1
|
Chen ZW, Shan JJ, Chen M, Wu Z, Zhao YM, Zhu HX, Jin X, Wang YX, Wu YB, Xiang Z, Ding ZW, Lin ZH, Wang LR, Wang L. Targeting GPX4 to Induce Ferroptosis Overcomes Chemoresistance Mediated by the PAX8-AS1/GPX4 Axis in Intrahepatic Cholangiocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e01042. [PMID: 40391780 DOI: 10.1002/advs.202501042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/25/2025] [Indexed: 05/22/2025]
Abstract
The standard regimen of gemcitabine combined with cisplatin offers limited clinical benefits in the treatment of advanced intrahepatic cholangiocarcinoma (ICC) due to intrinsic or acquired resistance. Currently, effective biomarkers to predict and improve chemotherapy resistance in ICC are lacking. Here, it is reported that a long non-coding RNA (lncRNA), PAX8-AS1, reduces the efficacy of standard chemotherapeutic drugs. Mechanistically, PAX8-AS1 activates NRF2 by binding to p62, thereby promoting GPX4 transcription, and stabilizes GPX4 mRNA through interaction with IGF2BP3. The PAX8-AS1/GPX4 axis inhibits ferroptosis and promotes resistance to gemcitabine and cisplatin. In preclinical models, the combination of the GPX4 inhibitor JKE-1674 with gemcitabine and cisplatin exhibits superior antitumor efficacy. These findings suggest a promising therapeutic strategy to improve chemotherapy efficacy in advanced ICC.
Collapse
Affiliation(s)
- Zhi-Wen Chen
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ji-Jun Shan
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mo Chen
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zong Wu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Ming Zhao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hong-Xu Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin Jin
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Xiu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Bin Wu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhen Xiang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Wen Ding
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhen-Hai Lin
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Long-Rong Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
2
|
Huang F, Wang Y, Zhang X, Gao W, Li J, Yang Y, Mo H, Prince E, Long Y, Hu J, Jiang C, Kang Y, Chen Z, Hu YC, Zeng C, Yang L, Chen CW, Chen J, Huang H, Weng H. m 6A/IGF2BP3-driven serine biosynthesis fuels AML stemness and metabolic vulnerability. Nat Commun 2025; 16:4214. [PMID: 40328743 PMCID: PMC12056023 DOI: 10.1038/s41467-025-58966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Metabolic reprogramming of amino acids represents a vulnerability in cancer cells, yet the mechanisms underlying serine metabolism in acute myeloid leukemia (AML) and leukemia stem/initiating cells (LSCs/LICs) remain unclear. Here, we identify RNA N6-methyladenosine (m6A) modification as a key regulator of serine biosynthesis in AML. Using a CRISPR/Cas9 screen, we find that depletion of m6A regulators IGF2BP3 or METTL14 sensitizes AML cells to serine and glycine (SG) deprivation. IGF2BP3 recognizies m6A on mRNAs of key serine synthesis pathway (SSP) genes (e.g., ATF4, PHGDH, PSAT1), stabilizing these transcripts and sustaining serine production to meet the high metabolic demand of AML cells and LSCs/LICs. IGF2BP3 silencing combined with dietary SG restriction potently inhibits AML in vitro and in vivo, while its deletion spares normal hematopoiesis. Our findings reveal the critical role of m6A modification in the serine metabolic vulnerability of AML and highlight the IGF2BP3/m6A/SSP axis as a promising therapeutic target.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Humans
- Serine/biosynthesis
- Serine/metabolism
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Animals
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Mice
- Cell Line, Tumor
- Glycine/metabolism
- Methyltransferases/metabolism
- Methyltransferases/genetics
- CRISPR-Cas Systems
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Feng Huang
- The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | | | - Xiuxin Zhang
- Bioland Laboratory, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Weiwei Gao
- Guangzhou National Laboratory, Guangzhou, China
- University of Science and Technology of China, Hefei, China
| | - Jingwen Li
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Ying Yang
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Hongjie Mo
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Emily Prince
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Yifei Long
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiacheng Hu
- Bioland Laboratory, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Chuang Jiang
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Yalin Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhenhua Chen
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chengwu Zeng
- Department of Hematology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Lu Yang
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Chun-Wei Chen
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Jianjun Chen
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
- The Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Hengyou Weng
- The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
- Bioland Laboratory, Guangzhou, China.
| |
Collapse
|
3
|
Ren X, Yang W, Yan X, Zhang H. Exploring RNA binding proteins in hepatocellular carcinoma: insights into mechanisms and therapeutic potential. J Exp Clin Cancer Res 2025; 44:130. [PMID: 40275278 PMCID: PMC12020288 DOI: 10.1186/s13046-025-03395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent type of primary liver cancer, is linked to elevated global incidence and mortality rates. Elucidating the intricate molecular pathways that drive the progression of HCC is imperative for devising targeted and effective therapeutic interventions. RNA-binding proteins (RBPs) serve as pivotal regulators of post-transcriptional processes, influencing various cellular functions. This review endeavors to provide a comprehensive analysis of the expression, function, and potential implications of RBPs in HCC. We discuss the classification and diverse roles of RBPs, with a particular focus on key RBPs implicated in HCC and their association with disease progression. Additionally, we explore the mechanisms by which RBPs contribute to HCC, including their impact on gene expression, cell proliferation, cell metastasis, angiogenesis, signaling pathways, and post-transcriptional modifications. Importantly, we examine the potential of RBPs as therapeutic targets and prognostic biomarkers, offering insights into their relevance in HCC treatment. Finally, we outline future research directions, emphasizing the need for further investigation into the functional mechanisms of RBPs and their clinical translation for personalized HCC therapy. This comprehensive review highlights the pivotal role of RBPs in HCC and their potential as novel therapeutic avenues to improve patient outcomes.
Collapse
Affiliation(s)
- Xing Ren
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenna Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiuli Yan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Li X, Guo W, Wen Y, Meng C, Zhang Q, Chen H, Zhao X, Wu B. Structural basis for the RNA binding properties of mouse IGF2BP3. Structure 2025; 33:771-785.e3. [PMID: 39986276 DOI: 10.1016/j.str.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 01/28/2025] [Indexed: 02/24/2025]
Abstract
IGF2BP family proteins (IGF2BPs) contain six tandem RNA-binding domains (RBDs), resulting in highly complex RNA binding properties. Dissecting how IGF2BPs recognize their RNA targets is essential for understanding their regulatory roles in gene expression. Here, we have determined the crystal structures of mouse IGF2BP3 constructs complexed with different RNA substrates. Our structures reveal that the IGF2BP3-RRM12 domains can recognize CA-rich elements up to 5-nt in length, mainly through RRM1. We also captured the antiparallel RNA-binding mode of the IGF2BP3-KH12 domains, with five nucleotides bound by KH1 and two nucleotides bound by KH2. Furthermore, our structural and biochemical studies suggest that the IGF2BP3-KH12 domains could recognize the "zipcode" RNA element within the β-actin mRNA. Finally, we analyzed the similarities and differences of the RNA-binding properties between the KH12 and KH34. Our studies provide structural insights into RNA target recognition by mouse IGF2BP3.
Collapse
Affiliation(s)
- Xiaojia Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Reproductive Medicine, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wenting Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yan Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Chunyan Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qingrong Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiaomiao Zhao
- Department of Reproductive Medicine, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
5
|
Sasaki K, Rooge S, Gunewardena S, Hintz JA, Ghosh P, Pulido Ruiz IA, Yuquimpo K, Schonfeld M, Mehta H, Stevenson HL, Saldarriaga OA, Arroyave E, Tikhanovich I, Wozniak AL, Weinman SA. Kupffer cell diversity maintains liver function in alcohol-associated liver disease. Hepatology 2025; 81:870-887. [PMID: 38687563 PMCID: PMC11616785 DOI: 10.1097/hep.0000000000000918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND AIMS Liver macrophages are heterogeneous and play an important role in alcohol-associated liver disease (ALD) but there is limited understanding of the functions of specific macrophage subsets in the disease. We used a Western diet alcohol (WDA) mouse model of ALD to examine the hepatic myeloid cell compartment by single cell RNAseq and targeted KC ablation to understand the diversity and function of liver macrophages in ALD. APPROACH AND RESULTS In the WDA liver, KCs and infiltrating monocytes/macrophages each represented about 50% of the myeloid pool. Five major KC clusters all expressed genes associated with receptor-mediated endocytosis and lipid metabolism, but most were predicted to be noninflammatory and antifibrotic with 1 minor KC cluster having a proinflammatory and extracellular matrix degradation gene signature. Infiltrating monocyte/macrophage clusters, in contrast, were predicted to be proinflammatory and profibrotic. In vivo, diphtheria toxin-based selective KC ablation during alcohol exposure resulted in a liver failure phenotype with increases in PT/INR and bilirubin, loss of differentiated hepatocyte gene expression, and an increase in expression of hepatocyte progenitor markers such as EpCAM, CK7, and Igf2bp3. Gene set enrichment analysis of whole-liver RNAseq from the KC-ablated WDA mice showed a similar pattern as seen in human alcoholic hepatitis. CONCLUSIONS In this ALD model, KCs are anti-inflammatory and are critical for the maintenance of hepatocyte differentiation. Infiltrating monocytes/macrophages are largely proinflammatory and contribute more to liver fibrosis. Future targeting of specific macrophage subsets may provide new approaches to the treatment of liver failure and fibrosis in ALD.
Collapse
Affiliation(s)
- Kyo Sasaki
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sheetalnath Rooge
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Janice Averilla Hintz
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Priyanka Ghosh
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Kyle Yuquimpo
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael Schonfeld
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Heer Mehta
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Heather L Stevenson
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Omar A Saldarriaga
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Esteban Arroyave
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ann L Wozniak
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Steven A Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
6
|
Zhao W, Meng H, Dai Z, Zhang L, Cheng Z, Song Y, Xu W, Wang Z, Tian K, Jiang Y, Sun W, Cai Z, Wang G, Hua Y. Prediction of Patients With High-Risk Osteosarcoma on the Basis of XGBoost Algorithm Using Transcriptome and Methylation Data From SGH-OS Cohort. JCO Precis Oncol 2025; 9:e2400732. [PMID: 40153688 DOI: 10.1200/po-24-00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/14/2025] [Accepted: 02/18/2025] [Indexed: 03/30/2025] Open
Abstract
PURPOSE Osteosarcoma (OS) is the most prevalent primary malignant bone sarcoma, characterized by its high rates of metastasis and mortality. In our previous multiomics analysis of the Shanghai General Hospital OS (SGH-OS) cohort, we identified four distinct OS subtypes, each with unique molecular characteristics and clinical outcomes. Of particular importance was the identification of the MYC-driven subtype, which exhibited the poorest prognosis and was referred to as high-risk OS. A diagnostic tool is needed for clinicians to identify high-risk OS in advance. The purpose of this study is to develop a classifier capable of accurately predicting the high-risk OS subtype using transcriptome and methylation data. METHODS In this study, using eXtreme Gradient Boosting (XGBoost) with Bayesian optimization, we developed a classification model by integrating transcriptome and methylation data from our internal SGH-OS cohort. We further validated the model's predictive performance with the external TARGET-OS cohort. RESULTS Using the XGBoost algorithm, we developed a classifier incorporating nine genes (ARHGAP9, CADM1, CPE, DUSP3, FGFR1, GALNT3, IGF2BP3, KIF26A, ZFP3). In our internal cohort, the classifier exhibited excellent predictive performance, with an area under the receiver operating characteristics curve (AUC) of 0.999 and an overall accuracy of 0.989. Furthermore, the classifier successfully stratified two groups with distinct survival outcomes in the external TARGET-OS cohort. Notably, our analysis revealed a positive correlation between IGF2BP3 and MYC signaling pathways, highlighting IGF2BP3 as a potential therapeutic target in high-risk OS. CONCLUSION Our classifier demonstrated excellent predictive performance in identifying patients with high-risk OS, offering the potential to enhance treatment decision making and optimize patient management strategies.
Collapse
Affiliation(s)
- Weisong Zhao
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Huanliang Meng
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhenwu Dai
- Jiangsu Simcere Diagnostics Co, Ltd Nanjing, PR China
- Nanjing Simcere Medical Laboratory Science Co, Ltd, Nanjing, PR China
- The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, PR China
| | - Lulu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Zhiwei Cheng
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
- SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunjie Song
- Jiangsu Simcere Diagnostics Co, Ltd Nanjing, PR China
- Nanjing Simcere Medical Laboratory Science Co, Ltd, Nanjing, PR China
- The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, PR China
| | - Wenyuan Xu
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhuoying Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Kai Tian
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Yafei Jiang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Wei Sun
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
7
|
Zeng X, Zhang Y, Shapaer T, Abudoukelimu A, Zhao Z, Ma B. IGF2BP3 prefers to regulate alternative splicing of genes associated with the progression of gastric cancer in AGS cells. Discov Oncol 2025; 16:235. [PMID: 39998701 PMCID: PMC11861459 DOI: 10.1007/s12672-025-01880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Gastric cancer (GC) has become the fifth largest malignant tumor in the world, with a mortality rate ranking fourth. IGF2BP3, as a multifunctional RNA binding protein, is involved in regulating alternative splicing (AS) and m6A modification, and plays a carcinogenic role in the development of gastric cancer, while little is known about the impact of IGF2BP3 on alternative splicing in gastric cancer cells and the underlying mechanism. In this study, we overexpressed IGF2BP3 (IGF2BP3-OE) in gastric cancer AGS cells and obtained transcriptome sequencing data (RNA-seq) to explore the effects of IGF2BP3 on gene expression and AS. The RNA binding profile of IGF2BP3 was utilized to identify how IGF2BP3 binds to and modulate expression and AS patterns of target genes. IGF2BP3-OE resulted in 479 differentially expressed genes (DEGs), majority of which were downregulated. We selected 20 DEGs and validated their expression pattern by RT-qPCR experiment, including ZFAS1, DUSP9, GPX3, IDH2, and H19 that were associated with GC development. More importantly, IGF2BP3-OE significantly modulated AS pattern of thousands of genes, which were enriched in mRNA splicing, cell proliferation, and translation pathways. By integrating the RNA binding profile of IGF2BP3, we found IGF2BP3 binding preferred to modulate the splicing pattern of bound genes, and the overlapped genes were also enriched in mRNA splicing pathways. We validated the AS pattern changes of S100A4 and PLK3 by RT-qPCR. IGF2BP3 probably modulate GC development by regulating AS profile in GC cells. In summary, we explored the dysregulated transcriptome profile that IGF2BP3 affects gene expression and alternative splicing by binding to mRNA, and thus plays a role in the development of GC cells. The IGF2BP3 and identified targets has potential value for GC treatment in future.
Collapse
Affiliation(s)
- Xiangyue Zeng
- Gastroenterology Department II, The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, 830011, China
| | - Yu Zhang
- Gastroenterology Department II, The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, 830011, China
| | - Tiannake Shapaer
- Gastroenterology Department II, The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, 830011, China
| | - Abulajiang Abudoukelimu
- Gastroenterology Department II, The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, 830011, China
| | - Zeliang Zhao
- Gastroenterology Department II, The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, 830011, China
| | - Binlin Ma
- Breast and Thyroid Surgery Department, The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, 830011, China.
| |
Collapse
|
8
|
Costa EK, Chen J, Guldner IH, Mboning L, Schmahl N, Tsenter A, Wu MR, Moran-Losada P, Bouchard LS, Wang S, Singh PP, Pellegrini M, Brunet A, Wyss-Coray T. Multi-tissue transcriptomic aging atlas reveals predictive aging biomarkers in the killifish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635350. [PMID: 39975269 PMCID: PMC11838286 DOI: 10.1101/2025.01.28.635350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Aging is associated with progressive tissue dysfunction, leading to frailty and mortality. Characterizing aging features, such as changes in gene expression and dynamics, shared across tissues or specific to each tissue, is crucial for understanding systemic and local factors contributing to the aging process. We performed RNA-sequencing on 13 tissues at 6 different ages in the African turquoise killifish, the shortest-lived vertebrate that can be raised in captivity. This comprehensive, sex-balanced 'atlas' dataset reveals the varying strength of sex-age interactions across killifish tissues and identifies age-altered biological pathways that are evolutionarily conserved. Demonstrating the utility of this resource, we discovered that the killifish head kidney exhibits a myeloid bias during aging, a phenomenon more pronounced in females than in males. In addition, we developed tissue-specific 'transcriptomic clocks' and identified biomarkers predictive of chronological age. We show the importance of sex-specific clocks for selected tissues and use the tissue clocks to evaluate a dietary intervention in the killifish. Our work provides a comprehensive resource for studying aging dynamics across tissues in the killifish, a powerful vertebrate aging model.
Collapse
Affiliation(s)
- Emma K Costa
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jingxun Chen
- Department of Genetics, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Ian H Guldner
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Lajoyce Mboning
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Natalie Schmahl
- Department of Genetics, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Aleksandra Tsenter
- Department of Genetics, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Man-Ru Wu
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA, USA
| | - Patricia Moran-Losada
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, CA, USA
| | - Louis S Bouchard
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, CA, USA
- Present address: Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Present address: Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Glenn Laboratories for the Biology of Aging, Stanford University, CA, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Glenn Laboratories for the Biology of Aging, Stanford University, CA, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, CA, USA
| |
Collapse
|
9
|
Lin L, Lin Y, Guo X, Zhang R, Ling X, Zhang Z, Lin R, Ding Z. Disrupting of IGF2BP3-stabilized CLDN11 mRNA by TNF-α increases intestinal permeability in obesity-related severe acute pancreatitis. Mol Med 2025; 31:24. [PMID: 39856555 PMCID: PMC11762095 DOI: 10.1186/s10020-025-01078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Obesity is a significant risk factor for severe acute pancreatitis (SAP) and is typically associated with increased intestinal permeability. Understanding the role of specific molecules can help reduce the risk of developing SAP. Claudin 11 (CLDN11), a member of the Claudin family, regulates the permeability of various internal barriers. However, the role and mechanism of CLDN11 in the intestinal permeability of obesity-related SAP remain unclear. METHODS We evaluated intestinal permeability and the expression of CLDN11 in experimental obesity-related SAP. A recombinant adeno-associated virus carrying CLDN11 was used to treat experimental obesity-related SAP. The interaction between CLDN11 mRNA and insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) protein was predicted through bioinformatics analysis and validated by RNA immunoprecipitation and RNA pull-down assay. Additionally, tumor necrosis factor-α (TNF-α) treatment in Caco-2 cells was conducted, and the IGF2BP3/CLDN11 axis was detected. Moreover, we conducted anti-TNFα therapy and evaluated intestinal permeability and pancreatic inflammation in experimental obesity-related SAP. RESULTS Downregulation of CLDN11 was observed in the intestinal epithelial cells of experimental obesity-related SAP. When the expression of CLDN11 in intestinal epithelial cells of experimental obesity-related SAP was increased exogenously, intestinal epithelial permeability and pancreatic inflammation were relieved. Overexpression of CLDN11 reduced the paracellular permeability of Caco-2 monolayer cells, while knockdown of CLDN11 increased it. IGF2BP3 bound to and regulated the stability of CLDN11 mRNA. TNF-α treatment downregulated IGF2BP3 and CLDN11 in vitro. Anti-TNFα therapy reduced intestinal permeability, alleviated pancreatitis, and improved the expression of IGF2BP3 and CLDN11 in intestinal epithelial cells in experimental obesity-related SAP. CONCLUSION CLDN11 regulates intestinal permeability in obesity-related SAP. Mechanistically, an increase in TNF-α impaired the stability of IGF2BP3-dependent CLDN11 mRNA in obesity-related SAP.
Collapse
Affiliation(s)
- Lihui Lin
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yansong Lin
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Xianwen Guo
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Ruoyi Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xin Ling
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Zewen Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, P. R. China.
| | - Zhen Ding
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P. R. China.
| |
Collapse
|
10
|
Zhang N, Wang X, Li Y, Lu Y, Sheng C, Sun Y, Ma N, Jiao Y. Mechanisms and therapeutic implications of gene expression regulation by circRNA-protein interactions in cancer. Commun Biol 2025; 8:77. [PMID: 39825074 PMCID: PMC11748638 DOI: 10.1038/s42003-024-07383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025] Open
Abstract
Circular RNAs (circRNAs) have garnered substantial attention due to their distinctive circular structure and gene regulatory functions, establishing them as a significant class of functional non-coding RNAs in eukaryotes. Studies have demonstrated that circRNAs can interact with RNA-binding proteins (RBPs), which play crucial roles in tumorigenesis, metastasis, and drug response in cancer by influencing gene expression and altering the processes of tumor initiation and progression. This review aims to summarize the recent advances in research on circRNA-protein interactions (CPIs) and discuss the functions and mode of action of CPIs at various stages of gene expression, including transcription, splicing, translation, and post-translational modifications in the context of cancer. Additionally, we explore the role of CPIs in tumor drug resistance to gain a deeper understanding of their potential applications in the development of new anti-cancer therapeutic approaches.
Collapse
Affiliation(s)
- Nan Zhang
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Xinjia Wang
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yu Li
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yiwei Lu
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Chengcheng Sheng
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yumeng Sun
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Ningye Ma
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
| | - Yisheng Jiao
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
| |
Collapse
|
11
|
Liu L, Zhao YJ, Zhang F. RNA methylation modifications in neurodegenerative diseases: Focus on their enzyme system. J Adv Res 2025:S2090-1232(25)00027-X. [PMID: 39765326 DOI: 10.1016/j.jare.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Neurodegenerative diseases (NDs) constitute a significant public health challenge, as they are increasingly contributing to global mortality and morbidity, particularly among the elderly population. Pathogenesis of NDs is intricate and multifactorial. Recently, post-transcriptional modifications (PTMs) of RNA, with a particular focus on mRNA methylation, have been gaining increasing attention. At present, several regulatory genes associated with mRNA methylation have been identified and closely associated with neurodegenerative disorders. AIM OF REVIEW This review aimed to summarize the RNA methylation enzymes system, including the writer, reader, and eraser proteins and delve into their functions in the central nervous system (CNS), hoping to open new avenues for exploring the mechanisms and therapeutic strategies for NDs. KEY SCIENTIFIC CONCEPTS OF REVIEW Recently, studies have highlighted the critical role of RNA methylation in the development and function of the CNS, and abnormalities in this process may contribute to brain damage and NDs, aberrant expression of enzymes involved in RNA methylation has been implicated in the onset and development of NDs.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu-Jia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
12
|
Gola AM, Bucci-Muñoz M, Rigalli JP, Ceballos MP, Ruiz ML. Role of the RNA binding protein IGF2BP1 in cancer multidrug resistance. Biochem Pharmacol 2024; 230:116555. [PMID: 39332691 DOI: 10.1016/j.bcp.2024.116555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1), a member of a conserved family of single-stranded RNA-binding proteins (IGF2BP1-3), is expressed in a broad range of fetal tissues, placenta and more than sixteen cancer types but only in a limited number of normal adult tissues. IGF2BP1is required for the transport from nucleus to cytoplasm of certain mRNAs that play essential roles in embryogenesis, carcinogenesis, and multidrug resistance (MDR), by affecting their stability, translation, or localization. The purpose of this review is to gather and present information on MDR mechanisms in cancer and the significance of IGF2BP1 in this context. Within this review, we will provide an overview of IGF2BP1, including its tissue distribution, expression, molecular targets in the context of tumorigenesis and its inhibitors. Our main focus will be on elucidating the interplay between IGF2BP1 and MDR, particularly with regard to chemoresistance mediated by ABC transporters.
Collapse
Affiliation(s)
- Aldana Magalí Gola
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - María Bucci-Muñoz
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - María Paula Ceballos
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - María Laura Ruiz
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina.
| |
Collapse
|
13
|
Luo X, Shi J, Wang S, Jin X. The role of circular RNA targeting IGF2BPs in cancer-a potential target for cancer therapy. J Mol Med (Berl) 2024; 102:1297-1314. [PMID: 39287635 DOI: 10.1007/s00109-024-02488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/01/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Circular RNAs (circRNAs) are an interesting class of conserved single-stranded RNA molecules derived from exon or intron sequences produced by the reverse splicing of precursor mRNA. CircRNAs play important roles as microRNA sponges, gene splicing and transcriptional regulators, RNA-binding protein sponges, and protein/peptide translation factors. Abnormal functions of circRNAs and RBPs in tumor progression have been widely reported. Insulin-like growth factor-2 mRNA-binding proteins (IGF2BPs) are a highly conserved family of RBPs identified in humans that function as post-transcriptional fine-tuners of target transcripts. Emerging evidence suggests that IGF2BPs regulate the processing and metabolism of RNA, including its stability, translation, and localization, and participate in a variety of cellular functions and pathophysiology. In this review, we have summarized the roles and molecular mechanisms of circRNAs and IGF2BPs in cancer development and progression. In addition, we briefly introduce the role of other RNAs and IGF2BPs in cancer, discuss the current clinical applications and challenges faced by circRNAs and IGF2BPs, and propose future directions for this promising research field.
Collapse
Affiliation(s)
- Xia Luo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jiaxin Shi
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Siyuan Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
14
|
Chen Y, Bian S, Zhang J, Luan Y, Yin B, Dai W, Wang H, Chen X, Dong Y, Cai Y, Dong R, Yu L, Shu M. HSV-1-induced N6-methyladenosine reprogramming via ICP0-mediated suppression of METTL14 potentiates oncolytic activity in glioma. Cell Rep 2024; 43:114756. [PMID: 39325621 DOI: 10.1016/j.celrep.2024.114756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/01/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Upon infection with herpes simplex virus 1 (HSV-1), the virus deploys multiple strategies to evade the host's innate immune response. However, the mechanisms governing this phenomenon remain elusive. Here, we find that HSV-1 leads to a decrease in overall m6A levels by selectively reducing METTL14 protein during early infection in glioma cells. Specifically, the HSV-1-encoded immediate-early protein ICP0 interacts with METTL14 within ND10 bodies and serves as an E3 ubiquitin protein ligase, targeting and ubiquitinating METTL14 at the lysine 156 and 162 sites. Subsequently, METTL14 undergoes proteasomal degradation. Furthermore, METTL14 stabilizes ISG15 mRNA mediated by IGF2BP3 to promote antiviral effects. Notably, METTL14 suppression significantly enhances the anti-tumor effect of oncolytic HSV-1 (oHSV-1) in mice bearing glioma xenografts. Collectively, these findings establish that ICP0-guided m6A modification controls the antiviral immune response and suggest that targeting METTL14/ISG15 represents a potential strategy to enhance the oncolytic activity of oHSV-1 in glioma treatment.
Collapse
Affiliation(s)
- Yuling Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shasha Bian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiamei Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuxuan Luan
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bowen Yin
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weiwei Dai
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hanlin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Dong
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yiheng Cai
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ruitao Dong
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liubing Yu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Minfeng Shu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pharmacy, Jinshan Hospital, Fudan University, Shanghai 201508, China.
| |
Collapse
|
15
|
Hornegger H, Anisimova AS, Muratovic A, Bourgeois B, Spinetti E, Niedermoser I, Covino R, Madl T, Karagöz GE. IGF2BP1 phosphorylation in the disordered linkers regulates ribonucleoprotein condensate formation and RNA metabolism. Nat Commun 2024; 15:9054. [PMID: 39426983 PMCID: PMC11490574 DOI: 10.1038/s41467-024-53400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
The insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) is a conserved RNA-binding protein that regulates RNA stability, localization and translation. IGF2BP1 is part of various ribonucleoprotein (RNP) condensates. However, the mechanism that regulates its assembly into condensates remains unknown. By using proteomics, we demonstrate that phosphorylation of IGF2BP1 at S181 in a disordered linker is regulated in a stress-dependent manner. Phosphomimetic mutations in two disordered linkers, S181E and Y396E, modulate RNP condensate formation by IGF2BP1 without impacting its binding affinity for RNA. Intriguingly, the S181E mutant, which lies in linker 1, impairs IGF2BP1 condensate formation in vitro and in cells, whereas a Y396E mutant in the second linker increases condensate size and dynamics. Structural approaches show that the first linker binds RNAs nonspecifically through its RGG/RG motif, an interaction weakened in the S181E mutant. Notably, linker 2 interacts with IGF2BP1's folded domains and these interactions are partially impaired in the Y396E mutant. Importantly, the phosphomimetic mutants impact IGF2BP1's interaction with RNAs and remodel the transcriptome in cells. Our data reveal how phosphorylation modulates low-affinity interaction networks in disordered linkers to regulate RNP condensate formation and RNA metabolism.
Collapse
Affiliation(s)
- Harald Hornegger
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Aleksandra S Anisimova
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Adnan Muratovic
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
| | - Benjamin Bourgeois
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Elena Spinetti
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Isabell Niedermoser
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Roberto Covino
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
- Institute of Computer Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Tobias Madl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - G Elif Karagöz
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria.
- Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Singh V, Singh A, Liu AJ, Fuchs SY, Sharma AK, Spiegelman VS. RNA Binding Proteins as Potential Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2024; 16:3502. [PMID: 39456596 PMCID: PMC11506615 DOI: 10.3390/cancers16203502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
RNA-binding proteins (RBPs) play critical roles in regulating post-transcriptional gene expression, managing processes such as mRNA splicing, stability, and translation. In normal intestine, RBPs maintain the tissue homeostasis, but when dysregulated, they can drive colorectal cancer (CRC) development and progression. Understanding the molecular mechanisms behind CRC is vital for developing novel therapeutic strategies, and RBPs are emerging as key players in this area. This review highlights the roles of several RBPs, including LIN28, IGF2BP1-3, Musashi, HuR, and CELF1, in CRC. These RBPs regulate key oncogenes and tumor suppressor genes by influencing mRNA stability and translation. While targeting RBPs poses challenges due to their complex interactions with mRNAs, recent advances in drug discovery have identified small molecule inhibitors that disrupt these interactions. These inhibitors, which target LIN28, IGF2BPs, Musashi, CELF1, and HuR, have shown promising results in preclinical studies. Their ability to modulate RBP activity presents a new therapeutic avenue for treating CRC. In conclusion, RBPs offer significant potential as therapeutic targets in CRC. Although technical challenges remain, ongoing research into the molecular mechanisms of RBPs and the development of selective, potent, and bioavailable inhibitors should lead to more effective treatments and improved outcomes in CRC.
Collapse
Affiliation(s)
- Vikash Singh
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.S.)
| | - Amandeep Singh
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.S.); (A.K.S.)
| | - Alvin John Liu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.S.)
| | - Serge Y. Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.S.); (A.K.S.)
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.S.)
| |
Collapse
|
17
|
Zhang W, Liu H, Ren C, Zhang K, Zhang S, Shi S, Li Z, Li J. Deciphering the IGF2BP3-mediated control of ferroptosis: mechanistic insights and therapeutic prospects. Discov Oncol 2024; 15:547. [PMID: 39392532 PMCID: PMC11469981 DOI: 10.1007/s12672-024-01432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
The rapid expansion of the oncology field has revealed new insights into cell death processes, with a particular emphasis on the role of ferroptosis. Characterized by iron dependency and the accumulation of lipid peroxides and iron within cells, ferroptosis stands out as a unique form of programmed cell demise. This in-depth analysis delves into the pivotal role of IGF2BP3, an RNA-binding protein, in the complex regulatory network of ferroptosis in cancerous cells. By exerting post-transcriptional control over genes associated with iron equilibrium, IGF2BP3 is demonstrated to manage cellular iron concentrations and reactive oxygen species (ROS) equilibrium, thus affecting the destiny of the cell. The correlation between aberrant IGF2BP3 expression and increased aggressiveness, metastatic capacity, and poor prognosis in various cancers is further clarified. The potential of IGF2BP3 as a biomarker for prognosis and a therapeutic agent to enhance cancer cells' vulnerability to ferroptosis is also examined, heralding new strategies in cancer treatment.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Affiliated Hospital of Chengde Medical University, NO.36 NanYingZi Road, Chengde, 067000, HeBei, China
| | - Hui Liu
- Affiliated Hospital of Chengde Medical University, NO.36 NanYingZi Road, Chengde, 067000, HeBei, China
| | - Changrong Ren
- Affiliated Hospital of Chengde Medical University, NO.36 NanYingZi Road, Chengde, 067000, HeBei, China
| | - Kaiqian Zhang
- Affiliated Hospital of Chengde Medical University, NO.36 NanYingZi Road, Chengde, 067000, HeBei, China
| | - Shuhan Zhang
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Shifan Shi
- Affiliated Hospital of Chengde Medical University, NO.36 NanYingZi Road, Chengde, 067000, HeBei, China
| | - Zhiyan Li
- Affiliated Hospital of Chengde Medical University, NO.36 NanYingZi Road, Chengde, 067000, HeBei, China
| | - Jian Li
- Department of Hepatobiliary Surgery, Hebei Key Laboratory of Panvascular Diseases, Affiliated Hospital of Chengde Medical University, NO.36 NanYingZi Road, Chengde, 067000, HeBei, China.
| |
Collapse
|
18
|
Ma S, Qin Y, Ren W. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in hematological diseases. Mol Med 2024; 30:165. [PMID: 39342091 PMCID: PMC11439276 DOI: 10.1186/s10020-024-00936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
The oncofetal mRNA-binding protein IGF2BP1 belongs to a conserved family of RNA-binding proteins. It primarily promotes RNA stability, regulates translation and RNA localization, and mediates gene expression through its downstream effectors. Numerous studies have demonstrated that IGF2BP1 plays crucial roles in embryogenesis and carcinogenesis. IGF2BP1-modulated cell proliferation, invasion, and chemo-resistance in solid tumors have attracted researchers' attention. Additionally, several studies have highlighted the importance of IGF2BP1 in hematologic malignancies and hematological genetic diseases, positioning it as a promising therapeutic target for hematological disorders. However, there is a lack of systematic summaries regarding the IGF2BP1 gene within the hematological field. In this review, we provide a comprehensive overview of the discovery and molecular structure of IGF2BP1, along with recent studies on its role in regulating embryogenesis. We also focus on the mechanisms by which IGF2BP1 regulates hematological malignancies through its interactions with its targeted mRNAs. Furthermore, we systematically elucidate the function and mechanism of IGF2BP1 in promoting fetal hemoglobin expression in adult hematopoietic stem/progenitor cells. Finally, we discuss the limitations and challenges of IGF2BP1 as a therapeutic target, offering insights into its prospects.
Collapse
Affiliation(s)
- Shuangping Ma
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Yiran Qin
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Wenjie Ren
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
19
|
Wang X, Cao L, Liu S, Zhou Y, Zhou J, Zhao W, Gao S, Liu R, Shi Y, Shao C, Fang J. The critical roles of IGFs in immune modulation and inflammation. Cytokine 2024; 183:156750. [PMID: 39243567 DOI: 10.1016/j.cyto.2024.156750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Insulin-like growth factors (IGFs) are crucial for embryonic and postnatal growth and development, influencing cell survival, metabolism, myogenesis, and cancer progression. Many studies have demonstrated that IGFs also play prominent roles in the modulation of both innate and adaptive immune systems during inflammation. Strikingly, IGFs dictate the phenotype and functional properties of macrophages and T cells. Furthermore, the interplay between IGFs and inflammatory cytokines may generate tissue-protective properties during inflammation. Herein, we review the recent advances on the dialogue between immune cells and IGFs, especially zooming in on the significance of immunomodulatory properties in inflammatory conditions, cancer and autoimmune diseases. The investigation of IGFs may have broad clinical implications.
Collapse
Affiliation(s)
- Xin Wang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Lijuan Cao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Shisong Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yipeng Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiarui Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wenxuan Zhao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shengqi Gao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Rui Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Yufang Shi
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Changshun Shao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jiankai Fang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
20
|
Liu C, Dou X, Zhao Y, Zhang L, Zhang L, Dai Q, Liu J, Wu T, Xiao Y, He C. IGF2BP3 promotes mRNA degradation through internal m 7G modification. Nat Commun 2024; 15:7421. [PMID: 39198433 PMCID: PMC11358264 DOI: 10.1038/s41467-024-51634-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
Recent studies have suggested that mRNA internal m7G and its writer protein METTL1 are closely related to cell metabolism and cancer regulation. Here, we identify that IGF2BP family proteins IGF2BP1-3 can preferentially bind internal mRNA m7G. Such interactions, especially IGF2BP3 with m7G, could promote the degradation of m7G target transcripts in cancer cells. IGF2BP3 is more responsive to changes of m7G modification, while IGF2BP1 prefers m6A to stabilize the bound transcripts. We also demonstrate that p53 transcript, TP53, is m7G-modified at its 3'UTR in cancer cells. In glioblastoma, the methylation level and the half lifetime of the modified transcript could be modulated by tuning IGF2BP3, or by site-specific targeting of m7G through a dCas13b-guided system, resulting in modulation of cancer progression and chemosensitivity.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Xiaoyang Dou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Yutao Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Linda Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Lisheng Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qing Dai
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Jun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China
| | - Tong Wu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Yu Xiao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
21
|
Ding P, Wu H, Wu J, Li T, He J, Ju Y, Liu Y, Li F, Deng H, Gu R, Zhang L, Guo H, Tian Y, Yang P, Meng N, Li X, Guo Z, Meng L, Zhao Q. N6-methyladenosine modified circPAK2 promotes lymph node metastasis via targeting IGF2BPs/VEGFA signaling in gastric cancer. Oncogene 2024; 43:2548-2563. [PMID: 39014193 DOI: 10.1038/s41388-024-03099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
Circular RNAs (circRNAs) have emerged as key regulators of cancer occurrence and progression, as well as promising biomarkers for cancer diagnosis and prognosis. However, the potential mechanisms of circRNAs implicated in lymph node (LN) metastasis of gastric cancer remain unclear. Herein, we identify a novel N6-methyladenosine (m6A) modified circRNA, circPAK2, which is significantly upregulated in gastric cancer tissues and metastatic LN tissues. Functionally, circPAK2 enhances the migration, invasion, lymphangiogenesis, angiogenesis, epithelial-mesenchymal transition (EMT), and metastasis of gastric cancer in vitro and in vivo. Mechanistically, circPAK2 is exported by YTH domain-containing protein 1 (YTHDC1) from the nucleus to the cytoplasm in an m6A methylation-dependent manner. Moreover, increased cytoplasmic circPAK2 interacts with Insulin-Like Growth Factor 2 mRNA-Binding Proteins (IGF2BPs) and forms a circPAK2/IGF2BPs/VEGFA complex to stabilize VEGFA mRNA, which contributes to gastric cancer vasculature formation and aggressiveness. Clinically, high circPAK2 expression is positively associated with LN metastasis and poor prognosis in gastric cancer. This study highlights m6A-modified circPAK2 as a key regulator of LN metastasis of gastric cancer, thus supporting circPAK2 as a promising therapeutic target and prognostic biomarker for gastric cancer.
Collapse
Affiliation(s)
- Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Tongkun Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Jinchen He
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Yingchao Ju
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Animal Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yueping Liu
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fang Li
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huiyan Deng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Renjun Gu
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Honghai Guo
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Yuan Tian
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Peigang Yang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Ning Meng
- Department of General Surgery, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China
| | - Xiaolong Li
- Department of General Surgery, Baoding Central Hospital, Baoding, Hebei, China
| | - Zhenjiang Guo
- General Surgery Department, Hengshui People's Hospital, Hengshui, Hebei, China
| | - Lingjiao Meng
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China.
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China.
| |
Collapse
|
22
|
Salum SOR, Candido EB, Domingues MAC, Ojopi EPB, Tonon ÂFS, da Silva-Filho AL. Association of insulin-like growth factor II mrna-binding protein 3 (IMP3) expression with prognostic and morphological factors in endometrial cancer. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2024; 46:e-rbgo61. [PMID: 39176196 PMCID: PMC11341195 DOI: 10.61622/rbgo/2024rbgo61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/17/2024] [Indexed: 08/24/2024] Open
Abstract
Objective Endometrial cancer (EC) is a heterogeneous disease with recurrence rates ranging from 15 to 20%. The discrimination of cases with a worse prognosis aims, in part, to reduce the length of surgical staging in cases with a better prognosis. This study aimed to evaluate the association between Insulin-like growth factor II mRNA-binding protein 3 (IMP3) expression and prognostic and morphological factors in EC. Methods This retrospective, cross-sectional, analytical study included 79 EC patients - 70 endometrioid carcinoma (EEC) and 9 serous carcinoma (SC) - and 74 benign endometrium controls. IMP3 expression was evaluated by immunohistochemistry-based TMA (Tissue Microarray), and the results were associated with morphological and prognostic factors, including claudins 3 and 4, estrogen and progesterone receptors, TP53, and KI67. Results IMP3 expression was significantly higher in SC compared to EEC in both extent (p<0.001) and intensity (p=0.044). It was also significantly associated with worse prognostic factors, including degree of differentiation (p=0.024, p<0.001), staging (p<0.001; p<0.001) and metastasis (p=0.002; p<0.001). IMP3 expression was also significant in extent (p=0.002) in endometrial tumors compared with controls. In addition, protein TP53 and KI67 showed significant associations in extent and intensity, respectively. Conclusion IMP3 expression was associated with worse prognostic factors studied. These findings suggest that IMP3 may be a potential biomarker for EC poorer prognosis.
Collapse
Affiliation(s)
- Silas Otero Reis Salum
- Universidade Estadual Paulista Faculdade de Medicina BotucatuSP Brazil Universidade Estadual Paulista, Faculdade de Medicina, Botucatu, SP, Brazil
| | - Eduardo Batista Candido
- Universidade Federal de Minas Gerais Belo HorizonteMG Brazil Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Aparecida Custódio Domingues
- Universidade Estadual Paulista Faculdade de Medicina BotucatuSP Brazil Universidade Estadual Paulista, Faculdade de Medicina, Botucatu, SP, Brazil
| | - Elida Paula Benquique Ojopi
- Hospital das Clínicas Faculdade de Medicina BotucatuSP Brazil Hospital das Clínicas, Faculdade de Medicina, Botucatu, SP, Brazil
| | - Ângela Favorito Santarem Tonon
- Universidade Estadual Paulista Faculdade de Medicina BotucatuSP Brazil Universidade Estadual Paulista, Faculdade de Medicina, Botucatu, SP, Brazil
| | - Agnaldo Lopes da Silva-Filho
- Universidade Estadual Paulista Faculdade de Medicina BotucatuSP Brazil Universidade Estadual Paulista, Faculdade de Medicina, Botucatu, SP, Brazil
- Universidade Federal de Minas Gerais Belo HorizonteMG Brazil Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
23
|
Zhu DH, Su KK, Ou-Yang XX, Zhang YH, Yu XP, Li ZH, Ahmadi-Nishaboori SS, Li LJ. Mechanisms and clinical landscape of N6-methyladenosine (m6A) RNA modification in gastrointestinal tract cancers. Mol Cell Biochem 2024; 479:1553-1570. [PMID: 38856795 PMCID: PMC11254988 DOI: 10.1007/s11010-024-05040-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
Epigenetics encompasses reversible and heritable chemical modifications of non-nuclear DNA sequences, including DNA and RNA methylation, histone modifications, non-coding RNA modifications, and chromatin rearrangements. In addition to well-studied DNA and histone methylation, RNA methylation has emerged as a hot topic in biological sciences over the past decade. N6-methyladenosine (m6A) is the most common and abundant modification in eukaryotic mRNA, affecting all RNA stages, including transcription, translation, and degradation. Advances in high-throughput sequencing technologies made it feasible to identify the chemical basis and biological functions of m6A RNA. Dysregulation of m6A levels and associated modifying proteins can both inhibit and promote cancer, highlighting the importance of the tumor microenvironment in diverse biological processes. Gastrointestinal tract cancers, including gastric, colorectal, and pancreatic cancers, are among the most common and deadly malignancies in humans. Growing evidence suggests a close association between m6A levels and the progression of gastrointestinal tumors. Global m6A modification levels are substantially modified in gastrointestinal tumor tissues and cell lines compared to healthy tissues and cells, possibly influencing various biological behaviors such as tumor cell proliferation, invasion, metastasis, and drug resistance. Exploring the diagnostic and therapeutic potential of m6A-related proteins is critical from a clinical standpoint. Developing more specific and effective m6A modulators offers new options for treating these tumors and deeper insights into gastrointestinal tract cancers.
Collapse
Affiliation(s)
- Dan-Hua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Kun-Kai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiao-Xi Ou-Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yan-Hong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiao-Peng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zu-Hong Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | | | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
24
|
Gong L, Liu Q, Jia M, Sun X. Systematic analysis of IGF2BP family members in non-small-cell lung cancer. Hum Genomics 2024; 18:63. [PMID: 38867248 PMCID: PMC11167947 DOI: 10.1186/s40246-024-00632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1, IGF2BP2, and IGF2BP3) are known to be involved in tumorigenesis, metastasis, prognosis, and cancer immunity in various human cancers, including non-small cell lung cancer (NSCLC). However, the literature on NSCLC largely omits the specific context of lung squamous cell carcinoma (LUSC), an oversight we aim to address. METHODS Our study evaluated the differential expression of IGF2BP family members in tumors and normal tissues. Meta-analyses were conducted to assess the prognostic value of IGF2BPs in lung adenocarcinoma (LUAD) and LUSC. Additionally, correlations between IGF2BPs and tumor immune cell infiltration, mutation characteristics, chemotherapy sensitivity, and tumor mutation burden (TMB) were investigated. GSEA was utilized to delineate biological processes and pathways associated with IGF2BPs. RESULTS IGF2BP2 and IGF2BP3 expression were found to be upregulated in LUSC patients. IGF2BP2 mRNA levels were correlated with cancer immunity in both LUSC and LUAD patients. A higher frequency of gene mutations was observed in different IGF2BP1/2/3 expression groups in LUAD compared to LUSC. Meta-analyses revealed a significant negative correlation between overall survival (OS) and IGF2BP2/3 expression in LUAD patients but not in LUSC patients. GSEA indicated a positive association between VEGF and IGF2BP family genes in LUAD, while matrix metallopeptidase activity was inversely correlated with IGF2BP family genes in LUSC. Several chemotherapy drugs showed significantly lower IC50 values in high IGF2BP expression groups in both LUAD and LUSC. CONCLUSION Our findings indicated that IGF2BPs play different roles in LUAD and LUSC. This divergence highlights the need for tailored therapeutic strategies and prognostic tools, cognizant of the unique molecular profiles of LUAD and LUSC.
Collapse
Affiliation(s)
- Liping Gong
- Department of Academic Research, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Qin Liu
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Ming Jia
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Xifeng Sun
- Institute of Medical Sciences, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, P.R. China.
| |
Collapse
|
25
|
Gao F, Zhang B, Xiao C, Sun Z, Gao Y, Liu C, Dou X, Tong H, Wang R, Li P, Heng L. IGF2BP3 stabilizes SESN1 mRNA to mitigate oxidized low-density lipoprotein-induced oxidative stress and endothelial dysfunction in human umbilical vein endothelial cells by activating Nrf2 signaling. Prostaglandins Other Lipid Mediat 2024; 172:106832. [PMID: 38460759 DOI: 10.1016/j.prostaglandins.2024.106832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/08/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Atherosclerosis (AS) represents a prevalent initiating factor for cardiovascular events. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) is an oncofetal RNA-binding protein that participates in cardiovascular diseases. This work aimed to elaborate the effects of IGF2BP3 on AS and the probable mechanism by using an oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) model. Results indicated that IGF2BP3 expression was declined in the blood of AS patients and ox-LDL-induced HUVECs. IGF2BP3 elevation alleviated ox-LDL-provoked viability loss, apoptosis, oxidative DNA damage and endothelial dysfunction in HUVECs. Moreover, IGF2BP3 bound SESN1 and stabilized SESN1 mRNA. Furthermore, SESN1 interference reversed the impacts of IGF2BP3 overexpression on the apoptosis, oxidative DNA damage and endothelial dysfunction of ox-LDL-challenged HUVECs. Additionally, the activation of Nrf2 signaling mediated by IGF2BP3 up-regulation in ox-LDL-treated HUVECs was blocked by SESN1 absence. Collectively, SESN1 stabilized by IGF2BP3 might protect against AS by activating Nrf2 signaling.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, People's Republic of China.
| | - Bin Zhang
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, People's Republic of China
| | - Chunwei Xiao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, People's Republic of China
| | - Zhanfa Sun
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, People's Republic of China
| | - Yuan Gao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, People's Republic of China
| | - Chunyi Liu
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, People's Republic of China
| | - Xueyong Dou
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, People's Republic of China
| | - Haokun Tong
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, People's Republic of China
| | - Rui Wang
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, People's Republic of China
| | - Peng Li
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, People's Republic of China
| | - Lei Heng
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, People's Republic of China.
| |
Collapse
|
26
|
Cai H, Zhao J, Zhang Q, Wu H, Sun Y, Guo F, Zhou Y, Qin G, Xia W, Zhao Y, Liang X, Yin S, Qin Y, Li D, Wu H, Ren D. Ubiquitin ligase TRIM15 promotes the progression of pancreatic cancer via the upregulation of the IGF2BP2-TLR4 axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167183. [PMID: 38657551 DOI: 10.1016/j.bbadis.2024.167183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/17/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND The tripartite motif family, predominantly characterized by its E3 ubiquitin ligase activities, is involved in various cellular processes including signal transduction, apoptosis and autophagy, protein quality control, immune regulation, and carcinogenesis. Tripartite Motif Containing 15 (TRIM15) plays an important role in melanoma progression through extracellular signal-regulated kinase activation; however, data on its role in pancreatic tumors remain lacking. We previously demonstrated that TRIM15 targeted lipid synthesis and metabolism in pancreatic cancer; however, other specific regulatory mechanisms remain elusive. METHODS We used transcriptomics and proteomics, conducted a series of phenotypic experiments, and used a mouse orthotopic transplantation model to study the specific mechanism of TRIM15 in pancreatic cancer in vitro and in vivo. RESULTS TRIM15 overexpression promoted the progression of pancreatic cancer by upregulating the toll-like receptor 4. The TRIM15 binding protein, IGF2BP2, could combine with TLR4 to inhibit its mRNA degradation. Furthermore, the ubiquitin level of IGF2BP2 was positively correlated with TRIM15. CONCLUSIONS TRIM15 could ubiquitinate IGF2BP2 to enhance the function of phase separation and the maintenance of mRNA stability of TLR4. TRIM15 is a potential therapeutic target against pancreatic cancer.
Collapse
Affiliation(s)
- Hongkun Cai
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingyuan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiyue Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heyu Wu
- Department of Operating Room, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingke Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gengdu Qin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wentao Xia
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyi Liang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shilin Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Qin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
27
|
Najibi K, Moghanibashi M, Naeimi S. Association of deletion polymorphism rs10573247 in the HMGA2 gene with the risk of breast cancer: bioinformatic and experimental analyses. World J Surg Oncol 2024; 22:142. [PMID: 38802807 PMCID: PMC11131319 DOI: 10.1186/s12957-024-03415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The high mobility group A2 (HMGA2) gene is expressed extensively during early embryonic development but is inactivated in adulthood, and it is also reactivated in various benign and malignant tumors, including breast cancer. We first assessed the potential functional significance of the unstudied deletion polymorphism rs10573247 at the 3'UTR of HMGA2 on miRNA binding using bioinformatic tools, and subsequently, the association between this polymorphism and breast cancer susceptibility was investigated. MATERIALS AND METHODS We applied the RNAhybrid tool to predict the functional effects of polymorphism rs10573247 located within the 3' UTR of the HMGA2 gene on miRNA binding. Then, following DNA extraction, 141 breast cancer patients and 123 healthy controls were genotyped for polymorphism rs10573247 using RFLP-PCR with the restriction enzyme Eam1104I. RESULTS Our bioinformatic data have shown that polymorphism rs10573247 is located in the region that serves as a potential target site for eight miRNAs binding. Among them, miR-3125 exhibited decreased binding affinity for the allele delTT (MFE = -21.8) when compared to the allele TT (MFE = -23.9), but miR-4476 increased binding affinity for the allele delTT (MFE = -22.4) compared to the allele TT (MFE = -22.2). In addition, our results showed that the genotype TT/delTT (p = 0.005) and the genotype delTT/delTT (p = 0.029) were significantly associated with an increased risk of developing breast cancer compared to the genotype TT/TT using RFLP-PCR. DISCUSSION AND CONCLUSION Our findings suggest that polymorphism rs10573247 may contribute to the risk of breast cancer through the functional effect of this polymorphism on miRNA binding.
Collapse
Affiliation(s)
- Kolsoom Najibi
- Department of Biology, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, P.O. Box: 73135-168, Kazerun, Iran.
| | - Sirous Naeimi
- Department of Biology, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
28
|
Pastori V, Zambanini G, Citterio E, Weiss T, Nakamura Y, Cantù C, Ronchi AE. Transcriptional repression of the oncofetal LIN28B gene by the transcription factor SOX6. Sci Rep 2024; 14:10287. [PMID: 38704454 PMCID: PMC11069503 DOI: 10.1038/s41598-024-60438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
The identification of regulatory networks contributing to fetal/adult gene expression switches is a major challenge in developmental biology and key to understand the aberrant proliferation of cancer cells, which often reactivate fetal oncogenes. One key example is represented by the developmental gene LIN28B, whose aberrant reactivation in adult tissues promotes tumor initiation and progression. Despite the prominent role of LIN28B in development and cancer, the mechanisms of its transcriptional regulation are largely unknown. Here, by using quantitative RT-PCR and single cell RNA sequencing data, we show that in erythropoiesis the expression of the transcription factor SOX6 matched a sharp decline of LIN28B mRNA during human embryo/fetal to adult globin switching. SOX6 overexpression repressed LIN28B not only in a panel of fetal-like erythroid cells (K562, HEL and HUDEP1; ≈92% p < 0.0001, 54% p = 0.0009 and ≈60% p < 0.0001 reduction, respectively), but also in hepatoblastoma HepG2 and neuroblastoma SH-SY5H cells (≈99% p < 0.0001 and ≈59% p < 0.0001 reduction, respectively). SOX6-mediated repression caused downregulation of the LIN28B/Let-7 targets, including MYC and IGF2BP1, and rapidly blocks cell proliferation. Mechanistically, Lin28B repression is accompanied by SOX6 physical binding within its locus, suggesting a direct mechanism of LIN28B downregulation that might contribute to the fetal/adult erythropoietic transition and restrict cancer proliferation.
Collapse
Affiliation(s)
- Valentina Pastori
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Gianluca Zambanini
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Max-Planck-Institut für molekulare Genetik, Berlin, Germany
| | - Elisabetta Citterio
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Tamina Weiss
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Yukio Nakamura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Antonella Ellena Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy.
| |
Collapse
|
29
|
Wang S, He Y, Wang J, Luo E. Re-exploration of immunotherapy targeting EMT of hepatocellular carcinoma: Starting from the NF-κB pathway. Biomed Pharmacother 2024; 174:116566. [PMID: 38631143 DOI: 10.1016/j.biopha.2024.116566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancies worldwide, and its high morbidity and mortality have brought a heavy burden to the global public health system. Due to the concealment of its onset, the limitation of treatment, the acquisition of multi-drug resistance and radiation resistance, the treatment of HCC cannot achieve satisfactory results. Epithelial mesenchymal transformation (EMT) is a key process that induces progression, distant metastasis, and therapeutic resistance to a variety of malignant tumors, including HCC. Therefore, targeting EMT has become a promising tumor immunotherapy method for HCC. The NF-κB pathway is a key regulatory pathway for EMT. Targeting this pathway has shown potential to inhibit HCC infiltration, invasion, distant metastasis, and therapeutic resistance. At present, there are still some controversies about this pathway and new ideas of combined therapy, which need to be further explored. This article reviews the progress of immunotherapy in improving EMT development in HCC cells by exploring the mechanism of regulating EMT.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, PR China
| | - Yan He
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Jun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, PR China
| | - En Luo
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
30
|
Wang B, Wang B, Ma J, He JJ, Wang ZH, Li Q, Ma XX. LIN28B induced PCAT5 promotes endometrial cancer progression and glycolysis via IGF2BP3 deubiquitination. Cell Death Dis 2024; 15:242. [PMID: 38565547 PMCID: PMC10987620 DOI: 10.1038/s41419-024-06564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
Endometrial cancer (EC) cells exhibit abnormal glucose metabolism, characterized by increased aerobic glycolysis and decreased oxidative phosphorylation. Targeting cellular glucose metabolism in these cells could be an effective therapeutic approach for EC. This study aimed to assess the roles of LIN28B, PCAT5, and IGF2BP3 in the glucose metabolism, proliferation, migration, and invasion of EC cells. LIN28B highly expressed in EC, binds and stabilizes PCAT5. PCAT5, overexpressed in EC, and its 1485-2288nt region can bind to the KH1-2 domain of IGF2BP3 to prevent MKRN2 from binding to the K294 ubiquitination site of IGF2BP3, thus stabilizing IGF2BP3. Finally, IGF2BP3 promotes the aerobic glycolysis, proliferation, migration and invasion of EC cells by stabilizing the key enzymes of glucose metabolism HK2 and PKM2. Taken together, our data reveal that the LIN28B/PCAT5/IGF2BP3 axis is critical for glucose reprogramming and malignant biological behavior in EC cells. Therefore, targeting this axis may contribute to the development of a novel therapeutic strategy for EC metabolism.
Collapse
Affiliation(s)
- Bin Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Bo Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Jun-Jian He
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Zi-Hao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Qing Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Xiao-Xin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China.
| |
Collapse
|
31
|
Davoodvandi A, Sadeghi S, Alavi SMA, Alavi SS, Jafari A, Khan H, Aschner M, Mirzaei H, Sharifi M, Asemi Z. The therapeutic effects of berberine for gastrointestinal cancers. Asia Pac J Clin Oncol 2024; 20:152-167. [PMID: 36915942 DOI: 10.1111/ajco.13941] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/17/2022] [Accepted: 01/10/2023] [Indexed: 03/15/2023]
Abstract
Cancer is one of the most serious human health issues. Drug therapy is the major common way to treat cancer. There is a growing interest in using natural compounds to overcome drug resistance, adverse reactions, and target specificity of certain types of drugs that may affect several targets with fewer side effects and be beneficial against various types of cancer. In this regard, the use of herbal medicines alone or in combination with the main anticancer drugs is commonly available. Berberine (BBR), a nature-driven phytochemical component, is a well-known nutraceutical due to its wide variety of pharmacological activities, including antioxidant, anti-inflammatory, antibacterial, antifungal, antiparasitic, antidiabetic, antihypertensive, and hypolipidemic. In addition, BBR exerts anticancer activities. In present article, we summarized the information available on the therapeutic effects of BBR and its mechanisms on five types of the most prevalent gastrointestinal cancers, including esophageal, gastric, colorectal, hepatocarcinoma, and pancreatic cancers.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sahand Sadeghi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Seyedeh Shaghayegh Alavi
- Departmemt of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
32
|
Saluja S, Bansal I, Bhardwaj R, Beg MS, Palanichamy JK. Inflammation as a driver of hematological malignancies. Front Oncol 2024; 14:1347402. [PMID: 38571491 PMCID: PMC10987768 DOI: 10.3389/fonc.2024.1347402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Hematopoiesis is a tightly regulated process that produces all adult blood cells and immune cells from multipotent hematopoietic stem cells (HSCs). HSCs usually remain quiescent, and in the presence of external stimuli like infection or inflammation, they undergo division and differentiation as a compensatory mechanism. Normal hematopoiesis is impacted by systemic inflammation, which causes HSCs to transition from quiescence to emergency myelopoiesis. At the molecular level, inflammatory cytokine signaling molecules such as tumor necrosis factor (TNF), interferons, interleukins, and toll-like receptors can all cause HSCs to multiply directly. These cytokines actively encourage HSC activation, proliferation, and differentiation during inflammation, which results in the generation and activation of immune cells required to combat acute injury. The bone marrow niche provides numerous soluble and stromal cell signals, which are essential for maintaining normal homeostasis and output of the bone marrow cells. Inflammatory signals also impact this bone marrow microenvironment called the HSC niche to regulate the inflammatory-induced hematopoiesis. Continuous pro-inflammatory cytokine and chemokine activation can have detrimental effects on the hematopoietic system, which can lead to cancer development, HSC depletion, and bone marrow failure. Reactive oxygen species (ROS), which damage DNA and ultimately lead to the transformation of HSCs into cancerous cells, are produced due to chronic inflammation. The biological elements of the HSC niche produce pro-inflammatory cytokines that cause clonal growth and the development of leukemic stem cells (LSCs) in hematological malignancies. The processes underlying how inflammation affects hematological malignancies are still not fully understood. In this review, we emphasize the effects of inflammation on normal hematopoiesis, the part it plays in the development and progression of hematological malignancies, and potential therapeutic applications for targeting these pathways for therapy in hematological malignancies.
Collapse
|
33
|
Cai Y, Wang Y, Mao B, You Q, Guo X. Targeting insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) for the treatment of cancer. Eur J Med Chem 2024; 268:116241. [PMID: 38382391 DOI: 10.1016/j.ejmech.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IMPs, IGF2BPs) are RNA-binding proteins that regulate a variety of biological processes. In recent years, several studies have found that IGF2BPs play multiple roles in various biological processes, especially in cancer, and speculated on their mechanism of anticancer effect. In addition, targeting IGF2BPs or their downstream target gene has also received extensive attention as an effective treatment for different types of cancer. In this review, we summarized the recent progress on the role of IGF2BPs in cancers and their structural characteristics. We focused on describing the development of inhibitors targeting IGF2BPs and the prospects for further applications.
Collapse
Affiliation(s)
- Yuanqian Cai
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yingzhe Wang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Bingjie Mao
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoke Guo
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
34
|
Li H, Jiang Y, Chen J, Li Z, Zhang R, Wei Y, Zhao Y, Shen S, Chen F. Systematic characterization of m6A proteomics across 12 cancer types: a multi-omics integration study. Mol Omics 2024; 20:103-114. [PMID: 37942799 DOI: 10.1039/d3mo00171g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The modification patterns of N6-methyladenosine (m6A) regulators and interacting genes are deeply involved in tumors. However, the effect of m6A modification patterns on human proteomics remains largely unknown. We evaluated the molecular characteristics and clinical relevance of m6A modification proteomics patterns among 1013 pan-cancer samples from the Clinical Proteomic Tumor Analysis Consortium (CPTAC). More than half of the m6A proteins were expressed at higher levels in tumor tissues and presented oncogenic characteristics. Furthermore, we performed multi-omics analyses integrating with transcriptomics data of m6A regulators and interactive coding and non-coding RNAs and developed a m6A multi-omics signature to identify potential m6A modification target proteins across global proteomics. It was significantly associated with overall survival in nine cancer types, tumor mutation burden (P = 0.01), and immune checkpoints including PD-L1 (P = 4.9 × 10-8) and PD-1 (P < 0.01). We identified 51 novel proteins associated with the multi-omics signature (PFDR < 0.05). These proteins were functional through pathway enrichment analyses. The protein with the highest hit frequency was CHORDC1, which was significantly up-regulated in tumor tissues in nine cancer types. Its higher abundance was significantly associated with a poorer prognosis in seven cancer types. The identified m6A target proteins might provide infomation for the study of molecular mechanism of cancer.
Collapse
Affiliation(s)
- Hongru Li
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yunke Jiang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jiajin Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Zaiming Li
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Ruyang Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yongyue Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yang Zhao
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Biomedical Big Data of Nanjing Medical University, Nanjing 211166, China
| | - Sipeng Shen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China
| |
Collapse
|
35
|
Kaushik K, Kumar H, Mehta S, Palanichamy JK. Hypoxia increases the biogenesis of IGF2BP3-bound circular RNAs. Mol Biol Rep 2024; 51:288. [PMID: 38329630 DOI: 10.1007/s11033-024-09230-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Insulin-like Growth Factor 2 Binding Protein 3 (IGF2BP3) promotes cancer migration and invasion by binding to several coding and non-coding RNAs. Hypoxia stimulates tumor progression by upregulating Hypoxia Inducible Factors and downstream signaling. Quaking (QKI) gene, which is upregulated in hypoxia and promotes epithelial to mesenchymal transition (EMT), induces circular RNAs. Therefore, the axis between IGF2BP3, QKI, circular RNAs and their respective host genes under hypoxia was studied. METHODS AND RESULTS Several IGF2BP3-bound circular RNAs were previously identified in HepG2. There were 13 circRNAs originating from 8 host genes bound to IGF2BP3. We confirmed their binding to IGF2BP3 in U87MG using an RNA Immunoprecipitation assay. MALAT1, an oncogenic lncRNA was also found to be associated with IGF2BP3. Three adherent cell lines expressing high levels of IGF2BP3 viz., HeLa, HepG2 and U87MG were cultured under normoxia (20%O2) and hypoxia (<0.2%O2) for 48-168 h. Expression of IGF2BP3, QKI, EMT markers, IGF2BP3-bound circRNAs and their host mRNAs expression were assessed by quantitative real-time PCR (qRT-PCR) in both normoxia and hypoxia. The hypoxia markers viz., VEGF and CA9 were upregulated in all the cell lines in hypoxia at all time points along with an increase in SNAIL. We found 6 genes, viz., PHC3, CDYL, ANKRD17, ARID1A, NEIL3 and FNDC3B with increased expression both at the mRNA and circRNA level indicating their synergistic role in tumor initiation. Overall, we found that circRNA to mRNA expression was observed to be increased for most of the genes and time points of hypoxia in all the cell lines. IGF2BP3 and QKI were also upregulated in hypoxia indicating their role in circRNA biogenesis and stability. CONCLUSION Our data implies that hypoxia augments circRNA biogenesis which might subsequently play a role in tumor progression.
Collapse
Affiliation(s)
- Kriti Kaushik
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, Convergence Block, New Delhi, 110029, India
| | - Hemant Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, Convergence Block, New Delhi, 110029, India
| | - Samriddhi Mehta
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Jayanth Kumar Palanichamy
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, Convergence Block, New Delhi, 110029, India.
| |
Collapse
|
36
|
Yu L, Gao Y, Bao Q, Xu M, Lu J, Du W. Effects of N6-methyladenosine modification on metabolic reprogramming in digestive tract tumors. Heliyon 2024; 10:e24414. [PMID: 38293446 PMCID: PMC10826742 DOI: 10.1016/j.heliyon.2024.e24414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
N6-methyladenosine (m6A), the most abundant RNA modification within cells, participates in various biological and pathological processes, including self-renewal, invasion and proliferation, drug resistance, and stem cell characteristics. The m6A methylation plays a crucial role in tumors by regulating multiple RNA processes such as transcription, processing, and translation. Three protein types are primarily involved in m6A methylation: methyltransferases (such as METTL3, METTL14, ZC3H13, and KIAA1429), demethylases (such as FTO, ALKBH5), and RNA-binding proteins (such as the family of YTHDF, YTHDC1, YTHDC2, and IGF2BPs). Various metabolic pathways are reprogrammed in digestive tumors to meet the heightened growth demands and sustain cellular functionality. Recent studies have highlighted the extensive impact of m6A on the regulation of digestive tract tumor metabolism, further modulating tumor initiation and progression. Our review aims to provide a comprehensive understanding of the expression patterns, functional roles, and regulatory mechanisms of m6A in digestive tract tumor metabolism-related molecules and pathways. The characterization of expression profiles of m6A regulatory factors and in-depth studies on m6A methylation in digestive system tumors may provide new directions for clinical prediction and innovative therapeutic interventions.
Collapse
Affiliation(s)
- Liang Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuan Gao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qiongling Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Min Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weibo Du
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
37
|
Vembuli H, Gor R, Ramalingam S, Perales S, Rajasingh J. RNA binding proteins in cancer chemotherapeutic drug resistance. Front Cell Dev Biol 2024; 12:1308102. [PMID: 38328550 PMCID: PMC10847363 DOI: 10.3389/fcell.2024.1308102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Drug resistance has been a major obstacle in the quest for a cancer cure. Many chemotherapeutic treatments fail to overcome chemoresistance, resulting in tumor remission. The exact process that leads to drug resistance in many cancers has not been fully explored or understood. However, the discovery of RNA binding proteins (RBPs) has provided insight into various pathways and post-transcriptional gene modifications involved in drug tolerance. RBPs are evolutionarily conserved proteins, and their abnormal gene expression has been associated with cancer progression. Additionally, RBPs are aberrantly expressed in numerous neoplasms. RBPs have also been implicated in maintaining cancer stemness, epithelial-to-mesenchymal transition, and other processes. In this review, we aim to provide an overview of RBP-mediated mechanisms of drug resistance and their implications in cancer malignancy. We discuss in detail the role of major RBPs and their correlation with noncoding RNAs (ncRNAs) that are associated with the inhibition of chemosensitivity. Understanding and exploring the pathways of RBP-mediated chemoresistance will contribute to the development of improved cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Hemanathan Vembuli
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ravi Gor
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Selene Perales
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Johnson Rajasingh
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
38
|
Dai W, Tian R, Yu L, Bian S, Chen Y, Yin B, Luan Y, Chen S, Fan Z, Yan R, Pan X, Hou Y, Li R, Chen J, Shu M. Overcoming therapeutic resistance in oncolytic herpes virotherapy by targeting IGF2BP3-induced NETosis in malignant glioma. Nat Commun 2024; 15:131. [PMID: 38167409 PMCID: PMC10762148 DOI: 10.1038/s41467-023-44576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Oncolytic virotherapy holds promise for cancer treatment, but the factors determining its oncolytic activity remain unclear. Neutrophil extracellular traps (NETs) are associated with cancer progression, yet their formation mechanism and role in oncolytic virotherapy remain elusive. In this study, we demonstrate that, in glioma, upregulation of IGF2BP3 enhances the expression of E3 ubiquitin protein ligase MIB1, promoting FTO degradation via the ubiquitin-proteasome pathway. This results in increased m6A-mediated CSF3 release and NET formation. Oncolytic herpes simplex virus (oHSV) stimulates IGF2BP3-induced NET formation in malignant glioma. In glioma models in female mice, a BET inhibitor enhances the oncolytic activity of oHSV by impeding IGF2BP3-induced NETosis, reinforcing virus replication through BRD4 recruitment with the CDK9/RPB-1 complex to HSV gene promoters. Our findings unveil the regulation of m6A-mediated NET formation, highlight oncolytic virus-induced NETosis as a critical checkpoint hindering oncolytic potential, and propose targeting NETosis as a strategy to overcome resistance in oncolytic virotherapy.
Collapse
Affiliation(s)
- Weiwei Dai
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruotong Tian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liubing Yu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shasha Bian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuling Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bowen Yin
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuxuan Luan
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Siqi Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhuoyang Fan
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Interventional Radiology, Zhongshan hospital, Fudan University, Shanghai, China
| | - Rucheng Yan
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Pan
- School of Basic Medical Sciences, Fudan University, Shanghai, China
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan hospital, Fudan University, Shanghai, China
| | - Rong Li
- Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Minfeng Shu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Wu Y, Chen S, Yang X, Sato K, Lal P, Wang Y, Shinkle AT, Wendl MC, Primeau TM, Zhao Y, Gould A, Sun H, Mudd JL, Hoog J, Mashl RJ, Wyczalkowski MA, Mo CK, Liu R, Herndon JM, Davies SR, Liu D, Ding X, Evrard YA, Welm BE, Lum D, Koh MY, Welm AL, Chuang JH, Moscow JA, Meric-Bernstam F, Govindan R, Li S, Hsieh J, Fields RC, Lim KH, Ma CX, Zhang H, Ding L, Chen F. Combining the Tyrosine Kinase Inhibitor Cabozantinib and the mTORC1/2 Inhibitor Sapanisertib Blocks ERK Pathway Activity and Suppresses Tumor Growth in Renal Cell Carcinoma. Cancer Res 2023; 83:4161-4178. [PMID: 38098449 PMCID: PMC10722140 DOI: 10.1158/0008-5472.can-23-0604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/17/2023] [Accepted: 09/25/2023] [Indexed: 12/18/2023]
Abstract
Current treatment approaches for renal cell carcinoma (RCC) face challenges in achieving durable tumor responses due to tumor heterogeneity and drug resistance. Combination therapies that leverage tumor molecular profiles could offer an avenue for enhancing treatment efficacy and addressing the limitations of current therapies. To identify effective strategies for treating RCC, we selected ten drugs guided by tumor biology to test in six RCC patient-derived xenograft (PDX) models. The multitargeted tyrosine kinase inhibitor (TKI) cabozantinib and mTORC1/2 inhibitor sapanisertib emerged as the most effective drugs, particularly when combined. The combination demonstrated favorable tolerability and inhibited tumor growth or induced tumor regression in all models, including two from patients who experienced treatment failure with FDA-approved TKI and immunotherapy combinations. In cabozantinib-treated samples, imaging analysis revealed a significant reduction in vascular density, and single-nucleus RNA sequencing (snRNA-seq) analysis indicated a decreased proportion of endothelial cells in the tumors. SnRNA-seq data further identified a tumor subpopulation enriched with cell-cycle activity that exhibited heightened sensitivity to the cabozantinib and sapanisertib combination. Conversely, activation of the epithelial-mesenchymal transition pathway, detected at the protein level, was associated with drug resistance in residual tumors following combination treatment. The combination effectively restrained ERK phosphorylation and reduced expression of ERK downstream transcription factors and their target genes implicated in cell-cycle control and apoptosis. This study highlights the potential of the cabozantinib plus sapanisertib combination as a promising treatment approach for patients with RCC, particularly those whose tumors progressed on immune checkpoint inhibitors and other TKIs. SIGNIFICANCE The molecular-guided therapeutic strategy of combining cabozantinib and sapanisertib restrains ERK activity to effectively suppress growth of renal cell carcinomas, including those unresponsive to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yige Wu
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Xiaolu Yang
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Kazuhito Sato
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Preet Lal
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Yuefan Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Andrew T. Shinkle
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Michael C. Wendl
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
- McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Tina M. Primeau
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Yanyan Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Alanna Gould
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Hua Sun
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Jacqueline L. Mudd
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Jeremy Hoog
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - R. Jay Mashl
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Matthew A. Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Chia-Kuei Mo
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Ruiyang Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - John M. Herndon
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Sherri R. Davies
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Di Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Xi Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Yvonne A. Evrard
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Bryan E. Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - David Lum
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Mei Yee Koh
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Alana L. Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jeffrey H. Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Jeffrey A. Moscow
- Investigational Drug Branch, National Cancer Institute, Bethesda, Maryland
| | | | - Ramaswamy Govindan
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Shunqiang Li
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - James Hsieh
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Ryan C. Fields
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Kian-Huat Lim
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Cynthia X. Ma
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
40
|
Jing X, Han C, Li Q, Li F, Zhang J, Jiang Q, Zhao F, Guo C, Chen J, Jiang T, Wang X, Chen Y, Huang C. IGF2BP3-EGFR-AKT axis promotes breast cancer MDA-MB-231 cell growth. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119542. [PMID: 37474008 DOI: 10.1016/j.bbamcr.2023.119542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) is an emerging prognostic indicator, and its elevated expression correlates with malignancy in a broad spectrum of cancers. However, its regulatory networks have not yet been reported. In this study, we identified the regulatory targets of IGF2BP3 in breast cancer MDA-MB-231 cells using RNA immunoprecipitation sequencing (RIP-seq) and high-throughput RNA-sequencing (RNA-seq). We discovered that these targets were enriched in the inflammatory response, endoplasmic reticulum stress, cell cycle, and cancer-related pathways, providing a new perspective for better understanding the functional mechanisms of IGF2BP3. Moreover, we identified that the epidermal growth factor receptor (EGFR), a downstream target, is regulated by IGF2BP3. IGF2BP3 binds to and protects EGFR mRNA from degradation and facilitates cell proliferation via the EGFR/AKT pathway in MDA-MB-231 cells. In addition, IGF2BP3 expression was robust and could not be altered by stimulation with EGF and anti-EGFR siRNA or EGFR signaling pathway inhibitors (gefitinib, LY294002 and SL-327). These results demonstrate that IGF2BP3, as a stubborn oncogene, promotes triple-negative breast cancer MDA-MB-231 cell proliferation by strengthening the role of the EGFR-AKT axis.
Collapse
Affiliation(s)
- Xintao Jing
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Cong Han
- Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Qian Li
- Department of Gastroenterology, The first Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi, China
| | - Fang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Jinyuan Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Qiuyu Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Fei Zhao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Chen Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Jinfeng Chen
- Target Discovery Institute, NDM Research Building, Oxford Ludwig Institute of Cancer Research, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Ting Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Xiaofei Wang
- Biomedical Experimental Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yanke Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China.
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
41
|
Huang S, Liu L, Xu Z, Liu X, Wu A, Zhang X, Li Z, Li S, Li Y, Yuan J, Cheng S, Li H, Dong J. Exosomal miR-6733-5p mediates cross-talk between glioblastoma stem cells and macrophages and promotes glioblastoma multiform progression synergistically. CNS Neurosci Ther 2023; 29:3756-3773. [PMID: 37309294 PMCID: PMC10651992 DOI: 10.1111/cns.14296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
AIM Exosomal miRNAs derived from glioblastoma stem cells (GSCs) are important mediators of immunosuppressive microenvironment formation in glioblastoma multiform (GBM), especially in M2-like polarization of tumor-associated macrophages (TAMs). However, the exact mechanisms by which GSCs-derived exosomes (GSCs-exo) facilitate the remodeling of the immunosuppressive microenvironment of GBM have not been elucidated. METHODS Transmission electron microscopy (TME) and nanoparticle tracking analysis (NTA) were applied to verify the existence of GSCs-derived exosomes. Sphere formation assays, flow cytometry, and tumor xenograft transplantation assays were performed to identify the exact roles of exosomal miR-6733-5p. Then, the mechanisms of miR-6733-5p and its downstream target gene regulating crosstalk between GSCs cells and M2 macrophages were further investigated. RESULTS GSCs-derived exosomal miR-6733-5p induce macrophage M2 polarization of TAMs by positively targeting IGF2BP3 to activate the AKT signaling pathway, which further facilitates the self-renewal and stemness of GSCs. CONCLUSION GSCs secrete miR-6733-5p-rich exosomes to induce M2-like polarization of macrophages, as well as enhance GSCs stemness and promote malignant behaviors of GBM through IGF2BP3 activated AKT pathway. Targeting GSCs exosomal miR-6733-5p may provide a potential new strategy against GBM.
Collapse
Affiliation(s)
- Shilu Huang
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Liang Liu
- Department of NeurosurgeryAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
| | - Zhipeng Xu
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xinglei Liu
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Anyi Wu
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiaopei Zhang
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zengyang Li
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Suwen Li
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yongdong Li
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jiaqi Yuan
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Shan Cheng
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Haoran Li
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jun Dong
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
42
|
Yang R, Wan J, Ma L, Zhou F, Yang Z, Li Z, Zhang M, Ming L. TMEM44-AS1 promotes esophageal squamous cell carcinoma progression by regulating the IGF2BP2-GPX4 axis in modulating ferroptosis. Cell Death Discov 2023; 9:431. [PMID: 38040698 PMCID: PMC10692126 DOI: 10.1038/s41420-023-01727-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
The long non-coding RNA (lncRNA) TMEM44-AS1 is a novel lncRNA whose pro-carcinogenic role in gastric cancer and glioma has been demonstrated. However, its function in esophageal squamous cell carcinoma (ESCC) is unknown. In this study, we identified that TMEM44-AS1 was highly expressed in ESCC tissues and cells. Functionally, TMEM44-AS1 promoted ESCC cell proliferation, invasion and metastasis in vitro and in vivo. TMEM44-AS1 inhibited ferroptosis in ESCC cells, and ferroptosis levels were significantly increased after knockdown of TMEM44-AS1. Mechanistically, TMEM44-AS1 was positively correlated with GPX4 expression, and TMEM44-AS1 could bind to the RNA-binding protein IGF2BP2 to enhance the stability of GPX4 mRNA, thereby affecting ferroptosis and regulating the malignant progression of ESCC. In summary, this study reveals the TMEM44-AS1-IGF2BP2-GPX4 axis could influence cancer progression in ESCC. TMEM44-AS1 can be used as a potential treatment target against ESCC.
Collapse
Affiliation(s)
- Ruotong Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
| | - Fuyou Zhou
- Thoracic Department, Anyang Tumor Hospital, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, China
| | - Zhengwu Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
| | - Zhuofang Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
| | - Mingyuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan province, Zhengzhou, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, China.
| |
Collapse
|
43
|
Li K, Guo J, Ming Y, Chen S, Zhang T, Ma H, Fu X, Wang J, Liu W, Peng Y. A circular RNA activated by TGFβ promotes tumor metastasis through enhancing IGF2BP3-mediated PDPN mRNA stability. Nat Commun 2023; 14:6876. [PMID: 37898647 PMCID: PMC10613289 DOI: 10.1038/s41467-023-42571-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
Metastasis is the leading cause of cancer-related death, where TGFβ-induced epithelial-mesenchymal transition (EMT) process confers on cancer cells increased metastatic potential. However, the involvement of circRNAs in this process is still obscure. Here, we identify a TGFβ-induced circRNA called circITGB6 as an indispensable factor during the TGFβ-mediated EMT process. circITGB6 is significantly upregulated in metastatic cancer samples and its higher abundance is closely correlated to worse prognosis of colorectal cancer (CRC) patients. Through gain- and loss-of-function assays, circITGB6 is found to potently promote EMT process and tumor metastasis in various models in vitro and in vivo. Mechanistically, circITGB6 enhances the mRNA stability of PDPN, an EMT-promoting gene, by directly interacting with IGF2BP3. Notably, interfering circITGB6 with PEI-coated specific siRNA effectively represses liver metastasis. Therefore, our study reveals the function of a TGFβ-regulated circRNA in tumor metastasis and suggests that targeting circITGB6 is a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Ke Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiawei Guo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Chen
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Zhang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hulin Ma
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Fu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Wang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenrong Liu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, China.
| |
Collapse
|
44
|
Klingbeil KD, Tang JP, Graham DS, Lofftus SY, Jaiswal AK, Lin TL, Frias C, Chen LY, Nakasaki M, Dry SM, Crompton JG, Eilber FC, Rao DS, Kalbasi A, Kadera BE. IGF2BP3 as a Prognostic Biomarker in Well-Differentiated/Dedifferentiated Liposarcoma. Cancers (Basel) 2023; 15:4489. [PMID: 37760460 PMCID: PMC10526143 DOI: 10.3390/cancers15184489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Although IGF2BP3 has been implicated in tumorigenesis and poor outcomes in multiple cancers, its role in soft-tissue sarcoma (STS) remains unknown. Preliminary data have suggested an association with IGF2BP3 expression among patients with well-differentiated/dedifferentiated liposarcoma (WD/DD LPS), a disease where molecular risk stratification is lacking. METHODS We examined the survival associations of IGF2BP3 via univariate and multivariate Cox regression in three unique datasets: (1) the Cancer Genome Atlas (TCGA), (2) an in-house gene microarray, and (3) an in-house tissue microarray (TMA). A fourth dataset, representing an independent in-house TMA, was used for validation. RESULTS Within the TCGA dataset, IGF2BP3 expression was a poor prognostic factor uniquely in DD LPS (OS 1.6 vs. 5.0 years, p = 0.009). Within the microarray dataset, IGF2BP3 expression in WD/DD LPS was associated with worse survival (OS 7.7 vs. 21.5 years, p = 0.02). IGF2BP3 protein expression also portended worse survival in WD/DD LPS (OS 3.7 vs. 13.8 years, p < 0.001), which was confirmed in our validation cohort (OS 2.7 vs. 14.9 years, p < 0.001). In the multivariate model, IGF2BP3 was an independent risk factor for OS, (HR 2.55, p = 0.034). CONCLUSION IGF2BP3 is highly expressed in a subset of WD/DD LPS. Across independent datasets, IGF2BP3 is also a biomarker of disease progression and worse survival.
Collapse
Affiliation(s)
- Kyle D. Klingbeil
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jack Pengfei Tang
- University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Danielle S. Graham
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Serena Y. Lofftus
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
| | - Amit Kumar Jaiswal
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Tasha L. Lin
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Chris Frias
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
| | - Lucia Y. Chen
- Department of Medicine, Statistics Core, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Manando Nakasaki
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Sarah M. Dry
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Joseph G. Crompton
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fritz C. Eilber
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dinesh S. Rao
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Brian E. Kadera
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
45
|
Hu X, Wu J, Feng Y, Ma H, Zhang E, Zhang C, Sun Q, Wang T, Ge Y, Zong D, Chen W, He X. METTL3-stabilized super enhancers-lncRNA SUCLG2-AS1 mediates the formation of a long-range chromatin loop between enhancers and promoters of SOX2 in metastasis and radiosensitivity of nasopharyngeal carcinoma. Clin Transl Med 2023; 13:e1361. [PMID: 37658588 PMCID: PMC10474317 DOI: 10.1002/ctm2.1361] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Super enhancers (SE) play pivotal roles in cell identity and diseases occur including tumorigenesis. The depletion of SE-associated lncRNA transcripts, also known as super-lncRNA, causes the activity of SE to be dysregulated. METHODS We screened and identified an elevated metastasis-associated SE-lncRNA SUCLG2-AS1 in nasopharyngeal carcinoma (NPC) using RNA-sequencing, real-time quantitative polymerase chain reaction (RT-qPCR) and bioinformatics. Western blotting, RT-qPCR, methylated RNA immunoprecipitation (MeRIP), RNA immunoprecipitation, chromatin immunoprecipitation, RNA pull-down and 3C (chromosome conformation capture assays) were used for mechanistic studies. RESULTS SUCLG2-AS1 was correlated with a poor prognosis. SUCLG2-AS1 promotes NPC cell invasion and metastasis while repressing apoptosis and radiosensitivity in vitro and in vivo. Mechanistically, high SUCLG2-AS1 expression occurred in an m6A-dependent manner. SUCLG2-AS1 was found to be located in the SE region of SOX2, and it regulated the expression of SOX2 via long-range chromatin loop formation, which via mediating CTCF (transcription factor) occupied the SE and promoter region of SOX2, thus regulating the metastasis and radiosensitivity of NPC. CONCLUSIONS Taken together, our data suggest that SUCLG2-AS1 may serve as a novel intervention target for the clinical treatment of NPC.
Collapse
Affiliation(s)
- Xinyu Hu
- Department of RadiotherapyThe Afliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer ResearchNanjingChina
| | - Jianfeng Wu
- Department of RadiotherapyThe Afliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer ResearchNanjingChina
| | - Yong Feng
- Department of RadiotherapyThe Afliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer ResearchNanjingChina
| | - Hongxia Ma
- Department of Epidemiology and BiostatisticsInternational Joint Research Center On Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
| | - Erbao Zhang
- Department of Epidemiology and BiostatisticsInternational Joint Research Center On Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
| | - Chang Zhang
- Department of Epidemiology and BiostatisticsInternational Joint Research Center On Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
| | - Qi Sun
- Department of Epidemiology and BiostatisticsInternational Joint Research Center On Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical UniversityNanjingChina
| | - Tingting Wang
- Department of RadiotherapyThe Afliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer ResearchNanjingChina
| | - Yizhi Ge
- Department of RadiotherapyThe Afliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer ResearchNanjingChina
| | - Dan Zong
- Department of RadiotherapyThe Afliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer ResearchNanjingChina
| | - Wei Chen
- Department of RadiotherapyThe Afliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer ResearchNanjingChina
| | - Xia He
- Department of RadiotherapyThe Afliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer ResearchNanjingChina
| |
Collapse
|
46
|
Wang JJ, Chen DX, Zhang Y, Xu X, Cai Y, Wei WQ, Hao JJ, Wang MR. Elevated expression of the RNA-binding protein IGF2BP1 enhances the mRNA stability of INHBA to promote the invasion and migration of esophageal squamous cancer cells. Exp Hematol Oncol 2023; 12:75. [PMID: 37644505 PMCID: PMC10466848 DOI: 10.1186/s40164-023-00429-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/19/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The mechanisms underlying the occurrence and development of esophageal squamous cell carcinoma (ESCC) remains to be elucidated. The present study aims to investigate the roles and implications of IGF2BP1 overexpression in ESCC. METHODS IGF2BP1 protein expression in ESCC samples was assessed by immunohistochemistry (IHC), and the mRNA abundance of IGF2BP1 and INHBA was analyzed with TCGA datasets and by RNA in situ hybridization (RISH). The methylation level of the IGF2BP1 promoter region was detected by methylation-specific PCR (MSP-PCR). Cell viability, migration, invasion and in vivo metastasis assays were performed to explore the roles of IGF2BP1 overexpression in ESCC. RNA immunoprecipitation sequencing (RIP-seq) and mass spectrometry were applied to identify the target RNAs and interacting proteins of IGF2BP1, respectively. RIP-PCR, RNA pulldown, immunofluorescence (IF), gene-specific m6A PCR and RNA stability assays were used to uncover the molecular mechanisms underlying the malignant phenotypes of ESCC cells caused by IGF2BP1 dysregulation. BTYNB, a small molecular inhibitor of IGF2BP1, was evaluated for its inhibitory effect on the malignant phenotypes of ESCC cells. RESULTS IGF2BP1 overexpression was detected in ESCC tissues and associated with the depth of tumor invasion. In addition, IGF2BP1 mRNA expression in ESCC cells was negatively correlated with the level of its promoter methylation. Knockdown of IGF2BP1 inhibited ESCC cell invasion and migration as well as tumor metastasis. Mechanistically, we observed that IGF2BP1 bound and stabilized INHBA mRNA and then resulted in higher protein expression of INHBA, leading to the activation of Smad2/3 signaling, thus promoting malignant phenotypes. The mRNA level of INHBA was upregulated in ESCC tissues as well. Furthermore, IGF2BP1 interacted with G3BP stress granule assembly factor 1 (G3BP1). Knockdown of G3BP1 also down-regulated the INHBA-Smad2/3 signaling. BTYNB abolished this activated signaling and significantly attenuated the malignant phenotypes of ESCC cells. CONCLUSIONS Elevated expression of IGF2BP1 is a frequent event in ESCC tissues and might be a candidate biomarker for the disease. IGF2BP1 overexpression promotes the invasion and migration of ESCC cells by activating the INHBA-Smad2/3 pathway, providing a potential therapeutic target for ESCC patients with high expression of IGF2BP1.
Collapse
Affiliation(s)
- Juan-Juan Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
- Stem cell Translational laboratory, Shanxi Technological Innovation Center for Clinical Diagnosis and Treatment of Immune and Rheumatic Diseases, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ding-Xiong Chen
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xin Xu
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Wen-Qiang Wei
- Department of Cancer Epidemiology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
47
|
Mao Y, Jiang X, Guo P, Ouyang Y, Chen X, Xia M, Wu L, Tang Z, Liang T, Li Y, He M. ZXDC enhances cervical cancer metastasis through IGF2BP3-mediated activation of RhoA/ ROCK signaling. iScience 2023; 26:107447. [PMID: 37599824 PMCID: PMC10433122 DOI: 10.1016/j.isci.2023.107447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/17/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Metastasis in cervical cancer (CC) has a significant negative impact on patient survival, highlighting the urgent need for investigation in this area. In this study, we identified significant overexpression of zinc finger, X-linked, duplicated family member C (ZXDC) in CC tissue with metastasis, which correlates with poor outcomes for CC patients. We observed that overexpression of ZXDC promotes, while silencing of ZXDC inhibits the metastasis of CC cells both in vitro and in vivo. Additionally, our research demonstrated that ZXDC activated RhoA/ROCK signaling pathway, leading to enhanced cytoskeleton remodeling in CC cells. Besides, we found that IGF2BP3 plays an essential role in the activation of ZXDC on the RhoA/ROCK signaling pathway by stabilizing RhoA mRNA. These findings reveal a mechanism whereby ZXDC promotes the cervical cancer metastasis by targeting IGF2BP3/RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Yifang Mao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xingyu Jiang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Peng Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Meng Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lixin Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zihao Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Tianyi Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Mian He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
48
|
Fang L, Huang H, Lv J, Chen Z, Lu C, Jiang T, Xu P, Li Y, Wang S, Li B, Li Z, Wang W, Xu Z. m5C-methylated lncRNA NR_033928 promotes gastric cancer proliferation by stabilizing GLS mRNA to promote glutamine metabolism reprogramming. Cell Death Dis 2023; 14:520. [PMID: 37582794 PMCID: PMC10427642 DOI: 10.1038/s41419-023-06049-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Abnormal 5-methylcytosine (m5C) methylation has been proved to be closely related to gastric carcinogenesis, progression, and prognosis. Dysregulated long noncoding RNAs (lncRNAs) participate in a variety of biological processes in cancer. However, to date, m5C-methylated lncRNAs are rarely researched in gastric cancer (GC). Here, we found that RNA cytosine-C(5)-methyltransferase (NSUN2) was upregulated in GC and high NSUN2 expression was associated with poor prognosis. NR_033928 was identified as an NSUN2-methylated and upregulated lncRNA in GC. Functionally, NR_033928 upregulated the expression of glutaminase (GLS) by interacting with IGF2BP3/HUR complex to promote GLS mRNA stability. Increased glutamine metabolite, α-KG, upregulated NR_033928 expression by enhancing its promoter 5-hydroxymethylcytosine (hm5C) demethylation. In conclusion, our results revealed that NSUN2-methylated NR_033928 promoted GC progression and might be a potential prognostic and therapeutic target for GC.
Collapse
Affiliation(s)
- Lang Fang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongxin Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zetian Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chen Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tianlu Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Penghui Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Sen Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 210029, Nanjing, Jiangsu Province, China.
| |
Collapse
|
49
|
Yang F, Ma Q, Huang B, Wang X, Pan X, Yu T, Ran L, Jiang S, Li H, Chen Y, Liu Y, Liang C, Ren J, Zhang Y, Wang S, Li W, Xiao B. CircNFATC3 promotes the proliferation of gastric cancer through binding to IGF2BP3 and restricting its ubiquitination to enhance CCND1 mRNA stability. J Transl Med 2023; 21:402. [PMID: 37340423 DOI: 10.1186/s12967-023-04235-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/28/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) is an RNA binding protein with multiple roles in regulation of gene expression at the post-transcriptional level and is implicated in tumorigenesis and progression of numerous cancers including gastric cancer (GC). Circular RNAs (circRNAs) are a diverse endogenous noncoding RNA population that have important regulatory roles in cancer. However, circRNAs that regulate the expression of IGF2BP3 in GC is largely unknown. METHODS CircRNAs that bound to IGF2BP3 were screened in GC cells using RNA immunoprecipitation and sequencing (RIP-seq). The identification and localization of circular nuclear factor of activated T cells 3 (circNFATC3) were identified using Sanger sequencing, RNase R assays, qRT-PCR, nuclear-cytoplasmic fractionation and RNA-FISH assays. CircNFATC3 expression in human GC tissues and adjacent normal tissues were measured by qRT-PCR and ISH. The biological role of circNFATC3 in GC was confirmed by in vivo and in vitro experiments. Furthermore, RIP, RNA-FISH/IF, IP and rescue experiments were performed to uncover interactions between circNFATC3, IGF2BP3 and cyclin D1 (CCND1). RESULTS We identified a GC-associated circRNA, circNFATC3, that interacted with IGF2BP3. CircNFATC3 was significantly overexpressed in GC tissues and was positively associated with tumor volume. Functionally, the proliferation of GC cells decreased significantly after circNFATC3 knockdown in vivo and in vitro. Mechanistically, circNFATC3 bound to IGF2BP3 in the cytoplasm, which enhanced the stability of IGF2BP3 by preventing ubiquitin E3 ligase TRIM25-mediated ubiquitination, thereby enhancing the regulatory axis of IGF2BP3-CCND1 and promoting CCND1 mRNA stability. CONCLUSIONS Our findings demonstrate that circNFATC3 promotes GC proliferation by stabilizing IGF2BP3 protein to enhance CCND1 mRNA stability. Therefore, circNFATC3 is a potential novel target for the treatment of GC.
Collapse
Affiliation(s)
- Feifei Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qiang Ma
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Bo Huang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaolin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaojuan Pan
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ting Yu
- Department of Clinical Laboratory, The 89th Hospital of The People's Liberation Army, Weifang, 261000, People's Republic of China
| | - Lingyu Ran
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Shan Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Haiping Li
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ye Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuying Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ce Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Junwu Ren
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuying Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shimin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wei Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China.
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
50
|
Zhu TY, Hong LL, Ling ZQ. Oncofetal protein IGF2BPs in human cancer: functions, mechanisms and therapeutic potential. Biomark Res 2023; 11:62. [PMID: 37280679 PMCID: PMC10245617 DOI: 10.1186/s40364-023-00499-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent and well-characterized internal chemical modification in eukaryotic RNA, influencing gene expression and phenotypic changes by controlling RNA fate. Insulin-like growth factor-2 mRNA-binding proteins (IGF2BPs) preferentially function as m6A effector proteins, promoting stability and translation of m6A-modified RNAs. IGF2BPs, particularly IGF2BP1 and IGF2BP3, are widely recognized as oncofetal proteins predominantly expressed in cancer rather than normal tissues, playing a critical role in tumor initiation and progression. Consequently, IGF2BPs hold potential for clinical applications and serve as a good choice for targeted treatment strategies. In this review, we discuss the functions and mechanisms of IGF2BPs as m6A readers and explore the therapeutic potential of targeting IGF2BPs in human cancer.
Collapse
Affiliation(s)
- Tian-Yu Zhu
- Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
- The Second School of Clinical Medicine, Wenzhou Medical University, No.109 Xueyuan West Road, Wenzhou, 325027 Zhejiang, China
- Jinhua People's Hospital, No.267 Danxi East Road, Jinhua, 321000 Zhejiang, China
| | - Lian-Lian Hong
- Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China.
- The Second School of Clinical Medicine, Wenzhou Medical University, No.109 Xueyuan West Road, Wenzhou, 325027 Zhejiang, China.
| |
Collapse
|