1
|
Zhang X, Scadden AW, Marthi A, Buchanan VL, Qu Y, Ferrier KR, Chen BD, Graff M, Avila J, Boerwinkle E, Buyske S, Clish CB, Cruz D, Fornage M, Gerzsten RE, Gignoux CR, Glover L, Hou L, Justice AE, Kooperberg C, Kramer H, Lange L, Loos RJF, Matise T, Mychaleckyj JC, Olabisi OA, Peters U, Raffield LM, Reiner AP, Rich SS, Rotter JI, Taylor KD, Yu B, Zheng Y, North KE, Mottl AK, Highland HM, Stanislawski MA. Alterations in DNA Methylation, Proteomic, and Metabolomic Profiles in African Ancestry Populations with APOL1 Risk Alleles. J Am Soc Nephrol 2025:00001751-990000000-00616. [PMID: 40193202 DOI: 10.1681/asn.0000000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 04/01/2025] [Indexed: 05/17/2025] Open
Abstract
Key Points
We aimed to elucidate potential methylation, proteomic, and metabolomic mechanisms by which APOL1 variants may be linked to kidney disease.We report distinct methylation profiling between APOL1 risk allele carriers and noncarriers, many near APOL gene family.We report higher APOL1 protein and lower C18:1 cholesteryl ester in two risk allele carriers.
Background
The APOL1 high-risk haplotype has been associated with CKD and the deterioration of kidney function, particularly in populations with West African ancestry. However, the mechanisms by which APOL1 risk variants increase the risk for kidney disease and its progression have not been fully elucidated.
Methods
We compared methylation (N=3191; 715 [22%] carriers), proteomic (N=1240; 169 [14%] carriers), and metabolomic (N=6309; 674 [11%] carriers) profiles in African and Hispanic/Latino carriers of two APOL1 high-risk alleles (G1/G1, G2/G2, G1/G2) and noncarriers (G0/G0), excluding heterozygotes (G0/G1, G0/G2), from the Population Architecture using Genomics and Epidemiology Consortium and UK Biobank. In each study, the associations between the APOL1 high-risk haplotype and up to 722,719 cytosine-phosphate-guanine (CpG) sites, 2923 proteins, or 836 metabolites were estimated using covariate-adjusted linear regression models, followed by fixed-effects sample size–weighted meta-analyses.
Results
Significant associations were observed between APOL1 high-risk haplotype and methylation at 52 CpG sites, with 48 located on chromosome 22 and 18 in the vicinity of APOL1–4 and MYH9. All significant CpG sites near APOL2 were hypomethylated, whereas those near APOL3 and APOL4 were hypermethylated. APOL1-associated CpG sites were also identified in genes involved in ion transport and mitochondrial stress pathways. Sensitivity analyses indicated consistent yet attenuated effects among heterozygotes, supporting an additive effect of APOL1 risk alleles. Further analyses of the 52 CpG sites identified two near APOL4 exhibiting G1-specific effects, eight associated with CKD but none with eGFR, and three showing heterogeneity by CKD status. In addition, carrying two APOL1 risk alleles was associated with higher plasma APOL1 protein (β=1.12, P
FDR
= 2.26e-70) and lower C18:1 cholesteryl ester metabolite (Z=−4.50, P
FDR = 4.83e-3).
Conclusions
Our results demonstrate differential methylation, proteomic, and metabolomic profiles associated with APOL1 high-risk haplotypes.
Collapse
Affiliation(s)
- Xinruo Zhang
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ashley W Scadden
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Amarnath Marthi
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Victoria L Buchanan
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yishu Qu
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kendra R Ferrier
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Brian D Chen
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Julian Avila
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Steven Buyske
- Department of Statistics, School of Arts and Sciences, Rutgers University, Piscataway, New Jersey
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Dan Cruz
- Internal Medicine, Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Robert E Gerzsten
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Christopher R Gignoux
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - LaShaunta Glover
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Population Health Sciences, School of Medicine, Duke University, Durham, North Carolina
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Anne E Justice
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Holly Kramer
- Departments of Public Health Sciences and Medicine, Loyola University Chicago, Maywood, Illinois
| | - Leslie Lange
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Epidemiology, School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tara Matise
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, New Jersey
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Opeyemi A Olabisi
- Department of Medicine, Nephrology, Duke University, Durham, North Carolina
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Laura M Raffield
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Stephen S Rich
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia
- Department of Genome Sciences, University of Virginia, Charlottesville, Virginia
| | - Jerome I Rotter
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Kent D Taylor
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amy K Mottl
- UNC Kidney Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Heather M Highland
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Maggie A Stanislawski
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
2
|
Afsar B, Afsar RE, Caliskan Y, Lentine KL. Sodium-glucose co-transporter inhibitors for APOL1 kidney disease: A call for studies. Int Urol Nephrol 2025:10.1007/s11255-025-04443-z. [PMID: 40038200 DOI: 10.1007/s11255-025-04443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
Renal risk variants in the apolipoprotein L1 (APOL1) gene confer protection against trypanosomiasis, but these risk variants (G1 and G2 variants) also predispose to kidney disease among individuals, especially from Sub-SaharanAfrica. Currently, the mechanisms of how these renal risk variants induce kidney damage are not precisely defined, but lysosomal and mitochondrial dysfunction, altered ion channel activity, altered autophagy, and disordered immunity are suggested. Currently, there is no specific treatment for APOL1 kidney disease (APOL1-KD) although several potential disease-specific therapeutic agents are being evaluated in clinical trials. Non-specific interventions include proteinuria screening, salt restriction, and renin-angiotensin-aldosterone system inhibition but are not sufficient to prevent kidney disease progression in APOL1-KD. Given the lack of specific treatment options, more efforts are necessary to reduce kidney disease progression. Sodium glucose co-transport-2 (SGLT2) inhibitors (SGLT2i) are gaining attention for benefits in proteinuric kidney diseases and exert many beneficial effects which theoretically may be beneficial in the context of APOL1-KD. These beneficial effects include but are not limited to increased natriuresis, decreased proteinuria/albuminuria, and mitochondrial dysfunction. SGLT2i have antioxidant, anti-inflammatory and anti-fibrotic effects. In the current review, we highlight the potential reasons for exploring the use of SGLT2i in APOL1-KD. Future studies are warranted to explore if SGLT2i use can provide protection in APOL1-KD.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, Saint Louis University, School of Medicine, SSM Health Saint Louis University Hospital, Saint Louis, MO, USA.
| | - Rengin Elsurer Afsar
- Department of Nephrology, Saint Louis University, School of Medicine, SSM Health Saint Louis University Hospital, Saint Louis, MO, USA
| | - Yasar Caliskan
- Department of Nephrology, Saint Louis University, School of Medicine, SSM Health Saint Louis University Hospital, Saint Louis, MO, USA
- Center for Transplantation, Saint Louis University, School of Medicine, SSM Health Saint Louis University Hospital, Saint Louis, MO, USA
| | - Krista L Lentine
- Department of Nephrology, Saint Louis University, School of Medicine, SSM Health Saint Louis University Hospital, Saint Louis, MO, USA
- Center for Transplantation, Saint Louis University, School of Medicine, SSM Health Saint Louis University Hospital, Saint Louis, MO, USA
| |
Collapse
|
3
|
Soni Z, Maheta D, Agrawal S, Frishman WH, Aronow WS. Sickle Cell Trait and Vascular Health: Insights into Complications and Management. Cardiol Rev 2025:00045415-990000000-00417. [PMID: 39932271 DOI: 10.1097/crd.0000000000000857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Sickle cell trait was once considered to benign hereditary condition, besides the association of renal medullary carcinoma, affecting red blood cells. The inherited disorder creates several health issues under various conditions, such as dehydration, hypoxia, or extreme physical exertion. Healthcare professionals and patients with the disorder should understand the importance of vascular complications in sickle cell traits. This article emphasizes the pathophysiology, epidemiology, and molecular basis of the sickle cell trait, which involves virtually every organ system and involves vascular endothelial dysfunction, cerebral vasculopathy, renal complications, cardiopulmonary manifestations, and splenic issues. Techniques of prevention and management strategies for quality-of-life improvement in the case of sickle cell trait are presented.
Collapse
Affiliation(s)
- Zeal Soni
- From the Department of Medicine, Smt. NHLMMC, Ahmedabad, India
| | | | - Siddharth Agrawal
- Department of Medicine, New York Medical College/Landmark Medical Center, Woonsocket, RI
| | | | - Wilbert S Aronow
- Departments of Cardiology and Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY
| |
Collapse
|
4
|
Romagnani P, Agarwal R, Chan JCN, Levin A, Kalyesubula R, Karam S, Nangaku M, Rodríguez-Iturbe B, Anders HJ. Chronic kidney disease. Nat Rev Dis Primers 2025; 11:8. [PMID: 39885176 DOI: 10.1038/s41572-024-00589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 02/01/2025]
Abstract
Chronic kidney disease (CKD) is defined by persistent abnormalities of kidney function or structure that have consequences for the health. A progressive decline of excretory kidney function has effects on body homeostasis. CKD is tightly associated with accelerated cardiovascular disease and severe infections, and with premature death. Kidney failure without access to kidney replacement therapy is fatal - a reality in many regions of the world. CKD can be the consequence of a single cause, but CKD in adults frequently relates rather to sequential injuries accumulating over the life course or to the presence of concomitant risk factors. The shared pathomechanism of CKD progression is the irreversible loss of kidney cells or nephrons together with haemodynamic and metabolic overload of the remaining nephrons, leading to further loss of kidney cells or nephrons. The management of patients with CKD focuses on early detection and on controlling all modifiable risk factors. This approach includes reducing the overload of the remaining nephrons with inhibitors of the renin-angiotensin system and the sodium-glucose transporter 2, as well as disease-specific drug interventions, if available. Hypertension, anaemia, metabolic acidosis and secondary hyperparathyroidism contribute to cardiovascular morbidity and reduced quality of life, and require diagnosis and treatment.
Collapse
Affiliation(s)
- Paola Romagnani
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Rajiv Agarwal
- Richard L. Roudebush VA Medical Center and Indiana University, Indianapolis, IN, USA
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences and Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Adeera Levin
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Renal, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Robert Kalyesubula
- African Community Center for Social Sustainability, Nakaseke District, Uganda
- Department of Physiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sabine Karam
- Division of Nephrology and Hypertension, University of Minnesota, Minneapolis, MN, USA
- Department of Internal Medicine, Division of Nephrology and Hypertension, American University of Beirut, Beirut, Lebanon
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo, Bunkyo City, Tokyo, Japan
| | | | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
5
|
Mohottige D, Farouk S. Embedding Equity and Inclusion Principles Into Nephrology Board Examinations: An Essential Part of Our Path Toward Kidney Health Justice. ADVANCES IN KIDNEY DISEASE AND HEALTH 2025; 32:95-107. [PMID: 40175035 PMCID: PMC11970355 DOI: 10.1053/j.akdh.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Recognition of widespread health inequalities across disease conditions and their startling impact on morbidity and health care costs have motivated multiple professional societies to ensure board examinations reflect and enhance inclusive, anti-biased, and equitable care. In this perspective, we offer five nephrology case examples and accompanying learning objectives to demonstrate how principles of inclusion, equity, and anti-bias can be embedded into nephrology examinations to enhance care for all populations.
Collapse
Affiliation(s)
- Dinushika Mohottige
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Samira Farouk
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Recanati Miller Transplant Institute, Mount Sinai Hospital, New York, NY
| |
Collapse
|
6
|
Gianos E, Duell PB, Toth PP, Moriarty PM, Thompson GR, Brinton EA, Hudgins LC, Nametka M, Byrne KH, Raghuveer G, Nedungadi P, Sperling LS. Lipoprotein Apheresis: Utility, Outcomes, and Implementation in Clinical Practice: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol 2024; 44:e304-e321. [PMID: 39370995 DOI: 10.1161/atv.0000000000000177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Despite the availability of multiple classes of lipoprotein-lowering medications, some high-risk patients have persistent hypercholesterolemia and may require nonpharmacologic therapy. Lipoprotein apheresis (LA) is a valuable but underused adjunctive therapeutic option for low-density lipoprotein cholesterol and lipoprotein(a) lowering, particularly in children and adults with familial hypercholesterolemia. In addition to lipid lowering, LA reduces serum levels of proinflammatory and prothrombotic factors, reduces blood viscosity, increases microvascular myocardial perfusion, and may provide beneficial effects on endothelial function. Multiple observational studies demonstrate strong evidence for improved cardiovascular outcomes with LA; however, use in the United States is limited to a fraction of its Food and Drug Administration-approved indications. In addition, there are limited data regarding LA benefit for refractory focal segmental glomerulosclerosis. In this scientific statement, we review the history of LA, mechanisms of action, cardiovascular and renal outcomes data, indications, and options for treatment.
Collapse
|
7
|
Bruner WS, Davis RL, Bush N, Lewinn K, Alex Mason W, Simpson CL. Effect of fetal apolipoprotein L1 genotype and vitamin D deficiencies on preeclampsia risk. Pregnancy Hypertens 2024; 38:101166. [PMID: 39579687 DOI: 10.1016/j.preghy.2024.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Preeclampsia is a hypertensive disorder in pregnancy known to increase the risk of mortality and other pregnancy-related issues, such as prematurity. Currently, there no known prophylactics or treatment options available for preeclampsia. More research is needed to better understand factors that increase preeclampsia risk. Vitamin D deficiency is consistently associated with developing preeclampsia. In addition to micronutrient deficiency, the presence of two fetal apolipoprotein L1 high-risk variants are also associated with preeclampsia risk. We hypothesized that a potential additive effect between high-risk apolipoprotein L1 genotype status and nutritional deficiencies would place individuals at a higher risk of developing preeclampsia. OBJECTIVE (S) The objective of this study was to determine the risk of developing preeclampsia in African American women with vitamin D deficiency and maternal/fetal high-risk apolipoprotein L1 genotype. STUDY DESIGN This was a case-control study using a subset of 999 African American mother and infant pairs collected from the Conditions Affecting Neurocognitive Development and Learning in Early Childhood cohort in Memphis, TN. We performed multiple logistic regression to examine the association of preeclampsia with 2nd and 3rd trimester vitamin D concentrations. Concentrations were dichotomized into high or low categories. Vitamin D deficiency was defined as a concentration less than 20 ng/mL. Further analyses assessed whether maternal or fetal apolipoprotein genotype status modified the association between vitamin D association and preeclampsia. The reference group included individuals with both high vitamin D and low-risk apolipoprotein genotype. RESULTS Pregnancies with low vitamin D in the 3rd trimester were at an increased risk for preeclampsia (odds ratio 2.10; 95 % confidence interval 1.09-4.12; P-value, 0.03). Risk for preeclampsia was greatest among pregnancies with fetal high-risk genotype and low vitamin D levels in the 2nd trimester (odds ratio, 2.79; 95 % confidence interval, 1.06-6.83; P-value, 0.03) and 3rd trimester (odds ratio 6.40; 95 % confidence interval 2.07-19.18; P-value, <0.01). CONCLUSION(S) Our significant findings suggest that the risk of preeclampsia associated with low vitamin D levels, especially during the 3rd trimester, is magnified by the presence of fetal high-risk apolipoprotein L1 genotype.
Collapse
Affiliation(s)
- Winter S Bruner
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Robert L Davis
- Center for Biomedical Informatics, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Nicole Bush
- Center for Health and Community, Developmental and Behavioral Health, Division of Developmental Medicine, University of California, San Francisco (UCSF), United States
| | - Kaja Lewinn
- Psychiatry, UCSF Weill Institute for Neurosciences, School of Medicine, University of California, San Francisco (UCSF), United States
| | - W Alex Mason
- Department of Preventive Medicine, University of Tennessee Health Science Center, United States
| | - Claire L Simpson
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
8
|
Sula Karreci E, Jacas S, Donovan O, Pintye D, Wiley N, Zsengeller ZK, Schlondorff J, Alper SL, Friedman DJ, Pollak MR. Differing sensitivities to angiotensin converting enzyme inhibition of kidney disease mediated by APOL1 high-risk variants G1 and G2. Kidney Int 2024; 106:1072-1085. [PMID: 39181397 PMCID: PMC11585418 DOI: 10.1016/j.kint.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Apolipoprotein L1 (APOL1) variants G1 and G2 contribute to the excess risk of kidney disease in individuals of recent African ancestry. Since disease mechanisms and optimal treatments remain controversial, we study the effect of current standard-of-care drugs in mouse models of APOL1 kidney disease. Experiments were performed in APOL1 BAC-transgenic mice, which develop proteinuria and glomerulosclerosis following injection with a pCpG-free IFN-γ plasmid. Proteinuric, plasmid injected G1/G1 and G2/G2 mice were randomized to drug treatment or no treatment. Lisinopril, dapagliflozin, and hydralazine were administered in drinking water starting day seven. The urine albumin/creatinine ratio was measured twice weekly, and the kidneys examined histologically with the focal segmental glomerulosclerosis score computed from periodic acid-Shiff-stained sections. The angiotensin converting enzyme inhibitor lisinopril, at standard dose, reduced proteinuria by approximately 90-fold and reduced glomerulosclerosis in the APOL1 G1/G1 BAC-transgenic mice. These effects were independent of blood pressure. Dapagliflozin did not alter disease progression in either G1/G1 or G2/G2 mice. Proteinuria reduction and glomerulosclerosis in G2/G2 BAC-transgenic mice required lisinopril doses two times higher than were effective in G1/G1 mice but achieved a much smaller benefit. Therefore, in these BAC-transgenic mouse models of APOL1 disease, the anti-proteinuric and anti-glomerulosclerotic effects of standard dose lisinopril were markedly effective in G1/G1 compared with G2/G2 APOL1 mice. Comparable reduction in blood pressure by hydralazine treatment provided no such protection. Neither G1/G1 nor G2/G2 mice showed improvement with the sodium-glucose cotransporter-2 inhibition dapagliflozin. Thus, it remains to be determined if similar differences in ACE inhibitor responsiveness are observed in patients.
Collapse
Affiliation(s)
- Esilida Sula Karreci
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts; USA.
| | - Sonako Jacas
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Olivia Donovan
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Diana Pintye
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Nicholas Wiley
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Zsuzsanna K Zsengeller
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Johannes Schlondorff
- Division of Nephrology, Department of Medicine, The Ohio State University, Wexner School of Medicine, Columbus, Ohio, USA
| | - Seth L Alper
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts; USA
| | - David J Friedman
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts; USA
| | - Martin R Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts; USA
| |
Collapse
|
9
|
Olabisi OA, Barrett NJ, Lucas A, Smith M, Bethea K, Soldano K, Croall S, Sadeghpour A, Chakraborty H, Wolf M. Design and Rationale of the Phase 2 Baricitinib Study in Apolipoprotein L1-Mediated Kidney Disease (JUSTICE). Kidney Int Rep 2024; 9:2677-2684. [PMID: 39291185 PMCID: PMC11403079 DOI: 10.1016/j.ekir.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Individuals of recent West African ancestry develop focal segmental glomerulosclerosis (FSGS) and hypertension-attributed end-stage kidney disease (HTN-ESKD) at 4 times the rate of White Americans. Two protein-coding variants of the Apolipoprotein L1 (APOL1) gene, G1 and G2, explain 50% to 70% of the excess risk of HTN-ESKD and FSGS among this group. Increased expression of G1 and G2 in the kidney, mediated by Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling, drive pathogenesis of these kidney diseases. Baricitinib is an orally active inhibitor of JAK1/2 that blocks APOL1 synthesis. The Janus kinase-STAT Inhibition to Reduce APOL1-Associated Kidney Disease (JUSTICE) trial is evaluating the antiproteinuric efficacy and safety of baricitinib in patients with APOL1-associated FSGS and HTN-attributed chronic kidney disease (HTN-CKD). Methods JUSTICE is a single-center, randomized, double-blind, placebo-controlled, pilot phase 2 trial of baricitinib in patients with proteinuria, APOL1-associated FSGS or APOL1-associated HTN-CKD without diabetes. A total of 75 African American patients with APOL1-associated CKD, including 25 with FSGS and 50 with HTN-CKD, aged 18 to 70 years will be randomized 2:1 to daily treatment with baricitinib or placebo, respectively. Results The primary efficacy end point will be percent change in urine albumin-to-creatinine ratio (UACR) from baseline to end of month 6. The primary safety end point will be incidence of clinically significant decreases in hemoglobin of ≥ 1g/dl. Conclusion The phase 2 JUSTICE study will characterize the antiproteinuric efficacy and safety of JAK1/2 inhibition with baricitinib in patients with APOL1-associated FSGS and APOL1-associated HTN-CKD.
Collapse
Affiliation(s)
- Opeyemi A Olabisi
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nadine J Barrett
- Atrium Health/Wake Forest Comprehensive Cancer Center and Maya Angelo Center for Health Equity, Wake Forest School of Medicine, Wake Forest, North Carolina, USA
- Department of Social Science and Health Policy, Division of Population Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Maya Angelo Center for Health Equity, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anika Lucas
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Maurice Smith
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kenisha Bethea
- Duke Clinical and Translational Science Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Karen Soldano
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Stephanie Croall
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Azita Sadeghpour
- Duke Precision Medicine Program, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Myles Wolf
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
10
|
da Silva Francisco R, Punj S, Vincent L, Sanapareddy N, Bhalla V, Chertow GM, Keen-Kim D, Charu V. Prevalence of Mendelian Kidney Disease Among Patients With High-Risk APOL1 Genotypes Undergoing Commercial Genetic Testing in the United States. Kidney Int Rep 2024; 9:2667-2676. [PMID: 39291188 PMCID: PMC11403072 DOI: 10.1016/j.ekir.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Among individuals with high-risk APOL1 genotypes, the lifetime risk of developing kidney failure is ∼15%, indicating that other genetic variants or nongenetic modifiers likely contribute substantially to an individual patient's risk of progressive kidney disease. Here, we estimate the prevalence and distribution of Mendelian kidney diseases among patients with high-risk APOL1 genotypes undergoing commercial genetic testing in the United States. Methods We analyzed clinical exome sequencing data from 15,181 individuals undergoing commercial genetic testing for Mendelian kidney disease in the United States from 2020 to 2021. We identified patients with high-risk APOL1 genotypes by the presence of G1/G1, G1/G2, or G2/G2 alleles. Patients carrying single risk APOL1 alleles were identified as G1/G0, G2/G0; the remainder of patients were G0/G0. We estimated the prevalence and distribution of Mendelian kidney disease stratified by APOL1 genotype and genetically predicted ancestry. Results Of 15,181 patients, 3119 had genetic testing results consistent with a molecular diagnosis of Mendelian kidney disease (20.5%). Of 15,181 patients, 1035 (6.8%) had high-risk APOL1 genotypes. Among patients with recent genomic African ancestry, the prevalence of Mendelian kidney diseases was lower in those with high-risk APOL1 genotypes (9.6%; n = 91/944) compared with single risk APOL1 allele carriers (13.6%; n = 198/1453) and those with G0/G0 APOL1 genotypes (16.6%; n = 213/1281). Among patients with Mendelian kidney disease and recent genomic African ancestry, we observed differences in the prevalence of pathogenic/likely pathogenic variants in PKD1 (19.8% in high-risk vs. 30.2% in low-risk genotypes), and COL4A4 (24.2% in high-risk vs. 10.5% in low-risk genotypes). Conclusion In this selected population of patients undergoing clinical genetic testing, we found evidence of Mendelian kidney disease in ∼10% patients with high-risk APOL1 genotypes.
Collapse
Affiliation(s)
| | - Sumit Punj
- Natera, Inc. 201 Industrial Boulevard, San Carlos, California, USA
| | - Lisa Vincent
- Natera, Inc. 201 Industrial Boulevard, San Carlos, California, USA
| | - Nina Sanapareddy
- Natera, Inc. 201 Industrial Boulevard, San Carlos, California, USA
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Glenn M Chertow
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Dianne Keen-Kim
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Natera, Inc. 201 Industrial Boulevard, San Carlos, California, USA
| | - Vivek Charu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
11
|
Choshi J, Flepisi B, Mabhida SE, Sekgala MD, Mokoena H, Nkambule BB, Ndwandwe D, Mchiza ZJ, Nqebelele U, Kengne AP, Dludla PV, Hanser S. Prevalence of chronic kidney disease and associated risk factors among people living with HIV in a rural population of Limpopo Province, South Africa. Front Public Health 2024; 12:1425460. [PMID: 39056083 PMCID: PMC11269117 DOI: 10.3389/fpubh.2024.1425460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Background Limited evidence informs on the prevalence of chronic kidney disease (CKD) in people living with HIV (PLWH) in South Africa. Thus, this study aimed to determine the prevalence of CKD and its associated risk factors among PLWH within the rural province of Limpopo, South Africa. Methods We conducted a cross-sectional study of 143 participants, subdivided into groups of PLWH (n = 103) and individuals without HIV (n = 43). Structured questionnaires were used to collect and capture sociodemographic information including age, sex, alcohol intake, smoking status, and educational status. Basic measurements taken included levels of cluster of differentiation 4 (CD4+) count, body mass index (BMI), blood pressure, plasma cystatin C, and fasting serum glucose levels. Plasma cystatin C-based estimated glomerular filtration rate (eGFR) was calculated using the chronic kidney disease epidemiology collaboration (CKD-EPI) estimator to determine the prevalence of CKD. Results The prevalence of CKD was approximately 7% in PLWH. Multivariate logistic regression analysis showed that it was only diabetes mellitus (odds ratio of 5.795, 95% confidence interval, p = 0.034) and age (odds ratio of 1.078, 95% confidence interval, p = 0.039) that were significantly associated with CKD in PLWH. Conclusion Chronic kidney disease was prevalent in PLWH, and it was further associated with cardiovascular risk factors, diabetes, and ageing. As PLWH age, the burden of CKD may be increased with the increase in cardiovascular-related comorbidities such as diabetes.
Collapse
Affiliation(s)
- Joel Choshi
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga, South Africa
| | - Brian Flepisi
- Department of Pharmacology, University of Pretoria, Pretoria, South Africa
| | - Sihle E. Mabhida
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, South Africa
| | - Machoene D. Sekgala
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, South Africa
| | - Haskly Mokoena
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga, South Africa
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Tygerberg, South Africa
| | - Zandile J. Mchiza
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, South Africa
- School of Public Health, University of the Western Cape, Bellville, South Africa
| | - Unati Nqebelele
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- Department of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - André P. Kengne
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Phiwayinkosi V. Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Sidney Hanser
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga, South Africa
| |
Collapse
|
12
|
Caparali EB, De Gregorio V, Barua M. Genetic Causes of Nephrotic Syndrome and Focal and Segmental Glomerulosclerosis. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:309-316. [PMID: 39084756 DOI: 10.1053/j.akdh.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/02/2024]
Abstract
The field of nephrology has a long-standing interest in deciphering the genetic basis of nephrotic syndrome (NS), motivated by the mechanistic insights it provides in chronic kidney disease. The initial era of genetic studies solidified NS and the focal segmental glomerulosclerosis lesion as podocyte disorders. The likelihood of identifying a single gene (called monogenic) cause is higher if certain factors are present such as positive family history. Obtaining a monogenic diagnosis enables reproductive counseling and screening of family members. Now, with a new era of genomic studies facilitated by technological advances and the emergence of large genetically characterized cohorts, more insights are apparent. This includes the phenotypic breadth associated with disease genes, as evidenced in Alport syndrome and congenital NS of the Finnish type. Moreover, the underlying genetic architecture is more complex than previously appreciated, as shown by genome-wide association studies, suggesting that variants in multiple genes collectively influence risk. Achieving molecularly informed diagnoses also holds substantial potential for personalizing medicine, including the development of targeted therapeutics. Illustrative examples include coenzyme Q10 for ADCK4-associated NS and inaxaplin, a small molecule that inhibits apolipoprotein L1 channel activity, though larger studies are required to confirm benefit.
Collapse
Affiliation(s)
- Emine Bilge Caparali
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa De Gregorio
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Moumita Barua
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Itoku A, Isaac J, Wilson S, Reidy K, Kaskel F. APOL1 Nephropathy Risk Variants Through the Life Course: A Review. Am J Kidney Dis 2024; 84:102-110. [PMID: 38341125 DOI: 10.1053/j.ajkd.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 02/12/2024]
Abstract
Two variant alleles of the gene apolipoprotein L1 (APOL1), known as risk variants (RVs), are a major contributor to kidney disease burden in those of African descent. The APOL1 protein contributes to innate immunity and may protect against Trypanosoma, HIV, Salmonella, and leishmaniasis. However, the effects of carrying 1 or more RVs contribute to a variety of disease processes starting as early as in utero and can be exacerbated by other factors (or "second hits"). Indeed, these genetic variations interact with environmental exposures, infections, and systemic disease to modify health outcomes across the life span. This review focuses on APOL1-associated diseases through the life-course perspective and discusses how early exposure to second hits can impact long-term outcomes. APOL1-related kidney disease typically presents in adolescents to young adults, and individuals harboring RVs are more likely to progress to kidney failure than are those with kidney disease who lack APOL-1 RVs. Ongoing research is aimed at elucidating the association of APOL1 RV effects with adverse donor and recipient kidney transplant outcomes. Unfortunately, there is currently no established treatment for APOL1-associated nephropathy. Long-term research is needed to evaluate the risk and protective factors associated with APOL1 RVs at different stages of life.
Collapse
Affiliation(s)
- Ai Itoku
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| | - Jaya Isaac
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| | - Scott Wilson
- Albert Einstein College of Medicine, Bronx, New York.
| | - Kimberly Reidy
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| | - Frederick Kaskel
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| |
Collapse
|
14
|
Abdulhamid A, Shepherd BE, Wudil UJ, Van Wyk C, Dankishiya FS, Hussaini N, Wester CW, Aliyu MH. Sickle cell trait, APOL1 risk allele status and chronic kidney disease among ART-experienced adults living with HIV in northern Nigeria. Int J STD AIDS 2024:9564624241262397. [PMID: 38915133 DOI: 10.1177/09564624241262397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND We sought to determine the prevalence of sickle cell trait (SCT) and apolipoprotein-1 (APOL1) risk variants in people living with HIV (PLWH) in Nigeria, and to establish if SCT and APOL1 high-risk status correlate with estimated glomerular filtration rate (eGFR) and/or prevalent chronic kidney disease (CKD). METHODS Baseline demographic and clinical data were obtained during three cross-sectional visits. CKD was defined as having an eGFR<60 mL/min/1.73 m2. We collected urine specimens to determine urine albumin-creatine ratio and blood samples for sickle cell genotyping, APOL1 testing, and for creatinine/cystatin C assessment. The associations between SCT, APOL1 genotype, and eGFR/CKD stages/CKD were investigated using linear/ordinal logistic/logistic regression models, respectively. RESULTS Of 2443 participants, 599 (24.5%) had SCT, and 2291 (93.8%) had a low-risk APOL1 genotype (0 or 1 risk variant), while 152 (6.2%) had high-risk genotype (2 allele copies). In total, 108 participants (4.4%) were diagnosed with CKD. In adjusted analyses, SCT was associated with lower eGFR (adjusted mean difference [aMD]= -2.33, 95% CI -4.25, -0.42), but not with worse CKD stages, or increased odds of developing CKD. Participants with the APOL1 high risk genotype were more likely to have lower eGFR (aMD= -5.45, 95% CI -8.87, -2.03), to develop CKD (adjusted odds ratio [aOR] = 1.97, 95% CI: 1.03, 3.75), and to be in worse CKD stages (aOR = 1.60, 95% CI: 1.12, 2.29) than those with the low-risk genotype. There was no evidence of interaction between SCT and APOL1 genotype on eGFR or risk of CKD. CONCLUSION Our findings highlight the multifaceted interplay of genetic factors in the pathogenesis of CKD in PLWH.
Collapse
Affiliation(s)
- Abdurrahman Abdulhamid
- Department of Statistics, School of Technology, Kano State Polytechnic, Kano, Nigeria
- Department of Mathematical Sciences, Bayero University, Kano, Nigeria
| | - Bryan E Shepherd
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Usman J Wudil
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chelsea Van Wyk
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Nafiu Hussaini
- Department of Mathematical Sciences, Bayero University, Kano, Nigeria
| | - C William Wester
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Muktar H Aliyu
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Diana NE, Naicker S. The changing landscape of HIV-associated kidney disease. Nat Rev Nephrol 2024; 20:330-346. [PMID: 38273026 DOI: 10.1038/s41581-023-00801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/27/2024]
Abstract
The HIV epidemic has devastated millions of people globally, with approximately 40 million deaths since its start. The availability of antiretroviral therapy (ART) has transformed the prognosis of millions of individuals infected with HIV such that a diagnosis of HIV infection no longer automatically confers death. However, morbidity and mortality remain substantial among people living with HIV. HIV can directly infect the kidney to cause HIV-associated nephropathy (HIVAN) - a disease characterized by podocyte and tubular damage and associated with an increased risk of kidney failure. The reports of HIVAN occurring primarily in those of African ancestry led to the discovery of its association with APOL1 risk alleles. The advent of ART has led to a substantial decrease in the prevalence of HIVAN; however, reports have emerged of an increase in the prevalence of other kidney pathology, such as focal segmental glomerulosclerosis and pathological conditions associated with co-morbidities of ageing, such as hypertension and diabetes mellitus. Early initiation of ART also results in a longer cumulative exposure to medications, increasing the likelihood of nephrotoxicity. A substantial body of literature supports the use of kidney transplantation in people living with HIV, demonstrating significant survival benefits compared with that of people undergoing chronic dialysis, and similar long-term allograft and patient survival compared with that of HIV-negative kidney transplant recipients.
Collapse
Affiliation(s)
- Nina E Diana
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Saraladevi Naicker
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
16
|
Ma'ayeh M, Cavus O, Hassen LJ, Johnson M, Summerfield T, Begom M, Cai A, Mehta L, Rood K, Bradley EA. Study of heart function in PRE-Eclampsia during and after PreGnancy (SHePREG): The pilot cohort. Am Heart J 2024; 269:45-55. [PMID: 38103586 PMCID: PMC10922975 DOI: 10.1016/j.ahj.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Pre-eclampsia with severe features (severe PreE) is associated with heart dysfunction, yet the impact beyond pregnancy, including its association with cardiomyopathic genetic polymorphisms, remains poorly understood. OBJECTIVE We aimed to characterize the temporal impact of severe PreE on heart function through the 4th trimester in women with and without deleterious cardiomyopathic genetic variants. METHODS Pregnant women were enrolled to undergo transthoracic echocardiography (TTE) in late pregnancy and 3 months postpartum. In women with severe PreE a targeted approach to identify pathogenic cardiomyopathic genetic polymorphisms was undertaken, and heart function was compared in carriers and noncarriers. RESULTS Pregnant women (32 ± 4 years old, severe PreE = 14, control = 8) were enrolled between 2019 - 2021. Women with severe PreE displayed attenuated myocardial relaxation (mitral e' = 11.0 ± 2.2 vs 13.2 ± 2.3 cm/sec, P < .05) in late pregnancy, and on in-silico analysis, deleterious cardiomyopathic variants were found in 58%. At 103 ± 33 days postpartum, control women showed stability in myocardial relaxation (Mitral e' Entry: 13.2 ± 2.3 vs Postpartum: 13.9 ± 1.7cm/sec, P = .464), and genetic negative severe PreE women (G-) demonstrated recovery of diastolic function to control level (Mitral e' Entry: 11.0 ± 3.0 vs Postpartum 13.7 ± 2.8cm/sec, P < .001), unlike their genetic positive (G+) counterparts (Mitral e' Entry: 10.5 ± 1.7 vs Postpartum 10.8 ± 2.4cm/sec, P = .853). CONCLUSIONS Postpartum recovery of heart function after severe PreE is attenuated in women with deleterious cardiomyopathic genetic polymorphisms.
Collapse
Affiliation(s)
- Marwan Ma'ayeh
- Division of Maternal Fetal Medicine, Christiana Hospital, Department of Obstetrics and Gynecology, Newark, DE
| | - Omer Cavus
- Pennsylvania State University Hershey S. Milton Medical Center, Heart and Vascular Institute, Division of Cardiovascular Medicine, Hershey, PA
| | - Lauren J Hassen
- The Ohio State University, Department of Internal Medicine, Division of Cardiovascular Medicine, Columbus, OH
| | - Martin Johnson
- Pennsylvania State University College of Medicine, Hershey PA
| | - Taryn Summerfield
- The Ohio State University, Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Columbus, OH
| | - Mosammat Begom
- Pennsylvania State University Hershey S. Milton Medical Center, Heart and Vascular Institute, Division of Cardiovascular Medicine, Hershey, PA
| | - Amanda Cai
- Pennsylvania State University Hershey S. Milton Medical Center, Heart and Vascular Institute, Division of Cardiovascular Medicine, Hershey, PA
| | - Laxmi Mehta
- The Ohio State University, Department of Internal Medicine, Division of Cardiovascular Medicine, Columbus, OH
| | - Kara Rood
- The Ohio State University, Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Columbus, OH
| | - Elisa A Bradley
- Pennsylvania State University Hershey S. Milton Medical Center, Heart and Vascular Institute, Division of Cardiovascular Medicine, Hershey, PA; Pennsylvania State University College of Medicine, Hershey PA; Pennsylvania State University, College of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA.
| |
Collapse
|
17
|
Hahka T, Stokowski R, Akbar A, VanOrmer M, Sembajwe LF, Ssekandi AM, Namaganda A, Muwonge H, Kasolo JN, Nakimuli A, Naome M, Ishimwe JA, Kalyesubula R, Kirabo A, Berry AA, Patel KP. Hypertension Related Co-Morbidities and Complications in Women of Sub-Saharan Africa: A Brief Review. Circ Res 2024; 134:459-473. [PMID: 38359096 PMCID: PMC10885774 DOI: 10.1161/circresaha.123.324077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Hypertension is the leading cause of cardiovascular disease in women, and sub-Saharan African (SSA) countries have some of the highest rates of hypertension in the world. Expanding knowledge of causes, management, and awareness of hypertension and its co-morbidities worldwide is an effective strategy to mitigate its harms, decrease morbidities and mortality, and improve individual quality of life. Hypertensive disorders of pregnancy (HDPs) are a particularly important subset of hypertension, as pregnancy is a major stress test of the cardiovascular system and can be the first instance in which cardiovascular disease is clinically apparent. In SSA, women experience a higher incidence of HDP compared with other African regions. However, the region has yet to adopt treatment and preventative strategies for HDP. This delay stems from insufficient awareness, lack of clinical screening for hypertension, and lack of prevention programs. In this brief literature review, we will address the long-term consequences of hypertension and HDP in women. We evaluate the effects of uncontrolled hypertension in SSA by including research on heart disease, stroke, kidney disease, peripheral arterial disease, and HDP. Limitations exist in the number of studies from SSA; therefore, we will use data from countries across the globe, comparing and contrasting approaches in similar and dissimilar populations. Our review highlights an urgent need to prioritize public health, clinical, and bench research to discover cost-effective preventative and treatment strategies that will improve the lives of women living with hypertension in SSA.
Collapse
Affiliation(s)
- Taija Hahka
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center; Omaha, Nebraska
- Department of Pediatrics, University of Nebraska Medical Center; Omaha, Nebraska
| | - Rebecca Stokowski
- Department of Pediatrics, University of Nebraska Medical Center; Omaha, Nebraska
| | - Anum Akbar
- Department of Pediatrics, University of Nebraska Medical Center; Omaha, Nebraska
| | - Matt VanOrmer
- Department of Pediatrics, University of Nebraska Medical Center; Omaha, Nebraska
| | - Lawrence Fred Sembajwe
- Department of Medical Physiology, Makerere University College of Health Sciences; Kampala, Uganda
| | - Abdul M. Ssekandi
- Department of Medical Physiology, Makerere University College of Health Sciences; Kampala, Uganda
| | - Agnes Namaganda
- Department of Medical Physiology, Makerere University College of Health Sciences; Kampala, Uganda
| | - Haruna Muwonge
- Department of Medical Physiology, Makerere University College of Health Sciences; Kampala, Uganda
| | - Josephine N. Kasolo
- Department of Medical Physiology, Makerere University College of Health Sciences; Kampala, Uganda
| | - Annettee Nakimuli
- Department of Obstetrics & Gynecology, Makerere University College of Health Sciences; Kampala, Uganda
| | - Mwesigwa Naome
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville; Tennessee
| | - Jeanne A. Ishimwe
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville; Tennessee
| | - Robert Kalyesubula
- Department of Medical Physiology, Makerere University College of Health Sciences; Kampala, Uganda
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville; Tennessee
| | - Ann Anderson Berry
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center; Omaha, Nebraska
- Department of Pediatrics, University of Nebraska Medical Center; Omaha, Nebraska
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center; Omaha, Nebraska
| |
Collapse
|
18
|
Datta S, Antonio BM, Zahler NH, Theile JW, Krafte D, Zhang H, Rosenberg PB, Chaves AB, Muoio DM, Zhang G, Silas D, Li G, Soldano K, Nystrom S, Ferreira D, Miller SE, Bain JR, Muehlbauer MJ, Ilkayeva O, Becker TC, Hohmeier HE, Newgard CB, Olabisi OA. APOL1-mediated monovalent cation transport contributes to APOL1-mediated podocytopathy in kidney disease. J Clin Invest 2024; 134:e172262. [PMID: 38227370 PMCID: PMC10904047 DOI: 10.1172/jci172262] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024] Open
Abstract
Two coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity. In HEK293 cells, we demonstrated that G1-mediated Na+ import/K+ efflux triggered activation of GPCR/IP3-mediated calcium release from the ER, impaired mitochondrial ATP production, and impaired translation, which were all reversed by VX-147. In human urine-derived podocyte-like epithelial cells (HUPECs), we demonstrated that G1 caused cytotoxicity that was again reversible by VX-147. Finally, in podocytes isolated from APOL1 G1 transgenic mice, we showed that IFN-γ-mediated induction of G1 caused K+ efflux, activation of GPCR/IP3 signaling, and inhibition of translation, podocyte injury, and proteinuria, all reversed by VX-147. Together, these results establish APOL1-mediated Na+/K+ transport as the proximal driver of APOL1-mediated kidney disease.
Collapse
Affiliation(s)
- Somenath Datta
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | | | | | | | | | - Hengtao Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Paul B. Rosenberg
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alec B. Chaves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Deborah M. Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Guofang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Daniel Silas
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Guojie Li
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Karen Soldano
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Sarah Nystrom
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Davis Ferreira
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sara E. Miller
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - James R. Bain
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Thomas C. Becker
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hans-Ewald Hohmeier
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christopher B. Newgard
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Opeyemi A. Olabisi
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| |
Collapse
|
19
|
Lee BK, Thomas CP. Genetic testing in the evaluation of recipient candidates and living kidney donors. Curr Opin Nephrol Hypertens 2024; 33:4-12. [PMID: 37823847 DOI: 10.1097/mnh.0000000000000934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW The aim of this study is to provide an overview of the role of genetic testing in the evaluation of kidney transplant candidates and living donors who may be at risk for heritable kidney disease. We focus our discussion on monogenic diseases, excluding renal diseases that have complex polygenic influences. Adoption of new technologies such as next-generation sequencing (NGS) with comprehensive gene panels has greatly enabled access to genetic testing recently; yet transplant professionals rarely receive adequate training in clinical genetics. In addition to a broad discussion of genetic testing, we hope to illustrate the thought processes and resources used in clinical genetic evaluation of recipient candidates and donors. RECENT FINDINGS Targeted renal genetic panels, whole exome and genome sequencing have greatly expanded our ability to test for pathogenic variants. Testing methods, analytic tools and the subsequent interpretation by the testing laboratory and treating physician impacts patient management and clinicians may lack the resources to practice in this new era of genomic medicine. SUMMARY The expansion of genomics into transplant medicine can provide improved diagnosis in transplant candidates and potentially disease prediction in living donors. Transplant professionals need to be familiar with emerging trends, promises and limitations of NGS-based testing.
Collapse
Affiliation(s)
- Brian K Lee
- Kidney/Pancreas Transplant Center, Dell Seton Medical Center, University of Texas at Austin, Austin, Texas
| | - Christie P Thomas
- Department of Internal Medicine and Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City
- VA Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
20
|
Vasquez-Rios G, De Cos M, Campbell KN. Novel Therapies in APOL1-Mediated Kidney Disease: From Molecular Pathways to Therapeutic Options. Kidney Int Rep 2023; 8:2226-2234. [PMID: 38025220 PMCID: PMC10658239 DOI: 10.1016/j.ekir.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 12/01/2023] Open
Abstract
Apolipoprotein L1 (APOL1) high-risk variants confer an increased risk for the development and progression of kidney disease among individuals of recent African ancestry. Over the past several years, significant progress has been made in understanding the pathogenesis of APOL1-mediated kidney diseases (AMKD), including genetic regulation, environmental interactions, immunomodulatory, proinflammatory and apoptotic signaling processes, as well as the complex role of APOL1 as an ion channel. Collectively, these findings have paved the way for novel therapeutic strategies to mitigate APOL1-mediated kidney injury. Precision medicine approaches are being developed to identify subgroups of AMKD patients who may benefit from these targeted interventions, fueling hope for improved clinical outcomes. This review summarizes key mechanistic insights in the pathogenesis of AMKD, emergent therapies, and discusses future challenges.
Collapse
Affiliation(s)
- George Vasquez-Rios
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marina De Cos
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kirk N. Campbell
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
21
|
Pell J, Nagata S, Menon MC. Nonpodocyte Roles of APOL1 Variants: An Evolving Paradigm. KIDNEY360 2023; 4:e1325-e1331. [PMID: 37461136 PMCID: PMC10550003 DOI: 10.34067/kid.0000000000000216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Since the seminal discovery of the trypanolytic, exonic variants in apolipoprotein L1 (APOL1) and their association with kidney disease in individuals of recent African ancestry, a wide body of research has emerged offering key insights into the mechanisms of disease. Importantly, the podocyte has become a focal point for our understanding of how risk genotype leads to disease, with activation of putative signaling pathways within the podocyte identified as playing a causal role in podocytopathy, FSGS, and progressive renal failure. However, the complete mechanism of genotype-to-phenotype progression remains incompletely understood in APOL1-risk individuals. An emerging body of evidence reports more than podocyte-intrinsic expression of APOL1 risk variants is needed for disease to manifest. This article reviews the seminal data and reports which placed the podocyte at the center of our understanding of APOL1-FSGS, as well as the evident shortcomings of this podocentric paradigm. We examine existing evidence for environmental and genetic factors that may influence disease, drawing from both clinical data and APOL1's fundamental role as an immune response gene. We also review the current body of data for APOL1's impact on nonpodocyte cells, including endothelial cells, the placenta, and immune cells in both a transplant and native setting. Finally, we discuss the implications of these emerging data and how the paradigm of disease might evolve as a result.
Collapse
Affiliation(s)
- John Pell
- Department of Medicine , Yale University, New Haven , Connecticut
| | | | | |
Collapse
|
22
|
Williams P. Retaining Race in Chronic Kidney Disease Diagnosis and Treatment. Cureus 2023; 15:e45054. [PMID: 37701164 PMCID: PMC10495104 DOI: 10.7759/cureus.45054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 09/14/2023] Open
Abstract
The best overall measure of kidney function is glomerular filtration rate (GFR) as commonly estimated from serum creatinine concentrations (eGFRcr) using formulas that correct for the higher average creatinine concentrations in Blacks. After two decades of use, these formulas have come under scrutiny for estimating GFR differently in Blacks and non-Blacks. Discussions of whether to include race (Black vs. non-Black) in the calculation of eGFRcr fail to acknowledge that the original race-based eGFRcr provided the same CKD treatment recommendations for Blacks and non-Blacks based on directly (exogenously) measured GFR. Nevertheless, the National Kidney Foundation and the American Society of Nephrology Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease removed race in CKD treatment guidelines and pushed for the immediate adoption of a race-free eGFRcr formula by physicians and clinical laboratories. This formula is projected to negate CKD in 5.51 million White and other non-Black adults and reclassify CKD to less severe stages in another 4.59 million non-Blacks, in order to expand treatment eligibility to 434,000 Blacks not previously diagnosed and to 584,000 Blacks previously diagnosed with less severe CKD. This review examines: 1) the validity of the arguments for removing the original race correction, and 2) the performance of the proposed replacement formula. Excluding race in the derivation of eGFRcr changed the statistical bias from +3.7 to -3.6 ml/min/1.73m2 in Blacks and from +0.5 to +3.9 in non-Blacks, i.e., promoting CKD diagnosis in Blacks at the cost of restricting diagnosis in non-Blacks. By doing so, the revised eGFRcr greatly exaggerates the purported racial disparity in CKD burden. Claims that the revised formulas identify heretofore undiagnosed CKD in Blacks are not supported when studies that used kidney failure replacement therapy and mortality are interpreted as proxies for baseline CKD. Alternatively, a race-stratified eGFRcr (i.e., separate equations for Blacks and non-Blacks) would provide the least biased eGFRcr for both Blacks and non-Blacks and the best medical treatment for all patients.
Collapse
Affiliation(s)
- Paul Williams
- Life Sciences, Lawrence Berkeley National Laboratory, Berkeley, USA
| |
Collapse
|
23
|
Stein Q, Westemeyer M, Darwish T, Pitman T, Hager M, Tabriziani H, Curry K, Collett K, Raible D, Hendricks E. Genetic Counseling in Kidney Disease: A Perspective. Kidney Med 2023; 5:100668. [PMID: 37334143 PMCID: PMC10276256 DOI: 10.1016/j.xkme.2023.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
As genetic testing is increasingly integrated into nephrology practice there is a growing need for partnership with genetic experts. Genetic counselors are ideally suited to fill this role. The value of genetic counseling is born out of the clinical value of genetic test results against the backdrop of the complexity of genetic testing. Genetic counselors who specialize in nephrology are trained to understand and explain the potential effects of genes on kidney disease, which can enable patients to make informed decisions about proceeding with genetic testing, navigating variants of uncertain significance, educating on extrarenal features of hereditary kidney disease, facilitating cascade testing, providing post-test education about testing results, and assisting with family planning. Genetic counselors can partner with the nephrologist and provide the knowledge needed to maximize the use of genetic testing for patients for nephrology consultation. Genetic counseling is more than an element or extension of genetic testing; it is a dynamic, shared conversation between the patient and the genetic counselor where concerns, sentiments, information, and education are exchanged, and value-based decision making is facilitated.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Darbey Raible
- St. Elizabeth Healthcare Precision Medicine, Edgewood, KY
| | | |
Collapse
|
24
|
Elliott MD, Marasa M, Cocchi E, Vena N, Zhang JY, Khan A, Krishna Murthy S, Bheda S, Milo Rasouly H, Povysil G, Kiryluk K, Gharavi AG. Clinical and Genetic Characteristics of CKD Patients with High-Risk APOL1 Genotypes. J Am Soc Nephrol 2023; 34:909-919. [PMID: 36758113 PMCID: PMC10125632 DOI: 10.1681/asn.0000000000000094] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT APOL1 high-risk genotypes confer a significant risk of kidney disease, but variability in patient outcomes suggests the presence of modifiers of the APOL1 effect. We show that a diverse population of CKD patients with high-risk APOL1 genotypes have an increased lifetime risk of kidney failure and higher eGFR decline rates, with a graded risk among specific high-risk genotypes. CKD patients with high-risk APOL1 genotypes have a lower diagnostic yield for monogenic kidney disease. Exome sequencing revealed enrichment of rare missense variants within the inflammasome pathway modifying the effect of APOL1 risk genotypes, which may explain some clinical heterogeneity. BACKGROUND APOL1 genotype has significant effects on kidney disease development and progression that vary among specific causes of kidney disease, suggesting the presence of effect modifiers. METHODS We assessed the risk of kidney failure and the eGFR decline rate in patients with CKD carrying high-risk ( N =239) and genetically matched low-risk ( N =1187) APOL1 genotypes. Exome sequencing revealed monogenic kidney diseases. Exome-wide association studies and gene-based and gene set-based collapsing analyses evaluated genetic modifiers of the effect of APOL1 genotype on CKD. RESULTS Compared with genetic ancestry-matched patients with CKD with low-risk APOL1 genotypes, those with high-risk APOL1 genotypes had a higher risk of kidney failure (Hazard Ratio [HR]=1.58), a higher decline in eGFR (6.55 versus 3.63 ml/min/1.73 m 2 /yr), and were younger at time of kidney failure (45.1 versus 53.6 years), with the G1/G1 genotype demonstrating the highest risk. The rate for monogenic kidney disorders was lower among patients with CKD with high-risk APOL1 genotypes (2.5%) compared with those with low-risk genotypes (6.7%). Gene set analysis identified an enrichment of rare missense variants in the inflammasome pathway in individuals with high-risk APOL1 genotypes and CKD (odds ratio=1.90). CONCLUSIONS In this genetically matched cohort, high-risk APOL1 genotypes were associated with an increased risk of kidney failure and eGFR decline rate, with a graded risk between specific high-risk genotypes and a lower rate of monogenic kidney disease. Rare missense variants in the inflammasome pathway may act as genetic modifiers of APOL1 effect on kidney disease.
Collapse
Affiliation(s)
- Mark D. Elliott
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine, New York, NY
- Division of Nephrology, Department of Medicine, University of Calgary, Calgary, Canada
| | - Maddalena Marasa
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Enrico Cocchi
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Pediatrics, Universita’ degli Studi di Torino, Torino Italy
| | - Natalie Vena
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine, New York, NY
| | - Jun Y. Zhang
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Sarath Krishna Murthy
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Shiraz Bheda
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Hila Milo Rasouly
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Gundula Povysil
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine, New York, NY
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine, New York, NY
| | - Ali G. Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine, New York, NY
| |
Collapse
|
25
|
Cervantes CE, Atta MG. Updates on HIV and Kidney Disease. Curr HIV/AIDS Rep 2023; 20:100-110. [PMID: 36695948 DOI: 10.1007/s11904-023-00645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE OF REVIEW With the advent of antiretroviral therapy, HIV infection has become a chronic disease in developed countries. RECENT FINDINGS Non-HIV-driven risk factors for kidney disease, such as APOL1 risk variants and other genetic and environmental factors, have been discovered and are better described. Consequently, the field of HIV-associated kidney disease has evolved with greater attention given to traditional risk factors of CKD and antiretroviral treatment's nephrotoxicity. In this review, we explore risk factors of HIV-associated kidney disease, diagnostic tools, kidney pathology in HIV-positive individuals, and antiretroviral therapy-associated nephrotoxicity.
Collapse
Affiliation(s)
- C Elena Cervantes
- Department of Medicine, Division of Nephrology, Johns Hopkins University, 1830 E. Monument Street, Suite 416, Baltimore, MD, 21218, USA
| | - Mohamed G Atta
- Department of Medicine, Division of Nephrology, Johns Hopkins University, 1830 E. Monument Street, Suite 416, Baltimore, MD, 21218, USA.
| |
Collapse
|
26
|
Batal I, Khairallah P, Weins A, Andeen NK, Stokes MB. The role of HLA antigens in recurrent primary focal segmental glomerulosclerosis. Front Immunol 2023; 14:1124249. [PMID: 36911713 PMCID: PMC9995699 DOI: 10.3389/fimmu.2023.1124249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Primary focal segmental glomerulosclerosis (FSGS), typically characterized by diffuse podocyte foot process effacement and nephrotic syndrome (diffuse podocytopathy), is generally attributed to a circulating permeability factor. Primary FSGS can recur after transplantation where it manifests as diffuse foot process effacement in the early stages, with subsequent evolution of segmental sclerotic lesions. Previous published literature has been limited by the lack of stringent selection criteria to define primary FSGS. Although immunogenetic factors play an important role in many glomerular diseases, their role in recurrent primary FSGS post-transplantation has not been systematically investigated. To address this, we retrospectively studied a multicenter cohort of 74 kidney allograft recipients with end stage kidney disease due to primary FSGS, confirmed by clinical and histologic parameters. After adjusting for race/ethnicity, there was a numeric higher frequency of HLA-A30 antigen in primary FSGS (19%) compared to each of 22,490 healthy controls (7%, adjusted OR=2.0, P=0.04) and 296 deceased kidney donors (10%, OR=2.1, P=0.03). Within the group of transplant patients with end stage kidney disease due to primary FSGS, donor HLA-A30 was associated with recurrent disease (OR=9.1, P=0.02). Multivariable time-to-event analyses revealed that recipients who self-identified as Black people had lower risk of recurrent disease, probably reflecting enrichment of these recipients with APOL1 high-risk genotypes. These findings suggest a role for recipient and donor immunogenetic makeup in recurrent primary FSGS post-transplantation. Further larger studies in well-defined cohorts of primary FSGS that include high-resolution HLA typing and genome-wide association are necessary to refine these hereditary signals.
Collapse
Affiliation(s)
- Ibrahim Batal
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Pascale Khairallah
- Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, NY, United States
| | - Astrid Weins
- Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Nicole K Andeen
- Pathology, Oregon Health & Science University, Portland, OR, United States
| | - Michael B Stokes
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
27
|
Nguyen A, Suen SC, Lin E. APOL1 Genotype, Proteinuria, and the Risk of Kidney Failure: A Secondary Analysis of the AASK (African American Study of Kidney Disease and Hypertension) and CRIC (Chronic Renal Insufficiency Cohort) Studies. Kidney Med 2022; 4:100563. [PMID: 36479469 PMCID: PMC9720339 DOI: 10.1016/j.xkme.2022.100563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Rationale & Objective Patients with a high-risk Apolipoprotein L1 (APOL1) genotype are more likely to develop chronic kidney disease and kidney failure. It is unclear whether this increased risk is entirely mediated by the development of proteinuria. Study Design Retrospective observational study of the African American Study of Kidney Disease and Hypertension cohort and Chronic Renal Insufficiency Cohort. Exposures & Predictors Self-identified race (Black/non-Black) and presence of high-risk APOL1 genotype. The primary model was adjusted for age, sex, diabetes, estimated glomerular filtration rate, and urinary protein-creatinine ratio. Outcomes Time to kidney failure defined as time to dialysis or transplantation. Analytical Approach We used Cox proportional hazard models to study how proteinuria mediates the association between APOL1 and kidney failure. We modeled proteinuria at baseline and as a time-varying covariate. Results A high-risk APOL1 genotype was associated with a significantly higher risk of kidney failure, even for patients with minimal proteinuria (HR, 1.87; 95% CI, 1.23-2.84). The association was not significant among patients with high proteinuria (HR, 1.22; 95% CI, 0.93-1.61). When modeling proteinuria as a time-varying covariate, a high-risk APOL1 genotype was associated with higher kidney failure risk even among patients who never developed proteinuria (HR, 2.04; 95% CI, 1.10-3.77). Compared to non-Black patients, Black patients without the high-risk genotype did not have higher risk of kidney failure (HR, 0.96; 95% CI, 0.85-1.10). Limitations Two datasets were combined to increase statistical power. Limited generalizability beyond the study cohorts. Residual confounding common to observational studies. Conclusions A high-risk APOL1 genotype is significantly associated with increased kidney failure risk, especially among patients without baseline proteinuria. Although our results suggest that the risk is partially mediated through proteinuria, higher kidney failure risk was present even among patients who never developed proteinuria. Providers should consider screening for the high-risk APOL1 genotype, especially among Black patients without proteinuria in populations with chronic kidney disease.
Collapse
Affiliation(s)
- Anthony Nguyen
- University of Southern California Viterbi School of Engineering, Daniel J. Epstein Department of Industrial and Systems Engineering, Los Angeles, California
| | - Sze-chuan Suen
- University of Southern California Viterbi School of Engineering, Daniel J. Epstein Department of Industrial and Systems Engineering, Los Angeles, California
- Leonard D. Schaeffer Center for Health Policy & Economics, University of Southern California, Los Angeles, California
| | - Eugene Lin
- Leonard D. Schaeffer Center for Health Policy & Economics, University of Southern California, Los Angeles, California
- University of Southern California Keck School of Medicine, Department of Medicine, Los Angeles, California
| |
Collapse
|
28
|
Muiru AN, Yang J, Derebail VK, Liu KD, Feldman HI, Srivastava A, Bhat Z, Saraf SL, Chen TK, He J, Estrella MM, Go AS, Hsu CY. Black and White Adults With CKD Hospitalized With Acute Kidney Injury: Findings From the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis 2022; 80:610-618.e1. [PMID: 35405207 PMCID: PMC9547036 DOI: 10.1053/j.ajkd.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/21/2022] [Indexed: 02/02/2023]
Abstract
RATIONALE & OBJECTIVE Few studies have investigated racial disparities in acute kidney injury (AKI), in contrast to the extensive literature on racial differences in the risk of kidney failure. We sought to study potential differences in risk in the setting of chronic kidney disease (CKD). STUDY DESIGN Prospective cohort study. SETTING & PARTICIPANTS We studied 2,720 self-identified Black or White participants with CKD enrolled in the Chronic Renal Insufficiency Cohort (CRIC) Study from July 1, 2013, to December 31, 2017. EXPOSURE Self-reported race (Black vs White). OUTCOME Hospitalized AKI (≥50% increase from nadir to peak serum creatinine). ANALYTICAL APPROACH Cox regression models adjusting for demographics (age and sex), prehospitalization clinical risk factors (diabetes, blood pressure, cardiovascular disease, estimated glomerular filtration rate, proteinuria, receipt of angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers), and socioeconomic status (insurance status and education level). In a subset of participants with genotype data, we adjusted for apolipoprotein L1 gene (APOL1) high-risk status and sickle cell trait. RESULTS Black participants (n = 1,266) were younger but had a higher burden of prehospitalization clinical risk factors. The incidence rate of first AKI hospitalization among Black participants was 6.3 (95% CI, 5.5-7.2) per 100 person-years versus 5.3 (95% CI, 4.6-6.1) per 100 person-years among White participants. In an unadjusted Cox regression model, Black participants were at a modestly increased risk of incident AKI (HR, 1.22 [95% CI, 1.01-1.48]) compared with White participants. However, this risk was attenuated and no longer significant after adjusting for prehospitalization clinical risk factors (adjusted HR, 1.02 [95% CI, 0.83-1.25]). There were only 11 AKI hospitalizations among individuals with high-risk APOL1 risk status and 14 AKI hospitalizations among individuals with sickle cell trait. LIMITATIONS Participants were limited to research volunteers and potentially not fully representative of all CKD patients. CONCLUSIONS In this multicenter prospective cohort of CKD patients, racial disparities in AKI incidence were modest and were explained by differences in prehospitalization clinical risk factors.
Collapse
Affiliation(s)
- Anthony N Muiru
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California.
| | - Jingrong Yang
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Vimal K Derebail
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Kathleen D Liu
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California
| | - Harold I Feldman
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anand Srivastava
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Zeenat Bhat
- Department of Medicine, Wayne State University, Detroit, Michigan
| | - Santosh L Saraf
- Department of Medicine, University of Illinois, Chicago, Illinois
| | - Teresa K Chen
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Jiang He
- Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Michelle M Estrella
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California
| | - Alan S Go
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Chi-Yuan Hsu
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California; Division of Research, Kaiser Permanente Northern California, Oakland, California
| |
Collapse
|
29
|
Abdu A, Duarte R, Dickens C, Dix-Peek T, Bala SM, Ademola B, Naicker S. High risk APOL1 genotypes and kidney disease among treatment naïve HIV patients at Kano, Nigeria. PLoS One 2022; 17:e0275949. [PMID: 36227935 PMCID: PMC9560498 DOI: 10.1371/journal.pone.0275949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction Racial disparities are known in the occurrence of kidney disease with excess risks found among people of African descent. Apolipoprotein L1 (APOL1) gene variants G1 and G2 are associated with kidney disease among HIV infected individuals of African descent in the USA as well as among black population in South Africa. We set out to investigate the prevalence of these high-risk variants and their effects on kidney disease among HIV infected patients in Northern Nigeria with hitherto limited information despite earlier reports of high population frequencies of these alleles from the Southern part of the country. Methods DNA samples obtained from the whole blood of 142 participants were genotyped for APOL1 G1 and G2 variants after initial baseline investigations including assessment of kidney function. Participants comprised 50 HIV positive patients with no evidence of kidney disease, 52 HIV negative individuals with no kidney disease and 40 HIV positive patients with chronic kidney disease (CKD) evidenced by persistent proteinuria and/or reduced eGFR, who also had a kidney biopsy. All the HIV positive patients were newly diagnosed and treatment naïve. Results The distribution of the APOL1 genotypes among the study participants revealed that 24.6% had a G1 risk allele and 19.0% a G2. The frequency of the High Risk Genotype (HRG) was 12.5% among those with CKD compared to 5.8% in the HIV negative group and zero in the HIV positive no CKD group. Having the HRG was associated with a higher odds for developing HIV Associated Nephropathy (HIVAN) (2 vs 0 risk alleles: OR 10.83, 95% CI 1.38–84.52; P = 0.023; 2 vs 0 or 1 risk alleles: OR 5.5, 95% CI 0.83–36.29; P = 0.07). The HRG was also associated with higher odds for Focal Segmental Glomerulosclerosis (FSGS) (2 vs 0 risk alleles: OR 13.0, 95% CI 2.06–81.91; P = 0.006 and 2 vs 0 or 1 risk alleles: OR 9.0, 95%CI 1.62–50.12; P = 0.01) when compared to the control group. Conclusion This study showed a high population frequency of the individual risk alleles of the APOL1 gene with higher frequencies noted among HIV positive patients with kidney disease. There is high association with the presence of kidney disease and especially FSGS and HIVAN among treatment naive HIV patients carrying two copies of the HRG.
Collapse
Affiliation(s)
- Aliyu Abdu
- Department of Medicine Aminu Kano Teaching Hospital/ Bayero University Kano, Kano, Nigeria
- * E-mail:
| | - Raquel Duarte
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline Dickens
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Therese Dix-Peek
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sunusi M. Bala
- Department of Medicine, M.A. Wase Teaching Hospital, Kano, Nigeria
| | - Babatunde Ademola
- Department of Medicine Aminu Kano Teaching Hospital/ Bayero University Kano, Kano, Nigeria
| | - Saraladevi Naicker
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
30
|
Creating a Machine Learning Tool to Predict Acute Kidney Injury in African American Hospitalized Patients. PHARMACY 2022; 10:pharmacy10040068. [PMID: 35893706 PMCID: PMC9326647 DOI: 10.3390/pharmacy10040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Machine learning (ML) has been used to build high-performance prediction models in the past without considering race. African Americans (AA) are vulnerable to acute kidney injury (AKI) at a higher eGFR level than Caucasians. AKI increases mortality, length of hospital stays, and incidence of chronic kidney disease (CKD) and end-stage renal disease (ESRD). We aimed to establish an ML-based prediction model for the early identification of AKI in hospitalized AA patients by utilizing patient-specific factors in an ML algorithm to create a predictor tool. This is a single-center, retrospective chart review. We included participants 18 years or older and admitted to an urban academic medical center. Two hundred participants were included in the study. Our ML training set provided a result of 77% accuracy for the prediction of AKI given the attributes collected. For the test set, AKI was accurately predicted in 71% of participants. The clinical significance of this model can lead to great advancements in the care of AA patients and provide practitioners avenues to optimize their therapy of choice in AAs when given AKI risk ahead of time.
Collapse
|
31
|
Gerstner L, Chen M, Kampf LL, Milosavljevic J, Lang K, Schneider R, Hildebrandt F, Helmstädter M, Walz G, Hermle T. Inhibition of endoplasmic reticulum stress signaling rescues cytotoxicity of human apolipoprotein-L1 risk variants in Drosophila. Kidney Int 2022; 101:1216-1231. [PMID: 35120995 PMCID: PMC10061223 DOI: 10.1016/j.kint.2021.12.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 01/01/2023]
Abstract
Risk variants of the apolipoprotein-L1 (APOL1) gene are associated with severe kidney disease, putting homozygous carriers at risk. Since APOL1 lacks orthologs in all major model organisms, a wide range of mechanisms frequently in conflict have been described for APOL1-associated nephropathies. The genetic toolkit in Drosophila allows unique in vivo insights into disrupted cellular homeostasis. To perform a mechanistic analysis, we expressed human APOL1 control and gain-of-function kidney risk variants in the podocyte-like garland cells of Drosophila nephrocytes and a wing precursor tissue. Expression of APOL1 risk variants was found to elevate endocytic function of garland cell nephrocytes that simultaneously showed early signs of cell death. Wild-type APOL1 had a significantly milder effect, while a control transgene with deletion of the short BH3 domain showed no overt phenotype. Nephrocyte endo-lysosomal function and slit diaphragm architecture remained unaffected by APOL1 risk variants, but endoplasmic reticulum (ER) swelling, chaperone induction, and expression of the reporter Xbp1-EGFP suggested an ER stress response. Pharmacological inhibition of ER stress diminished APOL1-mediated cell death and direct ER stress induction enhanced nephrocyte endocytic function similar to expression of APOL1 risk variants. We confirmed APOL1-dependent ER stress in the Drosophila wing precursor where silencing the IRE1-dependent branch of ER stress signaling by inhibition with Xbp1-RNAi abrogated cell death, representing the first rescue of APOL1-associated cytotoxicity in vivo. Thus, we uncovered ER stress as an essential consequence of APOL1 risk variant expression in vivo in Drosophila, suggesting a central role of this pathway in the pathogenesis of APOL1-associated nephropathies.
Collapse
Affiliation(s)
- Lea Gerstner
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Mengmeng Chen
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Lina L Kampf
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Julian Milosavljevic
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Konrad Lang
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Ronen Schneider
- Renal Division, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Renal Division, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Martin Helmstädter
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany.
| |
Collapse
|
32
|
Pan X. The Roles of Fatty Acids and Apolipoproteins in the Kidneys. Metabolites 2022; 12:metabo12050462. [PMID: 35629966 PMCID: PMC9145954 DOI: 10.3390/metabo12050462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
The kidneys are organs that require energy from the metabolism of fatty acids and glucose; several studies have shown that the kidneys are metabolically active tissues with an estimated energy requirement similar to that of the heart. The kidneys may regulate the normal and pathological function of circulating lipids in the body, and their glomerular filtration barrier prevents large molecules or large lipoprotein particles from being filtered into pre-urine. Given the permeable nature of the kidneys, renal lipid metabolism plays an important role in affecting the rest of the body and the kidneys. Lipid metabolism in the kidneys is important because of the exchange of free fatty acids and apolipoproteins from the peripheral circulation. Apolipoproteins have important roles in the transport and metabolism of lipids within the glomeruli and renal tubules. Indeed, evidence indicates that apolipoproteins have multiple functions in regulating lipid import, transport, synthesis, storage, oxidation and export, and they are important for normal physiological function. Apolipoproteins are also risk factors for several renal diseases; for example, apolipoprotein L polymorphisms induce kidney diseases. Furthermore, renal apolipoprotein gene expression is substantially regulated under various physiological and disease conditions. This review is aimed at describing recent clinical and basic studies on the major roles and functions of apolipoproteins in the kidneys.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA;
- Diabetes and Obesity Research Center, NYU Langone Hospital—Long Island, Mineola, New York, NY 11501, USA
| |
Collapse
|
33
|
Savedchuk S, Raslan R, Nystrom S, Sparks MA. Emerging Viral Infections and the Potential Impact on Hypertension, Cardiovascular Disease, and Kidney Disease. Circ Res 2022; 130:1618-1641. [PMID: 35549373 DOI: 10.1161/circresaha.122.320873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Viruses are ubiquitous in the environment and continue to have a profound impact on human health and disease. The COVID-19 pandemic has highlighted this with impressive morbidity and mortality affecting the world's population. Importantly, the link between viruses and hypertension, cardiovascular disease, and kidney disease has resulted in a renewed focus and attention on this potential relationship. The virus responsible for COVID-19, SARS-CoV-2, has a direct link to one of the major enzymatic regulatory systems connected to blood pressure control and hypertension pathogenesis, the renin-angiotensin system. This is because the entry point for SARS-CoV-2 is the ACE2 (angiotensin-converting enzyme 2) protein. ACE2 is one of the main enzymes responsible for dampening the primary effector peptide Ang II (angiotensin II), metabolizing it to Ang-(1-7). A myriad of clinical questions has since emerged and are covered in this review. Several other viruses have been linked to hypertension, cardiovascular disease, and kidney health. Importantly, patients with high-risk apolipoprotein L1 (APOL1) alleles are at risk for developing the kidney lesion of collapsing glomerulopathy after viral infection. This review will highlight several emerging viruses and their potential unique tropisms for the kidney and cardiovascular system. We focus on SARS-CoV-2 as this body of literature in regards to cardiovascular disease has advanced significantly since the COVID-19 pandemic.
Collapse
Affiliation(s)
- Solomiia Savedchuk
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC (S.S., S.N., M.A.S.)
| | - Rasha Raslan
- Internal Medicine, Virginia Commonwealth University, Richmond (R.R.)
| | - Sarah Nystrom
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC (S.S., S.N., M.A.S.)
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC (S.S., S.N., M.A.S.)
- Renal Section, Durham VA Health Care System, NC (M.A.S.)
| |
Collapse
|
34
|
Daneshpajouhnejad P, Kopp JB, Winkler CA, Rosenberg AZ. The evolving story of apolipoprotein L1 nephropathy: the end of the beginning. Nat Rev Nephrol 2022; 18:307-320. [PMID: 35217848 PMCID: PMC8877744 DOI: 10.1038/s41581-022-00538-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 01/13/2023]
Abstract
Genetic coding variants in APOL1, which encodes apolipoprotein L1 (APOL1), were identified in 2010 and are relatively common among individuals of sub-Saharan African ancestry. Approximately 13% of African Americans carry two APOL1 risk alleles. These variants, termed G1 and G2, are a frequent cause of kidney disease — termed APOL1 nephropathy — that typically manifests as focal segmental glomerulosclerosis and the clinical syndrome of hypertension and arterionephrosclerosis. Cell culture studies suggest that APOL1 variants cause cell dysfunction through several processes, including alterations in cation channel activity, inflammasome activation, increased endoplasmic reticulum stress, activation of protein kinase R, mitochondrial dysfunction and disruption of APOL1 ubiquitinylation. Risk of APOL1 nephropathy is mostly confined to individuals with two APOL1 risk variants. However, only a minority of individuals with two APOL1 risk alleles develop kidney disease, suggesting the need for a ‘second hit’. The best recognized factor responsible for this ‘second hit’ is a chronic viral infection, particularly HIV-1, resulting in interferon-mediated activation of the APOL1 promoter, although most individuals with APOL1 nephropathy do not have an obvious cofactor. Current therapies for APOL1 nephropathies are not adequate to halt progression of chronic kidney disease, and new targeted molecular therapies are in clinical trials. This Review summarizes current understanding of the role of APOL1 variants in kidney disease. The authors discuss the genetics, protein structure and biological functions of APOL1 variants and provide an overview of promising therapeutic strategies. In contrast to other APOL family members, which are primarily intracellular, APOL1 contains a unique secretory signal peptide, resulting in its secretion into plasma. APOL1 renal risk alleles provide protection from African human trypanosomiasis but are a risk factor for progressive kidney disease in those carrying two risk alleles. APOL1 risk allele frequency is ~35% in the African American population in the United States, with ~13% of individuals having two risk alleles; the highest allele frequencies are found in West African populations and their descendants. Cell and mouse models implicate endolysosomal and mitochondrial dysfunction, altered ion channel activity, altered autophagy, and activation of protein kinase R in the pathogenesis of APOL1-associated kidney disease; however, the relevance of these injury pathways to human disease has not been resolved. APOL1 kidney disease tends to be progressive, and current standard therapies are generally ineffective; targeted therapeutic strategies hold the most promise.
Collapse
Affiliation(s)
- Parnaz Daneshpajouhnejad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, University of Pennsylvania Hospital, Philadelphia, PA, USA
| | | | - Cheryl A Winkler
- Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
35
|
Johnson JD, Louis JM. Does race or ethnicity play a role in the origin, pathophysiology, and outcomes of preeclampsia? An expert review of the literature. Am J Obstet Gynecol 2022; 226:S876-S885. [PMID: 32717255 DOI: 10.1016/j.ajog.2020.07.038] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
The burden of preeclampsia, a substantial contributor to perinatal morbidity and mortality, is not born equally across the population. Although the prevalence of preeclampsia has been reported to be 3% to 5%, racial and ethnic minority groups such as non-Hispanic Black women and American Indian or Alaskan Native women are widely reported to be disproportionately affected by preeclampsia. However, studies that add clarity to the causes of the racial and ethnic differences in preeclampsia are limited. Race is a social construct, is often self-assigned, is variable across settings, and fails to account for subgroups. Studies of the genetic structure of human populations continue to find more variations within racial groups than among them. Efforts to examine the role of race and ethnicity in biomedical research should consider these limitations and not use it as a biological construct. Furthermore, the use of race in decision making in clinical settings may worsen the disparity in health outcomes. Most of the existing data on disparities examine the differences between White and non-Hispanic Black women. Fewer studies have enough sample size to evaluate the outcomes in the Asian, American Indian or Alaskan Native, or mixed-race women. Racial differences are noted in the occurrence, presentation, and short-term and long-term outcomes of preeclampsia. Well-established clinical risk factors for preeclampsia such as obesity, diabetes, and chronic hypertension disproportionately affect non-Hispanic Black, American Indian or Alaskan Native, and Hispanic populations. However, with comparable clinical risk factors for preeclampsia among women of different race or ethnic groups, addressing modifiable risk factors has not been found to have the same protective effect for all women. Abnormalities of placental formation and development, immunologic factors, vascular changes, and inflammation have all been identified as contributing to the pathophysiology of preeclampsia. Few studies have examined race and the pathophysiology of preeclampsia. Despite attempts, a genetic basis for the disease has not been identified. A number of genetic variants, including apolipoprotein L1, have been identified as possible risk modifiers. Few studies have examined race and prevention of preeclampsia. Although low-dose aspirin for the prevention of preeclampsia is recommended by the US Preventive Service Task Force, a population-based study found racial and ethnic differences in preeclampsia recurrence after the implementation of low-dose aspirin supplementation. After implementation, recurrent preeclampsia reduced among Hispanic women (76.4% vs 49.6%; P<.001), but there was no difference in the recurrent preeclampsia in non-Hispanic Black women (13.7 vs 18.1; P=.252). Future research incorporating the National Institute on Minority Health and Health Disparities multilevel framework, specifically examining the role of racism on the burden of the disease, may help in the quest for effective strategies to reduce the disproportionate burden of preeclampsia on a minority population. In this model, a multilevel framework provides a more comprehensive approach and takes into account the influence of behavioral factors, environmental factors, and healthcare systems, not just on the individual.
Collapse
Affiliation(s)
- Jasmine D Johnson
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC
| | - Judette M Louis
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL.
| |
Collapse
|
36
|
Schmidt H, Roberts DE, Eneanya ND. Rationing, racism and justice: advancing the debate around 'colourblind' COVID-19 ventilator allocation. JOURNAL OF MEDICAL ETHICS 2022; 48:126-130. [PMID: 33408091 PMCID: PMC7789208 DOI: 10.1136/medethics-2020-106856] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 05/13/2023]
Abstract
Withholding or withdrawing life-saving ventilators can become necessary when resources are insufficient. In the USA, such rationing has unique social justice dimensions. Structural elements of dominant allocation frameworks simultaneously advantage white communities, and disadvantage Black communities-who already experience a disproportionate burden of COVID-19-related job losses, hospitalisations and mortality. Using the example of New Jersey's Crisis Standard of Care policy, we describe how dominant rationing guidance compounds for many Black patients prior unfair structural disadvantage, chiefly due to the way creatinine and life expectancy are typically considered.We outline six possible policy options towards a more just approach: improving diversity in decision processes, adjusting creatinine scores, replacing creatinine, dropping creatinine, finding alternative measures, adding equity weights and rejecting the dominant model altogether. We also contrast these options with making no changes, which is not a neutral default, but in separate need of justification, despite a prominent claim that it is simply based on 'objective medical knowledge'. In the regrettable absence of fair federal guidance, hospital and state-level policymakers should reflect on which of these, or further options, seem feasible and justifiable.Irrespective of which approach is taken, all guidance should be supplemented with a monitoring and reporting requirement on possible disparate impacts. The hope that we will be able to continue to avoid rationing ventilators must not stand in the way of revising guidance in a way that better promotes health equity and racial justice, both to be prepared, and given the significant expressive value of ventilator guidance.
Collapse
Affiliation(s)
- Harald Schmidt
- Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dorothy E Roberts
- Penn Law, Departments of Africana Studies and Sociology, School of Arts and Sciences, University of Pennsylvani, Philadelphia, Pennsylvania, USA
| | - Nwamaka D Eneanya
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Tang F, Li Z, Lai Y, Lu Z, Lei H, He C, He Z. A 7-gene signature predicts the prognosis of patients with bladder cancer. BMC Urol 2022; 22:8. [PMID: 35090432 PMCID: PMC8796539 DOI: 10.1186/s12894-022-00955-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
The biomarkers have an important guiding role in prognosis and treatment of patients with bladder cancer (BC). The aim of the present study was to identify and evaluate a prognostic gene signature in BC patients. The gene expression profiles of BC samples and the corresponding clinicopathological data were downloaded from GEO and TCGA. The differentially expressed genes (DEGs) were identified by R software. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) Cox regression were applied to construct the prognostic score model. A nomogram was established with the identified prognostic factors to predict the overall survival rates of BC patients. The discriminatory and predictive capacity of the nomogram was evaluated based on the concordance index (C‐index), calibration curves and decision curve analysis (DCA). A 7-gene signature (KLRB1, PLAC9, SETBP1, NR2F1, GRHL2, ANXA1 and APOL1) was identified from 285 DEGs by univariate and LASSO Cox regression analyses. Univariate and multivariate Cox regression analyses showed that age, lymphovascular invasion, lymphatic metastasis, metastasis and the 7-gene signature risk score was an independent predictor of BC patient prognosis. A nomogram that integrated these independent prognostic factors was constructed. The C-index (0.73, CI 95%, 0.693–0.767) and calibration curve demonstrated the good performance of the nomogram. DCA of the nomogram further showed that this model exhibited good net benefit. The combined 7-gene signature could serve as a biomarker for predicting BC prognosis. The nomogram built by risk score and other clinical factors could be an effective tool for predicting the prognosis of patients with BC.
Collapse
|
38
|
Kruzel-Davila E, Bavli-Kertselli I, Ofir A, Cheatham AM, Shemer R, Zaknoun E, Chornyy S, Tabachnikov O, Davis SE, Khatua AK, Skorecki K, Popik W. Endoplasmic reticulum-translocation is essential for APOL1 cellular toxicity. iScience 2022; 25:103717. [PMID: 35072009 PMCID: PMC8762391 DOI: 10.1016/j.isci.2021.103717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022] Open
Abstract
Two variants at the APOL1 gene, encoding apolipoprotein L1, account for more than 70% of the increased risk for chronic kidney disease in individuals of African ancestry. While the initiating event for APOL1 risk variant cell injury remains to be clarified, we explored the possibility of blocking APOL1 toxicity at a more upstream level. We demonstrate that deletion of the first six amino acids of exon 4 abrogates APOL1 cytotoxicity by impairing APOL1 translocation to the lumen of ER and splicing of the signal peptide. Likewise, in orthologous systems, APOL1 lethality was partially abrogated in yeast strains and flies with reduced dosage of genes encoding ER translocon proteins. An inhibitor of ER to Golgi trafficking reduced lethality as well. We suggest that targeting the MSALFL sequence or exon 4 skipping may serve as potential therapeutic approaches to mitigate the risk of CKD caused by APOL1 renal risk variants.
Collapse
Affiliation(s)
- Etty Kruzel-Davila
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel
- Departments of Genetics and Developmental Biology and Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | | | - Ayala Ofir
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel
| | - Amber M. Cheatham
- Meharry Medical College, Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, 1005 D. B. Todd Boulevard, Nashville, TN 37028, USA
| | - Revital Shemer
- Departments of Genetics and Developmental Biology and Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Eid Zaknoun
- Departments of Genetics and Developmental Biology and Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Sergiy Chornyy
- Departments of Genetics and Developmental Biology and Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Orly Tabachnikov
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel
| | - Shamara E. Davis
- Meharry Medical College, Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, 1005 D. B. Todd Boulevard, Nashville, TN 37028, USA
| | - Atanu K. Khatua
- Meharry Medical College, Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, 1005 D. B. Todd Boulevard, Nashville, TN 37028, USA
| | - Karl Skorecki
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel
- Departments of Genetics and Developmental Biology and Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Waldemar Popik
- Meharry Medical College, Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, 1005 D. B. Todd Boulevard, Nashville, TN 37028, USA
- Department of Internal Medicine, 1005 D. B. Todd Boulevard, Nashville, TN 37028, USA
| |
Collapse
|
39
|
Dugbartey GJ, Alornyo KK, Ohene BO, Boima V, Antwi S, Sener A. Renal consequences of the novel coronavirus disease 2019 (COVID-19) and hydrogen sulfide as a potential therapy. Nitric Oxide 2022; 120:16-25. [PMID: 35032641 PMCID: PMC8755416 DOI: 10.1016/j.niox.2022.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is a global pandemic which is primarily considered a respiratory illness. However, emerging reports show that the virus exhibits both pulmonary and extra-pulmonary manifestations in humans, with the kidney as a major extra-pulmonary target due to its abundant expression of angiotensin-converting enzyme 2 and transmembrane protease serine 2, which facilitate entry of the virus into cells. Acute kidney injury has become prevalent in COVID-19 patients without prior any history of kidney dysfunction. In addition, the virus also worsens kidney conditions and increases mortality of COVID-19 patients with pre-existing chronic kidney disease, renal cancer, diabetic nephropathy, end-stage kidney disease as well as dialysis and kidney transplant patients. In the search for antiviral agents for the treatment of COVID-19, hydrogen sulfide (H2S), the third established member of gasotransmitter family, is emerging as a potential candidate, possessing important therapeutic properties including antiviral, anti-inflammatory, anti-thrombotic and antioxidant properties. A recent clinical study revealed higher serum H2S levels in survivors of COVID-19 pneumonia with reduced interleukin-6 levels compared to fatal cases. In this review, we summarize the global impact of COVID-19 on kidney conditions and discuss the emerging role of H2S as a potential COVID-19 therapy.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Bright O Ohene
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Vincent Boima
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Sampson Antwi
- Department of Child Health, School of Medical Sciences, Kwame Nkrumah University of Science and Technology and Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Alp Sener
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-organ Transplant Program, London Health Sciences Center, Ontario, Canada; Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
40
|
Dyussenova SB, Gordiyenko MY, Serikova GB, Turlybekova SA, Issayeva AA, Yerimbetova NA, Goroshko VO. Vitamin D Deficiency in Children with Chronic Renal Disease. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Vitamin D is essential for children and adults for healthy bone growth. Lack of this vitamin in children can cause rickets, and in adults, softening of the bones and an increased risk of fractures. Vitamin D deficiency can cause immune disorders, increased susceptibility to infections, the development of certain types of cancer, diabetes mellitus, and cardiovascular diseases.
AIM: The article presents the literature data and the results of our own research on the analysis of the relationship between chronic kidney disease (CKD) and Vitamin D provision in children from 1 to 17 years old. The aim of the study was to establish the level of Vitamin D in children with different stages of CKD.
METHODS: Between January 2020 and September 2020, we examined 40 children (16 boys and 24 girls). The patients’ age ranged from 1 to 17 years inclusive.
RESULTS: Vitamin D deficiency was found in 62.5% of children with CKD. Vitamin D deficiency was noted in 25% of cases. The prevalence of Vitamin D deficiency correlates with a decrease in glomerular filtration rate.
CONCLUSION: Determination of Vitamin D level in children with CKD is important for timely correction and prevention of further progression of CKD. Timely substitution therapy will improve the quality of life of a child with CKD and prevent the development of complications.
Collapse
|
41
|
Müller D, Schmitz J, Fischer K, Granado D, Groh AC, Krausel V, Lüttgenau SM, Amelung TM, Pavenstädt H, Weide T. Evolution of Renal-Disease Factor APOL1 Results in Cis and Trans Orientations at the Endoplasmic Reticulum That Both Show Cytotoxic Effects. Mol Biol Evol 2021; 38:4962-4976. [PMID: 34323996 PMCID: PMC8557400 DOI: 10.1093/molbev/msab220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The recent and exclusively in humans and a few other higher primates expressed APOL1 (apolipoprotein L1) gene is linked to African human trypanosomiasis (also known as African sleeping sickness) as well as to different forms of kidney diseases. Whereas APOL1's role as a trypanolytic factor is well established, pathobiological mechanisms explaining its cytotoxicity in renal cells remain unclear. In this study, we compared the APOL family members using a combination of evolutionary studies and cell biological experiments to detect unique features causal for APOL1 nephrotoxic effects. We investigated available primate and mouse genome and transcriptome data to apply comparative phylogenetic and maximum likelihood selection analyses. We suggest that the APOL gene family evolved early in vertebrates and initial splitting occurred in ancestral mammals. Diversification and differentiation of functional domains continued in primates, including developing the two members APOL1 and APOL2. Their close relationship could be diagnosed by sequence similarity and a shared ancestral insertion of an AluY transposable element. Live-cell imaging analyses showed that both expressed proteins show a strong preference to localize at the endoplasmic reticulum (ER). However, glycosylation and secretion assays revealed that-unlike APOL2-APOL1 membrane insertion or association occurs in different orientations at the ER, with the disease-associated mutants facing either the luminal (cis) or cytoplasmic (trans) side of the ER. The various pools of APOL1 at the ER offer a novel perspective in explaining the broad spectrum of its observed toxic effects.
Collapse
Affiliation(s)
- Daria Müller
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany
| | - Katharina Fischer
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Daniel Granado
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Ann-Christin Groh
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Vanessa Krausel
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Simona Mareike Lüttgenau
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Till Maximilian Amelung
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Hermann Pavenstädt
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Thomas Weide
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| |
Collapse
|
42
|
Smith P, Bramham K. APOL1 genotypes: Do they contribute to ethnicity-associated biological health inequalities in pregnancy? Obstet Med 2021; 15:238-242. [DOI: 10.1177/1753495x211043750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Inferior health outcomes for people of African and Afro-Caribbean ancestry compared to those of European ancestry are well recognised. There is a disproportionate impact within these communities compared to other ethnic groups including pregnancy outcomes, hypertension, kidney disease and diabetes. The ‘Black Lives Matter’ movement has highlighted that it is imperative to examine all factors contributing to this inequity and to strive to explore multifaceted ways, including social, economic, psychological and biological to improve overall health equity. It is within this context that we discuss the novel finding of Apolipoprotein 1 genetic polymorphisms which have been identified in some populations of African ancestry. We will explore the history and evolutionary advantages of Apolipoprotein 1 polymorphisms and the pathophysiology resulting from these adaptations and examine the impact of Apolipoprotein 1 on pregnancy outcomes, the risks and benefits of screening for high-risk Apolipoprotein 1 alleles in black communities and potential treatments currently being investigated.
Collapse
Affiliation(s)
- Priscilla Smith
- King’s Kidney Care, King’s College Hospital NHS Foundation Trust, London, UK
| | - Kate Bramham
- Department of Women and Children’s Health, King’s College London, London, UK
| |
Collapse
|
43
|
Iltis AS, Connell A, Cooper L, Gee PO, Jefferson NM, Johnson HA, Kingston GM, Roberts GV, Scott N, Smith A, Waddy S, Woodard L, DuBois JM. Improving Kidney Disease Research in the Black Community: The Essential Role of Black Voices in the APOLLO Study. Am J Kidney Dis 2021; 79:750-753. [PMID: 34653538 DOI: 10.1053/j.ajkd.2021.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ana S Iltis
- Center for Bioethics, Health and Society, Wake Forest University, Winston-Salem, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | - James M DuBois
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
44
|
Rovin BH, Adler SG, Barratt J, Bridoux F, Burdge KA, Chan TM, Cook HT, Fervenza FC, Gibson KL, Glassock RJ, Jayne DR, Jha V, Liew A, Liu ZH, Mejía-Vilet JM, Nester CM, Radhakrishnan J, Rave EM, Reich HN, Ronco P, Sanders JSF, Sethi S, Suzuki Y, Tang SC, Tesar V, Vivarelli M, Wetzels JF, Floege J. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int 2021; 100:S1-S276. [PMID: 34556256 DOI: 10.1016/j.kint.2021.05.021] [Citation(s) in RCA: 1092] [Impact Index Per Article: 273.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
|
45
|
McCarthy GM, Blasio A, Donovan OG, Schaller LB, Bock-Hughes A, Magraner JM, Suh JH, Tattersfield CF, Stillman IE, Shah SS, Zsengeller ZK, Subramanian B, Friedman DJ, Pollak MR. Recessive, gain-of-function toxicity in an APOL1 BAC transgenic mouse model mirrors human APOL1 kidney disease. Dis Model Mech 2021; 14:dmm048952. [PMID: 34350953 PMCID: PMC8353097 DOI: 10.1242/dmm.048952] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
People of recent sub-Saharan African ancestry develop kidney failure much more frequently than other groups. A large fraction of this disparity is due to two coding sequence variants in the APOL1 gene. Inheriting two copies of these APOL1 risk variants, known as G1 and G2, causes high rates of focal segmental glomerulosclerosis (FSGS), HIV-associated nephropathy and hypertension-associated end-stage kidney disease. Disease risk follows a recessive mode of inheritance, which is puzzling given the considerable data that G1 and G2 are toxic gain-of-function variants. We developed coisogenic bacterial artificial chromosome (BAC) transgenic mice harboring either the wild-type (G0), G1 or G2 forms of human APOL1. Expression of interferon gamma (IFN-γ) via plasmid tail vein injection results in upregulation of APOL1 protein levels together with robust induction of heavy proteinuria and glomerulosclerosis in G1/G1 and G2/G2 but not G0/G0 mice. The disease phenotype was greater in G2/G2 mice. Neither heterozygous (G1/G0 or G2/G0) risk variant mice nor hemizygous (G1/-, G2/-) mice had significant kidney injury in response to IFN-γ, although the heterozygous mice had a greater proteinuric response than the hemizygous mice, suggesting that the lack of significant disease in humans heterozygous for G1 or G2 is not due to G0 rescue of G1 or G2 toxicity. Studies using additional mice (multicopy G2 and a non-isogenic G0 mouse) supported the notion that disease is largely a function of the level of risk variant APOL1 expression. Together, these findings shed light on the recessive nature of APOL1-nephropathy and present an important model for future studies.
Collapse
Affiliation(s)
- Gizelle M. McCarthy
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Angelo Blasio
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Olivia G. Donovan
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Lena B. Schaller
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Althea Bock-Hughes
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jose M. Magraner
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jung Hee Suh
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Calum F. Tattersfield
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Isaac E. Stillman
- Dept. of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Shrijal S. Shah
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Zsuzsanna K. Zsengeller
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Balajikarthick Subramanian
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - David J. Friedman
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Martin R. Pollak
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
46
|
Schaub C, Lee P, Racho-Jansen A, Giovinazzo J, Terra N, Raper J, Thomson R. Coiled-coil binding of the leucine zipper domains of APOL1 is necessary for the open cation channel conformation. J Biol Chem 2021; 297:101009. [PMID: 34331942 PMCID: PMC8446801 DOI: 10.1016/j.jbc.2021.101009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Apolipoprotein L-I (APOL1) is a channel-forming effector of innate immunity. The common human APOL1 variant G0 provides protection against infection with certain Trypanosoma and Leishmania parasite species, but it cannot protect against the trypanosomes responsible for human African trypanosomiasis. Human APOL1 variants G1 and G2 protect against human-infective trypanosomes but also confer a higher risk of developing chronic kidney disease. Trypanosome-killing activity is dependent on the ability of APOL1 to insert into membranes at acidic pH and form pH-gated cation channels. We previously mapped the channel’s pore-lining region to the C-terminal domain (residues 332–398) and identified a membrane-insertion domain (MID, residues 177–228) that facilitates acidic pH-dependent membrane insertion. In this article, we further investigate structural determinants of cation channel formation by APOL1. Using a combination of site-directed mutagenesis and targeted chemical modification, our data indicate that the C-terminal heptad-repeat sequence (residues 368–395) is a bona fide leucine zipper domain (ZIP) that is required for cation channel formation as well as lysis of trypanosomes and mammalian cells. Using protein-wide cysteine-scanning mutagenesis, coupled with the substituted cysteine accessibility method, we determined that, in the open channel state, both the N-terminal domain and the C-terminal ZIP domain are exposed on the intralumenal/extracellular side of the membrane and provide evidence that each APOL1 monomer contributes four transmembrane domains to the open cation channel conformation. Based on these data, we propose an oligomeric topology model in which the open APOL1 cation channel is assembled from the coiled-coil association of C-terminal ZIP domains.
Collapse
Affiliation(s)
- Charles Schaub
- Department of Biological sciences, Hunter College, City University of New York, USA; The Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York; Vanderbilt University, Nashville, Tennessee, USA
| | - Penny Lee
- Department of Biological sciences, Hunter College, City University of New York, USA; John Jay College, City University of New York, USA
| | - Alisha Racho-Jansen
- Department of Biological sciences, Hunter College, City University of New York, USA
| | - Joe Giovinazzo
- Department of Biological sciences, Hunter College, City University of New York, USA; University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Nada Terra
- Department of Biological sciences, Hunter College, City University of New York, USA; Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jayne Raper
- Department of Biological sciences, Hunter College, City University of New York, USA; The Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York.
| | - Russell Thomson
- Department of Biological sciences, Hunter College, City University of New York, USA.
| |
Collapse
|
47
|
Ultsch M, Holliday MJ, Gerhardy S, Moran P, Scales SJ, Gupta N, Oltrabella F, Chiu C, Fairbrother W, Eigenbrot C, Kirchhofer D. Structures of the ApoL1 and ApoL2 N-terminal domains reveal a non-classical four-helix bundle motif. Commun Biol 2021; 4:916. [PMID: 34316015 PMCID: PMC8316464 DOI: 10.1038/s42003-021-02387-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Apolipoprotein L1 (ApoL1) is a circulating innate immunity protein protecting against trypanosome infection. However, two ApoL1 coding variants are associated with a highly increased risk of chronic kidney disease. Here we present X-ray and NMR structures of the N-terminal domain (NTD) of ApoL1 and of its closest relative ApoL2. In both proteins, four of the five NTD helices form a four-helix core structure which is different from the classical four-helix bundle and from the pore-forming domain of colicin A. The reactivity with a conformation-specific antibody and structural models predict that this four-helix motif is also present in the NTDs of ApoL3 and ApoL4, suggesting related functions within the small ApoL family. The long helix 5 of ApoL1 is conformationally flexible and contains the BH3-like region. This BH3-like α-helix resembles true BH3 domains only in sequence and structure but not in function, since it does not bind to the pro-survival members of the Bcl-2 family, suggesting a Bcl-2-independent role in cytotoxicity. These findings should expedite a more comprehensive structural and functional understanding of the ApoL immune protein family.
Collapse
Affiliation(s)
- Mark Ultsch
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Michael J Holliday
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Stefan Gerhardy
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Paul Moran
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Suzie J Scales
- Department of Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Nidhi Gupta
- Department of Immunology, Genentech Inc., South San Francisco, CA, USA
| | | | - Cecilia Chiu
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Wayne Fairbrother
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Charles Eigenbrot
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
48
|
Daehn IS, Duffield JS. The glomerular filtration barrier: a structural target for novel kidney therapies. Nat Rev Drug Discov 2021; 20:770-788. [PMID: 34262140 PMCID: PMC8278373 DOI: 10.1038/s41573-021-00242-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Loss of normal kidney function affects more than 10% of the population and contributes to morbidity and mortality. Kidney diseases are currently treated with immunosuppressive agents, antihypertensives and diuretics with partial but limited success. Most kidney disease is characterized by breakdown of the glomerular filtration barrier (GFB). Specialized podocyte cells maintain the GFB, and structure-function experiments and studies of intercellular communication between the podocytes and other GFB cells, combined with advances from genetics and genomics, have laid the groundwork for a new generation of therapies that directly intervene at the GFB. These include inhibitors of apolipoprotein L1 (APOL1), short transient receptor potential channels (TRPCs), soluble fms-like tyrosine kinase 1 (sFLT1; also known as soluble vascular endothelial growth factor receptor 1), roundabout homologue 2 (ROBO2), endothelin receptor A, soluble urokinase plasminogen activator surface receptor (suPAR) and substrate intermediates for coenzyme Q10 (CoQ10). These molecular targets converge on two key components of GFB biology: mitochondrial function and the actin-myosin contractile machinery. This Review discusses therapies and developments focused on maintaining GFB integrity, and the emerging questions in this evolving field.
Collapse
Affiliation(s)
- Ilse S Daehn
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jeremy S Duffield
- Research and Development, Prime Medicine, Cambridge, MA, USA. .,Department of Medicine, University of Washington, Seattle, WA, USA. .,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
49
|
Freedman BI, Burke W, Divers J, Eberhard L, Gadegbeku CA, Gbadegesin R, Hall ME, Jones-Smith T, Knight R, Kopp JB, Kovesdy CP, Norris KC, Olabisi OA, Roberts GV, Sedor JR, Blacksher E. Diagnosis, Education, and Care of Patients with APOL1-Associated Nephropathy: A Delphi Consensus and Systematic Review. J Am Soc Nephrol 2021; 32:1765-1778. [PMID: 33853887 PMCID: PMC8425659 DOI: 10.1681/asn.2020101399] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/12/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND APOL1 variants contribute to the markedly higher incidence of ESKD in Blacks compared with Whites. Genetic testing for these variants in patients with African ancestry who have nephropathy is uncommon, and no specific treatment or management protocol for APOL1-associated nephropathy currently exists. METHODS A multidisciplinary, racially diverse group of 14 experts and patient advocates participated in a Delphi consensus process to establish practical guidance for clinicians caring for patients who may have APOL1-associated nephropathy. Consensus group members took part in three anonymous voting rounds to develop consensus statements relating to the following: (1) counseling, genotyping, and diagnosis; (2) disease awareness and education; and (3) a vision for management of APOL1-associated nephropathy in a future when treatment is available. A systematic literature search of the MEDLINE and Embase databases was conducted to identify relevant evidence published from January 1, 2009 to July 14, 2020. RESULTS The consensus group agreed on 55 consensus statements covering such topics as demographic and clinical factors that suggest a patient has APOL1-associated nephropathy, as well as key considerations for counseling, testing, and diagnosis in current clinical practice. They achieved consensus on the need to increase awareness among key stakeholders of racial health disparities in kidney disease and of APOL1-associated nephropathy and on features of a successful education program to raise awareness among the patient community. The group also highlighted the unmet need for a specific treatment and agreed on best practice for management of these patients should a treatment become available. CONCLUSIONS A multidisciplinary group of experts and patient advocates defined consensus-based guidance on the care of patients who may have APOL1-associated nephropathy.
Collapse
Affiliation(s)
- Barry I. Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Wylie Burke
- Department of Bioethics and Humanities, University of Washington, Seattle, Washington
| | - Jasmin Divers
- Division of Health Services Research, Department of Foundations of Medicine, New York University Long Island School of Medicine and Winthrop Research Institute, Mineola, New York
| | | | - Crystal A. Gadegbeku
- Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Rasheed Gbadegesin
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Michael E. Hall
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | - Jeffrey B. Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Csaba P. Kovesdy
- Division of Nephrology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Keith C. Norris
- Division of General Internal Medicine and Health Services Research, University of California Los Angeles Medical Center, University of California, Los Angeles, California
| | - Opeyemi A. Olabisi
- Department of Medicine, Duke Molecular Physiology Institute, Durham, North Carolina
| | - Glenda V. Roberts
- Kidney Research Institute/Center for Dialysis Innovation, University of Washington, Seattle, Washington
| | - John R. Sedor
- Department of Nephrology and Hypertension, Glickman Urology and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Immunology and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Erika Blacksher
- Department of Bioethics and Humanities, University of Washington, Seattle, Washington
| |
Collapse
|
50
|
Cerdeña JP, Tsai J, Grubbs V. APOL1, Black Race, and Kidney Disease: Turning Attention to Structural Racism. Am J Kidney Dis 2021; 77:857-860. [DOI: 10.1053/j.ajkd.2020.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
|