1
|
Arke M, Massoud MA, Mourad YF, Jaffa MA, Habib RR. Environmental and Health Consequences of Pharmaceutical Disposal Methods: A Scoping Review. ENVIRONMENTAL MANAGEMENT 2025; 75:1388-1400. [PMID: 40249543 DOI: 10.1007/s00267-025-02167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
The global rise in pharmaceutical production and consumption has led to an increase in pharmaceutical waste, posing significant risks to both public health and the environment. Improper disposal methods contribute to environmental degradation, including disruptions to aquatic ecosystems and the spread of antimicrobial resistance. Despite these growing concerns, a comprehensive review of pharmaceutical waste management and disposal practices is still lacking. To address this gap, a scoping review was conducted, analyzing 4269 records from three databases (Medline OVID, Web of Science, and Embase) and grey literature, with 67 studies ultimately included. The initial records were identified through a comprehensive search across the aforementioned databases using a structured strategy based on three core concepts: medication waste, disposal methods, and environmental or human health impacts. This was followed by a two-stage screening process guided by the PCC framework and predefined inclusion criteria. The review aims to assess disposal practices and their impacts, identify research gaps, and guide future research toward effective strategies for managing pharmaceutical waste while protecting ecological balance and public health. The publications timeline shows increasing interest in the topic, particularly with a surge in studies during 2022 and 2023. The findings reveal a significant regulatory gap, especially in the Global South, where limited infrastructure and public awareness lead to reliance on household waste disposal. In contrast, medication take-back programs are more common in the Global North. This disparity underscores the urgent need for policy development. Addressing pharmaceutical waste effectively requires coordinated efforts from the pharmaceutical industry, healthcare providers, regulatory bodies, and local communities. Key strategies should include regulatory action, public education, technological innovation, and addressing issues like drug misuse and overconsumption, particularly of antibiotics, which contribute to antimicrobial resistance. A holistic approach is essential to mitigate both environmental and public health risks.
Collapse
Affiliation(s)
- Mohamad Arke
- Department of Environmental Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - May A Massoud
- Department of Environmental Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon.
| | - Yara F Mourad
- Department of Environmental Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Miran A Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Rima R Habib
- Department of Environmental Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
2
|
Vargas MB, Soto I, Mena F, Cortés P, Pokrant E, Trincado L, Maturana M, Flores A, Maddaleno A, Lapierre L, Cornejo J. Dissemination of Tylosin Residues in the Poultry Environment: Evaluating Litter and Droppings as Sources of Risk. Antibiotics (Basel) 2025; 14:477. [PMID: 40426543 DOI: 10.3390/antibiotics14050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction: Tylosin, a veterinary antimicrobial belonging to the macrolide family, is commonly used in the poultry industry. Residues generated from its use can be present in the litter and droppings of treated birds. Due to the diverse uses of poultry byproducts, such as fertilizing agricultural soils or incorporation into the diets of other animal species, there is a risk to public health, as the presence of antimicrobial residues favors the development of antimicrobial resistance, which is a global problem. Objective: This study aimed to evaluate the dissemination of tylosin residues from the litter and droppings of treated birds and untreated birds in a controlled broiler environment. Methods: Bird droppings and litter samples were collected and analyzed using HPLC-MS/MS to detect and quantify tylosin residues. Results: The residue concentrations detected in the dropping matrix only exceeded the Limits of Quantification (LOQ = 4 µg kg-1) in the treated group. The litter matrix had statistically significant differences between the study groups. The persistence of tylosin residues in the litter of birds at day 42 was 290.16 µg kg-1 in the treated group (A) and 9.35 µg kg-1 in the adjacent untreated group (B.1). Conclusions: The results indicate that exposure distance influences tylosin residue dissemination.
Collapse
Affiliation(s)
- María Belén Vargas
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
- Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Santiago 8820808, Chile
| | - Ignacia Soto
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| | - Francisco Mena
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| | - Paula Cortés
- Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Santiago 8820808, Chile
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| | - Ekaterina Pokrant
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| | - Lina Trincado
- Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Santiago 8820808, Chile
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| | - Matías Maturana
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| | - Andrés Flores
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| | - Aldo Maddaleno
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| | - Lisette Lapierre
- Laboratory of Bacterial Pathogens Diagnostic and Antimicrobial Resistance, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| | - Javiera Cornejo
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| |
Collapse
|
3
|
Shi Q, Shen D, Yates R, Chou C, Barajas A, Zhang J, Schlenk D, Gan J. Safe Reuse of Treated Wastewater: Accumulation of Contaminants of Emerging Concern in Field-Grown Vegetables under Different Irrigation Schemes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6261-6271. [PMID: 40113445 PMCID: PMC11966769 DOI: 10.1021/acs.est.4c13666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
The reuse of treated wastewater (TWW) for irrigation alleviates freshwater (FW) scarcity while supporting a circular economy. However, the potential human exposure to contaminants of emerging concern (CECs) through plant accumulation is a significant barrier. Currently, knowledge on CEC contamination of edible produce and effective mitigation strategies for the safe reuse of TWW is limited, particularly under field conditions. This study examined the accumulation of a representative set of CECs, including perfluoroalkyl and polyfluoroalkyl substances (PFAS), pharmaceuticals and personal care products, and tire wear particle (TWP) chemicals, in radish, lettuce, and tomato under three irrigation practices: FULL (continuous TWW irrigation), HALF (midseason switch from TWW to FW), and FW-only. Despite low PFAS concentrations (8.1-25.7 ng/L) in TWW, the plant uptake was consistently observed, including in tomato fruits. Alternating TWW with FW significantly reduced CEC accumulation in edible tissues, particularly for compounds with short half-lives, with reductions up to 82.4% even for persistent PFAS. For most CECs and plant species, edible tissue concentrations were similar between the HALF and FW treatments. These findings demonstrate the on-farm applicability of simple irrigation modifications to reduce food contamination and contribute to the promotion of safe reuse of nonconventional waters.
Collapse
Affiliation(s)
- Qingyang Shi
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Dahang Shen
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
- Institute
of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural
Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Rebecca Yates
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Catherine Chou
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Andrea Barajas
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Jingjing Zhang
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
- Department
of Pesticides, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Daniel Schlenk
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Jay Gan
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| |
Collapse
|
4
|
Gomes M, Ralph TJ, Humphries MS, Graves BP, Kobayashi T, Gore DB. Waterborne contaminants in high intensity agriculture and plant production: A review of on-site and downstream impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178084. [PMID: 39674148 DOI: 10.1016/j.scitotenv.2024.178084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Waterborne contaminants pose a significant risk to water quality and plant health in agricultural systems. This is particularly the case for relatively small-scale but intensive agricultural operations such as plant production nurseries that often rely on recycled irrigation water. The increasing global demand for plants requires improved water quality and more certainty around water availability, which may be difficult to predict and deliver due to variable and changing climate regimes. Production nurseries are moving to adopt best management practices that recycle water; however, the risks associated with waterborne contaminants of various types, including nutrients, pesticides, plant pathogens, micro-plastics, and toxic metals, are not well understood. We review and synthesise the physical and biogeochemical factors that contribute to waterborne contaminant risk, and the main types of contaminants that are likely to require management, at plant production nurseries. Catchment characteristics (i.e., topography, land use), hydroclimatic factors (i.e., storms, floods, droughts), and landscape hydrological and sediment connectivity influence surface runoff, sediment transport, and associated contaminant transfer and storage. High hydrological connectivity can increase the risk of contaminant transport from the surrounding landscape to nurseries, with potential negative impacts to water quality in reservoirs and in turn plant health. High connectivity may also increase the risk of contaminants (e.g., sediment, pesticides, and phytopathogens) being transferred from nursery farms into downstream waterways, with consequences for aquatic ecosystems. Like all intensive agricultural operations, nurseries need to consider sources of irrigation water, water treatment and management strategies, and catchment and hydroclimatic factors, to mitigate the spread of contaminants and reduce their impacts on both plant production and the surrounding environment. Further research is needed to quantify contaminant loads and transfer pathways in these agricultural systems, and to better understand the threshold levels of contaminants that adversely affect plant health and which may result in devastating economic losses.
Collapse
Affiliation(s)
- Megan Gomes
- School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa; School of Natural Sciences, Macquarie University, NSW, Australia.
| | - Timothy J Ralph
- School of Natural Sciences, Macquarie University, NSW, Australia
| | - Marc S Humphries
- School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Bradley P Graves
- School of Natural Sciences, Macquarie University, NSW, Australia
| | - Tsuyoshi Kobayashi
- Science and Insights Division, Department of Climate Change, Energy, the Environment and Water, NSW, Australia
| | - Damian B Gore
- School of Natural Sciences, Macquarie University, NSW, Australia
| |
Collapse
|
5
|
Pan B, Tian H, Pan B, Zhong T, Xin M, Ding J, Wei J, Huang HJ, Tang JQ, Zhang F, Feng NX, Mo CH. Investigating the environmental dynamics of emerging pollutants in response to global climate change: Insights from bibliometrics-based visualization analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177758. [PMID: 39616913 DOI: 10.1016/j.scitotenv.2024.177758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024]
Abstract
The environmental dynamics of emerging pollutants were profoundly influenced by global climate change, attracting widespread attention to this complex interaction. However, single studies or reviews were insufficient to grasp, clarify, and predict the evolutionary characteristics and coupling patterns of emerging pollutants under global climate change. Here, 2389 research articles collected from the Web of Science Core Collection database for the period 2000-2023 were analyzed using systematic bibliometric visual analysis software. Results suggested a rapid growth trend in this field study, particularly accelerating after 2015. The United States, China, the United Kingdom, and Spain led in the volume of publications, forming a multidisciplinary research network centered on environmental science. Wastewater treatment, personal care products, pharmaceuticals, and heavy metals were identified as current research hotspots, with climate change emerging as the most prominent keyword. Research focus gradually shifted from single pollutants to multi-pollutant composite effects, from local issues to global-scale assessments, and from phenomenon description to mechanism analysis and risk evaluation. It is concluded that climate change is reshaping the environmental behaviors and ecological risks of emerging pollutants, and multidisciplinary, multi-scale research methods are urgent need. Future research is suggested to strengthen interdisciplinary collaboration, integrate climate and pollutant migration models, and investigate impacts of extreme climate events in depth.
Collapse
Affiliation(s)
- Bogui Pan
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Hong Tian
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Boyou Pan
- Department of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ting Zhong
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Miao Xin
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jinhua Ding
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Junyu Wei
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Jia Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing-Qian Tang
- Department of Subject Service and Consultation, Jinan University Library, Guangzhou 510632, China
| | - Fengtao Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Nai-Xian Feng
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Salahshoori I, Namayandeh Jorabchi M, Sadat Mirnezami SM, Golriz M, Darestani M, Barzin J, Khonakdar HA. Exploring the potential of beta-cyclodextrin-based MIL-101(Cr) for pharmaceutical removal from wastewater: A combined density functional theory and molecular simulations study. ENVIRONMENTAL RESEARCH 2024; 263:120189. [PMID: 39433238 DOI: 10.1016/j.envres.2024.120189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Pharmaceutical contaminants pose significant risks to ecosystems and human health, necessitating effective removal strategies. This research focuses on developing advanced adsorbents for removing pharmaceutical pollutants from the environment. Metal-organic frameworks (MOFs), specifically MIL-101(Cr) functionalized with biodegradable beta-cyclodextrin (β-CDex), were investigated as potential nanocomposite adsorbents for the removal of ketorolac (KTRK), naproxen (NPXN), and tramadol (TRML). The study employed molecular simulations and density functional theory (DFT) calculations to explore the interactions between the pollutants and adsorbents. Analyses of DFT results, including electrostatic potential, ionization energy, density of states, and molecular orbital analysis, provided insights into the reactivity of pollutants and adsorbents. Additionally, the structural properties of the adsorbents, such as fractional free volume, radius of gyration, and system energies, were thoroughly examined. Molecular dynamics (MD) and Monte Carlo (MC) simulations were used to evaluate the adsorption capacities of MIL-101(Cr) for the target pharmaceutical pollutants. The results demonstrated the superior adsorption performance of the nanocomposite adsorbent, particularly for KTRK, with an adsorption energy of -1934 kcal/mol, compared to the pristine MIL-101(Cr), which had an adsorption energy of -1916 kcal/mol. This enhanced adsorption is attributed to the optimal molecular fit, guest-host solid interactions, and the selective encapsulation capabilities of β-CDex. This research highlights the potential of MOF-based nanocomposites as effective and sustainable solutions for pharmaceutical pollution. By advancing the understanding of molecular interactions through simulations, this study contributes to developing innovative adsorbents for wastewater treatment and the protection of water resources.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran.
| | | | | | - Mahdi Golriz
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
| | - Mariam Darestani
- School of Engineering, Design and Built Environment, Western Sydney University, Australia
| | - Jalal Barzin
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
| |
Collapse
|
7
|
Cao Q, Liu C, Li Y, Qin Y, Wang C, Wang T. The underlying mechanisms of oxytetracycline degradation mediated by gut microbial proteins and metabolites in Hermetia illucens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174224. [PMID: 38914334 DOI: 10.1016/j.scitotenv.2024.174224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Hermetia illucens larvae can enhance the degradation of oxytetracycline (OTC) through its biotransformation. However, the underlying mechanisms mediated by gut metabolites and proteins are unclear. To gain further insights, the kinetics of OTC degradation, the functional structures of gut bacterial communities, proteins, and metabolites were investigated. An availability-adjusted first-order model effectively evaluated OTC degradation kinetics, with degradation half-lives of 4.18 and 21.71 days for OTC degradation with and without larval biotransformation, respectively. Dominant bacteria in the larval guts were Enterococcus, Psychrobacter, Providencia, Myroides, Enterobacteriaceae, and Lactobacillales. OTC exposure led to significant differential expression of proteins, with functional classification revealing involvement in digestion, transformation, and adaptability to environmental stress. Upregulated proteins, such as aromatic ring hydroxylase, acted as oxidoreductases modifying the chemical structure of OTC. Unique metabolites, aclarubicin and sancycline identified were possible OTC metabolic intermediates. Correlation analysis revealed significant interdependence between gut bacteria, metabolites, and proteins. These findings reveal a synergistic mechanism involving gut microbial metabolism and enzyme structure that drives the rapid degradation of OTC and facilitates the engineering applications of bioremediation.
Collapse
Affiliation(s)
- Qingcheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Cuncheng Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| | - Yun Li
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yuanhang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| |
Collapse
|
8
|
Pérez-Lucas G, Navarro S. How Pharmaceutical Residues Occur, Behave, and Affect the Soil Environment. J Xenobiot 2024; 14:1343-1377. [PMID: 39449417 PMCID: PMC11503385 DOI: 10.3390/jox14040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Many pharmaceuticals (PhMs), compounds for the treatment or prevention of diseases in humans and animals, have been identified as pollutants of emerging concern (PECs) due to their wide environmental distribution and potential adverse impact on nontarget organisms and populations. They are often found at significant levels in soils due to the continuous release of effluent and sludge from wastewater treatment plants (WWTPs), the release of which occurs much faster than the removal of PhMs. Although they are generally present at low environmental concentrations, conventional wastewater treatment cannot successfully remove PhMs from influent streams or biosolids. In addition, the soil application of animal manure can result in the pollution of soil, surface water, and groundwater with PhMs through surface runoff and leaching. In arid and semiarid regions, irrigation with reclaimed wastewater and the soil application of biosolids are usual agricultural practices, resulting in the distribution of a wide number of PhMs in agricultural soils. The ability to accurately study the fate of PhMs in soils is critical for careful risk evaluation associated with wastewater reuse or biosolid return to the environment. The behavior and fate of PhMs in soils are determined by a number of processes, including adsorption/desorption (accumulation) to soil colloids, biotic (biodegradation) and abiotic (chemical and photochemical degradation) degradation, and transfer (movement) through the soil profile. The sorption/desorption of PhMs in soils is the main determinant of the amount of organic chemicals taken up by plant roots. The magnitude of this process depends on several factors, such as crop type, the physicochemical properties of the compound, environmental properties, and soil-plant characteristics. PhMs are assumed to be readily bioavailable in soil solutions for uptake by plants, and such solutions act as carriers to transport PhMs into plants. Determining microbial responses under exposure conditions can assist in elucidating the impact of PhMs on soil microbial activity and community size. For all of the above reasons, soil remediation is critical when soil pollutants threaten the environment.
Collapse
Affiliation(s)
| | - Simón Navarro
- Department of Agricultural Chemistry, Geology and Pedology, School of Chemistry, University of Murcia, Campus Universitario de Espinardo, E-30100 Murcia, Spain;
| |
Collapse
|
9
|
Ferreyra-Suarez D, García-Depraect O, Castro-Muñoz R. A review on fungal-based biopesticides and biofertilizers production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116945. [PMID: 39222612 DOI: 10.1016/j.ecoenv.2024.116945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The escalating use of inorganic fertilizers and pesticides to boost crop production has led to the depletion of natural resources, contamination of water sources, and environmental crises. In response, the scientific community is exploring eco-friendly alternatives, such as fungal-based biofertilizers and biopesticides, which have proven effectiveness in enhancing plant health and growth while sustainably managing plant diseases and pests. This review article examines the production methodologies of these bioproducts, highlighting their role in sustainable agriculture and advancing our understanding of soil microorganisms. Despite their increasing demand, their global market presence remains limited compared to traditional chemical counterparts. The article addresses: 1) the production of biofertilizers and biopesticides, 2) their contribution to crop productivity, 3) their environmental impact and regulations, and 4) current production technologies. This comprehensive approach aims to promote the transition towards more sustainable agricultural practices.
Collapse
Affiliation(s)
- Dante Ferreyra-Suarez
- Pilgrim's Pride, S. de R.L. de C.V., Carretera a Cd. Juarez km 20.5, Gomez Palacio, Durango, Mexico
| | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Roberto Castro-Muñoz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
10
|
Mosharaf MK, Gomes RL, Cook S, Alam MS, Rasmusssen A. Wastewater reuse and pharmaceutical pollution in agriculture: Uptake, transport, accumulation and metabolism of pharmaceutical pollutants within plants. CHEMOSPHERE 2024; 364:143055. [PMID: 39127189 DOI: 10.1016/j.chemosphere.2024.143055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The presence of pharmaceutical pollutants in water sources has become a growing concern due to its potential impacts on human health and other organisms. The physicochemical properties of pharmaceuticals based on their intended therapeutical application, which include antibiotics, hormones, analgesics, and antidepressants, is quite diverse. Their presence in wastewater, sewerage water, surface water, ground water and even in drinking water is reported by many researchers throughout the world. Human exposure to these pollutants through drinking water or consumption of aquatic and terrestrial organisms has raised concerns about potential adverse effects, such as endocrine disruption, antibiotic resistance, and developmental abnormalities. Once in the environment, they can persist, undergo transformation, or degrade, leading to a complex mixture of contaminants. Application of treated wastewater, compost, manures or biosolids in agricultural fields introduce pharmaceutical pollutants in the environment. As pharmaceuticals are diverse in nature, significant differences are observed during their uptake and accumulation in plants. While there have been extensive studies on aquatic ecosystems, the effect on agricultural land is more disparate. As of now, there are few reports available on the potential of plant uptake and transportation of pharmaceuticals within and between plant organs. This review summarizes the occurrence of pharmaceuticals in aquatic water bodies at a range of concentrations and their uptake, accumulation, and transport within plant tissues. Research gaps on pharmaceutical pollutants' specific effect on plant growth and future research scopes are highlighted. The factors affecting uptake of pharmaceuticals including hydrophobicity, ionization, physicochemical properties (pKa, logKow, pH, Henry's law constant) are discussed. Finally, metabolism of pharmaceuticals within plant cells through metabolism phase enzymes and plant responses to pharmaceuticals are reviewed.
Collapse
Affiliation(s)
- Md Khaled Mosharaf
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom; Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Rachel L Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, NG7 2RD, United Kingdom
| | - Sarah Cook
- Water and Environmental Engineering, School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Mohammed S Alam
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom
| | - Amanda Rasmusssen
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom
| |
Collapse
|
11
|
Hamdi S, Míguez-González A, Cela-Dablanca R, Barreiro A, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez-Rodríguez E. Natural and modified clays as low-cost and ecofriendly materials to remove salinomycin from environmental compartments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122158. [PMID: 39151338 DOI: 10.1016/j.jenvman.2024.122158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Antibiotics in the environment represent a substantial pollution threat. Among these emerging pollutants, ionophore anticoccidials are of special concern due to their potential ecological impact, persistence in the environment, and role in promoting antimicrobial resistance. To investigate the adsorption/desorption of the ionophore antibiotic salinomycin (SAL) on/from raw and modified clay adsorbents, batch-type experiments were performed using 0.5 g of clay adsorbent mixed with 10 mL of increasing doses of SAL solutions for each sample, at room temperature, with a contact time of 24 h. All measurements were conducted in triplicate employing HPLC-UV equipment. Three different natural (raw) and modified clay samples were investigated, which were denominated as follows: AM (with 51% calcite), HJ1 (with 32% kaolinite), and HJ2 (with 32% microcline). The experiments were carried out using three pH ranges: between 3.33 and 4.49 for acid-activated clays, 8.39-9.08 for natural clays, and 9.99-10.18 for base-activated clays. The results indicated that, when low concentrations of the antibiotic were added (from 5 to 20 μmol L-1), more than 98% of SAL was strongly adsorbed by almost all clays, irrespective of the physicochemical and mineralogical composition of the clays or their pH values. When higher SAL concentrations were added (40 and 100 μmol L-1), the adsorption of the antibiotic showed pH-dependent ligand adsorption mechanisms: (i) highly decreased as the pH raised (for the raw and base-activated AM and HJ1 clays), while (ii) slightly decreased as the pH decreased (on the acid-activated clays). Among the adsorption equations tested (Freundlich, Langmuir, and Linear), the Freundlich model was identified as the most suitable for fitting the data corresponding to SAL adsorption onto the studied clays. SAL desorption from clays was consistently below 10% for all the clay samples, especially for the acid-activated clays, due to cation bridging adsorption mechanisms, when the lowest concentration of the antibiotic was added. Additionally, it should be stressed that the desorption values can increase with rising SAL concentrations, but they always remain below 20%. Overall, the clays here investigated (both raw and modified) provide a cost-effective and efficient alternative for the removal of the veterinary anticoccidial antibiotic SAL, with potential positive and practical implications in environmental remediation and antibiotic pollution management, particularly by serving as amendments for contaminated soils to enhance their adsorption capacities against SAL. Additionally, using these clays in water treatment processes could improve the efficiency of mitigating antibiotic contamination in aquatic systems.
Collapse
Affiliation(s)
- Samiha Hamdi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain; Laboratory of Nutrition - Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne 5019, Monastir, Tunisia
| | - Ainoa Míguez-González
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Raquel Cela-Dablanca
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Ana Barreiro
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain.
| | - María J Fernández-Sanjurjo
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Avelino Núñez-Delgado
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
12
|
Singh A, Lalung J, Ivshina I, Kostova I. Editorial: Pharmaceutically active micropollutants - how serious is the problem and is there a microbial way out? Front Microbiol 2024; 15:1466334. [PMID: 39282568 PMCID: PMC11393639 DOI: 10.3389/fmicb.2024.1466334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Affiliation(s)
- Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Japareng Lalung
- School of Industrial Technology, University Sains Malaysia, George Town, Malaysia
| | - Irina Ivshina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State National Research University, Perm, Russia
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, Sofia, Bulgaria
| |
Collapse
|
13
|
Zheng J, Sun L, Xue Y, Ye L, Fan Q. Construction of Pillared-Layer Metal-Organic Frameworks as an All-Visible-Light Switchable Photocatalyst for Aqueous Cr(VI) Reduction. Inorg Chem 2024; 63:15841-15850. [PMID: 39136643 DOI: 10.1021/acs.inorgchem.4c01946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Recently, two-dimensional metal-organic frameworks that are photoactive have shown great potential for efficiently converting solar energy into chemical energy. In this work, we successfully synthesized and designed two M2-MOFs ([Cu(L1)((CH3)2NH)]n (Cu-MOF) and [Zn(L1)(CH3)2NH)]n (Zn-MOF), H2L1 = 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic acid). Structural analysis suggests that the five-coordinated M(II) ion is surrounded by four oxygen ions from two ligands and one nitrogen atom from one dimethylamine molecule. The ligand spacer acts as a bridge between two SBUs and forms a 2D layer with rhomboid windows. These moieties are arranged in a staggered ABAB pattern, which likely aids in exfoliation. The UV-vis diffuse reflectance spectra (DRS) test shows that when the metal center in the MOF framework is replaced with Cu(II) ions, the light absorption range covers 200-1100 nm, which is much larger than the light absorption range of Zn-MOF. Moreover, the photoelectric current, electrochemical impedance spectra (EIS), and Mott-Schottky tests all indicate that Cu-MOF has better photoelectric properties. When applied to the photocatalytic reduction of Cr(VI), Cu-MOF and Zn-MOF can completely reduce Cr(VI) within 100 min under 450 nm LED light irradiation. Under sunlight irradiation, Cu-MOF can completely reduce Cr(VI) within 40 min, achieving the removal of Cr(VI) ions, which is much faster than the rate of Cr(VI) removal by Zn-MOF.
Collapse
Affiliation(s)
- Juan Zheng
- Shaanxi Environmental Investigation and Assessment Center, Xi'an 712099, China
| | - Luying Sun
- Shaanxi Environmental Investigation and Assessment Center, Xi'an 712099, China
| | - Yao Xue
- Shaanxi Environmental Investigation and Assessment Center, Xi'an 712099, China
| | - Lingfeng Ye
- Shaanxi Beizhan Anhuan Engineering Technology Co., Ltd, Xi'an 712099, China
| | - Qijuan Fan
- Zhongsheng Environmental Science & Technology Development Co., LTD, Xi'an 712099, China
| |
Collapse
|
14
|
Wang F, Xiang L, Sze-Yin Leung K, Elsner M, Zhang Y, Guo Y, Pan B, Sun H, An T, Ying G, Brooks BW, Hou D, Helbling DE, Sun J, Qiu H, Vogel TM, Zhang W, Gao Y, Simpson MJ, Luo Y, Chang SX, Su G, Wong BM, Fu TM, Zhu D, Jobst KJ, Ge C, Coulon F, Harindintwali JD, Zeng X, Wang H, Fu Y, Wei Z, Lohmann R, Chen C, Song Y, Sanchez-Cid C, Wang Y, El-Naggar A, Yao Y, Huang Y, Cheuk-Fung Law J, Gu C, Shen H, Gao Y, Qin C, Li H, Zhang T, Corcoll N, Liu M, Alessi DS, Li H, Brandt KK, Pico Y, Gu C, Guo J, Su J, Corvini P, Ye M, Rocha-Santos T, He H, Yang Y, Tong M, Zhang W, Suanon F, Brahushi F, Wang Z, Hashsham SA, Virta M, Yuan Q, Jiang G, Tremblay LA, Bu Q, Wu J, Peijnenburg W, Topp E, Cao X, Jiang X, Zheng M, Zhang T, Luo Y, Zhu L, Li X, Barceló D, Chen J, Xing B, Amelung W, Cai Z, Naidu R, Shen Q, Pawliszyn J, Zhu YG, Schaeffer A, Rillig MC, Wu F, Yu G, Tiedje JM. Emerging contaminants: A One Health perspective. Innovation (N Y) 2024; 5:100612. [PMID: 38756954 PMCID: PMC11096751 DOI: 10.1016/j.xinn.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 05/18/2024] Open
Abstract
Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China
| | - Martin Elsner
- Technical University of Munich, TUM School of Natural Sciences, Institute of Hydrochemistry, 85748 Garching, Germany
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangguo Ying
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Bryan W. Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX, USA
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Damian E. Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Timothy M. Vogel
- Laboratoire d’Ecologie Microbienne, Universite Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Myrna J. Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bryan M. Wong
- Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, CA, USA
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Karl J. Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John’s, NL A1C 5S7, Canada
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiankui Zeng
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Haijun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Changer Chen
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Concepcion Sanchez-Cid
- Environmental Microbial Genomics, UMR 5005 Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ali El-Naggar
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanran Huang
- Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | | | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Natàlia Corcoll
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Daniel S. Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Sino-Danish Center (SDC), Beijing, China
| | - Yolanda Pico
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre - CIDE (CSIC-UV-GV), Road CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Philippe Corvini
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Huan He
- Jiangsu Engineering Laboratory of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weina Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fidèle Suanon
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Laboratory of Physical Chemistry, Materials and Molecular Modeling (LCP3M), University of Abomey-Calavi, Republic of Benin, Cotonou 01 BP 526, Benin
| | - Ferdi Brahushi
- Department of Environment and Natural Resources, Agricultural University of Tirana, 1029 Tirana, Albania
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Syed A. Hashsham
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Marko Virta
- Department of Microbiology, University of Helsinki, 00010 Helsinki, Finland
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Louis A. Tremblay
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa 1142, New Zealand
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing 100083, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Willie Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, 3720 BA Bilthoven, The Netherlands
- Leiden University, Center for Environmental Studies, Leiden, the Netherlands
| | - Edward Topp
- Agroecology Mixed Research Unit, INRAE, 17 rue Sully, 21065 Dijon Cedex, France
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Taolin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120 Almeria, Spain
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, 53115 Bonn, Germany
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yong-guan Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias C. Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China
| | - James M. Tiedje
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Ghamarpoor R, Fallah A, Jamshidi M. A Review of Synthesis Methods, Modifications, and Mechanisms of ZnO/TiO 2-Based Photocatalysts for Photodegradation of Contaminants. ACS OMEGA 2024; 9:25457-25492. [PMID: 38911730 PMCID: PMC11191136 DOI: 10.1021/acsomega.3c08717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
The environment being surrounded by accumulated durable waste organic compounds has become a critical crisis for human societies. Generally, organic effluents of industrial plants released into the water source and air are removed by some physical and chemical processes. Utilizing photocatalysts as cost-effective, accessible, thermally/mechanically stable, nontoxic, reusable, and powerful UV-absorber compounds creates a new gateway toward the removal of dissolved, suspended, and gaseous pollutants even in trace amounts. TiO2 and ZnO are two prevalent photocatalysts in the field of removing contaminants from wastewater and air. Structural modification of the photocatalysts with metals, nonmetals, metal ions, and other semiconductors reduces the band gap energy and agglomeration and increases the affinity toward organic compounds in the composite structures to expand their usability on an industrial scale. This increases the extent of light absorbance and improves the photocatalytic efficiency. Selecting a suitable synthesis method is necessary to prepare a target photocatalyst with distinct properties such as high specific surface area, numerous surface functional groups, and an appropriate crystalline phase. In this Review, significant parameters for the synthesis and modification of TiO2- and ZnO-based photocatalysts are discussed in detail. Several proposed mechanistic routes according to photocatalytic composite structures are provided. Some electrochemical analyses using charge carrier trapping agents and delayed recombination help to plot mechanistic routes according to the direction of photoexcited species (electron-hole pairs) and design more effective photocatalytic processes in terms of cost-effective photocatalysts, saving time and increasing productivity.
Collapse
Affiliation(s)
- Reza Ghamarpoor
- Department
of Petroleum Engineering, Faculty of Engineering, University of Garmsar, Garmsar 3588115589, Iran
- Constructional
Polymers and Composites Research Lab, School of Chemical, Petroleum
and Gas Engineering, Iran University of
Science and Technology (IUST), Tehran 1311416846, Iran
| | - Akram Fallah
- Department
of Chemical Technologies, Iranian Research
Organization for Science and Technology (IROST), Tehran 3313193685, Iran
| | - Masoud Jamshidi
- Constructional
Polymers and Composites Research Lab, School of Chemical, Petroleum
and Gas Engineering, Iran University of
Science and Technology (IUST), Tehran 1311416846, Iran
| |
Collapse
|
16
|
Salahshoori I, Vaziri A, Jahanmardi R, Mohseni MM, Khonakdar HA. Molecular Simulation Studies of Pharmaceutical Pollutant Removal (Rosuvastatin and Simvastatin) Using Novel Modified-MOF Nanostructures (UIO-66, UIO-66/Chitosan, and UIO-66/Oxidized Chitosan). ACS APPLIED MATERIALS & INTERFACES 2024; 16:26685-26712. [PMID: 38722359 DOI: 10.1021/acsami.4c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The ubiquitous presence of pharmaceutical pollutants in the environment significantly threatens human health and aquatic ecosystems. Conventional wastewater treatment processes often fall short of effectively removing these emerging contaminants. Therefore, the development of high-performance adsorbents is crucial for environmental remediation. This research utilizes molecular simulation to explore the potential of novel modified metal-organic frameworks (MOFs) in pharmaceutical pollutant removal, paving the way for the design of efficient wastewater treatment strategies. Utilizing UIO-66, a robust MOF, as the base material, we developed UIO-66 functionalized with chitosan (CHI) and oxidized chitosan (OCHI). These modified MOFs' physical and chemical properties were first investigated through various characterization techniques. Subsequently, molecular dynamics simulation (MDS) and Monte Carlo simulation (MCS) were employed to elucidate the adsorption mechanisms of rosuvastatin (ROSU) and simvastatin (SIMV), two prevalent pharmaceutical pollutants, onto these nanostructures. MCS calculations demonstrated a significant enhancement in the adsorption energy by incorporating CHI and OCHI into UIO-66. This increased ROSU from -14,522 to -16,459 kcal/mol and SIMV from -17,652 to -21,207 kcal/mol. Moreover, MDS reveals ROSU rejection rates in neat UIO-66 to be at 40%, rising to 60 and 70% with CHI and OCHI. Accumulation rates increase from 4 Å in UIO-66 to 6 and 9 Å in UIO-CHI and UIO-OCHI. Concentration analysis shows SIMV rejection surges from 50 to 90%, with accumulation rates increasing from 6 to 11 Å with CHI and OCHI in UIO-66. Functionalizing UIO-66 with CHI and OCHI significantly enhanced the adsorption capacity and selectivity for ROSU and SIMV. Abundant hydroxyl and amino groups facilitated strong interactions, improving performance over that of unmodified UIO-66. Surface functionalization plays a vital role in customizing the MOFs for pharmaceutical pollutant removal. These insights guide next-gen adsorbent development, offering high efficiency and selectivity for wastewater treatment.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Ali Vaziri
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Reza Jahanmardi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Mehdi Moayed Mohseni
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran 14977-13115, Iran
| |
Collapse
|
17
|
Wang J, Zhu Y, Ye B, Dun J, Yu X, Sui Q. Absorption and translocation of selected pharmaceuticals in Pistia stratiotes: Spatial distribution analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134028. [PMID: 38493630 DOI: 10.1016/j.jhazmat.2024.134028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Phytoremediation can eliminate pharmaceuticals from aquatic environments through absorption; however, understanding of absorption and transport processes in plants remains limited. In this study, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) method was developed to explore the absorption and translocation mechanisms of seven common pharmaceuticals in Pistia stratiotes. Results showed that 2,3-dicyanohydroquinone, an infrequently used matrix, exhibited outstanding performance in MALDI-MSI analysis, producing the highest signal intensity for four of the seven pharmaceuticals. Region of Interest (ROI) analysis revealed that charge speciation of pharmaceuticals significantly influenced their ability to enter vascular bundle. Neutral and positively charged pharmaceuticals easily entered vascular bundle, while negatively charged pharmaceuticals faced difficulty. ROI results for neutral and negatively charged pharmaceuticals exhibited positive correlation with their transfer factor values, indicating that their translocation ability from root to shoot was related to their capacity to enter vascular bundle. However, no correlation was observed for positively charged pharmaceuticals, suggesting that these compounds, upon entering vascular bundle, encountered difficulties in upward translocation through the xylem. This study introduces an innovative approach and offers novel insights into the retention and migration of pharmaceuticals in plant tissues, aiming to enhance the understanding of pharmaceutical accumulation in plants. ENVIRONMENTAL IMPLICATION: Pharmaceuticals in aquatic environment can inflict detrimental effects on both human health and ecosystem. Phytoremediation can remove pharmaceuticals from aquatic environments through absorption. However, our understanding of absorption and transportation of pharmaceuticals in plants remains limited. This study developed a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) method for pharmaceuticals in plant roots, and to explore the absorption and translocation mechanisms of pharmaceuticals. The study offers direct evidence of differences in accumulation behavior of pharmaceuticals in plants, providing valuable insights for targeted and effective strategies in using plants for remediating the aquatic ecosystem from pharmaceuticals.
Collapse
Affiliation(s)
- Jiaxi Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiwen Zhu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Beibei Ye
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junling Dun
- Analytical Applications Center, Shimadzu (China) Co., Ltd., Shanghai 200233, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
18
|
Pan W, Zhou Y, Xie H, Liang L, Zou G, Du L, Guo X. Plant and microbial response in constructed wetland treating tetracycline antibiotic polluted water: Evaluating the effects of microplastic size and concentration. CHEMOSPHERE 2024; 353:141553. [PMID: 38412891 DOI: 10.1016/j.chemosphere.2024.141553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
Microplastics (MPs) and antibiotics are novel water pollutants that have attracted increasing attention. Constructed wetlands (CWs) are widely applied treating various types of polluted water. How these two new pollutants affect plants and microorganisms in CWs, especially deciphering the unknown roles of MPs size and concentration, is of great essential. Here, five CW treatments with submerged macrophyte Myriophyllum aquaticum were established to treat oxytetracycline (OTC) antibiotic-polluted water. The effects of polystyrene (PS) nanoplastics (NPs) (700 nm) and MPs (90-110 μm) on plant and microbial communities at 10 μg/L and 1 mg/L, respectively, were systematically evaluated. PS reduced the nitrogen and phosphorus removal efficiencies and inhibited OTC removal. Low doses (10 μg/L) of NPs and high doses (1 mg/L) of MPs had the greatest effects on plant and microbial responses. The overall effect of MPs was greater than that of NPs. Compared with high NPs concentration (1 mg/L), low concentrations (10 μg/L) had higher catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) content. However, the activity and content of MPs at low concentrations (10 μg/L) were lower than those at high concentrations (1 mg/L). The coexistence of OTC and MPs/NPs decreased the microbial diversity and abundance. Low doses of NPs and high doses of MPs decreased the relative abundance of Abditibacteriota, Deinococccota, and Zixibacteria. Redundancy and network analyses revealed a strong correlation between pollutant removal and plant and microbial responses. NH4+-N and OTC removal was positively and negatively correlated with CAT, SOD, and MDA content, respectively. MDA positively correlated to chlorophyll content, whereas SOD showed a negative correlation with Chloroflexi. This study highlighted the scale effect of MPs in wastewater treatment via CWs. It enhances our understanding of the response of plants and microorganisms to the remediation of water co-polluted with MPs and antibiotics.
Collapse
Affiliation(s)
- Weiliang Pan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Yi Zhou
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Huimin Xie
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lin Liang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lianfeng Du
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xuan Guo
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China.
| |
Collapse
|
19
|
Nguyen MK, Lin C, Bui XT, Rakib MRJ, Nguyen HL, Truong QM, Hoang HG, Tran HT, Malafaia G, Idris AM. Occurrence and fate of pharmaceutical pollutants in wastewater: Insights on ecotoxicity, health risk, and state-of-the-art removal. CHEMOSPHERE 2024; 354:141678. [PMID: 38485003 DOI: 10.1016/j.chemosphere.2024.141678] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/18/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
Pharmaceutical active compound (PhAC) residues are considered an emerging micropollutant that enters the aquatic environment and causes harmful ecotoxicity. The significant sources of PhACs in the environment include the pharmaceutical industry, hospital streams, and agricultural wastes (animal husbandry). Recent investigations demonstrated that wastewater treatment plants (WWTPs) are an important source of PhACs discharging ecosystems. Several commonly reported that PhACs are detected in a range level from ng L-1 to μg L-1 concentration in WWTP effluents. These compounds can have acute and chronic adverse impacts on natural wildlife, including flora and fauna. The approaches for PhAC removals in WWTPs include bioremediation, adsorption (e.g., biochar, chitosan, and graphene), and advanced oxidation processes (AOPs). Overall, adsorption and AOPs can effectively remove PhACs from wastewater aided by oxidizing radicals. Heterogeneous photocatalysis has also proved to be a sustainable solution. Bioremediation approaches such as membrane bioreactors (MBRs), constructed wetlands (CWs), and microalgal-based systems were applied to minimize pharmaceutical pollution. Noteworthy, applying MBRs has illustrated high removal efficiencies of up to 99%, promising prospective future. However, WWTPs should be combined with advanced solutions, e.g., AOPs/photodegradation, microalgae-bacteria consortia, etc., to treat and minimize their accumulation. More effective and novel technologies (e.g., new generation bioremediation) for PhAC degradation must be investigated and specially designed for a low-cost and full-scale. Investigating green and eco-friendly PhACs with advantages, e.g., low persistence, no bioaccumulation, less or non-toxicity, and environmentally friendly, is also necessary.
Collapse
Affiliation(s)
- Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam
| | - Md Refat Jahan Rakib
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Quoc-Minh Truong
- Faculty of Management Science, Thu Dau Mot University, Binh Duong 75000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 76100, Viet Nam
| | - Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Applied Technology, School of Engineering and Technology, Van Lang University, Ho Chi Minh City 700000, Viet Nam
| | - Guilherme Malafaia
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529 Abha, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
20
|
Itzhari D, Shuai W, Hartmann EM, Ronen Z. Heterogeneous Antibiotic Resistance Gene Removal Impedes Evaluation of Constructed Wetlands for Effective Greywater Treatment. Antibiotics (Basel) 2024; 13:315. [PMID: 38666991 PMCID: PMC11047525 DOI: 10.3390/antibiotics13040315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Microorganisms carrying antimicrobial resistance genes are often found in greywater. As the reuse of greywater becomes increasingly needed, it is imperative to determine how greywater treatment impacts antimicrobial resistance genes (ARGs). Using qPCR and SmartChip™ qPCR, we characterized ARG patterns in greywater microbial communities before, during, and after treatment by a recirculating vertical flow constructed wetland. In parallel, we examined the impact of greywater-treated irrigation on soil, including the occurrence of emerging micropollutants and the taxonomic and ARG compositions of microbial communities. Most ARGs in raw greywater are removed efficiently during the winter season, while some ARGs in the effluents increase in summer. SmartChip™ qPCR revealed the presence of ARGs, such as tetracycline and beta-lactam resistance genes, in both raw and treated greywater, but most abundantly in the filter bed. It also showed that aminoglycoside and vancomycin gene abundances significantly increased after treatment. In the irrigated soil, the type of water (potable or treated greywater) had no specific impact on the total bacterial abundance (16S rRNA gene). No overlapping ARGs were found between treated greywater and greywater-irrigated soil. This study indicates ARG abundance and richness increased after treatment, possibly due to the concentration effects of the filter beds.
Collapse
Affiliation(s)
- Daniella Itzhari
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beersheba 8499000, Israel;
| | - Weitao Shuai
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA; (W.S.); (E.M.H.)
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA; (W.S.); (E.M.H.)
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Division of Pulmonary Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zeev Ronen
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beersheba 8499000, Israel;
| |
Collapse
|
21
|
Bilal M, Singh AK, Iqbal HMN, Zdarta J, Chrobok A, Jesionowski T. Enzyme-linked carbon nanotubes as biocatalytic tools to degrade and mitigate environmental pollutants. ENVIRONMENTAL RESEARCH 2024; 241:117579. [PMID: 37944691 DOI: 10.1016/j.envres.2023.117579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
A wide array of organic compounds have been recognized as pollutants of high concern due to their controlled or uncontrolled presence in environmental matrices. The persistent prevalence of diverse organic pollutants, including pharmaceutical compounds, phenolic compounds, synthetic dyes, and other hazardous substances, necessitates robust measures for their practical and sustainable removal from water bodies. Several bioremediation and biodegradation methods have been invented and deployed, with a wide range of materials well-suited for diverse environments. Enzyme-linked carbon-based materials have been considered efficient biocatalytic platforms for the remediation of complex organic pollutants, mostly showing over 80% removal efficiency of micropollutants. The advantages of enzyme-linked carbon nanotubes (CNTs) in enzyme immobilization and improved catalytic potential may thus be advantageous for environmental research considering the current need for pollutant removal. This review outlines the perspective of current remediation approaches and highlights the advantageous features of enzyme-linked CNTs in the removal of pollutants, emphasizing their reusability and stability aspects. Furthermore, different applications of enzyme-linked CNTs in environmental research with concluding remarks and future outlooks have been highlighted. Enzyme-linked CNTs serve as a robust biocatalytic platform for the sustainability agenda with the aim of keeping the environment clean and safe from a variety of organic pollutants.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland; Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233, Gdansk, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland.
| | - Anil Kumar Singh
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Mexico
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland.
| |
Collapse
|
22
|
Gibi C, Liu CH, Anandan S, Wu JJ. Recent Advances on Electrochemical Sensors for Detection of Contaminants of Emerging Concern (CECs). Molecules 2023; 28:7916. [PMID: 38067644 PMCID: PMC10707923 DOI: 10.3390/molecules28237916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Contaminants of Emerging Concern (CECs), a new category of contaminants currently in the limelight, are a major issue of global concern. The pervasive nature of CECs and their harmful effects, such as cancer, reproductive disorders, neurotoxicity, etc., make the situation alarming. The perilous nature of CECs lies in the fact that even very small concentrations of CECs can cause great impacts on living beings. They also have a nature of bioaccumulation. Thus, there is a great need to have efficient sensors for the detection of CECs to ensure a safe living environment. Electrochemical sensors are an efficient platform for CEC detection as they are highly selective, sensitive, stable, reproducible, and prompt, and can detect very low concentrations of the analyte. Major classes of CECs are pharmaceuticals, illicit drugs, personal care products, endocrine disruptors, newly registered pesticides, and disinfection by-products. This review focusses on CECs, including their sources and pathways, health effects caused by them, and electrochemical sensors as reported in the literature under each category for the detection of major CECs.
Collapse
Affiliation(s)
- Chinchu Gibi
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan; (C.G.); (C.-H.L.)
| | - Cheng-Hua Liu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan; (C.G.); (C.-H.L.)
| | - Sambandam Anandan
- Department of Chemistry, National Institute of Technology, Trichy 620015, India;
| | - Jerry J. Wu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan; (C.G.); (C.-H.L.)
| |
Collapse
|
23
|
Oyedele GT, Adedara IA, Ikeji CN, Afolabi BA, Rocha JBT, Farombi EO. Metoprolol elicits neurobehavioral insufficiency and oxidative damage in nontarget Nauphoeta cinerea nymphs. ENVIRONMENTAL TOXICOLOGY 2023; 38:3006-3017. [PMID: 37584562 DOI: 10.1002/tox.23934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
Metoprolol, a drug for hypertension and cardiovascular diseases, has become a contaminant of emerging concern because of its frequent detection in various environmental matrices globally. The dwindling in the biodiversity of useful insects owing to increasing presence of environmental chemicals is currently a great interest to the scientific community. In the current research, the toxicological impact of ecologically relevant concentrations of metoprolol at 0, 0.05, 0.1, 0.25, and 0.5 μg/L on Nauphoeta cinerea nymphs following exposure for 42 consecutive days was evaluated. The insects' behavior was analyzed with automated video-tracking software (ANY-maze, Stoelting Co, USA) while biochemical assays were done using the midgut, head and fat body. Metoprolol-exposed nymphs exhibited significant diminutions in the path efficiency, mobility time, distance traveled, body rotation, maximum speed and turn angle cum more episodes, and time of freezing. In addition, the heat maps and track plots confirmed the metoprolol-mediated wane in the exploratory and locomotor fitness of the insects. Compared with control, metoprolol exposure decreased acetylcholinesterase activity in insects head. Antioxidant enzymes activities and glutathione level were markedly decreased whereas indices of inflammation and oxidative injury to proteins and lipids were significantly increased in head, midgut and fat body of metoprolol-exposed insects. Taken together, metoprolol exposure induces neurobehavioral insufficiency and oxido-inflammatory injury in N. cinerea nymphs. These findings suggest the potential health effects of environmental contamination with metoprolol on ecologically and economically important nontarget insects.
Collapse
Affiliation(s)
- Gbemisola T Oyedele
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing A Afolabi
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences (CCNE), Federal University of Santa Maria, Santa Maria, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
24
|
Papaioannou C, Geladakis G, Kommata V, Batargias C, Lagoumintzis G. Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding. TOXICS 2023; 11:903. [PMID: 37999555 PMCID: PMC10675236 DOI: 10.3390/toxics11110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Environmental pollution is a growing threat to natural ecosystems and one of the world's most pressing concerns. The increasing worldwide use of pharmaceuticals has elevated their status as significant emerging contaminants. Pharmaceuticals enter aquatic environments through multiple pathways related to anthropogenic activity. Their high consumption, insufficient waste treatment, and the incapacity of organisms to completely metabolize them contribute to their accumulation in aquatic environments, posing a threat to all life forms. Various analytical methods have been used to quantify pharmaceuticals. Biotechnology advancements based on next-generation sequencing (NGS) techniques, like eDNA metabarcoding, have enabled the development of new methods for assessing and monitoring the ecotoxicological effects of pharmaceuticals. eDNA metabarcoding is a valuable biomonitoring tool for pharmaceutical pollution because it (a) provides an efficient method to assess and predict pollution status, (b) identifies pollution sources, (c) tracks changes in pharmaceutical pollution levels over time, (d) assesses the ecological impact of pharmaceutical pollution, (e) helps prioritize cleanup and mitigation efforts, and (f) offers insights into the diversity and composition of microbial and other bioindicator communities. This review highlights the issue of aquatic pharmaceutical pollution while emphasizing the importance of using modern NGS-based biomonitoring actions to assess its environmental effects more consistently and effectively.
Collapse
Affiliation(s)
- Charikleia Papaioannou
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - George Geladakis
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Vasiliki Kommata
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | | |
Collapse
|
25
|
Adedayo AA, Babalola OO. Genomic mechanisms of plant growth-promoting bacteria in the production of leguminous crops. Front Genet 2023; 14:1276003. [PMID: 38028595 PMCID: PMC10654986 DOI: 10.3389/fgene.2023.1276003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Legumes are highly nutritious in proteins and are good food for humans and animals because of their nutritional values. Plant growth-promoting bacteria (PGPR) are microbes dwelling in the rhizosphere soil of a plant contributing to the healthy status, growth promotion of crops, and preventing the invasion of diseases. Root exudates produced from the leguminous plants' roots can lure microbes to migrate to the rhizosphere region in other to carry out their potential activities which reveals the symbiotic association of the leguminous plant and the PGPR (rhizobia). To have a better cognition of the PGPR in the rhizosphere of leguminous plants, genomic analyses would be conducted employing various genomic sequences to observe the microbial community and their functions in the soil. Comparative genomic mechanism of plant growth-promoting rhizobacteria (PGPR) was discussed in this review which reveals the activities including plant growth promotion, phosphate solubilization, production of hormones, and plant growth-promoting genes required for plant development. Progress in genomics to improve the collection of genotyping data was revealed in this review. Furthermore, the review also revealed the significance of plant breeding and other analyses involving transcriptomics in bioeconomy promotion. This technological innovation improves abundant yield and nutritional requirements of the crops in unfavorable environmental conditions.
Collapse
|