1
|
Fike AJ, Bricker KN, Gonzalez MV, Maharjan A, Bui T, Nuon K, Emrich SM, Weber JL, Luckenbill SA, Choi NM, Sauteraud R, Liu DJ, Olsen NJ, Caricchio R, Trebak M, Chodisetti SB, Rahman ZS. IRF7 controls spontaneous autoimmune germinal center and plasma cell checkpoints. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636277. [PMID: 39974943 PMCID: PMC11838595 DOI: 10.1101/2025.02.04.636277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
How IRF7 promotes autoimmune B cell responses and systemic autoimmunity is unclear. Analysis of spontaneous SLE-prone mice deficient in IRF7 uncovered the IRF7 role in regulating autoimmune germinal center (GC), plasma cell (PC) and autoantibody responses and disease. IRF7, however, was dispensable for foreign antigen driven GC, PC and antibody responses. Competitive bone marrow (BM) chimeras highlighted the importance of IRF7 in hematopoietic cells in spontaneous GC and PC differentiation. Single-cell-RNAseq of SLE-prone B cells indicated IRF7 mediated B cell differentiation through GC and PC fates. Mechanistic studies revealed that IRF7 promoted B cell differentiation through GC and PC fates by regulating the transcriptome, translation, and metabolism of SLE-prone B cells. Mixed BM chimeras demonstrated a requirement for B cell-intrinsic IRF7 in IgG autoantibody production but not sufficient for promoting spontaneous GC and PC responses. Altogether, we delineate previously unknown B cell-intrinsic and -extrinsic mechanisms of IRF7-promoted spontaneous GC and PC responses, loss of tolerance, autoantibody production and SLE development.
Collapse
Affiliation(s)
- Adam J. Fike
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Kristen N. Bricker
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Michael V. Gonzalez
- Center for Cytokine Storm Treatment and Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19464, USA
| | | | | | | | - Scott M. Emrich
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Julia L. Weber
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Sara A. Luckenbill
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Nicholas M. Choi
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Renan Sauteraud
- Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Dajiang J. Liu
- Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Nancy J. Olsen
- Rheumatology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | | | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Ziaur S.M. Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
2
|
Hygino J, Sales MC, Sacramento PM, Kasahara TM, da Silva JCC, Bilhão R, Andrade RM, Vasconcelos CCF, Bento CAM. Hyperresponsiveness of Corticoid-Resistant Th17/Tc-17 Cells to TLR-2 and TLR-4 Ligands is a Feature of Multiple Sclerosis Patients at Higher Risk of Therapy Failure. J Inflamm Res 2024; 17:8775-8797. [PMID: 39564547 PMCID: PMC11573880 DOI: 10.2147/jir.s476110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/25/2024] [Indexed: 11/21/2024] Open
Abstract
Purpose The presence of T cells expressing TLR-2 and TLR-4 has been associated with relapsing-remitting multiple sclerosis (RRMS) pathogenesis. Here, we evaluated whether the effectiveness of DMT in controlling clinical activity of the disease would be associated with modulation of proportion of TLRs+ T cells. Patients and Methods Whole peripheral blood mononuclear cells, purified CD4+ and CD8+ T cells from RRMS patients were cultured with different stimuli. The frequency of IL-17-secreting CD4+ and CD8+ T cells positive for TLR-2 and TLR-4 was determined by flow cytometry. The cytokine profile of these T cells following TLR-2 and TLR-4 stimulation was determined by Multiplex. Some of these T cell cultures were treated with hydrocortisone. The levels of LPS-binding protein (LBP) were dosed by ELISA. Clinical (occurrence of relapses) and radiological (number of active brain lesions) activity were evaluated during the 1-year follow-up. Results Despite DMT, high intensity of TLR-2 and TLR-4 expression on (CD4+ and CD8+) T-cells, as well as the frequency of IL-17-secreting (CD4+ and CD8+) T-cells, are predictive of future RRMS relapses. Moreover, higher cytokine production related to Th17/Tc-17 phenotypes in response to TLR-2 and TLR-4 agonists was observed in DMT-treated patients and displayed an elevated number of brain lesions. The hyperresponsiveness of MS-derived T-cells to TLR-2 and TLR-4 ligands, with high levels of IL-1β, IL-6, IL-17, IFN-γ and GM-CSF in response to both TLR agonists, positively correlated with plasma LBP levels. Interestingly, corticoid was less efficient in reducing Th17 and Tc-17 cytokine production induced by TLR-2 and TLR-4 ligands in DMT-treated patients who relapsed during follow-up. Conclusion Collectively, the data suggested that persistence of circulating Th17 and Tc17 cells expressing elevated levels of functional TLR-2 and TLR-4 could indicate high disease activity and lower therapeutic efficacy in RRMS patients.
Collapse
Affiliation(s)
- Joana Hygino
- Post-Graduate Program in Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
| | - Marisa C Sales
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
| | - Priscila M Sacramento
- Post-Graduate Program in Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
| | - Taissa M Kasahara
- Post-graduate Program in Molecular and Cellular Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
| | - Júlio César Costa da Silva
- Post-graduate Program in Molecular and Cellular Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
| | - Rafaela Bilhão
- Post-graduate Program in Molecular and Cellular Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
| | - Regis M Andrade
- Department of General Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
| | | | - Cleonice A M Bento
- Post-Graduate Program in Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
- Post-graduate Program in Molecular and Cellular Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
- Department of General Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
| |
Collapse
|
3
|
Bradyanova S, Manoylov I, Boneva G, Kechidzhieva L, Tchorbanov A, Nikolova-Ganeva K. Methyl-supplemented nutrition delays the development of autoimmune disease in pristane-induced murine lupus. Immunology 2024; 172:269-278. [PMID: 38430118 DOI: 10.1111/imm.13774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
The aetiology and progression of systemic lupus erythematosus (SLE) resulted from a complex sequence of events generated both from genetic and epigenetic processes. In the current research, the effect of methyl-supplemented nutrition on the development of SLE was studied in the pristane-induced mouse model of the disease. The results clearly demonstrated decreased anti-dsDNA antibody and proteinuria levels, modulation of cytokines and protected renal structures in the group of treated mice. An additional increase in the DNA methylation of mouse B lymphocytes was also observed. The beneficial effect of the diet is due to the methyl-containing micronutrients with possible anti-inflammatory and immunomodulating effects on cell proliferation and gene expression. Since these components are responsible for maintaining the physiological methylation level of DNA, the results point to the central role of methylation processes in environmentally triggered lupus. As nutrition represents one of the major epigenetic factors, these micronutrients may be considered novel agents with significant therapeutic outcomes.
Collapse
Affiliation(s)
- Silviya Bradyanova
- Laboratory of Experimental Immunology, Department of Immunology, "The Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iliyan Manoylov
- Laboratory of Experimental Immunology, Department of Immunology, "The Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Gabriela Boneva
- Laboratory of Experimental Immunology, Department of Immunology, "The Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lidiya Kechidzhieva
- Laboratory of Experimental Immunology, Department of Immunology, "The Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Andrey Tchorbanov
- Laboratory of Experimental Immunology, Department of Immunology, "The Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- National Institute of Immunology, Sofia, Bulgaria
| | - Kalina Nikolova-Ganeva
- Laboratory of Experimental Immunology, Department of Immunology, "The Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
4
|
Enteric Toll-like receptor 7 stimulation causes acute exacerbation in lupus-susceptible mice. Clin Rheumatol 2023; 42:1185-1194. [PMID: 36515794 DOI: 10.1007/s10067-022-06467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases are often accompanied by acute exacerbation. However, the mechanism underlying systemic lupus erythematosus (SLE) flares remains unclear. We investigated whether short-term enteric Toll-like receptor 7 (TLR7) stimulation can exacerbate SLE using B6SKG mice, which spontaneously develop SLE due to a mutation in the zeta‒chain‒associated protein kinase 70 (Zap70) gene. Imiquimod (IMQ) or phosphate-buffered saline (PBS) were orally administered on B6WT and B6SKG mice every other day for 2 weeks. SLE exacerbation was assessed via fluorescent immunohistochemical staining of glomeruli for IgG and C3, hematoxylin and eosin staining of kidneys, and enzyme-linked immunosorbent assay for antinuclear antibody (ANA). Flow cytometry was used to evaluate germinal center B cells (GCBs), plasma cells, follicular helper T cells (Tfhs), regulatory T cells (Tregs), effector T cells (Th1s and Th17s), plasmacytoid dendritic cells (pDCs), conventional dendritic cells (cDCs), and macrophages (Mφs) in spleens. Oral administration of IMQ every other day for 2 weeks resulted in exacerbation of splenomegaly, increased IgG and C3 deposition in glomeruli, and increased ANA production in the B6SKG IMQ (SKG-IMQ) group compared to the B6SKG PBS (SKG-PBS) group; the percentages of GCBs, plasma cells, Tfhs, Th1s, pDCs, and Mφs were also increased in the SKG-IMQ group. Splenomegaly, IgG, and C3 deposition in glomeruli, and the percentages of GCBs, plasma cells, Tfhs, and Th1s were enhanced in SKG-IMQ mice compared with B6SKG mice topically treated with IMQ (SKG-ear-IMQ). Oral TLR7 stimulation in a Zap70 genetic mutation background can cause acute exacerbations of SLE. Key Points • The mechanism of SLE flares is not well understood. • We have created a model that causes short-term SLE exacerbations in mice with a genetic background. • IMQ administered orally causes more SLE in mice than transdermally.
Collapse
|
5
|
Punnanitinont A, Kasperek EM, Kiripolsky J, Zhu C, Miecznikowski JC, Kramer JM. TLR7 agonism accelerates disease in a mouse model of primary Sjögren's syndrome and drives expansion of T-bet + B cells. Front Immunol 2022; 13:1034336. [PMID: 36591307 PMCID: PMC9799719 DOI: 10.3389/fimmu.2022.1034336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized by chronic inflammation of exocrine tissue, resulting in loss of tears and saliva. Patients also experience many extra-glandular disease manifestations. Treatment for pSS is palliative, and there are currently no treatments available that target disease etiology. Previous studies in our lab demonstrated that MyD88 is crucial for pSS pathogenesis in the NOD.B10Sn-H2b (NOD.B10) pSS mouse model, although the way in which MyD88-dependent pathways become activated in disease remains unknown. Based on its importance in other autoimmune diseases, we hypothesized that TLR7 activation accelerates pSS pathogenesis. We administered the TLR7 agonist Imiquimod (Imq) or sham treatment to pre-disease NOD.B10 females for 6 weeks. Parallel experiments were performed in age and sex-matched C57BL/10 controls. Imq-treated pSS animals exhibited cervical lymphadenopathy, splenomegaly, and expansion of TLR7-expressing B cells. Robust lymphocytic infiltration of exocrine tissues, kidney and lung was observed in pSS mice following treatment with Imq. TLR7 agonism also induced salivary hypofunction in pSS mice, which is a hallmark of disease. Anti-nuclear autoantibodies, including Ro (SSA) and La (SSB) were increased in pSS mice following Imq administration. Cervical lymph nodes from Imq-treated NOD.B10 animals demonstrated an increase in the percentage of activated/memory CD4+ T cells. Finally, T-bet+ B cells were expanded in the spleens of Imq-treated pSS mice. Thus, activation of TLR7 accelerates local and systemic disease and promotes expansion of T-bet-expressing B cells in pSS.
Collapse
Affiliation(s)
- Achamaporn Punnanitinont
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Eileen M. Kasperek
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jeremy Kiripolsky
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Chengsong Zhu
- Department of Immunology, Microarray & Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jeffrey C. Miecznikowski
- Department of Biostatistics, School of Public Health and Health Professions, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jill M. Kramer
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States,*Correspondence: Jill M. Kramer,
| |
Collapse
|
6
|
Liang J, Xie F, Feng J, Huang C, Shen J, Han Z, Luo W, He J, Chen H. Progress in the application of body fluid and tissue level mRNAs-non-coding RNAs for the early diagnosis and prognostic evaluation of systemic lupus erythematosus. Front Immunol 2022; 13:1020891. [PMID: 36325322 PMCID: PMC9618628 DOI: 10.3389/fimmu.2022.1020891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
The diagnosis and differential classification of systemic lupus erythematosus (SLE) is difficult, especially in patients with early-onset SLE who are susceptible to systemic multi-organ damage and serious complications and have difficulties in individualized treatment. At present, diagnosis is based mainly on clinical manifestations and the detection of serological antinuclear antibodies. The pathogenesis of SLE involves multiple factors, is clinically heterogeneous, and lacks specific biomarkers. Therefore, it is necessary to identify new biomarkers for the diagnosis and subtype classification of SLE. Non-coding RNAs (ncRNAs) are composed of microRNAs, long non-coding RNAs, small nucleolar RNAs, circular RNAs, and transfer RNAs. They play an important role in the occurrence and development of diseases and are used widely in the early diagnosis and prognosis of autoimmune diseases. In this review, we focus on the research progress in the diagnosis and prognostic assessment of SLE using humoral to tissue level ncRNAs.
Collapse
Affiliation(s)
- Jiabin Liang
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
- Graduate School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fangmei Xie
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jie Feng
- Radiology Department of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen Huang
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jian Shen
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Zeping Han
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jinhua He
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
- *Correspondence: Hanwei Chen, ; Jinhua He,
| | - Hanwei Chen
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
- Radiology Department of Panyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou, China
- *Correspondence: Hanwei Chen, ; Jinhua He,
| |
Collapse
|
7
|
Liu X, Ding Y, Zheng X, Huang H, Shi L, Yang X, Wei J, Li Y, Kao W, Zhang F, Qian J. Small RNAs encoded by human endogenous retrovirus K overexpressed in PBMCs may contribute to the diagnosis and evaluation of systemic lupus erythematosus as novel biomarkers. Hum Mol Genet 2021; 31:1407-1416. [PMID: 34761271 DOI: 10.1093/hmg/ddab327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/09/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to identify the genes and small RNAs (sRNAs) expressed by the human endogenous retrovirus K (HERV-K) HML2 and their associations with the immune process of systemic lupus erythematosus (SLE). RNA-Seq data including 99 SLE patients and 18 controls (GSE72420) was obtained from the Gene Expression Omnibus. Differentially expressed genes (DEGs) as well as HML2-DEGs between SLE patients and normal controls were identified. Five HML2-DEGs involved in immune-regulating function were identified using weighted gene co-expression network analysis (WGCNA). The associations between these genes and the proportions of immune cells were determined by CIBERSORT. Ten candidate HML2-encoded sRNAs were identified based on specific criteria, and three of them were further validated in SLE patients by qRT-PCR. The diagnostic values of these three sRNAs were evaluated in SLE and lupus nephritis (LN). This study suggested that HML2 genes and their encoded sRNAs might be involved in the immune regulation and progress of SLE. These potential sRNAs might function as regulatory molecules and diagnostic biomarkers of SLE and LN.
Collapse
Affiliation(s)
- Xinyi Liu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, 150081, China
| | - Yanjun Ding
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, 150081, China
| | - Xiaoqiu Zheng
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, 150081, China
| | - He Huang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Liyu Shi
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, 150081, China
| | - Xiaolan Yang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, 150081, China
| | - Jing Wei
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, 150081, China
| | - Yang Li
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wenping Kao
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, 150081, China
| | - Fengmin Zhang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, 150081, China
| | - Jun Qian
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, 150081, China
| |
Collapse
|
8
|
Kiripolsky J, Kasperek EM, Zhu C, Li QZ, Wang J, Yu G, Kramer JM. Immune-Intrinsic Myd88 Directs the Production of Antibodies With Specificity for Extracellular Matrix Components in Primary Sjögren's Syndrome. Front Immunol 2021; 12:692216. [PMID: 34381449 PMCID: PMC8350326 DOI: 10.3389/fimmu.2021.692216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
Primary Sjögren's syndrome is an autoimmune disease that is predominantly seen in women. The disease is characterized by exocrine gland dysfunction in combination with serious systemic manifestations. At present, the causes of pSS are poorly understood. Pulmonary and renal inflammation are observed in pSS mice, reminiscent of a subset of pSS patients. A growing body of evidence indicates that inflammation mediated by Damage-Associated Molecular Patterns (DAMPs) contributes to autoimmunity, although this is not well-studied in pSS. Degraded extracellular matrix (ECM) constituents can serve as DAMPs by binding pattern-recognition receptors and activating Myd88-dependent signaling cascades, thereby exacerbating and perpetuating inflammatory cascades. The ECM components biglycan (Bgn) and decorin (Dcn) mediate sterile inflammation and both are implicated in autoimmunity. The objective of this study was to determine whether these ECM components and anti-ECM antibodies are altered in a pSS mouse model, and whether this is dependent on Myd88 activation in immune cells. Circulating levels of Bgn and Dcn were similar among pSS mice and controls and tissue expression studies revealed pSS mice had robust expression of both Bgn and Dcn in the salivary tissue, saliva, lung and kidney. Sera from pSS mice displayed increased levels of autoantibodies directed against ECM components when compared to healthy controls. Further studies using sera derived from conditional knockout pSS mice demonstrated that generation of these autoantibodies relies, at least in part, on Myd88 expression in the hematopoietic compartment. Thus, this study demonstrates that ECM degradation may represent a novel source of chronic B cell activation in the context of pSS.
Collapse
Affiliation(s)
- Jeremy Kiripolsky
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Eileen M. Kasperek
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Chengsong Zhu
- Department of Immunology, Microarray & Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Quan-Zhen Li
- Department of Immunology, Microarray & Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jia Wang
- Department of Biostatistics, School of Public Health and Health Professions, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Guan Yu
- Department of Biostatistics, School of Public Health and Health Professions, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jill M. Kramer
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
- Department of Oral Diagnostics Sciences, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
9
|
Sales MC, Kasahara TM, Sacramento PM, Rossi ÁD, Cafasso MOS, Oyamada HA, Hygino J, Alvim F, Andrade RM, Cristina Vasconcelos C, Bento CA. Selective serotonin reuptake inhibitor attenuates the hyperresponsiveness of TLR2 + and TLR4 + Th17/Tc17-like cells in multiple sclerosis patients with major depression. Immunology 2021; 162:290-305. [PMID: 33112414 PMCID: PMC7884649 DOI: 10.1111/imm.13281] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Elevated frequency of Th17-like cells expressing Toll-like receptors (TLRs) has been recently associated with relapsing-remitting multiple sclerosis (MS) pathogenesis, a chronic inflammatory demyelinating autoimmune disease of the central nervous system. We aimed to investigate the impact of current major depressive disorder (MDD) on the behaviour of these cells following in vitro stimulation with TLR2, TLR4, TLR5 and TLR9 agonists. Here, the level of both cell proliferation and cytokine production related to Th17/Tc17 phenotypes in response to TLR2 (Pam3C) and TLR4 (LPS) ligands was significantly higher in CD4+ and CD8+ T-cell cultures from MS/MDD patients when compared to non-depressed patients. These cytokine levels were positively associated with neurological disabilities in patients. No difference for responsiveness to TLR5 (flagellin) and TLR9 (ODN) agonists was observed. LPS, but not Pam3C, induced significant IL-10 release, mainly in patients without MDD. Interestingly, more intense expression of TLR2 and TLR4 on these cells was observed in MDD patients. Finally, in vitro addition of serotonin and treatment of MDD patients with selective serotonin reuptake inhibitors (SSRIs) reduced the production of Th17/Tc17-related cytokines by CD4+ and CD8+ T cells in response to Pam3C and LPS. However, only SSRI therapy diminished the frequency and intensity of TLR2 and TLR4 expression on circulating CD4+ and CD8+ T cells. In summary, although preliminary, our findings suggest that adverse events that elevate circulating levels of TLR2 and TLR4 ligands can affect MS pathogenesis, particularly among depressed patients.
Collapse
Affiliation(s)
- Marisa C. Sales
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in MicrobiologyUniversity of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Taissa M. Kasahara
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Priscila M. Sacramento
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in MicrobiologyUniversity of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Átila D. Rossi
- Department of GeneticsFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Marcos Octávio S.D. Cafasso
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Hugo A.A. Oyamada
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in MicrobiologyUniversity of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Joana Hygino
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in NeurologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Fabianna Alvim
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Regis M. Andrade
- Department of General Medicine DepartmentFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | | | - Cleonice A.M. Bento
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in NeurologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Department of General Medicine DepartmentFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
10
|
Munroe ME, Anderson JR, Gross TF, Stunz LL, Bishop GA, James JA. Epstein-Barr Functional Mimicry: Pathogenicity of Oncogenic Latent Membrane Protein-1 in Systemic Lupus Erythematosus and Autoimmunity. Front Immunol 2021; 11:606936. [PMID: 33613527 PMCID: PMC7886997 DOI: 10.3389/fimmu.2020.606936] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) and other autoimmune diseases are propelled by immune dysregulation and pathogenic, disease-specific autoantibodies. Autoimmunity against the lupus autoantigen Sm is associated with cross-reactivity to Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA-1). Additionally, EBV latent membrane protein-1 (LMP1), initially noted for its oncogenic activity, is an aberrantly active functional mimic of the B cell co-stimulatory molecule CD40. Mice expressing a transgene (Tg) for the mCD40-LMP1 hybrid molecule (containing the cytoplasmic tail of LMP1) have mild autoantibody production and other features of immune dysregulation by 2-3 months of age, but no overt autoimmune disease. This study evaluates whether exposure to the EBV molecular mimic, EBNA-1, stimulates antigen-specific and concurrently-reactive humoral and cellular immunity, as well as lupus-like features. After immunization with EBNA-1, mCD40-LMP1 Tg mice exhibited enhanced, antigen-specific, cellular and humoral responses compared to immunized WT congenic mice. EBNA-1 specific proliferative and inflammatory cytokine responses, including IL-17 and IFN-γ, were significantly increased (p<0.0001) in mCD40-LMP1 Tg mice, as well as antibody responses to amino- and carboxy-domains of EBNA-1. Of particular interest was the ability of mCD40-LMP1 to drive EBNA-1 associated molecular mimicry with the lupus-associated autoantigen, Sm. EBNA-1 immunized mCD40-LMP1 Tg mice exhibited enhanced proliferative and cytokine cellular responses (p<0.0001) to the EBNA-1 homologous epitope PPPGRRP and the Sm B/B' cross-reactive sequence PPPGMRPP. When immunized with the SLE autoantigen Sm, mCD40-LMP1 Tg mice again exhibited enhanced cellular and humoral immune responses to both Sm and EBNA-1. Cellular immune dysregulation with EBNA-1 immunization in mCD40-LMP1 Tg mice was accompanied by enhanced splenomegaly, increased serum blood urea nitrogen (BUN) and creatinine levels, and elevated anti-dsDNA and antinuclear antibody (ANA) levels (p<0.0001 compared to mCD40 WT mice). However, no evidence of immune-complex glomerulonephritis pathology was noted, suggesting that a combination of EBV and genetic factors may be required to drive lupus-associated renal disease. These data support that the expression of LMP1 in the context of EBNA-1 may interact to increase immune dysregulation that leads to pathogenic, autoantigen-specific lupus inflammation.
Collapse
Affiliation(s)
- Melissa E. Munroe
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Jourdan R. Anderson
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Timothy F. Gross
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Laura L. Stunz
- Department of Microbiology & Immunology, The University of Iowa, Iowa City, IA, United States
| | - Gail A. Bishop
- Department of Microbiology & Immunology, The University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, The University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
- Iowa City VA Medical Center, Iowa City, IA, United States
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Medicine and Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
11
|
Sha S, Pearson JA, Peng J, Hu Y, Huang J, Xing Y, Zhang L, Zhu Y, Zhao H, Wong FS, Chen L, Wen L. TLR9 Deficiency in B Cells Promotes Immune Tolerance via Interleukin-10 in a Type 1 Diabetes Mouse Model. Diabetes 2021; 70:504-515. [PMID: 33154070 PMCID: PMC7881860 DOI: 10.2337/db20-0373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/01/2020] [Indexed: 12/22/2022]
Abstract
Toll-like receptor 9 (TLR9) is highly expressed in B cells, and B cells are important in the pathogenesis of type 1 diabetes (T1D) development. However, the intrinsic effect of TLR9 in B cells on β-cell autoimmunity is not known. To fill this knowledge gap, we generated NOD mice with a B-cell-specific deficiency of TLR9 (TLR9fl/fl/CD19-Cre+ NOD). The B-cell-specific deletion of TLR9 resulted in near-complete protection from T1D development. Diabetes protection was accompanied by an increased proportion of interleukin-10 (IL-10)-producing B cells. We also found that TLR9-deficient B cells were hyporesponsive to both innate and adaptive immune stimuli. This suggested that TLR9 in B cells modulates T1D susceptibility in NOD mice by changing the frequency and function of IL-10-producing B cells. Molecular analysis revealed a network of TLR9 with matrix metalloproteinases, tissue inhibitor of metalloproteinase-1, and CD40, all of which are interconnected with IL-10. Our study has highlighted an important connection of an innate immune molecule in B cells to the immunopathogenesis of T1D. Thus, targeting the TLR9 pathway, specifically in B cells, may provide a novel therapeutic strategy for T1D treatment.
Collapse
Affiliation(s)
- Sha Sha
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - James A Pearson
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - Jian Peng
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - Youjia Hu
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - Juan Huang
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - Yanpeng Xing
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Luyao Zhang
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Zhu
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT
| | - Hongyu Zhao
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT
| | - F Susan Wong
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, U.K
| | - Li Chen
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| |
Collapse
|
12
|
Soni C, Perez OA, Voss WN, Pucella JN, Serpas L, Mehl J, Ching KL, Goike J, Georgiou G, Ippolito GC, Sisirak V, Reizis B. Plasmacytoid Dendritic Cells and Type I Interferon Promote Extrafollicular B Cell Responses to Extracellular Self-DNA. Immunity 2020; 52:1022-1038.e7. [PMID: 32454024 PMCID: PMC7306002 DOI: 10.1016/j.immuni.2020.04.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 01/06/2023]
Abstract
Class-switched antibodies to double-stranded DNA (dsDNA) are prevalent and pathogenic in systemic lupus erythematosus (SLE), yet mechanisms of their development remain poorly understood. Humans and mice lacking secreted DNase DNASE1L3 develop rapid anti-dsDNA antibody responses and SLE-like disease. We report that anti-DNA responses in Dnase1l3-/- mice require CD40L-mediated T cell help, but proceed independently of germinal center formation via short-lived antibody-forming cells (AFCs) localized to extrafollicular regions. Type I interferon (IFN-I) signaling and IFN-I-producing plasmacytoid dendritic cells (pDCs) facilitate the differentiation of DNA-reactive AFCs in vivo and in vitro and are required for downstream manifestations of autoimmunity. Moreover, the endosomal DNA sensor TLR9 promotes anti-dsDNA responses and SLE-like disease in Dnase1l3-/- mice redundantly with another nucleic acid-sensing receptor, TLR7. These results establish extrafollicular B cell differentiation into short-lived AFCs as a key mechanism of anti-DNA autoreactivity and reveal a major contribution of pDCs, endosomal Toll-like receptors (TLRs), and IFN-I to this pathway.
Collapse
Affiliation(s)
- Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Oriana A Perez
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - William N Voss
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Joseph N Pucella
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Justin Mehl
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Krystal L Ching
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jule Goike
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - George Georgiou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Vanja Sisirak
- CNRS-UMR 5164, ImmunoConcEpt, Université de Bordeaux, 33076 Bordeaux, France.
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
13
|
Hua Z, Hou B. The role of B cell antigen presentation in the initiation of CD4+ T cell response. Immunol Rev 2020; 296:24-35. [PMID: 32304104 DOI: 10.1111/imr.12859] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/29/2020] [Accepted: 03/26/2020] [Indexed: 01/21/2023]
Abstract
B cells have been known for their ability to present antigens to T cells for almost 40 years. However, the precise roles of B cell antigen presentation in various immune responses are not completely understood. The term "professional" antigen-presenting cells (APCs) was proposed to distinguish APCs that are required for initiating the immune responses from those use antigen presentation to enhance their own effector functions. Unlike dendritic cells, which are defined as professional APCs for their well-established functions in activating naive T cells, B cells have been shown in the past to mostly present antigens to activated CD4+ T cells mainly to seek help from T helper cells. However, recent evidence suggested that B cells can act as professional APCs under infectious conditions or conditions mimicking viral infections. B cell antigen receptors (BCRs) and the innate receptor Toll-like receptors are activated synergistically in response to pathogens or virus-like particles, under which conditions B cells are not only potent but also the predominant APCs to turn naive CD4+ T cells into T follicular helper cells. The discovery of B cells as professional APCs to initiate CD4+ T cell response provides a new insight for both autoimmune diseases and vaccine development.
Collapse
Affiliation(s)
- Zhaolin Hua
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Toll-like Receptors and the Control of Immunity. Cell 2020; 180:1044-1066. [DOI: 10.1016/j.cell.2020.02.041] [Citation(s) in RCA: 567] [Impact Index Per Article: 113.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
|
15
|
Wirth JR, Molano I, Ruiz P, Coutermarsh-Ott S, Cunningham MA. TLR7 Agonism Accelerates Disease and Causes a Fatal Myeloproliferative Disorder in NZM 2410 Lupus Mice. Front Immunol 2020; 10:3054. [PMID: 31998321 PMCID: PMC6967132 DOI: 10.3389/fimmu.2019.03054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/12/2019] [Indexed: 11/13/2022] Open
Abstract
Murine models of lupus, both spontaneous and inducible, are valuable instruments to study SLE pathogenesis. Accelerants such as Type I IFN are often used to trigger earlier disease onset. We used a topical TLR7 agonist, previously reported to induce lupus-like disease in WT mice within weeks, to validate this data in C57BL/6j mice, and to test TLR7 agonism as an accelerant in lupus-prone NZM2410 mice. We found that TLR7-stimulated B6 and NZM2410 mice had significantly reduced survival and exhibited profound splenomegaly with significantly reduced B cells (4 vs. 40%), and T cells (8 vs. 31%). Spleen pathology and IHC revealed massive expansion of F4/80+ cells in TLR7-treated mice consistent with histiocytosis. While resiqimod treatment caused mild autoimmunity in B6 mice and accelerated autoimmunity in NZM2410 mice, it did not cause significant nephritis or proteinuria in either strain (renal function intact at death). Given the macrophage expansion, cytopenias, and disruption of normal splenic lymphoid follicle architecture, histiocytic sarcoma is favored as the cause of death. An alternative etiology is a macrophage activation syndrome (MAS)-like syndrome, since the mice also had a transaminitis and histologic hemophagocytosis in the setting of their rapid mortality. For investigators who are focused on murine models of lupus nephritis, this model is not ideal when utilizing B6 mice, however topical resiqimod may prove useful to accelerate autoimmunity and nephritis in NZM2410 mice, or potentially to investigate secondary complications of lupus such as histiocytic diseases or macrophage activation like syndromes.
Collapse
Affiliation(s)
- Jena R Wirth
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Ivan Molano
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Phil Ruiz
- Department of Pathology, University of Miami School of Medicine, Miami, FL, United States
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Melissa A Cunningham
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
16
|
Kiripolsky J, Romano RA, Kasperek EM, Yu G, Kramer JM. Activation of Myd88-Dependent TLRs Mediates Local and Systemic Inflammation in a Mouse Model of Primary Sjögren's Syndrome. Front Immunol 2020; 10:2963. [PMID: 31993047 PMCID: PMC6964703 DOI: 10.3389/fimmu.2019.02963] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) are important mediators of chronic inflammation in numerous autoimmune diseases, although the role of these receptors in primary Sjögren's syndrome (pSS) remains incompletely understood. Previous studies in our laboratory established Myd88 as a crucial mediator of pSS, although the disease-relevant ligands and the upstream signaling events that culminate in Myd88 activation have yet to be established. The objective of this study was to identify specific Myd88-dependent TLR-related pathways that are dysregulated both locally and systemically in a mouse model of pSS [NOD.B10Sn-H2b/J (NOD.B10)]. We performed RNA-sequencing on spleens derived from NOD.B10 mice. We then harvested salivary tissue and spleens from Myd88-sufficient and deficient C57BL/10 (BL/10) and NOD.B10 mice and performed flow cytometry to determine expression of Myd88-dependent TLRs. We cultured splenocytes with TLR2 and TLR4 agonists and measured production of inflammatory mediators by ELISA. Next, we evaluated spontaneous and TLR4-mediated inflammatory cytokine secretion in NOD.B10 salivary tissue. Finally, we assessed spontaneous Myd88-dependent cytokine secretion by NOD.B10 salivary cells. We identified dysregulation of numerous TLR-related networks in pSS splenocytes, particularly those employed by TLR2 and TLR4. We found upregulation of TLRs in both the splenic and salivary tissue from pSS mice. In NOD.B10 splenic tissue, robust expression of B cell TLR1 and TLR2 required Myd88. Splenocytes from NOD.B10 mice were hyper-responsive to TLR2 ligation and the endogenous molecule decorin modulated inflammation via TLR4. Finally, we observed spontaneous secretion of numerous inflammatory cytokines and this was enhanced following TLR4 ligation in female NOD.B10 salivary tissue as compared to males. The spontaneous production of salivary IL-6, MCP-1 and TNFα required Myd88 in pSS salivary tissue. Thus, our data demonstrate that Myd88-dependent TLR pathways contribute to the inflammatory landscape in pSS, and inhibition of such will likely have therapeutic utility.
Collapse
Affiliation(s)
- Jeremy Kiripolsky
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States
| | - Rose-Anne Romano
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States
| | - Eileen M Kasperek
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States
| | - Guan Yu
- Department of Biostatistics, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jill M Kramer
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Oral Diagnostic Sciences, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
17
|
Lan-Ting H, You-Ming C, Li-Xin W, Chen W, Xiao-Yan Z, Hong-Yan H. Clinicopathological factors for tubulointerstitial injury in lupus nephritis. Clin Rheumatol 2020; 39:1617-1626. [PMID: 31902029 DOI: 10.1007/s10067-019-04909-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate the incidence of tubulointerstitial injury in lupus nephritis (LN) and to examine clinicopathological factors that could indicate the presence of tubulointerstitial injury. METHODS This study included 98 patients with LN. Clinical data and the pathological results of the initial renal biopsy were collected. RESULTS The frequency of each tubulointerstitial injury parameter was over 50%, except for the interstitial edema, in the 98 patients investigated in this study. The most frequently detected tubulointerstitial injury parameter was tubular atrophy in this study. Neutrophil infiltration/karyorrhexis, wire loop lesion, and arteriosclerosis were observed frequently in patients with tubulointerstitial injuries. High serum creatinine and blood urea nitrogen (BUN) were observed more frequently in patients with tubulointerstitial injuries except tubular degeneration. The multivariable regression analysis showed a relationship between neutrophil infiltration/karyorrhexis and interstitial fibrosis/tubular degeneration, a relationship between wire loop lesion and tubulointerstitial inflammation/edema, and a relationship between arteriosclerosis and tubulointerstitial injuries (except interstitial edema). Patients with tubular degeneration had lower D-Dimer levels compared with those without. Patients with interstitial fibrosis had higher blood leukocyte counts than those without. The rate of low response to therapy was 13% among those without tubulointerstitial inflammation, but 35% in those with interstitial inflammation (P = 0.03). CONCLUSION Acute and chronic renal tubulointerstitial lesions are often found along with glomerular and vascular lesions. Immune and vascular factors are probably involved in tubulointerstitial injuries. Tubulointerstitial inflammation may be the initiator of chronic renal injury and may predict response to therapy.Key Points•To provide a theoretical basis for tubulointerstitial injury in LN.
Collapse
Affiliation(s)
- Huang Lan-Ting
- Department of Blood Purification, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Chen You-Ming
- Department of Blood Purification, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China.
| | - Wei Li-Xin
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| | - Wang Chen
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Zheng Xiao-Yan
- Department of Blood Purification, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - He Hong-Yan
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| |
Collapse
|
18
|
Hamilton JA, Hsu HC, Mountz JD. Autoreactive B cells in SLE, villains or innocent bystanders? Immunol Rev 2019; 292:120-138. [PMID: 31631359 PMCID: PMC6935412 DOI: 10.1111/imr.12815] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
The current concepts for development of autoreactive B cells in SLE (systemic lupus erythematosus) focus on extrinsic stimuli and factors that provoke B cells into tolerance loss. Traditionally, major tolerance loss pathways are thought to be regulated by factors outside the B cell including autoantigen engagement of the B-cell receptor (BCR) with simultaneous type I interferon (IFN) produced by dendritic cells, especially plasmacytoid dendritic cells (pDCs). Later, in autoreactive follicles, B-cells encounter T-follicular helper cells (Tfh) that produce interleukin (IL)-21, IL-4 and pathogenic cytokines, IL-17 and IFN gamma (IFNɣ). This review discusses these mechanisms and also highlights recent advances pointing to the peripheral transitional B-cell stage as a major juncture where transient autocrine IFNβ expression by developing B-cells imprints a heightened susceptibility to external factors favoring differentiation into autoantibody-producing plasmablasts. Recent studies highlight transitional B-cell heterogeneity as a determinant of intrinsic resistance or susceptibility to tolerance loss through the shaping of B-cell responsiveness to cytokines and other environment factors.
Collapse
Affiliation(s)
| | - Hui-Chen Hsu
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - John D Mountz
- University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
Minocha M, Zeng J, Medema JK, Othman AA. Pharmacokinetics of the B-Cell Lymphoma 2 (Bcl-2) Inhibitor Venetoclax in Female Subjects with Systemic Lupus Erythematosus. Clin Pharmacokinet 2019; 57:1185-1198. [PMID: 29333561 DOI: 10.1007/s40262-017-0625-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Venetoclax is an oral selective Bcl-2 inhibitor approved for the treatment of patients with chronic lymphocytic leukemia with 17p deletion. Mechanistic and preclinical evidence warranted evaluation of venetoclax for the treatment of systemic lupus erythematosus (SLE). This work characterized the pharmacokinetics of venetoclax in female subjects with SLE. METHODS Single (10-500 mg) and multiple (30-600 mg) escalating doses of venetoclax or matching placebo were evaluated using randomized, double-blind, placebo-controlled designs (6 active and 2 placebo per dose with 73 unique SLE patients enrolled, 25 of whom enrolled twice). The multiple-dose evaluation consisted of two cycles, each with once-daily dosing for 7 days followed by a 21-day washout. Non-compartmental and population pharmacokinetic analyses of venetoclax serial plasma concentrations were conducted. RESULTS Venetoclax exhibited approximately dose-proportional exposures, with peak concentrations observed 4-8 h post-dose. Venetoclax steady-state exposures were achieved by day 4 of dosing, and the median area under the plasma concentration-time curve (AUC) accumulation ratio ranged from 1.1 to 1.5. A two-compartment model with first-order absorption and elimination described venetoclax pharmacokinetics. The estimates (95% bootstrap confidence interval) for venetoclax apparent clearance, central and peripheral volumes of distribution, intercompartmental clearance, absorption rate constant, and lag time were 16.3 L/h (14.6-17.9), 37 L (26-57), 122 L (98-183), 3.7 L/h (2.6-5.0), 0.13 h-1 (0.11-0.17), and 1.6 h (1.6-1.7), respectively. The population estimate for venetoclax terminal-phase elimination half-life was approximately 28 h. CONCLUSIONS In female subjects with SLE, venetoclax displayed pharmacokinetic characteristics consistent with previous observations in subjects with hematologic malignancies. CLINICALTRIALS. GOV IDENTIFIER NCT01686555.
Collapse
Affiliation(s)
- Mukul Minocha
- Clinical Pharmacology and Pharmacometrics, AbbVie, North Chicago, IL, 60064, USA
| | - Jiewei Zeng
- Discovery and Early Pipeline Statistics, AbbVie, North Chicago, IL, 60064, USA
| | - Jeroen K Medema
- Immunology Development, AbbVie, North Chicago, IL, 60064, USA
| | - Ahmed A Othman
- Clinical Pharmacology and Pharmacometrics, AbbVie, North Chicago, IL, 60064, USA.
| |
Collapse
|
20
|
Soni C, Reizis B. Self-DNA at the Epicenter of SLE: Immunogenic Forms, Regulation, and Effects. Front Immunol 2019; 10:1601. [PMID: 31354738 PMCID: PMC6637313 DOI: 10.3389/fimmu.2019.01601] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Self-reactive B cells generated through V(D)J recombination in the bone marrow or through accrual of random mutations in secondary lymphoid tissues are mostly purged or edited to prevent autoimmunity. Yet, 10–20% of all mature naïve B cells in healthy individuals have self-reactive B cell receptors (BCRs). In patients with serologically active systemic lupus erythematosus (SLE) the percentage increases up to 50%, with significant self-DNA reactivity that correlates with disease severity. Endogenous or self-DNA has emerged as a potent antigen in several autoimmune disorders, particularly in SLE. However, the mechanism(s) regulating or preventing anti-DNA antibody production remain elusive. It is likely that in healthy subjects, DNA-reactive B cells avoid activation due to the unavailability of endogenous DNA, which is efficiently degraded through efferocytosis and various DNA-processing proteins. Genetic defects, physiological, and/or pathological conditions can override these protective checkpoints, leading to autoimmunity. Plausibly, increased availability of immunogenic self-DNA may be the key initiating event in the loss of tolerance of otherwise quiescent DNA-reactive B cells. Indeed, mutations impairing apoptotic cell clearance pathways and nucleic acid metabolism-associated genes like DNases, RNases, and their sensors are known to cause autoimmune disorders including SLE. Here we review the literature supporting the idea that increased availability of DNA as an immunogen or adjuvant, or both, may cause the production of pathogenic anti-DNA antibodies and subsequent manifestations of clinical disease such as SLE. We discuss the main cellular players involved in anti-DNA responses; the physical forms and sources of immunogenic DNA in autoimmunity; the DNA-protein complexes that render DNA immunogenic; the regulation of DNA availability by intracellular and extracellular DNases and the autoimmune pathologies associated with their dysfunction; the cytosolic and endosomal sensors of immunogenic DNA; and the cytokines such as interferons that drive auto-inflammatory and autoimmune pathways leading to clinical disease. We propose that prevention of DNA availability by aiding extracellular DNase activity could be a viable therapeutic modality in controlling SLE.
Collapse
Affiliation(s)
- Chetna Soni
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
21
|
Soni C, Sinha I, Fasnacht MJ, Olsen NJ, Rahman ZSM, Sinha R. Selenium supplementation suppresses immunological and serological features of lupus in B6.Sle1b mice. Autoimmunity 2019; 52:57-68. [PMID: 31006265 DOI: 10.1080/08916934.2019.1603297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Systemic lupus erythematosus (SLE) is a debilitating multi-factorial immunological disorder characterized by increased inflammation and development of anti-nuclear autoantibodies. Selenium (Se) is an essential trace element with beneficial anti-cancer and anti-inflammatory immunological functions. In our previous proteomics study, analysis of Se-responsive markers in the circulation of Se-supplemented healthy men showed a significant increase in complement proteins. Additionally, Se supplementation prolonged the life span of lupus prone NZB/NZW-F1 mice. To better understand the protective immunological role of Se in SLE pathogenesis, we have investigated the impact of Se on B cells and macrophages using in vitro Se supplementation assays and the B6.Sle1b mouse model of lupus with an oral Se or placebo supplementation regimen. Analysis of Se-treated B6.Sle1b mice showed reduced splenomegaly and splenic cellularity compared to untreated B6. Sle1b mice. A significant reduction in total B cells and notably germinal center (GC) B cell numbers was observed. However, other cell types including T cells, Tregs, DCs and pDCs were unaffected. Consistent with reduced GC B cells there was a significant reduction in autoantibodies to dsDNA and SmRNP of the IgG2b and IgG2c subclass upon Se supplementation. We found that increased Se availability leads to impaired differentiation and maturation of macrophages from mouse bone marrow derived progenitors in vitro. Additionally, Se treatment during in vitro activation of B cells with anti-CD40L and LPS inhibited optimal B cell activation. Overall our data indicate that Se supplementation inhibits activation, differentiation and maturation of B cells and macrophages. Its specific inhibitory effect on B cell activation and GC B cell differentiation could be explored as a potential therapeutic supplement for SLE patients.
Collapse
Affiliation(s)
- Chetna Soni
- a Department of Microbiology and Immunology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Indu Sinha
- b Department of Biochemistry and Molecular Biology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Melinda J Fasnacht
- a Department of Microbiology and Immunology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Nancy J Olsen
- c Department of Rheumatology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Ziaur S M Rahman
- a Department of Microbiology and Immunology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Raghu Sinha
- b Department of Biochemistry and Molecular Biology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| |
Collapse
|
22
|
Sanghera C, Wong LM, Panahi M, Sintou A, Hasham M, Sattler S. Cardiac phenotype in mouse models of systemic autoimmunity. Dis Model Mech 2019; 12:dmm036947. [PMID: 30858306 PMCID: PMC6451423 DOI: 10.1242/dmm.036947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Patients suffering from systemic autoimmune diseases are at significant risk of cardiovascular complications. This can be due to systemically increased levels of inflammation leading to accelerated atherosclerosis, or due to direct damage to the tissues and cells of the heart. Cardiac complications include an increased risk of myocardial infarction, myocarditis and dilated cardiomyopathy, valve disease, endothelial dysfunction, excessive fibrosis, and bona fide autoimmune-mediated tissue damage by autoantibodies or auto-reactive cells. There is, however, still a considerable need to better understand how to diagnose and treat cardiac complications in autoimmune patients. A range of inducible and spontaneous mouse models of systemic autoimmune diseases is available for mechanistic and therapeutic studies. For this Review, we systematically collated information on the cardiac phenotype in the most common inducible, spontaneous and engineered mouse models of systemic lupus erythematosus, rheumatoid arthritis and systemic sclerosis. We also highlight selected lesser-known models of interest to provide researchers with a decision framework to choose the most suitable model for their study of heart involvement in systemic autoimmunity.
Collapse
Affiliation(s)
- Chandan Sanghera
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Lok Man Wong
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Mona Panahi
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Amalia Sintou
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Muneer Hasham
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
23
|
Elshikha AS, Yuan Y, Lu Y, Chen MJ, Abboud G, Akbar MA, Plate H, Wolney H, Hoffmann T, Tagari E, Zeumer L, Morel L, Song S. Alpha 1 Antitrypsin Gene Therapy Extends the Lifespan of Lupus-Prone Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 11:131-142. [PMID: 30547047 PMCID: PMC6258868 DOI: 10.1016/j.omtm.2018.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/13/2018] [Indexed: 12/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease characterized by high levels of pathogenic autoantibodies and tissue damage. Multiple studies showed that dendritic cell (DC) activation plays a critical role in SLE pathogenesis. Human alpha 1 antitrypsin (hAAT) is a serine proteinase inhibitor with potent anti-inflammatory and cytoprotective properties. In this study, we first examined the effects of hAAT on the functions of DCs from lupus-prone mice, and we showed that hAAT treatment efficiently inhibited CpG- (TLR9 agonist) induced activation of bone marrow-derived conventional and plasmacytoid DCs as well as the production of pro-inflammatory cytokines. The hAAT treatment also attenuated DC help for B cell proliferation and immunoglobulin M (IgM) production. We next tested the protective effect of hAAT protein and gene therapy using recombinant adeno-associated virus 8 (rAAV8-CB-hAAT) in a spontaneous lupus mouse model, and we showed that both treatments decreased autoantibody levels. Importantly, rAAV8-CB-hAAT did not induce an immune response to its transgene product (hAAT), but it showed more pronounced therapeutic effects in reducing urine protein levels and extending the lifespan of these mice. These results indicate that AAT has therapeutic potential in the treatment of SLE in humans.
Collapse
Affiliation(s)
- Ahmed Samir Elshikha
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA.,Department of Pharmaceutics, Zagazig University, Zagazig, Sharkia, Egypt
| | - Ye Yuan
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Yuanqing Lu
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Mong-Jen Chen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Georges Abboud
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mohammad Ahsanul Akbar
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Henrike Plate
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Hedwig Wolney
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Tanja Hoffmann
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Eleni Tagari
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Leilani Zeumer
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sihong Song
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
24
|
Martínez-García EA, Zavala-Cerna MG, Lujano-Benítez AV, Sánchez-Hernández PE, Martín-Márquez BT, Sandoval-García F, Vázquez-Del Mercado M. Potential Chronotherapeutic Optimization of Antimalarials in Systemic Lupus Erythematosus: Is Toll-Like Receptor 9 Expression Dependent on the Circadian Cycle in Humans? Front Immunol 2018; 9:1497. [PMID: 30034390 PMCID: PMC6043638 DOI: 10.3389/fimmu.2018.01497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor 9 (TLR9) belongs to the group of endosomal receptors of the innate immune system with the ability to recognize hypomethylated CpG sequences from DNA. There is scarce information about TLR9 expression and its association with the circadian cycle (CC). Different patterns of TLR9 expression are regulated by the CC in mice, with an elevated expression at Zeitgeber time 19 (1:00 a.m.); nevertheless, we still need to corroborate this in humans. In systemic lupus erythematosus (SLE), the inhibitory effect of chloroquine (CQ) on TLR9 is limited. TLR9 activation has been associated with the presence of some autoantibodies: anti-Sm/RNP, anti-histone, anti-Ro, anti-La, and anti-double-stranded DNA. Treatment with CQ for SLE has been proven to be useful, in part by interfering with HLA-antigen coupling and with TLR9 ligand recognition. Studies have shown that TLR9 inhibitors such as antimalarial drugs are able to mask TLR9-binding sites on nucleic acids. The data presented here provide the basic information that could be useful for other clinical researchers to design studies that will have an impact in achieving a chronotherapeutic effect by defining the ideal time for CQ administration in SLE patients, consequently reducing the pathological effects that follow the activation of TLR9.
Collapse
Affiliation(s)
- Erika Aurora Martínez-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- UDG-CA-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Maria Guadalupe Zavala-Cerna
- Immunology Research Laboratory, Programa Internacional de Medicina, Universidad Autonoma de Guadalajara, Guadalajara, Mexico
| | - Andrea Verónica Lujano-Benítez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Pedro Ernesto Sánchez-Hernández
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Laboratorio de Inmunología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Beatriz Teresita Martín-Márquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- UDG-CA-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Flavio Sandoval-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- UDG CA-701, Inmunometabolismo en Enfermedades Emergentes (GIIEE), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mónica Vázquez-Del Mercado
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- UDG-CA-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Hospital Civil de Guadalajara “Juan I. Menchaca”, Servicio de Reumatología, Programa Nacional de Posgrados de Calidad (PNPC), Consejo Nacional de Ciencia y Tecnología (CONACYT), Guadalajara, Mexico
| |
Collapse
|
25
|
Mohseni Moghadam Z, Mahmoodzadeh Hosseini H, Amin M, Behzadi E, Imani Fooladi AA. Microbial metabolite effects on TLR to develop autoimmune diseases. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1469512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Zeinab Mohseni Moghadam
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Department of Microbiology, College of Basic Sciences, Islamic Azad University, Shahr-e-Qods Branch, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Rekvig OP. Systemic Lupus Erythematosus: Definitions, Contexts, Conflicts, Enigmas. Front Immunol 2018; 9:387. [PMID: 29545801 PMCID: PMC5839091 DOI: 10.3389/fimmu.2018.00387] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/12/2018] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an inadequately defined syndrome. Etiology and pathogenesis remain largely unknown. SLE is on the other hand a seminal syndrome that has challenged immunologists, biologists, genetics, and clinicians to solve its nature. The syndrome is characterized by multiple, etiologically unlinked manifestations. Unexpectedly, they seem to occur in different stochastically linked clusters, although single gene defects may promote a smaller spectrum of symptoms/criteria typical for SLE. There is no known inner coherence of parameters (criteria) making up the disease. These parameters are, nevertheless, implemented in The American College of Rheumatology (ACR) and The Systemic Lupus Collaborating Clinics (SLICC) criteria to classify SLE. Still, SLE is an abstraction since the ACR or SLICC criteria allow us to define hundreds of different clinical SLE phenotypes. This is a major point of the present discussion and uses "The anti-dsDNA antibody" as an example related to the problematic search for biomarkers for SLE. The following discussion will show how problematic this is: the disease is defined through non-coherent classification criteria, its complexity is recognized and accepted, its pathogenesis is plural and poorly understood. Therapy is focused on dominant symptoms or organ manifestations, and not on the syndrome itself. From basic scientific evidences, we can add substantial amount of data that are not sufficiently considered in clinical medicine, which may change the paradigms linked to what "The Anti-DNA antibody" is-and is not-in context of the imperfectly defined syndrome SLE.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| |
Collapse
|
27
|
Ferreira TB, Hygino J, Wing AC, Kasahara TM, Sacramento PM, Camargo S, Rueda F, Alves-Leon SV, Alvarenga R, Vasconcelos CC, Agrawal A, Gupta S, Bento CAM. Different interleukin-17-secreting Toll-like receptor + T-cell subsets are associated with disease activity in multiple sclerosis. Immunology 2017; 154:239-252. [PMID: 29168181 DOI: 10.1111/imm.12872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/04/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Signalling through Toll-like receptors (TLRs) may play a role in the pathogenesis of autoimmune diseases, such as multiple sclerosis (MS). In the present study, the expression of TLR-2, -4 and -9 was significantly higher on CD4+ and CD8+ T-cells from MS patients compared to healthy individuals. Following in-vitro activation, the proportion of interleukin (IL)-17+ and IL-6+ CD4+ and CD8+ T-cells was higher in the patients. In addition, the proportion of IFN-γ-secreting TLR+ CD8+ T-cells was increased in MS patients. Among different IL-17+ T-cell phenotypes, the proportion of IL-17+ TLR+ CD4+ and CD8+ T-cells producing IFN-γ or IL-6 were positively associated with the number of active brain lesions and neurological disabilities. Interestingly, activation of purified CD4+ and CD8+ T-cells with ligands for TLR-2 (Pam3Csk4), TLR-4 [lipopolysaccharide (LPS)] and TLR-9 [oligodeoxynucleotide (ODN)] directly induced cytokine production in MS patients. Among the pathogen-associated molecular patterns (PAMPs), Pam3Csk4 was more potent than other TLR ligands in inducing the production of all proinflammatory cytokines. Furthermore, IL-6, IFN-γ, IL-17 and granulocyte-macrophage colony-stimulating factor (GM-CSF) levels produced by Pam3Csk4-activated CD4+ cells were directly associated with disease activity. A similar correlation was observed with regard to IL-17 levels released by Pam3Csk4-stimulated CD8+ T-cells and clinical parameters. In conclusion, our data suggest that the expansion of different T helper type 17 (Th17) phenotypes expressing TLR-2, -4 and -9 is associated with MS disease activity, and reveals a preferential ability of TLR-2 ligand in directly inducing the production of cytokines related to brains lesions and neurological disabilities.
Collapse
Affiliation(s)
- Thais B Ferreira
- Post-graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joana Hygino
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Cristina Wing
- Post-graduate Program Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taissa M Kasahara
- Post-graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila M Sacramento
- Post-graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Solange Camargo
- Lagoa Hospital, Barra da Tijuca Unity, Rio de Janeiro, Brazil
| | - Fernanda Rueda
- Clinical of Diagnosis by Image, Barra da Tijuca Unity, Rio de Janeiro, Brazil
| | - Soniza V Alves-Leon
- Post-graduate Program Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Regina Alvarenga
- Post-graduate Program Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Cleonice A M Bento
- Post-graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Post-graduate Program Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Dendritic cell recruitment and activation in autoimmunity. J Autoimmun 2017; 85:126-140. [DOI: 10.1016/j.jaut.2017.07.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
|
29
|
Freitas EC, de Oliveira MS, Monticielo OA. Pristane-induced lupus: considerations on this experimental model. Clin Rheumatol 2017; 36:2403-2414. [PMID: 28879482 DOI: 10.1007/s10067-017-3811-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/20/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial, autoimmune inflammatory disease with pleomorphic clinical manifestations involving different organs and tissues. The etiology of this disease has been associated with a dysfunctional response of B and T lymphocytes against environmental stimuli in individuals genetically susceptible to SLE, which determines an immune response against different autoantigens and, consequently, tissue damage. The study of different murine models has provided a better understanding of these autoimmune phenomena. This review primarily focuses on that has been learned from the pristane-induced lupus (PIL) model and how this model can be used to supplement recent advances in understanding the pathogenesis of SLE. We also consider both current and future therapies for this disease. The PubMed, SciELO, and Embase databases were searched for relevant articles published from 1950 to 2016. PIL has been shown to be a useful tool for understanding the multiple mechanisms involved in systemic autoimmunity. In addition, it can be considered an efficient model to evaluate the environmental contributions and interferon signatures present in patients with SLE.
Collapse
Affiliation(s)
- Eduarda Correa Freitas
- Laboratory of Autoimmune Diseases, Division of Rheumatology, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, room 645, Porto Alegre, 90035-003, Brazil
| | - Mayara Souza de Oliveira
- Laboratory of Autoimmune Diseases, Division of Rheumatology, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, room 645, Porto Alegre, 90035-003, Brazil
| | - Odirlei André Monticielo
- Laboratory of Autoimmune Diseases, Division of Rheumatology, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, room 645, Porto Alegre, 90035-003, Brazil.
| |
Collapse
|
30
|
Barros PO, Dias ASO, Kasahara TM, Ornelas AMM, Aguiar RS, Leon SA, Ruiz A, Marignier R, Araújo ACRA, Alvarenga R, Bento CAM. Expansion of IL-6 + Th17-like cells expressing TLRs correlates with microbial translocation and neurological disabilities in NMOSD patients. J Neuroimmunol 2017; 307:82-90. [PMID: 28495144 DOI: 10.1016/j.jneuroim.2017.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/16/2017] [Accepted: 04/04/2017] [Indexed: 12/17/2022]
Abstract
Different microbial antigens, by signaling through toll-like receptors (TLR), may contribute to Th17-mediated autoimmune diseases, such as neuromyelitis optica spectrum disorder (NMOSD). The objective of this study was to determine the proportion of different Th17-like cell subsets that express TLR in NMOSD patients. For this study, the frequency of different Th17 cell subsets expressing TLR subsets in healthy individuals (n=20) and NMOSD patients (n=20) was evaluated by cytometry. The peripheral levels of soluble CD14 (sCD14) and cytokines were determined by ELISA. Our results demonstrated that the proportion of peripheral CD4+ T cells expressing TLR2, 4 and 9 was significantly higher in NMOSD samples than in healthy subjects. In NMOSD, these cells are CD28+PD-1-CD57- and produce elevated levels of IL-17. Among different TLRs+ Th17-like subsets, the proportion of those that co-express IL-17 and IL-6 was significantly higher in NMOSD patients, which was positively correlated with sCD14 levels and EDSS score. By contrast, the percentage of TLRs+Treg17 cells (IL-10+IL-17+) was negatively related to sCD14 and the severity of NMOSD. In conclusion, the expansion of peripheral IL-6-producing TLR+ Th17-like cells in NMOSD patients was associated with both bacterial translocation and disease severity.
Collapse
Affiliation(s)
- Priscila O Barros
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil
| | - Aleida S O Dias
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil
| | - Taissa M Kasahara
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil
| | - Alice M M Ornelas
- Departament of Genetics, Federal University of Rio de Janeiro, Brazil
| | - Renato S Aguiar
- Departament of Genetics, Federal University of Rio de Janeiro, Brazil
| | - Soniza A Leon
- Neurology, Federal University of the State of Rio de Janeiro, Brazil
| | - Anne Ruiz
- Service de Neurologie A and Eugène Devic EDMUS Foundation against Multiple Sclerosis, Observatoire Français de la Sclérose en Plaques (OFSEP), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France-Université Lyon 1, Université de Lyon, Lyon, France
| | - Romain Marignier
- Service de Neurologie A and Eugène Devic EDMUS Foundation against Multiple Sclerosis, Observatoire Français de la Sclérose en Plaques (OFSEP), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France-Université Lyon 1, Université de Lyon, Lyon, France
| | | | - Regina Alvarenga
- Neurology, Federal University of the State of Rio de Janeiro, Brazil
| | - Cleonice A M Bento
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil; Neurology, Federal University of the State of Rio de Janeiro, Brazil.
| |
Collapse
|
31
|
Crowl JT, Gray EE, Pestal K, Volkman HE, Stetson DB. Intracellular Nucleic Acid Detection in Autoimmunity. Annu Rev Immunol 2017; 35:313-336. [PMID: 28142323 DOI: 10.1146/annurev-immunol-051116-052331] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protective immune responses to viral infection are initiated by innate immune sensors that survey extracellular and intracellular space for foreign nucleic acids. The existence of these sensors raises fundamental questions about self/nonself discrimination because of the abundance of self-DNA and self-RNA that occupy these same compartments. Recent advances have revealed that enzymes that metabolize or modify endogenous nucleic acids are essential for preventing inappropriate activation of the innate antiviral response. In this review, we discuss rare human diseases caused by dysregulated nucleic acid sensing, focusing primarily on intracellular sensors of nucleic acids. We summarize lessons learned from these disorders, we rationalize the existence of these diseases in the context of evolution, and we propose that this framework may also apply to a number of more common autoimmune diseases for which the underlying genetics and mechanisms are not yet fully understood.
Collapse
Affiliation(s)
- John T Crowl
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109;
| | - Elizabeth E Gray
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109;
| | - Kathleen Pestal
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109;
| | - Hannah E Volkman
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109;
| | - Daniel B Stetson
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109;
| |
Collapse
|
32
|
Mortezagholi S, Babaloo Z, Rahimzadeh P, Namdari H, Ghaedi M, Gharibdoost F, Mirzaei R, Bidad K, Salehi E. Evaluation of TLR9 expression on PBMCs and CpG ODN-TLR9 ligation on IFN-α production in SLE patients. Immunopharmacol Immunotoxicol 2017; 39:11-18. [PMID: 28049380 DOI: 10.1080/08923973.2016.1263859] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by autoreactive antibodies. Recent findings revealed the importance of innate immune responses, especially Toll-like receptors (TLRs) in the pathogenesis of SLE. OBJECTIVE In this study, the level of TLR9 expression on peripheral blood mononuclear cells (PBMCs) was analyzed. The levels of produced IFN-α were also measured in supernatant of PBMCs from SLE patients and healthy controls after stimulation with CpG ODN2216 which is a plasmocytoid dendritic cell (pDC)-specific TLR9 ligand. MATERIALS AND METHODS TLR9 expression was analyzed by real-time polymerase chain reaction (PCR) and flow cytometry in 35 SLE patients and 38 healthy controls and IFN-α concentration was measured in supernatants using enzyme-linked immunosorbent assay (ELISA). RESULTS The results showed that the TLR9 expression in the mRNA and the protein level was significantly higher in PBMCs from SLE patients. However, IFN-α concentration in patients and controls significantly increased in response to CpG stimulation but this increase was significantly higher in healthy controls compared with SLE patients. Our results do not show any association between taking hydroxychloroquine and reduction in IFN-α production in SLE patients. DISCUSSION AND CONCLUSIONS Regarding the findings of the study, there is the possibility that TLR9 has played a role in SLE pathogenesis, and consequently it implies that TLRs can be considered to be the therapeutic targets for systemic autoimmunity. We may conclude that PBMCs in patients are functionally impaired in response to TLR ligation via innate response stimulating pathogen-associated molecular patterns (PAMPs).
Collapse
Affiliation(s)
- Sahar Mortezagholi
- a Department of Immunology, School of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Zohreh Babaloo
- a Department of Immunology, School of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Parisa Rahimzadeh
- b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Haideh Namdari
- c Department of Immunology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mojgan Ghaedi
- b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Farhad Gharibdoost
- d Department of Rheumatology, Rheumatology Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Reza Mirzaei
- e Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | | | - Eisa Salehi
- e Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
33
|
Simpson J, Miles K, Trüb M, MacMahon R, Gray M. Plasmacytoid Dendritic Cells Respond Directly to Apoptotic Cells by Secreting Immune Regulatory IL-10 or IFN-α. Front Immunol 2016; 7:590. [PMID: 28018356 PMCID: PMC5155015 DOI: 10.3389/fimmu.2016.00590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) play a pivotal role in driving the autoimmune disease systemic lupus erythematosus, via the secretion of IFN-α in response to nuclear self-antigens complexed with autoantibodies. Apoptotic cells, generated at sites of inflammation or secondary lymphoid organs, are exposed to activated pDCs and also express the same nuclear antigens on their cell surface. Here, we show that in the absence of autoantibodies, activated pDCs directly respond to apoptotic cell-expressed chromatin complexes by secreting IL-10 and IL-6, which also induces T cells to secrete IL-10. Conversely, when activated by the viral mimetic CpG-A, apoptotic cells enhance their secretion of IFN-α. This study demonstrates that activated pDCs respond directly to apoptotic cells and may maintain tolerance via IL-10, or promote inflammation through secretion of IFN-α, depending on the inflammatory context.
Collapse
Affiliation(s)
- Joanne Simpson
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Katherine Miles
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Marta Trüb
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Roisin MacMahon
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mohini Gray
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Pedersen HL, Horvei KD, Thiyagarajan D, Seredkina N, Rekvig OP. Murine and Human Lupus Nephritis: Pathogenic Mechanisms and Theoretical Strategies for Therapy. Semin Nephrol 2016; 35:427-38. [PMID: 26573545 DOI: 10.1016/j.semnephrol.2015.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lupus nephritis is one of the most serious manifestations of systemic lupus erythematosus, and represents one of the criteria implemented to classify systemic lupus erythematosus. Although studied for decades, no consensus has been reached related to the basic cellular, molecular, and immunologic mechanism(s) responsible for lupus nephritis. No causal treatments have been developed; therapy is approached mainly with nonspecific immunosuppressive medications. More detailed insight into disease mechanisms therefore is indispensable to develop new therapeutic strategies. In this review, contemporary knowledge on the pathogenic mechanisms of lupus nephritis is discussed based on recent data in murine and human lupus nephritis. Specific focus is given to the effect of anti-double-stranded DNA/antinucleosome antibodies in the kidneys and whether they bind exposed chromatin fragments in glomeruli or whether they bind inherent glomerular structures by cross-recognition. Overall, the data presented here favor the exposed chromatin model because we did not find any indication to substantiate the anti-double-stranded DNA antibody cross-reacting model. At the end of this review we present data on why chromatin fragments are expressed in the glomeruli of patients with lupus nephritis, and discuss how this knowledge can be used to direct the development of future therapies.
Collapse
Affiliation(s)
- Hege Lynum Pedersen
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway.
| | - Kjersti Daae Horvei
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Dhivya Thiyagarajan
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Natalya Seredkina
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Ole Petter Rekvig
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway; Department of Radiology, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
35
|
Goilav B, Putterman C. The Role of Anti-DNA Antibodies in the Development of Lupus Nephritis: A Complementary, or Alternative, Viewpoint? Semin Nephrol 2016; 35:439-43. [PMID: 26573546 DOI: 10.1016/j.semnephrol.2015.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Kidney disease, or lupus nephritis, is the organ involvement that is most closely associated with specific autoantibodies in patients with SLE. The concept of anti-DNA antibodies being instrumental in the pathogenesis of lupus nephritis emerged ~50 years ago, and has been a topic of debate ever since. This article focuses on the description of the renal sub-cellular targets of nephritogenic autoantibodies and offers a counter-point opinion to the article by Pedersen et al. In addition, we provide an overview of some of the mechanisms by which anti-DNA antibodies bind to their renal targets and the pathogenic relevance to clinical nephritis.
Collapse
Affiliation(s)
- Beatrice Goilav
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY
| | - Chaim Putterman
- Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
36
|
Zhang F, Wu L, Qian J, Qu B, Xia S, La T, Wu Y, Ma J, Zeng J, Guo Q, Cui Y, Yang W, Huang J, Zhu W, Yao Y, Shen N, Tang Y. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. J Autoimmun 2016; 75:96-104. [PMID: 27481557 DOI: 10.1016/j.jaut.2016.07.012] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 01/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) have recently been identified to be tightly linked to diverse human diseases. However, our knowledge of Systemic Lupus Erythematosus (SLE)-related lncRNAs remains limited. In the present study we investigated the contribution of the lncRNA NEAT1 to the pathogenesis of SLE. Here, we found NEAT1 expression was abnormally increased in SLE patients and predominantly expressed in human monocytes. Additionally, NEAT1 expression was induced by LPS via p38 activation. Silencing NEAT1 significantly reduced the expression of a group of chemokines and cytokines, including IL-6, CXCL10, etc., which were induced by LPS continuously and in late stages. Furthermore, it was identified the involvement of NEAT1 in TLR4-mediated inflammatory process was through affecting the activation of the late MAPK signaling pathway. Importantly, there was a positive correlation between NEAT1 and clinical disease activity in SLE patients. In conclusion, the increased NEAT1 expression may be a potential contributor to the elevated production of a number of cytokines and chemokines in SLE patients. Our findings suggest lncRNA contributes to the pathogenesis of lupus and provides potentially novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Feifei Zhang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Lingling Wu
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Qian
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Qu
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiwei Xia
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting La
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yanfang Wu
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyang Ma
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zeng
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Guo
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Cui
- Institute of Dermatology and Department of Dermatology, No.1 Hospital, Anhui Medical University, Hefei, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jiaqi Huang
- Cellular Biomedicine Group Inc., Shanghai, China
| | - Wei Zhu
- Cellular Biomedicine Group Inc., Shanghai, China
| | - Yihong Yao
- Cellular Biomedicine Group Inc., Shanghai, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; The Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Yuanjia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China.
| |
Collapse
|
37
|
Martínez-Robles E, Yebra-Bango M, Mellor-Pita S, Tutor-Ureta P, Vargas JA, Citores MJ. Genotypic distribution of common variants of endosomal toll like receptors in healthy Spanish women. A comparative study with other populations. Gene 2016; 578:32-37. [PMID: 26680101 DOI: 10.1016/j.gene.2015.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 11/26/2015] [Accepted: 12/04/2015] [Indexed: 02/05/2023]
Abstract
Genetic variants of endosomal toll like receptors (TLR) have been associated with many infectious, autoimmune and inflammatory diseases, but few studies have been reported in the Spanish population. The aim of this study was to describe the allelic and genotypic distributions of some common nucleotide substitutions of endosomal TLRs in healthy Spanish women and to compare them with those already published in other population groups. Nine substitutions were analysed in 150 DNA samples from 150 Spanish, non-related healthy females: TLR3 rs3775291 and rs5743305; TLR7 rs179008 and rs5743781; TLR8 rs3764880 and TLR9 rs187084, rs5743836, rs352139 and rs352140. Genotyping was carried out by real time PCR and melting curve analysis in a LightCycler 480. A systematic review was performed in order to compare the genotypic distributions in our cohort with those previously published in other population groups. The comparative study was performed with the two tailed Fisher's test or the Yates continuity correction for the Chi-square test when appropriate. No homozygotes for rs5743781 in TLR7 were found, and rs352139 and rs352140 of TLR9 were in strong linkage disequilibrium. Genotype distributions in endosomal TLR are similar to other Spanish series previously reported. As expected, most differences were found when comparing our distributions with Asiatics, but differences were also found with other Caucasian populations. Since there are significant variations in genotypic distributions of TLRs in both interracial groups and within the same ethnic group, to carry out studies of disease susceptibility in more restricted groups is mandatory.
Collapse
Affiliation(s)
- Elena Martínez-Robles
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, Spain.
| | - Miguel Yebra-Bango
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, Spain
| | - Susana Mellor-Pita
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, Spain
| | - Pablo Tutor-Ureta
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, Spain
| | - Juan A Vargas
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, Spain
| | - Maria J Citores
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, Spain; Instituto de Investigación del Hospital Universitario Puerta de Hierro Majadahonda (IDIPHIM), Spain
| |
Collapse
|
38
|
Mohammad Hosseini A, Majidi J, Baradaran B, Yousefi M. Toll-Like Receptors in the Pathogenesis of Autoimmune Diseases. Adv Pharm Bull 2015; 5:605-14. [PMID: 26793605 DOI: 10.15171/apb.2015.082] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/02/2014] [Accepted: 07/21/2014] [Indexed: 12/15/2022] Open
Abstract
Human Toll-like receptors (TLRs) are a family of transmembrane receptors, which play a key role in both innate and adaptive immune responses. Beside of recognizing specific molecular patterns that associated with different types of pathogens, TLRs may also detect a number of self-proteins and endogenous nucleic acids. Activating TLRs lead to the heightened expression of various inflammatory genes, which have a protective role against infection. Data rising predominantly from human patients and animal models of autoimmune disease indicate that, inappropriate triggering of TLR pathways by exogenous or endogenous ligands may cause the initiation and/or perpetuation of autoimmune reactions and tissue damage. Given their important role in infectious and non-infectious disease process, TLRs and its signaling pathways emerge as appealing targets for therapeutics. In this review, we demonstrate how TLRs pathways could be involved in autoimmune disorders and their therapeutic application.
Collapse
Affiliation(s)
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Han S, Zhuang H, Xu Y, Lee P, Li Y, Wilson JC, Vidal O, Choi HS, Sun Y, Yang LJ, Reeves WH. Maintenance of autoantibody production in pristane-induced murine lupus. Arthritis Res Ther 2015; 17:384. [PMID: 26717913 PMCID: PMC4718029 DOI: 10.1186/s13075-015-0886-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 12/03/2015] [Indexed: 11/30/2022] Open
Abstract
Background Pristane-treated mice chronically produce high levels of anti-ribonucleoprotein/Smith (anti-Sm/RNP) and other lupus autoantibodies. The present study addressed how these autoantibody levels are maintained over time. Methods Lupus was induced in BALB/c mice using pristane. Naïve B cells, switched memory B cells, switched plasmablasts, and plasma cells were flow-sorted and total IgG and anti-U1A (RNP) autoantibodies were determined with ELISA. Results B cells with a switched “memory-like” (CD19+CD138−IgM−IgD−) (sMB) phenotype were increased in pristane-treated mice and expressed higher levels of Toll like receptor 7 (Tlr7) than cells with this phenotype from untreated mice. Flow-sorted sMB cells from pristane-treated mice did not secrete IgG spontaneously, but were hyper-responsive to both synthetic (R848) and natural (apoptotic cells) TLR7 ligands, resulting in increased IgG production in vitro. The flow-sorted sMB cells also could be driven by R848 to produce IgG anti-U1A autoantibodies. Production of IgG was strongly inhibited by both JSH-23 and SB203580, suggesting that the canonical NFκB and p38 MAPK pathways, respectively, contribute to the TLR7 ligand hyper-responsiveness of sMB from pristane-treated mice. Conclusions The switched memory B cell subset from pristane-treated mice is expanded and shows an increased propensity to undergo terminal (plasma cell) differentiation in response to synthetic and natural TLR7 ligands. The data suggest that the decreased clearance of apoptotic cells characteristic of pristane-treated mice might help maintain high serum levels of anti-RNP/Sm autoantibodies. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0886-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuhong Han
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Florida, 1600 Archer Road, Gainesville, FL, 32610-0275, USA.
| | - Haoyang Zhuang
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Florida, 1600 Archer Road, Gainesville, FL, 32610-0275, USA.
| | - Yuan Xu
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Florida, 1600 Archer Road, Gainesville, FL, 32610-0275, USA.
| | - Pui Lee
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Florida, 1600 Archer Road, Gainesville, FL, 32610-0275, USA. .,Current Address: Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
| | - Yi Li
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Florida, 1600 Archer Road, Gainesville, FL, 32610-0275, USA.
| | - Joseph C Wilson
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Florida, 1600 Archer Road, Gainesville, FL, 32610-0275, USA.
| | - Osvaldo Vidal
- College of Pharmacy, University of Florida, Student Service Center, HPNP Complex, PO Box 100495, Gainesville, FL, 32610-0495, USA.
| | - Hong Seok Choi
- Department of Molecular genetics and Microbiology, University of Florida, PO Box 100221, Gainesville, FL, 32610-0221, USA.
| | - Yu Sun
- Department of Pathology and Laboratory Medicine, University of Florida, 1395 Center Dr., Gainesville, FL, 32610-0495, USA. .,Current Address: Qilu Hospital of Shandong University, Jinan, 250012, PR China.
| | - Li-Jun Yang
- Department of Pathology and Laboratory Medicine, University of Florida, 1395 Center Dr., Gainesville, FL, 32610-0495, USA.
| | - Westley H Reeves
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Florida, 1600 Archer Road, Gainesville, FL, 32610-0275, USA. .,Department of Pathology and Laboratory Medicine, University of Florida, 1395 Center Dr., Gainesville, FL, 32610-0495, USA.
| |
Collapse
|
40
|
McDonald G, Cabal N, Vannier A, Umiker B, Yin RH, Orjalo AV, Johansson HE, Han JH, Imanishi-Kari T. Female Bias in Systemic Lupus Erythematosus is Associated with the Differential Expression of X-Linked Toll-Like Receptor 8. Front Immunol 2015; 6:457. [PMID: 26441962 PMCID: PMC4561825 DOI: 10.3389/fimmu.2015.00457] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/24/2015] [Indexed: 11/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of anti-nuclear antibodies. SLE is one of many autoimmune disorders that have a strong gender bias, with 70–90% of SLE patients being female. Several explanations have been postulated to account for the severity of autoimmune diseases in females, including hormonal, microbiota, and gene dosage differences. X-linked toll-like receptors (TLRs) have recently been implicated in disease progression in females. Our previous studies using the 564Igi mouse model of SLE on a Tlr7 and Tlr9 double knockout background showed that the presence of Tlr8 on both X chromosomes was required for the production of IgG autoantibodies, Ifn-I expression and granulopoiesis in females. Here, we show the results of our investigation into the role of Tlr8 expression in SLE pathogenesis in 564Igi females. Female mice have an increase in serum pathogenic anti-RNA IgG2a and IgG2b autoantibodies. 564Igi mice have also been shown to have an increase in neutrophils in vivo, which are major contributors to Ifn-α expression. Here, we show that neutrophils from C57BL/6 mice express Ifn-α in response to 564 immune complexes and TLR8 activation. Bone marrow-derived macrophages from 564Igi females have a significant increase in Tlr8 expression compared to male-derived cells, and RNA fluorescence in situ hybridization data suggest that Tlr8 may escape X-inactivation in female-derived macrophages. These results propose a model by which females may be more susceptible to SLE pathogenesis due to inefficient inactivation of Tlr8.
Collapse
Affiliation(s)
- Gabrielle McDonald
- Department of Integrative Physiology and Pathobiology, Tufts University , Boston, MA , USA
| | - Nicholas Cabal
- Department of Integrative Physiology and Pathobiology, Tufts University , Boston, MA , USA
| | - Augustin Vannier
- Department of Integrative Physiology and Pathobiology, Tufts University , Boston, MA , USA
| | - Benjamin Umiker
- Department of Integrative Physiology and Pathobiology, Tufts University , Boston, MA , USA
| | | | | | | | - Jin-Hwan Han
- Merck Research Laboratories , Palo Alto, CA , USA
| | - Thereza Imanishi-Kari
- Department of Integrative Physiology and Pathobiology, Tufts University , Boston, MA , USA
| |
Collapse
|
41
|
Gray M, Gray D. Regulatory B cells mediate tolerance to apoptotic self in health: implications for disease. Int Immunol 2015; 27:505-11. [PMID: 26306497 DOI: 10.1093/intimm/dxv045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/27/2015] [Indexed: 12/17/2022] Open
Abstract
B cells are able to regulate immune responses through the secretion of IL-10 and other inhibitory cytokines, though no transcription factor that can define 'regulatory B cells' as a separate lineage has yet been found. Instead it is likely that this function arises as a result of the immune context in which B cells find themselves and the stimuli they perceive. However, some B cells found within the B1a and the marginal zone subsets have a greater propensity to produce IL-10 than others. What are the natural stimuli for these cells to induce immune regulation? We discuss the role that the recognition of autoantigens exposed by apoptotic cells plays in stimulating IL-10 production in mouse and human studies. This mechanism involves the recognition and uptake of self-antigens by autoreactive BCRs, for delivery to endocytic compartments, where apoptosis-derived DNA binds to TLR9, driving IL-10 production. These 'natural' regulatory B cells represent a way of maintaining tolerance to self. We discuss how this may operate in inflammatory lesions where there is an excess of apoptotic leukocytes and how this impacts on our understanding of autoimmune disease.
Collapse
Affiliation(s)
- Mohini Gray
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - David Gray
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
42
|
Woods M, Zou YR, Davidson A. Defects in Germinal Center Selection in SLE. Front Immunol 2015; 6:425. [PMID: 26322049 PMCID: PMC4536402 DOI: 10.3389/fimmu.2015.00425] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/03/2015] [Indexed: 01/01/2023] Open
Abstract
Germinal centers (GCs) are the primary site at which clonal expansion and affinity maturation of B cells occur. B cells encounter antigen and receive T cell help in the GC light zone (LZ) and then migrate to the dark zone where they proliferate and undergo somatic mutation before cycling back to the LZ for further rounds of selection. Tolerance to autoantigens is frequently lost de novo as GC B cells undergo class switching and somatic mutation. This loss of tolerance is regulated by a variety of mechanisms including cell death, failure to compete for T cell help, and failure to differentiate into effector cells. Systemic lupus erythematosus (SLE) is characterized by loss of tolerance to nucleic acid antigens. While defects in tolerance occur in the naïve repertoire of SLE patients, pathogenic autoantibodies also arise in the GC by somatic mutation from non-autoreactive precursors. Several B cell defects contribute to the loss of GC tolerance in SLE, including polymorphisms of genes encoded by the Sle1 locus, excess TLR7 signaling, defects in FcRIIB expression, or defects of B cell apoptosis. Extrinsic soluble factors, such as Type-1 IFN and B cell-activating factor, or an increased number of T follicular helper cells in the GC also alter B cell-negative selection. Finally, defects in clearance of apoptotic debris within the GC result in BCR-mediated internalization of nucleic acid containing material and stimulation of autoantibody production by endosomal TLR-driven mechanisms.
Collapse
Affiliation(s)
- Megan Woods
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research , New York, NY , USA
| | - Yong-Rui Zou
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research , New York, NY , USA
| | - Anne Davidson
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research , New York, NY , USA
| |
Collapse
|
43
|
Microparticles That Form Immune Complexes as Modulatory Structures in Autoimmune Responses. Mediators Inflamm 2015; 2015:267590. [PMID: 26300590 PMCID: PMC4537755 DOI: 10.1155/2015/267590] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/10/2014] [Accepted: 12/13/2014] [Indexed: 12/29/2022] Open
Abstract
Microparticles (MPs) are induced during apoptosis, cell activation, and even “spontaneous” release. Initially MPs were considered to be inert cellular products with no biological function. However, an extensive research and functional characterization have shown that the molecular composition and the effects of MPs depend upon the cellular background and the mechanism inducing them. They possess a wide spectrum of biological effects on intercellular communication by transferring different molecules able to modulate other cells. MPs interact with their target cells through different mechanisms: membrane fusion, macropinocytosis, and receptor-mediated endocytosis. However, when MPs remain in the extracellular milieu, they undergo modifications such as citrullination, glycosylation, and partial proteolysis, among others, becoming a source of neoantigens. In rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), reports indicated elevated levels of MPs with different composition, content, and effects compared with those isolated from healthy individuals. MPs can also form immune complexes amplifying the proinflammatory response and tissue damage. Their early detection and characterization could facilitate an appropriate diagnosis optimizing the pharmacological strategies, in different diseases including cancer, infection, and autoimmunity. This review focuses on the current knowledge about MPs and their involvement in the immunopathogenesis of SLE and RA.
Collapse
|
44
|
Kaga H, Komatsuda A, Omokawa A, Ito M, Teshima K, Tagawa H, Sawada K, Wakui H. Downregulated expression of miR-155, miR-17, and miR-181b, and upregulated expression of activation-induced cytidine deaminase and interferon-α in PBMCs from patients with SLE. Mod Rheumatol 2015; 25:865-70. [DOI: 10.3109/14397595.2015.1030102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Hagime Kaga
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Atsushi Komatsuda
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Ayumi Omokawa
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Mitsugu Ito
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kazuaki Teshima
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroyuki Tagawa
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kenichi Sawada
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hideki Wakui
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
- Department of Life Science, Akita University Graduate School of Engineering and Resource Science, Akita, Japan
| |
Collapse
|
45
|
Wu JY, Kuo CC. ADP-Ribosylation Factor 3 Mediates Cytidine-Phosphate-Guanosine Oligodeoxynucleotide-Induced Responses by Regulating Toll-Like Receptor 9 Trafficking. J Innate Immun 2015; 7:623-36. [PMID: 26067373 DOI: 10.1159/000430785] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 04/17/2015] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptor 9 (TLR9) trafficking from the endoplasmic reticulum (ER) into endolysosomes is critical for eliciting cytidine-phosphate-guanosine (CpG) DNA-mediated immune responses. ADP-ribosylation factor 3 (ARF3) is a member of the Ras superfamily, which is crucial for a wide variety of cellular events including protein trafficking. In this study, we found that the inhibition of ARF3 by dominant mutants and siRNA impaired CpG oligodeoxynucleotide (ODN)-mediated responses whereas cells expressing the constitutively active ARF3 mutant enhanced CpG ODN-induced NF-x03BA;B activation and cytokine production. Further experiments with MyD88-overexpressing fibroblast cells transfected with a dominant-negative mutant and a constitutively active mutant of ARF3 demonstrated that ARF3 regulated CpG ODN-mediated signaling upstream of MyD88. Additional studies have shown that ARF3 inhibition impairs TLR9 trafficking from the ER into endolysosomes, thereby inhibiting the functional cleavage of TLR9, although it has no significant effect on CpG ODN uptake. Furthermore, activated ARF3 is associated with Unc93B1 and TLR9, suggesting that ARF3 conducts TLR9 trafficking by forming the TLR9-Unc93B1-ARF3 complex. Overall, our findings demonstrate that a novel ARF3 axis pathway mediates CpG ODN-induced responses by regulating TLR9 trafficking.
Collapse
Affiliation(s)
- Jing-Yiing Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, ROC
| | | |
Collapse
|
46
|
Abstract
The inclusion of 'the anti-DNA antibody' by the ACR and the Systemic Lupus International Collaborating Clinics (SLICC) as a criterion for systemic lupus erythematosus does not convey the diverse origins of these antibodies, whether their production is transient or persistent (which is heavily influenced by the nature of the inducing antigens), the specificities exerted by these antibodies or their clinical impact-or lack thereof. A substantial amount of data not considered in clinical medicine could be added from basic immunology evidence, which could change the paradigms linked to what 'the anti-DNA antibody' is, in a pathogenic, classification or diagnostic context.
Collapse
|
47
|
U1-RNP and TLR receptors in the pathogenesis of mixed connective tissue diseasePart I. The U1-RNP complex and its biological significance in the pathogenesis of mixed connective tissue disease. Reumatologia 2015; 53:94-100. [PMID: 27407234 PMCID: PMC4847272 DOI: 10.5114/reum.2015.51509] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/28/2015] [Indexed: 11/17/2022] Open
Abstract
Mixed connective tissue disease (MCTD) is a rare autoimmune syndrome, signified by complex interactions between disease-related phenomena, including inflammation, proliferative vascular arteriopathy, thrombotic events and humoral autoimmune processes. It is still controversial whether MCTD is a distinct clinical entity among systemic connective tissue diseases, although several authors consider that it is distinct and underline characteristic, distinct clinical, serological and immunogenetic features. The putative target of autoimmunity in MCTD is U1-RNP, which is a complex of U1-RNA and small nuclear RNP. Both the U1-RNA component and the specific proteins, particularly U1-70K, engage immune cells and their receptors in a complex network of interactions that ultimately lead to autoimmunity, inflammation, and tissue injury. U1-RNA is capable of inducing manifestations consistent with TLR activation. Stimulation of innate immunity by native RNA molecules with a double-stranded secondary structure may help explain the high prevalence of autoimmunity to RNA binding proteins.
Collapse
|
48
|
Tahir S, Fukushima Y, Sakamoto K, Sato K, Fujita H, Inoue J, Uede T, Hamazaki Y, Hattori M, Minato N. A CD153+CD4+ T Follicular Cell Population with Cell-Senescence Features Plays a Crucial Role in Lupus Pathogenesis via Osteopontin Production. THE JOURNAL OF IMMUNOLOGY 2015; 194:5725-35. [DOI: 10.4049/jimmunol.1500319] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/17/2015] [Indexed: 11/19/2022]
|
49
|
Synergistic activation of Toll-like receptor 8 by two RNA degradation products. Nat Struct Mol Biol 2015; 22:99-101. [PMID: 25650902 DOI: 10.1038/nsmb.2967] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Targeting Syk-activated B cells in murine and human chronic graft-versus-host disease. Blood 2015; 125:4085-94. [PMID: 25852057 DOI: 10.1182/blood-2014-08-595470] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/15/2015] [Indexed: 01/03/2023] Open
Abstract
Novel therapies for chronic graft-versus-host disease (cGVHD) are needed. Aberrant B-cell activation has been demonstrated in mice and humans with cGVHD. Having previously found that human cGVHD B cells are activated and primed for survival, we sought to further evaluate the role of the spleen tyrosine kinase (Syk) in cGVHD in multiple murine models and human peripheral blood cells. In a murine model of multiorgan system, nonsclerodermatous disease with bronchiolitis obliterans where cGVHD is dependent on antibody and germinal center (GC) B cells, we found that activation of Syk was necessary in donor B cells, but not T cells, for disease progression. Bone marrow-specific Syk deletion in vivo was effective in treating established cGVHD, as was a small-molecule inhibitor of Syk, fostamatinib, which normalized GC formation and decreased activated CD80/86(+) dendritic cells. In multiple distinct models of sclerodermatous cGVHD, clinical and pathological disease manifestations were not eliminated when mice were therapeutically treated with fostamatinib, though both clinical and immunologic effects could be observed in one of these scleroderma models. We further demonstrated that Syk inhibition was effective at inducing apoptosis of human cGVHD B cells. Together, these data demonstrate a therapeutic potential of targeting B-cell Syk signaling in cGVHD.
Collapse
|