1
|
Ma D, Hu S, Wang C, Ai J, Ma J, Gao T, Hong Y, Wu Z, Gu M, Tang X, Chang Y, Chen Q, Chen S, Yu Q, Yang J, Zhang C, Li C, Liu X, Shi J, Liu X, Liu Y, Liu M. Discovery of Potent and Balanced Dual RIPK2 and 3 Inhibitors as a New Strategy for the Treatment of Inflammatory Bowel Diseases. J Med Chem 2025; 68:7539-7559. [PMID: 40131099 DOI: 10.1021/acs.jmedchem.4c03226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Receptor-interacting serine/threonine protein kinase 2 (RIPK2) and RIPK3 have been demonstrated to be promising targets for treating multiple inflammatory diseases, including inflammatory bowel diseases (IBDs). Due to the complexity of IBD pathogenesis, on the basis of synergy strategies, we herein describe the discovery and optimization of a series of N,7-diaryl-quinazolin-4-amine derivatives as dual RIPK2 and RIPK3 inhibitors. Based on a step-by-step process involving three rounds of structural modifications, compound 29 was identified as the most one, exhibiting balanced potency against RIPK2 (IC50 = 12 nM) and RIPK3 (IC50 = 18 nM), as well as demonstrating good selectivity over other kinase targets. Further biological evaluation confirmed that compound 29 could bind directly to RIPK2 and RIPK3, effectively suppressing NOD-induced cytokine production and cellular necroptosis. Notably, compound 29 displayed significant therapeutic effects in a DSS-induced colitis mouse model, with no detectable toxicity, indicating its promising therapeutic potential as RIPK2/RIPK3 dual inhibitors for treatment of IBD.
Collapse
Affiliation(s)
- Duo Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shuang Hu
- Department of Pharmacy, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
| | - Chun Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jiaxin Ai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jiahai Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Tianwen Gao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Department of Pharmacy, Fuyang Hospital of Anhui Medical University, Fuyang 236112, China
| | - Yaling Hong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhengxing Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Mingzhen Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - XiaoXin Tang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - YanTai Chang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - QiHang Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shuo Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qing Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - JunJie Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chen Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xuesong Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jingbo Shi
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xinhua Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuhai Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Binhu Hospital District, Hefei 230041, China
| | - Mingming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
2
|
Koch J, Elbæk CR, Priesmann D, Damgaard RB. The Molecular Toolbox for Linkage Type-Specific Analysis of Ubiquitin Signaling. Chembiochem 2025:e2500114. [PMID: 40192223 DOI: 10.1002/cbic.202500114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/04/2025] [Indexed: 04/22/2025]
Abstract
Modification of proteins and other biomolecules with ubiquitin regulates virtually all aspects of eukaryotic cell biology. Ubiquitin can be attached to substrates as a monomer or as an array of polyubiquitin chains with defined linkages between the ubiquitin moieties. Each ubiquitin linkage type adopts a distinct structure, enabling the individual linkage types to mediate specific functions or outcomes in the cell. The dynamics, heterogeneity, and in some cases low abundance, make analysis of linkage type-specific ubiquitin signaling a challenging and complex task. Herein, the strategies and molecular tools available for enrichment, detection, and characterization of linkage type-specific ubiquitin signaling, are reviewed. The molecular "toolbox" consists of a range of molecularly different affinity reagents, including antibodies and antibody-like molecules, affimers, engineered ubiquitin-binding domains, catalytically inactive deubiquitinases, and macrocyclic peptides, each with their unique characteristics and binding modes. The molecular engineering of these ubiquitin-binding molecules makes them useful tools and reagents that can be coupled to a range of analytical methods, such as immunoblotting, fluorescence microscopy, mass spectrometry-based proteomics, or enzymatic analyses to aid in deciphering the ever-expanding complexity of ubiquitin modifications.
Collapse
Affiliation(s)
- Julian Koch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kongens Lyngby, Denmark
| | - Camilla Reiter Elbæk
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kongens Lyngby, Denmark
| | - Dominik Priesmann
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kongens Lyngby, Denmark
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Lu C, Liu H, Liu T, Sun S, Zheng Y, Ling T, Luo X, E Y, Xu Y, Li J, Liu L, Miao L, Liu Z, Yu C. RIPK2 promotes colorectal cancer metastasis by protecting YAP degradation from ITCH-mediated ubiquitination. Cell Death Dis 2025; 16:248. [PMID: 40185717 PMCID: PMC11971272 DOI: 10.1038/s41419-025-07599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide, making the exploration of metastatic mechanisms crucial for therapeutic advancements. In this study, we identified receptor-interacting protein kinase 2 (RIPK2) as an independent risk factor for poor CRC prognosis. Single-cell RNA sequencing and spatial transcriptomics revealed that a tumor cell cluster with high RIPK2 expression exhibited enhanced metastatic potential, closely linked to bacterial invasion. In vitro and in vivo experiments confirmed that RIPK2 specifically promotes tumor cell migration and invasion, rather than proliferation. Proteomic analysis indicated that RIPK2 knockdown leads to increased proteolysis mediated by ubiquitin, particularly affecting the oncoprotein YAP. Additionally, bacterial invasion of epithelial cells was significantly suppressed in RIPK2 knockdown cells, suggesting a connection to the NOD2-RIPK2 pathway, stimulated by bacterial muramyl dipeptide (MDP). We demonstrated that MDP levels are significantly higher in CRC tissues compared to adjacent non-cancerous tissues, correlating with RIPK2 activation. This activation triggers K63-linked ubiquitination of RIPK2, essential for NF-κB and MAPK pathway activation. Mechanistic studies identified the E3 ubiquitin ligase ITCH as a critical mediator, balancing K63-linked ubiquitination of RIPK2 and K48-linked ubiquitination of YAP, leading to YAP degradation and suppressed CRC metastasis. The stability of YAP could also be disrupted by GSK583, a pharmacological inhibitor of RIPK2, effectively suppressing CRC metastasis. Our findings provide deep insights into RIPK2's role in CRC progression and present a promising target for future therapeutic strategies.
Collapse
Affiliation(s)
- Chen Lu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, 211112, Jiangsu, China
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Hongda Liu
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Tianyu Liu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, 211112, Jiangsu, China
| | - Sizheng Sun
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Yanan Zheng
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Tao Ling
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Xiagang Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Yiming E
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Yuting Xu
- Ophthalmic Oncology Department, Nanjing Medical University Eye Hospital, Nanjing, 210008, China
| | - Jie Li
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Lei Liu
- Department of Gastroenterology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu, China
| | - Lin Miao
- Medical Centre for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, 211112, Jiangsu, China.
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
4
|
Schafer RM, Giancotti LA, Chrivia JC, Li Y, Mufti F, Kufer TA, Zhang J, Doyle TM, Salvemini D. CARTp/GPR160 mediates behavioral hypersensitivities in mice through NOD2. Pain 2025; 166:902-915. [PMID: 39356206 DOI: 10.1097/j.pain.0000000000003418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024]
Abstract
ABSTRACT Neuropathic pain is a debilitating chronic condition that remains difficult to treat. More efficacious and safer therapeutics are needed. A potential target for therapeutic intervention recently identified by our group is the G-protein coupled receptor 160 (GPR160) and the cocaine- and amphetamine-regulated transcript peptide (CARTp) as a ligand for GPR160. Intrathecal administration of CARTp in rodents causes GPR160-dependent behavioral hypersensitivities. However, the molecular and biochemical mechanisms underpinning GPR160/CARTp-induced behavioral hypersensitivities in the spinal cord remain poorly understood. Therefore, we performed an unbiased RNA transcriptomics screen of dorsal horn spinal cord (DH-SC) tissues harvested at the time of peak CARTp-induced hypersensitivities and identified nucleotide-binding oligomerization domain-containing protein 2 ( Nod2 ) as a gene that is significantly upregulated. Nucleotide-binding oligomerization domain-containing protein 2 is a cytosolic pattern-recognition receptor involved in activating the immune system in response to bacterial pathogens. While NOD2 is well studied under pathogenic conditions, the role of NOD2-mediated responses in nonpathogenic settings is still not well characterized. Genetic and pharmacological approaches reveal that CARTp-induced behavioral hypersensitivities are driven by NOD2, with co-immunoprecipitation studies indicating an interaction between GPR160 and NOD2. Cocaine- and amphetamine-regulated transcript peptide-induced behavioral hypersensitivities are independent of receptor-interacting protein kinase 2 (RIPK2), a common adaptor protein to NOD2. Immunofluorescence studies found NOD2 co-expressed with endothelial cells rather than glial cells, implicating potential roles for CARTp/NOD2 signaling in these cells. While these findings are based only on studies with male mice, our results identify a novel pathway by which CARTp causes behavioral hypersensitivities in the DH-SC through NOD2 and highlights the importance of NOD2-mediated responses in nonpathogenic settings.
Collapse
Affiliation(s)
- Rachel M Schafer
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Luigino A Giancotti
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - John C Chrivia
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Ying Li
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Fatma Mufti
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Timothy M Doyle
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
5
|
Zhu Y, Dai Y, Tian Y. The Peptide PROTAC Modality: A New Strategy for Drug Discovery. MedComm (Beijing) 2025; 6:e70133. [PMID: 40135198 PMCID: PMC11933449 DOI: 10.1002/mco2.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
In recent years, proteolysis targeting chimera (PROTAC) technology has made significant progress in the field of drug development. Traditional drugs mainly focus on inhibiting or activating specific proteins, while PROTAC technology provides new ideas for treating various diseases by inducing the degradation of target proteins. Especially for peptide PROTACs, due to their unique structural and functional characteristics, they have become a hot research topic. This review provides a detailed description of the key components, mechanisms, and design principles of peptide PROTACs, elaborates on their applications in skin-related diseases, oncology, and other potential therapeutic fields, analyzes their advantages and challenges, and looks forward to their future development prospects. The development of peptide PROTAC technology not only opens up new paths for drug research and development, but also provides new ideas for solving the resistance and safety issues faced by traditional small-molecule drugs. Compared with small-molecule PROTACs, peptide PROTACs have advantages such as multitargeting, biodegradability, low toxicity, and flexibility in structural design. With the deepening of research and the continuous maturity of technology, peptide PROTACs are expected to become one of the important strategies for future drug discovery, providing new hope for the treatment of more intractable diseases. Peptide PROTACs are ushering in a new era of precision medicine.
Collapse
Affiliation(s)
- Youmin Zhu
- Shanghai AZ Science and Technology Co., Ltd.ShanghaiChina
| | - Yu Dai
- Shanghai AZ Science and Technology Co., Ltd.ShanghaiChina
- School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
| | - Yuncai Tian
- Shanghai AZ Science and Technology Co., Ltd.ShanghaiChina
| |
Collapse
|
6
|
Ambujakshan A, Sahu BD. Unraveling the role of RIPKs in diabetic kidney disease and its therapeutic perspectives. Biochem Pharmacol 2025; 231:116642. [PMID: 39571918 DOI: 10.1016/j.bcp.2024.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Nephropathy is the microvascular complication of diabetes mellitus and is the leading cause of chronic kidney disease. This review discusses the implications of receptor-interacting protein kinase (RIPK) family members and their regulation of inflammation and cell death pathways in the initiation and progression of diabetic kidney disease. Hyperglycemia leads to reactive oxygen species (ROS) generation and RIPK1 overexpression, the first regulator of necroptosis. Further, RIPK1 can form complex I to promote nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathway activation or complex II to cause programmed cell death in the kidneys. The rise in RIPK1 level upon ROS generation declines the apoptosis regulators' level while the necroptosis regulators' level is boosted. Necroptosis is a programmed or controlled necrosis-type cell death pathway executed by RIPK1, RIPK3, and mixed lineage kinase domain-like (MLKL) proteins, and recent research suggests its importance in diabetic nephropathy. In necroptosis, RIPK1 and RIPK3 interrelate with their RIP homotypic interaction motif (RHIM) domains and cause the recruitment of MLKL. Next, MLKL gets oligomerized, migrate towards the plasma membrane, and causes its rupture. We emphasized different research studies on drugs highlighting the nephroprotective effects via regulating the RIPKs. We hope that the conclusions of this review may provide new strategies for diabetic kidney disease treatment and promising targets for drug development based on necroptosis.
Collapse
Affiliation(s)
- Anju Ambujakshan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India.
| |
Collapse
|
7
|
Wang Y, Xu M, Liu X, Liu D. Receptor interacting serine/threonine kinase 2 promotes rheumatoid arthritis progression and partially regulates nuclear factor kappa B pathway. Cytojournal 2024; 21:56. [PMID: 39737123 PMCID: PMC11683368 DOI: 10.25259/cytojournal_63_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/01/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Rheumatoid arthritis (RA) is a disabling systemic autoimmune disease worldwide; however, its molecular pathway remains largely unknown. Thus, this study aimed to explore the effects of receptor-interacting serine/threonine kinase 2 (RIPK2) on RA progression and its underlying mechanism. Material and Methods RIPK2 expression was analyzed using real-time quantitative polymerase chain reaction, immunohistochemical staining, and Western blot (WB) analysis in RA synovial tissues or cells. Cell viability or proliferation was determined using the cell counting kit-8 and 5-ethynyl-2'-deoxyuridine. Cell metastasis was analyzed using the transwell assay and wound healing assay. Flow cytometry was adopted to measure cell apoptosis. The level of inflammation-related factors was measured using the enzyme-linked immunosorbent assay. WB analysis was used to determine the expression level of nuclear factor kappa B (NF-κB) pathway-related genes. Results RIPK2 was highly expressed in RA synovial tissues and cells. Transfection with RIPK2 short hairpin RNA plasmids reduced the gene expression level of RIPK2 in RA fibroblast-like synoviocytes (FLS) cells. Notably, RIPK2 silencing hindered the proliferation, invasion, and migration of tumor cells as well as accelerated the apoptosis of RA-FLS cells. Furthermore, RIPK2 silencing suppressed the RA-FLS cell inflammatory response and NF-κB pathway. Conclusion RIPK2 silencing could retrain the malignant behavior and inflammatory response of RA-FLSs and partially modulate the NF-κB pathway.
Collapse
Affiliation(s)
- Yanzheng Wang
- Department of Medical Laboratory, Yantaishan Hospital, Yantai, China
| | - Meiyu Xu
- Department of Critical Medicine, and Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Xinxin Liu
- Department of Hospital Infection Management, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Deheng Liu
- Department of Hand and Foot Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
8
|
Vats S, Bobrovs R, Söderhjelm P, Bhakat S. AlphaFold-SFA: Accelerated sampling of cryptic pocket opening, protein-ligand binding and allostery by AlphaFold, slow feature analysis and metadynamics. PLoS One 2024; 19:e0307226. [PMID: 39190764 DOI: 10.1371/journal.pone.0307226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/02/2024] [Indexed: 08/29/2024] Open
Abstract
Sampling rare events in proteins is crucial for comprehending complex phenomena like cryptic pocket opening, where transient structural changes expose new binding sites. Understanding these rare events also sheds light on protein-ligand binding and allosteric communications, where distant site interactions influence protein function. Traditional unbiased molecular dynamics simulations often fail to sample such rare events, as the free energy barrier between metastable states is large relative to the thermal energy. This renders these events inaccessible on the timescales typically simulated by unbiased molecular dynamics, limiting our understanding of these critical processes. In this paper, we proposed a novel unsupervised learning approach termed as slow feature analysis (SFA) which aims to extract slowly varying features from high-dimensional temporal data. SFA trained on small unbiased molecular dynamics simulations launched from AlphaFold generated conformational ensembles manages to capture rare events governing cryptic pocket opening, protein-ligand binding, and allosteric communications in a kinase. Metadynamics simulations using SFA as collective variables manage to sample 'deep' cryptic pocket opening within a few hundreds of nanoseconds which was beyond the reach of microsecond long unbiased molecular dynamics simulations. SFA augmented metadynamics also managed to capture conformational plasticity of protein upon ligand binding/unbinding and provided novel insights into allosteric communication in receptor-interacting protein kinase 2 (RIPK2) which dictates protein-protein interaction. Taken together, our results show how SFA acts as a dimensionality reduction tool which bridges the gap between AlphaFold, molecular dynamics simulation and metadynamics in context of capturing rare events in biomolecules, extending the scope of structure-based drug discovery in the era of AlphaFold.
Collapse
Affiliation(s)
- Shray Vats
- Department of Computer Science, University of Texas at Austin, Austin, TX, United States of America
| | | | - Pär Söderhjelm
- Division of Biophysical Chemistry, Chemical Center, Lund University, Lund, Sweden
| | | |
Collapse
|
9
|
Villagra UMM, da Cunha BR, Polachini GM, Henrique T, Stefanini ACB, de Castro TB, da Silva CHTP, Feitosa OA, Fukuyama EE, López RVM, Dias-Neto E, Nunes FD, Severino P, Tajara EH. Expression of Truncated Products at the 5'-Terminal Region of RIPK2 and Evolutive Aspects that Support Their Biological Importance. Genome Biol Evol 2024; 16:evae106. [PMID: 38752399 PMCID: PMC11221433 DOI: 10.1093/gbe/evae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 07/04/2024] Open
Abstract
Alternative splicing is the process of generating different mRNAs from the same primary transcript, which contributes to increase the transcriptome and proteome diversity. Abnormal splicing has been associated with the development of several diseases including cancer. Given that mutations and abnormal levels of the RIPK2 transcript and RIP-2 protein are frequent in tumors, and that RIP-2 modulates immune and inflammatory responses, we investigated alternative splicing events that result in partial deletions of the kinase domain at the N-terminus of RIP-2. We also investigated the structure and expression of the RIPK2 truncated variants and isoforms in different environments. In addition, we searched data throughout Supraprimates evolution that could support the biological importance of RIPK2 alternatively spliced products. We observed that human variants and isoforms were differentially regulated following temperature stress, and that the truncated transcript was more expressed than the long transcript in tumor samples. The inverse was found for the longer protein isoform. The truncated variant was also detected in chimpanzee, gorilla, hare, pika, mouse, rat, and tree shrew. The fact that the same variant has been preserved in mammals with divergence times up to 70 million years raises the hypothesis that it may have a functional significance.
Collapse
Affiliation(s)
- Ulises M M Villagra
- Faculty of Exact Sciences, Biotechnology and Molecular Biology Institute (IBBM), National University of La Plata-CCT, CONICET, La Plata, Argentina
| | - Bianca R da Cunha
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Giovana M Polachini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Ana Carolina Buzzo Stefanini
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Tialfi Bergamin de Castro
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Microbial Pathogenesis Department, University of Maryland Baltimore, School of Dentistry, Baltimore, MD, USA
| | - Carlos H T P da Silva
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo/USP, Ribeirão Preto, SP, Brazil
| | - Olavo A Feitosa
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo/USP, Ribeirão Preto, SP, Brazil
| | - Erica E Fukuyama
- Head and Neck Surgery Department, Arnaldo Vieira de Carvalho Cancer Institute, São Paulo, SP, Brazil
| | - Rossana V M López
- Comprehensive Center for Precision Oncology, Center for Translational Research in Oncology, State of São Paulo Cancer Institute—ICESP, Clinics Hospital, Sao Paulo University Medical School, São Paulo, SP, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Fabio D Nunes
- Department of Stomatology, School of Dentistry, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Patricia Severino
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Eloiza H Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Ma RY, Deng ZL, Du QY, Dai MQ, Luo YY, Liang YE, Dai XZ, Guo SM, Zhao WH. Enterococcus faecalis Extracellular Vesicles Promote Apical Periodontitis. J Dent Res 2024; 103:672-682. [PMID: 38679731 DOI: 10.1177/00220345241230867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
Enterococcus faecalis is an important contributor to the persistence of chronic apical periodontitis. However, the mechanism by which E. faecalis infection in the root canals and dentinal tubules affects periapical tissue remains unclear. Bacterial extracellular vesicles (EVs) act as natural carriers of microbe-associated molecular patterns (MAMPs) and have recently attracted considerable attention. In this study, we investigated the role of EVs derived from E. faecalis in the pathogenesis of apical periodontitis. We observed that E. faecalis EVs can induce inflammatory bone destruction in the periapical areas of mice. Double-labeling immunofluorescence indicated that M1 macrophage infiltration was increased by E. faecalis EVs in apical lesions. Moreover, in vitro experiments demonstrated the internalization of E. faecalis EVs into macrophages. Macrophages tended to polarize toward the M1 profile after treatment with E. faecalis EVs. Pattern recognition receptors (PRRs) can recognize MAMPs of bacterial EVs and, in turn, trigger inflammatory responses. Thus, we performed further mechanistic exploration, which showed that E. faecalis EVs considerably increased the expression of NOD2, a cytoplasmic PRR, and that inhibition of NOD2 markedly reduced macrophage M1 polarization induced by E. faecalis EVs. RIPK2 ubiquitination is a major downstream of NOD2. We also observed increased RIPK2 ubiquitination in macrophages treated with E. faecalis EVs, and E. faecalis EV-induced macrophage M1 polarization was notably alleviated by the RIPK2 ubiquitination inhibitor. Our study revealed the potential for EVs to be considered a virulence factor of E. faecalis and found that E. faecalis EVs can promote macrophage M1 polarization via NOD2/RIPK2 signaling. To our knowledge, this is the first report to investigate apical periodontitis development from the perspective of bacterial vesicles and demonstrate the role and mechanism of E. faecalis EVs in macrophage polarization. This study expands our understanding of the pathogenic mechanism of E. faecalis and provides novel insights into the pathogenesis of apical periodontitis.
Collapse
Affiliation(s)
- R Y Ma
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Z L Deng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Q Y Du
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - M Q Dai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y Y Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y E Liang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - X Z Dai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - S M Guo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - W H Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Goncharov T, Kőműves LG, Kist M, Castellanos ER, Witt A, Fedorova AV, Izrael-Tomasevic A, Yu K, Keir M, Matsumoto ML, Vucic D. Simultaneous substrate and ubiquitin modification recognition by bispecific antibodies enables detection of ubiquitinated RIP1 and RIP2. Sci Signal 2024; 17:eabn1101. [PMID: 38227684 DOI: 10.1126/scisignal.abn1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
Ubiquitination is a posttranslational modification that is crucial for the dynamic regulation of diverse signaling pathways. To enhance our understanding of ubiquitination-mediated signaling, we generated a new class of bispecific antibodies that combine recognition of ubiquitination substrates and specific polyubiquitin linkages. RIP1-K63 and RIP1-linear (Lin) linkage polyubiquitin bispecific antibodies detected linkage-specific ubiquitination of the proinflammatory kinase RIP1 in cells and in tissues and revealed RIP1 ubiquitination by immunofluorescence. Similarly, ubiquitination of the RIP1-related kinase RIP2 with K63 or linear linkages was specifically detected with the RIP2-K63 and RIP2-Lin bispecific antibodies, respectively. Furthermore, using the RIP2-K63 and RIP2-Lin bispecific antibodies, we found prominent K63-linked and linear RIP2 ubiquitination in samples from patients with ulcerative colitis and Crohn's disease. We also developed a bispecific antibody (K63-Lin) that simultaneously recognizes K63-linked and linear ubiquitination of components of various signaling pathways. Together, these bispecific antibodies represent a new class of reagents with the potential to be developed for the detection of inflammatory biomarkers.
Collapse
Affiliation(s)
- Tatiana Goncharov
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - László G Kőműves
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Matthias Kist
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - Erick R Castellanos
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Axel Witt
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - Anna V Fedorova
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
| | - Anita Izrael-Tomasevic
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Kebing Yu
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Mary Keir
- Department of Human Pathobiology and OMNI Reverse Translation, Genentech, South San Francisco, CA 94080, USA
| | - Marissa L Matsumoto
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| |
Collapse
|
12
|
Zheng S, Li Y, Song X, Wu M, Yu L, Huang G, Liu T, Zhang L, Shang M, Zhu Q, Gao C, Chen L, Liu H. OTUD1 ameliorates cerebral ischemic injury through inhibiting inflammation by disrupting K63-linked deubiquitination of RIP2. J Neuroinflammation 2023; 20:281. [PMID: 38012669 PMCID: PMC10680203 DOI: 10.1186/s12974-023-02968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Inflammatory response triggered by innate immunity plays a pivotal element in the progress of ischemic stroke. Receptor-interacting kinase 2 (RIP2) is implicated in maintaining immunity homeostasis and regulating inflammatory response. However, the underlying mechanism of RIP2 in ischemic stroke is still not well understood. Hence, the study investigated the role and the ubiquitination regulatory mechanism of RIP2 in ischemic stroke. METHODS Focal cerebral ischemia was introduced by middle cerebral artery occlusion (MCAO) in wild-type (WT) and OTUD1-deficient (OTUD1-/-) mice, oxygen glucose deprivation and reoxygenation (OGD/R) models in BV2 cells and primary cultured astrocytes were performed for monitoring of experimental stroke. GSK2983559 (GSK559), a RIP2 inhibitor was intraventricularly administered 30 min before MCAO. Mice brain tissues were collected for TTC staining and histopathology. Protein expression of RIP2, OTUD1, p-NF-κB-p65 and IκBα was determined by western blot. Localization of RIP2 and OTUD1 was examined by immunofluorescence. The change of IL-1β, IL-6 and TNF-α was detected by ELISA assay and quantitative real-time polymerase chain reaction. Immunoprecipitation and confocal microscopy were used to study the interaction of RIP2 and OTUD1. The activity of NF-κB was examined by dual-luciferase assay. RESULTS Our results showed upregulated protein levels of RIP2 and OTUD1 in microglia and astrocytes in mice subjected to focal cerebral ischemia. Inhibition of RIP2 by GSK559 ameliorated the cerebral ischemic outcome by repressing the NF-κB activity and the inflammatory response. Mechanistically, OTUD1 interacted with RIP2 and sequentially removed the K63-linked polyubiquitin chains of RIP2, thereby inhibiting NF-κB activation. Furthermore, OTUD1 deficiency exacerbated cerebral ischemic injury in response to inflammation induced by RIP2 ubiquitination. CONCLUSIONS These findings suggested that RIP2 mediated cerebral ischemic lesion via stimulating inflammatory response, and OTUD1 ameliorated brain injury after ischemia through inhibiting RIP2-induced NF-κB activation by specifically cleaving K63-linked ubiquitination of RIP2.
Collapse
Affiliation(s)
- Shengnan Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Yiquan Li
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaomeng Song
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Mengting Wu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Lu Yu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Gan Huang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Tengfei Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Lei Zhang
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Mingmei Shang
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Qingfen Zhu
- Shandong Institute for Food and Drug Control, Jinan, Shandong, 250012, People's Republic of China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Lin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
| | - Huiqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
- Department of Rehabilitation Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
13
|
Mou Y, Liao W, Liang Y, Li Y, Zhao M, Guo Y, Sun Q, Tang J, Wang Z. Environmental pollutants induce NLRP3 inflammasome activation and pyroptosis: Roles and mechanisms in various diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165851. [PMID: 37516172 DOI: 10.1016/j.scitotenv.2023.165851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Environmental pollution is changing with economic development. Most environmental pollutants are characterized by stable chemical properties, strong migration, potential toxicity, and multiple exposure routes. Harmful substances are discharged excessively, and large quantities of unknown new compounds are emerging, being transmitted and amplifying in the food chain. The increasingly severe problems of environmental pollution have forced people to re-examine the relationship between environmental pollution and health. Pyroptosis and activation of the NLRP3 inflammasome are critical in maintaining the immune balance and regulating the inflammatory process. Numerous diseases caused by environmental pollutants are closely related to NLRP3 inflammasome activation and pyroptosis. We intend to systematically explain the steps and important events that are common in life but easily overlooked by which environmental pollutants activate the NLRP3 inflammasome and pyroptosis pathways. This comprehensive review also discusses the interaction network between environmental pollutants, the NLRP3 inflammasome, pyroptosis, and diseases. Thus, research progress on the impact of decreasing oxidative stress levels to inhibit the NLRP3 inflammasome and pyroptosis, thereby repairing homeostasis and reshaping health, is systematically examined. This review aims to deepen the understanding of the impact of environmental pollutants on life and health and provide a theoretical basis and potential programs for the development of corresponding treatment strategies.
Collapse
Affiliation(s)
- Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yun Liang
- The Third People's Hospital of Chengdu, Chengdu 610014, China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mei Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yaoyao Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Zhilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
14
|
Padoan A, Musso G, Contran N, Basso D. Inflammation, Autoinflammation and Autoimmunity in Inflammatory Bowel Diseases. Curr Issues Mol Biol 2023; 45:5534-5557. [PMID: 37504266 PMCID: PMC10378236 DOI: 10.3390/cimb45070350] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
In this review, the role of innate and adaptive immunity in the pathogenesis of inflammatory bowel diseases (IBD) is reported. In IBD, an altered innate immunity is often found, with increased Th17 and decreased Treg cells infiltrating the intestinal mucosa. An associated increase in inflammatory cytokines, such as IL-1 and TNF-α, and a decrease in anti-inflammatory cytokines, such as IL-10, concur in favoring the persistent inflammation of the gut mucosa. Autoinflammation is highlighted with insights in the role of inflammasomes, which activation by exogenous or endogenous triggers might be favored by mutations of NOD and NLRP proteins. Autoimmunity mechanisms also take place in IBD pathogenesis and in this context of a persistent immune stimulation by bacterial antigens and antigens derived from intestinal cells degradation, the adaptive immune response takes place and results in antibodies and autoantibodies production, a frequent finding in these diseases. Inflammation, autoinflammation and autoimmunity concur in altering the mucus layer and enhancing intestinal permeability, which sustains the vicious cycle of further mucosal inflammation.
Collapse
Affiliation(s)
- Andrea Padoan
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Giulia Musso
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Nicole Contran
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Daniela Basso
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
15
|
Lai Y, Wang X, Sun X, Wu S, Chen X, Yang C, Zhang W, Yu X, Tong Y, Ma F, Zheng H, Zhang X, He S. Discovery of a novel RIPK2 inhibitor for the treatment of inflammatory bowel disease. Biochem Pharmacol 2023:115647. [PMID: 37315817 DOI: 10.1016/j.bcp.2023.115647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Nucleotide-binding oligomerization domain-containing protein 1 and 2 (NOD 1/2) are important cytosolic pattern recognition receptors that initiate host immune response. The dysregulation of NOD signaling is highly associated with inflammatory bowel disease (IBD) that needs novel treatment options. Receptor-interacting protein kinase 2 (RIPK2) is a critical mediator of NOD signaling and considered a promising therapeutic target for IBD treatment. However, there are currently no RIPK2 inhibitors available for clinical use. Here, we report the discovery and characterization of Zharp2-1 as a novel and potent RIPK2 inhibitor that effectively blocks RIPK2 kinase function and NOD-mediated NF-κB/MAPK activation in both human and mouse cell lines. Zharp2-1 exhibits significantly superior solubility compared to the non-prodrug form of the advanced RIPK2 inhibitor prodrug GSK2983559. The improved solubility combined with favorable in vitro metabolic stability translated to excellent in vivo pharmacokinetic profiles for Zharp2-1. In addition, Zharp2-1 demonstrates better effects than GSK2983559 in inhibiting the muramyl dipeptide (MDP)-induced production of pro-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs) and MDP-induced peritonitis in mice. Furthermore, Zharp2-1 markedly reduces Listeria monocytogenes infection-induced cytokines release in both human and mouse cells. Importantly, Zharp2-1 significantly ameliorates DNBS-induced colitis in rats and suppressed pro-inflammatory cytokine release in intestinal specimens from IBD patients. Collectively, our findings indicate that Zharp2-1 is a promising RIPK2 inhibitor with the potential to be further developed for IBD therapy.
Collapse
Affiliation(s)
- Yujun Lai
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Xinhui Wang
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Xue Sun
- The First Affiliated hospital of Soochow University, Suzhou, China
| | - Shuwei Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xin Chen
- The First Affiliated hospital of Soochow University, Suzhou, China
| | - Chengkui Yang
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Wei Zhang
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Xiaoliang Yu
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Yushan Tong
- Xi'an jiaotong-Liverpool University, Suzhou, China
| | - Feng Ma
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Sudan He
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
16
|
You J, Wang Y, Chen H, Jin F. RIPK2: a promising target for cancer treatment. Front Pharmacol 2023; 14:1192970. [PMID: 37324457 PMCID: PMC10266216 DOI: 10.3389/fphar.2023.1192970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
As an essential mediator of inflammation and innate immunity, the receptor-interacting serine/threonine-protein kinase-2 (RIPK2) is responsible for transducing signaling downstream of the intracellular peptidoglycan sensors nucleotide oligomerization domain (NOD)-like receptors 1 and 2 (NOD1/2), which will further activate nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, leading to the transcription activation of pro-inflammatory cytokines and productive inflammatory response. Thus, the NOD2-RIPK2 signaling pathway has attracted extensive attention due to its significant role in numerous autoimmune diseases, making pharmacologic RIPK2 inhibition a promising strategy, but little is known about its role outside the immune system. Recently, RIPK2 has been related to tumorigenesis and malignant progression for which there is an urgent need for targeted therapies. Herein, we would like to evaluate the feasibility of RIPK2 being the anti-tumor drug target and summarize the research progress of RIPK2 inhibitors. More importantly, following the above contents, we will analyze the possibility of applying small molecule RIPK2 inhibitors to anti-tumor therapy.
Collapse
Affiliation(s)
- Jieqiong You
- Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China
- Shanghai Linnova Pharmaceuticals Co. Ltd, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China
- Shanghai Linnova Pharmaceuticals Co. Ltd, Shanghai, China
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Jin
- Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China
- Shanghai Linnova Pharmaceuticals Co. Ltd, Shanghai, China
| |
Collapse
|
17
|
Zhao W, Leng RX, Ye DQ. RIPK2 as a promising druggable target for autoimmune diseases. Int Immunopharmacol 2023; 118:110128. [PMID: 37023697 DOI: 10.1016/j.intimp.2023.110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Receptor Interacting Serine/Threonine Kinase 2 (RIPK2) is an essential regulator of the inflammatory process and immune response. In innate immunity, the NOD-RIPK2 signaling axis is an important pathway that directly mediates inflammation and immune response. In adaptive immunity, RIPK2 may affect T cell proliferation, differentiation and cellular homeostasis thereby involving T cell-driven autoimmunity, but the exact mechanism remains unclear. Recent advances suggest a key role of RIPK2 in diverse autoimmune diseases (ADs) such as inflammatory bowel diseases, rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, and Behcet's disease. This review aims to provide valuable therapeutic direction for ADs by focusing on the function and modulation of RIPK2 in innate and adaptive immunity, its involvement with various ADs and the application of RIPK2-related drugs in ADs. We raise the notion that drug targeting RIPK2 could be a promising therapeutic strategy for the treatment of ADs, though much work remains to be done for clinical application.
Collapse
|
18
|
Le L, Shan H, Lin Y, Xia W, Ma X, Jiang C, Shi Z, Xu Y. The ubiquitination of RIPK2 is mediated by Peli3 and negatively regulates the onset of infectious osteomyelitis. Jpn J Infect Dis 2023. [PMID: 37121674 DOI: 10.7883/yoken.jjid.2022.622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Osteomyelitis is the infection and destruction of bone. Until now, there is no universal protocol for its treatment. Receptor-interacting serine/threonine-protein kinase 2 (RIPK2) was implicated in the development of osteomyelitis. However, its detailed mechanism remains unknown. 6-8 weeks old wild-type or Pellino E3 Ubiquitin Protein Ligase Family Member 3 (Peli3) deficiency mice were injected with S. aureus to induce osteomyelitis. RAW264.7 cells or bone marrow-derived macrophages (BMDMs) isolated from mice, were treated with lipopolysaccharides (LPS). Knocking down Peli3 in RAW264.7 cells increased the expressions of inflammatory cytokines after the stimulation of LPS, including interleukin-1β, interleukin-6 and tumor necrosis factor-α. Inflammation was also activated in S. aureus-induced Peli3 deficiency mice. Moreover, Peli3 deficiency mice also displayed more severe symptoms of osteomyelitis in S. aureus-infected mice. Moreover, Peli3 targeted and degraded RIPK2 through K48-linked ubiquitination. Peli3 negatively modulates osteomyelitis by degrading RIPK2. Our data further expand current understanding of RIPK2 on osteomyelitis, which suggests that RIPK2 might serve as novel therapeutic target for treating osteomyelitis.
Collapse
Affiliation(s)
- Lixiang Le
- Departments of Orthopedist, the Second Affiliated Hospital of Soochow University, China
| | - Haojie Shan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Yiwei Lin
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Wenyang Xia
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Xin Ma
- Departments of Orthopedist, the Second Affiliated Hospital of Soochow University, China
| | - Chaolai Jiang
- Departments of Orthopedist, the Second Affiliated Hospital of Soochow University, China
| | - Zhongmin Shi
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Youjia Xu
- Departments of Orthopedist, the Second Affiliated Hospital of Soochow University, China
| |
Collapse
|
19
|
Witt A, Goncharov T, Lee YM, Kist M, Dohse M, Eastham J, Dugger D, Newton K, Webster JD, Vucic D. XIAP deletion sensitizes mice to TNF-induced and RIP1-mediated death. Cell Death Dis 2023; 14:262. [PMID: 37041175 PMCID: PMC10090100 DOI: 10.1038/s41419-023-05793-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/13/2023]
Abstract
XIAP is a caspase-inhibitory protein that blocks several cell death pathways, and mediates proper activation of inflammatory NOD2-RIP2 signaling. XIAP deficiency in patients with inflammatory diseases such as Crohn's disease, or those needing allogeneic hematopoietic cell transplantation, is associated with a worse prognosis. In this study, we show that XIAP absence sensitizes cells and mice to LPS- and TNF-mediated cell death without affecting LPS- or TNF-induced NF-κB and MAPK signaling. In XIAP deficient mice, RIP1 inhibition effectively blocks TNF-stimulated cell death, hypothermia, lethality, cytokine/chemokine release, intestinal tissue damage and granulocyte migration. By contrast, inhibition of the related kinase RIP2 does not affect TNF-stimulated events, suggesting a lack of involvement for the RIP2-NOD2 signaling pathway. Overall, our data indicate that in XIAP's absence RIP1 is a critical component of TNF-mediated inflammation, suggesting that RIP1 inhibition could be an attractive option for patients with XIAP deficiency.
Collapse
Affiliation(s)
- Axel Witt
- Department of Immunology Discovery, Genentech, South San Francisco, CA, 94080, USA
- Neovii Pharmaceutical AG, 8640, Rapperswil, Switzerland
| | - Tatiana Goncharov
- Department of Immunology Discovery, Genentech, South San Francisco, CA, 94080, USA
| | - Yujung Michelle Lee
- Department of Immunology Discovery, Genentech, South San Francisco, CA, 94080, USA
| | - Matthias Kist
- Department of Immunology Discovery, Genentech, South San Francisco, CA, 94080, USA
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Monika Dohse
- Department of Pathology, Genentech, South San Francisco, CA, 94080, USA
| | - Jeff Eastham
- Department of Pathology, Genentech, South San Francisco, CA, 94080, USA
| | - Debra Dugger
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, 94080, USA
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech, South San Francisco, CA, 94080, USA
| | - Domagoj Vucic
- Department of Immunology Discovery, Genentech, South San Francisco, CA, 94080, USA.
| |
Collapse
|
20
|
Jing L, Zheng D, Sun X, Shi Z. DBDPE upregulates NOD-like receptor signaling to induce NLRP3 inflammasome-mediated HAECs pyroptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120882. [PMID: 36549449 DOI: 10.1016/j.envpol.2022.120882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Decabromodiphenyl ethane (DBDPE), a typical new brominated flame retardant (BFR), is a widespread new pollutant in the environment. Several studies and our previous studies have found that DBDPE can cause aortic endothelial injury and aortic endothelial cell pyroptosis, whereas the molecular mechanism involved has not been elucidated. In this study, we exposed human aortic endothelial cells (HAECs) to 25 μmol/L of DBDPE and analyzed the gene expression profiles by Affymetrix PrimeView™ Human Gene Expression Chip. The results showed that 886 genes were differentially expressed in the DBDPE exposure group. Enrichment analyses revealed that differentially expressed genes were mainly enriched in the inflammatory response and NOD-like receptor signal pathway. Gene-gene functional interaction analyses and crossover genes and pathways analyses found that the NOD-like receptor signal pathway may be involved in regulating NLRP3 and IL-18. We found that NOD2 cannot interact with NLRP3 directly through an immunoprecipitation experiment. Thus, we construct the RIPK2 knockdown HAECs cell line to repress the NOD-like receptor signaling and further study the mechanism of DBDPE-activated NLRP3 inflammasome to induce HAECs pyroptosis. The results showed that RIPK2 knockdown could repress DBDPE-induced NOD-like receptor signaling pathway upregulation, inhibit NLRP3 inflammasome activation, and decrease HAECs pyroptosis. In addition, RIPK2 knockdown decreased the ROS generation in HAECs induced by DBDPE. And NAC pretreated HAECs inhibited DBDPE-induced NLRP3 inflammasome activation and HAECs pyroptosis. These results demonstrated that DBDPE upregulated NOD-like receptor signaling to induce ROS generation and, in turn, activated NLRP3 inflammasome, leading to HAECs pyroptosis.
Collapse
Affiliation(s)
- Li Jing
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Dan Zheng
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xuejing Sun
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
21
|
Peng R, Wang CK, Wang‐Kan X, Idorn M, Kjær M, Zhou FY, Fiil BK, Timmermann F, Orozco SL, McCarthy J, Leung CS, Lu X, Bagola K, Rehwinkel J, Oberst A, Maelfait J, Paludan SR, Gyrd‐Hansen M. Human ZBP1 induces cell death-independent inflammatory signaling via RIPK3 and RIPK1. EMBO Rep 2022; 23:e55839. [PMID: 36268590 PMCID: PMC9724671 DOI: 10.15252/embr.202255839] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
ZBP1 is an interferon-induced cytosolic nucleic acid sensor that facilitates antiviral responses via RIPK3. Although ZBP1-mediated programmed cell death is widely described, whether and how it promotes inflammatory signaling is unclear. Here, we report a ZBP1-induced inflammatory signaling pathway mediated by K63- and M1-linked ubiquitin chains, which depends on RIPK1 and RIPK3 as scaffolds independently of cell death. In human HT29 cells, ZBP1 associated with RIPK1 and RIPK3 as well as ubiquitin ligases cIAP1 and LUBAC. ZBP1-induced K63- and M1-linked ubiquitination of RIPK1 and ZBP1 to promote TAK1- and IKK-mediated inflammatory signaling and cytokine production. Inhibition of caspase activity suppressed ZBP1-induced cell death but enhanced cytokine production in a RIPK1- and RIPK3 kinase activity-dependent manner. Lastly, we provide evidence that ZBP1 signaling contributes to SARS-CoV-2-induced cytokine production. Taken together, we describe a ZBP1-RIPK3-RIPK1-mediated inflammatory signaling pathway relayed by the scaffolding role of RIPKs and regulated by caspases, which may induce inflammation when ZBP1 is activated below the threshold needed to trigger a cell death response.
Collapse
Affiliation(s)
- Ruoshi Peng
- Nuffield Department of Medicine, Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
| | - Chris Kedong Wang
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research CenterUniversity of CopenhagenCopenhagenDenmark
| | - Xuan Wang‐Kan
- Nuffield Department of Medicine, Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
| | - Manja Idorn
- Department of BiomedicineAarhus UniversityAarhus CDenmark
| | - Majken Kjær
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research CenterUniversity of CopenhagenCopenhagenDenmark
| | - Felix Y Zhou
- Nuffield Department of Medicine, Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
| | - Berthe Katrine Fiil
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research CenterUniversity of CopenhagenCopenhagenDenmark
| | - Frederik Timmermann
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research CenterUniversity of CopenhagenCopenhagenDenmark
| | - Susana L Orozco
- Department of ImmunologyUniversity of WashingtonSeattleWAUSA
| | - Julia McCarthy
- Nuffield Department of Medicine, Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
| | - Carol S Leung
- Nuffield Department of Medicine, Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
| | - Xin Lu
- Nuffield Department of Medicine, Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
| | - Katrin Bagola
- Nuffield Department of Medicine, Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
- Division of ImmunologyFederal Institute for Vaccines and Biomedicines, Paul‐Ehrlich‐InstitutLangenGermany
| | - Jan Rehwinkel
- MRC Human Immunology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Andrew Oberst
- Department of ImmunologyUniversity of WashingtonSeattleWAUSA
| | - Jonathan Maelfait
- VIB‐UGent Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | | | - Mads Gyrd‐Hansen
- Nuffield Department of Medicine, Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research CenterUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
22
|
Design, synthesis, and structure-activity relationship of novel RIPK2 inhibitors. Bioorg Med Chem Lett 2022; 75:128968. [PMID: 36058467 DOI: 10.1016/j.bmcl.2022.128968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022]
Abstract
The NOD1/2 (nucleotide-binding oligomerization domain-containing protein 1/2) signaling pathways are involved in innate immune control and host defense. NOD dysfunction can result in a variety of autoimmune disorders. NOD-induced generation of inflammatory cytokines is mediated by receptor-interacting protein kinase 2 (RIPK2), which has been considered as a promising therapeutic target. Herein, we disclose the design, synthesis, and SAR study of a series of RIPK2 inhibitors. The lead compound 17 displayed a high affinity for RIPK2 (Kd = 5.9 nM) and was capable of inhibiting RIPK2 kinase function in an ADP-Glo assay. In vitro DMPK studies showed that compound 17 had good metabolic stability and no CYP inhibition. Compound 17 effectively suppressed inflammatory cytokine production in both cells and animal model.
Collapse
|
23
|
Liu J, Zhang H, Su Y, Zhang B. Application and prospect of targeting innate immune sensors in the treatment of autoimmune diseases. Cell Biosci 2022; 12:68. [PMID: 35619184 PMCID: PMC9134593 DOI: 10.1186/s13578-022-00810-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of auto-reactive T cells and autoantibody-producing B cells and excessive inflammation are responsible for the occurrence and development of autoimmune diseases. The suppression of autoreactive T cell activation and autoantibody production, as well as inhibition of inflammatory cytokine production have been utilized to ameliorate autoimmune disease symptoms. However, the existing treatment strategies are not sufficient to cure autoimmune diseases since patients can quickly suffer a relapse following the end of treatments. Pattern recognition receptors (PRRs), including Toll-like receptors (TLRs), Nod-like receptors (NLRs), RIG-I like receptors (RLRs), C-type lectin receptors (CLRs) and various nucleic acid sensors, are expressed in both innate and adaptive immune cells and are involved in the development of autoimmune diseases. Here, we have summarized advances of PRRs signaling pathways, association between PRRs and autoimmune diseases, application of inhibitors targeting PRRs and the corresponding signaling molecules relevant to strategies targeting autoimmune diseases. This review emphasizes the roles of different PRRs in activating both innate and adaptive immunity, which can coordinate to trigger autoimmune responses. The review may also prompt the formulation of novel ideas for developing therapeutic strategies against autoimmune diseases by targeting PRRs-related signals.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hui Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China. .,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Basic and Translational Research Laboratory of Immune Related Diseases, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
24
|
Shen Y, Lin H, Chen K, Ge W, Xia D, Wu Y, Lu W. High expression of RIPK2 is associated with Taxol resistance in serous ovarian cancer. J Ovarian Res 2022; 15:48. [PMID: 35477477 PMCID: PMC9044796 DOI: 10.1186/s13048-022-00986-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/19/2022] [Indexed: 12/30/2022] Open
Abstract
Background Taxol resistance in serous ovarian cancer is responsible for its poor prognosis, yet the underlying mechanism is still poorly understood. Thus, we probed the mechanism of Taxol resistance in serous ovarian cancer with multiple bioinformatic methods to provide novel insights into potential therapies. Methods The differentially expressed genes (DEGs) in Taxol-sensitive and Taxol-resistant cell lines and their relationship with the overall survival (OS) and progression-free interval (PFI) of ovarian cancer patients were analyzed using gene expression datasets from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The role of receptor interacting serine/threonine kinase 2 (RIPK2) was validated via identification of its coexpressed genes, functional analysis and generation of a protein-protein interaction (PPI) network. The single sample gene set enrichment analysis (ssGSEA) was used to explore immune infiltration, and genomic alterations of RIPK2 were also analyzed via cBio Cancer Genomics Portal (cBioProtal). Results RIPK2 was highly expressed in Taxol resistant ovarian cancer cell lines, and its high expression was also linked with shorter OS and PFI in serous ovarian cancer patients. The PPI network analysis and pathway analysis demonstrated that RIPK2 might participate in the positive regulation of NF-κB transcription factor activity. RIPK2 expression was related to tumor microenvironment alterations, which might participate in the formation of Taxol resistance. Conclusions Our studies suggested that high expression of RIPK2 is related to Taxol resistance in serous ovarian cancer, and that RIPK2 induces Taxol resistance through NOD1/RIPK2/NF-κB inflammatory pathway activation and tumor microenvironment changes. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-00986-2.
Collapse
Affiliation(s)
- Yuqing Shen
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310006, China.,Department of Gynecologic Oncology of Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Hui Lin
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310006, China.,Department of Gynecologic Oncology of Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Institute of Genetics and Department of Genetics School of Medicine Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Institute of Genetics and Department of Genetics School of Medicine Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yihua Wu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Institute of Genetics and Department of Genetics School of Medicine Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Weiguo Lu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310006, China. .,Department of Gynecologic Oncology of Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310058, Zhejiang, China. .,Institute of Genetics and Department of Genetics School of Medicine Zhejiang University, Hangzhou, 310058, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
25
|
Ruan J, Schlüter D, Naumann M, Waisman A, Wang X. Ubiquitin-modifying enzymes as regulators of colitis. Trends Mol Med 2022; 28:304-318. [PMID: 35177326 DOI: 10.1016/j.molmed.2022.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disorder of the gastrointestinal tract. Although the pathophysiology of IBD is multifaceted, ubiquitination, a post-translational modification, has been shown to have essential roles in its pathogenesis and development. Ubiquitin-modifying enzymes (UMEs) work in synergy to orchestrate the optimal ubiquitination of target proteins, thereby maintaining intestinal homeostasis. Genome-wide association studies (GWAS) have identified multiple UME genes as IBD susceptibility loci, implying the importance of UMEs in IBD. Furthermore, accumulative evidence demonstrates that UMEs affect intestinal inflammation by regulating various aspects, such as intestinal barrier functions and immune responses. Considering the significant functions of UMEs in IBD, targeting UMEs could become a favorable therapeutic approach for IBD.
Collapse
Affiliation(s)
- Jing Ruan
- Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Xu Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China; Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
26
|
Steinle H, Ellwanger K, Kufer TA. Assaying RIPK2 Activation by Complex Formation. Methods Mol Biol 2022; 2523:133-150. [PMID: 35759195 DOI: 10.1007/978-1-0716-2449-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The receptor-interacting serine/threonine-protein kinase-2 (RIPK2, RIP2) is a key player in downstream signaling of nuclear oligomerization domain (NOD)-like receptor (NLR)-mediated innate immune response against bacterial infections. RIPK2 is recruited following activation of the pattern recognition receptors (PRRs) NOD1 and NOD2 by sensing bacterial peptidoglycans leading to activation of NF-κB and MAPK pathways and the production of pro-inflammatory cytokines. Upon NOD1/2 activation, RIPK2 forms complexes in the cytoplasm of human cells, also called RIPosomes. These can be induced by Shigella flexneri or by the inhibition of RIPK2 by small compounds, such as GSK583 and gefitinib.In this chapter, we describe fluorescent light microscopic and Western blot approaches to analyze the cytoplasmic aggregation of RIPK2 upon infection with the invasive, Gram-negative bacterial pathogen Shigella flexneri, or by the treatment with RIPK2 inhibitors. This method is based on HeLa cells stably expressing eGFP-tagged RIPK2 and describes a protocol to induce and visualize RIPosome formation. The described method is useful to study the deposition of RIPK2 in speck-like structures, also in living cells, using live cell imaging and can be adopted for the study of other inhibitory proteins or to further analyze the process of RIPosome structure assembly.
Collapse
Affiliation(s)
- Heidrun Steinle
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany
| | - Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany.
| |
Collapse
|
27
|
Zou M, Zeng QS, Nie J, Yang JH, Luo ZY, Gan HT. The Role of E3 Ubiquitin Ligases and Deubiquitinases in Inflammatory Bowel Disease: Friend or Foe? Front Immunol 2021; 12:769167. [PMID: 34956195 PMCID: PMC8692584 DOI: 10.3389/fimmu.2021.769167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD), which include Crohn’s disease (CD) and ulcerative colitis (UC), exhibits a complex multifactorial pathogenesis involving genetic susceptibility, imbalance of gut microbiota, mucosal immune disorder and environmental factors. Recent studies reported associations between ubiquitination and deubiquitination and the occurrence and development of inflammatory bowel disease. Ubiquitination modification, one of the most important types of post-translational modifications, is a multi-step enzymatic process involved in the regulation of various physiological processes of cells, including cell cycle progression, cell differentiation, apoptosis, and innate and adaptive immune responses. Alterations in ubiquitination and deubiquitination can lead to various diseases, including IBD. Here, we review the role of E3 ubiquitin ligases and deubiquitinases (DUBs) and their mediated ubiquitination and deubiquitination modifications in the pathogenesis of IBD. We highlight the importance of this type of posttranslational modification in the development of inflammation, and provide guidance for the future development of targeted therapeutics in IBD.
Collapse
Affiliation(s)
- Min Zou
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Shan Zeng
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Nie
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Hui Yang
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen-Yi Luo
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Hua-Tian Gan
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Yang L, Booth C, Speckmann C, Seidel MG, Worth AJ, Kindle G, Lankester AC, B G, Gennery AR, Seppanen MR, Morris EC, Burns SO. Phenotype, genotype, treatment, and survival outcomes in patients with X-linked inhibitor of apoptosis deficiency. J Allergy Clin Immunol 2021; 150:456-466. [PMID: 34920033 DOI: 10.1016/j.jaci.2021.10.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND X-linked inhibitor of apoptosis (XIAP) deficiency is a rare, primary immunodeficiency disease caused by XIAP gene mutations. A broad range of phenotype, severity, and age of onset present challenges for patient management. OBJECTIVE To characterize the phenotype, treatment, and survival outcomes of XIAP deficiency and assess parameters influencing prognosis. METHODS Data published from 2006-2020 were retrospectively analyzed. RESULTS 167 patients from 117 families with XIAP deficiency were reported with 90 different mutations. A wide spectrum of clinical features were seen, of which hemophagocytic lymphohistiocytosis (HLH) and inflammatory bowel disease (IBD) were the most common. Patients frequently developed multiple features with no clear genotype-phenotype correlation. 117 patients were managed conservatively and 50 underwent hematopoietic stem cell transplantation (HSCT), with respective overall survival probabilities of 90% and 53% at age 16 years. The predominant indication for HSCT was early-onset HLH. Active HLH and myeloablative conditioning regimens increased HSCT-related mortality, although HSCT outcome was much better after 2015 than before. For conservatively managed patients reaching adulthood, survival probabilities were 86% at age 30 years and 37% by age 52 years, with worse outcomes for patients developing the disease before the age of 5 years or with new disease features in adulthood. 9 asymptomatic mutation carriers were identified with a median age of 13.5 years. CONCLUSIONS Our study demonstrates the variable nature of XIAP deficiency which evolves over life for individual patients. Better therapeutic strategies and prospective studies are required to reduce morbidity and mortality and improve decision-making and long-term outcomes for patients with XIAP deficiency.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London NW3 2PF, United Kingdom; Institute for Immunity and Transplantation, University College London, London NW3 2PF, United Kingdom; Department of Hematology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Claire Booth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Trust, London WC1N 1JH; Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center - University of Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, Department of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Germany
| | - Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Austen Jj Worth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Trust, London WC1N 1JH
| | - Gerhard Kindle
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center - University of Freiburg, Germany
| | - Arjan C Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics, Stem Cell Transplantation program, Leiden University Medical Center, Leiden, The Netherlands
| | - Grimbacher B
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, United Kingdom; Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center - University of Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany
| | | | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University and Pediatric Immunology + HSCT, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Mikko Rj Seppanen
- HUS Rare Disease Center, Children and Adolescents, University of Helsinki and Helsinki University Hospital, Finland
| | - Emma C Morris
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London NW3 2PF, United Kingdom; Institute for Immunity and Transplantation, University College London, London NW3 2PF, United Kingdom
| | - Siobhan O Burns
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London NW3 2PF, United Kingdom; Institute for Immunity and Transplantation, University College London, London NW3 2PF, United Kingdom.
| |
Collapse
|
29
|
Elliott PR, Leske D, Wagstaff J, Schlicher L, Berridge G, Maslen S, Timmermann F, Ma B, Fischer R, Freund SMV, Komander D, Gyrd-Hansen M. Regulation of CYLD activity and specificity by phosphorylation and ubiquitin-binding CAP-Gly domains. Cell Rep 2021; 37:109777. [PMID: 34610306 PMCID: PMC8511506 DOI: 10.1016/j.celrep.2021.109777] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
Non-degradative ubiquitin chains and phosphorylation events govern signaling responses by innate immune receptors. The deubiquitinase CYLD in complex with SPATA2 is recruited to receptor signaling complexes by the ubiquitin ligase LUBAC and regulates Met1- and Lys63-linked polyubiquitin and receptor signaling outcomes. Here, we investigate the molecular determinants of CYLD activity. We reveal that two CAP-Gly domains in CYLD are ubiquitin-binding domains and demonstrate a requirement of CAP-Gly3 for CYLD activity and regulation of immune receptor signaling. Moreover, we identify a phosphorylation switch outside of the catalytic USP domain, which activates CYLD toward Lys63-linked polyubiquitin. The phosphorylated residue Ser568 is a novel tumor necrosis factor (TNF)-regulated phosphorylation site in CYLD and works in concert with Ser418 to enable CYLD-mediated deubiquitination and immune receptor signaling. We propose that phosphorylated CYLD, together with SPATA2 and LUBAC, functions as a ubiquitin-editing complex that balances Lys63- and Met1-linked polyubiquitin at receptor signaling complexes to promote LUBAC signaling.
Collapse
Affiliation(s)
- Paul R Elliott
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Derek Leske
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Off-Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Jane Wagstaff
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Lisa Schlicher
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Off-Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Georgina Berridge
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Sarah Maslen
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Frederik Timmermann
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Off-Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Biao Ma
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Off-Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Roman Fischer
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Stefan M V Freund
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Komander
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia; Department for Medical Biology, University of Melbourne, Melbourne VIC 3000, Australia.
| | - Mads Gyrd-Hansen
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Off-Roosevelt Drive, Oxford OX3 7DQ, UK; LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
30
|
Inborn Errors in the LRR Domain of Nod2 and Their Potential Consequences on the Function of the Receptor. Cells 2021; 10:cells10082031. [PMID: 34440800 PMCID: PMC8392326 DOI: 10.3390/cells10082031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
The innate immune system plays a critical role in the early detection of pathogens, primarily by relying on pattern-recognition receptor (PRR) signaling molecules. Nucleotide-binding oligomerization domain 2 (NOD2) is a cytoplasmic receptor that recognizes invading molecules and danger signals inside the cells. Recent studies highlight the importance of NOD2′s function in maintaining the homeostasis of human body microbiota and innate immune responses, including induction of proinflammatory cytokines, regulation of autophagy, modulation of endoplasmic reticulum (ER) stress, etc. In addition, there is extensive cross-talk between NOD2 and the Toll-like receptors that are so important in the induction and tuning of adaptive immunity. Polymorphisms of NOD2′s encoding gene are associated with several pathological conditions, highlighting NOD2′s functional importance. In this study, we summarize NOD2′s role in cellular signaling pathways and take a look at the possible consequences of common NOD2 polymorphisms on the structure and function of this receptor.
Collapse
|
31
|
Dowdell AS, Colgan SP. Metabolic Host-Microbiota Interactions in Autophagy and the Pathogenesis of Inflammatory Bowel Disease (IBD). Pharmaceuticals (Basel) 2021; 14:708. [PMID: 34451805 PMCID: PMC8399382 DOI: 10.3390/ph14080708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a family of conditions characterized by chronic, relapsing inflammation of the gastrointestinal tract. IBD afflicts over 3 million adults in the United States and shows increasing prevalence in the Westernized world. Current IBD treatments center on modulation of the damaging inflammatory response and carry risks such as immunosuppression, while the development of more effective treatments is hampered by our poor understanding of the molecular mechanisms of IBD pathogenesis. Previous genome-wide association studies (GWAS) have demonstrated that gene variants linked to the cellular response to microorganisms are most strongly associated with an increased risk of IBD. These studies are supported by mechanistic work demonstrating that IBD-associated polymorphisms compromise the intestine's anti-microbial defense. In this review, we summarize the current knowledge regarding IBD as a disease of defects in host-microbe interactions and discuss potential avenues for targeting this mechanism for future therapeutic development.
Collapse
Affiliation(s)
| | - Sean P. Colgan
- Department of Medicine and the Mucosal Inflammation Program, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| |
Collapse
|
32
|
Steinle H, Ellwanger K, Mirza N, Briese S, Kienes I, Pfannstiel J, Kufer TA. 14-3-3 and erlin proteins differentially interact with RIPK2 complexes. J Cell Sci 2021; 134:jcs258137. [PMID: 34152391 DOI: 10.1242/jcs.258137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/19/2021] [Indexed: 01/11/2023] Open
Abstract
The receptor interacting serine/threonine kinase 2 (RIPK2) is essential for signal transduction induced by the pattern recognition receptors NOD1 and NOD2 (referred to collectively as NOD1/2). Upon NOD1/2 activation, RIPK2 forms complexes in the cytoplasm of human cells. Here, we identified the molecular composition of these complexes. Infection with Shigella flexneri to activate NOD1-RIPK2 revealed that RIPK2 formed dynamic interactions with several cellular proteins, including A20 (also known as TNFAIP3), erlin-1, erlin-2 and 14-3-3. Whereas interaction of RIPK2 with 14-3-3 proteins was strongly reduced upon infection with Shigella, erlin-1 and erlin-2 (erlin-1/2) specifically bound to RIPK2 complexes. The interaction of these proteins with RIPK2 was validated using protein binding assays and immunofluorescence staining. Beside bacterial activation of NOD1/2, depletion of the E3 ubiquitin ligase XIAP and treatment with RIPK2 inhibitors also led to the formation of RIPK2 cytosolic complexes. Although erlin-1/2 were recruited to RIPK2 complexes following XIAP inhibition, these proteins did not associate with RIPK2 structures induced by RIPK2 inhibitors. While the specific recruitment of erlin-1/2 to RIPK2 suggests a role in innate immune signaling, the biological response regulated by the erlin-1/2-RIPK2 association remains to be determined.
Collapse
Affiliation(s)
- Heidrun Steinle
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Nora Mirza
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Selina Briese
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Ioannis Kienes
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim Mass Spectrometry Module, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| |
Collapse
|
33
|
Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE, Vucic D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ 2021; 28:591-605. [PMID: 33432113 PMCID: PMC7798376 DOI: 10.1038/s41418-020-00708-5] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin system is complex, multifaceted, and is crucial for the modulation of a vast number of cellular processes. Ubiquitination is tightly regulated at different levels by a range of enzymes including E1s, E2s, and E3s, and an array of DUBs. The UPS directs protein degradation through the proteasome, and regulates a wide array of cellular processes including transcription and epigenetic factors as well as key oncoproteins. Ubiquitination is key to the dynamic regulation of programmed cell death. Notably, the TNF signaling pathway is controlled by competing ubiquitin conjugation and deubiquitination, which governs both proteasomal degradation and signaling complex formation. In the inflammatory response, ubiquitination is capable of both activating and dampening inflammasome activation through the control of either protein stability, complex formation, or, in some cases, directly affecting receptor activity. In this review, we discuss the enzymes and targets in the ubiquitin system that regulate fundamental cellular processes regulating cell death, and inflammation, as well as disease consequences resulting from their dysregulation. Finally, we highlight several pre-clinical and clinical compounds that regulate ubiquitin system enzymes, with the aim of restoring homeostasis and ameliorating diseases.
Collapse
Affiliation(s)
- Peter E Cockram
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.,Departments of Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Matthias Kist
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sumit Prakash
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Si-Han Chen
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ingrid E Wertz
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA. .,Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Domagoj Vucic
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|