1
|
Yang L, Zhao X, Liu Y, Liao YX, Fang Y, Hou JT, Wang S. A Golgi apparatus-targeted ratiometric fluorescent probe for HOCl and its applications for anti-inflammatory evaluation of Dachengqi Decoction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:126026. [PMID: 40101643 DOI: 10.1016/j.saa.2025.126026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
Verifying the fluctuations of reactive oxidative species in the Golgi apparatus (GA) is crucial to investigate the pathology in inflammation. In this work, we present a fluorescent probe GA-PBC based on the phenothiazine-coumarin chromophore with a benzenesulfonamide unit as the GA target. GA-PBC manifests a red fluorescence peak at 620 nm, while it shifts to 510 nm upon reaction with HOCl, thus facilitating a ratiometric sensing manner. The probe shows high selectivity, superb sensitivity (limit of detection: 85.8 nM), rapid response (within seconds), and predominant accumulation in the GA. Intracellular imaging tests demonstrates the ability of GA-PBC to indicate the concentration changes of HOCl in live cells. Especially, it can be utilized to identify the active ingredients of Dachengqi Decoction (a kind of Traditional Chinese Medicine formula) in inflamed cells using HOCl in the GA as biomarker, suggesting that this probe is potentially useful for the evaluation of anti-oxidation efficacy of natural medicine.
Collapse
Affiliation(s)
- Li Yang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530008, China; Zhejiang Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yan Liu
- Zhejiang Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ye-Xin Liao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530008, China.
| | - Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ji-Ting Hou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Shan Wang
- Zhejiang Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
2
|
Niland S, Eble JA. Decoding the MMP14 integrin link: Key player in the secretome landscape. Matrix Biol 2025; 136:36-51. [PMID: 39828138 DOI: 10.1016/j.matbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Rapid progress has been made in the exciting field of secretome research in health and disease. The tumor secretome, which is a significant proportion of the tumor proteome, is secreted into the extracellular space to promote intercellular communication and thus tumor progression. Among the many molecules of the secretome, integrins and matrix metalloproteinase 14 (MMP14) stand out as the interplay of adhesion and proteolysis drives invasion. Integrins serve as mechanosensors that mediate the contact of cells with the scaffold of the extracellular matrix and are significantly involved in the precise positioning and activity control of the membrane-bound collagenase MMP14. As a secretome proteinase, MMP14 influences and modifies the secretome itself. While integrins and MT-MMPs are membrane bound, but can be released and are therefore border crossers between the cell surface and the secretome, the extracellular matrix is not constitutively cell-bound, but its binding to integrins and other cell receptors is a stringently regulated process. To understand the mutual interactions in detail, we first summarize the structure and function of MMP14 and how it is regulated at the enzymatic and cellular level. In particular, the mutual interactions between integrins and MMP14 include the proteolytic cleavage of integrins themselves by MMP14. We then review the biochemical, cell biological and physiological effects of MMP14 on the composition and associated functions in the tumor secretome when either bound to the cell membrane, or located on extracellular microvesicles, or as a proteolytically shed non-membrane-bound ectodomain. Novel methods of proteomics, including the analysis of extravesicular vesicles, and new methods for the quantification of MMP14 will provide new research and diagnostic tools. The proteolytic modification of the tumor secretome, especially by MMP14, may bring an additional aspect to tumor secretome studies and will have an impact on the diagnosis and most likely also on the therapy of cancer patients.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
3
|
Ye W, Meng X, Xu S. [Research progress on collagen secretion mechanisms in scarring]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2025; 54:266-278. [PMID: 40194913 DOI: 10.3724/zdxbyxb-2024-0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Scar formation is characterized by dynamic alterations in collagen secretion, which critically determine scar morphology and pathological progression. In fibroblasts, collagen secretion is initiated through the activation of cytokine- and integrin-mediated signaling pathways, which promote collagen gene transcription. The procollagen polypeptide α chains undergo extensive post-translational modifications, including hydroxylation and glycosylation, within the endoplasmic reticulum (ER), followed by folding and assembly into triple-helical procollagen. Subsequent intracellular trafficking involves the sequential transport of procollagen through the ER, Golgi apparatus, and plasma membrane, accompanied by further structural refinements prior to extracellular secretion. Once secreted, procollagen is enzymatically processed to form mature collagen fibrils, which drive scar tissue remodeling. Recent advances in elucidating regulation of collagen secretion have identified pivotal molecular targets, such as transforming growth factor-beta 1 (TGF-β1), prolyl 4-hydroxylase (P4H), heat shock protein 47 (HSP47), and transport and Golgi organization protein 1 (TANGO1), providing novel therapeutic strategies to mitigate pathological scar hyperplasia and improve regenerative outcomes. This review provides a comprehensive analysis of the molecular mechanisms governing collagen secretion during scar formation, with emphasis on signaling cascades, procollagen biosynthesis, intracellular transport dynamics, and post-translational modifications, thereby offering a framework for developing targeted anti-scar therapies.
Collapse
Affiliation(s)
- Wenkai Ye
- Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Xinan Meng
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, International Institutes of Medicine, Zhejiang University, Center for Membrane Receptors and Brain Medicine, International School of Medicine, Zhejiang University, Yiwu 322000, Zhejiang Province, China
| | - Suhong Xu
- Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
4
|
Roh JW, Choi HW, Gee HY. Guidelines for plasma membrane protein detection by surface biotinylation. Mol Cells 2025; 48:100174. [PMID: 39736456 PMCID: PMC11873658 DOI: 10.1016/j.mocell.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025] Open
Abstract
Plasma membrane proteins are crucial for signal transduction, trafficking, and cell-cell interactions, all of which are vital for cell survival. These proteins, including G-protein coupled receptors, ion channels, transporters, and receptors, are key drug targets due to their central role in receiving and amplifying cellular signals. However, the isolation and purification of plasma membrane proteins pose significant challenges because of their integration with phospholipid bilayers and the small fraction of these proteins present in the plasma membrane. Biotinylation, in combination with streptavidin beads, provides an effective method for surface protein analysis by specifically labeling surface proteins without penetrating the cell membrane, enabling precise isolation and analysis with minimal contamination. In this study, we describe a 1-step method for analyzing plasma membrane proteins that can be routinely implemented in many laboratories.
Collapse
Affiliation(s)
- Jae Won Roh
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Woo Choo Lee Institute for Precision Drug Development, Seoul 03722, Republic of Korea
| | - Hye Won Choi
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Woo Choo Lee Institute for Precision Drug Development, Seoul 03722, Republic of Korea.
| |
Collapse
|
5
|
Geng N, Yu Z, Zeng X, Chen Y, Sheng M, Xu D, Yan M, Yang M, Huang X. Pulse Activation of Retinoic Acid Receptor Enhances Hematopoietic Stem Cell Homing by Controlling CXCR4 Membrane Presentation. Stem Cell Rev Rep 2025; 21:68-79. [PMID: 39480614 DOI: 10.1007/s12015-024-10813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
The interplay between metabolic signaling and stem cell biology has gained increasing attention, though the underlying molecular mechanisms remain incompletely elucidated. In this study, we identify and characterize the role of adapalene (ADA), a retinoic acid receptor (RAR) agonist, in modulating the migration behavior of hematopoietic stem cells (HSCs). Our initial findings reveal that ADA treatment suppresses hematopoietic stem and progenitor cell (HSPC) mobilization induced by AMD3100 and G-CSF. Furthermore, we demonstrate that ADA treatment upregulates the surface expression of CXCR4 on HSPCs, resulting in enhanced chemotaxis towards CXCL12. Mechanistically, our study suggests that ADA enhances CXCR4 surface presentation without increasing CXCR4 mRNA levels, pointing towards a non-canonical role of RAR signaling in regulating intracellular trafficking of CXCR4. In vivo experiments show that ADA administration significantly enhances HSC homing efficiency. Additionally, competitive transplantation assays indicate a marked increase in donor chimerism following ADA treatment. These findings highlight the critical role of retinoic acid signaling in regulating HSC homing and suggest its potential for advancing novel HSC-based therapeutic strategies.
Collapse
Affiliation(s)
- Nanxi Geng
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ziqin Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xingchao Zeng
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuxuan Chen
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Mengyao Sheng
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Danhua Xu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Menghong Yan
- Pudong Medical Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min Yang
- Department of Neonatology, Yangtze River Delta Integration Demonstration Zone (QingPu), Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 201713, China.
| | - Xinxin Huang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Muroi M, Lee DS. Inhibitory Effects of Cryptotanshinone and Dihydrotanshinone I on Intracellular Trafficking of Viral Glycoproteins. J Microbiol Biotechnol 2024; 34:2457-2464. [PMID: 39726295 PMCID: PMC11729303 DOI: 10.4014/jmb.2409.09050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 12/28/2024]
Abstract
Antiviral agents that target the viral envelope surface glycoproteins can disrupt the interactions between the viral glycoproteins and host cell receptors, thereby preventing viral entry into host cells. However, the mechanisms underlying glycoprotein processing and cellular trafficking have not been fully elucidated. In this study, we aimed to investigate the mechanism of action of cryptotanshinone (CTN) and dihydrotanshinone I (DTN) as inhibitors of viral glycoprotein trafficking, by assessing their inhibitory action on syncytium formation and cytopathic effects. CTN and DTN were isolated and characterized from Salvia miltiorrhiza; they effectively inhibited syncytium formation in Newcastle disease virus-infected baby hamster kidney cells. Both compounds inhibited the transport of viral G-proteins to the cell surface, resulting in intracellular accumulation. These results suggest that CTN and DTN are potential glycoprotein trafficking inhibitors that function at the Golgi apparatus. Overall, our results indicate that CTN and DTN suppress intracellular glycosylation by competing as inhibitors of glycosylation trafficking.
Collapse
Affiliation(s)
- Makoto Muroi
- Antibiotics Laboratory, RIKEN (The Institute of Physical and Chemical Research) 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Dong-Sun Lee
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Republic of Korea
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju 63243, Republic of Korea
- Jeju Microbiome Research Center, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
7
|
Deng K, Luo R, Chen Y, Liu X, Xi Y, Usman M, Jiang X, Li Z, Zhang J. Electrical Stimulation Therapy - Dedicated to the Perfect Plastic Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409884. [PMID: 39680745 DOI: 10.1002/advs.202409884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Tissue repair and reconstruction are a clinical difficulty. Bioelectricity has been identified as a critical factor in supporting tissue and cell viability during the repair process, presenting substantial potential for clinical application. This review delves into various sources of electrical stimulation and identifies appropriate electrode materials for clinical use. It also highlights the biological mechanisms of electrical stimulation at both the subcellular and cellular levels, elucidating how these interactions facilitate the repair and regeneration processes across different organs. Moreover, specific electrode materials and stimulation sources are outlined, detailing their impact on cellular activity. The future development trends are projected from two perspectives: the optimization of equipment performance and the fulfillment of clinical demands, focusing on the feasibility, safety, and cost-effectiveness of technologies.
Collapse
Affiliation(s)
- Kexin Deng
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ruizeng Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaoqiang Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanyin Xi
- A Breast Disease Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Muhammad Usman
- Department of Plastic Surgery and Burn, Central Hospital Affiliated with Chongqing University of Technology, Chongqing, 400054, P.R. China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhou Li
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
8
|
Pankiv S, Dahl AK, Aas A, Andersen RL, Brech A, Holland P, Singh S, Bindesbøll C, Simonsen A. BEACH domain proteins function as cargo-sorting adaptors in secretory and endocytic pathways. J Cell Biol 2024; 223:e202408173. [PMID: 39514288 PMCID: PMC11554844 DOI: 10.1083/jcb.202408173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
We identify BEACH domain-containing proteins (BDCPs) as novel membrane coat proteins involved in the sorting of transmembrane proteins (TMPs) on the trans-Golgi network and tubular sorting endosomes. The seven typical mammalian BDCPs share a predicted alpha-solenoid-beta propeller structure, suggesting they have a protocoatomer origin and function. We map the subcellular localization of seven BDCPs based on their dynamic colocalization with RAB and ARF small GTPases and identify five typical BDCPs on subdomains of dynamic tubular-vesicular compartments on the intersection of endocytic recycling and post-Golgi secretory pathways. We demonstrate that BDCPs interact directly with the cytosolic tails of selected TMPs and identify a subset of TMPs, whose trafficking to the plasma membrane is affected in cells lacking BDCP. We propose that the competitive binding of BDCPs and clathrin coat adaptors to the cytosolic tails of TMPs, followed by their clustering to distinct subdomains of secretory/recycling tubules function as a mechanism for sorting of TMPs in pleomorphic tubular-vesicular compartments that lack a clathrin coat.
Collapse
Affiliation(s)
- Serhiy Pankiv
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anette Kathinka Dahl
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Aleksander Aas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rosa Linn Andersen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Petter Holland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sakshi Singh
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Christian Bindesbøll
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Pereira C, Gershlick DC. BEACH domain proteins in membrane trafficking and disease. J Cell Biol 2024; 223:e202410147. [PMID: 39526996 PMCID: PMC11554752 DOI: 10.1083/jcb.202410147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Two recent papers by Szentgyörgyi et al. (http://doi.org/10.1083/jcb.202401167) and Pankiv et al. (http://doi.org/10.1083/jcb.202408173) provide new insights into the roles of BEACH domain proteins in membrane trafficking and cellular homeostasis. They explore which membranes they are recruited to, how they are recruited, and the potential coat-like functions of these proteins.
Collapse
Affiliation(s)
- Conceição Pereira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - David C. Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Stockhammer A, Adarska P, Natalia V, Heuhsen A, Klemt A, Bregu G, Harel S, Rodilla-Ramirez C, Spalt C, Özsoy E, Leupold P, Grindel A, Fox E, Mejedo JO, Zehtabian A, Ewers H, Puchkov D, Haucke V, Bottanelli F. ARF1 compartments direct cargo flow via maturation into recycling endosomes. Nat Cell Biol 2024; 26:1845-1859. [PMID: 39367144 PMCID: PMC11567898 DOI: 10.1038/s41556-024-01518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Cellular membrane homoeostasis is maintained via a tightly regulated membrane and cargo flow between organelles of the endocytic and secretory pathways. Adaptor protein complexes (APs), which are recruited to membranes by the small GTPase ARF1, facilitate cargo selection and incorporation into trafficking intermediates. According to the classical model, small vesicles would facilitate bi-directional long-range transport between the Golgi, endosomes and plasma membrane. Here we revisit the intracellular organization of the vesicular transport machinery using a combination of CRISPR-Cas9 gene editing, live-cell high temporal (fast confocal) or spatial (stimulated emission depletion) microscopy as well as correlative light and electron microscopy. We characterize tubulo-vesicular ARF1 compartments that harbour clathrin and different APs. Our findings reveal two functionally different classes of ARF1 compartments, each decorated by a different combination of APs. Perinuclear ARF1 compartments facilitate Golgi export of secretory cargo, while peripheral ARF1 compartments are involved in endocytic recycling downstream of early endosomes. Contrary to the classical model of long-range vesicle shuttling, we observe that ARF1 compartments shed ARF1 and mature into recycling endosomes. This maturation process is impaired in the absence of AP-1 and results in trafficking defects. Collectively, these data highlight a crucial role for ARF1 compartments in post-Golgi sorting.
Collapse
Affiliation(s)
| | - Petia Adarska
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Vini Natalia
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anja Heuhsen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Antonia Klemt
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Gresy Bregu
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Shelly Harel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Carissa Spalt
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ece Özsoy
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Paula Leupold
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Alica Grindel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Eleanor Fox
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Joy Orezimena Mejedo
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Amin Zehtabian
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Helge Ewers
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Dmytro Puchkov
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Francesca Bottanelli
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
11
|
Bergeman MH, Velarde K, Hargis HL, Glenn HL, Hogue IB. The Rab6 post-Golgi secretory pathway contributes to herpes simplex virus 1 (HSV-1) egress. J Virol 2024; 98:e0059924. [PMID: 39136459 PMCID: PMC11406995 DOI: 10.1128/jvi.00599-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Herpes simplex virus 1 (HSV-1) is an alpha herpesvirus that infects a majority of the world population. The mechanisms and cellular host factors involved in the intracellular transport and exocytosis of HSV-1 particles are not fully understood. To elucidate these late steps in the replication cycle, we developed a live-cell fluorescence microscopy assay of HSV-1 virion intracellular trafficking and exocytosis. This method allows us to track individual virus particles and identify the precise moment and location of particle exocytosis using a pH-sensitive reporter. We show that HSV-1 uses the host cell's post-Golgi secretory pathway during egress. The small GTPase, Rab6, binds to nascent secretory vesicles at the trans-Golgi network and plays important, but non-essential, roles in vesicle traffic and exocytosis at the plasma membrane, therefore making it a useful marker of the Golgi and post-Golgi secretory pathway. We show that HSV-1 particles colocalize with Rab6a in the region of the Golgi, cotraffic with Rab6a to the cell periphery, and undergo exocytosis from Rab6a vesicles. Consistent with previous reports, we find that HSV-1 particles accumulate at preferential egress sites in infected cells. The secretory pathway mediates this preferential/polarized egress, since Rab6a vesicles accumulate near the plasma membrane similarly in uninfected cells. These data suggest that, following particle envelopment, HSV-1 egress follows a pre-existing cellular secretory pathway to exit infected cells rather than novel, virus-induced mechanisms. IMPORTANCE Herpes simplex virus 1 (HSV-1) infects a majority of people. It establishes a life-long latent infection and occasionally reactivates, typically causing characteristic oral or genital lesions. Rarely in healthy natural hosts, but more commonly in zoonotic infections and in elderly, newborn, or immunocompromised patients, HSV-1 can cause severe herpes encephalitis. The precise cellular mechanisms used by HSV-1 remain an important area of research. In particular, the egress pathways that newly assembled virus particles use to exit from infected cells are unclear. In this study, we used fluorescence microscopy to visualize individual virus particles exiting from cells and found that HSV-1 particles use the pre-existing cellular secretory pathway.
Collapse
Affiliation(s)
- Melissa H Bergeman
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kimberly Velarde
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Hailee L Hargis
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Honor L Glenn
- Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ian B Hogue
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
12
|
Hodgson JJ, Chen RY, Blissard GW, Buchon N. Viral and cellular determinants of polarized trafficking of viral envelope proteins from insect-specific and insect-vectored viruses in insect midgut and salivary gland cells. J Virol 2024; 98:e0054024. [PMID: 39162433 PMCID: PMC11406959 DOI: 10.1128/jvi.00540-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Systemic viral infection of insects typically begins with the primary infection of midgut epithelial cells (enterocytes) and subsequent transit of the progeny virus in an apical-to-basal orientation into the hemocoel. For insect-vectored viruses, an oppositely oriented process (basal-to-apical transit) occurs upon secondary infection of salivary glands and is necessary for virus transmission to non-insect hosts. To examine this inversely oriented virus transit in these polarized tissues, we assessed the intracellular trafficking of two model viral envelope proteins (baculovirus GP64 and vesicular stomatitis virus G) in the midgut and salivary gland cells of the model insect, Drosophila melanogaster. Using fly lines that inducibly express either GP64 or VSV G, we found that each protein, expressed alone, was trafficked basally in midgut enterocytes. In salivary gland cells, VSV G was trafficked apically in most but not all cells, whereas GP64 was consistently trafficked basally. We demonstrated that a YxxØ motif present in both proteins was critical for basal trafficking in midgut enterocytes but dispensable for trafficking in salivary gland cells. Using RNAi, we found that clathrin adaptor protein complexes AP-1 and AP-3, as well as seven Rab GTPases, were involved in polarized VSV G trafficking in midgut enterocytes. Our results indicate that these viral envelope proteins encode the requisite information and require no other viral factors for appropriately polarized trafficking. In addition, they exploit tissue-specific differences in protein trafficking pathways to facilitate virus egress in the appropriate orientation for establishing systemic infections and vectoring infection to other hosts. IMPORTANCE Viruses that use insects as hosts must navigate specific routes through different insect tissues to complete their life cycles. The routes may differ substantially depending on the life cycle of the virus. Both insect pathogenic viruses and insect-vectored viruses must navigate through the polarized cells of the midgut epithelium to establish a systemic infection. In addition, insect-vectored viruses must also navigate through the polarized salivary gland epithelium for transmission. Thus, insect-vectored viruses appear to traffic in opposite directions in these two tissues. In this study, we asked whether two viral envelope proteins (VSV G and baculovirus GP64) alone encode the signals necessary for the polarized trafficking associated with their respective life cycles. Using Drosophila as a model to examine tissue-specific polarized trafficking of these viral envelope proteins, we identified one of the virus-encoded signals and several host proteins associated with regulating the polarized trafficking in the midgut epithelium.
Collapse
Affiliation(s)
- Jeffrey J. Hodgson
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
- Boyce Thompson Institute at Cornell University, Ithaca, New York, USA
| | - Robin Y. Chen
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| | - Gary W. Blissard
- Boyce Thompson Institute at Cornell University, Ithaca, New York, USA
| | - Nicolas Buchon
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| |
Collapse
|
13
|
Néel E, Chiritoiu-Butnaru M, Fargues W, Denus M, Colladant M, Filaquier A, Stewart SE, Lehmann S, Zurzolo C, Rubinsztein DC, Marin P, Parmentier ML, Villeneuve J. The endolysosomal system in conventional and unconventional protein secretion. J Cell Biol 2024; 223:e202404152. [PMID: 39133205 PMCID: PMC11318669 DOI: 10.1083/jcb.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Most secreted proteins are transported through the "conventional" endoplasmic reticulum-Golgi apparatus exocytic route for their delivery to the cell surface and release into the extracellular space. Nonetheless, formative discoveries have underscored the existence of alternative or "unconventional" secretory routes, which play a crucial role in exporting a diverse array of cytosolic proteins outside the cell in response to intrinsic demands, external cues, and environmental changes. In this context, lysosomes emerge as dynamic organelles positioned at the crossroads of multiple intracellular trafficking pathways, endowed with the capacity to fuse with the plasma membrane and recognized for their key role in both conventional and unconventional protein secretion. The recent recognition of lysosomal transport and exocytosis in the unconventional secretion of cargo proteins provides new and promising insights into our understanding of numerous physiological processes.
Collapse
Affiliation(s)
- Eloïse Néel
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | | | - William Fargues
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Morgane Denus
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Maëlle Colladant
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Aurore Filaquier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Sarah E Stewart
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Sylvain Lehmann
- Laboratoire de Biochimie-Protéomique Clinique-Plateforme de Protéomique Clinique, Université de Montpellier, Institute for Regenerative Medicine and Biotherapy Centre Hospitalier Universitaire de Montpellier, Institute for Neurosciences of Montpellier INSERM , Montpellier, France
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogenèse, Institut Pasteur, UMR3691 CNRS , Paris, France
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute , Cambridge, UK
| | - Philippe Marin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Marie-Laure Parmentier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Julien Villeneuve
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| |
Collapse
|
14
|
Shah N, Kasture AS, Fischer FP, Sitte HH, Hummel T, Sucic S. A transporter's doom or destiny: SLC6A1 in health and disease, novel molecular targets and emerging therapeutic prospects. Front Mol Neurosci 2024; 17:1466694. [PMID: 39268250 PMCID: PMC11390516 DOI: 10.3389/fnmol.2024.1466694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
As the first member of the solute carrier 6 (SLC6) protein family, the γ-aminobutyric acid (GABA) transporter 1 (GAT1, SLC6A1), plays a pivotal role in the uptake of GABA from the synaptic cleft into neurons and astrocytes. This process facilitates the subsequent storage of GABA in presynaptic vesicles. The human SLC6A1 gene is highly susceptible to missense mutations, leading to severe clinical outcomes, such as epilepsy, in the afflicted patients. The molecular mechanisms of SLC6A1-associated disorders are discerned to some degree; many SLC6A1 mutations are now known to impair protein folding, and consequently fail to reach the plasma membrane. Inherently, once inside the endoplasmic reticulum (ER), GAT1 abides by a complex cascade of events that enable efficient intracellular trafficking. This involves association with specialized molecular chaperones responsible for steering the protein folding process, oligomerization, sorting through the Golgi apparatus, and ultimately delivery to the cell surface. The entire process is subject to stringent quality control mechanisms at multiple checkpoints. While the majority of the existing loss-of-function SLC6A1 variants interfere with folding and membrane targeting, certain mutants retain abundant surface expression. In either scenario, suppressed GAT1 activity disrupts GABAergic neurotransmission, preceding the disease manifestation in individuals harboring these mutations. The nervous system is enthralling and calls for systematic, groundbreaking research efforts to dissect the precise molecular factors associated with the onset of complex neurological disorders, and uncover additional non-canonical therapeutic targets. Recent research has given hope for some of the misfolded SLC6A1 variants, which can be salvaged by small molecules, i.e., chemical and pharmacological chaperones, acting on multiple upstream targets in the secretory pathway. We here highlight the significance of pharmacochaperoning as a therapeutic strategy for the treatment of SLC6A1-related disorders.
Collapse
Affiliation(s)
- Nikita Shah
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ameya S. Kasture
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Florian P. Fischer
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
| | - Harald H. Sitte
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
- Center for Addiction Research and Science-AddRess, Medical University of Vienna, Vienna, Austria
| | - Thomas Hummel
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Baird HJM, Shun-Shion AS, Mendes de Oliveira E, Stalder D, Liang L, Eden J, Chambers JE, Farooqi IS, Gershlick DC, Fazakerley DJ. A quantitative pipeline to assess secretion of human leptin coding variants reveals mechanisms underlying leptin deficiencies. J Biol Chem 2024; 300:107562. [PMID: 39002670 PMCID: PMC11366920 DOI: 10.1016/j.jbc.2024.107562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
The hormone leptin, primarily secreted by adipocytes, plays a crucial role in regulating whole-body energy homeostasis. Homozygous loss-of-function mutations in the leptin gene (LEP) cause hyperphagia and severe obesity, primarily through alterations in leptin's affinity for its receptor or changes in serum leptin concentrations. Although serum concentrations are influenced by various factors (e.g., gene expression, protein synthesis, stability in the serum), proper delivery of leptin from its site of synthesis in the endoplasmic reticulum via the secretory pathway to the extracellular serum is a critical step. However, the regulatory mechanisms and specific machinery involved in this trafficking route, particularly in the context of human LEP mutations, remain largely unexplored. We have employed the Retention Using Selective Hooks system to elucidate the secretory pathway of leptin. We have refined this system into a medium-throughput assay for examining the pathophysiology of a range of obesity-associated LEP variants. Our results reveal that leptin follows the default secretory pathway, with no additional regulatory steps identified prior to secretion. Through screening of leptin variants, we identified three mutations that lead to proteasomal degradation of leptin and one variant that significantly decreased leptin secretion, likely through aberrant disulfide bond formation. These observations have identified novel pathogenic effects of leptin variants, which can be informative for therapeutics and diagnostics. Finally, our novel quantitative screening platform can be adapted for other secreted proteins.
Collapse
Affiliation(s)
- Harry J M Baird
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Amber S Shun-Shion
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Edson Mendes de Oliveira
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Lu Liang
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Jessica Eden
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Joseph E Chambers
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - I Sadaf Farooqi
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
16
|
Modak A, Kilic Z, Chattrakun K, Terry DS, Kalathur RC, Blanchard SC. Single-Molecule Imaging of Integral Membrane Protein Dynamics and Function. Annu Rev Biophys 2024; 53:427-453. [PMID: 39013028 DOI: 10.1146/annurev-biophys-070323-024308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Integral membrane proteins (IMPs) play central roles in cellular physiology and represent the majority of known drug targets. Single-molecule fluorescence and fluorescence resonance energy transfer (FRET) methods have recently emerged as valuable tools for investigating structure-function relationships in IMPs. This review focuses on the practical foundations required for examining polytopic IMP function using single-molecule FRET (smFRET) and provides an overview of the technical and conceptual frameworks emerging from this area of investigation. In this context, we highlight the utility of smFRET methods to reveal transient conformational states critical to IMP function and the use of smFRET data to guide structural and drug mechanism-of-action investigations. We also identify frontiers where progress is likely to be paramount to advancing the field.
Collapse
Affiliation(s)
- Arnab Modak
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Kanokporn Chattrakun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Ravi C Kalathur
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
17
|
Pečenková T, Potocký M, Stegmann M. More than meets the eye: knowns and unknowns of the trafficking of small secreted proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3713-3730. [PMID: 38693754 DOI: 10.1093/jxb/erae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/01/2024] [Indexed: 05/03/2024]
Abstract
Small proteins represent a significant portion of the cargo transported through plant secretory pathways, playing crucial roles in developmental processes, fertilization, and responses to environmental stresses. Despite the importance of small secreted proteins, substantial knowledge gaps persist regarding the regulatory mechanisms governing their trafficking along the secretory pathway, and their ultimate localization or destination. To address these gaps, we conducted a comprehensive literature review, focusing particularly on trafficking and localization of Arabidopsis small secreted proteins with potential biochemical and/or signaling roles in the extracellular space, typically those within the size range of 101-200 amino acids. Our investigation reveals that while at least six members of the 21 mentioned families have a confirmed extracellular localization, eight exhibit intracellular localization, including cytoplasmic, nuclear, and chloroplastic locations, despite the presence of N-terminal signal peptides. Further investigation into the trafficking and secretion mechanisms of small protein cargo could not only deepen our understanding of plant cell biology and physiology but also provide a foundation for genetic manipulation strategies leading to more efficient plant cultivation.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Stegmann
- Technical University Munich, School of Life Sciences, Phytopathology, Emil-Ramann-Str. 2, 85354 Freising, Germany
| |
Collapse
|
18
|
Campelo F, Lillo JV, von Blume J. Protein condensates in the the secretory pathway: Unraveling biophysical interactions and function. Biophys J 2024; 123:1531-1541. [PMID: 38698644 PMCID: PMC11214006 DOI: 10.1016/j.bpj.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024] Open
Abstract
The emergence of phase separation phenomena among macromolecules has identified biomolecular condensates as fundamental cellular organizers. These condensates concentrate specific components and accelerate biochemical reactions without relying on membrane boundaries. Although extensive studies have revealed a large variety of nuclear and cytosolic membraneless organelles, we are witnessing a surge in the exploration of protein condensates associated with the membranes of the secretory pathway, such as the endoplasmic reticulum and the Golgi apparatus. This review focuses on protein condensates in the secretory pathway and discusses their impact on the organization and functions of this cellular process. Moreover, we explore the modes of condensate-membrane association and the biophysical and cellular consequences of protein condensate interactions with secretory pathway membranes.
Collapse
Affiliation(s)
- Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.
| | - Javier Vera Lillo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
19
|
Liu M, Duan Y, Dong J, Zhang K, Jin X, Gao M, Jia H, Chen J, Liu M, Wei M, Zhong X. Early signs of neurodegenerative diseases: Possible mechanisms and targets for Golgi stress. Biomed Pharmacother 2024; 175:116646. [PMID: 38692058 DOI: 10.1016/j.biopha.2024.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
The Golgi apparatus plays a crucial role in mediating the modification, transport, and sorting of intracellular proteins and lipids. The morphological changes occurring in the Golgi apparatus are exceptionally important for maintaining its function. When exposed to external pressure or environmental stimulation, the Golgi apparatus undergoes adaptive changes in both structure and function, which are known as Golgi stress. Although certain signal pathway responses or post-translational modifications have been observed following Golgi stress, further research is needed to comprehensively summarize and understand the related mechanisms. Currently, there is evidence linking Golgi stress to neurodegenerative diseases; however, the role of Golgi stress in the progression of neurodegenerative diseases such as Alzheimer's disease remains largely unexplored. This review focuses on the structural and functional alterations of the Golgi apparatus during stress, elucidating potential mechanisms underlying the involvement of Golgi stress in regulating immunity, autophagy, and metabolic processes. Additionally, it highlights the pivotal role of Golgi stress as an early signaling event implicated in the pathogenesis and progression of neurodegenerative diseases. Furthermore, this study summarizes prospective targets that can be therapeutically exploited to mitigate neurodegenerative diseases by targeting Golgi stress. These findings provide a theoretical foundation for identifying novel breakthroughs in preventing and treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Mengyu Liu
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Ying Duan
- Liaoning Maternal and Child Health Hospital, Shayang, Liaoning 110005, China
| | - Jianru Dong
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Kaisong Zhang
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xin Jin
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Menglin Gao
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Huachao Jia
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Ju Chen
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Mingyan Liu
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, Liaoning 110167, China.
| | - Xin Zhong
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
20
|
Blasco S, Sukeník L, Vácha R. Nanoparticle induced fusion of lipid membranes. NANOSCALE 2024; 16:10221-10229. [PMID: 38679949 PMCID: PMC11138393 DOI: 10.1039/d4nr00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Membrane fusion is crucial for infection of enveloped viruses, cellular transport, and drug delivery via liposomes. Nanoparticles can serve as fusogenic agents facilitating such membrane fusion for direct transmembrane transport. However, the underlying mechanisms of nanoparticle-induced fusion and the ideal properties of such nanoparticles remain largely unknown. Here, we used molecular dynamics simulations to investigate the efficacy of spheroidal nanoparticles with different size, prolateness, and ligand interaction strengths to enhance fusion between vesicles. By systematically varying nanoparticle properties, we identified how each parameter affects the fusion process and determined the optimal parameter range that promotes fusion. These findings provide valuable insights for the design and optimization of fusogenic nanoparticles with potential biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Sofía Blasco
- CEITEC - Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lukáš Sukeník
- CEITEC - Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
21
|
Maes A, Botzki A, Mathys J, Impens F, Saelens X. Systematic review and meta-analysis of genome-wide pooled CRISPR screens to identify host factors involved in influenza A virus infection. J Virol 2024; 98:e0185723. [PMID: 38567969 PMCID: PMC11257101 DOI: 10.1128/jvi.01857-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 05/15/2024] Open
Abstract
The host-virus interactome is increasingly recognized as an important research field to discover new therapeutic targets to treat influenza. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify new pro- and antiviral host factors of the influenza A virus. However, at present, a comprehensive summary of the results is lacking. We performed a systematic review of all reported CRISPR studies in this field in combination with a meta-analysis using the algorithm of meta-analysis by information content (MAIC). Two ranked gene lists were generated based on evidence in 15 proviral and 4 antiviral screens. Enriched pathways in the proviral MAIC results were compared to those of a prior array-based RNA interference (RNAi) meta-analysis. The top 50 proviral MAIC list contained genes whose role requires further elucidation, such as the endosomal ion channel TPCN1 and the kinase WEE1. Moreover, MAIC indicated that ALYREF, a component of the transcription export complex, has antiviral properties, whereas former knockdown experiments attributed a proviral role to this host factor. CRISPR-Cas-pooled screens displayed a bias toward early-replication events, whereas the prior RNAi meta-analysis covered early and late-stage events. RNAi screens led to the identification of a larger fraction of essential genes than CRISPR screens. In summary, the MAIC algorithm points toward the importance of several less well-known pathways in host-influenza virus interactions that merit further investigation. The results from this meta-analysis of CRISPR screens in influenza A virus infection may help guide future research efforts to develop host-directed anti-influenza drugs. IMPORTANCE Viruses rely on host factors for their replication, whereas the host cell has evolved virus restriction factors. These factors represent potential targets for host-oriented antiviral therapies. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify pro- and antiviral host factors in the context of influenza virus infection. We performed a comprehensive analysis of the outcome of these screens based on the publicly available gene lists, using the recently developed algorithm meta-analysis by information content (MAIC). MAIC allows the systematic integration of ranked and unranked gene lists into a final ranked gene list. This approach highlighted poorly characterized host factors and pathways with evidence from multiple screens, such as the vesicle docking and lipid metabolism pathways, which merit further exploration.
Collapse
Affiliation(s)
- Annabel Maes
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | - Francis Impens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Kumar K, Basak R, Rai A, Mukhopadhyay A. GRASP negatively regulates the secretion of the virulence factor gp63 in Leishmania. Mol Microbiol 2024; 121:1063-1078. [PMID: 38558112 DOI: 10.1111/mmi.15255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Metalloprotease-gp63 is a virulence factor secreted by Leishmania. However, secretory pathway in Leishmania is not well defined. Here, we cloned and expressed the GRASP homolog from Leishmania. We found that Leishmania expresses one GRASP homolog of 58 kDa protein (LdGRASP) which localizes in LdRab1- and LPG2-positive Golgi compartment in Leishmania. LdGRASP was found to bind with COPII complex, LdARF1, LdRab1 and LdRab11 indicating its role in ER and Golgi transport in Leishmania. To determine the function of LdGRASP, we generated LdGRASP knockout parasites using CRISPR-Cas9. We found fragmentation of Golgi in Ld:GRASPKO parasites. Our results showed enhanced transport of non-GPI-anchored gp63 to the cell surface leading to higher secretion of this form of gp63 in Ld:GRASPKO parasites in comparison to Ld:WT cells. In contrast, we found that transport of GPI-anchored gp63 to the cell surface is blocked in Ld:GRASPKO parasites and thereby inhibits its secretion. The overexpression of dominant-negative mutant of LdRab1 or LdSar1 in Ld:GRASPKO parasites significantly blocked the secretion of non-GPI-anchored gp63. Interestingly, we found that survival of transgenic parasites overexpressing Ld:GRASP-GFP is significantly compromised in macrophages in comparison to Ld:WT and Ld:GRASPKO parasites. These results demonstrated that LdGRASP differentially regulates Ldgp63 secretory pathway in Leishmania.
Collapse
Affiliation(s)
- Kamal Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Rituparna Basak
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Aakansha Rai
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
23
|
Abeni E, Cocola C, Croci S, Martino V, Piscitelli E, Gualtierotti R, Pelucchi P, Tria V, Porta G, Troschel F, Greve B, Nano G, Tomilin A, Kehler J, Gerovska D, Mazzaccaro D, Götte M, Arauzo-Bravo MJ, Carlo S, Zucchi I, Reinbold R. Single-cell transcriptomic analysis to identify endomembrane regulation of metalloproteins and motor proteins in autoimmunity. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:299-329. [PMID: 38960478 DOI: 10.1016/bs.apcsb.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
TMEM230 promotes antigen processing, trafficking, and presentation by regulating the endomembrane system of membrane bound organelles (lysosomes, proteosomes and mitochondria) and phagosomes. Activation of the immune system requires trafficking of various cargos between the endomembrane system and cell plasma membrane. The Golgi apparatus is the hub of the endomembrane system and essential for the generation, maintenance, recycling, and trafficking of the components of the endomembrane system itself and immune system. Intracellular trafficking and secretion of immune system components depend on mitochondrial metalloproteins for ATP synthesis that powers motor protein transport of endomembrane cargo. Glycan modifying enzyme genes and motor proteins are essential for the activation of the immune system and trafficking of antigens between the endomembrane system and the plasma membrane. Recently, TMEM230 was identified as co-regulated with RNASET2 in lysosomes and with metalloproteins in various cell types and organelles, including mitochondria in autoimmune diseases. Aberrant metalloproteinase secretion by motor proteins is a major contributor to tissue remodeling of synovial membrane and joint tissue destruction in rheumatoid arthritis (RA) by promoting infiltration of blood vessels, bone erosion, and loss of cartilage by phagocytes. In this study, we identified that specific glycan processing enzymes are upregulated in certain cell types (fibroblast or endothelial cells) that function in destructive tissue remodeling in rheumatoid arthritis compared to osteoarthritis (OA). TMEM230 was identified as a regulator in the secretion of metaloproteinases and heparanase necessary tissue remodeling in OA and RA. In dendritic (DC), natural killer and T cells, TMEM230 was expressed at low or no levels in RA compared to OA. TMEM230 expression in DC likely is necessary for regulatory or helper T cells to maintain tolerance to self-antigens and prevent susceptibility to autoimmune disease. To identify how TMEM230 and the endomembrane system contribute to autoimmunity we investigated, glycan modifying enzymes, metalloproteinases and motor protein genes co-regulated with or regulated by TMEM230 in synovial tissue by analyzing published single cell transcriptomic datasets from RA patient derived synovial tissue.
Collapse
Affiliation(s)
- Edoardo Abeni
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Cinzia Cocola
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Valentina Martino
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Eleonora Piscitelli
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Roberta Gualtierotti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paride Pelucchi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Valeria Tria
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Giovanni Porta
- Centro di Medicina Genomica Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Fabian Troschel
- Department of Radiation Therapy and Radiation Oncology, University Hospital of Münster, Münster, Germany
| | - Burkhard Greve
- Department of Radiation Therapy and Radiation Oncology, University Hospital of Münster, Münster, Germany
| | - Giovanni Nano
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy; Department of Biomedical Sciences for Health University of Milan, Milan, Italy
| | - Alexey Tomilin
- Institute of Cytology, Russian Academy of Science, St-Petersburg, Russia; Institute of Translational Biomedicine, St-Petersburg University, St-Petersburg, Russia
| | - James Kehler
- National Institutes of Health, NIDDK, Laboratory of Cell and Molecular Biology, Bethesda, MD, United States
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, San Sebastian, Spain
| | - Daniela Mazzaccaro
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Martin Götte
- Department of Gynecology, and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Marcos J Arauzo-Bravo
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, San Sebastian, Spain; Basque Foundation for Science, IKERBASQUE, Bilbao, Spain; Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Leioa, Spain
| | - Salvarani Carlo
- Rheumatology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy; University of Modena and Reggio Emilia, Modena, Italy
| | - Ileana Zucchi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy; Associazione Fondazione Renato Dulbecco, Milan, Italy.
| | - Rolland Reinbold
- Institute of Biomedical Technologies, National Research Council, Milan, Italy; Associazione Fondazione Renato Dulbecco, Milan, Italy.
| |
Collapse
|
24
|
Ansari I, Singh AK, Kapoor A, Mukhopadhyay A. Unconventional role of Rab4 in the secretory pathway in Leishmania. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119687. [PMID: 38342312 DOI: 10.1016/j.bbamcr.2024.119687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Leishmania donovani is an auxotroph for heme. Parasite acquires heme by clathrin-mediated endocytosis of hemoglobin by specific receptor. However, the regulation of receptor recycling pathway is not known in Leishmania. Here, we have cloned, expressed and characterized the Rab4 homologue from L. donovani. We have found that LdRab4 localizes in both early endosomes and Golgi in L. donovani. To understand the role of LdRab4 in L. donovani, we have generated transgenic parasites overexpressing GFP-LdRab4:WT, GFP-LdRab4:Q67L, and GFP-LdRab4:S22N. Our results have shown that overexpression of GFP-LdRab4:Q67L or GFP-LdRab4:S22N does not alter the cell surface localization of hemoglobin receptor in L. donovani. Surprisingly, we have found that overexpression of GFP-LdRab4:S22N significantly blocks the transport of Ldgp63 to the cell surface whereas the trafficking of Ldgp63 is induced to the cell surface in GFP-LdRab4:WT and GFP-LdRab4:Q67L overexpressing parasites. Consequently, we have found significant inhibition of gp63 secretion by GFP-LdRab4:S22N overexpressing parasites whereas secretion of Ldgp63 is enhanced in GFP-LdRab4:WT and GFP-LdRab4:Q67L overexpressing parasites in comparison to untransfected control parasites. Moreover, we have found that survival of transgenic parasites overexpressing GFP-LdRab4:S22N is severely compromised in macrophages in comparison to GFP-LdRab4:WT and GFP-LdRab4:Q67L expressing parasites. These results demonstrated that LdRab4 unconventionally regulates the secretory pathway in L. donovani.
Collapse
Affiliation(s)
- Irshad Ansari
- Kusuma School of Biological Sciences, Indian Institute of Technology, Haus Khas, New Delhi 110016, India
| | - Amir Kumar Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology, Haus Khas, New Delhi 110016, India
| | - Anjali Kapoor
- Kusuma School of Biological Sciences, Indian Institute of Technology, Haus Khas, New Delhi 110016, India
| | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, Haus Khas, New Delhi 110016, India.
| |
Collapse
|
25
|
Ramazanov BR, Parchure A, Di Martino R, Kumar A, Chung M, Kim Y, Griesbeck O, Schwartz MA, Luini A, von Blume J. Calcium flow at ER-TGN contact sites facilitates secretory cargo export. Mol Biol Cell 2024; 35:ar50. [PMID: 38294859 PMCID: PMC11064664 DOI: 10.1091/mbc.e23-03-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
Ca2+ influx into the trans-Golgi Network (TGN) promotes secretory cargo sorting by the Ca2+-ATPase SPCA1 and the luminal Ca2+ binding protein Cab45. Cab45 oligomerizes upon local Ca2+ influx, and Cab45 oligomers sequester and separate soluble secretory cargo from the bulk flow of proteins in the TGN. However, how this Ca2+ flux into the lumen of the TGN is achieved remains mysterious, as the cytosol has a nanomolar steady-state Ca2+ concentration. The TGN forms membrane contact sites (MCS) with the Endoplasmic Reticulum (ER), allowing protein-mediated exchange of molecular species such as lipids. Here, we show that the TGN export of secretory proteins requires the integrity of ER-TGN MCS and inositol 3 phosphate receptor (IP3R)-dependent Ca2+ fluxes in the MCS, suggesting Ca2+ transfer between these organelles. Using an MCS-targeted Ca2+ FRET sensor module, we measure the Ca2+ flow in these sites in real time. These data show that ER-TGN MCS facilitates the Ca2+ transfer required for Ca2+-dependent cargo sorting and export from the TGN, thus solving a fundamental question in cell biology.
Collapse
Affiliation(s)
- Bulat R. Ramazanov
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| | - Anup Parchure
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| | - Rosaria Di Martino
- Institute of Biochemistry and Cell Biology, National Research Council, Naples 80131, Italy
| | - Abhishek Kumar
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510
| | - Minhwan Chung
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510
| | - Yeongho Kim
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| | - Oliver Griesbeck
- Max Planck Institute of Neurobiology, Martinsried 82152, Germany
| | - Martin A. Schwartz
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
| | - Alberto Luini
- Institute of Biochemistry and Cell Biology, National Research Council, Naples 80131, Italy
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
26
|
Lujan P, Garcia-Cabau C, Wakana Y, Vera Lillo J, Rodilla-Ramírez C, Sugiura H, Malhotra V, Salvatella X, Garcia-Parajo MF, Campelo F. Sorting of secretory proteins at the trans-Golgi network by human TGN46. eLife 2024; 12:RP91708. [PMID: 38466628 PMCID: PMC10928510 DOI: 10.7554/elife.91708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Secretory proteins are sorted at the trans-Golgi network (TGN) for export into specific transport carriers. However, the molecular players involved in this fundamental process remain largely elusive. Here, we identified the human transmembrane protein TGN46 as a receptor for the export of secretory cargo protein PAUF in CARTS - a class of protein kinase D-dependent TGN-to-plasma membrane carriers. We show that TGN46 is necessary for cargo sorting and loading into nascent carriers at the TGN. By combining quantitative fluorescence microscopy and mutagenesis approaches, we further discovered that the lumenal domain of TGN46 encodes for its cargo sorting function. In summary, our results define a cellular function of TGN46 in sorting secretory proteins for export from the TGN.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Javier Vera Lillo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carmen Rodilla-Ramírez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Hideaki Sugiura
- School of Life Sciences, Tokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
27
|
Bingham R, McCarthy H, Buckley N. Exploring Retrograde Trafficking: Mechanisms and Consequences in Cancer and Disease. Traffic 2024; 25:e12931. [PMID: 38415291 DOI: 10.1111/tra.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/29/2024]
Abstract
Retrograde trafficking (RT) orchestrates the intracellular movement of cargo from the plasma membrane, endosomes, Golgi or endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) in an inward/ER-directed manner. RT works as the opposing movement to anterograde trafficking (outward secretion), and the two work together to maintain cellular homeostasis. This is achieved through maintaining cell polarity, retrieving proteins responsible for anterograde trafficking and redirecting proteins that become mis-localised. However, aberrant RT can alter the correct location of key proteins, and thus inhibit or indeed change their canonical function, potentially causing disease. This review highlights the recent advances in the understanding of how upregulation, downregulation or hijacking of RT impacts the localisation of key proteins in cancer and disease to drive progression. Cargoes impacted by aberrant RT are varied amongst maladies including neurodegenerative diseases, autoimmune diseases, bacterial and viral infections (including SARS-CoV-2), and cancer. As we explore the intricacies of RT, it becomes increasingly apparent that it holds significant potential as a target for future therapies to offer more effective interventions in a wide range of pathological conditions.
Collapse
Affiliation(s)
- Rachel Bingham
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Helen McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Niamh Buckley
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
28
|
Loh YP, Xiao L, Park JJ. Trafficking of hormones and trophic factors to secretory and extracellular vesicles: a historical perspective and new hypothesis. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:568-587. [PMID: 38435713 PMCID: PMC10906782 DOI: 10.20517/evcna.2023.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
It is well known that peptide hormones and neurotrophic factors are intercellular messengers that are packaged into secretory vesicles in endocrine cells and neurons and released by exocytosis upon the stimulation of the cells in a calcium-dependent manner. These secreted molecules bind to membrane receptors, which then activate signal transduction pathways to mediate various endocrine/trophic functions. Recently, there is evidence that these molecules are also in extracellular vesicles, including small extracellular vesicles (sEVs), which appear to be taken up by recipient cells. This finding raised the hypothesis that they may have functions differentiated from their classical secretory hormone/neurotrophic factor actions. In this article, the historical perspective and updated mechanisms for the sorting and packaging of hormones and neurotrophic factors into secretory vesicles and their transport in these organelles for release at the plasma membrane are reviewed. In contrast, little is known about the packaging of hormones and neurotrophic factors into extracellular vesicles. One proposal is that these molecules could be sorted at the trans-Golgi network, which then buds to form Golgi-derived vesicles that can fuse to endosomes and subsequently form intraluminal vesicles. They are then taken up by multivesicular bodies to form extracellular vesicles, which are subsequently released. Other possible mechanisms for packaging RSP proteins into sEVs are discussed. We highlight some studies in the literature that suggest the dual vesicular pathways for the release of hormones and neurotrophic factors from the cell may have some physiological significance in intercellular communication.
Collapse
Affiliation(s)
- Y. Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lan Xiao
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua J. Park
- Scientific Review Branch, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Yuan F, Li Y, Zhou X, Meng P, Zou P. Spatially resolved mapping of proteome turnover dynamics with subcellular precision. Nat Commun 2023; 14:7217. [PMID: 37940635 PMCID: PMC10632371 DOI: 10.1038/s41467-023-42861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
Cellular activities are commonly associated with dynamic proteomic changes at the subcellular level. Although several techniques are available to quantify whole-cell protein turnover dynamics, such measurements often lack sufficient spatial resolution at the subcellular level. Herein, we report the development of prox-SILAC method that combines proximity-dependent protein labeling (APEX2/HRP) with metabolic incorporation of stable isotopes (pulse-SILAC) to map newly synthesized proteins with subcellular spatial resolution. We apply prox-SILAC to investigate proteome dynamics in the mitochondrial matrix and the endoplasmic reticulum (ER) lumen. Our analysis reveals a highly heterogeneous distribution in protein turnover dynamics within macromolecular machineries such as the mitochondrial ribosome and respiratory complexes I-V, thus shedding light on their mechanism of hierarchical assembly. Furthermore, we investigate the dynamic changes of ER proteome when cells are challenged with stress or undergoing stimulated differentiation, identifying subsets of proteins with unique patterns of turnover dynamics, which may play key regulatory roles in alleviating stress or promoting differentiation. We envision that prox-SILAC could be broadly applied to profile protein turnover at various subcellular compartments, under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Feng Yuan
- Academy for Advanced Interdisciplinary Studies, PKU-Tsinghua Center for Life Science, Peking University, Beijing, 100871, China
| | - Yi Li
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, PKU-IDG/McGovern Institute for Brain Research, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xinyue Zhou
- Academy for Advanced Interdisciplinary Studies, PKU-Tsinghua Center for Life Science, Peking University, Beijing, 100871, China
| | - Peiyuan Meng
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, PKU-IDG/McGovern Institute for Brain Research, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Peng Zou
- Academy for Advanced Interdisciplinary Studies, PKU-Tsinghua Center for Life Science, Peking University, Beijing, 100871, China.
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, PKU-IDG/McGovern Institute for Brain Research, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China.
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, China.
| |
Collapse
|
30
|
Pan KH, Chang H, Yang WY. Extracellular release in the quality control of the mammalian mitochondria. J Biomed Sci 2023; 30:85. [PMID: 37805581 PMCID: PMC10560436 DOI: 10.1186/s12929-023-00979-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023] Open
Abstract
Mammalian cells release a wealth of materials to their surroundings. Emerging data suggest these materials can even be mitochondria with perturbed morphology and aberrant function. These dysfunctional mitochondria are removed by migrating cells through membrane shedding. Neuronal cells, cardiomyocytes, and adipocytes send dysfunctional mitochondria into the extracellular space for nearby cells to degrade. Various studies also indicate that there is an interplay between intracellular mitochondrial degradation pathways and mitochondrial release in handling dysfunctional mitochondria. These observations, in aggregate, suggest that extracellular release plays a role in quality-controlling mammalian mitochondria. Future studies will help delineate the various types of molecular machinery mammalian cells use to release dysfunctional mitochondria. Through the studies, we will better understand how mammalian cells choose between intracellular degradation and extracellular release for the quality control of mitochondria.
Collapse
Affiliation(s)
- Kuei-Hsiang Pan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Hung Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wei Yuan Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
- Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
31
|
Meng X, Wijaya CS, Shao Q, Xu S. Triggered Golgi membrane enrichment promotes PtdIns(4,5)P2 generation for plasma membrane repair. J Cell Biol 2023; 222:214098. [PMID: 37158801 PMCID: PMC10176212 DOI: 10.1083/jcb.202303017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
The maintenance of plasma membrane integrity and a capacity for efficiently repairing damaged membranes are essential for cell survival. Large-scale wounding depletes various membrane components at the wound sites, including phosphatidylinositols, yet little is known about how phosphatidylinositols are generated after depletion. Here, working with our in vivo C. elegans epidermal cell wounding model, we discovered phosphatidylinositol 4-phosphate (PtdIns4P) accumulation and local phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] generation at the wound site. We found that PtdIns(4,5)P2 generation depends on the delivery of PtdIns4P, PI4K, and PI4P 5-kinase PPK-1. In addition, we show that wounding triggers enrichment of the Golgi membrane to the wound site, and that is required for membrane repair. Moreover, genetic and pharmacological inhibitor experiments support that the Golgi membrane provides the PtdIns4P for PtdIns(4,5)P2 generation at the wounds. Our findings demonstrate how the Golgi apparatus facilitates membrane repair in response to wounding and offers a valuable perspective on cellular survival mechanisms upon mechanical stress in a physiological context.
Collapse
Affiliation(s)
- Xinan Meng
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute , Haining Zhejiang, China
| | - Chandra Sugiarto Wijaya
- Department of Burn and Wound Repair of the Second Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou Zhejiang, China
- School of Basic Medical Sciences, Zhejiang University School of Medicine , Hangzhou Zhejiang, China
| | - Qingfang Shao
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute , Haining Zhejiang, China
| | - Suhong Xu
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute , Haining Zhejiang, China
- Department of Burn and Wound Repair of the Second Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou Zhejiang, China
- School of Basic Medical Sciences, Zhejiang University School of Medicine , Hangzhou Zhejiang, China
| |
Collapse
|
32
|
Xiao GY, Tan X, Rodriguez BL, Gibbons DL, Wang S, Wu C, Liu X, Yu J, Vasquez ME, Tran HT, Xu J, Russell WK, Haymaker C, Lee Y, Zhang J, Solis L, Wistuba II, Kurie JM. EMT activates exocytotic Rabs to coordinate invasion and immunosuppression in lung cancer. Proc Natl Acad Sci U S A 2023; 120:e2220276120. [PMID: 37406091 PMCID: PMC10334751 DOI: 10.1073/pnas.2220276120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) underlies immunosuppression, drug resistance, and metastasis in epithelial malignancies. However, the way in which EMT orchestrates disparate biological processes remains unclear. Here, we identify an EMT-activated vesicular trafficking network that coordinates promigratory focal adhesion dynamics with an immunosuppressive secretory program in lung adenocarcinoma (LUAD). The EMT-activating transcription factor ZEB1 drives exocytotic vesicular trafficking by relieving Rab6A, Rab8A, and guanine nucleotide exchange factors from miR-148a-dependent silencing, thereby facilitating MMP14-dependent focal adhesion turnover in LUAD cells and autotaxin-mediated CD8+ T cell exhaustion, indicating that cell-intrinsic and extrinsic processes are linked through a microRNA that coordinates vesicular trafficking networks. Blockade of ZEB1-dependent secretion reactivates antitumor immunity and negates resistance to PD-L1 immune checkpoint blockade, an important clinical problem in LUAD. Thus, EMT activates exocytotic Rabs to drive a secretory program that promotes invasion and immunosuppression in LUAD.
Collapse
Affiliation(s)
- Guan-Yu Xiao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas Monroe Dunaway (MD) Anderson Cancer Center, Houston, TX77030
| | - Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas Monroe Dunaway (MD) Anderson Cancer Center, Houston, TX77030
| | - Bertha L. Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas Monroe Dunaway (MD) Anderson Cancer Center, Houston, TX77030
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas Monroe Dunaway (MD) Anderson Cancer Center, Houston, TX77030
| | - Shike Wang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas Monroe Dunaway (MD) Anderson Cancer Center, Houston, TX77030
| | - Chao Wu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas Monroe Dunaway (MD) Anderson Cancer Center, Houston, TX77030
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas Monroe Dunaway (MD) Anderson Cancer Center, Houston, TX77030
| | - Jiang Yu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas Monroe Dunaway (MD) Anderson Cancer Center, Houston, TX77030
| | - Mayra E. Vasquez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas Monroe Dunaway (MD) Anderson Cancer Center, Houston, TX77030
| | - Hai T. Tran
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas Monroe Dunaway (MD) Anderson Cancer Center, Houston, TX77030
- Division of Cancer Medicine, The University of Texas Monroe Dunaway (MD) Anderson Cancer Center, Houston, TX77030
| | - Jun Xu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX77555
| | - Cara Haymaker
- Department of Translational Molecular Pathology, The University of Texas Monroe Dunaway (MD) Anderson Cancer Center, Houston, TX77030
| | - Younghee Lee
- Department of Translational Molecular Pathology, The University of Texas Monroe Dunaway (MD) Anderson Cancer Center, Houston, TX77030
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas Monroe Dunaway (MD) Anderson Cancer Center, Houston, TX77030
| | - Luisa Solis
- Department of Translational Molecular Pathology, The University of Texas Monroe Dunaway (MD) Anderson Cancer Center, Houston, TX77030
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas Monroe Dunaway (MD) Anderson Cancer Center, Houston, TX77030
| | - Jonathan M. Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas Monroe Dunaway (MD) Anderson Cancer Center, Houston, TX77030
| |
Collapse
|
33
|
Wong-Dilworth L, Rodilla-Ramirez C, Fox E, Restel SD, Stockhammer A, Adarska P, Bottanelli F. STED imaging of endogenously tagged ARF GTPases reveals their distinct nanoscale localizations. J Cell Biol 2023; 222:e202205107. [PMID: 37102998 PMCID: PMC10140647 DOI: 10.1083/jcb.202205107] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/10/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
ADP-ribosylation factor (ARF) GTPases are major regulators of cellular membrane homeostasis. High sequence similarity and multiple, possibly redundant functions of the five human ARFs make investigating their function a challenging task. To shed light on the roles of the different Golgi-localized ARF members in membrane trafficking, we generated CRISPR-Cas9 knockins (KIs) of type I (ARF1 and ARF3) and type II ARFs (ARF4 and ARF5) and mapped their nanoscale localization with stimulated emission depletion (STED) super-resolution microscopy. We find ARF1, ARF4, and ARF5 on segregated nanodomains on the cis-Golgi and ER-Golgi intermediate compartments (ERGIC), revealing distinct roles in COPI recruitment on early secretory membranes. Interestingly, ARF4 and ARF5 define Golgi-tethered ERGIC elements decorated by COPI and devoid of ARF1. Differential localization of ARF1 and ARF4 on peripheral ERGICs suggests the presence of functionally different classes of intermediate compartments that could regulate bi-directional transport between the ER and the Golgi. Furthermore, ARF1 and ARF3 localize to segregated nanodomains on the trans-Golgi network (TGN) and are found on TGN-derived post-Golgi tubules, strengthening the idea of distinct roles in post-Golgi sorting. This work provides the first map of the nanoscale organization of human ARF GTPases on cellular membranes and sets the stage to dissect their numerous cellular roles.
Collapse
Affiliation(s)
| | | | - Eleanor Fox
- Institut für Biochemie, Freie Universität Berlin, Berlin, Germany
| | | | | | - Petia Adarska
- Institut für Biochemie, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
34
|
Cheng G, Chang J, Gong H, Zhou W. A distinct Golgi-targeting mechanism of dGM130 in Drosophila neurons. Front Mol Neurosci 2023; 16:1206219. [PMID: 37333614 PMCID: PMC10272413 DOI: 10.3389/fnmol.2023.1206219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
GM130 is a matrix protein that is conserved in metazoans and involved in the architecture of the Golgi apparatus. In neurons, Golgi apparatus and dendritic Golgi outposts (GOs) have different compartmental organizations, and GM130 localization is present in both, indicating that GM130 has a unique Golgi-targeting mechanism. Here, we investigated the Golgi-targeting mechanism of the GM130 homologue, dGM130, using in vivo imaging of Drosophila dendritic arborization (da) neurons. The results showed that two independent Golgi-targeting domains (GTDs) with different Golgi localization characteristics in dGM130, together determined the precise localization of dGM130 in both the soma and dendrites. GTD1, covering the first coiled-coil region, preferentially targeted to somal Golgi rather than GOs; whereas GTD2, containing the second coiled-coil region and C-terminus, dynamically targeted to Golgi in both soma and dendrites. These findings suggest that there are two distinct mechanisms by which dGM130 targets to the Golgi apparatus and GOs, underlying the structural differences between them, and further provides new insights into the formation of neuronal polarity.
Collapse
Affiliation(s)
- Guo Cheng
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Chang
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Gong
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Wei Zhou
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| |
Collapse
|
35
|
Tutanov OS, Glass SE, Coffey RJ. Emerging connections between GPI-anchored proteins and their extracellular carriers in colorectal cancer. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:195-217. [PMID: 37840781 PMCID: PMC10569057 DOI: 10.20517/evcna.2023.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Although extracellular vesicles (EVs) were discovered over 40 years ago, there has been a resurgence of interest in secreted vesicles and their attendant cargo as novel modes of intracellular communication. In addition to vesicles, two amembranous nanoparticles, exomeres and supermeres, have been isolated and characterized recently. In this rapidly expanding field, it has been challenging to assign cargo and specific functions to a particular carrier. Refinement of isolation methods, well-controlled studies, and guidelines detailed by Minimal Information for Studies of Extracellular Vesicles (MISEV) are being employed to "bring order to chaos." In this review, we will briefly summarize three types of extracellular carriers - small EVs (sEVs), exomeres, and supermeres - in the context of colorectal cancer (CRC). We found that a number of GPI-anchored proteins (GPI-APs) are overexpressed in CRC, are enriched in exosomes (a distinct subset of sEVs), and can be detected in exomeres and supermeres. This affords the opportunity to elaborate on GPI-AP biogenesis, modifications, and trafficking using DPEP1, a GPI-AP upregulated in CRC, as a prime example. We have cataloged the GPI-anchored proteins secreted in CRC and will highlight features of select CRC-associated GPI-anchored proteins we have detected. Finally, we will discuss the remaining challenges and future opportunities in studying these secreted GPI-APs in CRC.
Collapse
Affiliation(s)
- Oleg S. Tutanov
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Sarah E. Glass
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Robert J. Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
36
|
Luo Y, Yin M, Mu C, Hu X, Xie H, Li J, Cao T, Chen N, Wu J, Fan C. Engineering Female Germline Stem Cells with Exocytotic Polymer Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210458. [PMID: 37046183 DOI: 10.1002/adma.202210458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/30/2023] [Indexed: 06/16/2023]
Abstract
Germline stem cells (GSCs) are the only cell population capable of passing genetic information to offspring, making them attractive targets in reproductive biology and fertility research. However, it is generally more difficult to introduce exogenous biomolecules into GSCs than other cell types, impeding the exploration and manipulation of these cells for biomedical purposes. Herein, semiconductor polymer dots (Pdots)-based nanocomplex Pdot-siRNA is developed and achieves effective knockdown of target genes in female germline stem cells (FGSCs). Advantage of high fluorescence brightness of Pdots is taken for comprehensive investigation of their cellular uptake, intracellular trafficking, and exocytosis in FGSCs. Importantly, Pdots show excellent biocompatibility and minimally disturb the differentiation of FGSCs. Intracellular Pdots escape from the lysosomes and undergo active exocytosis, which makes them ideal nanocarriers for bioactive cargos. Moreover, Pdot-siRNA can penetrate into 3D ovarian organoids derived from FGSCs and down-regulate the expression levels of target genes. This study investigates the interface between a type of theranostic nanoparticles and FGSCs for the first time and sheds light on the manipulation and medical application of FGSCs.
Collapse
Affiliation(s)
- Yao Luo
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Yin
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
| | - Chunlan Mu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Xingjie Hu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hui Xie
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
| | - Jingyi Li
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
| | - Tingting Cao
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
| | - Nan Chen
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
37
|
Salimi L, Seyedaghamiri F, Karimipour M, Mobarak H, Mardi N, Taghavi M, Rahbarghazi R. Physiological and pathological consequences of exosomes at the blood-brain-barrier interface. Cell Commun Signal 2023; 21:118. [PMID: 37208741 DOI: 10.1186/s12964-023-01142-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
Blood-brain barrier (BBB) interface with multicellular structure controls strictly the entry of varied circulating macromolecules from the blood-facing surface into the brain parenchyma. Under several pathological conditions within the central nervous system, the integrity of the BBB interface is disrupted due to the abnormal crosstalk between the cellular constituents and the recruitment of inflammatory cells. Exosomes (Exos) are nano-sized extracellular vesicles with diverse therapeutic outcomes. These particles transfer a plethora of signaling molecules with the potential to modulate target cell behavior in a paracrine manner. Here, in the current review article, the therapeutic properties of Exos and their potential in the alleviation of compromised BBB structure were discussed. Video Abstract.
Collapse
Affiliation(s)
- Leila Salimi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemehsadat Seyedaghamiri
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Mobarak
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Ben Ahmed A, Lemaire Q, Scache J, Mariller C, Lefebvre T, Vercoutter-Edouart AS. O-GlcNAc Dynamics: The Sweet Side of Protein Trafficking Regulation in Mammalian Cells. Cells 2023; 12:1396. [PMID: 37408229 PMCID: PMC10216988 DOI: 10.3390/cells12101396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
The transport of proteins between the different cellular compartments and the cell surface is governed by the secretory pathway. Alternatively, unconventional secretion pathways have been described in mammalian cells, especially through multivesicular bodies and exosomes. These highly sophisticated biological processes rely on a wide variety of signaling and regulatory proteins that act sequentially and in a well-orchestrated manner to ensure the proper delivery of cargoes to their final destination. By modifying numerous proteins involved in the regulation of vesicular trafficking, post-translational modifications (PTMs) participate in the tight regulation of cargo transport in response to extracellular stimuli such as nutrient availability and stress. Among the PTMs, O-GlcNAcylation is the reversible addition of a single N-acetylglucosamine monosaccharide (GlcNAc) on serine or threonine residues of cytosolic, nuclear, and mitochondrial proteins. O-GlcNAc cycling is mediated by a single couple of enzymes: the O-GlcNAc transferase (OGT) which catalyzes the addition of O-GlcNAc onto proteins, and the O-GlcNAcase (OGA) which hydrolyses it. Here, we review the current knowledge on the emerging role of O-GlcNAc modification in the regulation of protein trafficking in mammalian cells, in classical and unconventional secretory pathways.
Collapse
|
39
|
Pereira C, Stalder D, Anderson GS, Shun-Shion AS, Houghton J, Antrobus R, Chapman MA, Fazakerley DJ, Gershlick DC. The exocyst complex is an essential component of the mammalian constitutive secretory pathway. J Cell Biol 2023; 222:e202205137. [PMID: 36920342 PMCID: PMC10041652 DOI: 10.1083/jcb.202205137] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/11/2022] [Accepted: 02/01/2023] [Indexed: 03/16/2023] Open
Abstract
Secreted proteins fulfill a vast array of functions, including immunity, signaling, and extracellular matrix remodeling. In the trans-Golgi network, proteins destined for constitutive secretion are sorted into post-Golgi carriers which fuse with the plasma membrane. The molecular machinery involved is poorly understood. Here, we have used kinetic trafficking assays and transient CRISPR-KO to study biosynthetic sorting from the Golgi to the plasma membrane. Depletion of all canonical exocyst subunits causes cargo accumulation in post-Golgi carriers. Exocyst subunits are recruited to and co-localize with carriers. Exocyst abrogation followed by kinetic trafficking assays of soluble cargoes results in intracellular cargo accumulation. Unbiased secretomics reveals impairment of soluble protein secretion after exocyst subunit knockout. Importantly, in specialized cell types, the loss of exocyst prevents constitutive secretion of antibodies in lymphocytes and of leptin in adipocytes. These data identify exocyst as the functional tether of secretory post-Golgi carriers at the plasma membrane and an essential component of the mammalian constitutive secretory pathway.
Collapse
Affiliation(s)
- Conceição Pereira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Amber S. Shun-Shion
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Jack Houghton
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Daniel J. Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - David C. Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
Fabian-Fine R, Aiken AM, Aug JR, Boucher JD, Butler DC, Clancy LJ, Clem SA, Crotty SC, Dalpe AM, Donzello-Jewett EJ, Galgay TM, Gillis BK, Heinrich BW, Hines KR, Kimmel JE, McGrath JM, Miles MM, Morey JA, Ortiz IA, Pham KQ, Quinn LC, Radican CJ, Speidel NT, Thomas BJ, Troisi AR, Weiss JL, Wentzheimer KV, Weaver AL. Neurodegeneration in a novel invertebrate model system: Failed microtubule-mediated cell adhesion and unraveling of macroglia. J Comp Neurol 2023; 531:618-638. [PMID: 36594894 PMCID: PMC10037207 DOI: 10.1002/cne.25450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023]
Abstract
Neurodegenerative diseases are among the main causes of death in the United States, leading to irreversible disintegration of neurons. Despite intense international research efforts, cellular mechanisms that initiate neurodegeneration remain elusive, thus inhibiting the development of effective preventative and early onset medical treatment. To identify underlying cellular mechanisms that initiate neuron degeneration, it is critical to identify histological and cellular hallmarks that can be linked to underlying biochemical processes. Due to the poor tissue preservation of degenerating mammalian brain tissue, our knowledge regarding histopathological hallmarks of early to late degenerative stages is only fragmentary. Here, we introduce a novel model organism to study histological hallmarks of neurodegeneration, the spider Cupiennius salei. We utilized toluidine blue-stained 0.9-μm serial semithin and 50-nm ultrathin sections of young and old spider nervous tissue. Our findings suggest that the initial stages of neurodegeneration in spiders may be triggered by (1) dissociation of neuron- and glia-derived microtubules, and (2) the weakening of microtubule-associated desmosomal junctions that lead to the unraveling of neuron-insulating macroglia, compromising the structural integrity of affected neurons. The involvement of macroglia in the disposal of neuronal debris described here-although different in the proposed transport mechanisms-shows resemblance to the mammalian glymphatic system. We propose that this model system is highly suitable to investigate invertebrate neurodegenerative processes from early onset to scar formation and that this knowledge may be useful for the study of neurodegeneration in mammalian tissue.
Collapse
Affiliation(s)
- Ruth Fabian-Fine
- Department of Biology and Neuroscience, Saint Michael’s College, Colchester, Vermont, 05439, United States of America
| | - Anna M. Aiken
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Julia R. Aug
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Jason D. Boucher
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | | | - Liam J. Clancy
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Shaun A. Clem
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | | | - Abigail M. Dalpe
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | | | - Taylor M. Galgay
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Bonnie K. Gillis
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | | | - Kai R. Hines
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Jordan E. Kimmel
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | | | - Marissa M. Miles
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Jordyn A. Morey
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Isaiah A. Ortiz
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Kevin Q. Pham
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Liam C. Quinn
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Colin J. Radican
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Nolan T. Speidel
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Bailey J. Thomas
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Angela R. Troisi
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | - Joshua L. Weiss
- Students of the Cellular/Molecular Research Classes 2021 and 2022
| | | | - Adam L. Weaver
- Department of Biology and Neuroscience, Saint Michael’s College, Colchester, Vermont, 05439, United States of America
| |
Collapse
|
41
|
Glashauser J, Camelo C, Hollmann M, Backer W, Jacobs T, Sanchez JI, Schleutker R, Förster D, Berns N, Riechmann V, Luschnig S. Acute manipulation and real-time visualization of membrane trafficking and exocytosis in Drosophila. Dev Cell 2023; 58:709-723.e7. [PMID: 37023749 DOI: 10.1016/j.devcel.2023.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023]
Abstract
Intracellular trafficking of secretory proteins plays key roles in animal development and physiology, but so far, tools for investigating the dynamics of membrane trafficking have been limited to cultured cells. Here, we present a system that enables acute manipulation and real-time visualization of membrane trafficking through the reversible retention of proteins in the endoplasmic reticulum (ER) in living multicellular organisms. By adapting the "retention using selective hooks" (RUSH) approach to Drosophila, we show that trafficking of GPI-linked, secreted, and transmembrane proteins can be controlled with high temporal precision in intact animals and cultured organs. We demonstrate the potential of this approach by analyzing the kinetics of ER exit and apical secretion and the spatiotemporal dynamics of tricellular junction assembly in epithelia of living embryos. Furthermore, we show that controllable ER retention enables tissue-specific depletion of secretory protein function. The system is broadly applicable to visualizing and manipulating membrane trafficking in diverse cell types in vivo.
Collapse
Affiliation(s)
- Jade Glashauser
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Carolina Camelo
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Manuel Hollmann
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Wilko Backer
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Thea Jacobs
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Jone Isasti Sanchez
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Raphael Schleutker
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Dominique Förster
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Nicola Berns
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Veit Riechmann
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Stefan Luschnig
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
42
|
Yao C, Pan S, Xu Y, Lu M, Zhao Y, Huo J, Hao B, Huang J. Bombyx mori Nucleopolyhedrovirus Hijacks Multivesicular Body as an Alternative Envelopment Platform for Budded Virus Egress. J Virol 2023; 97:e0004123. [PMID: 36916914 PMCID: PMC10062136 DOI: 10.1128/jvi.00041-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/16/2023] [Indexed: 03/15/2023] Open
Abstract
Baculovirus budded virus (BV) acquires its envelope and viral membrane fusion proteins from the plasma membrane (PM) of the host cell during the budding process. However, this classical BV egress pathway has been questioned because an intracellularly localized membrane fusion protein, SPΔnGP64 (glycoprotein 64 [GP64] lacking the signal peptide [SP] n region), was assembled into the envelope to generate infective BVs in our recent studies. Here, we identify an additional pathway for Bombyx mori nucleopolyhedrovirus (BmNPV) BV assembly and release that differs, in part, from the currently accepted model for the egress pathway of baculovirus. Electron microscopy showed that during infection, BmNPV-infected cells contained many newly formed multivesicular body (MVB)-like compartments that included mature virions at 30 h postinfection (p.i.). Immunoelectron microscopy demonstrated that the MVBs contained CD63, an MVB endosome marker, and GP64, a BmNPV fusion glycoprotein. MVB fusion with the PM and the release of mature virions, together with naked nucleocapsids, were observed at the cell surface. Furthermore, MVB egress mediated the translocation of SPΔnGP64 to the PM, which induced cell-cell fusion until 36 h p.i. This BV egress pathway can be partially inhibited by U18666A incubation and RNA interference targeting MVB biogenesis genes. Our findings indicate that BmNPV BVs are enveloped and released through MVBs via the cellular exosomal pathway, which is a subordinate BV egress pathway that produces virions with relatively inferior infectivity. This scenario has significant implications for the elucidation of the BmNPV BV envelopment pathway. IMPORTANCE BmNPV is a severe pathogen that infects mainly Bombyx mori, a domesticated insect of economic importance, and accounts for approximately 15% of economic losses in sericulture. BV production plays a key role in systemic BmNPV infection of larvae. Despite the progress made in the functional gene studies of BmNPV, BmNPV BV egress is ill-understood. This study reports a previously unreported MVB envelopment pathway in BmNPV BV egress. To our knowledge, this is the first report of a baculovirus using dual BV egress pathways. This specific BV egress mechanism explains the cause of the non-PM-localized SPΔnGP64-rescued gp64-null bacmid infectivity, elucidating the reason underlying the retention of SP by BmNPV GP64. The data obtained elucidate an alternate molecular mechanism of baculovirus BV egress.
Collapse
Affiliation(s)
- Congyue Yao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Shijia Pan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Ying Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Mengze Lu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Yating Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Jiayao Huo
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Bifang Hao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
- Key Laboratory of Genetic Improvement of Sericulture in the Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, People’s Republic of China
| | - Jinshan Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
- Key Laboratory of Genetic Improvement of Sericulture in the Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
43
|
Tuomivaara ST, Teo CF, Jan YN, Jan LY, Wiita AP. SLAPSHOT reveals rapid dynamics of extracellularly exposed proteome in response to calcium-activated plasma membrane phospholipid scrambling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.26.534250. [PMID: 36993417 PMCID: PMC10055316 DOI: 10.1101/2023.03.26.534250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To facilitate our understanding of the often rapid and nuanced dynamics of extracellularly exposed proteomes during signaling events, it is important to devise robust workflows affording fast time resolution without biases and confounding factors. Here, we present Surface-exposed protein Labeling using PeroxidaSe, H2O2, and Tyramide-derivative (SLAPSHOT), to label extracellularly exposed proteins in a rapid, sensitive, and specific manner, while preserving cellular integrity. This experimentally simple and flexible method utilizes recombinant soluble APEX2 peroxidase that is applied to cells, thus circumventing biological perturbations, tedious engineering of tools and cells, and labeling biases. APEX2 neither requires metal cations for activity nor contains disulfide bonds, conferring versatility for a wide spectrum of experimental setups. We applied SLAPSHOT followed by quantitative mass spectrometry-based proteomics analysis to examine the immediate and extensive cell surface expansion and ensuing restorative membrane shedding upon the activation of Scott syndrome-linked TMEM16F, a ubiquitously expressed calcium-dependent phospholipid scramblase and ion channel. Time-course data ranging from one to thirty minutes of calcium stimulation using wild-type and TMEM16F deficient cells revealed intricate co-regulation of known protein families, including those in the integrin and ICAM families. Crucially, we identified proteins that are known to reside in intracellular organelles, including ER, as occupants of the freshly deposited membrane, and mitovesicles as an abundant component and contributor to the extracellularly exposed proteome. Our study not only provides the first accounts of the immediate consequences of calcium signaling on the extracellularly exposed proteome, but also presents a blueprint for the application of SLAPSHOT as a general approach for monitoring extracellularly exposed protein dynamics.
Collapse
Affiliation(s)
- Sami T. Tuomivaara
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Chin Fen Teo
- Howard Hughes Medical Institute, University of California, San Francisco, CA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA
- Department of Physiology, University of California, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA
| | - Lily Y. Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA
- Department of Physiology, University of California, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA
| | - Arun P. Wiita
- Department of Laboratory Medicine, University of California, San Francisco, CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
44
|
Diaz-Rohrer B, Castello-Serrano I, Chan SH, Wang HY, Shurer CR, Levental KR, Levental I. Rab3 mediates a pathway for endocytic sorting and plasma membrane recycling of ordered microdomains. Proc Natl Acad Sci U S A 2023; 120:e2207461120. [PMID: 36848577 PMCID: PMC10013782 DOI: 10.1073/pnas.2207461120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
The composition of the plasma membrane (PM) must be tightly controlled despite constant, rapid endocytosis, which requires active, selective recycling of endocytosed membrane components. For many proteins, the mechanisms, pathways, and determinants of this PM recycling remain unknown. We report that association with ordered, lipid-driven membrane microdomains (known as rafts) is sufficient for PM localization of a subset of transmembrane proteins and that abrogation of raft association disrupts their trafficking and leads to degradation in lysosomes. Using orthogonal, genetically encoded probes with tunable raft partitioning, we screened for the trafficking machinery required for efficient recycling of engineered microdomain-associated cargo from endosomes to the PM. Using this screen, we identified the Rab3 family as an important mediator of PM localization of microdomain-associated proteins. Disruption of Rab3 reduced PM localization of raft probes and led to their accumulation in Rab7-positive endosomes, suggesting inefficient recycling. Abrogation of Rab3 function also mislocalized the endogenous raft-associated protein Linker for Activation of T cells (LAT), leading to its intracellular accumulation and reduced T cell activation. These findings reveal a key role for lipid-driven microdomains in endocytic traffic and suggest Rab3 as a mediator of microdomain recycling and PM composition.
Collapse
Affiliation(s)
- Barbara Diaz-Rohrer
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Ivan Castello-Serrano
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Sze Ham Chan
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Carolyn R. Shurer
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Kandice R. Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| |
Collapse
|
45
|
Ritter DJ, Choudhary D, Unlu G, Knapik EW. Rgp1 contributes to craniofacial cartilage development and Rab8a-mediated collagen II secretion. Front Endocrinol (Lausanne) 2023; 14:1120420. [PMID: 36843607 PMCID: PMC9947155 DOI: 10.3389/fendo.2023.1120420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Rgp1 was previously identified as a component of a guanine nucleotide exchange factor (GEF) complex to activate Rab6a-mediated trafficking events in and around the Golgi. While the role of Rgp1 in protein trafficking has been examined in vitro and in yeast, the role of Rgp1 during vertebrate embryogenesis and protein trafficking in vivo is unknown. Using genetic, CRISPR-induced zebrafish mutants for Rgp1 loss-of-function, we found that Rgp1 is required for craniofacial cartilage development. Within live rgp1-/- craniofacial chondrocytes, we observed altered movements of Rab6a+ vesicular compartments, consistent with a conserved mechanism described in vitro. Using transmission electron microscopy (TEM) and immunofluorescence analyses, we show that Rgp1 plays a role in the secretion of collagen II, the most abundant protein in cartilage. Our overexpression experiments revealed that Rab8a is a part of the post-Golgi collagen II trafficking pathway. Following loss of Rgp1, chondrocytes activate an Arf4b-mediated stress response and subsequently respond with nuclear DNA fragmentation and cell death. We propose that an Rgp1-regulated Rab6a-Rab8a pathway directs secretion of ECM cargoes such as collagen II, a pathway that may also be utilized in other tissues where coordinated trafficking and secretion of collagens and other large cargoes is required for normal development and tissue function.
Collapse
Affiliation(s)
- Dylan J. Ritter
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dharmendra Choudhary
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gokhan Unlu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ela W. Knapik
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
46
|
Structure Composition and Intracellular Transport of Clathrin-Mediated Intestinal Transmembrane Tight Junction Protein. Inflammation 2023; 46:18-34. [PMID: 36050591 DOI: 10.1007/s10753-022-01724-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022]
Abstract
Tight junctions (TJs) are located in the apical region of the junctions between epithelial cells and are widely found in organs such as the brain, retina, intestinal epithelium, and endothelial system. As a mechanical barrier of the intestinal mucosa, TJs can not only maintain the integrity of intestinal epithelial cells but also maintain intestinal mucosal permeability by regulating the entry of ions and molecules into paracellular channels. Therefore, the formation disorder or integrity destruction of TJs can induce damage to the intestinal epithelial barrier, ultimately leading to the occurrence of various gastrointestinal diseases, such as inflammatory bowel disease (IBD), gastroesophageal reflux disease (GERD), and irritable bowel syndrome (IBS). However, a large number of studies have shown that TJs protein transport disorder from the endoplasmic reticulum to the apical membrane can lead to TJs formation disorder, in addition to disruption of TJs integrity caused by external pathological factors and reduction of TJs protein synthesis. In this review, we focus on the structural composition of TJs, the formation of clathrin-coated vesicles containing transmembrane TJs from the Golgi apparatus, and the transport process from the Golgi apparatus to the plasma membrane via microtubules and finally fusion with the plasma membrane. At present, the mechanism of the intracellular transport of TJ proteins remains unclear. More studies are needed in the future to focus on the sorting of TJs protein vesicles, regulation of transport processes, and recycling of TJ proteins, etc.
Collapse
|
47
|
Kim H, Song Z, Zhang R, Davies BSJ, Zhang K. A hepatokine derived from the ER protein CREBH promotes triglyceride metabolism by stimulating lipoprotein lipase activity. Sci Signal 2023; 16:eadd6702. [PMID: 36649378 PMCID: PMC10080946 DOI: 10.1126/scisignal.add6702] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
The endoplasmic reticulum (ER)-tethered, liver-enriched stress sensor CREBH is processed in response to increased energy demands or hepatic stress to release an amino-terminal fragment that functions as a transcription factor for hepatic genes encoding lipid and glucose metabolic factors. Here, we discovered that the carboxyl-terminal fragment of CREBH (CREBH-C) derived from membrane-bound, full-length CREBH was secreted as a hepatokine in response to fasting or hepatic stress. Phosphorylation of CREBH-C mediated by the kinase CaMKII was required for efficient secretion of CREBH-C through exocytosis. Lipoprotein lipase (LPL) mediates the lipolysis of circulating triglycerides for tissue uptake and is inhibited by a complex consisting of angiopoietin-like (ANGPTL) 3 and ANGPTL8. Secreted CREBH-C blocked the formation of ANGPTL3-ANGPTL8 complexes, leading to increased LPL activity in plasma and metabolic tissues in mice. CREBH-C administration promoted plasma triglyceride clearance and partitioning into peripheral tissues and mitigated hypertriglyceridemia and hepatic steatosis in mice fed a high-fat diet. Individuals with obesity had higher circulating amounts of CREBH-C than control individuals, and human CREBH loss-of-function variants were associated with dysregulated plasma triglycerides. These results identify a stress-induced, secreted protein fragment derived from CREBH that functions as a hepatokine to stimulate LPL activity and triglyceride homeostasis.
Collapse
Affiliation(s)
- Hyunbae Kim
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ren Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Brandon S. J. Davies
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
48
|
Shaping subcellular tubes through vesicle trafficking: Common and distinct pathways. Semin Cell Dev Biol 2023; 133:74-82. [PMID: 35365398 DOI: 10.1016/j.semcdb.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/23/2022]
Abstract
Cells with subcellular lumens form some of the most miniature tubes in the tubular organs of animals. These are often crucial components of the system, executing functions at remote body locations. Unlike tubes formed by intercellular or autocellular junctions, the cells with junctionless subcellular lumens face unique challenges in modifying the cell shape and plasma membrane organization to incorporate a membrane-bound tube within, often associated with dramatic cellular growth and extensions. Results in the recent years have shown that membrane dynamics, including both the primary delivery and recycling, is crucial in providing the cell with the flexibility to face these challenges. A significant portion of this information has come from two in vivo invertebrate models; the Drosophila tracheal terminal cells and the C. elegans excretory cell. This review focuses on the data obtained from these systems in the recent past about how trafficking pathways influence subcellular tube and branching morphogenesis. Given that such tubes occur in vertebrate vasculature, these insights are relevant to human health, and we contrast our conclusions with the less understood subcellular tubes of angiogenesis.
Collapse
|
49
|
Tran ML, Tüshaus J, Kim Y, Ramazanov BR, Devireddy S, Lichtenthaler SF, Ferguson SM, von Blume J. Cab45 deficiency leads to the mistargeting of progranulin and prosaposin and aberrant lysosomal positioning. Traffic 2023; 24:4-19. [PMID: 36398980 PMCID: PMC9825660 DOI: 10.1111/tra.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
Abstract
The trans-Golgi Network (TGN) sorts molecular "addresses" and sends newly synthesized proteins to their destination via vesicular transport carriers. Despite the functional significance of packaging processes at the TGN, the sorting of soluble proteins remains poorly understood. Recent research has shown that the Golgi resident protein Cab45 is a significant regulator of secretory cargo sorting at the TGN. Cab45 oligomerizes upon transient Ca2+ influx, recruits soluble cargo molecules (clients), and packs them in sphingomyelin-rich transport carriers. However, the identity of client molecules packed into Cab45 vesicles is scarce. Therefore, we used a precise and highly efficient secretome analysis technology called hiSPECs. Intriguingly, we observed that Cab45 deficient cells manifest hypersecretion of lysosomal hydrolases. Specifically, Cab45 deficient cells secrete the unprocessed precursors of prosaposin (PSAP) and progranulin (PGRN). In addition, lysosomes in these cells show an aberrant perinuclear accumulation suggesting a new role of Cab45 in lysosomal positioning. This work uncovers a yet unknown function of Cab45 in regulating lysosomal function.
Collapse
Affiliation(s)
- Mai Ly Tran
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675
| | - Yeongho Kim
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Bulat R. Ramazanov
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Swathi Devireddy
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Shawn M. Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
50
|
Banerjee P, Tan X, Russell WK, Kurie JM. Analysis of Golgi Secretory Functions in Cancer. Methods Mol Biol 2022; 2557:785-810. [PMID: 36512251 DOI: 10.1007/978-1-0716-2639-9_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer cells utilize secretory pathways for paracrine signaling and extracellular matrix remodeling to facilitate directional cell migration, invasion, and metastasis. The Golgi apparatus is a central secretory signaling hub that is often deregulated in cancer. Here we described technologies that utilize microscopic, biochemical, and proteomic approaches to analyze Golgi secretory functions in genetically heterogeneous cancer cell lines.
Collapse
Affiliation(s)
- Priyam Banerjee
- Frits and Rita Markus Bio-Imaging Resource Center, The Rockefeller University, New York, NY, USA
| | - Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|