1
|
Goldschmidt-Clermont PJ, Sevilla BA. Redox and actin, a fascinating story. Redox Biol 2025; 83:103630. [PMID: 40328105 DOI: 10.1016/j.redox.2025.103630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
Actin is an extraordinarily complex protein whose functions are essential to cell motility, division, contraction, signaling, transport, tissular structures, DNA repair, and many more cellular activities critical to life for both animals and plants. It is one of the most abundant and conserved proteins and it exists in either a soluble, globular (monomeric, G-actin) or an insoluble, self-assembled (polymerized or filamentous actin, F-actin) conformation as a key component of the cytoskeleton. In the early 1990's little, if anything, was known about the impact of reactive oxygen species (ROS) on the biology of actin except that ROS could disrupt the actin cytoskeleton. Instructively, G-actin is susceptible to alteration by ROS, and thus, purification of G-actin is typically performed in the presence of strong antioxidants (like dithiothreitol) to limit its oxidative degradation. In contrast, F-actin is a more stable conformation and thus actin can be kept relatively intact in purified preparations as filaments at low temperature for extended periods of time. Both G- and F-actin interact with a myriad of intracellular proteins and at least with a couple of extracellular proteins, and these interactions are essential to the many actin functions. This review will show how, over the past 30 years, our understanding of the role of ROS for actin biology has evolved from noxious denaturizing agents to remarkable regulators of the actin cytoskeleton in cells and consequent cellular functions.
Collapse
|
2
|
Zhan S, Yang Y, Deng S, Liu X, Cui L, Wang T. The Ubiquitin Ligase CHIP Accelerates Papillary Thyroid Carcinoma Metastasis via the Transgelin-Matrix Metalloproteinase-9 Axis. J Proteome Res 2025; 24:589-598. [PMID: 39869438 DOI: 10.1021/acs.jproteome.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The carboxyl-terminus of Hsp70-interacting protein (CHIP) plays crucial roles in tumorigenesis and immunity, with previous studies suggesting a double-edged sword in thyroid cancer. However, its precise functions and underlying molecular mechanisms in thyroid cancer remained unclear. Here, we demonstrate through immunohistochemistry (IHC) that CHIP expression progressively increases from normal thyroid tissue to primary papillary thyroid carcinoma (PTC) and lymph node metastases, with CHIP levels positively correlating with lymph node metastasis (P = 0.006). Moreover, CHIP overexpression enhanced thyroid cancer cell migration and invasion without significantly affecting cell viability. Tandem mass tag (TMT)-based LC-MS/MS analysis revealed that CHIP-regulated differentially expressed proteins, notably transgelin, were predominantly associated with metastasis-related pathways. Western blot, qPCR, and TCGA-THCA cohort data confirmed that CHIP regulates transgelin expression at the protein but not the genetic level. Mechanistically, CHIP promotes extracellular matrix degradation through the transgelin-matrix metalloproteinase-9 (MMP-9) axis, thereby facilitating PTC progression. Collectively, our findings indicate that CHIP expression was closely related to the progression and metastasis of PTC, suggesting that CHIP functions as a novel tumor oncoprotein in PTC via the transgelin-MMP-9 signaling axis.
Collapse
Affiliation(s)
- Shaohua Zhan
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, 100191 Beijing, China
| | - Yan Yang
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Shuwei Deng
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xinnan Liu
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, 100191 Beijing, China
| | - Tianxiao Wang
- Key Laboratory of Carcinogenesis and Translational Research, Department of Head and Neck Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
3
|
Brás MM, Sousa SR, Carneiro F, Radmacher M, Granja PL. Mechanobiology of Colorectal Cancer. Cancers (Basel) 2022; 14:1945. [PMID: 35454852 PMCID: PMC9028036 DOI: 10.3390/cancers14081945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, the mechanobiology of colorectal cancer (CRC) are discussed. Mechanotransduction of CRC is addressed considering the relationship of several biophysical cues and biochemical pathways. Mechanobiology is focused on considering how it may influence epithelial cells in terms of motility, morphometric changes, intravasation, circulation, extravasation, and metastization in CRC development. The roles of the tumor microenvironment, ECM, and stroma are also discussed, taking into account the influence of alterations and surface modifications on mechanical properties and their impact on epithelial cells and CRC progression. The role of cancer-associated fibroblasts and the impact of flow shear stress is addressed in terms of how it affects CRC metastization. Finally, some insights concerning how the knowledge of biophysical mechanisms may contribute to the development of new therapeutic strategies and targeting molecules and how mechanical changes of the microenvironment play a role in CRC disease are presented.
Collapse
Affiliation(s)
- Maria Manuela Brás
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Susana R. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
| | - Fátima Carneiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-465 Porto, Portugal
- Serviço de Patologia, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Manfred Radmacher
- Institute for Biophysics, University of Bremen, 28334 Bremen, Germany
| | - Pedro L. Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
4
|
Lu Y, Zhang P, Chen H, Tong Q, Wang J, Li Q, Tian C, Yang J, Li S, Zhang Z, Yuan H, Xiang M. Cytochalasin Q exerts anti-melanoma effect by inhibiting creatine kinase B. Toxicol Appl Pharmacol 2022; 441:115971. [PMID: 35276125 DOI: 10.1016/j.taap.2022.115971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Due to the pivotal role of microfilament in cancer cells, targeting microfilaments with cytochalasins is considered a promising anticancer strategy. Here, we obtained cytochalasin Q (CQ) from Xylaria sp. DO1801, the endophytic fungi from the root of plant Damnacanthus officinarum, and discovered its anti-melanoma activity in vivo and in vitro attributing to microfilament depolymerization. Mechanistically, CQ directly bound to and inactivated creatine kinase B (CKB), an enzyme phosphorylating creatine to phosphocreatine (PCr) and regenerating ATP to cope with high energy demand, and then inhibited the creatine metabolism as well as cytosolic glycolysis in melanoma cells. Preloading PCr recovered ATP generation, reversed microfilament depolymerization and blunted anti-melanoma efficacy of CQ. Knockdown of CKB resulted in reduced ATP level, perturbed microfilament, inhibited proliferation and induced apoptosis, and manifested lower sensitivity to CQ. Further, we found that either CQ or CKB depletion suppressed the PI3K/AKT/FoxO1 pathway, whereas 740Y-P, a PI3K agonist, elevated protein expression of CKB suppressed by CQ. Taken together, our study highlights the significant anti-melanoma effect and proposes a PI3K/AKT/FoxO1/ CKB feedback circuit for the activity of CQ, opening new opportunities for current chemotherapy.
Collapse
Affiliation(s)
- Yi Lu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongdan Chen
- Breast and Thyroid Surgical Department, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400014, China; Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingyi Tong
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Senlin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zijun Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huimin Yuan
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
5
|
Atoum MF, Alzoughool FE, Al-Mazaydeh ZA, Rammaha MS, Tahtamouni LH. Vitamin B12 enhances the antitumor activity of 1,25-dihydroxyvitamin D3 via activation of caspases and targeting actin cytoskeleton. Tumour Biol 2022; 44:17-35. [PMID: 35180142 DOI: 10.3233/tub-211536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) is an effective anticancer agent, and when combined with other agents it shows superior activities. Vitamin B12 has been shown to contribute to increasing the effectiveness of anticancer drugs when used in combination. Thus, the current study aimed at investigating the anticancer potential of the combination of 1,25(OH)2D3 and vitamin B12. METHODS MTT assay was used to determine the cytotoxic activity of combining 1,25(OH)2D3 and vitamin B12 against six different cancer cell lines and one normal cell line. The surviving fraction after clonogenic assay was measured, and the effects of 1,25(OH)2D3/B12 combination on the activity of different caspases, cell adhesion, actin cytoskeleton, cell morphology, and percentage of polarized cells were evaluated. RESULTS Vitamin B12 did not cause cytotoxicity, however, it enhanced the cytotoxicity of 1,25(OH)2D3 against cancer cells. The cytotoxic effects of 1,25(OH)2D3 and its combination with vitamin B12 was not evident in the normal mammary MCF10A cell line indicating cancer cell-specificity. The cytotoxic effects of 1,25(OH)2D3/B12 combination occurred in a dose-dependent manner and was attributed to apoptosis induction which was mediated by caspase 4 and 8. Moreover, 1,25(OH)2D3/B12-treated cells showed enhanced inhibition of clonogenic tumor growth, reduced cell adhesion, reduced cell area, reduced percentage of cell polarization, and disorganized actin cytoskeleton resulting in reduced migratory phenotype when compared to cells treated with 1,25(OH)2D3 alone. CONCLUSION 1,25(OH)2D3 and vitamin B12 exhibited synergistic anticancer effects against different cancer cell lines. The combination therapy of 1,25(OH)2D3 and vitamin B12 may provide a potential adjunctive treatment option for some cancer types.
Collapse
Affiliation(s)
- Manar F Atoum
- Department Medical Laboratory Sciences, Faculty Applied Health Sciences, The Hashemite University, Zarqa, Jordan
| | - Foad E Alzoughool
- Department Medical Laboratory Sciences, Faculty Applied Health Sciences, The Hashemite University, Zarqa, Jordan.,Faculty of Health Sciences, Fujairah Women's College, Higher Colleges Technology, UAE
| | - Zainab A Al-Mazaydeh
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Majdoleen S Rammaha
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Lubna H Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan.,Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
6
|
Panzetta V, Musella I, Fusco S, Netti PA. ECM Mechanoregulation in Malignant Pleural Mesothelioma. Front Bioeng Biotechnol 2022; 10:797900. [PMID: 35237573 PMCID: PMC8883334 DOI: 10.3389/fbioe.2022.797900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023] Open
Abstract
Malignant pleural mesothelioma is a relatively rare, but devastating tumor, because of the difficulties in providing early diagnosis and effective treatments with conventional chemo- and radiotherapies. Patients usually present pleural effusions that can be used for diagnostic purposes by cytological analysis. This effusion cytology may take weeks or months to establish and has a limited sensitivity (30%-60%). Then, it is becoming increasingly urgent to develop alternative investigative methods to support the diagnosis of mesothelioma at an early stage when this cancer can be treated successfully. To this purpose, mechanobiology provides novel perspectives into the study of tumor onset and progression and new diagnostic tools for the mechanical characterization of tumor tissues. Here, we report a mechanical and biophysical characterization of malignant pleural mesothelioma cells as additional support to the diagnosis of pleural effusions. In particular, we examined a normal mesothelial cell line (Met5A) and two epithelioid mesothelioma cell lines (REN and MPP89), investigating how malignant transformation can influence cellular function like proliferation, cell migration, and cell spreading area with respect to the normal ones. These alterations also correlated with variations in cytoskeletal mechanical properties that, in turn, were measured on substrates mimicking the stiffness of patho-physiological ECM.
Collapse
Affiliation(s)
- Valeria Panzetta
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| | - Ida Musella
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Paolo A. Netti
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| |
Collapse
|
7
|
Mierke CT. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. Front Cell Dev Biol 2022; 10:789841. [PMID: 35223831 PMCID: PMC8864183 DOI: 10.3389/fcell.2022.789841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Viscoelasticity and its alteration in time and space has turned out to act as a key element in fundamental biological processes in living systems, such as morphogenesis and motility. Based on experimental and theoretical findings it can be proposed that viscoelasticity of cells, spheroids and tissues seems to be a collective characteristic that demands macromolecular, intracellular component and intercellular interactions. A major challenge is to couple the alterations in the macroscopic structural or material characteristics of cells, spheroids and tissues, such as cell and tissue phase transitions, to the microscopic interferences of their elements. Therefore, the biophysical technologies need to be improved, advanced and connected to classical biological assays. In this review, the viscoelastic nature of cytoskeletal, extracellular and cellular networks is presented and discussed. Viscoelasticity is conceptualized as a major contributor to cell migration and invasion and it is discussed whether it can serve as a biomarker for the cells' migratory capacity in several biological contexts. It can be hypothesized that the statistical mechanics of intra- and extracellular networks may be applied in the future as a powerful tool to explore quantitatively the biomechanical foundation of viscoelasticity over a broad range of time and length scales. Finally, the importance of the cellular viscoelasticity is illustrated in identifying and characterizing multiple disorders, such as cancer, tissue injuries, acute or chronic inflammations or fibrotic diseases.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
8
|
Abstract
Peritoneal surface malignancies comprise a heterogeneous group of primary tumours, including peritoneal mesothelioma, and peritoneal metastases of other tumours, including ovarian, gastric, colorectal, appendicular or pancreatic cancers. The pathophysiology of peritoneal malignancy is complex and not fully understood. The two main hypotheses are the transformation of mesothelial cells (peritoneal primary tumour) and shedding of cells from a primary tumour with implantation of cells in the peritoneal cavity (peritoneal metastasis). Diagnosis is challenging and often requires modern imaging and interventional techniques, including surgical exploration. In the past decade, new treatments and multimodal strategies helped to improve patient survival and quality of life and the premise that peritoneal malignancies are fatal diseases has been dismissed as management strategies, including complete cytoreductive surgery embedded in perioperative systemic chemotherapy, can provide cure in selected patients. Furthermore, intraperitoneal chemotherapy has become an important part of combination treatments. Improving locoregional treatment delivery to enhance penetration to tumour nodules and reduce systemic uptake is one of the most active research areas. The current main challenges involve not only offering the best treatment option and developing intraperitoneal therapies that are equivalent to current systemic therapies but also defining the optimal treatment sequence according to primary tumour, disease extent and patient preferences. New imaging modalities, less invasive surgery, nanomedicines and targeted therapies are the basis for a new era of intraperitoneal therapy and are beginning to show encouraging outcomes.
Collapse
|
9
|
Tang J, Li H, Guo M, Zhao Z, Liu H, Ren Y, Wang J, Cui X, Shen Y, Jin H, Zhao Y, Xiong T. Enhanced spreading, migration and osteodifferentiation of HBMSCs on macroporous CS-Ta - A biocompatible macroporous coating for hard tissue repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112411. [PMID: 34579920 DOI: 10.1016/j.msec.2021.112411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023]
Abstract
Macroporous tantalum (Ta) coating was produced on titanium alloy implant for bone repair by cold spray (CS) technology, which is a promising technology for oxygen sensitive materials. The surface characteristics as well as in vitro cytocompatibility were systematically evaluated. The results showed that a rough and macroporous CS-Ta coating was formed on the Ti6Al4V (TC4) alloy surfaces. The surface roughness showed a significant enhancement from 17.06 μm (CS-Ta-S), 27.48 μm (CS-Ta-M) to 39.21 μm (CS-Ta-L) with the increase of the average pore diameter of CS-Ta coatings from 138.25 μm, 198.25 μm to 355.56 μm. In vitro results showed that macroporous CS-Ta structure with tantalum pentoxide (Ta2O5) was more favorable to induce human bone marrow derived mesenchymal stem cells (HBMSCs) spreading, migration and osteodifferentiation than TC4. Compared with the micro-scaled structure outside the macropores, the surface micro-nano structure inside the macropores was more favorable to promote osteodifferentiation with enhanced alkaline phosphatase (ALP) activity and extracellular matrix (ECM) mineralization. In particular, CS-Ta-L with the largest pore size showed significantly enhanced integrin-α5 expression, cell migration, ALP activity, ECM mineralization as well as osteogenic-related genes including ALP, osteopontin (OPN) and osteocalcin (OCN) expression. Our results indicated that macroporous Ta coatings by CS, especially CS-Ta-L, may be promising for hard tissue repairs.
Collapse
Affiliation(s)
- Junrong Tang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, PR China
| | - Hongyu Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Mingxiao Guo
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, PR China
| | - Zhipo Zhao
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Hanhui Liu
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, PR China
| | - Yupeng Ren
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, PR China
| | - Jiqiang Wang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Xinyu Cui
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Yanfang Shen
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Huazi Jin
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Ying Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Tianying Xiong
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China.
| |
Collapse
|
10
|
Karlsson R, Dráber P. Profilin-A master coordinator of actin and microtubule organization in mammalian cells. J Cell Physiol 2021; 236:7256-7265. [PMID: 33821475 DOI: 10.1002/jcp.30379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
The last two decades have witnessed a tremendous increase in cell biology data. Not least is this true for studies of the dynamic organization of the microfilament and microtubule systems in animal cells where analyses of the molecular components and their interaction patterns have deepened our understanding of these complex force-generating machineries. Previous observations of a molecular cross-talk between the two systems have now led to the realization of the existence of several intricate mechanisms operating to maintain their coordinated cellular organization. In this short review, we relate to this development by discussing new results concerning the function of the actin regulator profilin 1 as a control component of microfilament-microtubule cross-talk.
Collapse
Affiliation(s)
- Roger Karlsson
- Department of Molecular Biosciences, WGI, Stockholm University, Stockholm, Sweden
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Jiang X, Qin Y, Kun L, Zhou Y. The Significant Role of the Microfilament System in Tumors. Front Oncol 2021; 11:620390. [PMID: 33816252 PMCID: PMC8010179 DOI: 10.3389/fonc.2021.620390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Actin is the structural protein of microfilaments, and it usually exists in two forms: monomer and polymer. Among them, monomer actin is a spherical molecule composed of a polypeptide chain, also known as spherical actin. The function of actin polymers is to produce actin filaments, so it is also called fibroactin. The actin cytoskeleton is considered to be an important subcellular filament system. It interacts with numerous relevant proteins and regulatory cells, regulating basic functions, from cell division and muscle contraction to cell movement and ensuring tissue integrity. The dynamic reorganization of the actin cytoskeleton has immense influence on the progression and metastasis of cancer as well. This paper explores the significance of the microfilament network, the dynamic changes of its structure and function in the presence of a tumor, the formation process around the actin system, and the relevant proteins that may be target molecules for anticancer drugs so as to provide support and reference for interlinked cancer treatment research in the future.
Collapse
Affiliation(s)
- Xin Jiang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Yiming Qin
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Liu Kun
- Department of Neurosurgery, Brain Hospital of Hunan Province, Clinical Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| |
Collapse
|
12
|
Sandin JN, Aryal SP, Wilkop T, Richards CI, Grady ME. Near Simultaneous Laser Scanning Confocal and Atomic Force Microscopy (Conpokal) on Live Cells. J Vis Exp 2020:10.3791/61433. [PMID: 32865532 PMCID: PMC7680637 DOI: 10.3791/61433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Techniques available for micro- and nano-scale mechanical characterization have exploded in the last few decades. From further development of the scanning and transmission electron microscope, to the invention of atomic force microscopy, and advances in fluorescent imaging, there have been substantial gains in technologies that enable the study of small materials. Conpokal is a portmanteau that combines confocal microscopy with atomic force microscopy (AFM), where a probe "pokes" the surface. Although each technique is extremely effective for the qualitative and/or quantitative image collection on their own, Conpokal provides the capability to test with blended fluorescence imaging and mechanical characterization. Designed for near simultaneous confocal imaging and atomic force probing, Conpokal facilitates experimentation on live microbiological samples. The added insight from paired instrumentation provides co-localization of measured mechanical properties (e.g., elastic modulus, adhesion, surface roughness) by AFM with subcellular components or activity observable through confocal microscopy. This work provides a step by step protocol for the operation of laser scanning confocal and atomic force microscopy, simultaneously, to achieve same cell, same region, confocal imaging, and mechanical characterization.
Collapse
Affiliation(s)
- Joree N Sandin
- Department of Mechanical Engineering, University of Kentucky
| | | | - Thomas Wilkop
- Department of Physiology, University of Kentucky; UK Light Microscopy Core, University of Kentucky
| | - Christopher I Richards
- Department of Chemistry, University of Kentucky; UK Light Microscopy Core, University of Kentucky
| | - Martha E Grady
- Department of Mechanical Engineering, University of Kentucky;
| |
Collapse
|
13
|
Kwon S, Yang W, Moon D, Kim KS. Biomarkers to quantify cell migration characteristics. Cancer Cell Int 2020; 20:217. [PMID: 32518526 PMCID: PMC7275471 DOI: 10.1186/s12935-020-01312-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/30/2020] [Indexed: 11/24/2022] Open
Abstract
Background Because cell movement is primarily driven by the connection between F-actin and integrin through a physical linkage, cellular elasticity and adhesion strength have been considered as biomarkers of cell motility. However, a consistent set of biomarkers that indicate the potential for cell motility is still lacking. Methods In this work, we characterize a phenotype of cell migration in terms of cellular elasticity and adhesion strength, which reveals the interdependence of subcellular systems that mediate optimal cell migration. Results Stiff cells weakly adhered to the substrate revealed superior motility, while soft cell migration with strong adhesion was relatively inhibited. The spatial distribution and amount of F-actin and integrin were highly variable depending on cell type, but their density exhibited linear correlations with cellular elasticity and adhesion strength, respectively. Conclusions The densities of F-actin and integrin exhibited linear correlations with cellular elasticity and adhesion strength, respectively, therefore, they can be considered as biomarkers to quantify cell migration characteristics.
Collapse
Affiliation(s)
- Sangwoo Kwon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 04620 Republic of Korea
| | - Woochul Yang
- Department of Physics, Dongguk University, Seoul, 100-715 Republic of Korea
| | - Donggerami Moon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 04620 Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 04620 Republic of Korea
| |
Collapse
|
14
|
Narasimhan V, Ooi G, Michael M, Ramsay R, Lynch C, Heriot A. Colorectal peritoneal metastases: pathogenesis, diagnosis and treatment options - an evidence-based update. ANZ J Surg 2020; 90:1592-1597. [PMID: 32129577 DOI: 10.1111/ans.15796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022]
Abstract
Peritoneal metastases confer the worst survival among all sites in patients with metastatic colorectal cancer. They develop largely through transcoelomic spread, with a sequence of events that allow cells to first detach from primary tumours, survive in the peritoneal environment, attach to the peritoneal surface of organs and migrate into the submesothelial space to create a microenvironment conducive to metastatic growth. Diagnostic challenges have previously hindered early identification of peritoneal metastases. While advances in diagnostic modalities have improved our ability to identify peritoneal metastases, lesions under 0.5 cm remain challenging to detect. The advent of cytoreductive surgery with hyperthermic intraperitoneal chemotherapy (HIPEC) can offer selected patients with colorectal peritoneal metastases a favourable long-term survival. Recent trials, however, have cast doubts on the efficacy of HIPEC, with the recent PRODIGE 7 trial showing no benefit from oxaliplatin based HIPEC in addition to good quality cytoreductive surgery in resectable disease. While peritoneal recurrence can be reliably predicted from high-risk features in primary tumours such as a perforated cancer, ovarian metastases or T4a cancers, the use of prophylactic second look surgery with HIPEC or adjuvant HIPEC failed to demonstrate any survival benefit in high-risk cases in recent clinical trials, raising further questions about the efficacy of HIPEC. With high failure rates from systemic chemotherapy in unresectable disease, novel surgical techniques such as pressurized intraperitoneal aerolized chemotherapy are being investigated in clinical trials worldwide. Further collaborative research is needed to explore newer avenues of treatment for this poor prognostic cohort.
Collapse
Affiliation(s)
- Vignesh Narasimhan
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Geraldine Ooi
- Department of General Surgery, Alfred Hospital, Melbourne, Victoria, Australia
| | - Michael Michael
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Robert Ramsay
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Craig Lynch
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Alexander Heriot
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Gosenca Matjaž M, Škarabot M, Gašperlin M, Janković B. Lamellar liquid crystals maintain keratinocytes' membrane fluidity: An AFM qualitative and quantitative study. Int J Pharm 2019; 572:118712. [PMID: 31593808 DOI: 10.1016/j.ijpharm.2019.118712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 01/21/2023]
Abstract
Despite extensive investigations of lamellar liquid crystals for dermal application, the effects of these systems at the cellular level are still not well elucidated. The key aim of this study was to determine the elasticity and morphological features of keratinocytes after exposure to a lamellar liquid crystal system (LLCS) using atomic force microscopy (AFM) as the method of choice. Prior to AFM assessment, a cell proliferation test and light plus fluorescence imaging were applied to determine the sub-toxic concentration of LLCS. According to the AFM results, slightly altered morphology was observed in the case of fixed keratinocytes, while an intact morphology was visualized on live cells. From the quantitative study, decreased Young's moduli were determined for fixed cells (i.e., 8.6 vs. 15.2 MPa and 1.3 vs. 2.9 MPa for ethanol or PFA-fixed LLCS-treated vs. control cells, respectively) and live cells (i.e., ranging from 0.6 to 2.8 for LLCS-treated vs. 1.1-4.5 MPa for untreated cells), clearly demonstrating increased cell elasticity. This is related to improved membrane fluidity as a consequence of interactions between the acyl chains of cell membrane phosphatidylcholine and those of LLCS. What seems to be of major importance is that the study confirms the potential clinical relevance of such systems in treatment of aged skin with characteristically more rigid epithelial cells.
Collapse
Affiliation(s)
- Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Miha Škarabot
- Jožef Stefan Institute, Department of Condensed Matter Physics, Jamova cesta 39, Ljubljana, Slovenia
| | - Mirjana Gašperlin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Biljana Janković
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Bobrowska J, Awsiuk K, Pabijan J, Bobrowski P, Lekki J, Sowa KM, Rysz J, Budkowski A, Lekka M. Biophysical and Biochemical Characteristics as Complementary Indicators of Melanoma Progression. Anal Chem 2019; 91:9885-9892. [PMID: 31310097 DOI: 10.1021/acs.analchem.9b01542] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The multistep character of cancer progression makes it difficult to define a unique biomarker of the disease. Interdisciplinary approaches, combining various complementary techniques, especially those operating at a nanoscale level, potentially accelerate characterization of cancer cells or tissue properties. Here, we study a relation between the surface and biomechanical properties of melanoma cells, measured by mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM). In total, seven cell lines have been studied. Six of them were melanoma cells derived from various stages of tumor progression: (1) WM115 cells derived from a 55 year old female skin melanoma at a vertical growth phase (VGP) in the primary melanoma site, (2) WM793 cells established from the vertical growth phase (VGP) of a primary skin melanoma lesion, (3) WM266-4 cells established from a cutaneous skin metastasis detected in the same patient as WM115 cells, (4) WM239 cells derived from a cutaneous skin metastasis, (5) 1205Lu cells originated from a lung metastasis diagnosed in the same patient as WM793 cells, and (6) A375P-cells were derived from a solid malignant tumor located in the lung. As a reference cell line, human epidermal melanocytes from adult skin (primary cell line HEMa-LP) were used. Results reveal low, medium, and large deformability of melanoma cells originating from vertical growth phase (VGP), and skin and lung metastasis, respectively. These changes were accompanied by distinct outcome from principal component analysis (PCA). In relation to VGP melanoma cells, cells from skin and lung metastasis reveal similar or significantly different surface properties. The largest deformability difference observed for cells from VGP and lung metastasis was accompanied by the largest separation of unspecific changes in their surface properties. In this way, we show the evidence that biomechanical and surface biochemical properties of cells change in parallel, indicating a potential of being used as nanobiophysical fingerprints of melanoma progression.
Collapse
Affiliation(s)
- Justyna Bobrowska
- Institute of Nuclear Physics , Polish Academy of Sciences , Kraków PL-31341 , Poland
| | - Kamil Awsiuk
- M. Smoluchowski Institute of Physics , Jagiellonian University , Łojasiewicza 11 , Kraków PL-30-348 , Poland
| | - Joanna Pabijan
- Institute of Nuclear Physics , Polish Academy of Sciences , Kraków PL-31341 , Poland
| | - Piotr Bobrowski
- Institute of Metallurgy and Materials , Polish Academy of Sciences , Reymonta 25 , Kraków 30-059 , Poland
| | - Janusz Lekki
- Institute of Nuclear Physics , Polish Academy of Sciences , Kraków PL-31341 , Poland
| | - Katarzyna M Sowa
- M. Smoluchowski Institute of Physics , Jagiellonian University , Łojasiewicza 11 , Kraków PL-30-348 , Poland
| | - Jakub Rysz
- M. Smoluchowski Institute of Physics , Jagiellonian University , Łojasiewicza 11 , Kraków PL-30-348 , Poland
| | - Andrzej Budkowski
- M. Smoluchowski Institute of Physics , Jagiellonian University , Łojasiewicza 11 , Kraków PL-30-348 , Poland
| | - Małgorzata Lekka
- Institute of Nuclear Physics , Polish Academy of Sciences , Kraków PL-31341 , Poland
| |
Collapse
|
17
|
Real Microgravity Influences the Cytoskeleton and Focal Adhesions in Human Breast Cancer Cells. Int J Mol Sci 2019; 20:ijms20133156. [PMID: 31261642 PMCID: PMC6651518 DOI: 10.3390/ijms20133156] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022] Open
Abstract
With the increasing number of spaceflights, it is crucial to understand the changes occurring in human cells exposed to real microgravity (r-µg) conditions. We tested the effect of r-µg on MCF-7 breast cancer cells with the objective to investigate cytoskeletal alterations and early changes in the gene expression of factors belonging to the cytoskeleton, extracellular matrix, focal adhesion, and cytokines. In the Technische Experimente unter Schwerelosigkeit (TEXUS) 54 rocket mission, we had the opportunity to conduct our experiment during 6 min of r-µg and focused on cytoskeletal alterations of MCF-7 breast cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin as well as the mCherry-tubulin fusion protein using the Fluorescence Microscopy Analysis System (FLUMIAS) for fast live-cell imaging under r-µg. Moreover, in a second mission we investigated changes in RNA transcription and morphology in breast cancer cells exposed to parabolic flight (PF) maneuvers (31st Deutsches Zentrum für Luft- und Raumfahrt (DLR) PF campaign). The MCF-7 cells showed a rearrangement of the F-actin and tubulin with holes, accumulations in the tubulin network, and the appearance of filopodia- and lamellipodia-like structures in the F-actin cytoskeleton shortly after the beginning of the r-µg period. PF maneuvers induced an early up-regulation of KRT8, RDX, TIMP1, CXCL8 mRNAs, and a down-regulation of VCL after the first parabola. E-cadherin protein was significantly reduced and is involved in cell adhesion processes, and plays a significant role in tumorigenesis. Changes in the E-cadherin protein synthesis can lead to tumor progression. Pathway analyses indicate that VCL protein has an activating effect on CDH1. In conclusion, live-cell imaging visualized similar changes as those occurring in thyroid cancer cells in r-µg. This result indicates the presence of a common mechanism of gravity perception and sensation.
Collapse
|
18
|
Kim J, Li B, Scheideler OJ, Kim Y, Sohn LL. Visco-Node-Pore Sensing: A Microfluidic Rheology Platform to Characterize Viscoelastic Properties of Epithelial Cells. iScience 2019; 13:214-228. [PMID: 30870780 PMCID: PMC6416673 DOI: 10.1016/j.isci.2019.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/26/2019] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Viscoelastic properties of cells provide valuable information regarding biological or clinically relevant cellular characteristics. Here, we introduce a new, electronic-based, microfluidic platform-visco-node-pore sensing (visco-NPS)-which quantifies cellular viscoelastic properties under periodic deformation. We measure the storage (G') and loss (G″) moduli (i.e., elasticity and viscosity, respectively) of cells. By applying a wide range of deformation frequencies, our platform quantifies the frequency dependence of viscoelastic properties. G' and G″ measurements show that the viscoelastic properties of malignant breast epithelial cells (MCF-7) are distinctly different from those of non-malignant breast epithelial cells (MCF-10A). With its sensitivity, visco-NPS can dissect the individual contributions of different cytoskeletal components to whole-cell mechanical properties. Moreover, visco-NPS can quantify the mechanical transitions of cells as they traverse the cell cycle or are initiated into an epithelial-mesenchymal transition. Visco-NPS identifies viscoelastic characteristics of cell populations, providing a biophysical understanding of cellular behavior and a potential for clinical applications.
Collapse
Affiliation(s)
- Junghyun Kim
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, USA
| | - Brian Li
- Graduate Program in Bioengineering, University of California, Berkeley, University of California, San Francisco, Berkeley, CA, USA
| | - Olivia J Scheideler
- Graduate Program in Bioengineering, University of California, Berkeley, University of California, San Francisco, Berkeley, CA, USA
| | - Youngbin Kim
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA, USA
| | - Lydia L Sohn
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, USA; Graduate Program in Bioengineering, University of California, Berkeley, University of California, San Francisco, Berkeley, CA, USA.
| |
Collapse
|
19
|
Qin X, Li J, Sun J, Liu L, Chen D, Liu Y. Low shear stress induces ERK nuclear localization and YAP activation to control the proliferation of breast cancer cells. Biochem Biophys Res Commun 2019; 510:219-223. [DOI: 10.1016/j.bbrc.2019.01.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/12/2019] [Indexed: 01/29/2023]
|
20
|
Jasińska-Konior K, Pochylczuk K, Czajka E, Michalik M, Romanowska-Dixon B, Swakoń J, Urbańska K, Elas M. Proton beam irradiation inhibits the migration of melanoma cells. PLoS One 2017; 12:e0186002. [PMID: 29016654 PMCID: PMC5634624 DOI: 10.1371/journal.pone.0186002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
Purpose In recent years experimental data have indicated that low-energy proton beam radiation might induce a difference in cellular migration in comparison to photons. We therefore set out to compare the effect of proton beam irradiation and X-rays on the survival and long-term migratory properties of two cell lines: uveal melanoma Mel270 and skin melanoma BLM. Materials and methods Cells treated with either proton beam or X-rays were analyzed for their survival using clonogenic assay and MTT test. Long-term migratory properties were assessed with time-lapse monitoring of individual cell movements, wound test and transpore migration, while the expression of the related proteins was measured with western blot. Results Exposure to proton beam and X-rays led to similar survival but the quality of the cell colonies was markedly different. More paraclones with a low proliferative activity and fewer highly-proliferative holoclones were found after proton beam irradiation in comparison to X-rays. At 20 or 40 days post-irradiation, migratory capacity was decreased more by proton beam than by X-rays. The beta-1-integrin level was decreased in Mel270 cells after both types of radiation, while vimentin, a marker of EMT, was increased in BLM cells only. Conclusions We conclude that proton beam irradiation induced long-term inhibition of cellular motility, as well as changes in the level of beta-1 integrin and vimentin. If confirmed, the change in the quality, but not in the number of colonies after proton beam irradiation might favor tumor growth inhibition after fractionated proton therapy.
Collapse
Affiliation(s)
| | - Katarzyna Pochylczuk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
| | - Elżbieta Czajka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
| | - Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
| | - Bożena Romanowska-Dixon
- Department of Ophthalmology and Ophthalmic Oncology, Jagiellonian University Medical College, Cracow, Poland
| | - Jan Swakoń
- Institute of Nuclear Physics, PAS, Cracow, Poland
| | - Krystyna Urbańska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
| | - Martyna Elas
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
- * E-mail:
| |
Collapse
|
21
|
Sant GR, Knopf KB, Albala DM. Live-single-cell phenotypic cancer biomarkers-future role in precision oncology? NPJ Precis Oncol 2017; 1:21. [PMID: 29872705 PMCID: PMC5871838 DOI: 10.1038/s41698-017-0025-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/21/2017] [Accepted: 05/05/2017] [Indexed: 01/08/2023] Open
Abstract
The promise of precision and personalized medicine is rooted in accurate, highly sensitive, and specific disease biomarkers. This is particularly true for cancer-a disease characterized by marked tumor heterogeneity and diverse molecular signatures. Although thousands of biomarkers have been described, only a very small number have been successfully translated into clinical use. Undoubtedly, there is need for rapid, quantitative, and more cost effective biomarkers for tumor diagnosis and prognosis, to allow for better risk stratification and aid clinicians in making personalized treatment decisions. This is particularly true for cancers where specific biomarkers are either not available (e.g., renal cell carcinoma) or where current biomarkers tend to classify individuals into broad risk categories unable to accurately assess individual tumor aggressiveness and adverse pathology potential (e.g., prostate cancer), thereby leading to problems of over-diagnosis and over-treatment of indolent cancer and under-treatment of aggressive cancer. This perspective highlights an emerging class of cancer biomarkers-live-single-cell phenotypic biomarkers, as compared to genomic biomarkers, and their potential application for cancer diagnosis, risk-stratification, and prognosis.
Collapse
Affiliation(s)
- Grannum R Sant
- Department of Urology, Tufts University School of Medicine, 82 Dennison Street, Gloucester, MA 01930 UK
| | - Kevin B Knopf
- Cancer Commons, 35050 El Camino Real, Los Altos, CA 94022 USA
| | - David M Albala
- 3Department of Urology, Crouse Hospital, Syracuse, NY USA
| |
Collapse
|
22
|
Yazdian-Robati R, Ahmadi H, Riahi MM, Lari P, Aledavood SA, Rashedinia M, Abnous K, Ramezani M. Comparative proteome analysis of human esophageal cancer and adjacent normal tissues. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:265-271. [PMID: 28392898 PMCID: PMC5378963 DOI: 10.22038/ijbms.2017.8354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective(s): Ranking as the sixth commonest cancer, esophageal squamous cell carcinoma (ESCC) represents one of the leading causes of cancer death worldwide. One of the main reasons for the low survival of patients with esophageal cancer is its late diagnosis. Materials and Methods: We used proteomics approach to analyze ESCC tissues with the aim of a better understanding of the malignant mechanism and searching candidate protein biomarkers for early diagnosis of esophageal cancer. The differential protein expression between cancerous and normal esophageal tissues was investigated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Then proteins were identified by matrix-assisted laser desorption/ ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) and MASCOT web based search engine. Results: We reported 4 differentially expressed proteins involved in the pathological process of esophageal cancer, such as annexinA1 (ANXA1), peroxiredoxin-2 (PRDX2), transgelin (TAGLN) andactin-aortic smooth muscle (ACTA2). Conclusion: In this report we have introduced new potential biomarker (ACTA2). Moreover, our data confirmed some already known markers for EC in our region.
Collapse
Affiliation(s)
- Rezvan Yazdian-Robati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Homa Ahmadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Matbou Riahi
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Lari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Amir Aledavood
- Cancer Research Center, Department of Radiation oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Rashedinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad Iran
| |
Collapse
|
23
|
Petersen RC. Free-radicals and advanced chemistries involved in cell membrane organization influence oxygen diffusion and pathology treatment. AIMS BIOPHYSICS 2017; 4:240-283. [PMID: 29202036 PMCID: PMC5707132 DOI: 10.3934/biophy.2017.2.240] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A breakthrough has been discovered in pathology chemistry related to increasing molecular structure that can interfere with oxygen diffusion through cell membranes. Free radicals can crosslink unsaturated low-viscosity fatty acid oils by chain-growth polymerization into more viscous liquids and even solids. Free radicals are released by mitochondria in response to intermittent hypoxia that can increase membrane molecular organization to reduce fluidity and oxygen diffusion in a possible continuing vicious cycle toward pathological disease. Alternate computational chemistry demonstrates molecular bond dynamics in free energy for cell membrane physiologic movements. Paired electrons in oxygen and nitrogen atoms require that oxygen bonds rotate and nitrogen bonds invert to seek polar nano-environments and hide from nonpolar nano-environments thus creating fluctuating instability at a nonpolar membrane and polar biologic fluid interface. Subsequent mechanomolecular movements provide free energy to increase diffusion by membrane transport of molecules and oxygen into the cell, cell-membrane signaling/recognition/defense in addition to protein movements for enzyme mixing. In other chemistry calcium bonds to membrane phosphates primarily on the outer plasma cell membrane surface to influence the membrane firing threshold for excitability and better seal out water permeation. Because calcium is an excellent metal conductor and membrane phosphate headgroups form a semiconductor at the biologic fluid interface, excess electrons released by mitochondria may have more broad dissipation potential by safe conduction through calcium atomic-sized circuits on the outer membrane surface. Regarding medical conditions, free radicals are known to produce pathology especially in age-related disease in addition to aging. Because cancer cell membranes develop extreme polymorphism that has been extensively followed in research, accentuated easily-visualized free-radical models are developed. In terms of treatment, use of vitamin nutrient supplements purported to be antioxidants that remove free radicals has not proved worthwhile in clinical trials presumably due to errors with early antioxidant measurements based on inaccurate colorimetry tests. However, newer covalent-bond shrinkage tests now provide accurate measurements for free-radical inhibitor hydroquinone and other molecules toward drug therapy.
Collapse
Affiliation(s)
- Richard C Petersen
- Biomaterials, SDB 539, 1919 7th Avenue South, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Biomedical Research Technologies, 3830 Avenida Del Presidente, M/S 36, San Clemente, CA, 92674, USA
| |
Collapse
|
24
|
Nejedla M, Li Z, Masser AE, Biancospino M, Spiess M, Mackowiak SD, Friedländer MR, Karlsson R. A Fluorophore Fusion Construct of Human Profilin I with Non-Compromised Poly(L-Proline) Binding Capacity Suitable for Imaging. J Mol Biol 2017; 429:964-976. [DOI: 10.1016/j.jmb.2017.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/06/2016] [Accepted: 01/03/2017] [Indexed: 10/24/2022]
|
25
|
Grady ME, Composto RJ, Eckmann DM. Cytoskeletal Perturbing Drugs and Their Effect on Cell Elasticity. MECHANICS OF BIOLOGICAL SYSTEMS AND MATERIALS, VOLUME 6 2017. [DOI: 10.1007/978-3-319-41351-8_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Kung ML, Hsieh CW, Tai MH, Weng CH, Wu DC, Wu WJ, Yeh BW, Hsieh SL, Kuo CH, Hung HS, Hsieh S. Nanoscale characterization illustrates the cisplatin-mediated biomechanical changes of B16-F10 melanoma cells. Phys Chem Chem Phys 2016; 18:7124-31. [PMID: 26886764 DOI: 10.1039/c5cp07971c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cells reorganize their membrane biomechanical dynamics in response to environmental stimuli or inhibitors associated with their physiological/pathological processes, and disease therapeutics. To validate the biophysical dynamics during cell exposure to anti-cancer drugs, we investigate the nanoscale biological characterization in melanoma cells undergoing cisplatin treatment. Using atomic force microscopy, we demonstrate that the cellular morphology and membrane ultrastructure are altered after exposure to cisplatin. In contrast to their normal spindle-like shape, cisplatin causes cell deformation rendering cells flat and enlarged, which increases the cell area by 3-4 fold. Additionally, cisplatin decreases the topography height values for both the cytoplasmic and nuclear regions (by 40-80% and 60%, respectively). Furthermore, cisplatin increases the cytoplasmic root mean square roughness by 110-240% in correlation with the drug concentration and attenuates the nuclear RMS by 60%. Moreover, the cellular adhesion force was enhanced, while the Young's modulus elasticity was attenuated by ∼2 and ∼2.3 fold, respectively. F-actin phalloidin staining revealed that cisplatin enlarges the cell size through enhanced stress fiber formation and promotes cytoskeletal reorganization. Immunoblot analyses further revealed that the activities of focal adhesion proteins, such as FAK and c-Src, are upregulated by cisplatin through phosphorylation at tyrosine 397 and 530, respectively. Collectively, these results show that cisplatin-treated melanoma cells not only exhibit the upregulation of FAK-mediated signaling to enhance the cytoskeleton mechanical stretch, but also promote the cytoskeletal rearrangement resulting in 43% decrease in the cell modulus. These mechanisms thus promote the malignancy and invasiveness of the melanoma cells.
Collapse
Affiliation(s)
- Mei-Lang Kung
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-hai Rd., Kaohsiung 80424, Taiwan.
| | - Chiung-Wen Hsieh
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-hai Rd., Kaohsiung 80424, Taiwan.
| | - Ming-Hong Tai
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan and Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan and Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan and Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Hui Weng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Deng-Chyang Wu
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan and Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80708, Taiwan
| | - Wen-Jeng Wu
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Bi-Wen Yeh
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 80811, Taiwan
| | - Chao-Hung Kuo
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan and Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Huey-Shan Hung
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan and Center for Neuropsychiatry, China Medical University Hospital, Taichung 40402, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-hai Rd., Kaohsiung 80424, Taiwan. and Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
27
|
Lemoine L, Sugarbaker P, Van der Speeten K. Pathophysiology of colorectal peritoneal carcinomatosis: Role of the peritoneum. World J Gastroenterol 2016; 22:7692-7707. [PMID: 27678351 PMCID: PMC5016368 DOI: 10.3748/wjg.v22.i34.7692] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/28/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer-related death worldwide. Besides the lymphatic and haematogenous routes of dissemination, CRC frequently gives rise to transcoelomic spread of tumor cells in the peritoneal cavity, which ultimately leads to peritoneal carcinomatosis (PC). PC is associated with a poor prognosis and bad quality of life for these patients in their terminal stages of disease. A loco-regional treatment modality for PC combining cytoreductive surgery and hyperthermic intraperitoneal peroperative chemotherapy has resulted in promising clinical results. However, this novel approach is associated with significant morbidity and mortality. A comprehensive understanding of the molecular events involved in peritoneal disease spread is paramount in avoiding unnecessary toxicity. The emergence of PC is the result of a molecular crosstalk between cancer cells and host elements, involving several well-defined steps, together known as the peritoneal metastatic cascade. Individual or clumps of tumor cells detach from the primary tumor, gain access to the peritoneal cavity and become susceptible to the regular peritoneal transport. They attach to the distant peritoneum, subsequently invade the subperitoneal space, where angiogenesis sustains proliferation and enables further metastatic growth. These molecular events are not isolated events but rather a continuous and interdependent process. In this manuscript, we review current data regarding the molecular mechanisms underlying the development of colorectal PC, with a special focus on the peritoneum and the role of the surgeon in peritoneal disease spread.
Collapse
|
28
|
Nejedla M, Sadi S, Sulimenko V, de Almeida FN, Blom H, Draber P, Aspenström P, Karlsson R. Profilin connects actin assembly with microtubule dynamics. Mol Biol Cell 2016; 27:2381-93. [PMID: 27307590 PMCID: PMC4966980 DOI: 10.1091/mbc.e15-11-0799] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/09/2016] [Indexed: 12/29/2022] Open
Abstract
Profilin is a well-known regulator of actin filament formation. It indirectly associates with microtubules and influences their growth rate. Formins are the linker molecules, and the turnover of the actin microfilament system balances profilin association with the microtubules. Profilin controls actin nucleation and assembly processes in eukaryotic cells. Actin nucleation and elongation promoting factors (NEPFs) such as Ena/VASP, formins, and WASP-family proteins recruit profilin:actin for filament formation. Some of these are found to be microtubule associated, making actin polymerization from microtubule-associated platforms possible. Microtubules are implicated in focal adhesion turnover, cell polarity establishment, and migration, illustrating the coupling between actin and microtubule systems. Here we demonstrate that profilin is functionally linked to microtubules with formins and point to formins as major mediators of this association. To reach this conclusion, we combined different fluorescence microscopy techniques, including superresolution microscopy, with siRNA modulation of profilin expression and drug treatments to interfere with actin dynamics. Our studies show that profilin dynamically associates with microtubules and this fraction of profilin contributes to balance actin assembly during homeostatic cell growth and affects microtubule dynamics. Hence profilin functions as a regulator of microtubule (+)-end turnover in addition to being an actin control element.
Collapse
Affiliation(s)
- Michaela Nejedla
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Sara Sadi
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Vadym Sulimenko
- Institute of Molecular Genetics, ASCR, 142 20 Prague 4, Czech Republic
| | | | - Hans Blom
- Science for Life Laboratory, SE-171 21 Solna, Sweden
| | - Pavel Draber
- Institute of Molecular Genetics, ASCR, 142 20 Prague 4, Czech Republic
| | - Pontus Aspenström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Roger Karlsson
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
29
|
Grady ME, Composto RJ, Eckmann DM. Cell elasticity with altered cytoskeletal architectures across multiple cell types. J Mech Behav Biomed Mater 2016; 61:197-207. [PMID: 26874250 DOI: 10.1016/j.jmbbm.2016.01.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 12/18/2022]
Abstract
The cytoskeleton is primarily responsible for providing structural support, localization and transport of organelles, and intracellular trafficking. The structural support is supplied by actin filaments, microtubules, and intermediate filaments, which contribute to overall cell elasticity to varying degrees. We evaluate cell elasticity in five different cell types with drug-induced cytoskeletal derangements to probe how actin filaments and microtubules contribute to cell elasticity and whether it is conserved across cell type. Specifically, we measure elastic stiffness in primary chondrocytes, fibroblasts, endothelial cells (HUVEC), hepatocellular carcinoma cells (HUH-7), and fibrosarcoma cells (HT 1080) subjected to two cytoskeletal destabilizers: cytochalasin D and nocodazole, which disrupt actin and microtubule polymerization, respectively. Elastic stiffness is measured by atomic force microscopy (AFM) and the disruption of the cytoskeleton is confirmed using fluorescence microscopy. The two cancer cell lines showed significantly reduced elastic moduli values (~0.5kPa) when compared to the three healthy cell lines (~2kPa). Non-cancer cells whose actin filaments were disrupted using cytochalasin D showed a decrease of 60-80% in moduli values compared to untreated cells of the same origin, whereas the nocodazole-treated cells showed no change in elasticity. Overall, we demonstrate actin filaments contribute more to elastic stiffness than microtubules but this result is cell type dependent. Cancer cells behaved differently, exhibiting increased stiffness as well as stiffness variability when subjected to nocodazole. We show that disruption of microtubule dynamics affects cancer cell elasticity, suggesting therapeutic drugs targeting microtubules be monitored for significant elastic changes.
Collapse
Affiliation(s)
- Martha E Grady
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, United States; Department of Anesthesiology and Critical Care, School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104, United States
| | - Russell J Composto
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, United States
| | - David M Eckmann
- Department of Anesthesiology and Critical Care, School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104, United States.
| |
Collapse
|
30
|
Abstract
Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA) to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8) and 0.8 mm at 41.6% vs. 19.5% (p < 10−4), respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration.
Collapse
|
31
|
SUV420H2 suppresses breast cancer cell invasion through down regulation of the SH2 domain-containing focal adhesion protein tensin-3. Exp Cell Res 2015; 334:90-9. [PMID: 25814362 DOI: 10.1016/j.yexcr.2015.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/12/2015] [Accepted: 03/14/2015] [Indexed: 11/20/2022]
Abstract
The genome-wide loss of histone H4 lysine 20 tri-methylation (H4K20me3) is observed in multiple types of cancer, including breast tumors. Since H4K20me3 is preferentially targeted to repetitive elements in the pericentromeric and telomeric heterochromatin and plays a role in chromatin integrity, the pathological effects of disrupted H4K20me3 in tumors have been attributed to genomic instability. However, in this report, we show that loss of H4K20me3 modulates gene expression profiles, leading to increased cell invasion. Reduced H4K20me3 levels in tumor cells are often accompanied by a decrease in the expression of the H4K20-specific methyltransferase, SUV420H2. Exogenous delivery of SUV420H2 into MDA-MB-231 human breast cancer cells induced selective and specific changes in the expression of cancer-related genes. One of the most downregulated genes in response to SUV420H2 expression was the Src substrate, tensin-3, a focal adhesion protein that contributes to cancer cell migration. Depletion of tensin-3 suppressed breast cancer cell invasiveness. Furthermore, silencing of tensin-3 was associated with enrichment of H4K20me3 immediately upstream of the tensin-3 transcription start site, suggesting that the loss of H4K20me3 in tumor cells induced the expression of cancer-promoting genes. These findings connect the loss of H4K20me3 with tumor progression, through the transcriptional activation of cancer-promoting genes.
Collapse
|
32
|
Tsai CH, Lin LT, Wang CY, Chiu YW, Chou YT, Chiu SJ, Wang HE, Liu RS, Wu CY, Chan PC, Yang MH, Chiou SH, Liao MJ, Lee YJ. Over-expression of cofilin-1 suppressed growth and invasion of cancer cells is associated with up-regulation of let-7 microRNA. Biochim Biophys Acta Mol Basis Dis 2015; 1852:851-61. [PMID: 25597880 DOI: 10.1016/j.bbadis.2015.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 01/09/2015] [Accepted: 01/11/2015] [Indexed: 12/25/2022]
Abstract
Cofilin-1, a non-muscle isoform of actin regulatory protein that belongs to the actin-depolymerizing factor (ADF)/cofilin family is known to affect cancer development. Previously, we found that over-expression of cofilin-1 suppressed the growth and invasion of human non-small cell lung cancer (NSCLC) cells in vitro. In this study, we further investigated whether over-expression of cofilin-1 can suppress tumor growth in vivo, and performed a microRNA array analysis to better understand whether specific microRNA would be involved in this event. The results showed that over-expression of cofilin-1 suppressed NSCLC tumor growth using the xenograft tumor model with the non-invasive reporter gene imaging modalities. Additionally, cell motility and invasion were significantly suppressed by over-expressed cofilin-1, and down-regulation of matrix metalloproteinase (MMPs) -1 and -3 was concomitantly detected. According to the microRNA array analysis, the let-7 family, particularly let-7b and let-7e, were apparently up-regulated among 248 microRNAs that were affected after over-expression of cofilin-1 up to 7 days. Knockdown of let-7b or let-7e using chemical locked nucleic acid (LNA) could recover the growth rate and the invasion of cofilin-1 over-expressing cells. Next, the expression of c-myc, LIN28 and Twist-1 proteins known to regulate let-7 were analyzed in cofilin-1 over-expressing cells, and Twist-1 was significantly suppressed under this condition. Up-regulation of let-7 microRNA by over-expressed cofilin-1 could be eliminated by co-transfected Twist-1 cDNA. Taken together, current data suggest that let-7 microRNA would be involved in over-expression of cofilin-1 mediated tumor suppression in vitro and in vivo.
Collapse
Affiliation(s)
- Cheng-Han Tsai
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Liang-Ting Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Yih Wang
- Radiotherapy, Department of Medical Imaging, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Yu-Wen Chiu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Ting Chou
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Jun Chiu
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ren-Shyan Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Department of Nuclear Medicine, National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan; Molecular and Genetic Imaging Core, Medical School, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chia Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Man-Jyun Liao
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
33
|
Qiu X, Wu K, Lin X, Liu Q, Ye Y, Yu M. Dexamethasone increases Cdc42 expression in human TM-1 cells. Curr Eye Res 2014; 40:290-9. [PMID: 24871483 DOI: 10.3109/02713683.2014.922191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Changes in the cytoskeletal organization of the human trabecular meshwork (HTM) is thought to be responsible for primary open-angle glaucoma (POAG) pathologies. Cdc42 is a Rho GTPase; Rho GTPases are important modulatory agents of the cytoskeleton. This study aimed to investigate the effects of dexamethasone (DEX) on Cdc42 in a transformed HTM cell line, TM-1 to understand the molecular pathologies underlying POAG. METHODS TM-1 cells were cultured in vitro. The cultures were treated with DEX at 10(-6) and 10(-7) M for 1-4 days. Cdc42 was silenced using small interfering RNA (siRNA). The expression levels of Cdc42 in the TM-1 cells were measured using reverse transcription (RT)-PCR, western blotting analysis and immunofluorescence. Its downstream effectors, p21-activated kinase phosphorylation (phospho-PAK) and myosin light chain kinase (MLCK), were measured using western blotting analysis. In addition, the F-actin of TM-1 cells was stained using phalloidin. RESULTS The mRNA and protein levels of Cdc42 showed an increase in TM-1 cells with DEX treatment and a decrease in TM-1 cells transfected with Cdc42 siRNA. Moreover, phospho-PAK levels increased, whereas MLCK levels appeared to decrease, with DEX treatment. The F-actin of DEX-treated TM-1 cells displayed a rearrangement. Cdc42 siRNA decreased the expression of Cdc42 and its related proteins, resulting in an attenuation of the effects of DEX on Cdc42 and F-actin organization in TM-1 cells. CONCLUSIONS DEX increases Cdc42 expression in TM-1. This may represent a potential mechanism of DEX-induced HTM cytoskeletal rearrangement.
Collapse
Affiliation(s)
- Xuan Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou , China
| | | | | | | | | | | |
Collapse
|
34
|
Chen Y, Wei Y, Liu J, Zhang H. Chemotactic responses of neural stem cells to SDF-1α correlate closely with their differentiation status. J Mol Neurosci 2014; 54:219-33. [PMID: 24659235 DOI: 10.1007/s12031-014-0279-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/27/2014] [Indexed: 12/21/2022]
Abstract
Chemotaxis of neural stem/progenitor cells (NSCs) is regulated by a variety of factors, and much effort has been devoted to the delineation of factors that are involved in NSC migration. However, the relationship between NSC chemotactic migration and differentiation remains uncharacterized. In the present study, by comparing the transfilter migration rate, single-cell migration speed, and directional efficiency of NSCs in stromal cell-derived factor-1 alpha (SDF-1α)-induced Boyden chamber and Dunn chamber chemotaxis assays, we demonstrate that NSCs in varying differentiation stages possess different migratory capacity. Furthermore, F-actin microfilament reorganization upon stimulation varies greatly among separate differentiation states. We show that signaling pathways involved in NSC migration, such as PI3K/Akt and mitogen-activated protein kinase (MAPK) (ERK1/2, JNK, and p38 MAPK) pathways, are differentially activated by SDF-1α among each NSC differentiation stages, and the extent to which these pathways participate in cell chemotaxis exhibits a differentiation stage-dependent manner. Taken together, these results suggest that the differentiation of NSCs influences their chemotactic responses to SDF-1α, providing new insight into the optimization of the therapeutic efficacy of NSCs for neural regeneration and nerve repair after injury.
Collapse
Affiliation(s)
- Yebing Chen
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123, China
| | | | | | | |
Collapse
|
35
|
Synergistic enhancement of cancer therapy using a combination of ceramide and docetaxel. Int J Mol Sci 2014; 15:4201-20. [PMID: 24619193 PMCID: PMC3975392 DOI: 10.3390/ijms15034201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 12/12/2022] Open
Abstract
Ceramide (CE)-based combination therapy (CE combination) as a novel therapeutic strategy has attracted great attention in the field of anti-cancer therapy. The principal purposes of this study were to investigate the synergistic effect of CE in combination with docetaxel (DTX) (CE + DTX) and to explore the synergy mechanisms of CE + DTX. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and combination index (CI) assay showed that simultaneous administration of CE and DTX with a molar ratio of 0.5:1 could generate the optimal synergistic effect on murine malignant melanoma cell (B16, CI = 0.31) and human breast carcinoma cell (MCF-7, CI = 0.48). The apoptosis, cell cycle, and cytoskeleton destruction study demonstrated that CE could target and destruct the microfilament actin, subsequently activate Caspase-3 and induce apoptosis. Meanwhile, DTX could target and disrupt the microtubules cytoskeleton, leading to a high proportion of cancer cells in G2/M-phase arrest. Moreover, CE plus DTX could cause a synergistic destruction of cytoskeleton, which resulted in a significantly higher apoptosis and a significantly higher arrest in G2/M arrest comparing with either agent alone (p < 0.01). The in vivo antitumor study evaluated in B16 tumor-bearing mice also validated the synergistic effects. All these results suggested that CE could enhance the antitumor activity of DTX in a synergistic manner, which suggest promising application prospects of CE + DTX combination treatment.
Collapse
|
36
|
Petersen RC. Computational conformational antimicrobial analysis developing mechanomolecular theory for polymer biomaterials in materials science and engineering. INTERNATIONAL JOURNAL OF COMPUTATIONAL MATERIALS SCIENCE AND ENGINEERING 2014; 3:1450003. [PMID: 25598972 PMCID: PMC4295723 DOI: 10.1142/s2047684114500031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Single-bond rotations or pyramidal inversions tend to either hide or expose relative energies that exist for atoms with nonbonding lone-pair electrons. Availability of lone-pair electrons depends on overall molecular electron distributions and differences in the immediate polarity of the surrounding pico/nanoenvironment. Stereochemistry three-dimensional aspects of molecules provide insight into conformations through single-bond rotations with associated lone-pair electrons on oxygen atoms in addition to pyramidal inversions with nitrogen atoms. When electrons are protected, potential energy is sheltered toward an energy minimum value to compatibilize molecularly with nonpolar environments. When electrons are exposed, maximum energy is available toward polar environment interactions. Computational conformational analysis software calculated energy profiles that exist during specific oxygen ether single-bond rotations with easy-to-visualize three-dimensional models for the trichlorinated bisaromatic ether triclosan antimicrobial polymer additive. As shown, fluctuating alternating bond rotations can produce complex interactions between molecules to provide entanglement strength for polymer toughness or alternatively disrupt weak secondary bonds of attraction to lower resin viscosity for new additive properties with nonpolar triclosan as a hydrophobic toughening/wetting agent. Further, bond rotations involving lone-pair electrons by a molecule at a nonpolar-hydrocarbon-membrane/polar-biologic-fluid interface might become sufficiently unstable to provide free mechanomolecular energies to disrupt weaker microbial membranes, for membrane transport of molecules into cells, provide cell signaling/recognition/defense and also generate enzyme mixing to speed reactions.
Collapse
Affiliation(s)
- Richard C Petersen
- Departments of Biomedical Engineering and Biomaterial Sciences University of Alabama at Birmingham, SDB 539, 1919 7th Avenue South Birmingham, Alabama 35294, USA
| |
Collapse
|
37
|
Xiaoxue W, Xi C, Zhibo X. Effects of botulinum toxin type A on expression of genes in keloid fibroblasts. Aesthet Surg J 2014; 34:154-9. [PMID: 23709452 DOI: 10.1177/1090820x13482938] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Invasive growth of fibroblast cells, which is regulated by multiple biological factors, is the key event in the pathophysiology of keloid scars. Recent studies have suggested that botulinum toxin type A (BoNT-A) could inhibit invasive growth of keloids. However, the molecular mechanisms are unknown. OBJECTIVE The authors explore the effect of BoNT-A on the expression of genes relevant to invasive growth in keloid fibroblasts. METHODS With 112 genes that were relevant to invasive growth, the authors utilized microarray analysis to study messenger RNA expression profiles in keloid fibroblasts treated with BoNT-A. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to confirm the microarray results. RESULTS Analyses from microarray and qRT-PCR revealed that the S100A4 gene was upregulated and that the TGF-β1, VEGF, MMP-1, and PDGFA genes were downregulated in fibroblasts treated with BoNT-A. CONCLUSIONS The BoNT-A altered expression levels of S100A4, TGF-β1, VEGF, MMP-1, and PDGFA genes in keloid fibroblasts provide a useful clue for exploring the function of BoNT-A and finding a novel treatment for keloid scarring.
Collapse
Affiliation(s)
- Wang Xiaoxue
- Second Affiliated Hospital of the Harbin Medical University, Harbin City, China
| | | | | |
Collapse
|
38
|
Pachenari M, Seyedpour SM, Janmaleki M, Babazadeh Shayan S, Taranejoo S, Hosseinkhani H. Mechanical properties of cancer cytoskeleton depend on actin filaments to microtubules content: investigating different grades of colon cancer cell lines. J Biomech 2013; 47:373-9. [PMID: 24315289 DOI: 10.1016/j.jbiomech.2013.11.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 12/13/2022]
Abstract
Biomechanical properties of cancer cells have been proposed as promising biomarkers to investigate cancer progression. Cytoskeletal reorganization alters these characteristics in different grades of cancer cells. In the present study based on the micropipette aspiration method, whole body evaluation for two different colon cancer cells was performed to determine viscoelastic parameters of the cells. A finite element model was developed for verification of experiments and predicting some behaviors of cells. Western blot analysis and fluorescence intensity for actin microfilaments and microtubules were performed to measure cell content of the proteins. It was illustrated that the proportion of microtubules and actin microfilaments is different in grade I and grade IV colon cancer cells in a manner that microtubules attain an effectual role in progressive reorganization of cytoskeleton in transition from nonaggressive to malignant phenotypes in cancer cells. Furthermore, it was concluded that larger instantaneous Young's modulus value for high grade cells is related to the existence of extensively build-up actin networks at the cell cortex. Based on the cell mechanics results, a simple parameter is suggested for sorting different grades of colon cancer cells.
Collapse
Affiliation(s)
- M Pachenari
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - S M Seyedpour
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - M Janmaleki
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Taleghani Hospital, Parvaneh St., Velenjak, 1985717444 Tehran, Iran.
| | - S Babazadeh Shayan
- Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
| | - S Taranejoo
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Taleghani Hospital, Parvaneh St., Velenjak, 1985717444 Tehran, Iran
| | - H Hosseinkhani
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
39
|
Bengtsson E, Persson M, Månsson A. Analysis of flexural rigidity of actin filaments propelled by surface adsorbed myosin motors. Cytoskeleton (Hoboken) 2013; 70:718-28. [PMID: 24039103 PMCID: PMC4230416 DOI: 10.1002/cm.21138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/08/2013] [Accepted: 08/22/2013] [Indexed: 11/09/2022]
Abstract
Actin filaments are central components of the cytoskeleton and the contractile machinery of muscle. The filaments are known to exist in a range of conformational states presumably with different flexural rigidity and thereby different persistence lengths. Our results analyze the approaches proposed previously to measure the persistence length from the statistics of the winding paths of actin filaments that are propelled by surface-adsorbed myosin motor fragments in the in vitro motility assay. Our results suggest that the persistence length of heavy meromyosin propelled actin filaments can be estimated with high accuracy and reproducibility using this approach provided that: (1) the in vitro motility assay experiments are designed to prevent bias in filament sliding directions, (2) at least 200 independent filament paths are studied, (3) the ratio between the sliding distance between measurements and the camera pixel-size is between 4 and 12, (4) the sliding distances between measurements is less than 50% of the expected persistence length, and (5) an appropriate cut-off value is chosen to exclude abrupt large angular changes in sliding direction that are complications, e.g., due to the presence of rigor heads. If the above precautions are taken the described method should be a useful routine part of in vitro motility assays thus expanding the amount of information to be gained from these.
Collapse
Affiliation(s)
- Elina Bengtsson
- Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | | | | |
Collapse
|
40
|
Abstract
MDM2 binding protein (MTBP) is a protein that interacts with oncoprotein murine double minute (MDM2), a major inhibitor of the tumor suppressor p53. Overexpression of MTBP leads to p53-independent cell proliferation arrest, which is in turn blocked by simultaneous overexpression of MDM2. Importantly, reduced expression of MTBP in mice increases tumor metastasis and enhances migratory potential of mouse embryonic fibroblasts regardless of the presence of p53. Clinically, loss of MTBP expression in head and neck squamous cell carcinoma is associated with reduced patient survival, and is shown to serve as an independent prognostic factor when p53 is mutated in tumors. These results indicate the involvement of MTBP in suppressing tumor progression. Our recent findings demonstrate that overexpression of MTBP in human osteosarcoma cells lacking wild-type p53 inhibits metastasis, but not primary tumor growth, when cells are transplanted in femurs of immunocompromised mice. These data indicate that MTBP functions as a metastasis suppressor independent of p53 status. Furthermore, overexpression of MTBP suppresses cell migration and filopodia formation, in part, by inhibiting function of an actin crosslinking protein α-actinin-4. Thus, increasing evidence indicates the significance of MTBP in tumor progression. We summarize published results related to MTBP function and discuss caveats and future directions in this review article.
Collapse
Affiliation(s)
- Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow blvd., Wahl East, Room 2005, Kansas City, KS 66160, USA.
| | | |
Collapse
|
41
|
Zheng JW, Yin HF, Wang X, Liu YC, Wan YL, Zhu J. SiRNA-mediated silencing of paxillin down-regulates ERK1/2 signaling and alters cell ultrastructure in colorectal carcinoma cell line SW480. Shijie Huaren Xiaohua Zazhi 2013; 21:754-760. [DOI: 10.11569/wcjd.v21.i9.754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of silencing of paxillin overexpression on cell signaling and ultrastructure in colorectal carcinoma cell line SW480.
METHODS: Using empty plasmid as a negative control, two siRNA fragments were transfected into a colorectal carcinoma cell line SW480 which overexpresses paxillin. Stably transfected cells were screened and three new cell lines NC, SW545 and SW782 were obtained, which carried the negative control, the siRNA targeting the site 545-565, and the siRNA targeting the site 782-802, respectively. The expression and site-specific phosphorylation of paxillin, FAK, ERK1/2 and AKT1/2/3 were examined in the four cell lines by Western blot. Specimens were prepared with cultured carcinoma cells to observe cell ultrastructure by transmission electron microscopy.
RESULTS: Paxillin overexpression in SW545 cells was not silenced at all, whereas silenced paxillin overexpression and remarkably reduced phosphorylation of paxillin (Tyr118) were observed in SW782 cells. Expression of AKT1/2/3 and FAK as well as their site-specific phosphorylation were substantially the same in the four cell lines. Although expression of ERK1/2 was substantially the same in the four cell lines, significantly reduced phosphorylation of ERK1/2 (Thr202/Tyr204) was observed in SW782 cells. There was no distinct ultrastructural difference between NC cells and SW480 cells, whereas dramatic ultrastructural changes were observed in SW782 cells, such as much more microvilli, microfilament and microtubule bundles, lysosomes and much less mitochondria.
CONCLUSION: Paxillin overexpression may play an important role in the malignant transformation of colorectal carcinoma cells, which is characterized by dramatic ultrastructural changes that can be reversed by silencing paxillin overexpression. Activation of ERK1/2 signaling downstream of paxillin is indispensable for the malignant transformation of colorectal carcinoma cells.
Collapse
|
42
|
Petersen RC. Free-radical polymer science structural cancer model: a review. SCIENTIFICA 2013; 2013:143589. [PMID: 24278767 PMCID: PMC3820302 DOI: 10.1155/2013/143589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 12/20/2012] [Indexed: 06/02/2023]
Abstract
Polymer free-radical lipid alkene chain-growth biological models particularly for hypoxic cellular mitochondrial metabolic waste can be used to better understand abnormal cancer cell morphology and invasive metastasis. Without oxygen as the final electron acceptor for mitochondrial energy synthesis, protons cannot combine to form water and instead mitochondria produce free radicals and acid during hypoxia. Nonuniform bond-length shrinkage of membranes related to erratic free-radical covalent crosslinking can explain cancer-cell pleomorphism with epithelial-mesenchymal transition for irregular membrane borders that "ruffle" and warp over stiff underlying actin fibers. Further, mitochondrial hypoxic conditions produce acid that can cause molecular degradation. Subsequent low pH-activated enzymes then provide paths for invasive cell movement through tissue and eventually blood-born metastasis. Although free-radical crosslinking creates irregularly shaped membranes with structural actin-polymerized fiber extensions as filopodia and lamellipodia, due to rapid cell division the overall cell modulus (approximately stiffness) is lower than normal cells. When combined with low pH-activated enzymes and lower modulus cells, smaller cancer stem cells subsequently have a large advantage to follow molecular destructive pathways and leave the central tumor. In addition, forward structural spike-like lamellipodia protrusions can leverage to force lower-modulus cancer cells through narrow openings. By squeezing and deforming even smaller to allow for easier movement through difficult passageways, cancer cells can travel into adjacent tissues or possibly metastasize through the blood to new tissue.
Collapse
Affiliation(s)
- Richard C. Petersen
- Department of Biomaterials and Biomedical Engineering, The University of Alabama at Birmingham, SDB 539, 1919 7th Avenue South, Birmingham, AL 35294, USA
| |
Collapse
|
43
|
Rebelo LM, de Sousa JS, Mendes Filho J, Radmacher M. Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy. NANOTECHNOLOGY 2013; 24:055102. [PMID: 23324556 DOI: 10.1088/0957-4484/24/5/055102] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The viscoelastic properties of human kidney cell lines from different tumor types (carcinoma (A-498) and adenocarcinoma (ACHN)) are compared to a non-tumorigenic cell line (RC-124). Our methodology is based on the mapping of viscoelastic properties (elasticity modulus E and apparent viscosity η) over the surface of tens of individual cells with atomic force microscopy (AFM). The viscoelastic properties are averaged over datasets as large as 15000 data points per cell line. We also propose a model to estimate the apparent viscosity of soft materials using the hysteresis observed in conventional AFM deflection-displacement curves, without any modification to the standard AFM apparatus. The comparison of the three cell lines show that the non-tumorigenic cells are less deformable and more viscous than cancerous cells, and that cancer cell lines have distinctive viscoelastic properties. In particular, we obtained that E(RC-124) > E(A-498) > E(ACHN) and η(RC-124) > η(A-498) > η(ACHN).
Collapse
Affiliation(s)
- L M Rebelo
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza, Ceará, Brazil
| | | | | | | |
Collapse
|
44
|
Grantham J, Lassing I, Karlsson R. Controlling the cortical actin motor. PROTOPLASMA 2012; 249:1001-1015. [PMID: 22526202 PMCID: PMC3459087 DOI: 10.1007/s00709-012-0403-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/21/2012] [Indexed: 05/31/2023]
Abstract
Actin is the essential force-generating component of the microfilament system, which powers numerous motile processes in eukaryotic cells and undergoes dynamic remodeling in response to different internal and external signaling. The ability of actin to polymerize into asymmetric filaments is the inherent property behind the site-directed force-generating capacity that operates during various intracellular movements and in surface protrusions. Not surprisingly, a broad variety of signaling pathways and components are involved in controlling and coordinating the activities of the actin microfilament system in a myriad of different interactions. The characterization of these processes has stimulated cell biologists for decades and has, as a consequence, resulted in a huge body of data. The purpose here is to present a cellular perspective on recent advances in our understanding of the microfilament system with respect to actin polymerization, filament structure and specific folding requirements.
Collapse
Affiliation(s)
- Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Lassing
- Department of Cell Biology, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Roger Karlsson
- Department of Cell Biology, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
45
|
Abstract
MDM2 Binding Protein (MTBP) has been implicated in cancer progression. Here we demonstrate one mechanism by which MTBP inhibits cancer metastasis. Overexpression of MTBP in human osteosarcoma cell lines lacking wild-type p53 did not alter primary tumor growth in mice but significantly inhibited metastases. MTBP downregulation increased the migratory potential of MDM2−/−p53−/− mouse embryonic fibroblasts, suggesting that MTBP inhibited cell migration independently of the Mdm2-p53 pathway. Co-immunoprecipitation and mass spectrometric analysis identified alpha-actinin-4 (ACTN4) as a MTBP-interacting protein. Endogenous MTBP interacted with and partially colocalized with ACTN4. MTBP overexpression inhibited cell migration and filopodia formation mediated by ACTN4. Increased cell migration by MTBP downregulation was inhibited by concomitant downregulation of ACTN4. MTBP also inhibited ACTN4-mediated F-actin bundling. We furthermore demonstrated that nuclear localization of MTBP was dispensable for inhibiting ACTN4-mediated cell migration and filopodia formation. Thus, MTBP suppresses cell migration, at least partially, by inhibiting ACTN4 function. Our study not only provides a mechanism of metastasis suppression by MTBP, but also suggests MTBP as a potential biomarker for cancer progression.
Collapse
|
46
|
The effects of cancer progression on the viscoelasticity of ovarian cell cytoskeleton structures. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:93-102. [DOI: 10.1016/j.nano.2011.05.012] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/13/2011] [Accepted: 05/19/2011] [Indexed: 01/17/2023]
|
47
|
Johnsson AK, Karlsson R. Synaptotagmin 1 causes phosphatidyl inositol lipid-dependent actin remodeling in cultured non-neuronal and neuronal cells. Exp Cell Res 2011; 318:114-26. [PMID: 22036579 DOI: 10.1016/j.yexcr.2011.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 11/24/2022]
Abstract
Here we demonstrate that a dramatic actin polymerizing activity caused by ectopic expression of the synaptic vesicle protein synaptotagmin 1 that results in extensive filopodia formation is due to the presence of a lysine rich sequence motif immediately at the cytoplasmic side of the transmembrane domain of the protein. This polybasic sequence interacts with anionic phospholipids in vitro, and, consequently, the actin remodeling caused by this sequence is interfered with by expression of a phosphatidyl inositol (4,5)-bisphosphate (PIP2)-targeted phosphatase, suggesting that it intervenes with the function of PIP2-binding actin control proteins. The activity drastically alters the behavior of a range of cultured cells including the neuroblastoma cell line SH-SY5Y and primary cortical mouse neurons, and, since the sequence is conserved also in synaptotagmin 2, it may reflect an important fine-tuning role for these two proteins during synaptic vesicle fusion and neurotransmitter release.
Collapse
Affiliation(s)
- Anna-Karin Johnsson
- Department of Cell Biology, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
48
|
Ulbrich C, Pietsch J, Grosse J, Wehland M, Schulz H, Saar K, Hübner N, Hauslage J, Hemmersbach R, Braun M, van Loon J, Vagt N, Egli M, Richter P, Einspanier R, Sharbati S, Baltz T, Infanger M, Ma X, Grimm D. Differential gene regulation under altered gravity conditions in follicular thyroid cancer cells: relationship between the extracellular matrix and the cytoskeleton. Cell Physiol Biochem 2011; 28:185-98. [PMID: 21865726 DOI: 10.1159/000331730] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2011] [Indexed: 12/19/2022] Open
Abstract
Extracellular matrix proteins, adhesion molecules, and cytoskeletal proteins form a dynamic network interacting with signalling molecules as an adaptive response to altered gravity. An important issue is the exact differentiation between real microgravity responses of the cells or cellular reactions to hypergravity and/or vibrations. To determine the effects of real microgravity on human cells, we used four DLR parabolic flight campaigns and focused on the effects of short-term microgravity (22 s), hypergravity (1.8 g), and vibrations on ML-1 thyroid cancer cells. No signs of apoptosis or necrosis were detectable. Gene array analysis revealed 2,430 significantly changed transcripts. After 22 s microgravity, the F-actin and cytokeratin cytoskeleton was altered, and ACTB and KRT80 mRNAs were significantly upregulated after the first and thirty-first parabolas. The COL4A5 mRNA was downregulated under microgravity, whereas OPN and FN were significantly upregulated. Hypergravity and vibrations did not change ACTB, KRT-80 or COL4A5 mRNA. MTSS1 and LIMA1 mRNAs were downregulated/slightly upregulated under microgravity, upregulated in hypergravity and unchanged by vibrations. These data indicate that the graviresponse of ML-1 cells occurred very early, within the first few seconds. Downregulated MTSS1 and upregulated LIMA1 may be an adaptive mechanism of human cells for stabilizing the cytoskeleton under microgravity conditions.
Collapse
Affiliation(s)
- Claudia Ulbrich
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Soria EA, Eynard AR, Bongiovanni GA. Modulation of early stress-related biomarkers in cytoplasm by the antioxidants silymarin and quercetin using a cellular model of acute arsenic poisoning. Basic Clin Pharmacol Toxicol 2011; 107:982-7. [PMID: 20735377 DOI: 10.1111/j.1742-7843.2010.00615.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several pathologies (e.g. cancer and diabetes) are increased in arsenic-exposed populations, with oxidative stress being a major toxicological mechanism. Since the flavonoids silymarin (S) and quercetin (Q) are antioxidants and may protect cells, it would be valuable to develop a model which allows assessing the potential of xenobiotic against arsenic cytotoxicity in an efficient and rapid way. Thus, the oxidant production [e.g. reactive oxygen species and reactive nitrogen species (RNS)], the molecular parameters of biological response [e.g. plasma membrane composition, actin microfilaments and activated diphosphorilated c-Jun N-terminal kinase (JNK)] and cellular viability were determined in CHO-K1 cells treated with arsenite (As), S and Q. Arsenic caused loss of the cellular viability in a time-dependent manner. This effect was accompanied by a lipid hydroperoxide (LHP) formation, with no RNS induction or ganglioside content changes being found. Both flavonoids counteracted oxidative damage. Despite all treatments had unspecific responses on nitrite cellular release along the time, there was no relation between them and the cellular viability. Arsenic induced cytoplasmic microfilament rearrangement (tight perinuclear distribution with projections, stress fibres and pseudopodia) which was reversed by S. Also, activated JNK showed a similar distribution to actin. Contrarily, Q caused a dysmorphic granular pattern, thus behaving as a toxic agent. Summing up, toxic levels of arsenic disturb the redox homeostasis with LHP induction and early triggering of stress responses in cytoskeleton and cell signalling. Using the proposed model, only S showed to protect cells from arsenical cytotoxicity without own toxic properties. Thus, S might be considered for modulation of the human arsenic susceptibility.
Collapse
Affiliation(s)
- Elio A Soria
- Cellular Biology Institute, Faculty of Medicine, National University of Cordoba, Argentina
| | | | | |
Collapse
|
50
|
Creekmore AL, Silkworth WT, Cimini D, Jensen RV, Roberts PC, Schmelz EM. Changes in gene expression and cellular architecture in an ovarian cancer progression model. PLoS One 2011; 6:e17676. [PMID: 21390237 PMCID: PMC3048403 DOI: 10.1371/journal.pone.0017676] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 02/08/2011] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Ovarian cancer is the fifth leading cause of cancer deaths among women. Early stage disease often remains undetected due the lack of symptoms and reliable biomarkers. The identification of early genetic changes could provide insights into novel signaling pathways that may be exploited for early detection and treatment. METHODOLOGY/PRINCIPAL FINDINGS Mouse ovarian surface epithelial (MOSE) cells were used to identify stage-dependent changes in gene expression levels and signal transduction pathways by mouse whole genome microarray analyses and gene ontology. These cells have undergone spontaneous transformation in cell culture and transitioned from non-tumorigenic to intermediate and aggressive, malignant phenotypes. Significantly changed genes were overrepresented in a number of pathways, most notably the cytoskeleton functional category. Concurrent with gene expression changes, the cytoskeletal architecture became progressively disorganized, resulting in aberrant expression or subcellular distribution of key cytoskeletal regulatory proteins (focal adhesion kinase, α-actinin, and vinculin). The cytoskeletal disorganization was accompanied by altered patterns of serine and tyrosine phosphorylation as well as changed expression and subcellular localization of integral signaling intermediates APC and PKCβII. CONCLUSIONS/SIGNIFICANCE Our studies have identified genes that are aberrantly expressed during MOSE cell neoplastic progression. We show that early stage dysregulation of actin microfilaments is followed by progressive disorganization of microtubules and intermediate filaments at later stages. These stage-specific, step-wise changes provide further insights into the time and spatial sequence of events that lead to the fully transformed state since these changes are also observed in aggressive human ovarian cancer cell lines independent of their histological type. Moreover, our studies support a link between aberrant cytoskeleton organization and regulation of important downstream signaling events that may be involved in cancer progression. Thus, our MOSE-derived cell model represents a unique model for in depth mechanistic studies of ovarian cancer progression.
Collapse
Affiliation(s)
- Amy L. Creekmore
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - William T. Silkworth
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Daniela Cimini
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Roderick V. Jensen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Paul C. Roberts
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail: (EMS); (PCR)
| | - Eva M. Schmelz
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail: (EMS); (PCR)
| |
Collapse
|