowledge gap on the toxicity of 6PPD and 6PPD-Q to aquatic plants. A model aquatic plant, Chlorella vulgaris (C. vulgaris), was subjected to 6PPD and 6PPD-Q at concentrations of 50, 100, 200, and 400 μg/L to investigate their effects on plant growth, photosynthetic, antioxidant system, and metabolic behavior. The results showed that 6PPD-Q enhanced the photosynthetic efficiency of C. vulgaris, promoting growth of C. vulgaris at low concentrations (50, 100, and 200 μg/L) while inhibiting growth at high concentration (400 μg/L). 6PPD-Q induced more oxidative stress than 6PPD, disrupting cell permeability and mitochondrial membrane potential stability. C. vulgaris responded to contaminant-induced oxidative stress by altering antioxidant enzyme activities and active substance levels. Metabolomics further identified fatty acids as the most significantly altered metabolites following exposure to both contaminants. In conclusion, this study compares the toxicity of 6PPD and 6PPD-Q to C. vulgaris, with 6PPD-Q demonstrating higher toxicity. This study provides valuable insight into the risk assessment of tire wear particles (TWPs) derived chemicals in aquatic habitats and plants.
Collapse
Affiliation(s)
- Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Yichen Ge
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
19
|
Wan X, Liang G, Wang D. Potential human health risk of the emerging environmental contaminant 6-PPD quinone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175057. [PMID: 39067606 DOI: 10.1016/j.scitotenv.2024.175057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
The tire antioxidant 6-PPD has been widely used to enhance tire performance and extend tire lifespan. 6-PPD quinone (6-PPDQ), a quinone derivative derived from 6-PPD in the presence of ozone, has been recognized an emerging environmental contaminant. In addition to causing acute lethality to coho salmon, 6-PPDQ exhibits toxic effects on other aquatic species and mammals. Based on the existing evidence, we provide a critical overview on the human internal exposure, potential adverse effects on health, and prediction of human health risk of 6-PPDQ. 6-PPDQ could be detected in human samples, including human urine, blood, and cerebrospinal fluid. Human exposure to 6-PPDQ in the environment is inevitable and may lead to adverse health effects, including hepatotoxicity, enterotoxicity, pulmonary toxicity, neurotoxicity, reproductive toxicity, and cardiotoxicity. Additionally, potential human health risk to 6-PPDQ through exposure routes and human samples were predicted. This review is helpful to identify the existing knowledge gaps and future research directions regarding the human health effects of 6-PPDQ.
Collapse
Affiliation(s)
- Xin Wan
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
20
|
Xu S, Wang Q, Lao JY, Cao Y, Hong P, Chen C, Lam EY, Fang JKH, Lee S, Leung KMY. Typical Tire Additives in River Water: Leaching, Transformation, and Environmental Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18940-18949. [PMID: 39382147 DOI: 10.1021/acs.est.4c05449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Tire wear particles (TWPs) released during vehicle driving can enter water bodies, leading to leaching of tire additives (TAs) in aquatic environments. However, the transformation behavior and related ecological impacts of TAs and their transformation products (TPs) remain unclear. In this study, laboratory-based simulation experiments and field investigations were conducted to explore the transformation mechanisms and ecological risks of TAs. After being placed in river water for 24 h, about 7-95% of 12 investigated TAs in TWPs were leached. Forty-eight TPs from eight TAs were tentatively identified along with different transformation pathways via suspect screening by high-resolution mass spectrometry. Semiquantitative results indicated that TPs derived from N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylene-diamine (6PPD) were predominant in leachates, while aryl hydrolysis and quinone pathways were the main transformation pathways. Field investigations on urban surface water samples from 16 sites in Hong Kong revealed the occurrence of 17 TAs and 1 TP, with concentrations ranging from 13.9 to 2230 ng/L (median ± standard deviation: 226 ± 534 ng/L). Sixteen TPs from six TAs were additionally identified via suspect screening. It is estimated that 6PPD-quinone and seven TAs could pose medium to high ecological risk, while N-(1,3-dimethylbutyl)-N'-phenyl-p-quinonediimine, a frequently detected TP, was identified as a persistent-bioaccumulative-toxic substance.
Collapse
Affiliation(s)
- Shaopeng Xu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Jia-Yong Lao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Yaru Cao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Pei Hong
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Chong Chen
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Edmund Y Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong SAR, China
| | - James Kar-Hei Fang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
- Department of Food Science and Nutrition and Research Institute for Future Food, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China
| | - Seokhwan Lee
- Department of Engine Research, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
21
|
Tang C, Zhu Y, Zheng R, Liu L, Zeng YH, Luo XJ, Mai BX. Nontarget analysis and characterization of p-phenylenediamine-quinones and -phenols in tire rubbers by LC-HRMS and chemical species-specific algorithm. Anal Chim Acta 2024; 1326:343123. [PMID: 39260913 DOI: 10.1016/j.aca.2024.343123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND N,N'-disubstituted p-phenylenediamine-quinones (PPDQs) are oxidization derivatives of p-phenylenediamines (PPDs) and have raised extensive concerns recently, due to their toxicities and prevalence in the environment, particularly in water environment. PPDQs are derived from tire rubbers, in which other PPD oxidization products besides reported PPDQs may also exist, e.g., unknown PPDQs and PPD-phenols (PPDPs). RESULTS This study implemented nontarget analysis and profiling for PPDQ/Ps in aged tire rubbers using liquid chromatography-high-resolution mass spectrometry and a species-specific algorithm. The algorithm took into account the ionization behaviors of PPDQ/Ps in both positive and negative electrospray ionization, and their specific carbon isotopologue distributions. A total of 47 formulas of PPDQ/Ps were found and elucidated with tentative or accurate structures, including 25 PPDQs, 18 PPDPs and 4 PPD-hydroxy-quinones (PPDHQs). The semiquantified total concentrations of PPDQ/Ps were 14.08-30.62 μg/g, and the concentrations followed the order as: PPDPs (6.48-17.39) > PPDQs (5.86-12.14) > PPDHQs (0.16-1.35 μg/g). SIGNIFICANCE The high concentrations and potential toxicities indicate that these PPDQ/Ps could seriously threaten the eco-environment, as they may finally enter the environment, accordingly requiring further investigation. The analysis strategy and data-processing algorithm can be extended to nontarget analysis for other zwitterionic pollutants, and the analysis results provide new understandings on the environmental occurrence of PPDQ/Ps from source and overall perspectives.
Collapse
Affiliation(s)
- Caiming Tang
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China; Guangdong Key Laboratory of Environmental Resources Utilization and Protection, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Yizhe Zhu
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Ruifen Zheng
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Ling Liu
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yan-Hong Zeng
- Guangdong Key Laboratory of Environmental Resources Utilization and Protection, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiao-Jun Luo
- Guangdong Key Laboratory of Environmental Resources Utilization and Protection, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bi-Xian Mai
- Guangdong Key Laboratory of Environmental Resources Utilization and Protection, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
22
|
Di S, Xu H, Yu Y, Qi P, Wang Z, Liu Z, Zhao H, Jin Y, Wang X. Environmentally Relevant Concentrations of S-6PPD-Quinone Caused More Serious Hepatotoxicity Than R-Enantiomer and Racemate in Oncorhynchus mykiss. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17617-17628. [PMID: 39312274 DOI: 10.1021/acs.est.4c06357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
6PPD-quinone (6PPD-Q) is frequently detected in various environmental media, and the environmentally relevant concentrations can be fatal to Oncorhynchus mykiss. Notably, 6PPD-Q has two enantiomers (S-6PPD-Q and R-6PPD-Q). In this study, O. mykiss was separately exposed to each enantiomer and racemate of 6PPD-Q for 96 h at environmentally relevant concentrations, and livers were collected. Effects on the biochemical, pathological, and ultrastructural changes were assessed, and metabolomics was conducted to elucidate the potential hepatotoxicity mechanism. Compared with the control treatment, the levels of catalase (CAT, all treatments except for 0.1 μg/L rac-6PPD-Q), and glutathione-S-transferase (GST, all treatments) significantly declined. Hepatocyte space became smaller, nuclear morphology changed, and nucleolysis occurred. Mitochondrial malformation and vesicle-like structure dilation of the endoplasmic reticulum (ER) were observed in the hepatocytes, which was most serious after S-6PPD-Q exposure. Some amino acid metabolism, folate biosynthesis, taurine and hypotaurine metabolism and purine metabolism were disturbed, consistent with mitochondrial dysfunction and ER stress. The differential metabolites were in the order of S-6PPD-Q (216) > rac-6PPD-Q (88) > R-6PPD-Q (56). Thus, 6PPD-Q-induced hepatic mitochondrial dysfunction and ER stress, causing metabolic disturbance and oxidative stress might be the toxic mechanism of 6PPD-Q in O. mykiss liver, and S-6PPD-Q effects were the most serious.
Collapse
Affiliation(s)
- Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| | - Haigui Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Yundong Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| |
Collapse
|
23
|
Ma CS, Li DL, Wang F, Wang JP, He MT. Neurotoxicity from long-term exposure to 6-PPDQ: Recent advances. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116689. [PMID: 39002379 DOI: 10.1016/j.ecoenv.2024.116689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
The recent acceleration of industrialization and urbanization has brought significant attention to N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ), an emerging environmental pollutant from tire wear, due to its long-term effects on the environment and organisms. Recent studies suggest that 6-PPDQ can disrupt neurotransmitter synthesis and release, impact receptor function, and alter signaling pathways, potentially causing oxidative stress, inflammation, and apoptosis. This review investigates the potential neurotoxic effects of prolonged 6-PPDQ exposure, the mechanisms underlying its cytotoxicity, and the associated health risks. We emphasize the need for future research, including precise exposure assessments, identification of individual differences, and development of risk assessments and intervention strategies. This article provides a comprehensive overview of 6-PPDQ's behavior, impact, and neurotoxicity in the environment, highlighting key areas and challenges for future research.
Collapse
Affiliation(s)
- Chang-Sheng Ma
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang 261041, China
| | - Dong-Lun Li
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang 261041, China
| | - Fang Wang
- Department of Neurosurgery, Weifang People's Hospital, Weifang 261041, China
| | - Jin-Peng Wang
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang 261041, China; Department of Neurosurgery, Weifang People's Hospital, Weifang 261041, China.
| | - Mao-Tao He
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang 261041, China; Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang 261041, China.
| |
Collapse
|
24
|
Zhang L, Li L, Wang R, Cheng X, Ning X, Lv Y, Zong S, Wang X, Ji W. Synthesis of a cysteine functional covalent organic framework via facile click reaction for the efficient solid phase extraction of substituted p-phenylenediamine-derived quinones. J Chromatogr A 2024; 1731:465195. [PMID: 39038416 DOI: 10.1016/j.chroma.2024.465195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
N,N'-Substituted p-phenylenediamine quinones (PPD-Qs) are the emerging toxicant, which transform from the rubber tire antioxidant N,N'-substituted p-phenylenediamines (PPDs). Because of their potential toxic and widespread occurrence in the environment, PPD-Qs have received great attention. However, efficiently extracting PPD-Qs from complex samples is still a challenge. Herein, a cysteine functional covalent organic framework (Cys-COF) designed according to the "donor-acceptor" sites of hydrogen bonding of PPD-Qs was synthesized via click reaction and then used as solid-phase extraction (SPE) adsorbent. Cys-COF can form the seven-member ring adsorption structure with PPD-Qs via hydrogen bonding. The adsorption mechanism was tentatively revealed by density functional theory (DFT). After optimizing the Cys-COF-SPE parameters, PPD-Qs were efficiently extracted from water, soil, sediment, and fish, followed by detection using ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The Cys-COF-SPE-UHPLC-MS/MS method exhibited ideal linearity (R2 ≥ 0.9932), high relative recoveries (80.4-111 %), and low limits of detection (0.0001-0.0013 ng mL-1). In addition, the bioconcentration kinetics in goldfish provides a feasible platform to investigate the toxicity and accumulated ability of PPD-Qs.
Collapse
Affiliation(s)
- Lidan Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lili Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Rongyu Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xuemei Cheng
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Xiaobei Ning
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yingchao Lv
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Shaojun Zong
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
25
|
Yang W, Fang C, Hong Y, Zhang ZF, Xu Z, Chu W. Widespread Antioxidants during Storm Events Could Serve as Precursors of Regulated, Priority, and New Disinfection Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14864-14874. [PMID: 39047190 DOI: 10.1021/acs.est.4c05815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Widely used antioxidants can enter the environment via urban stormwater systems and form disinfection byproducts (DBPs) during chlorination in downstream drinking water processes. Herein, we comprehensively investigated the occurrence of 39 antioxidants from stormwater runoff to surface water. After a storm event, the concentrations of the antioxidants in surface water increased by 1.4-fold from 102-110 ng/L to 128-139 ng/L. Widespread antioxidants during the stormwater event could transform into toxic DBPs during disinfection. Moreover, the yields of trihalomethanes, haloacetaldehydes, haloacetonitriles (HANs), and halonitromethanes during the chlorination of widely used antioxidants considerably increased with an increasing chlorine dose and contact time. Specifically, the yields of dichloroacetonitrile during the chlorination of diphenylamine (DPA) and N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) were higher than those of most reported amino acid precursors, indicating that DPA and 6PPD might be important precursors of HANs. Exploring the intermediates using GC × GC-time-of-flight high-resolution mass spectrometry helped reveal potential pathways from DPA to HANs, whose formation could be attributed to the intermediate carbazole and indole moieties detected in this study. This study provides insights into the transport and transformation of commonly used antioxidants in a water environment and during water treatment processes, highlighting the potential risks of anthropogenic pollutants from a DBP perspective.
Collapse
Affiliation(s)
- Wenyuan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuntao Hong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
26
|
Shi C, Wu F, Zhao Z, Ye T, Luo X, Wu Y, Liu Z, Zhang H. Effects of environmental concentrations of 6PPD and its quinone metabolite on the growth and reproduction of freshwater cladoceran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:175018. [PMID: 39059665 DOI: 10.1016/j.scitotenv.2024.175018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The widespread occurrence and accumulation of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its quinone metabolite, 6PPD quinone (6PPD-Q), have been globally recognized as a critical environmental issue. However, knowledge on the adverse effects of 6PPD and 6PPD-Q on freshwater invertebrates is limited. This study investigated the effects of 6PPD and its oxidative byproduct, 6PPD-Q, on the growth and reproduction of Daphnia pulex. Through 21-day exposure experiments, we measured the uptake of 0.1, 1, and 10 μg/L 6PPD and 6PPD-Q by D. pulex and assessed the effects on growth and fecundity of D. pulex. While 6PPD and 6PPD-Q did not affect the mortality rate of D. pulex, 6PPD-Q exposure inhibited the growth of D. pulex, indicating potential ecological risks. In particular, the reproductive capacity of D. pulex remained unaffected across the tested concentrations of 6PPD and 6PPD-Q, suggesting specific toxicological pathways that warrant further investigation. This study underscored the importance of evaluating the sublethal effects of emerging contaminants such as 6PPD and 6PPD-Q on aquatic invertebrates, and highlighted the need for comprehensive risk assessments to better understand their environmental impacts.
Collapse
Affiliation(s)
- Chaoli Shi
- Hangzhou Normal University, Hangzhou 311121, China
| | - Fusen Wu
- Hangzhou Normal University, Hangzhou 311121, China
| | - Zirui Zhao
- Hangzhou Normal University, Hangzhou 311121, China
| | - Tianhao Ye
- Hangzhou Normal University, Hangzhou 311121, China
| | - Xinru Luo
- Hangzhou Normal University, Hangzhou 311121, China
| | - Yang Wu
- Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou 311121, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China.
| | | |
Collapse
|
27
|
Kazmi SSUH, Xu Q, Tayyab M, Pastorino P, Barcelò D, Yaseen ZM, Khan ZH, Li G. Navigating the environmental dynamics, toxicity to aquatic organisms and human associated risks of an emerging tire wear contaminant 6PPD quinone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124313. [PMID: 38838808 DOI: 10.1016/j.envpol.2024.124313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
N-1,3-Dimethylbutyl-N'-phenyl-p-quinone diamine (6PPDQ) is a derivative of 6PPD, a synthetic antioxidant used in tire manufacturing to control the degradation caused by oxidation and heat aging. Its discovery in 2020 has raised important environmental concern, particularly regarding its association with acute mortality in coho salmon, prompting surge in research on its occurrence, fate, and transport in aquatic ecosystems. Despite this attention, there remain notable gaps in grasping the knowledge, demanding an in depth overview. Thus, this review consolidates recent studies to offer a thorough investigation of 6PPDQ's environmental dynamics, pathways into aquatic ecosystems, toxicity to aquatic organisms, and human health implications. Various aquatic species exhibit differential susceptibility to 6PPDQ toxicity, manifesting in acute mortalities, disruption of metabolic pathways, oxidative stress, behavioral responses, and developmental abnormalities. Whereas, understanding the species-specific responses, molecular mechanisms, and broader ecological implications requires further investigation across disciplines such as ecotoxicology, molecular biology, and environmental chemistry. Integration of findings emphasizes the complexity of 6PPDQ toxicity and its potential risks to human health. However, urgent priorities should be given to the measures like long-term monitoring studies to evaluate the chronic effects on aquatic ecosystems and the establishment of standardized toxicity testing protocols to ensure the result comparability and reproducibility. This review serves as a vital resource for researchers, policymakers, and environmental professionals seeking appraisals into the impacts of 6PPDQ contamination on aquatic ecosystems and human health.
Collapse
Affiliation(s)
- Syed Shabi Ul Hassan Kazmi
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Peoples R China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, Peoples R China
| | - Qiao Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Peoples R China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, Peoples R China
| | - Muhammad Tayyab
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, Peoples R China
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy
| | - Damià Barcelò
- Chemistry and Physics Department, University of Almeria, 04120 Almería, Spain
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Zulqarnain Haider Khan
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Peoples R China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, Peoples R China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Peoples R China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, Peoples R China.
| |
Collapse
|
28
|
Li Y, Xu C, Zhou X, Li J, Xu S, Tu Y, Mu X, Huang J, Huang Q, Kang L, Wang H, Zhang M, Yuan Y, Wu C, Zhang J. DNA adductomics aided rapid screening of genotoxic impurities using nucleosides and 3D bioprinted human liver organoids. Talanta 2024; 273:125902. [PMID: 38508126 DOI: 10.1016/j.talanta.2024.125902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Current genotoxicity assessment methods are mainly employed to verify the genotoxic safety of drugs, but do not allow for rapid screening of specific genotoxic impurities (GTIs). In this study, a new approach for the recognition of GTIs has been proposed. It is to expose the complex samples to an in vitro nucleoside incubation model, and then draw complete DNA adduct profiles to infer the structures of potential genotoxic impurities (PGIs). Subsequently, the genotoxicity is confirmed in human by 3D bioprinted human liver organoids. To verify the feasibility of the approach, lansoprazole chloride compound (Lanchlor), a PGI during the synthesis of lansoprazole, was selected as the model drug. After confirming genotoxicity by Comet assay, it was exposed to different models to map and compare the DNA adduct profiles by LC-MS/MS. The results showed Lanchlor could generate diverse DNA adducts, revealing firstly its genotoxicity at molecular mechanism of action. Furthermore, the largest variety and content of DNA adducts were observed in the nucleoside incubation model, while the human liver organoids exhibited similar results with rats. The results showed that the combination of DNA adductomics and 3D bioprinted organoids were useful for the rapid screening of GTIs.
Collapse
Affiliation(s)
- Ying Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Chen Xu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Xueting Zhou
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Jinhong Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Shiting Xu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanbo Tu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Xue Mu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiajun Huang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Qing Huang
- Devision of Inspection Technology Research, Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, NSW, 2006, Australia
| | - Huaisong Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Mei Zhang
- Devision of Inspection Technology Research, Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Yaozuo Yuan
- Devision of Inspection Technology Research, Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China.
| | - Chunyong Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China.
| | - Junying Zhang
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
29
|
Li Y, Zeng J, Liang Y, Zhao Y, Zhang S, Chen Z, Zhang J, Shen X, Wang J, Zhang Y, Sun Y. A Review of N-(1,3-Dimethylbutyl)- N'-phenyl- p-Phenylenediamine (6PPD) and Its Derivative 6PPD-Quinone in the Environment. TOXICS 2024; 12:394. [PMID: 38922074 PMCID: PMC11209267 DOI: 10.3390/toxics12060394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
As an antioxidant and antiozonant, N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is predominantly used in the rubber industry to prevent degradation. However, 6PPD can be ozonated to generate a highly toxic transformation product called N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-quinone), which is toxic to aquatic and terrestrial organisms. Thus, 6PPD and 6PPD-quinone, two emerging contaminants, have attracted extensive attention recently. This review discussed the levels and distribution of 6PPD and 6PPD-quinone in the environment and investigated their toxic effects on a series of organisms. 6PPD and 6PPD-quinone have been widely found in air, water, and dust, while data on soil, sediment, and biota are scarce. 6PPD-quinone can cause teratogenic, developmental, reproductive, neuronal, and genetic toxicity for organisms, at environmentally relevant concentrations. Future research should pay more attention to the bioaccumulation, biomagnification, transformation, and toxic mechanisms of 6PPD and 6PPD-quinone.
Collapse
Affiliation(s)
- Yi Li
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China; (Y.L.); (Y.L.); (Y.Z.); (Y.Z.)
| | - Jingjing Zeng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China; (J.Z.); (S.Z.); (Z.C.); (J.Z.); (X.S.); (J.W.)
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjin Liang
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China; (Y.L.); (Y.L.); (Y.Z.); (Y.Z.)
| | - Yanlong Zhao
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China; (Y.L.); (Y.L.); (Y.Z.); (Y.Z.)
| | - Shujun Zhang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China; (J.Z.); (S.Z.); (Z.C.); (J.Z.); (X.S.); (J.W.)
| | - Zhongyan Chen
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China; (J.Z.); (S.Z.); (Z.C.); (J.Z.); (X.S.); (J.W.)
| | - Jiawen Zhang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China; (J.Z.); (S.Z.); (Z.C.); (J.Z.); (X.S.); (J.W.)
| | - Xingze Shen
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China; (J.Z.); (S.Z.); (Z.C.); (J.Z.); (X.S.); (J.W.)
| | - Jiabin Wang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China; (J.Z.); (S.Z.); (Z.C.); (J.Z.); (X.S.); (J.W.)
| | - Ying Zhang
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China; (Y.L.); (Y.L.); (Y.Z.); (Y.Z.)
| | - Yuxin Sun
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China; (J.Z.); (S.Z.); (Z.C.); (J.Z.); (X.S.); (J.W.)
| |
Collapse
|
30
|
Deng M, Ji X, Peng B, Fang M. In Vitro and In Vivo Biotransformation Profiling of 6PPD-Quinone toward Their Detection in Human Urine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9113-9124. [PMID: 38743028 DOI: 10.1021/acs.est.4c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The antioxidant N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its oxidized quinone product 6PPD-quinone (6PPD-Q) in rubber have attracted attention due to the ecological risk that they pose. Both 6PPD and 6PPD-Q have been detected in various environments that humans cohabit. However, to date, a clear understanding of the biotransformation of 6PPD-Q and a potential biomarker for exposure in humans are lacking. To address this issue, this study presents a comprehensive analysis of the extensive biotransformation of 6PPD-Q across species, encompassing both in vitro and in vivo models. We have tentatively identified 17 biotransformation metabolites in vitro, 15 in mice in vivo, and confirmed the presence of two metabolites in human urine samples. Interestingly, different biotransformation patterns were observed across species. Through semiquantitative analysis based on peak areas, we found that almost all 6PPD-Q underwent biotransformation within 24 h of exposure in mice, primarily via hydroxylation and subsequent glucuronidation. This suggests a rapid metabolic processing of 6PPD-Q in mammals, underscoring the importance of identifying effective biomarkers for exposure. Notably, monohydroxy 6PPD-Q and 6PPD-Q-O-glucuronide were consistently the most predominant metabolites across our studies, highlighting monohydroxy 6PPD-Q as a potential key biomarker for epidemiological research. These findings represent the first comprehensive data set on 6PPD-Q biotransformation in mammalian systems, offering insights into the metabolic pathways involved and possible exposure biomarkers.
Collapse
Affiliation(s)
- Man Deng
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Xiaotong Ji
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Bo Peng
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| |
Collapse
|
31
|
Fu B, Chen T, Jiang B, Feng H, Zhu Z, Li M, Zhang G, Jiang Y. 6PPDQ induces cardiomyocyte senescence via AhR/ROS-mediated autophagic flux blockage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123872. [PMID: 38604309 DOI: 10.1016/j.envpol.2024.123872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/10/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Recently, attention has been drawn to the adverse outcomes of N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPDQ) on human health, but its cardiac toxicity has been relatively understudied. This work aims to investigate the effects of 6PPDQ on differentiated H9c2 cardiomyocytes. Our findings demonstrated that exposure to 6PPDQ altered cellular morphology and disrupted the expression of cardiac-specific markers. Significantly, 6PPDQ exposure led to cardiomyocyte senescence, characterized by elevated β-Galactosidase activity, upregulation of cell cycle inhibitor, induction of DNA double-strand breaks, and remodeling of Lamin B1. Furthermore, 6PPDQ hindered autophagy flux by promoting the formation of autophagosomes while inhibiting the degradation of autolysosomes. Remarkably, restoration of autophagic flux using rapamycin counteracted 6PPDQ-induced cardiomyocyte senescence. Additionally, our study revealed that 6PPDQ significantly increased the ROS production. However, ROS scavenger effectively reduced the blockage of autophagic flux and cardiomyocyte senescence caused by 6PPDQ. Furthermore, we discovered that 6PPDQ activated the Aryl hydrocarbon receptor (AhR) signaling pathway. AhR antagonist was found to reverse the blockage of autophagy and alleviate cardiac senescence, while also reducing ROS levels in 6PPDQ-treated group. In conclusion, our research unveils that exposure to 6PPDQ induces ROS overproduction through AhR activation, leading to disruption of autophagy flux and ultimately contributing to cardiomyocyte senescence.
Collapse
Affiliation(s)
- Baoqiang Fu
- MOE Key Laboratory of Geriatric Disease and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Tao Chen
- MOE Key Laboratory of Geriatric Disease and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Bin Jiang
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Haobin Feng
- MOE Key Laboratory of Geriatric Disease and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Ziyu Zhu
- MOE Key Laboratory of Geriatric Disease and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Min Li
- MOE Key Laboratory of Geriatric Disease and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Guoxing Zhang
- MOE Key Laboratory of Geriatric Disease and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Yan Jiang
- MOE Key Laboratory of Geriatric Disease and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China.
| |
Collapse
|
32
|
Yao K, Kang Q, Liu W, Chen D, Wang L, Li S. Chronic exposure to tire rubber-derived contaminant 6PPD-quinone impairs sperm quality and induces the damage of reproductive capacity in male mice. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134165. [PMID: 38574660 DOI: 10.1016/j.jhazmat.2024.134165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
It has been reported that N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), a derivative of the tire antioxidant, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), exhibits acute toxicity towards organisms. However, the possible reproductive toxicity of 6PPD-Q in mammals has rarely been reported. In this study, the effects of 6PPD-Q on the reproductive toxicity of C57Bl/6 male mice were assessed after exposure to 6PPD-Q for 40 days at 4 mg/kg body weight (bw). Exposure to 6PPD-Q not only led to a decrease in testosterone levels but also adversely affected semen quality and in vitro fertilization (IVF) outcomes, thereby indicating impaired male fertility resulting from 6PPD-Q exposure. Additionally, transcriptomic and metabolomic analyses revealed that 6PPD-Q elicited differential expression of genes and metabolites primarily enriched in spermatogenesis, apoptosis, arginine biosynthesis, and sphingolipid metabolism in the testes of mice. In conclusion, our study reveals the toxicity of 6PPD-Q on the reproductive capacity concerning baseline endocrine disorders, sperm quality, germ cell apoptosis, and the sphingolipid signaling pathway in mice. These findings contribute to an enhanced understanding of the health hazards posed by 6PPD-Q to mammals, thereby facilitating the development of more robust safety regulations governing the utilization and disposal of rubber products.
Collapse
Affiliation(s)
- Kezhen Yao
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Quanmin Kang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenbo Liu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, China
| | - Danna Chen
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lefeng Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shun Li
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Song S, Gao Y, Feng S, Cheng Z, Huang H, Xue J, Zhang T, Sun H. Widespread occurrence of two typical N, N'-substituted p-phenylenediamines and their quinones in humans: Association with oxidative stress and liver damage. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133835. [PMID: 38394895 DOI: 10.1016/j.jhazmat.2024.133835] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
While N, N'-substituted p-phenylenediamines (PPDs) and their quinone derivatives (PPDQs) have been widely detected in the environment, there is currently limited data on their occurrence in humans. In this study, we conducted the first serum analysis of two PPDs and PPDQs in the healthy and secondary nonalcoholic fatty liver disease (S-NAFLD) cohorts in South China. The concentrations of four oxidative stress biomarkers (OSBs), namely, 8-iso-prostaglandin F2α (8-PGF2α), 11β-prostaglandin F2α (11-PGF2α), 15(R)-prostaglandin F2α (15-PGF2α), and 8-hydroxy-2'-deoxyguanosine in serum samples were also measured. Results showed that N-(1,3-dimethybutyl)-N'-phenyl-p-phenylenediamine (6PPD) quinone was the predominant target analytes both in the healthy and S-NAFLD cohorts, with the median concentrations of 0.13 and 0.20 ng/mL, respectively. Significant (p < 0.05) and positive correlations were found between 6PPD concentration and 8-PGF2α, 11-PGF2α, and 15-PGF2α in both the healthy and S-NAFLD cohorts, indicating that 6PPD may be associated with lipid oxidative damage. In addition, concentrations of 6PPD in serum were associated significantly linked with total bilirubin (β = 0.180 μmol/L, 95%CI: 0.036-0.396) and direct bilirubin (DBIL, β = 0.321 μmol/L, 95%CI: 0.035-0.677) related to hepatotoxicity. Furthermore, 8-PGF2α, 11-PGF2α, and 15-PGF2α mediated 17.1%, 24.5%, and 16.6% of 6PPD-associated DBIL elevations, respectively. Conclusively, this study provides novel insights into human exposure to and hepatotoxicity assessment of PPDs and PPDQs.
Collapse
Affiliation(s)
- Shiming Song
- School of Chemistry and Environment, Jiaying University, Mei Zhou 514015, China; School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanxia Gao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuai Feng
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jingchuan Xue
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
34
|
Zhang Z, Xu X, Qian Z, Zhong Q, Wang Q, Hylkema MN, Snieder H, Huo X. Association between 6PPD-quinone exposure and BMI, influenza, and diarrhea in children. ENVIRONMENTAL RESEARCH 2024; 247:118201. [PMID: 38220074 DOI: 10.1016/j.envres.2024.118201] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) has received extensive attention due to its ubiquitous distribution and potential toxicity. However, the distribution characteristics of 6PPD-quinone in dust from e-waste recycling areas and the consequential health risks to children are unclear. A total of 183 dust samples were collected from roads (n = 40), homes (n = 91), and kindergartens (n = 52) in Guiyu (the e-waste-exposed group) and Haojiang (the reference group) from 2019 to 2021. The results show that the concentrations of 6PPD-quinone in kindergarten and house dust from the exposed group were significantly higher than those from the reference group (P < 0.001). These findings show that e-waste may be another potential source of 6PPD-quinone, in addition to rubber tires. The exposure risk of 6PPD-quinone in children was assessed using their daily intake. The daily intake of 925 kindergarten children was calculated using the concentration of 6PPD-quinone in kindergarten dust. The daily intake of 6PPD-quinone via ingestion was approximately five orders of magnitude higher than via inhalation. Children in the exposed group had a higher exposure risk to 6PPD-quinone than the reference group. A higher daily intake of 6PPD-quinone from kindergarten dust was associated with a lower BMI and a higher frequency of influenza and diarrhea in children. This study reports the distribution of 6PPD-quinone in an e-waste recycling town and explores the associated health risks to children.
Collapse
Affiliation(s)
- Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Ziyi Qian
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China; Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Machteld N Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
35
|
Zhang J, Cao G, Wang W, Qiao H, Chen Y, Wang X, Wang F, Liu W, Cai Z. Stable isotope-assisted mass spectrometry reveals in vivo distribution, metabolism, and excretion of tire rubber-derived 6PPD-quinone in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169291. [PMID: 38104817 DOI: 10.1016/j.scitotenv.2023.169291] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
6PPD-quinone (6PPD-Q) has been identified as a ubiquitous contaminant in the surrounding locality, including air particles, roadside soils, dust, and water. Recently, the prevalence of 6PPD-Q in human urine has accentuated the urgency for investigating its biological fate. To address this, we conducted a stable isotope-assisted high-resolution mass spectrometry (HRMS) assay to unveil the distribution, metabolism, excretion, and toxicokinetic properties of this contaminant in a mouse model. Mice were fed with a single dose of deuterated 6PPD-Q-d5 at human-relevant exposure levels. Results indicated that 6PPD-Q was quickly assimilated and distributed into bloodstream and main organs of mice, with the concentrations reaching peaks under 1 h following administration. Notably, 6PPD-Q was primarily distributed in the adipose tissue, marked by a significant Cmax (p < 0.05), followed by the kidney, lung, testis, liver, spleen, heart, and muscle. In addition, our measurement demonstrated that 6PPD-Q can penetrate the blood-brain barrier of mice within 0.5 h after exposure. The half-lives (t1/2) of 6PPD-Q in serum, lung, kidney, and spleen of mice were measured at 12.7 ± 0.3 h, 20.7 ± 1.4 h, 21.6 ± 5.3 h, and 20.6 ± 2.8 h, respectively. Using HRMS combined with isotope tracing techniques, two novel hydroxylated metabolites of 6PPD-Q in the mice liver were identified for the first time, which provides new insights into its rapid elimination in-vivo. Meanwhile, fecal excretion was identified as the main excretory pathway for 6PPD-Q and its hydroxylated metabolites. Collectively, our findings extend the current knowledge on the biological fate and exposure status of 6PPD-Q in a mouse model, which has the potential to be extrapolated to humans.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong
| | - Wei Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong
| | - Han Qiao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong
| | - Yi Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong
| | - Xiaoxiao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong
| | - Fuyue Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong
| | - Wenlan Liu
- The Central Laboratory, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong.
| |
Collapse
|
36
|
Grasse N, Seiwert B, Massei R, Scholz S, Fu Q, Reemtsma T. Uptake and Biotransformation of the Tire Rubber-derived Contaminants 6-PPD and 6-PPD Quinone in the Zebrafish Embryo ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15598-15607. [PMID: 37782849 PMCID: PMC10586378 DOI: 10.1021/acs.est.3c02819] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/28/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD) is a widely used antioxidant in tire rubber known to enter the aquatic environment via road runoff. The associated transformation product (TP) 6-PPD quinone (6-PPDQ) causes extreme acute toxicity in some fish species (e.g., coho salmon). To interpret the species-specific toxicity, information about biotransformation products of 6-PPDQ would be relevant. This study investigated toxicokinetics of 6-PPD and 6-PPDQ in the zebrafish embryo (ZFE) model. Over 96 h of exposure, 6-PPD and 6-PPDQ accumulated in the ZFE with concentration factors ranging from 140 to 2500 for 6-PPD and 70 to 220 for 6-PPDQ. A total of 22 TPs of 6-PPD and 12 TPs of 6-PPDQ were tentatively identified using liquid chromatography coupled to high-resolution mass spectrometry. After 96 h of exposure to 6-PPD, the TPs of 6-PPD comprised 47% of the total peak area (TPA), with 4-hydroxydiphenylamine being the most prominent in the ZFE. Upon 6-PPDQ exposure, >95% of 6-PPDQ taken up in the ZFE was biotransformed, with 6-PPDQ + O + glucuronide dominating (>80% of the TPA). Among other TPs of 6-PPD, a reactive N-phenyl-p-benzoquinone imine was found. The knowledge of TPs of 6-PPD and 6-PPDQ from this study may support biotransformation studies in other organisms.
Collapse
Affiliation(s)
- Nico Grasse
- Department
of Analytical Chemistry, Helmholtz-Centre
for Environmental Research—UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Bettina Seiwert
- Department
of Analytical Chemistry, Helmholtz-Centre
for Environmental Research—UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Riccardo Massei
- Department
of Bioanalytical Ecotoxicology, Helmholtz-Centre
for Environmental Research—UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Stefan Scholz
- Department
of Bioanalytical Ecotoxicology, Helmholtz-Centre
for Environmental Research—UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Qiuguo Fu
- Department
of Analytical Chemistry, Helmholtz-Centre
for Environmental Research—UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Department
of Analytical Chemistry, Helmholtz-Centre
for Environmental Research—UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Institute
for Analytical Chemistry, University of
Leipzig, Linnestrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
37
|
Zhao HN, Thomas SP, Zylka MJ, Dorrestein PC, Hu W. Urine Excretion, Organ Distribution, and Placental Transfer of 6PPD and 6PPD-Quinone in Mice and Potential Developmental Toxicity through Nuclear Receptor Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13429-13438. [PMID: 37642336 PMCID: PMC11648498 DOI: 10.1021/acs.est.3c05026] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The rubber antioxidant 6PPD has gained significant attention due to its highly toxic transformation product, 6PPD-quinone (6PPDQ). Despite their detection in urines of pregnant women, the placental transfer and developmental toxicity of 6PPD and 6PPDQ are unknown. Here, we treated C57Bl/6 mice with 4 mg/kg 6PPD or 6PPDQ to investigate their urine excretion and placental transfer. Female and male mice exhibited sex difference in excretion profiles of 6PPD and 6PPDQ. Urine concentrations of 6PPDQ were one order of magnitude lower than those of 6PPD, suggesting lower excretion and higher bioaccumulation of 6PPDQ. In pregnant mice treated with 6PPD or 6PPDQ from embryonic day 11.5 to 15.5, 6PPDQ showed ∼1.5-8 times higher concentrations than 6PPD in placenta, embryo body, and embryo brain, suggesting higher placental transfer of 6PPDQ. Using in vitro dual-luciferase reporter assays, we revealed that 6PPDQ activated the human retinoic acid receptor α (RARα) and retinoid X receptor α (RXRα) at concentrations as low as 0.3 μM, which was ∼10-fold higher than the concentrations detected in human urines. 6PPD activated the RXRα at concentrations as low as 1.2 μM. These results demonstrate the exposure risks of 6PPD and 6PPDQ during pregnancy and emphasize the need for further toxicological and epidemiological investigations.
Collapse
Affiliation(s)
- Haoqi Nina Zhao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Sydney P. Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Mark J. Zylka
- University of North Carolina Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, California 92093, United States
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California 92093, United States
| | - Wenxin Hu
- University of North Carolina Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
38
|
Botelho MT, Militão GG, Brinkmann M, Umbuzeiro GDA. Toxicity and mutagenicity studies of 6PPD-quinone in a marine invertebrate species and bacteria. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:335-341. [PMID: 37402651 DOI: 10.1002/em.22560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone), an oxidation product of the tire additive, 6PPD, has been associated with high mortality of salmonids (0.1 μg/L). The objective of this study was to determine the acute toxicity using neonates and mutagenicity (micronuclei in hemolymph of exposed adults) of 6PPD-quinone in the marine amphipod Parhyale hawaiensis. Also, we studied its mutagenicity in the Salmonella/microsome assay using five strains of Salmonella with and without metabolic system (rat liver S9, 5%). 6PPD-quinone did not present acute toxicity to P. hawaiensis from 31.25 to 500 μg/L. Micronuclei frequency increased after 96 h-exposure to 6PPD-quinone (250 and 500 μg/L) when compared to the negative control. 6PPD-quinone also showed a weak mutagenic effect for TA100 only in the presence of S9. We conclude that 6PPD-quinone is mutagenic to P. hawaiensis and weakly mutagenic to bacteria. Our work provides information for future risk assessment of the presence of 6PPD-quinone in the aquatic environment.
Collapse
Affiliation(s)
| | | | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
39
|
Chen X, He T, Yang X, Gan Y, Qing X, Wang J, Huang Y. Analysis, environmental occurrence, fate and potential toxicity of tire wear compounds 6PPD and 6PPD-quinone. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131245. [PMID: 36958160 DOI: 10.1016/j.jhazmat.2023.131245] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Tire wear compounds N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its derivative 6PPD-quinone have been considered as emerging pollutants and attracted much attention recently. As an antioxidant and antiozonant widely used, 6PPD would be released during the production or use of rubber-related products. Because of the mass production and wide use of rubber-related products, 6PPD and 6PPD-quinone have been identified to be ubiquitous in the environment. In this study, we firstly reviewed the current available literature on the analytical procedures, concentrations and distribution of 6PPD and 6PPD-quinone, and then investigated the potential toxic effects of these two compounds on aquatic organisms. Current studies have been mainly focused on the occurrence of 6PPD and 6PPD-quinone in dust and water, while available information on atmosphere, soil, sediments and organisms is limited. The fate and distribution of 6PPD and 6PPD-quinone would be influenced by environmental factors such as temperature, illumination, and storm events, etc. Although 6PPD and 6PPD-quinone have potential adverse effects on aquatic organisms, and 6PPD-quinone has species-specific toxicity, toxicological mechanisms of these compounds are still unclear. Based on the review and analysis of current studies, some suggestions for future research of 6PPD and 6PPD-quinone are given.
Collapse
Affiliation(s)
- Xiaoli Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Tao He
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinlu Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yijing Gan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xian Qing
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Jun Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Yumei Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|