1
|
Ding C, Li Z, Zheng Y, Li K, Yu W, Kong L, Zhang Z. Effects of albumin-bound paclitaxel combined with Sophora subprostrate polysaccharide on inflammatory factors and immune function in breast cancer rats. Discov Oncol 2025; 16:716. [PMID: 40347365 PMCID: PMC12065689 DOI: 10.1007/s12672-025-02539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/30/2025] [Indexed: 05/12/2025] Open
Abstract
BACKGROUND Tumor occurrence and growth are highly correlated with the degree of inflammation and immunological activity. Reducing the level of inflammation in tumor-bearing body to relieve immune suppression and enhance anti-tumor immune function has become an important strategy for tumor treatment. OBJECTIVE To investigate the effect of albumin-bound paclitaxel combined with Sophora subprostrate polysaccharide (SSP) on inhibiting inflammation, reducing immunosuppression, enhancing anti-tumor immune function and slowing the progression of tumor in tumor-bearing rats, and to provide certain scientific basis for the clinical application of combined drugs in tumor. METHODS The rats were put into three groups at random: normal control, model group, and drug treatment group. After the end of drug intervention, the tumor was taken out and weighed to observe the tumor growth of the rats. Tumor necrosis factor (TNF-α), interleukin (IL) 1β, IL-10, perforin, and granzyme B were found by Western blot in the local tumor tissues of experimental rats. The protein expression levels of Arginase-1 (Arg-1) and Cyclooxygenase 2 (COX-2) were determined. HE staining was used to observe the inflammatory infiltration of the tumor. Using flow cytometry, the proportions of anti-tumor immune cells-CD8 + T cells, NK cells, and immunosuppressive cells-in local tumor tissues were evaluated. In addition, spleen T cells isolated from normal rats were co-cultured with spleen myeloid derived suppressor cells (MDSC) from tumor-bearing rats in the model group and the combined treatment group. Cell Trace Far Red was used to identify T cell proliferation, flow cytometry was used to determine the level of T cell activation from CD25 expression, and in vivo immunosuppression in tumor-bearing rats was examined. RESULTS The combined therapy group experienced a considerable decrease in tumor weight as compared to the model group. TNF-α and IL-1p levels in the vicinity of the tumor tissues reduced following intervention, although IL-10 levels, which are anti-inflammatory cytokines, did not significantly change. The results of the HE staining revealed that the intervention group's tumor had less inflammatory infiltration than the model group did. After intervention, the percentages of CD8 + T cells and NK cells in local tumor tissues increased. Additionally, the intervention group's levels of protein expression for perforin and granzyme B were considerably higher than those of the model group. In the nearby tumor tissues, there were lots of MDSC. Following the intervention, the proportion of MDSC in the local tumor tissues was significantly reduced, and the expansion of MDSC was reduced. Additionally, the intervention group's COX-2 and Arg-1 protein expression levels in the tumor-specific tissues were significantly lower than those of the model group. The outcomes of in vitro co-culture demonstrated that rats in the combination group had higher levels of T cell proliferation and activation than animals in the model group. CONCLUSIONS Albumin-bound paclitaxel combined with Sophora subprostrate polysaccharide can reduce the local inflammation level, promote the proportion of CDB + T cells and NK cells and cell killing function, reduce the proportion of MDSC and immunosuppressive level, enhance the anti-tumor immune function of tumor-bearing mice, and slow the growth of tumors.
Collapse
Affiliation(s)
- Changli Ding
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, 1279 Sanmen Road, Hongkou District, Shanghai, China
| | - Zhuolin Li
- Department of Oncology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zheng
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, 1279 Sanmen Road, Hongkou District, Shanghai, China
| | - Kaichun Li
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, 1279 Sanmen Road, Hongkou District, Shanghai, China
| | - Wenyan Yu
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, 1279 Sanmen Road, Hongkou District, Shanghai, China
| | - Lingzhijie Kong
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, 1279 Sanmen Road, Hongkou District, Shanghai, China
| | - Zhiyong Zhang
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, 1279 Sanmen Road, Hongkou District, Shanghai, China.
| |
Collapse
|
2
|
Qiu Z, Li Z, Zhang C, Zhao Q, Liu Z, Cheng Q, Zhang J, Lin A, Luo P. NK Cell Senescence in Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Aging Dis 2025:AD.2025.0053. [PMID: 40249925 DOI: 10.14336/ad.2025.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2025] [Accepted: 03/13/2025] [Indexed: 04/20/2025] Open
Abstract
P Natural killer (NK) cells function as crucial effectors in the innate immune response against tumors. Nevertheless, NK cell senescence, characterized by phenotypic and functional changes, substantially compromises their antitumor immune response. This review provides a comprehensive summary of the molecular mechanisms governing NK cell senescence and its implications for cancer immunotherapy. We propose a refined definition of NK cell senescence based on distinct biomarkers, including elevated CD57 expression, reduced cytotoxicity, and altered cytokine secretion. Moreover, we investigate the complex interactions between the tumor microenvironment (TME) and NK cell senescence, highlighting the influence of chronic inflammation, immunosuppressive cytokines, and persistent tumor antigenic stimulation. Additionally, this review underscores the potential utility of senescent NK cells as biomarkers for assessing antitumor efficacy and examines the adverse effects of NK cell senescence on cancer immunotherapy. Lastly, we summarize current approaches to mitigate NK cell senescence, such as gene editing techniques and cytokine modulation, which may enhance the efficacy of NK cell-based immunotherapies. By establishing a comprehensive framework for understanding NK cell senescence within the TME, this review aims to guide future research and the development of innovative therapeutic strategies targeting senescent NK cells to improve cancer immunotherapy outcomes.
Collapse
Affiliation(s)
- Zilin Qiu
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, 222000, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Zhengrui Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qun Zhao
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang 050011, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Quan Cheng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Anqi Lin
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, 222000, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Peng Luo
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, 222000, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| |
Collapse
|
3
|
Liu R, Jia L, Yu L, Lai D, Li Q, Zhang B, Guo E, Xu K, Luo Q. Interaction between post-tumor inflammation and vascular smooth muscle cell dysfunction in sepsis-induced cardiomyopathy. Front Immunol 2025; 16:1560717. [PMID: 40276499 PMCID: PMC12018406 DOI: 10.3389/fimmu.2025.1560717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/28/2025] [Indexed: 04/26/2025] Open
Abstract
Background Sepsis-induced cardiomyopathy (SIC) presents a critical complication in cancer patients, contributing notably to heart failure and elevated mortality rates. While its clinical relevance is well-documented, the intricate molecular mechanisms that link sepsis, tumor-driven inflammation, and cardiac dysfunction remain inadequately explored. This study aims to elucidate the interaction between post-tumor inflammation, intratumor heterogeneity, and the dysfunction of VSMC in SIC, as well as to evaluate the therapeutic potential of exercise training and specific pharmacological interventions. Methods Transcriptomic data from NCBI and GEO databases were analyzed to identify differentially expressed genes (DEGs) associated with SIC. Weighted gene co-expression network analysis (WGCNA), gene ontology (GO), and KEGG pathway enrichment analyses were utilized to elucidate the biological significance of these genes. Molecular docking and dynamics simulations were used to investigate drug-target interactions, and immune infiltration and gene mutation analyses were carried out by means of platforms like TIMER 2.0 and DepMap to comprehend the influence of DVL1 on immune responsiveness. Results Through the utilization of the datasets, we discovered the core gene DVL1 that exhibited remarkable up-regulated expression both in SIC and in diverse kinds of cancers, which were associated with poor prognosis and inflammatory responses. Molecular docking revealed that Digoxin could bind to DVL1 and reduce oxidative stress in SIC. The DVL1 gene module related to SIC was identified by means of WGCNA, and the immune infiltration analysis demonstrated the distinctive immune cell patterns associated with DVL1 expression and the impact of DVL1 on immunotherapeutic resistance. Conclusions DVL1 is a core regulator of SIC and other cancers and, therefore, can serve as a therapeutic target. The present study suggests that targeted pharmacological therapies to enhance response to exercise regimens may be a novel therapeutic tool to reduce the inflammatory response during sepsis, particularly in cancer patients. The identified drugs, Digoxin, require further in vivo and clinical studies to confirm their effects on SIC and their potential efforts to improve outcomes in immunotherapy-resistant cancer patients.
Collapse
Affiliation(s)
- Rui Liu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Lina Jia
- Hebei Medical University, Shijiazhuang, China
| | - Lin Yu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Detian Lai
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Qingzhu Li
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Bingyu Zhang
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Enwei Guo
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Kailiang Xu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Qiancheng Luo
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| |
Collapse
|
4
|
Salminen A. Cooperation between inhibitory immune checkpoints of senescent cells with immunosuppressive network to promote immunosenescence and the aging process. Ageing Res Rev 2025; 106:102694. [PMID: 39984130 DOI: 10.1016/j.arr.2025.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
The accumulation of senescent cells within tissues promotes the aging process by remodelling the functions of the immune system. For many years, it has been known that senescent cells secrete pro-inflammatory cytokines and chemokines, a phenotype called the senescence-associated secretory phenotype (SASP). Chemokines and colony-stimulating factors stimulate myelopoiesis and recruit myeloid cells into aging tissues. Interestingly, recent studies have demonstrated that senescent cells are not only secretory but they also express an increased level of ligand proteins for many inhibitory immune checkpoint receptors. These ligands represent "don't eat me" markers in senescent cells and moreover, they are able to induce an exhaustion of many immune cells, such as surveying natural killer (NK) cells, cytotoxic CD8+ T cells, and macrophages. The programmed cell death protein-1 (PD-1) and its ligand PD-L1 represent the best known inhibitory immune checkpoint pathway. Importantly, the activation of inhibitory checkpoint receptors, e.g., in chronic inflammatory states, can also induce certain immune cells to differentiate toward their immunosuppressive phenotype. This can be observed in myeloid derived suppressor cells (MDSC), tissue regulatory T cells (Treg), and M2 macrophages. Conversely, these immunosuppressive cells stimulate in senescent cells the expression of many ligand proteins for inhibitory checkpoint receptors. Paradoxically, senescent cells not only promote the pro-inflammatory state but they maintain it at a low-grade level by expressing ligands for inhibitory immune checkpoint receptors. Thus, the cooperation between senescent cells and immunosuppressive cells enhances the senescence state of immune cells, i.e., immune senescence/exhaustion, and cellular senescence within tissues via bystander effects.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| |
Collapse
|
5
|
Abshire KM, Schwandt ML, Diazgranados N, Farokhnia M, Leggio L. Alcohol consumption and childhood trauma impact serum immunoglobulin levels in patients with alcohol use disorder. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:599-608. [PMID: 39985484 PMCID: PMC11928251 DOI: 10.1111/acer.15537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/06/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Alcohol Use Disorder (AUD) and childhood trauma both have detrimental effects on immune regulation. Immunoglobulins, key biomarkers of the adaptive immune system, may be selectively targeted by heavy alcohol consumption as well as childhood trauma. In this study, we investigated the relationship between alcohol drinking behavior, history of childhood trauma, and circulating levels of immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM) in individuals with AUD. METHODS Using linear regression, multiple variables, drinks per drinking day and childhood trauma questionnaire (CTQ) score, were evaluated in relation to immunoglobulin levels. All participants (N = 445) were treatment-seeking and admitted to the National Institutes of Health Clinical Center, where they underwent a battery of laboratory and psychological assessments. RESULTS Analyses showed a significant positive association between alcohol consumption and IgA. Furthermore, there was a significant negative association between childhood trauma and IgG. Other significant results include a negative association between substance use disorder diagnosis (other than alcohol) and IgA, while anxiety disorder diagnosis was associated with lower IgG. CONCLUSION Heavy alcohol drinking is associated with elevated IgA levels, which may be a potential risk factor for alcohol-associated liver disease. On the other hand, childhood trauma's association with decreased IgG levels may be indicative of broader immune dysfunction. Taken together, changes in immunoglobulins may be valuable markers linking alcohol consumption and childhood trauma to immune health and disease progression.
Collapse
Affiliation(s)
- Kelly M. Abshire
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, Maryland, USA
| | - Melanie L. Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Nancy Diazgranados
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, Maryland, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, Maryland, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island, USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
6
|
Dzhalilova D, Silina M, Kosyreva A, Fokichev N, Makarova O. Morphofunctional changes in the immune system in colitis-associated colorectal cancer in tolerant and susceptible to hypoxia mice. PeerJ 2025; 13:e19024. [PMID: 40028198 PMCID: PMC11869898 DOI: 10.7717/peerj.19024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Background One of the effective strategies for the treatment of tumor diseases, including colitis-associated colorectal cancer (CAC), is immunotherapy. During inflammation, NF-κB is activated, which is connected with the hypoxia-inducible factor-HIF, regulating the immune cells functioning and influences the CAC development. Organisms differ according to their hypoxia resistance and HIF expression. Therefore, the aim of the study was to characterize the thymus, spleen and mesenteric lymph nodes morphofunctional features, as well as changes in the subpopulation composition of peripheral blood cells and mesenteric lymph nodes in tolerant and susceptible to hypoxia C57Bl/6 mice in CAC. Methods Hypoxia tolerance was assessed by gasping time measurement in hypobaric decompression chamber. Based on the outcome, the mice were assigned to three groups characterized as 'tolerant to hypoxia', 'normal', and 'susceptible to hypoxia'. A month after determining hypoxia resistance CAC was modeled by intraperitoneal azoxymethane (AOM) administration and three cycles of dextran sulfate sodium consumption. Mice were sacrificed on the 141st day after the AOM administration, a morphological, morphometric and immunohistochemical study of tumors, morphological and morphometric study of thymus and spleen, and subpopulation composition of peripheral blood cells and mesenteric lymph nodes assessment were carried out. Results Tumors in tolerant and susceptible to hypoxia mice were represented by glandular intraepithelial neoplasia and adenocarcinomas, the area of which was larger in susceptible mice. Immunohistochemical study revealed a more pronounced Ki-67+ staining in tumors of susceptible mice. In CAC, only in tolerant mice, expansion of the thymic cortex was observed relative to the control group, while in susceptible ones, no changes were detected. Only in susceptible to hypoxia mice, spleen germinal centers of lymphoid follicles enlargement were observed. Only in susceptible mice during CAC, in comparison to the control group, the relative and absolute number of B-lymphocytes and relative-cytotoxic T-lymphocytes in blood increased. The relative cytotoxic T-lymphocytes and NK cells number in peripheral blood during CAC was higher in susceptible to hypoxia mice compared to tolerant ones. In susceptible to hypoxia mice, more pronounced changes in the mesenteric lymph nodes subpopulation composition of cells were revealed-only in them the absolute and relative number of B-lymphocytes and NK cells, the absolute number of cytotoxic T-lymphocytes increased, and the relative number of macrophages decreased. Conclusions Morphofunctional differences in the thymus, spleen, mesenteric lymph nodes and blood immune cells reactions indicated the more pronounced immune response to the CAC development in susceptible to hypoxia mice, which should be taken into account in experimental studies.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Maria Silina
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), Moscow, Russia
| | - Nikolai Fokichev
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| |
Collapse
|
7
|
Alsubaie N, Abd-Elhakim YM, Mohamed AAR, Khamis T, Metwally MMM, Helmi N, Alnajeebi AM, Alotaibi BS, Albaqami A, Mawkili W, Samak MA, Eissa SA. Exploring the CD3/CD56/TNF-α/Caspase3 pathway in pyrethroid-induced immune dysregulation: curcumin-loaded chitosan nanoparticle intervention. Front Pharmacol 2025; 16:1505432. [PMID: 39981186 PMCID: PMC11840570 DOI: 10.3389/fphar.2025.1505432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Conflict reports exist on the impact of pyrethroid insecticides on immune function and the probable underlying mechanisms. Methods This study evaluated the effect of an extensively used pyrethroid insecticide, fenpropathrin (FTN) (15 mg/kg b.wt), on the innate and humoral immune components, blood cells, splenic oxidative status, and mRNA expression of CD3, CD20, CD56, CD8, CD4, IL-6, TNF-α, and Caspase3 in a 60-day trial in rats. Besides, the possible defensive effect of curcumin-loaded chitosan nanoparticle (CML-CNP) (50 mg/kg b.wt) was evaluated. Results FTN exposure resulted in hypochromic normocytic anemia, thrombocytosis, leukocytosis, and lymphopenia. Besides, a significant reduction in IgG, not IgM, but increased C3 serum levels was evident in the FTN-exposed rats. Moreover, their splenic tissues displayed a substantial increase in the ROS, MDA, IL-6, and IL-1β content, altered splenic histology, and reduced GPX, GSH, and GSH/GSSG. Furthermore, a substantial upregulation of mRNA expression of splenic CD20, CD56, CD8, CD4, CD3, IL-6, and TNF-α, but downregulation of CD8 was detected in FTN-exposed rats. FTN exposure significantly upregulated splenic Caspase-3 and increased its immunohistochemical expression, along with elevated TNF-α immunoexpression. However, the alterations in immune function, splenic antioxidant status, blood cell populations, and immune-related gene expression were notably restored in the FTN + CML-CNP-treated group. Conclusion The findings of this study highlighted the immunosuppressive effects of FTN and suggested the involvement of many CD cell markers as a potential underlying mechanism. Additionally, the results demonstrated the effectiveness of CML-CNP in mitigating pollutant-induced immune disorders.
Collapse
Affiliation(s)
- Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M. M. Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sidr, Egypt
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nawal Helmi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Afnan M. Alnajeebi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Wedad Mawkili
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mai A. Samak
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- College of Medicine, University of Ha’il, Ha’il, Saudi Arabia
| | - Samar A. Eissa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Kafrelsheikh University, Kafr ElSheikh, Egypt
| |
Collapse
|
8
|
Jiang M, Cai N, Hu J, Han L, Xu F, Zhu B, Wang B. Genomic and algorithm-based predictive risk assessment models for benzene exposure. Front Public Health 2025; 12:1419361. [PMID: 39911783 PMCID: PMC11795664 DOI: 10.3389/fpubh.2024.1419361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/12/2024] [Indexed: 02/07/2025] Open
Abstract
Aim In this research, we leveraged bioinformatics and machine learning to pinpoint key risk genes associated with occupational benzene exposure and to construct genomic and algorithm-based predictive risk assessment models. Subject and methods We sourced GSE9569 and GSE21862 microarray data from the Gene Expression Omnibus. Utilizing R software, we performed an initial screen for differentially expressed genes (DEGs), which was followed by the enrichment analyses to elucidate the affected functions and pathways. Subsequent steps included the application of three machine learning algorithms for key gene identification, and the validation of these genes within both a cohort exposed to benzene and a benzene-exposed mice model. We then conducted a functional prediction analysis on these genes using four machine learning models, complemented by GSVA enrichment analysis. Results Out of the data, 40 DEGs were identified, primarily linked to cytokine signaling, lipopolysaccharide response, and chemokine pathways. NFKB1, PHACTR1, PTGS2, and PTX3 were pinpointed as significant through machine learning. Validation confirmed substantial changes in NFKB1 and PTX3 following exposure, with PTX3 emerging as paramount, suggesting its utility as a diagnostic biomarker for benzene damage. Conclusion Risk assessment models, informed by oxidative stress markers, successfully discriminated between benzene-injured patients and controls.
Collapse
Affiliation(s)
- Minyun Jiang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Center for Disease Prevention and Control, Institute of Occupational Disease Prevention, Nanjing, Jiangsu, China
| | - Na Cai
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Center for Disease Prevention and Control, Institute of Occupational Disease Prevention, Nanjing, Jiangsu, China
| | - Juan Hu
- School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Lei Han
- Jiangsu Province Center for Disease Prevention and Control, Institute of Occupational Disease Prevention, Nanjing, Jiangsu, China
- Jiangsu Preventive Medical Association, Nanjing, Jiangsu, China
| | - Fanwei Xu
- School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Baoli Zhu
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Center for Disease Prevention and Control, Institute of Occupational Disease Prevention, Nanjing, Jiangsu, China
- Jiangsu Preventive Medical Association, Nanjing, Jiangsu, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Boshen Wang
- Jiangsu Province Center for Disease Prevention and Control, Institute of Occupational Disease Prevention, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Sturgeon JP, Mutasa K, Bwakura-Dangarembizi M, Amadi B, Ngosa D, Dzikiti A, Chandwe K, Besa E, Mutasa B, Murch SH, Hill S, Playford RJ, VanBuskirk K, Kelly P, Prendergast AJ. Therapeutic interventions targeting enteropathy in severe acute malnutrition modulate systemic and vascular inflammation and epithelial regeneration. EBioMedicine 2025; 111:105478. [PMID: 39662176 PMCID: PMC11697704 DOI: 10.1016/j.ebiom.2024.105478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Severe acute malnutrition (SAM) is the most life-threatening form of undernutrition, and children hospitalised with complications have unacceptably high mortality. Complicated SAM is a multisystem disease characterised pathophysiologically by muscle wasting, systemic inflammation, metabolic dysfunction, and malnutrition enteropathy including epithelial barrier dysfunction. There is a clear need for novel interventions to address the underlying pathogenic perturbations of complicated SAM. METHODS In this analysis of tertiary outcomes from a phase II multi-centre trial in Zambia and Zimbabwe, multiplex biomarkers were measured in 122 children (57% male) with SAM randomised following stabilisation ('baseline') to one of four interventions for 14 days to treat malnutrition enteropathy: budesonide, N-acetylglucosamine, colostrum, or teduglutide, compared with standard-of-care. Following measurement of 35 biomarkers from day 15 plasma samples using Luminex and ELISA, the dimensionality of biomarker data was reduced using principal component analysis. FINDINGS Both budesonide and colostrum reduced systemic inflammation (as measured by CD14, IL1-ra, CRP, and LBP), while children receiving colostrum had higher GLP2 and angiopoietin, and lower circulating lipopolysaccharide, suggesting better restoration of epithelial barrier function. N-acetylglucosamine, a precursor for epithelial glycosaminoglycan synthesis, increased biomarkers of epithelial regeneration (EGF, VEGF), and circulating growth factors (angiopoietin, IGFBP-3, and GCSF). INTERPRETATION Interventions aimed at ameliorating malnutrition enteropathy showed plausible effects on biomarkers of inflammation and epithelial regeneration, demonstrating an interdependence of systemic inflammation and enteropathy markers seen in structural analysis. Given the interplay between inflammation and tissue restoration in malnutrition, this mechanism of action supports larger trials to determine the clinical benefits of interventions, either alone or in combination, in children with complicated SAM. FUNDING This analysis of tertiary outcomes for the TAME trial was funded by a Wellcome grant to JPS (220566/Z/20/Z). The TAME trial was funded by a grant from the Medical Research Council (UK), number MR/P024033/1. AJP is funded by Wellcome (108065/Z/15/Z). Takeda UK provided teduglutide at a discounted price.
Collapse
Affiliation(s)
- Jonathan P Sturgeon
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Blizard Institute, Queen Mary University of London, London, UK.
| | - Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Mutsa Bwakura-Dangarembizi
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Beatrice Amadi
- Tropical Gastroenterology and Nutrition Group, University of Zambia, Lusaka, Zambia
| | - Deophine Ngosa
- Tropical Gastroenterology and Nutrition Group, University of Zambia, Lusaka, Zambia
| | - Anesu Dzikiti
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Kanta Chandwe
- Tropical Gastroenterology and Nutrition Group, University of Zambia, Lusaka, Zambia
| | - Ellen Besa
- Tropical Gastroenterology and Nutrition Group, University of Zambia, Lusaka, Zambia
| | - Batsirai Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | | - Susan Hill
- Great Ormond Street Hospital, London, UK
| | | | - Kelley VanBuskirk
- Tropical Gastroenterology and Nutrition Group, University of Zambia, Lusaka, Zambia
| | - Paul Kelly
- Tropical Gastroenterology and Nutrition Group, University of Zambia, Lusaka, Zambia; Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Andrew J Prendergast
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
10
|
Salminen A. GDF15/MIC-1: a stress-induced immunosuppressive factor which promotes the aging process. Biogerontology 2024; 26:19. [PMID: 39643709 PMCID: PMC11624233 DOI: 10.1007/s10522-024-10164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
The GDF15 protein, a member of the TGF-β superfamily, is a stress-induced multifunctional protein with many of its functions associated with the regulation of the immune system. GDF15 signaling provides a defence against the excessive inflammation induced by diverse stresses and tissue injuries. Given that the aging process is associated with a low-grade inflammatory state, called inflammaging, it is not surprising that the expression of GDF15 gradually increases with aging. In fact, the GDF15 protein is a core factor secreted by senescent cells, a state called senescence-associated secretory phenotype (SASP). Many age-related stresses, e.g., mitochondrial and endoplasmic reticulum stresses as well as inflammatory, metabolic, and oxidative stresses, induce the expression of GDF15. Although GDF15 signaling is an effective anti-inflammatory modulator, there is robust evidence that it is a pro-aging factor promoting the aging process. GDF15 signaling is not only an anti-inflammatory modulator but it is also a potent immunosuppressive enhancer in chronic inflammatory states. The GDF15 protein can stimulate immune responses either non-specifically via receptors of the TGF-β superfamily or specifically through the GFRAL/HPA/glucocorticoid pathway. GDF15 signaling stimulates the immunosuppressive network activating the functions of MDSCs, Tregs, and M2 macrophages and triggering inhibitory immune checkpoint signaling in senescent cells. Immunosuppressive responses not only suppress chronic inflammatory processes but they evoke many detrimental effects in aged tissues, such as cellular senescence, fibrosis, and tissue atrophy/sarcopenia. It seems that the survival functions of GDF15 go awry in persistent inflammation thus promoting the aging process and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
11
|
Rajkumari S, Singh J, Agrawal U, Agrawal S. Myeloid-derived suppressor cells in cancer: Current knowledge and future perspectives. Int Immunopharmacol 2024; 142:112949. [PMID: 39236460 DOI: 10.1016/j.intimp.2024.112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
MDSCs (myeloid-derived suppressor cells) are crucial for immune system evasion in cancer. They accumulate in peripheral blood and tumor microenvironment, suppressing immune cells like T-cells, natural killer cells and dendritic cells. They promote tumor angiogenesis and metastasis by secreting cytokines and growth factors and contribute to a tumor-promoting environment. The accumulation of MDSCs in cancer patients has been linked to poor prognosis and resistance to various cancer therapies. Targeting MDSCs and their immunosuppressive mechanisms may improve treatment outcomes and enhance immune surveillance by developing drugs that inhibit MDSC function, by preventing their accumulation and by disrupting the tumor-promoting environment. This review presents a detailed overview of the MDSC research in cancer with regulation of their development and function. The relevance of MDSC as a prognostic and predictive biomarker in different types of cancers, along with recent advancements on the therapeutic approaches to target MDSCs are discussed in detail.
Collapse
Affiliation(s)
- Sunanda Rajkumari
- ICMR National Institute of Medical Statistics, Ansari Nagar, New Delhi 110029, India
| | - Jaspreet Singh
- ICMR National Institute of Pathology, Safdarjung Hospital Campus, Ansari Nagar, New Delhi 110029, India
| | - Usha Agrawal
- Asian Institute of Public Health University (AIPH) University, 1001 Haridamada, Jatani, Near IIT Bhubaneswar, Bhubaneswar 751002, India
| | - Sandeep Agrawal
- Discovery Research Division, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
12
|
Khamaru S, Mukherjee T, Tung KS, Kumar PS, Bandyopadhyay S, Mahish C, Chattopadhyay S, Chattopadhyay S. Chikungunya virus infection inhibits B16 melanoma-induced immunosuppression of T cells and macrophages mediated by interleukin 10. Microb Pathog 2024; 197:107022. [PMID: 39419458 DOI: 10.1016/j.micpath.2024.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
Immunosuppression in cancer poses challenges for immunotherapy and highlights the vulnerability of immunocompromised patients to viral infections. This study explored how Chikungunya virus (CHIKV) infection potentially inhibits B16-F10 melanoma-induced immunosuppressive effects on T cells and RAW 264.7 macrophages. We found high expression of CHIKV entry genes in melanoma and other cancers, with B16-F10 cells demonstrating greater susceptibility to CHIKV infection than non-tumorigenic cells. Interestingly, the CHIKV-infected B16-F10 cell culture supernatant (B16-F10-CS) reversed the immunosuppressive effects of uninfected B16-F10-CS on T cells. This reversal was characterised by decreased STAT3 activation and increased MAPK activation in T cells, an effect amplified by interleukin 10 (IL-10) receptor blockade. In RAW 264.7 cells, B16-F10-CS enhanced CHIKV infectivity without triggering activation. However, blocking the IL-10 receptor (IL-10R) in RAW 264.7 reduced CHIKV infection. CHIKV infection and IL-10R blockade synergistically inhibited B16-F10-CS-mediated polarisation of RAW 264.7 cells towards immunosuppressive macrophage. Our findings suggest that CHIKV modulates cancer-induced immunosuppression through IL-10-dependent pathways, providing new insights into viral-cancer interactions. This research may contribute to developing novel antiviral immunotherapies and virotherapies beneficial for cancer patients and immunocompromised individuals.
Collapse
Affiliation(s)
- Somlata Khamaru
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Tathagata Mukherjee
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India; Institute of Life Sciences, Bhubaneswar, India
| | - Kshyama Subhadarsini Tung
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - P Sanjai Kumar
- Institute of Life Sciences, Bhubaneswar, India; Division of Neonatology and Newborn Nursery, University of Wisconsin, Madison, USA
| | - Saumya Bandyopadhyay
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India; Johns Hopkins University School of Medicine, Department of Biological Chemistry, 725 North Wolfe Street, Baltimore, Maryland, USA
| | - Chandan Mahish
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | | | - Subhasis Chattopadhyay
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India.
| |
Collapse
|
13
|
Salminen A. Inhibitory immune checkpoints suppress the surveillance of senescent cells promoting their accumulation with aging and in age-related diseases. Biogerontology 2024; 25:749-773. [PMID: 38954358 PMCID: PMC11374851 DOI: 10.1007/s10522-024-10114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The accumulation of pro-inflammatory senescent cells within tissues is a common hallmark of the aging process and many age-related diseases. This modification has been called the senescence-associated secretory phenotype (SASP) and observed in cultured cells and in cells isolated from aged tissues. Currently, there is a debate whether the accumulation of senescent cells within tissues should be attributed to increased generation of senescent cells or to a defect in their elimination from aging tissues. Emerging studies have revealed that senescent cells display an increased expression of several inhibitory immune checkpoint ligands, especially those of the programmed cell death protein-1 (PD-1) ligand-1 (PD-L1) proteins. It is known that the PD-L1 ligands, especially those of cancer cells, target the PD-1 receptor of cytotoxic CD8+ T and natural killer (NK) cells disturbing their functions, e.g., evoking a decline in their cytotoxic activity and promoting their exhaustion and even apoptosis. An increase in the level of the PD-L1 protein in senescent cells was able to suppress their immune surveillance and inhibit their elimination by cytotoxic CD8+ T and NK cells. Senescent cells are known to express ligands for several inhibitory immune checkpoint receptors, i.e., PD-1, LILRB4, NKG2A, TIM-3, and SIRPα receptors. Here, I will briefly describe those pathways and examine whether these inhibitory checkpoints could be involved in the immune evasion of senescent cells with aging and age-related diseases. It seems plausible that an enhanced inhibitory checkpoint signaling can prevent the elimination of senescent cells from tissues and thus promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
14
|
Kapor S, Radojković M, Santibanez JF. Myeloid-derived suppressor cells: Implication in myeloid malignancies and immunotherapy. Acta Histochem 2024; 126:152183. [PMID: 39029317 DOI: 10.1016/j.acthis.2024.152183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Myeloid malignancies stem from a modified hematopoietic stem cell and predominantly include acute myeloid leukemia, myelodysplastic neoplasms, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory properties by governing the innate and adaptive immune systems, creating a permissive and supportive environment for neoplasm growth. This review examines the key characteristics of MDSCs in myeloid malignancies, highlighting that an increased MDSC count corresponds to heightened immunosuppressive capabilities, fostering an immune-tolerant neoplasm microenvironment. Also, this review analyzes and describes the potential of combined cancer therapies, focusing on targeting MDSC generation, expansion, and their inherent immunosuppressive activities to enhance the efficacy of current cancer immunotherapies. A comprehensive understanding of the implications of myeloid malignancies may enhance the exploration of immunotherapeutic strategies for their potential application.
Collapse
Affiliation(s)
- Suncica Kapor
- Department of Hematology, Clinical, and Hospital Center "Dr. Dragiša Mišović-Dedinje,", Heroja Milana Tepića 1, Belgrade 11020, Serbia
| | - Milica Radojković
- Department of Hematology, Clinical, and Hospital Center "Dr. Dragiša Mišović-Dedinje,", Heroja Milana Tepića 1, Belgrade 11020, Serbia; Faculty of Medicine, University of Belgrade, Dr. Subotića Starijeg 8, Belgrade 11000, Serbia
| | - Juan F Santibanez
- Molecular Oncology group, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, Belgrade 11129, Serbia; Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, General Gana 1780, Santiago 8370854, Chile.
| |
Collapse
|
15
|
Bellini I, Scribano D, Ambrosi C, Chiovoloni C, Rondón S, Pronio A, Palamara AT, Pietrantoni A, Kashkanova A, Sandoghdar V, D'Amelio S, Cavallero S. Anisakis extracellular vesicles elicit immunomodulatory and potentially tumorigenic outcomes on human intestinal organoids. Parasit Vectors 2024; 17:393. [PMID: 39285481 PMCID: PMC11406850 DOI: 10.1186/s13071-024-06471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Anisakis spp. are zoonotic nematodes causing mild to severe acute and chronic gastrointestinal infections. Chronic anisakiasis can lead to erosive mucosal ulcers, granulomas and inflammation, potential tumorigenic triggers. How Anisakis exerts its pathogenic potential through extracellular vesicles (EVs) and whether third-stage infective larvae may favor a tumorigenic microenvironment remain unclear. METHODS Here, we investigated the parasite's tumorigenic and immunomodulatory capabilities using comparative transcriptomics, qRT-PCR and protein analysis with multiplex ELISA on human intestinal organoids exposed to Anisakis EVs. Moreover, EVs were characterized in terms of shape, size and concentration using classic TEM, SEM and NTA analyses and advanced interferometric NTA. RESULTS Anisakis EVs showed classic shape features and a median average diameter of around 100 nm, according to NTA and iNTA. Moreover, a refractive index of 5-20% of non-water content suggested their effective biological cargo. After treatment of human intestinal organoids with Anisakis EVs, an overall parasitic strategy based on mitigation of the immune and inflammatory response was observed. Anisakis EVs impacted gene expression of main cytokines, cell cycle regulation and protein products. Seven key genes related to cell cycle regulation and apoptosis were differentially expressed in organoids exposed to EVs. In particular, the downregulation of EPHB2 and LEFTY1 and upregulation of NUPR1 genes known to be associated with colorectal cancer were observed, suggesting their involvement in tumorigenic microenvironment. A statistically significant reduction in specific mediators of inflammation and cell-cycle regulation from the polarized epithelium as IL-33R, CD40 and CEACAM1 from the apical chambers and IL-1B, GM-CSF, IL-15 and IL-23 from both chambers were observed. CONCLUSIONS The results here obtained unravel intestinal epithelium response to Anisakis EVs, impacting host's anthelminthic strategies and revealing for the first time to our knowledge the host-parasite interactions in the niche environment of an emerging accidental zoonosis. Use of an innovative EV characterization approach may also be useful for study of other helminth EVs, since the knowledge in this field is very limited.
Collapse
Affiliation(s)
- Ilaria Bellini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS, Rome, Italy
- Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, San Raffaele Open University, IRCCS, Rome, Italy
| | - Claudia Chiovoloni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Silvia Rondón
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Annamaria Pronio
- Digestive Endoscopy Unit, Department of General Surgery and Surgical Specialties "Paride Stefanini", Sapienza University of Rome, Azienda Policlinico Umberto I, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Anna Kashkanova
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Stefano D'Amelio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Serena Cavallero
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Pasteur Institute, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
16
|
Özbay Kurt FG, Cicortas BA, Balzasch BM, De la Torre C, Ast V, Tavukcuoglu E, Ak C, Wohlfeil SA, Cerwenka A, Utikal J, Umansky V. S100A9 and HMGB1 orchestrate MDSC-mediated immunosuppression in melanoma through TLR4 signaling. J Immunother Cancer 2024; 12:e009552. [PMID: 39266214 PMCID: PMC11409250 DOI: 10.1136/jitc-2024-009552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Immunotherapies for malignant melanoma are challenged by the resistance developed in a significant proportion of patients. Myeloid-derived suppressor cells (MDSC), with their ability to inhibit antitumor T-cell responses, are a major contributor to immunosuppression and resistance to immune checkpoint therapies in melanoma. Damage-associated molecular patterns S100A8, S100A9, and HMGB1, acting as toll like receptor 4 (TLR4) and receptor for advanced glycation endproducts (RAGE) ligands, are highly expressed in the tumor microenvironment and drive MDSC activation. However, the role of TLR4 and RAGE signaling in the acquisition of MDSC immunosuppressive properties remains to be better defined. Our study investigates how the signaling via TLR4 and RAGE as well as their ligands S100A9 and HMGB1, shape MDSC-mediated immunosuppression in melanoma. METHODS MDSC were isolated from the peripheral blood of patients with advanced melanoma or generated in vitro from healthy donor-derived monocytes. Monocytes were treated with S100A9 or HMGB1 for 72 hours. The immunosuppressive capacity of treated monocytes was assessed in the inhibition of T-cell proliferation assay in the presence or absence of TLR4 and RAGE inhibitors. Plasma levels of S100A8/9 and HMGB1 were quantified by ELISA. Single-cell RNA sequencing (scRNA-seq) was performed on monocytes from patients with melanoma and healthy donors. RESULTS We showed that exposure to S100A9 and HMGB1 converted healthy donor-derived monocytes into MDSC through TLR4 signaling. Our scRNA-seq data revealed in patient monocytes enriched inflammatory genes, including S100 and those involved in NF-κB and TLR4 signaling, and a reduced major histocompatibility complex II gene expression. Furthermore, elevated plasma S100A8/9 levels correlated with shorter progression-free survival in patients with melanoma. CONCLUSIONS These findings highlight the critical role of TLR4 and, to a lesser extent, RAGE signaling in the conversion of monocytes into MDSC-like cells, underscore the potential of targeting S100A9 to prevent this conversion, and highlight the prognostic value of S100A8/9 as a plasma biomarker in melanoma.
Collapse
Affiliation(s)
- Feyza Gül Özbay Kurt
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
- Department of Dermatology Venereology and Allergology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Beatrice-Ana Cicortas
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
- Department of Dermatology Venereology and Allergology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bianca M Balzasch
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolina De la Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Volker Ast
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ece Tavukcuoglu
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
- Department of Dermatology Venereology and Allergology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Cagla Ak
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
- Department of Dermatology Venereology and Allergology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian A Wohlfeil
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
- Department of Dermatology Venereology and Allergology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
- Department of Dermatology Venereology and Allergology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
- Department of Dermatology Venereology and Allergology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
17
|
Li CC, Liu SL, Lien TS, Sun DS, Cheng CF, Hamid H, Chen HP, Ho TJ, Lin IH, Wu WS, Hu CT, Tsai KW, Chang HH. Therapeutic Potential of Salvia miltiorrhiza Root Extract in Alleviating Cold-Induced Immunosuppression. Int J Mol Sci 2024; 25:9432. [PMID: 39273376 PMCID: PMC11395648 DOI: 10.3390/ijms25179432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The interaction between environmental stressors, such as cold exposure, and immune function significantly impacts human health. Research on effective therapeutic strategies to combat cold-induced immunosuppression is limited, despite its importance. In this study, we aim to investigate whether traditional herbal medicine can counteract cold-induced immunosuppression. We previously demonstrated that cold exposure elevated immunoglobulin G (IgG) levels in mice, similar to the effects of intravenous immunoglobulin (IVIg) treatments. This cold-induced rise in circulating IgG was mediated by the renin-angiotensin-aldosterone system and linked to vascular constriction. In our mouse model, the cold-exposed groups (4 °C) showed significantly elevated plasma IgG levels and reduced bacterial clearance compared with the control groups maintained at room temperature (25 °C), both indicative of immunosuppression. Using this model, with 234 mice divided into groups of 6, we investigated the potential of tanshinone IIA, an active compound in Salvia miltiorrhiza ethanolic root extract (SMERE), in alleviating cold-induced immunosuppression. Tanshinone IIA and SMERE treatments effectively normalized elevated plasma IgG levels and significantly improved bacterial clearance impaired by cold exposure compared with control groups injected with a vehicle control, dimethyl sulfoxide. Notably, bacterial clearance, which was impaired by cold exposure, showed an approximately 50% improvement following treatment, restoring immune function to levels comparable to those observed under normal temperature conditions (25 °C, p < 0.05). These findings highlight the therapeutic potential of traditional herbal medicine in counteracting cold-induced immune dysregulation, offering valuable insights for future strategies aimed at modulating immune function in cold environments. Further research could focus on isolating tanshinone IIA and compounds present in SMERE to evaluate their specific roles in mitigating cold-induced immunosuppression.
Collapse
Grants
- 104-2320-B-320 -009 -MY3, 107-2311-B-320-002-MY3, 111-2320-B320-006-MY3, 112-2320-B-320-007 National Science and Technology Council, Taiwan
- TCMMP104-06, TCMMP108-04, TCMMP 111-01, TCAS111-02, TCAS-112-02, TCAS113-04, TCRD112-033, TCRD113-041 Tzu-Chi Medical Foundation
Collapse
Affiliation(s)
- Chi-Cheng Li
- Department of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Song-Lin Liu
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Hussana Hamid
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Hao-Ping Chen
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - I-Hsin Lin
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation Hualien, Hualien 970, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University Hualien, Hualien 970, Taiwan
| | - Chi-Tan Hu
- Research Center for Hepatology, Department of Gastroenterology, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| |
Collapse
|
18
|
Trocchia M, Ventrici A, Modestino L, Cristinziano L, Ferrara AL, Palestra F, Loffredo S, Capone M, Madonna G, Romanelli M, Ascierto PA, Galdiero MR. Innate Immune Cells in Melanoma: Implications for Immunotherapy. Int J Mol Sci 2024; 25:8523. [PMID: 39126091 PMCID: PMC11313504 DOI: 10.3390/ijms25158523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The innate immune system, composed of neutrophils, basophils, eosinophils, myeloid-derived suppressor cells (MDSCs), macrophages, dendritic cells (DCs), mast cells (MCs), and innate lymphoid cells (ILCs), is the first line of defense. Growing evidence demonstrates the crucial role of innate immunity in tumor initiation and progression. Several studies support the idea that innate immunity, through the release of pro- and/or anti-inflammatory cytokines and tumor growth factors, plays a significant role in the pathogenesis, progression, and prognosis of cutaneous malignant melanoma (MM). Cutaneous melanoma is the most common skin cancer, with an incidence that rapidly increased in recent decades. Melanoma is a highly immunogenic tumor, due to its high mutational burden. The metastatic form retains a high mortality. The advent of immunotherapy revolutionized the therapeutic approach to this tumor and significantly ameliorated the patients' clinical outcome. In this review, we will recapitulate the multiple roles of innate immune cells in melanoma and the related implications for immunotherapy.
Collapse
Affiliation(s)
- Marialuisa Trocchia
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Annagioia Ventrici
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Luca Modestino
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, 80138 Naples, Italy;
| | - Leonardo Cristinziano
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Francesco Palestra
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Gabriele Madonna
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Marilena Romanelli
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, 80138 Naples, Italy;
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| |
Collapse
|
19
|
Bilolikar VK, Gleason B, Kripke L, Merrill R, Whitaker C, Handal J. Risk Factors Associated with Pyogenic Spinal Infections among Intravenous Drug Users and Nonusers. Adv Orthop 2024; 2024:9938159. [PMID: 39105127 PMCID: PMC11300094 DOI: 10.1155/2024/9938159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/15/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
Purpose To identify the differences in patient factors, presentation, treatment course, and outcomes of intravenous drug users (IVDA) vs. nonusers (non-IVDA) presenting with pyogenic spinal infections. Study Design/Setting. Retrospective case series. Methods We identified all cases involving spinal infections at our institution between May 2017 and January 2023. Postsurgical infections were excluded, and patients were separated into IVDA and non-IVDA groups. The patient charts were reviewed and analyzed for statistical or clinically significant differences using RStudio (2019 version 3.6.2). Our institutional review board approved this study, IRB# 2020-277, iRISID-2023-1384. Results Fifty patients (29 males and 21 females) with primary pyogenic spinal infections were included in our study. There were fourteen patients (28.0%) in the IVDA group. The mean age in the IVDA group was 50.6 vs. 61.9 years (p < 0.05) in the non-IVDA group. The average length of stay (LOS) in the IVDA group was 15.8 vs. 14.0 days (p = 0.54) in the non-IVDA group, with no significant difference in readmissions or disposition. Twenty-three non-IVDA patients were diagnosed with diabetes, while eight IVDA patients had a psychiatric diagnosis (other than substance abuse). There were no significant differences in microbial isolate or the duration of antibiotics. Conclusion In our study population, there is a high incidence of intravenous drug abuse (IVDA), psychiatric disease, diabetes, and chronic kidney disease. Analysis shows a trend of two distinct patient populations. Patients without a history of IVDA were significantly older than those with IVDA and significantly more likely to have medical comorbidities including hyperlipidemia, diabetes, chronic kidney disease, and malignancy than those with IVDA history. Patients with IVDA were younger with significantly higher rates of smoking and psychiatric disorders. IVDA patients struggled to receive continued psychiatric/addiction treatment after discharge, an area for significant improvement. Due to a small sample size and single urban institution setting, this study may be underpowered to demonstrate differences in healthcare resource consumption.
Collapse
Affiliation(s)
- Vivek K. Bilolikar
- Thomas Jefferson UniversityJefferson Einstein Hospital, Philadelphia, PA, USA
| | - Brendan Gleason
- Thomas Jefferson UniversityJefferson Einstein Hospital, Philadelphia, PA, USA
| | - Lee Kripke
- Thomas Jefferson UniversityJefferson Einstein Hospital, Philadelphia, PA, USA
| | - Robert Merrill
- Thomas Jefferson UniversityJefferson Einstein Hospital, Philadelphia, PA, USA
| | - Colin Whitaker
- Thomas Jefferson UniversityJefferson Einstein Hospital, Philadelphia, PA, USA
| | - Jon Handal
- Thomas Jefferson UniversityJefferson Einstein Hospital, Philadelphia, PA, USA
| |
Collapse
|
20
|
Guo Y, Peng X, Liu F, Zhang Q, Ding L, Li G, Qiu F. Potential of natural products in inflammation: biological activities, structure-activity relationships, and mechanistic targets. Arch Pharm Res 2024; 47:377-409. [PMID: 38739203 DOI: 10.1007/s12272-024-01496-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
A balance between the development and suppression of inflammation can always be found in the body. When this balance is disturbed, a strong inflammatory response can damage the body. It sometimes is necessary to use drugs with a significant anti-inflammatory effect, such as nonsteroidal anti-inflammatory drugs and steroid hormones, to control inflammation in the body. However, the existing anti-inflammatory drugs have many adverse effects, which can be deadly in severe cases, making research into new safer and more effective anti-inflammatory drugs necessary. Currently, numerous types of natural products with anti-inflammatory activity and distinct structural features are available, and these natural products have great potential for the development of novel anti-inflammatory drugs. This review summarizes 260 natural products and their derivatives with anti-inflammatory activities in the last two decades, classified by their active ingredients, and focuses on their structure-activity relationships in anti-inflammation to lay the foundation for subsequent new drug development. We also elucidate the mechanisms and pathways of natural products that exert anti-inflammatory effects via network pharmacology predictions, providing direction for identifying subsequent targets of anti-inflammatory natural products.
Collapse
Affiliation(s)
- Yajing Guo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Xuling Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Fanfei Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Qi Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Liqin Ding
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
21
|
Snapkow I, Smith NM, Arnesdotter E, Beekmann K, Blanc EB, Braeuning A, Corsini E, Sollner Dolenc M, Duivenvoorde LPM, Sundstøl Eriksen G, Franko N, Galbiati V, Gostner JM, Grova N, Gutleb AC, Hargitai R, Janssen AWF, Krapf SA, Lindeman B, Lumniczky K, Maddalon A, Mollerup S, Parráková L, Pierzchalski A, Pieters RHH, Silva MJ, Solhaug A, Staal YCM, Straumfors A, Szatmári T, Turner JD, Vandebriel RJ, Zenclussen AC, Barouki R. New approach methodologies to enhance human health risk assessment of immunotoxic properties of chemicals - a PARC (Partnership for the Assessment of Risk from Chemicals) project. FRONTIERS IN TOXICOLOGY 2024; 6:1339104. [PMID: 38654939 PMCID: PMC11035811 DOI: 10.3389/ftox.2024.1339104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024] Open
Abstract
As a complex system governing and interconnecting numerous functions within the human body, the immune system is unsurprisingly susceptible to the impact of toxic chemicals. Toxicants can influence the immune system through a multitude of mechanisms, resulting in immunosuppression, hypersensitivity, increased risk of autoimmune diseases and cancer development. At present, the regulatory assessment of the immunotoxicity of chemicals relies heavily on rodent models and a limited number of Organisation for Economic Co-operation and Development (OECD) test guidelines, which only capture a fraction of potential toxic properties. Due to this limitation, various authorities, including the World Health Organization and the European Food Safety Authority have highlighted the need for the development of novel approaches without the use of animals for immunotoxicity testing of chemicals. In this paper, we present a concise overview of ongoing efforts dedicated to developing and standardizing methodologies for a comprehensive characterization of the immunotoxic effects of chemicals, which are performed under the EU-funded Partnership for the Assessment of Risk from Chemicals (PARC).
Collapse
Affiliation(s)
- Igor Snapkow
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
| | - Nicola M. Smith
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
| | - Emma Arnesdotter
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Karsten Beekmann
- Wageningen Food Safety Research (WFSR), Part of Wageningen University and Research, Wageningen, Netherlands
| | | | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Université degli Studi di Milano, Milan, Italy
| | | | - Loes P. M. Duivenvoorde
- Wageningen Food Safety Research (WFSR), Part of Wageningen University and Research, Wageningen, Netherlands
| | | | - Nina Franko
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Valentina Galbiati
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Université degli Studi di Milano, Milan, Italy
| | - Johanna M. Gostner
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Rita Hargitai
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy, Budapest, Hungary
| | - Aafke W. F. Janssen
- Wageningen Food Safety Research (WFSR), Part of Wageningen University and Research, Wageningen, Netherlands
| | - Solveig A. Krapf
- Section for Occupational Toxicology, National Institute of Occupational Health, Oslo, Norway
| | - Birgitte Lindeman
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
| | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy, Budapest, Hungary
| | - Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Université degli Studi di Milano, Milan, Italy
| | - Steen Mollerup
- Section for Occupational Toxicology, National Institute of Occupational Health, Oslo, Norway
| | - Lucia Parráková
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Raymond H. H. Pieters
- Innovative Testing in Life Sciences and Chemistry, Research Center for Healthy and Sustainable Living, University of Applied Sciences, Utrecht, Netherlands
- IRAS-Toxicology, Population Health Sciences, Faculty of Veterinary Sciences, Utrecht University, Utrecht, Netherlands
| | - Maria J. Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | | | - Yvonne C. M. Staal
- Centre for Health Protection, National Institute of Public Health and the Environment, Bilthoven, Netherlands
| | - Anne Straumfors
- Section for Occupational Toxicology, National Institute of Occupational Health, Oslo, Norway
| | - Tünde Szatmári
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy, Budapest, Hungary
| | - Jonathan D. Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Rob J. Vandebriel
- Centre for Health Protection, National Institute of Public Health and the Environment, Bilthoven, Netherlands
| | | | - Robert Barouki
- T3S, INSERM UMR-S 1124, Université Paris Cité, Paris, France
| |
Collapse
|
22
|
Cai D, Liu YY, Tang XP, Zhang M, Cheng YX. Minor ergosteroids and a 19-nor labdane-type diterpenoid with anti-inflammatory effects from Ganoderma lucidum. PHYTOCHEMISTRY 2024; 222:114052. [PMID: 38518849 DOI: 10.1016/j.phytochem.2024.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
A chemical investigation on the fruiting bodies of Ganoderma lucidum led to the isolation and identification of five undescribed ergosteroids including two des-D-steroids (3 and 4) and one rare 6/6/7/5-fused carbon skeletal ergosterol (5) along with one 19-nor labdane-type diterpenoid (6). Their structures including their absolute configurations, were assigned by spectroscopic methods, ECD calculations, and X-ray diffraction analysis. In addition, the anti-inflammatory activities of all the isolates were evaluated. The results indicated that compound 1 can significantly down-regulate the protein expression of iNOS and COX-2 at 20 μM in LPS- stimulated RAW264.7 cells.
Collapse
Affiliation(s)
- Dan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Yun-Yun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Xin-Ping Tang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yong-Xian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
23
|
Bosco-Lévy P, Boutmy E, Guiard E, Foch C, Lassalle R, Favary C, Sabidó M, Blin P. Risk of cancer with immunosuppressants compared to immunomodulators in multiple sclerosis: A nested case-control study within the French nationwide claims database. Pharmacoepidemiol Drug Saf 2023; 32:1421-1430. [PMID: 37555380 DOI: 10.1002/pds.5669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/22/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE The objective was to compare the risk of malignancies in real-world settings between exclusive immunosuppressant (IS) and immunomodulator (IM) use in multiple sclerosis (MS). METHODS A nested case-control study was designed within a new-user cohort of all patients with MS who initiated a first IM or IS between 2008 and 2014, and without cancer history, using the information of the SNDS nationwide French claims database. Incident cancer cases were matched with up to six controls on year of birth, sex, initiation date, and disease risk score of cancer. A conditional logistic regression (odds ratio [95% confidence interval]) was used to compare exclusive IS versus IM use during follow-up and according to three use durations. RESULTS From 28 720 newly treated patients with MS, 407 incident cancers were observed during the follow-up with 2324 matched controls. A significant increase in cancer risk was observed for IS compared with IM (1.36 [1.05, 1.77]), with similar increases for the first 2 years of use but not for ≥2 years (1.06 [0.65, 1.75]). Similar increase was also observed for IS with indications other than MS (1.37 [1.04, 1.81]) but not for IS indicated only in MS (1.03 [0.45, 2.34]). CONCLUSIONS Compared with IM, a 37% increase in cancer risk was observed for IS with indications other than MS and used for a short duration (≤2 years) but not for IS indicated only in MS. The absence of risk for prolonged exposure of IS with indications other than MS is not in favor of a causal relation with these drugs.
Collapse
Affiliation(s)
- Pauline Bosco-Lévy
- INSERM CIC-P 1401, Bordeaux PharmacoEpi, Université de Bordeaux, Bordeaux, France
| | | | - Estelle Guiard
- INSERM CIC-P 1401, Bordeaux PharmacoEpi, Université de Bordeaux, Bordeaux, France
| | | | - Régis Lassalle
- INSERM CIC-P 1401, Bordeaux PharmacoEpi, Université de Bordeaux, Bordeaux, France
| | - Clélia Favary
- INSERM CIC-P 1401, Bordeaux PharmacoEpi, Université de Bordeaux, Bordeaux, France
| | | | - Patrick Blin
- INSERM CIC-P 1401, Bordeaux PharmacoEpi, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
24
|
Salminen A. The role of immunosuppressive myofibroblasts in the aging process and age-related diseases. J Mol Med (Berl) 2023; 101:1169-1189. [PMID: 37606688 PMCID: PMC10560181 DOI: 10.1007/s00109-023-02360-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Tissue-resident fibroblasts are mesenchymal cells which control the structural integrity of the extracellular matrix (ECM). Fibroblasts possess a remarkable plasticity to allow them to adapt to the changes in the microenvironment and thus maintain tissue homeostasis. Several stresses, also those associated with the aging process, convert quiescent fibroblasts into myofibroblasts which not only display fibrogenic properties but also act as immune regulators cooperating both with tissue-resident immune cells and those immune cells recruited into affected tissues. TGF-β cytokine and reactive oxygen species (ROS) are major inducers of myofibroblast differentiation in pathological conditions either from quiescent fibroblasts or via transdifferentiation from certain other cell types, e.g., macrophages, adipocytes, pericytes, and endothelial cells. Intriguingly, TGF-β and ROS are also important signaling mediators between immunosuppressive cells, such as MDSCs, Tregs, and M2 macrophages. It seems that in pathological states, myofibroblasts are able to interact with the immunosuppressive network. There is clear evidence that a low-grade chronic inflammatory state in aging tissues is counteracted by activation of compensatory immunosuppression. Interestingly, common enhancers of the aging process, such as oxidative stress, loss of DNA integrity, and inflammatory insults, are inducers of myofibroblasts, whereas anti-aging treatments with metformin and rapamycin suppress the differentiation of myofibroblasts and thus prevent age-related tissue fibrosis. I will examine the reciprocal interactions between myofibroblasts and immunosuppressive cells within aging tissues. It seems that the differentiation of myofibroblasts with age-related harmful stresses enhances the activity of the immunosuppressive network which promotes tissue fibrosis and degeneration in elderly individuals.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
25
|
Zhang D, Chen S, Cao W, Geng N, Feng C. HALP score based on hemoglobin, albumin, lymphocyte and platelet can predict the prognosis of tongue squamous cell carcinoma patients. Heliyon 2023; 9:e20126. [PMID: 37809958 PMCID: PMC10559844 DOI: 10.1016/j.heliyon.2023.e20126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Objective The preoperative hemoglobin, albumin, lymphocyte, and platelet (HALP) score, a comprehensive marker of nutritional and immunological status, has been found to be robust for tumor prognosis prediction. Here, we evaluated the use of HALP in the prognostic prediction of tongue squamous cell carcinoma (TSCC). Study design Patients with TSCC were retrospectively recruited from the years 2009-2019. Patient clinicopathological characteristics, along with preoperative blood parameters, were recorded on admission, and the cut-off HALP value was determined by X-tile software. Kaplan-Meier curves and Cox regression analyses were used to evaluate the predictive value of HALP for patient overall survival (OS) and disease-free survival (DFS). Results A total of 339 TSCC patients were enrolled. The optimal HALP threshold was 56 and the patients were divided into two groups according to their scores. The Kaplan-Meier analysis showed that patients in the high-HALP group experienced longer OS (p = 0.007) and DFS (p = 0.006) than those in the low-HALP group. Multivariate analysis showed that elevated HALP (p = 0.038) was an independent predictor of OS, while age (p = 0.008), T stage (p < 0.001), N stage (p = 0.020), and degree of tumor differentiation (p < 0.001) were risk factors. Conclusion The findings showed that the preoperative HALP score was an independent predictor of prognosis in patients with TSCC.
Collapse
Affiliation(s)
| | | | - Wei Cao
- Department of Stomatology, The Frist Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Ningbo Geng
- Department of Stomatology, The Frist Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chongjin Feng
- Department of Stomatology, The Frist Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| |
Collapse
|
26
|
Hung KC, Sun CK, Chang YP, Wu JY, Huang PY, Liu TH, Lin CH, Cheng WJ, Chen IW. Association of prognostic nutritional index with prognostic outcomes in patients with glioma: a meta-analysis and systematic review. Front Oncol 2023; 13:1188292. [PMID: 37564929 PMCID: PMC10411533 DOI: 10.3389/fonc.2023.1188292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/04/2023] [Indexed: 08/12/2023] Open
Abstract
Background The potential link between Prognostic Nutritional Index (PNI) and prognosis in patients with glioma remains uncertain. This meta-analysis was conducted to assess the clinical value of PNI in glioma patients by integrating all available evidence to enhance statistical power. Method A systematic search of databases including Medline, EMBASE, Google Scholar, and Cochrane Library was conducted from inception to January 8, 2023 to retrieve all pertinent peer-reviewed articles. The primary outcome of the study was to examine the association between a high PNI value and overall survival, while secondary outcome included the relationship between a high PNI and progression-free survival. Results In this meta-analysis, we included 13 retrospective studies published from 2016 to 2022, which analyzed a total of 2,712 patients. Across all studies, surgery was the primary treatment modality, with or without chemotherapy and radiotherapy as adjunct therapies. A high PNI was linked to improved overall survival (Hazard Ratio (HR) = 0.61, 95% CI: 0.52 to 0.72, p < 0.00001, I2 = 25%), and this finding remained consistent even after conducting sensitivity analysis. Subgroup analyses based on ethnicity (Asian vs. non-Asian), sample size (<200 vs. >200), and source of hazard ratio (univariate vs. multivariate) yielded consistent outcomes. Furthermore, patients with a high PNI had better progression-free survival than those with a low PNI (HR=0.71, 95% CI: 0.58 to 0.88, p=0.001, I2 = 0%). Conclusion Our meta-analysis suggested that a high PNI was associated with better overall survival and progression-free survival in patients with glioma. These findings may have important implications in the treatment of patients with glioma. Additional studies on a larger scale are necessary to investigate if integrating the index into the treatment protocol leads to improved clinical outcomes in individuals with glioma. Systematic review registration [https://www.crd.york.ac.uk/prospero/], identifier [CRD42023389951].
Collapse
Affiliation(s)
- Kuo-Chuan Hung
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine for International, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yang-Pei Chang
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jheng-Yan Wu
- Department of Nutrition, Chi Mei Medical Center, Tainan, Taiwan
| | - Po-Yu Huang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Ting-Hui Liu
- Department of General Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Hung Lin
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Wan-Jung Cheng
- Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - I-Wen Chen
- Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| |
Collapse
|
27
|
Ozbay Kurt FG, Lasser S, Arkhypov I, Utikal J, Umansky V. Enhancing immunotherapy response in melanoma: myeloid-derived suppressor cells as a therapeutic target. J Clin Invest 2023; 133:e170762. [PMID: 37395271 DOI: 10.1172/jci170762] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Despite the remarkable success of immune checkpoint inhibitors (ICIs) in melanoma treatment, resistance to them remains a substantial clinical challenge. Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of myeloid cells that can suppress antitumor immune responses mediated by T and natural killer cells and promote tumor growth. They are major contributors to ICI resistance and play a crucial role in creating an immunosuppressive tumor microenvironment. Therefore, targeting MDSCs is considered a promising strategy to improve the therapeutic efficacy of ICIs. This Review describes the mechanism of MDSC-mediated immune suppression, preclinical and clinical studies on MDSC targeting, and potential strategies for inhibiting MDSC functions to improve melanoma immunotherapy.
Collapse
Affiliation(s)
- Feyza Gul Ozbay Kurt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Samantha Lasser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Ihor Arkhypov
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| |
Collapse
|
28
|
Perrin L, Gibault L, Boussaid I, Birsen R. Diffuse large B-cell lymphoma associated with chronic inflammation in a patient with aneurysmal thrombus of the abdominal aorta. BMJ Case Rep 2023; 16:e254061. [PMID: 36963763 PMCID: PMC10040051 DOI: 10.1136/bcr-2022-254061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Affiliation(s)
| | - Laure Gibault
- Pathology, Hopital Europeen Georges Pompidou, Paris, France
| | | | | |
Collapse
|
29
|
Shin J, Choi LS, Jeon HJ, Lee HM, Kim SH, Kim KW, Ko W, Oh H, Park HS. Synthetic Glabridin Derivatives Inhibit LPS-Induced Inflammation via MAPKs and NF-κB Pathways in RAW264.7 Macrophages. Molecules 2023; 28:molecules28052135. [PMID: 36903379 PMCID: PMC10004008 DOI: 10.3390/molecules28052135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Glabridin is a polyphenolic compound with reported anti-inflammatory and anti-oxidative effects. In the previous study, we synthesized glabridin derivatives-HSG4112, (S)-HSG4112, and HGR4113-based on the structure-activity relationship study of glabridin to improve its biological efficacy and chemical stability. In the present study, we investigated the anti-inflammatory effects of the glabridin derivatives in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We found that the synthetic glabridin derivatives significantly and dose-dependently suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2), and decreased the level of inducible nitric oxygen synthase (iNOS) and cyclooxygenase-2 (COX-2) and the expression of pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α). The synthetic glabridin derivatives inhibited the nuclear translocation of the NF-κB by inhibiting phosphorylation of the inhibitor of κB alpha (IκB-α), and distinctively inhibited the phosphorylation of ERK, JNK, and p38 MAPKs. In addition, the compounds increased the expression of antioxidant protein heme oxygenase (HO-1) by inducing nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) through ERK and p38 MAPKs. Taken together, these results indicate that the synthetic glabridin derivatives exert strong anti-inflammatory effects in LPS-stimulated macrophages through MAPKs and NF-κB pathways, and support their development as potential therapeutics against inflammatory diseases.
Collapse
Affiliation(s)
- Jaejin Shin
- Glaceum Inc., Suwon 16675, Republic of Korea
| | | | | | - Hyeong Min Lee
- Glaceum Inc., Suwon 16675, Republic of Korea
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Republic of Korea
| | | | - Kwan-Woo Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Wonmin Ko
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | | |
Collapse
|
30
|
Nass SR, Hahn YK, Ohene-Nyako M, McLane VD, Damaj MI, Thacker LR, Knapp PE, Hauser KF. Depressive-like Behavior Is Accompanied by Prefrontal Cortical Innate Immune Fatigue and Dendritic Spine Losses after HIV-1 Tat and Morphine Exposure. Viruses 2023; 15:590. [PMID: 36992299 PMCID: PMC10052300 DOI: 10.3390/v15030590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Opioid use disorder (OUD) and HIV are comorbid epidemics that can increase depression. HIV and the viral protein Tat can directly induce neuronal injury within reward and emotionality brain circuitry, including the prefrontal cortex (PFC). Such damage involves both excitotoxic mechanisms and more indirect pathways through neuroinflammation, both of which can be worsened by opioid co-exposure. To assess whether excitotoxicity and/or neuroinflammation might drive depressive behaviors in persons infected with HIV (PWH) and those who use opioids, male mice were exposed to HIV-1 Tat for eight weeks, given escalating doses of morphine during the last two weeks, and assessed for depressive-like behavior. Tat expression decreased sucrose consumption and adaptability, whereas morphine administration increased chow consumption and exacerbated Tat-induced decreases in nesting and burrowing-activities associated with well-being. Across all treatment groups, depressive-like behavior correlated with increased proinflammatory cytokines in the PFC. Nevertheless, supporting the theory that innate immune responses adapt to chronic Tat exposure, most proinflammatory cytokines were unaffected by Tat or morphine. Further, Tat increased PFC levels of the anti-inflammatory cytokine IL-10, which were exacerbated by morphine administration. Tat, but not morphine, decreased dendritic spine density on layer V pyramidal neurons in the anterior cingulate. Together, our findings suggest that HIV-1 Tat and morphine differentially induce depressive-like behaviors associated with increased neuroinflammation, synaptic losses, and immune fatigue within the PFC.
Collapse
Affiliation(s)
- Sara R. Nass
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Yun K. Hahn
- Department of Anatomy and Neurobiology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0709, USA
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Virginia D. McLane
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Leroy R. Thacker
- Department of Biostatistics, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Department of Anatomy and Neurobiology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0709, USA
- Institute for Drug and Alcohol Studies, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0059, USA
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Department of Anatomy and Neurobiology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0709, USA
- Institute for Drug and Alcohol Studies, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0059, USA
| |
Collapse
|
31
|
Li L, Zhang Y, Qin L. Effect of celecoxib plus standard chemotherapy on cancer prognosis: A systematic review and meta-analysis. Eur J Clin Invest 2023; 53:e13973. [PMID: 36807298 DOI: 10.1111/eci.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/20/2023]
Abstract
BACKGROUND Inflammation is closely related to cancer prognosis. The effect of celecoxib, a nonsteroidal anti-inflammatory drug, on the prognosis of patients with cancer remains uncertain. To assess the association between celecoxib plus standard chemotherapy and cancer prognosis, we conducted a systematic review and meta-analysis of published studies. METHODS PubMed, EMBASE, and the Cochrane Library were searched from inception until July 2022 for randomized controlled trials reporting the prognosis of patients with cancer treated with celecoxib plus standard chemotherapy. The primary endpoints were overall survival (OS) and progression-free survival (PFS). Meta-analysis was performed using Review Manager software version 5.4. The following search terms were used in the databases: ((((celecoxib)) AND ((((((((cancer) OR (carcinoma)) OR (sarcoma)) OR (neoplasms)) OR (tumor)) OR (tumour)) OR (tumors)) OR (tumours))) AND ((survival) OR (mortality))) AND (((Clinical Trials, Randomized) OR (Trials, Randomized Clinical)) OR (Controlled Clinical Trials, Randomized)). RESULTS Overall, 13 randomized controlled trials, including 8957 patients with cancer, were included in the analysis. Compared to conventional chemotherapy alone, 1-year OS and 1-year PFS rates were not significantly improved with celecoxib adjuvant therapy (OS: p = .38; PFS: p = .65). In addition, no differences were observed between the celecoxib and placebo groups in 3-year overall (p = .98), 3-year progression-free (p = .40), 5-year overall (p = .59), or 5-year progression-free (p = .56) survival rates. An increase in the risk ratio of leukopenia (p = .02) and thrombocytopenia (p = .05) was also observed, suggesting that celecoxib promotes hematologic toxicity. No increased risk of cardiovascular (p = .96) and gastrointestinal (p = .10-.91) events was observed. CONCLUSIONS The addition of celecoxib to standard chemotherapy did not improve OS or PFS rates of patients with cancer. Additionally, celecoxib can increase hematologic toxicity without increasing the risk of gastrointestinal or cardiovascular reactions. Further randomized controlled trials are necessary to clarify its effects and applications.
Collapse
Affiliation(s)
- Liangyu Li
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yingrui Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Nishinaka T, Hatipoglu OF, Wake H, Watanabe M, Toyomura T, Mori S, Nishibori M, Takahashi H. Glycolaldehyde-derived advanced glycation end products suppress STING/TBK1/IRF3 signaling via CD36. Life Sci 2022; 310:121116. [DOI: 10.1016/j.lfs.2022.121116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
|
33
|
Sun Y, Mo Y, Jiang S, Shang C, Feng Y, Zeng X. CXC chemokine ligand-10 promotes the accumulation of monocyte-like myeloid-derived suppressor cells by activating p38 MAPK signaling under tumor conditions. Cancer Sci 2022; 114:142-151. [PMID: 36168841 PMCID: PMC9807505 DOI: 10.1111/cas.15598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023] Open
Abstract
CXC chemokine ligand-10 (CXCL10) is a small (10 kDa) secretory protein in the CXC subfamily of cytokines. CXCL10 has been reported to play an important role in antitumor immunity as a chemotactic factor. Tumor development is always accompanied by the formation of an immunosuppressive tumor microenvironment, and the role of CXCL10 in tumor immunosuppression remains unclear. Here, we reported that CXCL10 expression was significantly upregulated in mice with melanoma, and tumor cells secreted large amounts of CXCL10. Myeloid-derived suppressor cells (MDSCs) are an important part of the immunosuppressive tumor microenvironment. Our results showed that CXCL10 promoted the proliferation of monocyte-like (mo)-MDSCs by activating the p38 MAPK signaling pathway through CXCR3, which led to the abnormal accumulation of mo-MDSCs under tumor conditions. This finding provides a new understanding of the mechanism by which a tumor-induced immunosuppressive microenvironment forms and suggests that CXCL10 could be a potential intervention target for slowing tumor progression.
Collapse
Affiliation(s)
- Yingying Sun
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life ScienceNortheast Normal UniversityChangchunChina
| | - Yan Mo
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life ScienceNortheast Normal UniversityChangchunChina
| | - Shu Jiang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life ScienceNortheast Normal UniversityChangchunChina
| | - Chao Shang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life ScienceNortheast Normal UniversityChangchunChina
| | - Yunpeng Feng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life ScienceNortheast Normal UniversityChangchunChina
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life ScienceNortheast Normal UniversityChangchunChina
| |
Collapse
|
34
|
Venkateswaran K, Shrivastava A, Agrawala PK, Prasad AK, Manda K, Parmar VS, Dwarakanath BS. Immune-modulation by 7, 8-diacetoxy-4-methylthiocoumarin in total body-irradiated mice: Implications for the mitigation of radiation-induced hematopoietic injury. Life Sci 2022; 311:121140. [DOI: 10.1016/j.lfs.2022.121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
35
|
Perinatal and early childhood biomarkers of psychosocial stress and adverse experiences. Pediatr Res 2022; 92:956-965. [PMID: 35091705 DOI: 10.1038/s41390-022-01933-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 01/23/2023]
Abstract
The human brain develops through a complex interplay of genetic and environmental influences. During critical periods of development, experiences shape brain architecture, often with long-lasting effects. If experiences are adverse, the effects may include the risk of mental and physical disease, whereas positive environments may increase the likelihood of healthy outcomes. Understanding how psychosocial stress and adverse experiences are embedded in biological systems and how we can identify markers of risk may lead to discovering new approaches to improve patient care and outcomes. Biomarkers can be used to identify specific intervention targets and at-risk children early when physiological system malleability increases the likelihood of intervention success. However, identifying reliable biomarkers has been challenging, particularly in the perinatal period and the first years of life, including in preterm infants. This review explores the landscape of psychosocial stress and adverse experience biomarkers. We highlight potential benefits and challenges of identifying risk clinically and different sub-signatures of stress, and in their ability to inform targeted interventions. Finally, we propose that the combination of preterm birth and adversity amplifies the risk for abnormal development and calls for a focus on this group of infants within the field of psychosocial stress and adverse experience biomarkers. IMPACT: Reviews the landscape of biomarkers of psychosocial stress and adverse experiences in the perinatal period and early childhood and highlights the potential benefits and challenges of their clinical utility in identifying risk status in children, and in developing targeted interventions. Explores associations between psychosocial stress and adverse experiences in childhood with prematurity and identifies potential areas of assessment and intervention to improve outcomes in this at-risk group.
Collapse
|
36
|
Banerjee O, Singh S, Prasad SK, Ray D, Banerjee M, Pal S, Kundu S, Maji BK, Mukherjee S. Dichlorophene activates aryl hydrocarbon receptor (AhR) and indoleamine 2, 3-dioxygenase 1 (IDO1) to mediate splenotoxicity in rat. Drug Chem Toxicol 2022; 45:2311-2318. [PMID: 34107835 DOI: 10.1080/01480545.2021.1935435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dichlorophene (DCP) is a halogenated phenolic compound, widely used as fungicide, bactericide and antiprotozoan and also exhibit therapeutic application in several pathological conditions. Taking account of broad use of DCP, its possible effect on spleen (an important immune organ) was investigated in this study. Male albino rats were treated with graded doses of DCP (10%, 20% and 30% of LD50) and spleen and blood were obtained at 24, 48 and 72 hours post treatment. Oxidative stress parameters, proinflammatory cytokines and protein expression of aryl hydrocarbon receptor (AhR), indoleamine-2, 3-Dioxygenase 1 (IDO1) and nuclear factor erythroid 2-related factor 2 (Nrf2) were measured along with histopathological evaluation of spleen. In the present study, DCP perturbs redox status of splenocytes of rats as evidenced by excess ROS generation, lipid peroxidation and nitric oxide production simultaneously with reduction of antioxidant level [glutathione (GSH)] and inhibition of antioxidative enzymes [superoxide dismutase (SOD) and catalase (CAT)]. Two important proinflammatory cytokines, IL-6 and TNF-α were found to be elevated upon DCP treatment. Moreover, DCP also caused activation of AhR and IDO1 with simultaneous down regulation of Nrf2. All these effects of DCP were found to be dose and duration dependent. DCP also affects the spleen micro-architecture in the present study and these alterations were more prominent in high dose group at 72 hours post treatment. Taken together, all these results suggested that DCP induces oxidative stress and also increases proinflammatory cytokine levels to mount its toxic effect on spleen.
Collapse
Affiliation(s)
- Oly Banerjee
- Department of Physiology, Serampore College, Hooghly, India
| | | | | | - Dibyendu Ray
- Department of Physiology, Serampore College, Hooghly, India
| | | | - Swagata Pal
- Department of Physiology, Raja Peary Mohan College, Hooghly, India
| | - Sudipta Kundu
- Department of Physiology, Kalka Dental College, Meerut, India
| | | | | |
Collapse
|
37
|
Zhang R, Chen S, Chen L, Ye L, Jiang Y, Peng H, Guo Z, Li M, Jiang X, Guo P, Yu D, Zhang R, Niu Y, Zhuang Y, Aschner M, Zheng Y, Li D, Chen W. Single-cell transcriptomics reveals immune dysregulation mediated by IL-17A in initiation of chronic lung injuries upon real-ambient particulate matter exposure. Part Fibre Toxicol 2022; 19:42. [PMID: 35739565 PMCID: PMC9219231 DOI: 10.1186/s12989-022-00483-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
Background Long-term exposure to fine particulate matter (PM2.5) increases susceptibility to chronic respiratory diseases, including inflammation and interstitial fibrosis. However, the regulatory mechanisms by which the immune response mediates the initiation of pulmonary fibrosis has yet to be fully characterized. This study aimed to illustrate the interplay between different cell clusters and key pathways in triggering chronic lung injuries in mice following PM exposure. Results Six-week-old C57BL/6J male mice were exposed to PM or filtered air for 16 weeks in a real-ambient PM exposure system in Shijiazhuang, China. The transcriptional profiles of whole lung cells following sub-chronic PM exposure were characterized by analysis of single-cell transcriptomics. The IL-17A knockout (IL-17A−/−) mouse model was utilized to determine whether the IL-17 signaling pathway mediated immune dysregulation in PM-induced chronic lung injuries. After 16-week PM exposure, chronic lung injuries with excessive collagen deposition and increased fibroblasts, neutrophils, and monocytes were noted concurrent with a decreased number of major classes of immune cells. Single-cell analysis showed that activation of the IL-17 signaling pathway was involved in the progression of pulmonary fibrosis upon sub-chronic PM exposure. Depletion of IL-17A led to significant decline in chronic lung injuries, which was mainly triggered by reduced recruitment of myeloid-derived suppressor cells (MDSCs) and downregulation of TGF-β. Conclusion These novel findings demonstrate that immunosuppression via the IL-17A pathway plays a critical role in the initiation of chronic lung injuries upon sub-chronic PM exposure. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00483-w.
Collapse
Affiliation(s)
- Rui Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lizhu Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yue Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hui Peng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhanyu Guo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Miao Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xinhang Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ping Guo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yujie Niu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuan Zhuang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
38
|
Gao W, Wang X, Zhou Y, Wang X, Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther 2022; 7:196. [PMID: 35725836 PMCID: PMC9208265 DOI: 10.1038/s41392-022-01046-3] [Citation(s) in RCA: 517] [Impact Index Per Article: 172.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, immunotherapy represented by immune checkpoint inhibitors (ICIs) has led to unprecedented breakthroughs in cancer treatment. However, the fact that many tumors respond poorly or even not to ICIs, partly caused by the absence of tumor-infiltrating lymphocytes (TILs), significantly limits the application of ICIs. Converting these immune “cold” tumors into “hot” tumors that may respond to ICIs is an unsolved question in cancer immunotherapy. Since it is a general characteristic of cancers to resist apoptosis, induction of non-apoptotic regulated cell death (RCD) is emerging as a new cancer treatment strategy. Recently, several studies have revealed the interaction between non-apoptotic RCD and antitumor immunity. Specifically, autophagy, ferroptosis, pyroptosis, and necroptosis exhibit synergistic antitumor immune responses while possibly exerting inhibitory effects on antitumor immune responses. Thus, targeted therapies (inducers or inhibitors) against autophagy, ferroptosis, pyroptosis, and necroptosis in combination with immunotherapy may exert potent antitumor activity, even in tumors resistant to ICIs. This review summarizes the multilevel relationship between antitumor immunity and non-apoptotic RCD, including autophagy, ferroptosis, pyroptosis, and necroptosis, and the potential targeting application of non-apoptotic RCD to improve the efficacy of immunotherapy in malignancy.
Collapse
Affiliation(s)
- Weitong Gao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, changsha, 410008, China
| | - Yang Zhou
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xueqian Wang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
39
|
Salminen A. Clinical perspectives on the age-related increase of immunosuppressive activity. J Mol Med (Berl) 2022; 100:697-712. [PMID: 35384505 PMCID: PMC8985067 DOI: 10.1007/s00109-022-02193-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022]
Abstract
The aging process is associated with a remodeling of the immune system involving chronic low-grade inflammation and a gradual decline in the function of the immune system. These processes are also called inflammaging and immunosenescence. The age-related immune remodeling is associated with many clinical changes, e.g., risk for cancers and chronic infections increases, whereas the efficiency of vaccination and immunotherapy declines with aging. On the other hand, there is convincing evidence that chronic inflammatory states promote the premature aging process. The inflammation associated with aging or chronic inflammatory conditions stimulates a counteracting immunosuppression which protects tissues from excessive inflammatory injuries but promotes immunosenescence. Immunosuppression is a driving force in tumors and chronic infections and it also induces the tolerance to vaccination and immunotherapies. Immunosuppressive cells, e.g., myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and type M2 macrophages, have a crucial role in tumorigenesis and chronic infections as well as in the tolerance to vaccination and immunotherapies. Interestingly, there is substantial evidence that inflammaging is also associated with an increased immunosuppressive activity, e.g., upregulation of immunosuppressive cells and anti-inflammatory cytokines. Given that both the aging and chronic inflammatory states involve the activation of immunosuppression and immunosenescence, this might explain why aging is a risk factor for tumorigenesis and chronic inflammatory states and conversely, chronic inflammatory insults promote the premature aging process in humans.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
40
|
Bach AM, Xie W, Piazzoli L, Jensen SKG, Afreen S, Haque R, Petri WA, Nelson CA. Systemic inflammation during the first year of life is associated with brain functional connectivity and future cognitive outcomes. Dev Cogn Neurosci 2022; 53:101041. [PMID: 34973509 PMCID: PMC8728426 DOI: 10.1016/j.dcn.2021.101041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/09/2021] [Accepted: 11/27/2021] [Indexed: 01/01/2023] Open
Abstract
The first years of life are a sensitive period of rapid neural and immune system development vulnerable to the impact of adverse experiences. Several studies support inflammation as a consequence of various adversities and an exposure negatively associated with developmental outcomes. The mechanism by which systemic inflammation may affect brain development and later cognitive outcomes remains unclear. In this longitudinal cohort study, we examine the associations between recurrent systemic inflammation, defined as C-reactive protein elevation on ≥ 2 of 4 measurements across the first year of life, electroencephalography (EEG) functional connectivity (FC) at 36 months, and composite cognitive outcomes at 3, 4, and 5 years among 122 children living in a limited-resource setting in Dhaka, Bangladesh. Recurrent systemic inflammation during the first year of life is significantly negatively associated with cognitive outcomes at 3, 4, and 5 years, after accounting for stunting and family care indicators (a measure of stimulation in the home environment). Recurrent systemic inflammation is significantly positively associated with parietal-occipital FC in the Beta band at 36 months, which in turn is significantly negatively associated with composite cognitive scores at 3 and 4 years. However, FC does not mediate the relationship between recurrent systemic inflammation and cognitive outcomes.
Collapse
Affiliation(s)
- Ashley M Bach
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, USA; Harvard T.H. Chan School of Public Health, USA
| | - Wanze Xie
- School of Psychological and Cognitive Sciences, Peking University, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University, China
| | - Laura Piazzoli
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, USA; Harvard Medical School, USA
| | | | - Sajia Afreen
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - William A Petri
- Division of Infectious Diseases, University of Virginia School of Medicine, USA
| | - Charles A Nelson
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, USA; Harvard Medical School, USA; Harvard Graduate School of Education, USA.
| |
Collapse
|
41
|
Granzyme B PET Imaging Stratifies Immune Checkpoint Inhibitor Response in Hepatocellular Carcinoma. Mol Imaging 2021; 2021:9305277. [PMID: 35936114 PMCID: PMC9328186 DOI: 10.1155/2021/9305277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/06/2021] [Accepted: 11/14/2021] [Indexed: 11/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a notoriously difficult cancer to treat. The recent development of immune checkpoint inhibitors has revolutionised HCC therapy; however, successful response is only observed in a small percentage of patients. Biomarkers typically used to predict treatment response in other tumour types are ineffective in HCC, which arises in an immune-suppressive environment. However, imaging markers that measure changes in tumour infiltrating immune cells may supply information that can be used to determine which patients are responding to therapy posttreatment. We have evaluated [18F]AlF-mNOTA-GZP, a radiolabeled peptide targeting granzyme B, to stratify response to ICIs in a HEPA 1-tumours, a syngeneic model of HCC. Posttherapy, in vivo tumour retention of [18F]AlF-mNOTA-GZP was correlated to changes in tumour volume and tumour-infiltrating immune cells. [18F]AlF-mNOTA-GZP successfully stratified response to immune checkpoint inhibition in the syngeneic HEPA 1-6 model. FACS indicated significant changes in the immune environment including a decrease in immune suppressive CD4+ T regulatory cells and increases in tumour-associated GZB+ NK+ cells, which correlated well with tumour radiopharmaceutical uptake. While the immune response to ICI therapies differs in HCC compared to many other cancers, [18F]AlF-mNOTA-GZP retention is able to stratify response to ICI therapy associated with tumour infiltrating GZB+ NK+ cells in this complex tumour microenvironment.
Collapse
|
42
|
Farag MR, Moselhy AAA, El-Mleeh A, Aljuaydi SH, Ismail TA, Di Cerbo A, Crescenzo G, Abou-Zeid SM. Quercetin Alleviates the Immunotoxic Impact Mediated by Oxidative Stress and Inflammation Induced by Doxorubicin Exposure in Rats. Antioxidants (Basel) 2021; 10:antiox10121906. [PMID: 34943009 PMCID: PMC8750303 DOI: 10.3390/antiox10121906] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent against hematogenous and solid tumors with undesirable side effects including immunosuppression. Quercetin (QUR), a natural flavonoid abundant in fruits and vegetables, has a potent antioxidant activity. The aim of the current study was to assess the impact of QUR on DOX-induced hematological and immunological dysfunctions in a rodent model. Randomly grouped rats were treated as follows: control, QUR alone (50 mg/kg for 15 days per os), DOX alone (2.5 mg/kg I/P, three times a week, for two weeks), and co-treated rats with QUR for 15 days prior to and concomitantly with DOX (for two weeks), at the doses intended for groups two and three. DOX alone significantly disrupted the erythrogram and leukogram variables. Serum immunoglobulin (IgG, IgM, and IgE) levels and the activities of catalase (CAT) and superoxide dismutase (SOD) in spleen were declined. The DNA damage traits in spleen were elevated with an upregulation of the expression of the apoptotic markers (p53 and Caspase-3 genes) and the proinflammatory cytokines (IL-6 and TNF-α genes), while the expression of CAT gene was downregulated. These biochemical changes were accompanied by morphological changes in the spleen of DOX-treated rats. Co-treatment with QUR abated most of the DOX-mediated alterations in hematological variables, serum immunoglobulins, and spleen antioxidant status, pro-inflammatory and apoptotic responses, and histopathological alterations. In essence, these data suggest that QUR alleviated DOX-induced toxicities on the bone marrow, spleen, and antibody-producing cells. Supplementation of chemotherapy patients with QUR could circumvent the DOX-induced inflammation and immunotoxicity, and thus prevent chemotherapy failure.
Collapse
Affiliation(s)
- Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (M.R.F.); (A.D.C.)
| | - Attia A. A. Moselhy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkoum 32511, Egypt;
| | - Samira H. Aljuaydi
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
- Correspondence: (M.R.F.); (A.D.C.)
| | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari ‘Aldo Moro’, 70121 Bari, Italy;
| | - Shimaa M. Abou-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 6012201, Egypt;
| |
Collapse
|
43
|
Frigerio S, Lartey DA, D’Haens GR, Grootjans J. The Role of the Immune System in IBD-Associated Colorectal Cancer: From Pro to Anti-Tumorigenic Mechanisms. Int J Mol Sci 2021; 22:12739. [PMID: 34884543 PMCID: PMC8657929 DOI: 10.3390/ijms222312739] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with inflammatory bowel disease (IBD) have increased incidence of colorectal cancer (CRC). IBD-associated cancer follows a well-characterized sequence of intestinal epithelial changes, in which genetic mutations and molecular aberrations play a key role. IBD-associated cancer develops against a background of chronic inflammation and pro-inflammatory immune cells, and their products contribute to cancer development and progression. In recent years, the effect of the immunosuppressive microenvironment in cancer development and progression has gained more attention, mainly because of the unprecedented anti-tumor effects of immune checkpoint inhibitors in selected groups of patients. Even though IBD-associated cancer develops in the background of chronic inflammation which is associated with activation of endogenous anti-inflammatory or suppressive mechanisms, the potential role of an immunosuppressive microenvironment in these cancers is largely unknown. In this review, we outline the role of the immune system in promoting cancer development in chronic inflammatory diseases such as IBD, with a specific focus on the anti-inflammatory mechanisms and suppressive immune cells that may play a role in IBD-associated tumorigenesis.
Collapse
Affiliation(s)
- Sofía Frigerio
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.F.); (D.A.L.); (G.R.D.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Dalia A. Lartey
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.F.); (D.A.L.); (G.R.D.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Geert R. D’Haens
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.F.); (D.A.L.); (G.R.D.)
| | - Joep Grootjans
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.F.); (D.A.L.); (G.R.D.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
44
|
Picchianti Diamanti A, Rosado MM, Nicastri E, Sesti G, Pioli C, Laganà B. Severe Acute Respiratory Syndrome Coronavirus-2 Infection and Autoimmunity 1 Year Later: The Era of Vaccines. Front Immunol 2021; 12:708848. [PMID: 34659200 PMCID: PMC8515900 DOI: 10.3389/fimmu.2021.708848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Impressive efforts have been made by researchers worldwide in the development of target vaccines against the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and in improving the management of immunomodulating agents. Currently, different vaccine formulations, such as viral vector, mRNA, and protein-based, almost all directed toward the spike protein that includes the domain for receptor binding, have been approved. Although data are not conclusive, patients affected by autoimmune rheumatic diseases (ARDs) seem to have a slightly higher disease prevalence, risk of hospitalization, and death from coronavirus disease-2019 (COVID-19) than the general population. Therefore, ARD patients, under immunosuppressive agents, have been included among the priority target groups for vaccine administration. However, specific cautions are needed to optimize vaccine safety and effectiveness in these patients, such as modification in some of the ongoing immunosuppressive therapies and the preferential use of mRNA other than vector-based vaccines. Immunomodulating agents can be a therapeutic opportunity for the management of COVID-19 patients; however, their clinical impact depends on how they are handled. To place in therapy immunomodulating agents in the correct window of opportunity throughout the identification of surrogate markers of disease progression and host immune response is mandatory to optimize patient's outcome.
Collapse
Affiliation(s)
- Andrea Picchianti Diamanti
- Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Rome, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Claudio Pioli
- Laboratory of Biomedical Technologies, Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Bruno Laganà
- Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
45
|
Salminen A, Kaarniranta K, Kauppinen A. Hypoxia/ischemia impairs CD33 (Siglec-3)/TREM2 signaling: Potential role in Alzheimer's pathogenesis. Neurochem Int 2021; 150:105186. [PMID: 34530055 DOI: 10.1016/j.neuint.2021.105186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/22/2022]
Abstract
Recent genetic and molecular studies have indicated that the innate immune system, especially microglia, have a crucial role in the accumulation of β-amyloid plaques in Alzheimer's disease (AD). In particular, the CD33 receptor, also called Siglec-3, inhibits the TREM2 receptor-induced phagocytic activity of microglia. CD33 receptors recognize the α2,3 and α2,6-linked sialic groups in tissue glycocalyx, especially sialylated gangliosides in human brain. The CD33 receptor triggers cell-type specific responses, e.g., in microglia, CD33 inhibits phagocytosis, whereas in natural killer cells, it inhibits the cytotoxic activity of the NKG2D receptor. Nonetheless, the regulation of the activity of CD33 receptor needs to be clarified. For example, it seems that hypoxia/ischemia, a potential cause of AD pathology, increases the expression of CD33 and its downstream target SHP-1, a tyrosine phosphatase which suppresses the phagocytosis driven by TREM2. Moreover, hypoxia/ischemia increases the deposition of sialylated gangliosides, e.g., GM1, GM2, GM3, and GD1, which are ligands for inhibitory CD33/Siglec-3 receptors. In addition, β-amyloid peptides bind to the sialylated gangliosides in raft-like clusters and subsequently these gangliosides act as seeds for the formation of β-amyloid plaques in AD pathology. It is known that senile plaques contain sialylated GM1, GM2, and GM3 gangliosides, i.e., the same species induced by hypoxia/ischemia treatment. Sialylated gangliosides in plaques might stimulate the CD33/Siglec-3 receptors of microglia and thus impede TREM2-driven phagocytosis. We propose that hypoxia/ischemia, e.g., via the accumulation of sialylated gangliosides, prevents the phagocytosis of β-amyloid deposits by inhibiting CD33/TREM2 signaling.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, KYS, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
46
|
Salminen A. Immunosuppressive network promotes immunosenescence associated with aging and chronic inflammatory conditions. J Mol Med (Berl) 2021; 99:1553-1569. [PMID: 34432073 PMCID: PMC8384586 DOI: 10.1007/s00109-021-02123-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023]
Abstract
The functional competence of the immune system gradually declines with aging, a process called immunosenescence. The age-related remodelling of the immune system affects both adaptive and innate immunity. In particular, a chronic low-grade inflammation, termed inflammaging, is associated with the aging process. Immunosenescence not only is present in inflammaging state, but it also occurs in several pathological conditions in conjunction with chronic inflammation. It is known that persistent inflammation stimulates a counteracting compensatory immunosuppression intended to protect host tissues. Inflammatory mediators enhance myelopoiesis and induce the generation of immature myeloid-derived suppressor cells (MDSC) which in mutual cooperation stimulates the immunosuppressive network. Immunosuppressive cells, especially MDSCs, regulatory T cells (Treg), and M2 macrophages produce immunosuppressive factors, e.g., TGF-β, IL-10, ROS, arginase-1 (ARG1), and indoleamine 2,3-dioxygenase (IDO), which suppress the functions of CD4/CD8T and B cells as well as macrophages, natural killer (NK) cells, and dendritic cells. The immunosuppressive armament (i) inhibits the development and proliferation of immune cells, (ii) decreases the cytotoxic activity of CD8T and NK cells, (iii) prevents antigen presentation and antibody production, and (iv) suppresses responsiveness to inflammatory mediators. These phenotypes are the hallmarks of immunosenescence. Immunosuppressive factors are able to control the chromatin landscape, and thus, it seems that the immunosenescence state is epigenetically regulated.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
47
|
Kapor S, Santibanez JF. Myeloid-Derived Suppressor Cells and Mesenchymal Stem/Stromal Cells in Myeloid Malignancies. J Clin Med 2021; 10:2788. [PMID: 34202907 PMCID: PMC8268878 DOI: 10.3390/jcm10132788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Myeloid malignancies arise from an altered hematopoietic stem cell and mainly comprise acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic leukemic cells may influence the growth and differentiation of other hematopoietic cell lineages in peripheral blood and bone marrow. Myeloid-derived suppressor cells (MDSCs) and mesenchymal stromal cells (MSCs) display immunoregulatory properties by controlling the innate and adaptive immune systems that may induce a tolerant and supportive microenvironment for neoplasm development. This review analyzes the main features of MDSCs and MSCs in myeloid malignancies. The number of MDSCs is elevated in myeloid malignancies exhibiting high immunosuppressive capacities, whereas MSCs, in addition to their immunosuppression contribution, regulate myeloid leukemia cell proliferation, apoptosis, and chemotherapy resistance. Moreover, MSCs may promote MDSC expansion, which may mutually contribute to the creation of an immuno-tolerant neoplasm microenvironment. Understanding the implication of MDSCs and MSCs in myeloid malignancies may favor their potential use in immunotherapeutic strategies.
Collapse
Affiliation(s)
- Suncica Kapor
- Clinical Hospital Center “Dr Dragisa Misovic-Dedinje”, Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia
| | - Juan F. Santibanez
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia;
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, 8370993 Santiago, Chile
| |
Collapse
|
48
|
Kapor S, Santibanez JF. Myeloid-Derived Suppressor Cells and Mesenchymal Stem/Stromal Cells in Myeloid Malignancies. J Clin Med 2021. [PMID: 34202907 DOI: 10.3390/jcm10132788.pmid:34202907;pmcid:pmc8268878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Myeloid malignancies arise from an altered hematopoietic stem cell and mainly comprise acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic leukemic cells may influence the growth and differentiation of other hematopoietic cell lineages in peripheral blood and bone marrow. Myeloid-derived suppressor cells (MDSCs) and mesenchymal stromal cells (MSCs) display immunoregulatory properties by controlling the innate and adaptive immune systems that may induce a tolerant and supportive microenvironment for neoplasm development. This review analyzes the main features of MDSCs and MSCs in myeloid malignancies. The number of MDSCs is elevated in myeloid malignancies exhibiting high immunosuppressive capacities, whereas MSCs, in addition to their immunosuppression contribution, regulate myeloid leukemia cell proliferation, apoptosis, and chemotherapy resistance. Moreover, MSCs may promote MDSC expansion, which may mutually contribute to the creation of an immuno-tolerant neoplasm microenvironment. Understanding the implication of MDSCs and MSCs in myeloid malignancies may favor their potential use in immunotherapeutic strategies.
Collapse
Affiliation(s)
- Suncica Kapor
- Clinical Hospital Center "Dr Dragisa Misovic-Dedinje", Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia
| | - Juan F Santibanez
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, 8370993 Santiago, Chile
| |
Collapse
|
49
|
Baseline and early changes in circulating Serum Amyloid A (SAA) predict survival outcomes in advanced non-small cell lung cancer patients treated with Anti-PD-1/PD-L1 monotherapy. Lung Cancer 2021; 158:1-8. [PMID: 34087538 DOI: 10.1016/j.lungcan.2021.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Systemic inflammation plays an important role in carcinogenesis and is associated with overall survival in patients with different cancer types, including those treated with immune checkpoint blockade (ICB). Serum Amyloid A (SAA) is an acute-phase protein and a marker of persistent inflammation. We hypothesized that circulating SAA may predict outcomes in advanced non-small cell lung (aNSCLC) patients treated with PD-1/PD-L1 ICB. MATERIALS AND METHODS This retrospective study included 91 aNSCLC patients who received anti-PD-(L)1 monotherapy in Sun Yat-sen University Cancer Center (Guangzhou, China) between August 2016 and June 2018. We examined the impact of circulating SAA at baseline and 8 (±2) weeks later on overall survival (OS). X-tile program was used to determine the cut-off values which optimized the significance of the split between Kaplan-Meier survival curves. Kaplan-Meier methodology and Cox regression analyses were conducted for survival analyses. RESULTS The optimal cut-off value of baseline SAA for OS stratification was 137.6 mg/L. In univariate analysis, both high level of baseline SAA (hazard ratio [HR], 2.76; 95% confidence interval [CI], 1.47-5.18; P = 0.002) and lack of early SAA descent (HR, 1.51; 95% CI, 1.11-2.06; P = 0.009) were significantly associated with inferior OS. In multivariate analysis, gender, smoking status, performance status, liver metastasis, neutrophil-to-lymphocyte ratio, baseline SAA and early changes in SAA independently predicted OS (all with P < 0.05). A combined baseline SAA ≥ 137.6 mg/L and without early SAA descent identified a small cohort with remarkably worse OS (median, 3.2 months). CONCLUSIONS Both high baseline and lack of early decline in circulating SAA are significantly associated with inferior outcomes in aNSCLC patients treated with PD-1/PD-L1 ICB. Combined these two SAA indexes provided improved risk stratification. The prognostic value of this simple, readily-available, and cost-effective biomarker warrants larger, prospective validation before definitive recommendation can be made.
Collapse
|
50
|
Repression of MUC1 Promotes Expansion and Suppressive Function of Myeloid-Derived Suppressor Cells in Pancreatic and Breast Cancer Murine Models. Int J Mol Sci 2021; 22:ijms22115587. [PMID: 34070449 PMCID: PMC8197523 DOI: 10.3390/ijms22115587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that are responsible for immunosuppression in tumor microenvironment. Here we report the impact of mucin 1 (MUC1), a transmembrane glycoprotein, on proliferation and functional activity of MDSCs. To determine the role of MUC1 in MDSC phenotype, we analyzed MDSCs derived from wild type (WT) and MUC1-knockout (MUC1KO) mice bearing syngeneic pancreatic (KCKO) or breast (C57MG) tumors. We observed enhanced tumor growth of pancreatic and breast tumors in the MUC1KO mice compared to the WT mice. Enhanced tumor growth in the MUC1KO mice was associated with increased numbers of suppressive MDSCs and T regulatory (Tregs) cells in the tumor microenvironment. Compared to the WT host, MUC1KO host showed higher levels of iNOS, ARG1, and TGF-β, thus promoting proliferation of MDSCs with an immature and immune suppressive phenotype. When co-cultured with effector T cells, MDSCs from MUC1KO mice led to higher repression of IL-2 and IFN-γ production by T cells as compared to MDSCs from WT mice. Lastly, MDSCs from MUC1KO mice showed higher levels of c-Myc and activated pSTAT3 as compared to MDSCs from WT mice, suggesting increased survival, proliferation, and prevention of maturation of MDSCs in the MUC1KO host. We report diminished T cell function in the KO versus WT mice. In summary, the data suggest that MUC1 may regulate signaling pathways that are critical to maintain the immunosuppressive properties of MDSCs.
Collapse
|