1
|
Alafi NM, Barzegar B, Habibi R, Aghdasinia H, Altinkaya SA. High-performance polyether sulfone (PES) membranes modified with sunflower seed shell-derived activated carbon (SSAC)@ZIF-11 nanoparticles for enhanced antibiotic removal and antifouling properties. Int J Biol Macromol 2025; 315:144429. [PMID: 40409641 DOI: 10.1016/j.ijbiomac.2025.144429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/17/2025] [Accepted: 05/18/2025] [Indexed: 05/25/2025]
Abstract
This study investigates the impact of incorporating a novel composite filler on the antibiotic removal efficiency and protein fouling resistance of polyether sulfone (PES) membranes. The filler was synthesized from activated carbon derived from sunflower seed shells (SSAC) and modified with zeolitic imidazolate framework-11 (ZIF-11). The adsorption capacities of the composite for two model antibiotics, tetracycline (TC) and rifampicin (RP), were evaluated. Mixed matrix membranes were fabricated using the phase inversion method with varying SSAC@ZIF-11 contents (0.2-1 wt%). The membrane containing 0.8 wt% SSAC@ZIF-11 exhibited improved structural and surface characteristics, including increased porosity, larger pore size, smoother morphology, and enhanced hydrophilicity, as reflected by a reduction in contact angle from 60.72° to 46.45°. At this optimal loading, the pure water flux increased significantly from 10.52 to 39.1 L/m2h. Moreover, the modified membrane demonstrated outstanding removal efficiencies for TC (99.12 %) and RP (89.9 %), alongside excellent antifouling performance, as indicated by a flux recovery ratio increase from 42.85 % to 99.74 %. These results confirm the potential of SSAC@ZIF-11 as an effective nanofiller for developing high-performance PES membranes in advanced water purification applications.
Collapse
Affiliation(s)
- Narges Mortazazad Alafi
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Behrad Barzegar
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran; Laboratory of Advanced Water and Wastewater, Central Laboratory of University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Rezvan Habibi
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Hassan Aghdasinia
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Sacide Alsoy Altinkaya
- Izmir Institute of Technology, Department of Chemical Engineering, Gulbahce, Urla, 35430 Izmir, Turkey
| |
Collapse
|
2
|
Abudu L, Bhosale RC, Arnscheidt J, Tretsiakova-McNally S, O’Hagan B, Adeyemi DK, Oluseyi T, Adams LA, Coleman HM. Tackling Antimicrobial Resistance: A Sustainable Method for the Removal of Antibiotics from Water. Antibiotics (Basel) 2025; 14:324. [PMID: 40149134 PMCID: PMC11939547 DOI: 10.3390/antibiotics14030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Introduction: The presence of antibiotic residues in the aquatic environment is a likely contributor to the current increase in antibiotic resistance, posing a significant threat to global health. This study investigated the use of a low-cost and sustainable material based on sawdust with the purpose of removing rifampicin residues from water. Methods: The sawdust was pretreated with 2M sulfuric acid and was characterized using Fourier Transform Infrared spectroscopy (FT-IR), a Mastersizer, scanning electron microscopy (SEM), an elemental analyser, and the pH point of zero charge (pHpzc). The batch adsorption process was conducted using both raw and treated sawdust to determine the effect of contact time, temperature, pH, adsorbent dosage, and the initial concentration of antibiotic dissolved in water. Results and Discussion: The results revealed that the chemical pretreatment of raw sawdust significantly improved its adsorption capacity. The highest removal efficiency of 65% was achieved using an adsorbent dosage of 31.3 g/L. The thermodynamic studies demonstrated that the process was spontaneous and governed by physisorption within the studied temperature range (293.15 K-318.15 K), being more favourable at higher temperatures. The interactions between the functional groups of sawdust and the rifampicin molecules included electrostatic attraction, hydrogen bonding, and π-π interactions. Conclusions: This research highlights the potential of utilizing waste as a valuable and effective adsorbent of residual antibiotics from water, thus contributing to the sustainable practices of solid waste management and water treatment.
Collapse
Affiliation(s)
- Lekan Abudu
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK; (L.A.); (R.C.B.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Lagos 100272, Nigeria;
| | - Rutuja C. Bhosale
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK; (L.A.); (R.C.B.)
| | - Joerg Arnscheidt
- School of Geography and Environmental Sciences, Ulster University, Coleraine BT52 1SA, UK;
| | | | - Barry O’Hagan
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
| | - David K. Adeyemi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Lagos 100272, Nigeria;
| | - Temilola Oluseyi
- Department of Chemistry, University of Lagos, Lagos 100272, Nigeria; (T.O.); (L.A.A.)
| | - Luqman A. Adams
- Department of Chemistry, University of Lagos, Lagos 100272, Nigeria; (T.O.); (L.A.A.)
| | - Heather M. Coleman
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK; (L.A.); (R.C.B.)
| |
Collapse
|
3
|
Gzara L, Ounifi I, Organji H, Khlissa F, Moujdin IA, Alsaiari AO, Abdel Salam M, Hafiane A. Microwave-Assisted In-Situ Synthesis of Polyethersulfone-ZnO Nanocomposite Membranes for Dye Removal: Enhanced Antifouling, Self-Cleaning, and Antibacterial Properties. Polymers (Basel) 2025; 17:398. [PMID: 39940600 PMCID: PMC11820122 DOI: 10.3390/polym17030398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Microwave-assisted synthesis presents a promising method for enhancing the formation of nanocomposites due to its rapid heating and uniform energy distribution. In this study, we successfully fabricated polyethersulfone-zinc-oxide (PES-ZnO) nanocomposite membranes by exposing PES/ZnCl2/DMF dope solutions to microwave radiation. Before synthesizing the membranes, zinc-oxide nanoparticles (ZnO-NPs) were optimized in an organic phase using microwave radiation to ensure effective nanoparticle formation. The synthesis of ZnO-NPs in DMF solvent was validated through UV-Vis spectroscopy, X-ray diffraction (XRD), and Dynamic Light Scattering (DLS). We examined the surface morphology and roughness of the PES-ZnO membranes through Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Moreover, we assessed the membranes' hydrophilicity, permeability, and physicochemical properties through contact-angle measurements, pure water flux tests, water uptake assessments, and porosity tests. Energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) verified the successful integration of ZnO nanoparticles (ZnO-NPs) into the membrane matrix. The results indicate that including ZnO-NPs significantly improves the membrane's permeability and hydrophilicity. The nanocomposite membranes exhibited high dye rejection efficiency, with ZnO-NPs facilitating photocatalytic self-cleaning properties. Antibacterial tests also demonstrated a substantial inhibition of common bacteria, suggesting enhanced resistance to biofouling. This research highlights the potential of microwave-assisted PES-ZnO nanocomposite membranes as effective and sustainable solutions for wastewater treatment, offering scalable applications along with added benefits of antifouling, self-cleaning, and antibacterial properties.
Collapse
Affiliation(s)
- Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (H.O.); (I.A.M.); (A.O.A.)
| | - Ibtissem Ounifi
- Laboratory, Water, Membrane and Environmental Biotechnology, Centre of Research and Water Technologies, Technopark of Borj-Cedria, BP 273, Soliman 8020, Tunisia; (I.O.); (A.H.)
| | - Hussam Organji
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (H.O.); (I.A.M.); (A.O.A.)
| | - Faïçal Khlissa
- Physical Chemistry Laboratory of Mineral Materials and Their Applications, National Center of Research in Materials Science, BP 73, Soliman 8027, Tunisia;
| | - Iqbal Ahmed Moujdin
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (H.O.); (I.A.M.); (A.O.A.)
| | - Abdulmohsen Omar Alsaiari
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (H.O.); (I.A.M.); (A.O.A.)
| | - Mohamed Abdel Salam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia;
| | - Amor Hafiane
- Laboratory, Water, Membrane and Environmental Biotechnology, Centre of Research and Water Technologies, Technopark of Borj-Cedria, BP 273, Soliman 8020, Tunisia; (I.O.); (A.H.)
| |
Collapse
|
4
|
Shakeri N, Barzegar B, Habibi R, Aghdasinia H, Altinkaya SA. Enhanced performance and anti-fouling properties of polyether sulfone (PES) membranes modified with pistachio shell-derived activated carbon (PSAC)@ZIF-8&ZIF-67 to remove dye contaminants. Int J Biol Macromol 2024; 283:137654. [PMID: 39557239 DOI: 10.1016/j.ijbiomac.2024.137654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/27/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
This study aims to improve the properties of polyether sulfone (PES) membranes by using an innovative composite filler. Pistachio shell-derived activated carbon (PSAC) was initially synthesized via chemical activation, followed by surface modification with ZIF-8 and ZIF-67. Subsequently, modified membranes with varying weight percentages of this composite were fabricated using the phase inversion method. The PSAC@ZIF-8&ZIF-67/PES membranes were characterized through FESEM, AFM, pore size, zeta potential, porosity, and water contact angle analyses. The incorporation of the composite in the membranes was confirmed through ATR-FTIR, XRD, and EDS mapping analyses. The finding indicated that adding 0.6 wt% of nanoparticles improved membrane hydrophilicity, increased surface charge, and enhanced porosity. Additionally, the mixed membranes exhibited reduced sedimentation and higher dye removal than unmodified membranes. The optimum amount of composite is determined as 0.6 wt%. At this condition, pure water flux (PWF) increased dramatically from 22.56 L/m2h to 96.26 L/m2h. The mixed matrix membrane demonstrated superior efficiency in removing malachite green (MG) (97 %) and crystal violet (CV) dyes (93 %) and achieved the highest recovery ratio of 61.9 %, indicating a more remarkable membrane ability to combat fouling. The developed membrane demonstrated enhanced hydrophilicity, dye removal efficiency, and antifouling properties, making it promising for environmental applications.
Collapse
Affiliation(s)
- Neda Shakeri
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Behrad Barzegar
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran; Laboratory of Advanced Water and Wastewater, Central Laboratory of University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Rezvan Habibi
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Hassan Aghdasinia
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Sacide Alsoy Altinkaya
- Izmir Institute of Technology, Department of Chemical Engineering, Gulbahce, Urla 35430, Izmir, Turkey
| |
Collapse
|
5
|
Kayanja O, Hassan MA, Hassanin A, Ohashi H, Khalil ASG. Optimization of isotropic MoS 2/PES membranes for efficient treatment of industrial oily wastewater. RSC Adv 2024; 14:12058-12070. [PMID: 38628476 PMCID: PMC11019293 DOI: 10.1039/d4ra01052c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Elimination of tiny oil droplets nearly miscible with wastewater can be realized using membrane technology through ultrafiltration. The novelty of this work was to blend different phases of molybdenum disulfide (MoS2) in isotropic polyethersulfone (PES). We prepared isotropic PES membranes by optimizing nonsolvent vapour-induced phase separation (VIPS). Membranes were blended with MoS2 nanosheets of different phases to promote separation performance and antifouling resistance. FE-SEM revealed the flower-like surface morphology of MoS2 nanosheets. HR-TEM of MoS2 revealed 2H domains in the monolayer, flakes of a few layers and a d-spacing of 0.22 nm. Raman spectroscopy could be used to distinguish mixed-phase MoS2 from single-phase MoS2. Isotropic PES membranes modified with 70% 1T/2H MoS2 had a significantly high permeance to pure water (6911 kg m-2 h bar). The same membrane possessed a high efficiency of oil rejection of 98.78%, 97.85%, 99.83% for emulsions of industrial crude oil at 100, 1000 and 10 000 mg L-1, respectively. Removal of oil droplets from wastewater was dominated by a mechanism based on size exclusion. Isotropic PES modified with 2H MoS2 possessed superior oleophilicity, which resulted in low rejection of crude oil. Modified membranes showed excellent fouling resistance for three successive filtration cycles, as evidenced by enhanced antifouling parameters. Our study reveals how the phase composition of MoS2 nanosheets can significantly affect the performance of isotropic PES membranes during the ultrafiltration of oily wastewater.
Collapse
Affiliation(s)
- Oscar Kayanja
- Materials Science and Engineering Department, Egypt-Japan University of Science and Technology (E-JUST) 179 New Borg El-Arab City Alexandria Egypt
| | - Mohsen A Hassan
- Materials Science and Engineering Department, Egypt-Japan University of Science and Technology (E-JUST) 179 New Borg El-Arab City Alexandria Egypt
| | - Ahmed Hassanin
- Materials Science and Engineering Department, Egypt-Japan University of Science and Technology (E-JUST) 179 New Borg El-Arab City Alexandria Egypt
- Department of Textile Engineering, Faculty of Engineering, Alexandria University Alexandria 21544 Egypt
| | - Hidenori Ohashi
- Faculty of Engineering, Tokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Ahmed S G Khalil
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST) 179 New Borg El-Arab City Alexandria Egypt
- Environmental and Smart Technology Group, Faculty of Science, Fayoum University 63514 Fayoum Egypt
| |
Collapse
|
6
|
Zhao DL, Zhou W, Shen L, Li B, Sun H, Zeng Q, Tang CY, Lin H, Chung TS. New directions on membranes for removal and degradation of emerging pollutants in aqueous systems. WATER RESEARCH 2024; 251:121111. [PMID: 38211412 DOI: 10.1016/j.watres.2024.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Emerging pollutants (EPs) refer to a group of non-regulated chemical or biological substances that have been recently introduced or detected in the environment. These pollutants tend to exhibit resistance to conventional treatment methods and can persist in the environment for prolonged periods, posing potential adverse effects on ecosystems and human health. As we enter a new era of managing these pollutants, membrane-based technologies hold significant promise in mitigating impact of EPs on the environment and safeguarding human health due to their high selectivity, efficiency, cost-effectiveness and capability for simultaneous separation and degradation. Moreover, these technologies continue to evolve rapidly with the development of new membrane materials and functionalities, advanced treatment strategies, and analyses for effectively treating EPs of more recent concerns. The objective of this review is to present the latest directions and advancements in membrane-based technologies for addressing EPs. By highlighting the progress in this field, we aim to share valuable perspectives with researchers and contribute to the development of future directions in sustainable treatments for EPs.
Collapse
Affiliation(s)
- Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wangyi Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bowen Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongyu Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Qianqian Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chuyang Y Tang
- Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Tai-Shung Chung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 10607, Taiwan; Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
7
|
Islam MT, Al Mamun MA, Halim AFMF, Peila R, Sanchez Ramirez DO. Current trends in textile wastewater treatment-bibliometric review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19166-19184. [PMID: 38383927 PMCID: PMC10927897 DOI: 10.1007/s11356-024-32454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
A bibliometric study using 1992 to 2021 database of the Science Citation Index Expanded was carried out to identify which are the current trends in textile wastewater treatment research. The study aimed to analyze the performance of scholarly scientific communications in terms of yearly publications/citations, total citations, scientific journals, and their categories in the Web of Sciences, top institutions/countries and research trends. The annual publication of scientific articles fluctuated in the first ten years, with a steady decrease for the last twenty years. An analysis of the most common terms used in the authors' keywords, publications' titles, and KeyWords Plus was carried out to predict future trends and current research priorities. Adsorbent nanomaterials would be the future of wastewater treatment for decoloration of the residual dyes in the wastewater. Membranes and electrolysis are important to demineralize textile effluent for reusing wastewater. Modern filtration techniques such as ultrafiltration and nanofiltration are advanced membrane filtration applications.
Collapse
Affiliation(s)
- Mohammad Tajul Islam
- Department of Textile Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | - Md Abdullah Al Mamun
- Department of Corporate Leadership and Marketing, Szechenyi Istvan University, Gyor, Hungary
| | | | - Roberta Peila
- CNR-STIIMA (National Research Council of Italy-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing), Biella, Italy
| | - Diego Omar Sanchez Ramirez
- CNR-STIIMA (National Research Council of Italy-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing), Biella, Italy.
| |
Collapse
|
8
|
Jabbarvand Behrouz S, Khataee A, Vatanpour V, Orooji Y. Surface Bioengineering of Mo 2Ga 2C MAX Phase to Develop Blended Loose Nanofiltration Membranes for Textile Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10508-10521. [PMID: 38365188 DOI: 10.1021/acsami.3c16951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The potential of blended loose nanofiltration membranes (LNMs) to fractionate dyes and inorganic salts in textile wastewater has become a focus of attention in recent years. In this research work, we fabricated LNMs based on polysulfone (PSf) membranes blended with l-histidine amino acid-functionalized Mo2Ga2C MAX phase (His-MAX). Scanning electron microscopy (SEM), atomic force microscopy (AFM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), contact angle, ζ-potential, porosity, and pore size analyses were employed to characterize the LNMs. Blending 0.75 wt % of His-MAX additive with the PSf tailored the LNM's features by making it more water-friendly, increasing its porosity, enlarging its pores, and making its surface smoother. The pure water flux of 127.6 L/m2 h was achieved by LNM containing 0.75 wt % His-MAX, which was 2.5 times greater than the bare one. The mentioned LNM displayed a flux recovery ratio (FRR) of 68.27 and 98.57, 98.31, and 99.7% rejections for Direct red 23, Acid brown 75, and Reactive blue 21 solutions (100 mg/L), respectively. The 0.75 wt % His-MAX LNM could reject 99.1% of dye and 11.5% of salt while maintaining an FRR of 91.19% after four cycles of filtering a binary mixture solution containing Reactive blue 21 and Na2SO4. These findings highlight the potential of the fabricated LNM for desalinating dye solutions.
Collapse
Affiliation(s)
- Samira Jabbarvand Behrouz
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Department of Chemical Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran
- Environmental Engineering Department & National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
9
|
Rashtbari S, Dehghan G, Marefat A, Khataee S, Khataee A. Proficient sonophotocatalytic degradation of organic pollutants using Co 3O 4/TiO 2 nanocomposite immobilized on zeolite: Optimization, and artificial neural network modeling. ULTRASONICS SONOCHEMISTRY 2024; 102:106740. [PMID: 38171194 PMCID: PMC10797203 DOI: 10.1016/j.ultsonch.2023.106740] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
The health of all living organisms is greatly influenced by the quality of the water. Therefore, developing cost-effective, eco-friendly, and easily accessible methods is desperately needed to meet the high global demand for clean water. Recently, nanozyme-based dye degradation methods have been promising for the remediation of water pollution. In this work, peroxidase-mimic Co3O4/TiO2 nanocomposite was synthesized and characterized for its size, morphology, and crystalline structure. Colorimetric assay results showed that the peroxidase-like activity of the Co3O4/TiO2 nanocomposite was considerably enhanced compared to the pure Co3O4 NPs and TiO2 NPs. Besides excellent enzyme-mimic activity, the higher sonophotocatalytic dye degradation capability of the nanocomposite after immobilization on zeolite (Co3O4/TiO2@Ze) was also demonstrated. Under optimal conditions (pH = 5.0, 25 °C), 0.1 g/L of catalyst was able to degrade 100 % of methylene blue (MB) with 600 μM in the presence of 30 μM H2O2 within 12 min. GC/MS analysis and toxicity studies revealed less toxic metabolite production after treatment of MB with sonophotocatalytic Co3O4/TiO2@Ze. Modeling of MB degradation using artificial neural networks (ANN) with a 5:6:1 topology was successfully performed, and the results confirmed the fitness of theoretical and experimental outputs according to the calculated correlation coefficient values. The prepared nanocomposite could thus be used as a promising and highly effective catalyst for the removal of organic dyes from polluted water.
Collapse
Affiliation(s)
- Samaneh Rashtbari
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Arezu Marefat
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Simin Khataee
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Chemical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey.
| |
Collapse
|
10
|
Hekmatmehr H, Esmaeili A, Atashrouz S, Hadavimoghaddam F, Abedi A, Hemmati-Sarapardeh A, Mohaddespour A. On the evaluating membrane flux of forward osmosis systems: Data assessment and advanced intelligent modeling. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10960. [PMID: 38168046 DOI: 10.1002/wer.10960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/04/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
As an emerging desalination technology, forward osmosis (FO) can potentially become a reliable method to help remedy the current water crisis. Introducing uncomplicated and precise models could help FO systems' optimization. This paper presents the prediction and evaluation of FO systems' membrane flux using various artificial intelligence-based models. Detailed data gathering and cleaning were emphasized because appropriate modeling requires precise inputs. Accumulating data from the original sources, followed by duplicate removal, outlier detection, and feature selection, paved the way to begin modeling. Six models were executed for the prediction task, among which two are tree-based models, two are deep learning models, and two are miscellaneous models. The calculated coefficient of determination (R2 ) of our best model (XGBoost) was 0.992. In conclusion, tree-based models (XGBoost and CatBoost) show more accurate performance than neural networks. Furthermore, in the sensitivity analysis, feed solution (FS) and draw solution (DS) concentrations showed a strong correlation with membrane flux. PRACTITIONER POINTS: The FO membrane flux was predicted using a variety of machine-learning models. Thorough data preprocessing was executed. The XGBoost model showed the best performance, with an R2 of 0.992. Tree-based models outperformed neural networks and other models.
Collapse
Affiliation(s)
- Hesamedin Hekmatmehr
- Renewable Energies Engineering Department, Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran
| | - Ali Esmaeili
- Renewable Energies Engineering Department, Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran
| | - Saeid Atashrouz
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Fahimeh Hadavimoghaddam
- Institute of Unconventional Oil & Gas, Northeast Petroleum University, Heilongjiang, China
- Ufa State Petroleum Technological University, Ufa, Russia
| | - Ali Abedi
- College of Engineering and Technology, American University of the Middle East, Kuwait City, Kuwait
| | - Abdolhossein Hemmati-Sarapardeh
- Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing, China
| | - Ahmad Mohaddespour
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Vatanpour V, Mahdiei S, Arefi-Oskoui S, Khataee A, Orooji Y. Ti 2NT x quasi-MXene modified polyamide thin film composite reverse osmosis membrane with effective desalination and antifouling performance. CHEMOSPHERE 2023; 344:140309. [PMID: 37797897 DOI: 10.1016/j.chemosphere.2023.140309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
In this study, considering the serious problem of lack of fresh water worldwide and the effectiveness of reverse osmosis (RO) membranes in water purification, we prepared improved RO membranes with two-dimensional quasi-MXene nanosheets. In this study, the MAX phase with the chemical formula of Ti2AlN was prepared through the reactive sintering route. Prosperous preparation of the MAX phase with the hexagonal crystalline structure was approved by an X-ray diffraction pattern. Compacted sheets morphology was recognized for the prepared MAX phase from transmittance electron microscopy and scanning electron microscopy micrographs. Then, Ti2NTx quasi-MXene nanosheets were prepared by selective ultrasonic-assisted exfoliation of the MAX phase. Polyamide (PA) thin-layer composite RO membranes with different weight percentages of Ti2NTx quasi-MXene were fabricated by the interfacial polymerization (IP) method. The addition of ultrasonic-assisted prepared quasi-MXene creates numerous and coherent nanochannels on the surface of the membrane. The optimum membrane with 0.01 wt% of quasi-MXene showed the highest pure water flux of 31.9 L m-2. h-1 with an improved salt rejection of 98.2%. Therefore, these nanosheets showed that they can partially solve the trade-off between water permeability and salt rejection, which is a serious challenge in RO membranes. Also, the membranes containing quasi-MXene showed good resistance against fouling by humic acid. This research can be a scalable development in making high-performance membranes.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| | - Sara Mahdiei
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran; Department of Chemical Industry, Technical and Vocational University (TVU), Tehran, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran; Department of Environmental Engineering, Gebze Technical University, Gebze, 41400, Turkey; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10, Turkey
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
12
|
Yang L, Xu D, Luo X, Zhu X, Zhao J, Song J, Han Y, Li G, Gao X, Liu L, Liang H. Fe(II)-Modulated Microporous Electrocatalytic Membranes for Organic Microcontaminant Oxidation and Fouling Control: Mechanisms of Regulating Electron Transport toward Enhanced Reactive Oxygen Species Activation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19000-19011. [PMID: 37162466 DOI: 10.1021/acs.est.3c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Regulation of the fast electron transport process for the generation and utilization of reactive oxygen species (ROS) by achieving fortified electron "nanofluidics" is effective for electrocatalytic oxidation of organic microcontaminants. However, limited available active sites and sluggish mass transfer impede oxidation efficiency. Herein, we fabricated a conductive electrocatalytic membrane decorated with hierarchical porous vertically aligned Fe(II)-modulated FeCo layered double hydroxide nanosheets (Fe(II)-FeCo LDHs) in an electro-Fenton system to maximize exposure of active sites and expedite mass transfer. The nanospaced interlayers of Fe(II)-FeCo LDHs within the microconfined porous structure formed by its vertical nanosheets highly boost the micro/nanofluidic distribution of target pollutants to active centers/species, achieving accelerated mass transferability. Aliovalent substitution by Fe(II) activates in-plane metallics to maximize the available active sites and makes each Fe(II)-FeCo LDH nanosheet a geometrical nanocarrier for constructing a fast electron "nanofluidic" to accelerate Fe(II) regeneration in Fe(III)/Fe(II) cycles. As a result, the Fe(II)-FeCo LDHs exhibited improved reactivity in catalyzing H2O2 to •OH and 1O2. Accordingly, the membrane exhibited a higher atrazine degradation kinetic (0.0441 min-1) and degradation rate (93.2%), which were 4.7 and 2.1 times more than those of the bare carbon nanotube membrane, respectively. Additionally, the enhanced hydrophilic and strongly oxidized reactivity synergistically mitigated the organic fouling occurring in the pores and surface of the membrane. These findings clarify the activation mechanism of ROS over an innovative electrocatalytic membrane reactor design for organic microcontaminant treatment.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Jialin Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yonghui Han
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xinlei Gao
- National Engineering Research Center of Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, China
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China
| | - Luming Liu
- National Engineering Research Center of Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, China
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| |
Collapse
|
13
|
Saad Binkadem M. Fabrication of PCL/CMARX/GO Composite Nanofibrous Mats for Dye Adsorption: Wastewater Treatment. MEMBRANES 2023; 13:622. [PMID: 37504988 PMCID: PMC10383201 DOI: 10.3390/membranes13070622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/21/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
The effluents of industrial wastewater contain several toxic organic and inorganic pollutants that may contaminate clean and freshwater sources if untreated or poorly treated. These toxic pollutants include colors; hazardous compounds; surfactants; cosmetics; agrochemicals; pharmaceutical by-products; and agricultural, pharmaceutical, and medical contaminants. Treating wastewater has become a global problem. Many projects have been started in the last two decades to treat wastewater, resultant water pollution, and associated waste management problems. Adsorbants based on graphene oxide (GO) are viable wastewater treatment materials due to their adaptability, photocatalytic action, and capacity for self-assembly. Here, we report the fabrication of nanofibrous mats from polycaprolactone (PCL), carboxymethyl arabinoxylan (CMARX), and carboxyl-functionalized-graphene oxide using an electrospinning technique. The silver nanoparticles were loaded onto the mat to enhance their photocatalytic activity. These mats were characterized using different techniques, including Fourier transform infrared (FTIR), scanning electron microscope (SEM), and transmission electron microscope (TEM). The water contact angles were used to study their hydrophilic and hydrophobic behavior. The Langmuir isotherm model and adsorption kinetics were studied to evaluate their adsorption capabilities against methylene blue (MB). Sample 2 followed the Langmuir isotherm model (R2 = 0.9939). Adsorption kinetics exhibited pseudo-second order behavior (R2 = 0.9978) due to their maximum correlation coefficient values. MB has excellent adsorption at room temperature and the formation of the monolayer at the surface of the adsorption mat. An enhanced PO43- and MB adsorption was observed, providing recyclability up to 4-5 times. Hence, the fabricated nanofibrous mat would be a potential candidate for more effective wastewater treatment applications.
Collapse
Affiliation(s)
- Mona Saad Binkadem
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Davoodbeygi Y, Askari M, Salehi E, Kheirieh S. A review on hybrid membrane-adsorption systems for intensified water and wastewater treatment: Process configurations, separation targets, and materials applied. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117577. [PMID: 36848812 DOI: 10.1016/j.jenvman.2023.117577] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
In the era of rapid and conspicuous progress of water treatment technologies, combined adsorption and membrane filtration systems have gained great attention as a novel and efficient method for contaminant removal from aqueous phase. Further development of these techniques for water/wastewater treatment applications will be promising for the recovery of water resources as well as reducing the water tension throughout the world. This review introduces the state-of-the-art on the capabilities of the combined adsorption-membrane filtration systems for water and wastewater treatment applications. Technical information including employed materials, superiorities, operational limitations, process sustainability and upgradeing strategies for two general configurations i.e. hybrid (pre-adsorption and post-adsorption) and integrated (film adsorbents, low pressure membrane-adsorption coupling and membrane-adsorption bioreactors) systems has been surveyed and presented. Having a systematic look at the fundamentals of hybridization/integration of the two well-established and efficient separation methods as well as spotlighting the current status and prospectives of the combination strategies, this work will be valuable to all the interested researchers working on design and development of cutting-edge wastewater/water treatment techniques. This review also draws a clear roadmap for either decision making and choosing the best alternative for a specific target in water treatment or making a plan for further enhancement and scale-up of an available strategy.
Collapse
Affiliation(s)
- Yegane Davoodbeygi
- Department of Chemical Engineering, University of Hormozgan, Bandar Abbas, Iran; Nanoscience, Nanotechnology and Advanced Materials Research Center, University of Hormozgan, Bandar Abbas, Iran
| | - Mahdi Askari
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | - Ehsan Salehi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran.
| | - Sareh Kheirieh
- Department of Chemical Engineering, University of Kashan, Kashan, Iran
| |
Collapse
|
15
|
Montazer M, Bagheri Pebdeni A, Sheikholeslami M, Dehghan Abkenar S, Firoozbakhtian A, Hosseini M, Dragoi EN. Synthesis of cuttlebone/ carbon quantum dots/nickel oxide nanocomposite for visible light photodegradation of malachite green used for environmental remediation. CHEMOSPHERE 2023; 333:138880. [PMID: 37169087 DOI: 10.1016/j.chemosphere.2023.138880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
In recent years, the development of light-driven nanophotocatalysts has focused on efficiently eliminating organic pollutants. In this regard, the present work focuses on the photocatalytic removal of malachite green (MG) dye using cuttlebone powder (CB) modified with carbon quantum dots (CQDs)/nickel oxide (NiO) under visible light irradiation. Various techniques were used to characterize the proposed composite, including X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) images. The optical properties of the synthesized CB/CQDs/NiO were analyzed by UV-VIS visible spectroscopy. Using central composite design (CCD), several effective parameters, including pH, dye concentration, amount of photocatalyst, and temperature degradation efficiency, were optimized to achieve the optimal condition for photocatalytic activity of CB/CQDs/NiO. The Langmuir-Hinshelwood model was employed to model the kinetics of the degradation of the dye, the resulting K being 0.378 min-1. The as synthesized nanocomposites could be efficiently removed from water by applying an external magnetic field. The test results indicate that the prepared CB/CQDs/NiO nanocomposite demonstrates excellent stability after four reaction cycles. Furthermore, the nanocomposite shows excellent photocatalytic activity, reducing 99.7% MGdye concentration within 12 min of visible light exposure.
Collapse
Affiliation(s)
- Masoud Montazer
- Nanobiosenors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1439817435, Iran
| | - Azam Bagheri Pebdeni
- Nanobiosenors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1439817435, Iran
| | - Mahsa Sheikholeslami
- Nanobiosenors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1439817435, Iran
| | - Shiva Dehghan Abkenar
- Department of Chemistry, Savadkooh Branch, Islamic Azad University, Savadkooh, Iran.
| | - Ali Firoozbakhtian
- Nanobiosenors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1439817435, Iran
| | - Morteza Hosseini
- Nanobiosenors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1439817435, Iran; Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld. D. Mangeron, No 73, 700050, Iasi, Romania.
| |
Collapse
|
16
|
Amiri S, Vatanpour V, He T. Antifouling thin-film nanocomposite NF membrane with polyvinyl alcohol-sodium alginate-graphene oxide nanocomposite hydrogel coated layer for As(III) removal. CHEMOSPHERE 2023; 322:138159. [PMID: 36812992 DOI: 10.1016/j.chemosphere.2023.138159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Removal of As(III) from the polluted waters is a challenge. It should be oxidized to As(V) for increasing its rejection by RO membranes. However, in this research, As (III) is directly removed by a high permeable and antifouling membrane prepared through the surface coating and in-situ crosslinking procedure of polyvinyl alcohol (PVA) and sodium alginate (SA) as coating materials containing graphene oxide as a hydrophilic additive on a polysulfone support with glutaraldehyde (GA) chemical crosslinking agent. The properties of the prepared membranes were evaluated through contact angle, zeta potential, ATR-FTIR, SEM, and AFM. The addition of GO in the polymeric networks of SA and PVA hydrogel coating layers led to a better hydrophilicity and a smoother surface and a higher negative surface charge resulted in improvment of permeability and rejection of membranes. Among the prepared hydrogel-coated modified membranes, SA-GO/PSf indicated the highest pure water permeability (15.8 L m-2 h-1 bar-1) and BSA permeability (9.57 L m-2 h-1 bar-1), respectively. The best desalination performance (NaCl, MgSO4, and Na2SO4 rejections of 60.0%, 74.5%, and 92.0%, respectively) and As(III) removal (88.4%) along with satisfactory stability and reusability in cyclic continuous filtration was reported for PVA-SA-GO membrane. In addition, the PVA-SA-GO membrane indicated improved fouling resistance toward BSA foulant with the lowest flux decline of 7%.
Collapse
Affiliation(s)
- Saba Amiri
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Tao He
- Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| |
Collapse
|
17
|
Binding mechanism of perphenazine/thioridazine with acetylcholinesterase: Spectroscopic surface plasmon resonance and molecular docking based analysis. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
18
|
Facile Hydrothermal Synthesis of Cu2MoS4 and FeMoS4 for Efficient Adsorption of Chlortetracycline. Catalysts 2022. [DOI: 10.3390/catal13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Contamination of antibiotics in an aqueous environment has attracted wide attention. Developing high-efficiency adsorbents for antibiotics removal is urgent. In this work, two kinds of ternary transition metal chalcogenides—Cu2MoS4 and FeMoS4 with superior adsorption performance were prepared by a facile hydrothermal synthesis method. The microstructure and physicochemical properties of the adsorbents were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The as-prepared Cu2MoS4 and FeMoS4 were found to have dramatic potential for the adsorption of chlortetracycline (CTC) in an aqueous solution with an extremely high adsorption capacity. The Langmuir maximum adsorption capacity of Cu2MoS4 and FeMoS4 to CTC can reach 1203.81 and 2169.19 mg/g, respectively, which goes far beyond the common adsorbents as reported. Moreover, the adsorption kinetics, thermodynamics as well as adsorption mechanism were examined in detail by a batch of adsorption experiments.
Collapse
|
19
|
Fabrication of Ti 2SnC-MAX Phase Blended PES Membranes with Improved Hydrophilicity and Antifouling Properties for Oil/Water Separation. Molecules 2022; 27:molecules27248914. [PMID: 36558045 PMCID: PMC9788415 DOI: 10.3390/molecules27248914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
In this research work, the Ti2SnC MAX phase (MP) was synthesized via the reactive sintering procedure. The layered and crystalline structure of this MP was verified by SEM, HRTEM, and XRD analyses. This nano-additive was used for improvement of different features of the polyethersulfone (PES) polymeric membranes. The blended membranes containing diverse quantities of the MP (0-1 wt%) were fabricated by a non-solvent-induced phase inversion method. The asymmetric structure of the membranes with small holes in the top layer and coarse finger-like holes and macro-voids in the sublayer was observed by applying SEM analysis. The improvement of the membrane's hydrophilicity was verified via reducing the contact angle of the membranes from 63.38° to 49.77° (for bare and optimum membranes, respectively). Additionally, in the presence of 0.5 wt% MP, the pure water flux increased from 286 h to 355 L/m2 h. The average roughness of this membrane increased in comparison with the bare membrane, which shows the increase in the filtration-available area. The high separation efficiency of the oil/water emulsion (80%) with an improved flux recovery ratio of 65% was illustrated by the optimum blended membrane.
Collapse
|
20
|
Enriching Fe3O4@MoS2 composites in surface layer to fabricate polyethersulfone (PES) composite membrane: The improved performance and mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Novel palladium tagged ferrite nanoparticle supported ionic liquid phase catalyst for the efficient copper-free Sonogashira coupling. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Fabrication of antifouling two-dimensional MoS2 layered PVDF membrane: Experimental and density functional theory calculation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Aqaei H, Irani-nezhad MH, Khataee A, Vatanpour V. Modified emulsion polyvinyl chloride membranes for enhanced antifouling and dye separation properties by introducing tungsten disulfide (WS2) nanosheets. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Jaber L, Almanassra IW, Backer SN, Kochkodan V, Shanableh A, Atieh MA. A Comparative Analysis of the Effect of Carbonaceous Nanoparticles on the Physicochemical Properties of Hybrid Polyethersulfone Ultrafiltration Membranes. MEMBRANES 2022; 12:1143. [PMID: 36422135 PMCID: PMC9695429 DOI: 10.3390/membranes12111143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Numerous studies have been previously reported on the use of nanoscale carbonaceous fillers, such as multi-walled carbon nanotubes (MWCNTs) and graphene oxide (GO), in polymeric ultrafiltration (UF) membranes; however, no insight has been clearly reported on which material provides the best enhancements in membrane performance. In this study, a comparative analysis was carried out to establish a comprehensible understanding of the physicochemical properties of hybrid polyethersulfone (PES) UF membranes incorporated with MWCNTs and GO nanoparticles at various concentrations. The hybrid membranes were prepared via the non-solvent-induced phase separation process and further characterized by field emission scanning electron microscopy and atomic force microscope (AFM). The AFM images showed homogeneous membrane surfaces with a reduction in the membrane surface roughness from 2.62 nm for bare PES to 2.39 nm for PES/MWCNTs and to 1.68 nm for PES/GO membranes due to improved hydrophilicity of the membranes. Physicochemical properties of the hybrid PES membranes were assessed, and the outcomes showed an enhancement in the porosity, pore size, water contact angle, and water permeability with respect to nanoparticle concentration. GO-incorporated PES membranes exhibited the highest porosity, pore size, and lowest contact angle as compared to PES/MWCNTs, indicating the homogeneous distribution of nanoparticles within the membrane structure. PES/MWCNTs (0.5 wt.%) and PES/GO (1.0 wt.%) hybrid membranes exhibited the highest water flux of 450.0 and 554.8 L m-2 h-1, respectively, at an applied operating pressure of 1 bar. The filtration and antifouling performance of the PES hybrid membranes were evaluated using 50 mg L-1 of humic acid (HA) as a foulant at pH = 7. Compared to the bare PES membrane, the MWCNTs and GO-incorporated PES hybrid membranes exhibited enhanced permeability and HA removal. Moreover, PES/MWCNTs (0.5 wt.%) and PES/GO (1 wt.%) hybrid membranes reported HA rejection of 90.8% and 94.8%, respectively. The abundant oxygen-containing functional groups in GO-incorporated PES membranes resulted in more hydrophilic membranes, leading to enhanced permeability and fouling resistance. The antifouling properties and flux recovery ratio were improved by the addition of both nanoparticles. Given these findings, although both MWCNTs and GO nanoparticles are seen to notably improve the membrane performance, PES membranes with 1 wt.% GO loading provided the highest removal of natural organic matter, such as HA, under the same experimental conditions.
Collapse
Affiliation(s)
- Lubna Jaber
- Research Institute of Sciences & Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Ismail W. Almanassra
- Research Institute of Sciences & Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sumina Namboorimadathil Backer
- Research Institute of Sciences & Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Viktor Kochkodan
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Abdallah Shanableh
- Research Institute of Sciences & Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Civil and Environmental Engineering, College of Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Muataz Ali Atieh
- Research Institute of Sciences & Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Chemical and Water Desalination Engineering Program (CWDE), College of Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
25
|
A novel 3D Co/Mo co-catalyzed graphene sponge-mediated peroxymonosulfate activation for the highly efficient pollutants degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Nitnavare R, Bhattacharya J, Thongmee S, Ghosh S. Photosynthetic microbes in nanobiotechnology: Applications and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156457. [PMID: 35662597 DOI: 10.1016/j.scitotenv.2022.156457] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Photosynthetic microbes like brown algae, red algae, green-algae and blue-green algae (cyanobacteria) are utilized extensively for various commercial and industrial purposes. However, in recent time, their application has shifted to nanotechnology. The synthesis of metal nanoparticles using algal resources is known as Phyconanotechnology. Due to various advantages of the photosynthetic microbes such as presence of bioactive molecules, scalability, high metal uptake and cultivability, these microbes form ideal sources for nanoparticle synthesis. The green synthesis of nanoparticles is a non-toxic and environment-friendly alternative compared to other hazardous chemical and physical routes of synthesis. Several species of algae are explored for the fabrication of metal and metal oxide nanoparticles. Various physical characterization techniques collectively contribute in defining the surface morphology of nanoparticles and the existing functional groups for bioreduction and stability. A wide range of nanostructured metals like gold, silver, copper, zinc, iron, platinum and palladium are fabricated using algae and cyanobacteria. Due to the unique properties of the phycogenic nanoparticles, biocompatibility and safety aspects, all of these metal nanoparticles have their applications in facets like infection control, diagnosis, drug delivery, biosensing and bioremediation. Herein, the uniqueness of the phycogenic nanoparticles along with their distinctive antibacterial, antifungal, antibiofilm, algaecidal, antiviral, anticancer, antioxidant, antidiabetic, dye degradation, metal removal and catalytic properties are featured. Lastly, this work highlights the various challenges and future perspectives for further exploration of the biogenic metal nanoparticles for development of nanomedicine and environmental remediation in the coming years.
Collapse
Affiliation(s)
- Rahul Nitnavare
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, United Kingdom; Department of Plant Sciences, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, Telangana, India; Department of Genetics, Osmania University, Hyderabad 500007, Telangana, India
| | - Sirikanjana Thongmee
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Sougata Ghosh
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Department of Microbiology, School of Science, RK University, Rajkot 360020, Gujarat, India.
| |
Collapse
|
27
|
Teixeira RA, Lima EC, Benetti AD, Thue PS, Lima DR, Sher F, Dos Reis GS, Rabiee N, Seliem MK, Abatal M. Composite of methyl polysiloxane and avocado biochar as adsorbent for removal of ciprofloxacin from waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74823-74840. [PMID: 35641743 DOI: 10.1007/s11356-022-21176-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Two carbon composite materials were prepared by mixing avocado biochar and methyl polysiloxane (MK). Firstly, MK was dissolved in ethanol, and then the biochar was added at different times. In sample 1 (R1), the time of adding biochar was immediately after dissolving MK in ethanol, and in sample 2 (R2), after 48 h of MK dissolved in ethanol. The samples were characterized by nitrogen adsorption/desorption measurements obtaining specific surface areas (SBET) of 115 m2 g-1 (R1) and 580 m2 g-1 (R2). The adsorbents were further characterized using scanning electron microscopy, FTIR and Raman spectroscopy, adsorption of vapors of n-heptane and water, thermal analysis, Bohem titration, pHpzc, and C H N elemental analysis. R1 and R2 adsorbents were employed as adsorbents to remove the antibiotic ciprofloxacin from the waters. The t1/2 and t0.95 based on the interpolation of Avrami fractional-order were 20.52 and 246.4 min (R1) and 14.00 and 157.6 min (R2), respectively. Maximum adsorption capacities (Qmax) based on the Liu isotherm were 10.77 (R1) and 63.80 mg g-1 (R2) for ciprofloxacin. The thermodynamic studies showed a spontaneous and exothermic process for both samples, and the value of ΔH° is compatible with physical adsorption.
Collapse
Affiliation(s)
- Roberta A Teixeira
- Graduate Program in Water Resources and Environmental Sanitation, Hydraulic Research Institute (IPH), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Goncalves 9500, RS, Postal Box, 15003, Porto Alegre, ZIP 91501-970, Brazil.
- Graduate Program in Science of Materials (PGCIMAT), Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, ZIP 91501-970, Brazil.
- Metallurgical, and Materials Engineering (PPGE3M), School of Engineering, Graduate Program in Mine, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil.
| | - Antônio D Benetti
- Graduate Program in Water Resources and Environmental Sanitation, Hydraulic Research Institute (IPH), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Pascal S Thue
- Graduate Program in Science of Materials (PGCIMAT), Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, ZIP 91501-970, Brazil
| | - Diana R Lima
- Metallurgical, and Materials Engineering (PPGE3M), School of Engineering, Graduate Program in Mine, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Glaydson S Dos Reis
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Biomass Technology Centre, 901 83, Umeå, Sweden
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Moaaz K Seliem
- Faculty of Earth Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed Abatal
- Facultad de Ingeniería, Universidad Autónoma del Carmen, C.P. 24153, Ciudad del Carmen, Mexico
| |
Collapse
|
28
|
Orooji Y, Pakzad K, Nasrollahzadeh M. Lignosulfonate valorization into a Cu-containing magnetically recyclable photocatalyst for treating wastewater pollutants in aqueous media. CHEMOSPHERE 2022; 305:135180. [PMID: 35660391 DOI: 10.1016/j.chemosphere.2022.135180] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
This study presents an eco-friendly and economical process for preparing a magnetic copper complex conjugated to modified calcium lignosulfonate (LS) through a diamine (Fe3O4@LS@naphthalene-1,5-diamine@copper complex; FLN-Cu) as a green and novel catalyst. The prepared catalyst was characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), Brunauer-Emmett-Teller (BET), energy-dispersive X-ray spectroscopy (EDS), elemental mapping, inductively coupled plasma-optical emission spectrometry (ICP-OES) and field emission scanning electron microscopy (FESEM) techniques. The photocatalytic performance of the synthesized FLN-Cu catalyst was investigated by the degradation of aqueous solutions of dyes such as Rhodamine B (RhB), methylene blue (MB), and Congo red (CR) under UV irradiation. The dye degradation was followed by UV-Vis (ultraviolet-visible) spectrophotometry by measuring the changes in absorbance. The effects of different factors such as pH, contact time, photocatalyst dosage, and initial concentration of dye on the adsorption percentage were also investigated. Moreover, the catalyst showed high stability and could be readily separated from the reaction media using a magnet and reused five times without a remarkable loss of catalytic ability.
Collapse
Affiliation(s)
- Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| | - Khatereh Pakzad
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 3716146611, Iran
| | | |
Collapse
|
29
|
Nasrollahi N, Vatanpour V, Khataee A. Removal of antibiotics from wastewaters by membrane technology: Limitations, successes, and future improvements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156010. [PMID: 35595150 DOI: 10.1016/j.scitotenv.2022.156010] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics and related pharmaceuticals are applied to enhance public health and life quality. A major environmental concern is wastewaters from pharmaceutical industries, which contain significant amounts of antibiotics. Pharmaceutical industries apply conventional processes (biological, filtration, coagulation, flocculation, and sedimentation) for wastewater treatment, but these approaches cannot remove antibiotics completely. Moreover, unmetabolized antibiotics released by humans and animals are dangerous for municipal and effluent wastewater. Besides, antibiotic resistance is another challenge in treatment of wastewater for superbugs. This comprehensive study summarizes different techniques for antibiotic removal with an emphasis on membrane technology in individual and hybrid systems such as chemical, physical, biological, and conditional-based strategies. A combination of membrane processes with advanced oxidation processes (AOPs), adsorption, and biological treatments can be the right solution for perfect removal. Furthermore, this review briefly compares different procedures for antibiotic removal, which can be helpful for further studies with their advantages and drawbacks.
Collapse
Affiliation(s)
- Nazanin Nasrollahi
- Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 5166616471 Tabriz, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey
| |
Collapse
|
30
|
Alaei A, Hosseini M, Nemati F, Karimi-Maleh H. The synthesis of Pt doped WO 3 nanosheets and application on colorimetric detection of cysteine by naked eye using response surface methodology for optimization. ENVIRONMENTAL RESEARCH 2022; 212:113246. [PMID: 35398080 DOI: 10.1016/j.envres.2022.113246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/22/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
We present a simple, sensitive, and specific colorimetric using the peroxidase properties method based on Pt doped WO3 nanosheets to detect the cysteine. Pt@WO3NSs were synthesized by hydrothermal method and characterized by Fourier transform infrared (FTIR), Transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction patterns (XRD) methods. The response surface methodology (RSM) method based on the central composite design (CCD) was used to optimize test parameters such as pH, nanosheet concentration, and temperature. When cysteine is present in the environment due to its competition with 3,3', 5,5'-Tetramethylbenzidine (TMB) in the use of hydrogen peroxide, the blue discoloration is reduced compared to the absence of cysteine and leads to its detection. We have favorably created a peculiar approach for sensing cysteine based on the colorimetric method in solution and paper with linear range 0.01-15 μM, 0.005-14 μM and R2 = 0.9887 and R2 = 0.9871 respectively. The detection limit for solution-based is 1.2 nM and for paper-based is 1 nM.
Collapse
Affiliation(s)
- Aida Alaei
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran; Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Nemati
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, South Africa.
| |
Collapse
|
31
|
Mohammadi Ziarani G, Roshankar S, Mohajer F, Badiei A, Karimi-Maleh H, Gaikwad SV. Molecular docking and optical sensor studies based on 2,4-diamino pyrimidine-5-carbonitriles for detection of Hg 2. ENVIRONMENTAL RESEARCH 2022; 212:113245. [PMID: 35398086 DOI: 10.1016/j.envres.2022.113245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/03/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
An organic chemical sensor based on pyrimidine was successfully produced through the green reaction between aromatic aldehyde, malononitrile, and guanidine carbonate using SBA-Pr-SO3H. This fluorescence intensity of chemosensor (2,4-diamino-6-(phenyl)pyrimidine-5-carbonitrile) decreases by the addition of Hg2+ and its detection limit is about 14.89 × 10-5 M, in fact, through the green synthesis, the ligand was yielded to detect Hg2+ and the importance of ligand was considered in docking studies. The molecular docking of 2,4-diamino-6-(phenyl)pyrimidine-5-carbonitrile compound has been done with the protein selective estrogen receptor 5ACC complexed with (Azd9496), Human Anaplastic Lymphoma Kinase Pdb; 2xp2 complex with crizotinib (PF-02341066) and human wee1 kinase Pdb; 5vc3 complexed with bosutinib. The ligands 2,4-diamino-6-(phenyl)pyrimidine-5-carbonitrile generate very good docking results with the protein Pdb; 2xp2, which is responsible for effective tumor growth inhibition.
Collapse
Affiliation(s)
| | - Shima Roshankar
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronics Science and Technology of China (UESTC), 611731, China; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, P.O. Box 17011, South Africa.
| | - Sunil V Gaikwad
- Department of Chemistry, Dr. D. Y. Patil ACS Women's College, Pimpri Pune, MH, 411018, India
| |
Collapse
|
32
|
Luo T, Wang R, Chai F, Jiang L, Rao P, Yan L, Hu X, Zhang W, Wei L, Khataee A, Han N. Arsenite (III) removal via manganese-decoration on cellulose nanocrystal -grafted polyethyleneimine nanocomposite. CHEMOSPHERE 2022; 303:134925. [PMID: 35561766 DOI: 10.1016/j.chemosphere.2022.134925] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/26/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The manganese is successfully induced as a "bridge joint" to fabricate a new adsorbent (CNC-Mn-PEI) connecting cellulose nanocrystal (CNC) and polyethyleneimine (PEI) respectively. It was used to remove As (III) from waste water. It has been proved that the incompact CNC and PEI were successfully connected by Mn ions, which induced the formation of O-Mn-O bonds and the removal efficiency is maintained in the broad pH range of 4-8, even with the influence of NO3- and CO32-. The CNC-Mn-PEI was characterized by Brunauer-Emmett-Telley (BET) method and the results showed that the nanoparticle of the specific surface area was 106.5753 m2/g, it has a significant improvement, compared with CNC-Mn-DW (0.1918 m2/g). The isotherm and kinetic parameters of arsenic removal on CNC-Mn-PEI were well-fitted by the Langmuir and pseudo-second-order models. The maximum adsorption capacities toward As (III) was 78.02 mg/g. After seven regeneration cycles, the removal of As (III) by the adsorbent decreased from 80.78% to 68.2%. Additionally, the hypothetical adsorption mechanism of "bridge joint" effect was established by FTIR and XPS, which provided the three activated sites from CNC-Mn-PEI can improve the arsenic removal efficiency, and providing a new stratagem for the arsenic pollution treatment.
Collapse
Affiliation(s)
- Tingting Luo
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Runkai Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Fei Chai
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Lei Jiang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Pinhua Rao
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Lili Yan
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xinjian Hu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Wei Zhang
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | - Lianghuan Wei
- College of Chemistry and Environmental Science, Kashi University, Kashi, 844000, China
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080 Chelyabinsk, Russian Federation
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium.
| |
Collapse
|
33
|
Mehmandoust M, Pourhakkak P, Tiris G, Karimi-Maleh H, Erk N. A reusable and sensitive electrochemical sensor for determination of idarubicin in environmental and biological samples based on NiFe 2O 4 nanospheres anchored N-doped graphene quantum dots composite; an electrochemical and molecular docking investigation. ENVIRONMENTAL RESEARCH 2022; 212:113264. [PMID: 35427589 DOI: 10.1016/j.envres.2022.113264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/07/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
An ultrasensitive and selective voltammetric sensor with ultra-trace level detection limit is introduced for idarubicin (IDA) determination in real samples. The as-synthesized nanocomposite was characterized by several techniques, including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, Energy-dispersive X-ray spectroscopy (EDX), and Field emission scanning electron microscopy (FE-SEM). The electrocatalytic performance of the developed electrode was observed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and chronoamperometry. The limit of detection (LOD) of the developed sensor for idarubicin is 1.0 nM, and the response is found to be in the dynamic concentration range of 0.01-1.9 μmol/L in a Britton-Robinson buffer (B-R, pH = 6.0). Moreover, the fabricated electrode illustrated high selectivity with good repeatability and reproducibility for diagnosing idarubicin as an anthracycline antileukemic drug. Furthermore, to evaluate the validity of the recommended method, three real samples, including human plasma, urine, and water samples, were analyzed with satisfactory recovery and compared with high-performance liquid chromatography (HPLC). The minor groove-binding mode of interaction was also supported by docking simulation studies, emphasizing that IDA can bind to ds-DNA preferably and confirmed experimental results. The reduced assay time and the possibility of measuring a single sample with another anticancer drug without any interference are significant advantages compared to the HPLC. The developed and validated sensor could be a valuable point-of-care diagnostic tool for IDA quantification in patients.
Collapse
Affiliation(s)
- Mohammad Mehmandoust
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | | | - Gizem Tiris
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Analytical Chemistry, 34093, Istanbul, Turkey
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, P.O. Box, 17011, South Africa.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| |
Collapse
|
34
|
Nezafat Z, Karimkhani MM, Nasrollahzadeh M, Javanshir S, Jamshidi A, Orooji Y, Jang HW, Shokouhimehr M. Facile synthesis of Cu NPs@Fe 3O 4-lignosulfonate: Study of catalytic and antibacterial/antioxidant activities. Food Chem Toxicol 2022; 168:113310. [PMID: 35931246 DOI: 10.1016/j.fct.2022.113310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 10/16/2022]
Abstract
Environmental pollution is one of the important concerns for human health. There are different types of pollutants and techniques to eliminate them from the environment. We hereby report an efficient method for the remediation of environmental contaminants through the catalytic reduction of the selected pollutants. A green method has been developed for the immobilization of copper nanoparticles on magnetic lignosulfonate (Cu NPs@Fe3O4-LS) using the aqueous extract of Filago arvensis L. as a non-toxic reducing and stabilizing agent. The characterization of the prepared Cu NPs@Fe3O4-LS was achieved by vibrating sample magnetometer (VSM), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high resolution TEM (HRTEM), X-ray diffraction (XRD), scanning TEM (STEM), thermogravimetry-differential thermal analysis (TG/DTA), fast Fourier transform (FFT), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron (XPS) analyses. The synthesized Cu NPs@Fe3O4-LS was applied as a magnetic and green catalyst in the reduction of Congo Red (CR), 4-nitrophenol (4-NP), and methylene blue (MB). The progress of the reduction reactions was monitored by UV-Vis spectroscopy. Finally, the biological properties of the Cu NPs@Fe3O4-LS were investigated. The prepared catalyst demonstrated excellent catalytic efficiency in the reduction of CR, 4-NP, and MB in the presence of sodium borohydride (NaBH4) as the reducing agent. The appropriate magnetism of Cu NPs@Fe3O4-LS made its recovery very simple. The advantages of this process include a simple reaction set-up, high and catalytic antibacterial/antioxidant activities, short reaction time, environmentally friendliness, high stability, and easy separation of the catalyst. In addition, the prepared Cu NPs@Fe3O4-LS could be reused for four cycles with no significant decline in performance.
Collapse
Affiliation(s)
- Zahra Nezafat
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mahdi Karimkhani
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Abdollah Jamshidi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
35
|
Green synthesis of Ni0.5Zn0.5AlFeO4 nanoparticles using Plantago major and photocatalytic degradation of reactive blue 21 dye under visible light irradiation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Allawi AH, Mohammed MY, Ayrim NB, Alheety MA, Mahmood AR. Synthesis of attapulgite-MnO2 nanocomposite from manganese complex by ultrasound for hydrogen storage. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Luo W, Luo K, Yang Y, Lin X, Li P, Wen Y. N-maleyl chitosan-supported palladium catalyst for Heck coupling reaction and reduction of 4-nitrophenol. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Baraneedharan P, Vadivel S, C A A, Mohamed SB, Rajendran S. Advances in preparation, mechanism and applications of various carbon materials in environmental applications: A review. CHEMOSPHERE 2022; 300:134596. [PMID: 35436457 DOI: 10.1016/j.chemosphere.2022.134596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Carbon-related materials are now widely investigated in a various industrial field due to their excellent and unique qualities. It must be tailored to the application in such a way that it fits the application. At the same time, it needs to be generated in sufficient quantities for commercial use, and the synthesis method is the major sticking point here. Because most new materials are discovered by chance, the synthesis process described here may not be the most effective way to create them. The research is merely a steppingstone to discovering a different approach, and it will continue until the substance is no longer being used. If you're developing materials for any purpose, synthesis processes are essential. Fullerene, carbon nanotubes (CNT), graphene, and MXene are only a few of the carbon-based compounds discussed in this overview study, which also gives a brief prognosis on the materials future. Furthermore, the environmental application of these carbon materials was discussed and commented.
Collapse
Affiliation(s)
- P Baraneedharan
- Centre for Micro Nano Design and Fabrication, Department of Electronics and Communication Engineering, Saveetha Engineering College, Thandalam, Chennai, 602 105, India
| | - Sethumathavan Vadivel
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| | - Anil C A
- Department of Material Science, Central University of Tamilnadu, Thiruvarur, 610005, India
| | - S Beer Mohamed
- Department of Material Science, Central University of Tamilnadu, Thiruvarur, 610005, India.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| |
Collapse
|
39
|
Zareh F, Gholinejad M, Mostafavi A, Sheibani H. Pd Nanoparticles Decorated on Ionic Liquid Modified Magnetite Nanoparticles as a Recyclable and Active Nanocatalyst for Reduction of Nitro Compounds and Degradation of Organic Dyes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fatemeh Zareh
- Department of Chemistry Shahid Bahonar University of Kerman Kerman 76169 Iran
| | - Mohammad Gholinejad
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195–1159, Gavazang Zanjan 45137–66731 Iran
- Research Center for Basic Sciences & Modern Technologies (RBST) Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Ali Mostafavi
- Department of Chemistry Shahid Bahonar University of Kerman Kerman 76169 Iran
| | - Hassan Sheibani
- Department of Chemistry Shahid Bahonar University of Kerman Kerman 76169 Iran
| |
Collapse
|
40
|
Ogunbiyi O, Iwarere SA, Daramola MO. Empirical Prediction of Optimum Process Conditions of Spark Plasma-Sintered Magnesium Composite (AZ91D-Ni-GNPs) Using Response Surface Methodology (RSM) Approach. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Development of High Flux Nanocomposite Polyphenylsulfone/Oxidized Multiwalled Carbon Nanotubes Membranes for Ultrafiltration Using the Systems with Critical Solution Temperatures. MEMBRANES 2022; 12:membranes12080724. [PMID: 35893442 PMCID: PMC9330833 DOI: 10.3390/membranes12080724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
The study deals with the investigation of the effect of the modification of polyphenylsulfone (PPSU) flat sheet membranes for ultrafiltration using oxidized multiwalled carbon nanotubes (O-MWCNT) in order to enhance membrane permeability and antifouling performance. The effect of O-MWCNT loading to the PPSU-polyethylene glycol (PEG-20,000, Mn = 20,000 g·mol−1)-polyvinylpyrrolidone (PVP K-30, Mn = 40,000 g·mol−1)-N-methy-2-pyrrolidinone (NMP) colloid systems on the phase state and viscosity was studied. It was found that PPSU-PEG-20,000-PVP K-30-O-MWCNT-NMP colloid systems feature a gel point (T = 35–37 °C) and demixing temperature (T = 127–129 °C) at which two bulk phases are formed and a polymer system delaminates. According to the study of the phase state and viscosity of these colloid systems, a method for the preparation of high flux PPSU membranes is proposed which includes processing of the casting solution at the temperature higher than gel point (40 °C) and using a coagulation bath temperature lower than gel point (25 °C) or lower than demixing temperature (40 °C and 70 °C). Membrane structure, topology and hydrophilic-hydrophobic balance were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle measurements. The effect of coagulation bath temperature and O-MWCNT concentration on the membrane separation and antifouling performance in ultrafiltration of human serum albumin and humic acids solutions was studied. It was found that the modification of PPSU ultrafiltration membranes by O-MWCNTs yielded the formation of a thinner selective layer and hydrophilization of the membrane surface (water contact angle decreased from 53–56° for the reference PPSU membrane down to 33° for the nanocomposite membrane with the addition of 0.19 wt.% O-MWCNT). These changes resulted in the increase in membrane flux (from 203–605 L·m−2·h−1 at transmembrane pressure of 0.1 MPa for the reference membrane up to 512–983 L·m−2·h−1 for nanocomposite membrane with the addition of 0.19 wt.% O-MWCNT depending on coagulation bath temperature) which significantly surpasses the performance of PPSU ultrafiltration membranes reported to date while maintaining a high level of human serum albumin rejection (83–92%). It was revealed that nanocomposite membrane demonstrated better antifouling performance (the flux recovery ratio increased from 47% for the reference PPSU membrane up to 62% for the nanocomposite membrane) and higher total organic carbon removal compared to the reference PPSU membrane in humic acids solution ultrafiltration.
Collapse
|
42
|
Khalili M, Razmjou A, Shafiei R, Shahavi MH, Li MC, Orooji Y. High durability of food due to the flow cytometry proved antibacterial and antifouling properties of TiO 2 decorated nanocomposite films. Food Chem Toxicol 2022; 168:113291. [PMID: 35870732 DOI: 10.1016/j.fct.2022.113291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 07/10/2022] [Indexed: 01/18/2023]
Abstract
Although polymeric membrane has superior properties, its applications in biomedical and food industrial fields are minimal. Biofouling is a significant concern in the membrane, created from particular interactions between the membrane and untreated water content. This research showed that a careful superhydrophilic modification of polyethersulfone membrane could address those drawbacks that have hindered their utility. Hence, a combination of chemical and physical modification showed far-reaching effects on surface behavior, affecting manifold aspects of its bacterial attachment, protein adsorption resistance, and hydrophilicity. The contact angle measurement results decreased from 30° to 0° in 26 s, and surface free energy increased by 33%, demonstrating the shifting surface wettability behavior toward the Superhydrophilicity. Besides, increasing the average surface roughness on the nanoscale and forming 70-110 nm jagged structures results in a marked reduction in protein adsorption, bacterial adhesion, and biofouling formation, confirmed by the results of Flow cytometry analysis and microtiter plate assay. An improved understanding of antifouling and antibacterial properties will greatly assist in food industries since it can be applied to enhance the durability of food and chemical materials. This is important as it gives us a simple way of improving packing reliability, reducing costs and amounts of undesirable waste products.
Collapse
Affiliation(s)
- Mahsa Khalili
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran
| | - Amir Razmjou
- School of Engineering, Edith Cowan University (ECU), Perth, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Rasoul Shafiei
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran
| | - Mohammad Hassan Shahavi
- Department of Nanotechnology, Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies (AUSMT), Amol, Iran
| | - Mei-Chun Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China; School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China.
| |
Collapse
|
43
|
Guleria A, Sachdeva H, Saini K, Gupta K, Mathur J. Recent trends and advancements in synthesis and applications of plant‐based green metal nanoparticles: A critical review. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anjali Guleria
- Department of Chemistry University of Rajasthan Jaipur India
| | | | - Kirti Saini
- Department of Chemistry University of Rajasthan Jaipur India
| | - Komal Gupta
- Department of Chemistry University of Rajasthan Jaipur India
| | - Jaya Mathur
- Department of Chemistry University of Rajasthan Jaipur India
| |
Collapse
|
44
|
Sharma A, Kumar N, Sillanpää M, Makgwane PR, Kumar S, Kumari K. Carbon nano-structures and functionalized associates: Adsorptive detoxification of organic and inorganic water pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
A novel polyurea nanofiltration membrane constructed by PEI/TA-MoS2 for efficient removal of heavy metal ions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Development of Ti2AlN MAX phase/cellulose acetate nanocomposite membrane for removal of dye, protein and lead ions. Carbohydr Polym 2022; 296:119913. [DOI: 10.1016/j.carbpol.2022.119913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023]
|
47
|
Salehipour M, Rezaei S, Asadi Khalili HF, Motaharian A, Mogharabi-Manzari M. Nanoarchitectonics of Enzyme/Metal–Organic Framework Composites for Wastewater Treatment. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02390-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Dastborhan M, Khataee A, Arefi-Oskoui S, Yoon Y. Synthesis of flower-like MoS 2/CNTs nanocomposite as an efficient catalyst for the sonocatalytic degradation of hydroxychloroquine. ULTRASONICS SONOCHEMISTRY 2022; 87:106058. [PMID: 35716466 PMCID: PMC9213255 DOI: 10.1016/j.ultsonch.2022.106058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 05/12/2023]
Abstract
Contamination of water resources by pharmaceutical residues, especially during the time of pandemics, has become a serious problem worldwide and concerns have been raised about the efficient elimination of these compounds from aquatic environments. This study has focused on the development and evaluation of the sonocatalytic activity of a flower-like MoS2/CNTs nanocomposite for the targeted degradation of hydroxychloroquine (HCQ). This nanocomposite was prepared using a facile hydrothermal route and characterized with various analytical methods, including X-ray diffraction and electron microscopy, which results confirmed the successful synthesis of the nanocomposite. Moreover, the results of the Brunauer-Emmett-Teller and diffuse reflectance spectroscopy analyses showed an increase in the specific surface area and a decrease in the band gap energy of the nanocomposite when compared with those of MoS2. Nanocomposites with different component mass ratios were then synthesized, and MoS2/CNTs (10:1) was identified to have the best sonocatalytic activity. The results indicated that 70% of HCQ with the initial concentration of 20 mg/L could be degraded using 0.1 g/L of MoS2/CNTs (10:1) nanocomposite within 120 min of sonocatalysis at the pH of 8.7 (natural pH of the HCQ solution). The dominant reactive species in the sonocatalytic degradation process were identified using various scavengers and the intermediates generated during the process were detected using GC-MS analysis, enabling the development of a likely degradation scheme. In addition, the results of consecutive sonocatalytic cycles confirmed the stability and reusability of this nanocomposite for sonocatalytic applications. Thus, our data introduce MoS2/CNTs nanocomposite as a proficient sonocatalyst for the treatment of pharmaceutical contaminants.
Collapse
Affiliation(s)
- Mahsa Dastborhan
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
- Department of Environmental Engineering, Gebze Technical University, Gebze 41400, Turkey
- Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080 Chelyabinsk, Russian Federation
- Corresponding authors: (A. Khataee), (Y. Yoon)
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
- Department of Chemical Industry, Technical and Vocational University (TVU), Tehran, Iran
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
- Corresponding authors: (A. Khataee), (Y. Yoon)
| |
Collapse
|
49
|
Mousavi SE, Younesi H, Bahramifar N, Tamunaidu P, Karimi-Maleh H. A novel route to the synthesis of α-Fe2O3@C@SiO2/TiO2 nanocomposite from the metal-organic framework as a photocatalyst for water treatment. CHEMOSPHERE 2022; 297:133992. [PMID: 35247450 DOI: 10.1016/j.chemosphere.2022.133992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
In this study, an attempt was made to synthesize metal-organic frameworks (MOFs) based magnetic iron particles as photocatalysts for textile dye wastewater. Improvement strategy was a novel two-step dry method without using conventional methods to eliminate the consumption of chemical reagents. First, the heterogeneous photocatalyst of Fe-MOFs derived magnetic carbon nanocomposite with carboxylic acid surface functional groups (Fe@C-COOH) was achieved. Next, the α-Fe2O3@C@SiO2/TiO2 was successfully synthesized followed by a sol-gel method to coat the SiO2 shell and a solvothermal method to coat the surface of the intermediate TiO2 particles. The as-synthesized nanocomposite materials were characterized and physicochemical analytical equipment. Further, the investigation on magnetic photocatalytic nanocomposite α-Fe2O3@C@SiO2/TiO2 performance of dye degradation and photocatalytic activity on Reactive yellow 145 (RY145), using as an indicator was conducted. The as-synthesized nanocomposite particles were characterized using X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), X-ray energy dispersive spectroscopy (EDX), and scanning electron microscopy (SEM) techniques. The structural characterization of the as-synthesized materials proved that these methods generate oxygen-containing functional groups, such as, -OH, -CO, and -COOH, which increases the polarity and hydrophilicity of the photocatalyst. The photocatalytic oxidation of RY145 dye under UVc light was discussed by the apparent first-order reaction rate and the kinetic model of the Langmuir-Hinshelwood followed a better fitting. The optimal performance of the composite is at pH = 2, 15 mg/100 mL of photocatalyst dose, 150 mg/L concentration of the dye RY145 at 25 °C temperature under UVc lamp irradiation for 90 min, and with the apparent reaction rate constant was 0.0165 min-1. The thermodynamic analysis of activation parameters computed by the Eyring model and based on transition state theory (TST), an endothermic reaction with a positive value for Δ‡Ho (50.16 kJ mol-1) and a negative value for Δ‡So (-153 J/mol K) both contribute toward achieving positive values for Δ‡Go and a nonspontaneous process. The proposed α-Fe2O3@C@SiO2/TiO2 demonstrated a high capability of photocatalytic degradation up to 97% after five successive cycles at the optimal condition compared to that of Fe3O4@C (18.74%) and Fe@C-COOH (77.9%) without reusability.
Collapse
Affiliation(s)
- Seyedeh Elaheh Mousavi
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, B.O. Box 46414-356, Tehran, Iran
| | - Habibollah Younesi
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, B.O. Box 46414-356, Tehran, Iran.
| | - Nader Bahramifar
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, B.O. Box 46414-356, Tehran, Iran
| | - Pramila Tamunaidu
- Malaysia-Japan Advanced Research Centre, Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, 84600, Pagoh, Johor, Malaysia
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronics Science and Technology of China (UESTC), 611731, China; Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028 Johannesburg, P.O. Box 17011, South Africa.
| |
Collapse
|
50
|
Arnawtee WH, Jaleh B, Nasrollahzadeh M, Bakhshali‐Dehkordi R, Nasri A, Orooji Y. Lignin valorization: Facile synthesis, characterization and catalytic activity of multiwalled carbon nanotubes/kraft lignin/Pd nanocomposite for environmental remediation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|