1
|
Wang Y, Yang C, Shi Q, Zhang L, Liu H, You J, Zhang R, Sun A, Song S, Zhang Z, Shi X. Co-exposure to enrofloxacin and atrazine enhances the hepatotoxicity in Larimichthys crocea by targeting the hypothalamic-pituitary-thyroid and gut-liver axes. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137548. [PMID: 39952136 DOI: 10.1016/j.jhazmat.2025.137548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/22/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Enrofloxacin (ENR) and atrazine (ATZ) are common co-contaminants in marine environments. Although the immunosuppressive effects of ENR and the endocrine-disrupting properties of ATZ are well established, the combined effects of these pollutants on hepatotoxicity, particularly concerning the regulation of the hypothalamic-pituitary-thyroid (HPT) and gut-liver axes, remain poorly understood. In this study, Larimichthys crocea was exposed to ENR and ATZ at environmentally relevant concentrations, individually and in combination, to investigate the hepatotoxicity. Liver cell swelling, necrosis, oxidative stress, and elevated liver injury markers were observed, indicating hepatic damage, with co-exposure exacerbating liver injury. Decreased levels of thyrotropin-releasing hormone and thyroid-stimulating hormone, increased triiodothyronine and thyroxine, and altered expression of HPT axis-related genes demonstrated enhanced disruption of the HPT axis under co-exposure, which was strongly associated with oxidative stress and liver dysfunction. Molecular docking confirmed that ENR and ATZ inhibited thyroid hormone binding to target proteins, likely provoking the enhanced hepatotoxicity. Additionally, ATZ significantly intensified the intestinal bacterial disturbances induced by ENR, further aggravating hepatotoxicity through the gut-liver axis. This study is the first to reveal the increased risk associated with ENR and ATZ co-exposure, highlighting the need for attention to such co-contaminants.
Collapse
Affiliation(s)
- Yinan Wang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Chenxue Yang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Qiangqiang Shi
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Liuquan Zhang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Hao Liu
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jinjie You
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Rongrong Zhang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Aili Sun
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Zeming Zhang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Xizhi Shi
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
2
|
Yuan S, Kuai Z, Zhao F, Xu D, Wu W. Improving effect of physical exercise on heart failure: Reducing oxidative stress-induced inflammation by restoring Ca 2+ homeostasis. Mol Cell Biochem 2025; 480:2471-2486. [PMID: 39365389 DOI: 10.1007/s11010-024-05124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
Heart failure (HF) is associated with the occurrence of mitochondrial dysfunction. ATP produced by mitochondria through the tricarboxylic acid cycle is the main source of energy for the heart. Excessive release of Ca2+ from myocardial sarcoplasmic reticulum (SR) in HF leads to excessive Ca2+ entering mitochondria, which leads to mitochondrial dysfunction and REDOX imbalance. Excessive accumulation of ROS leads to mitochondrial structure damage, which cannot produce and provide energy. In addition, the accumulation of a large number of ROS can activate NF-κB, leading to myocardial inflammation. Energy deficit in the myocardium has long been considered to be the main mechanism connecting mitochondrial dysfunction and systolic failure. However, exercise can improve the Ca2+ imbalance in HF and restore the Ca2+ disorder in mitochondria. Similarly, exercise activates mitochondrial dynamics to improve mitochondrial function and reshape intact mitochondrial structure, rebalance mitochondrial REDOX, reduce excessive release of ROS, and rescue cardiomyocyte energy failure in HF. In this review, we summarize recent evidence that exercise can improve Ca2+ homeostasis in the SR and activate mitochondrial dynamics, improve mitochondrial function, and reduce oxidative stress levels in HF patients, thereby reducing chronic inflammation in HF patients. The improvement of mitochondrial dynamics is beneficial for ameliorating metabolic flow bottlenecks, REDOX imbalance, ROS balance, impaired mitochondrial Ca2+ homeostasis, and inflammation. Interpretation of these findings will lead to new approaches to disease mechanisms and treatment.
Collapse
Affiliation(s)
- Shunling Yuan
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| | - Zhongkai Kuai
- Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, China
| | - Fei Zhao
- Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, China.
| | - Diqun Xu
- School of Physical Education, Minnan Normal University, Zhangzhou, China.
| | - Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China.
| |
Collapse
|
3
|
Herich R, Szabóová R, Karaffová V, Racines MP, Šefcová MA, Larrea-Álvarez M. A Narrative Review on the Impact of Probiotic Supplementation on Muscle Development, Metabolic Regulation, and Fiber Traits Related to Meat Quality in Broiler Chickens. Microorganisms 2025; 13:784. [PMID: 40284621 PMCID: PMC12029878 DOI: 10.3390/microorganisms13040784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/03/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Public concern over drug resistance has led to governmental regulations banning the use of antibiotics as growth promoters, stimulating interest in developing complementary strategies to maintain animal production, mitigate infections, and enhance muscle characteristics and quality parameters, especially in meat-producing animals. Probiotics are recognized as a potential strategy for improving growth, primarily by promoting intestinal homeostasis. These microorganisms are suggested to modulate gut microbiota, preserving their ecosystem and influencing secondary metabolite production, which can directly or indirectly regulate skeletal muscle metabolism by influencing the expression of key muscle-related genes and the activity of various signaling factors. Several studies have documented the potential benefits of various strains of Bacillus, Enterococcus, and members of the Lactobacillaceae family on muscle characteristics. These studies have shown that probiotics not only modulated myogenic factors but also influenced proteins and enzymes involved in signaling pathways related to carbon metabolism, inflammatory response, mitochondrial dynamics, and antioxidant activity. These effects have been associated with improvements in meat quality parameters and enhanced growth performance. This manuscript seeks to present a brief overview of the impact of probiotic supplementation on muscle health and the quality of meat in broiler chickens.
Collapse
Affiliation(s)
- Robert Herich
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia (V.K.)
| | - Renáta Szabóová
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia
| | - Viera Karaffová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia (V.K.)
| | - Maria Paula Racines
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Miroslava Anna Šefcová
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Marco Larrea-Álvarez
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| |
Collapse
|
4
|
Colombo APV, Lourenço TGB, de Oliveira AM, da Costa ALA. Link Between Oral and Gut Microbiomes: The Oral-Gut Axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:71-87. [PMID: 40111686 DOI: 10.1007/978-3-031-79146-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
In the last decades, groundbreaking research on the human microbiome has changed our reductionist conception of the etiology and pathogenesis of several chronic diseases. As a result, we have come to appreciate the significance of a balanced microbiome in maintaining human health. In this context, the upper and lower gastrointestinal tracts (GITs) comprise the most abundant and diverse microbiotas of the human body. In addition to its diversity, functional redundancy, and temporal stability, a healthy GIT microbiome is characterized by its body site specificity. In fact, current evidence has indicated that the translocation of oral species to the gut environment through the oral-gut axis is increased in an array of illnesses, including chronic inflammatory and metabolic diseases, neurological disorders, and cancer. Oral pathogens have also been shown to promote gut dysbiosis and systemic inflammation in animal models. Yet, some level of overlapping between oral and gut microbiomes may occur without disruption of these microbial communities and loss of site specificity. The uniqueness of each host-microbiome entity may hinder our ability to define a "universal" normal GIT microbiome. Despite that, this chapter summarizes the predominant health-related taxa along the human GIT, as well as their role in the physiology and immunity of the digestive system. Some mechanisms that may lead to disturbances and relevant shifts in the oral and gut microbiomes of major inflammatory chronic diseases are also pointed out. Lastly, oral-fecal microbial signatures are presented as potential biomarkers for several oral and systemic disorders. The recognition of such symbiotic/dysbiotic microbial profiles may provide insights into the development of more accurate early diagnosis and therapeutic ecological approaches to restore the balance of the GIT microbiome.
Collapse
Affiliation(s)
- Ana Paula Vieira Colombo
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, UFRJ, Rio de Janeiro, Brazil.
- School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Adriana Miranda de Oliveira
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
- School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
5
|
Todorov SD, Lima JMS, Bucheli JEV, Popov IV, Tiwari SK, Chikindas ML. Probiotics for Aquaculture: Hope, Truth, and Reality. Probiotics Antimicrob Proteins 2024; 16:2007-2020. [PMID: 38801620 DOI: 10.1007/s12602-024-10290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The use of microorganisms as beneficial crops for human and animal health has been studied for decades, and these microorganisms have been in practical use for quite some time. Nowadays, in addition to well-known examples of beneficial properties of lactic acid bacteria, bifidobacteria, selected Bacillus spp., and yeasts, there are several other bacteria considered next-generation probiotics that have been proposed to improve host health. Aquaculture is a rapidly growing area that provides sustainable proteins for consumption by humans and other animals. Thus, there is a need to develop new technologies for the production practices associated with cleaner and environment-friendly approaches. It is a well-known fact that proper selection of the optimal probiotics for use in aquaculture is an essential step to ensure effectiveness and safety. In this critical review, we discuss the evaluation of host-specific probiotics in aquaculture, challenges in using probiotics in aquaculture, methods to improve the survival of probiotics under different environmental conditions, technological approach to improving storage, and delivery along with possible negative consequences of using probiotics in aquaculture. A critical analysis of the identified challenges for the use of beneficial microbes in aquaculture will help in sustainable aquafarming, leading to improved agricultural practices with a clear aim to increase protein production.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil.
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana Do Castelo, 4900-347, Viana Do Castelo, Portugal.
| | - Joao Marcos Scafuro Lima
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil
| | - Jorge Enrique Vazquez Bucheli
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Bioestadistica y Genetica, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, C.P. 04510, Mexico City, Mexico
| | - Igor Vitalievich Popov
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1, Rostov-On-Don 344002, Rostov, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius 354340, Krasnodar Region, Russia
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Michael Leonidas Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1, Rostov-On-Don 344002, Rostov, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, the State University of New Jersey, RutgersNew Brunswick, NJ 08901, USA
- I. M. Sechenov First Moscow State Medical University, Moscow 119435, Russia
| |
Collapse
|
6
|
Lee H, Lee YH, Hong DK, Mo SJ, Jeon S, Park SD, Shim JJ, Lee JL, Lee JH. Targeting Inflammation and Skin Aging via the Gut-Skin Axis: The Role of Lactiplantibacillus plantarum HY7714-Derived Extracellular Vesicles. Microorganisms 2024; 12:2466. [PMID: 39770669 PMCID: PMC11676968 DOI: 10.3390/microorganisms12122466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Intestinal mucosal tissues are prone to infections, often leading to inflammation. Lactic acid bacteria in the gut can modulate these inflammatory responses, but the interaction between host cells and lactic acid bacteria remains unclear. This study examines how Lactiplantibacillus plantarum HY7714 alleviates intestinal inflammation using gut-on-a-chip technology and in vitro models. Inflammation was induced using a gut-on-a-chip, and changes in cell morphology and barrier function were analyzed. Extracellular vesicles (EVs) derived from HY7714-improved intestinal cell structure repaired damage and restored tight junction integrity. Additionally, they attenuated inflammatory cytokines by regulating the MyD88/mTOR/NF-κB signaling pathway. RNA sequencing revealed downregulation of vicinal oxygen chelate (VOC) family proteins and proline aminopeptidase, both linked to inflammation and extracellular matrix interactions in skin health. Therefore, we explored the effects of HY7714 EVs on skin cells. The findings showed that HY7714 EVs reduced cytotoxicity and downregulated metalloproteinase expression in skin cells exposed to UVB radiation, indicating their potential anti-aging and anti-photoaging properties. These findings suggest that HY7714-derived EVs enhance both intestinal and skin health by reducing inflammation and improving barrier function, with potential benefits for the gut-skin axis.
Collapse
Affiliation(s)
| | | | | | | | | | - Soo-Dong Park
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.L.); (Y.-H.L.); (D.-K.H.); (S.-J.M.); (S.J.); (J.-J.S.); (J.-L.L.); (J.-H.L.)
| | | | | | | |
Collapse
|
7
|
Liu G, Jiang Q, Qin L, Zeng Z, Zhang P, Feng B, Liu X, Qing Z, Qing T. The influence of digestive tract protein on cytotoxicity of polyvinyl chloride microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174023. [PMID: 38885711 DOI: 10.1016/j.scitotenv.2024.174023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Microplastics in food and drinking water can enter the human body through oral exposure, posing potential health risks to the human health. Most studies on the toxic effects of microplastics have focused on aquatic organisms, but the effects of the human digestive environment on the physicochemical properties of microplastics and their potential toxicity during gastrointestinal digestion are often limited. In this study, we first studied the influence of interactions between digestive tract protein (α-amylase, pepsin, and trypsin) and microplastics on the activity and conformation of digestive enzymes, and the physicochemical properties of polyvinyl chloride microplastics (PVC-MPs). Subsequently, a simulated digestion assay was performed to determine the biotransformation of PVC-MPs in the digestive tract and the intestinal toxicity of PVC-MPs. The in vitro experiments showed that the protein structure and activity of digestive enzymes were changed after adsorption by microplastics. After digestion, the static contact angle of PVC-MPs was decreased, indicating that the hydrophilicity of the PVC-MPs increased, which will increase its mobility in organisms. Cell experiment showed that the altered physicochemical property of PVC-MPs after digestion process also affect its cytotoxicity, including cellular uptake, cell viability, cell membrane integrity, reactive oxygen species levels, and mitochondrial membrane potential. Transcriptome analyses further confirmed the enhanced biotoxic effect of PVC-MPs after digestion treatment. Therefore, the ecological risk of microplastics may be underestimated owing to the interactions of microplastics and digestive tract protein during biological ingestion.
Collapse
Affiliation(s)
- Gonghao Liu
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China; Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| | - Qianwen Jiang
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Lingfeng Qin
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Zihang Zeng
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Peng Zhang
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Bo Feng
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Xiaofeng Liu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| | - Taiping Qing
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, Hunan, China.
| |
Collapse
|
8
|
Weng Y, Huang Y, Qian M, Jin Y. Epoxiconazole disturbed metabolic balance and gut microbiota homeostasis in juvenile zebrafish. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105993. [PMID: 39084794 DOI: 10.1016/j.pestbp.2024.105993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024]
Abstract
Epoxiconazole (EPX) is a broad-spectrum fungicide extensively used in agricultural pest control. Emerging evidence suggests that EPX can adversely affect different endpoints in non-target organisms. Here, the toxicity of EPX was assessed using earlier developmental stage of zebrafish as a model to investigate its effects on metabolism and intestinal microbiota after 21 days of exposure. Our findings indicated that EPX exposure resulted in physiological alterations in juvenile zebrafish, including increase in triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), and glycose (Glu). Nile red staining demonstrated enhanced lipid accumulation in juvenile, accompanied by a marked upregulation in the expression of genes associated with TG synthesis. Moreover, EPX led to alterations in amino acids and carnitines levels in 21 dpf (days post fertilization) zebrafish. We also observed that EPX disrupted intestinal barrier function in juvenile zebrafish, manifested by decreasing mucus secretion and changing in genes related to tight junctions. Moreover, for a more comprehensive analysis of the intestinal microbiota in 21 dpf zebrafish, the intestine tissues were dissected under a microscope for 16S rRNA sequencing analysis. The results revealed that EPX altered the structure and abundance of intestinal microflora in zebrafish, including decreased alpha diversity indices and shifted in bacteria at phylum and genus levels. Notably, the correlation analysis demonstrated strong associations between alterations in various pathogenic bacterial genera and levels of amino acids and carnitines. Overall, these findings confirm that the fungicide EPX promotes metabolic disorders and alterations in the intestinal micro-environment in 21 dpf zebrafish, shedding light on the toxicologic effects of chemicals to aquatic organisms during the development stage.
Collapse
Affiliation(s)
- You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yilin Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
9
|
Kan LLY, Li P, Hon SSM, Lai AYT, Li A, Wong KCY, Huang D, Wong CK. Deciphering the Interplay between the Epithelial Barrier, Immune Cells, and Metabolic Mediators in Allergic Disease. Int J Mol Sci 2024; 25:6913. [PMID: 39000023 PMCID: PMC11241838 DOI: 10.3390/ijms25136913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Chronic exposure to harmful pollutants, chemicals, and pathogens from the environment can lead to pathological changes in the epithelial barrier, which increase the risk of developing an allergy. During allergic inflammation, epithelial cells send proinflammatory signals to group 2 innate lymphoid cell (ILC2s) and eosinophils, which require energy and resources to mediate their activation, cytokine/chemokine secretion, and mobilization of other cells. This review aims to provide an overview of the metabolic regulation in allergic asthma, atopic dermatitis (AD), and allergic rhinitis (AR), highlighting its underlying mechanisms and phenotypes, and the potential metabolic regulatory roles of eosinophils and ILC2s. Eosinophils and ILC2s regulate allergic inflammation through lipid mediators, particularly cysteinyl leukotrienes (CysLTs) and prostaglandins (PGs). Arachidonic acid (AA)-derived metabolites and Sphinosine-1-phosphate (S1P) are significant metabolic markers that indicate immune dysfunction and epithelial barrier dysfunction in allergy. Notably, eosinophils are promoters of allergic symptoms and exhibit greater metabolic plasticity compared to ILC2s, directly involved in promoting allergic symptoms. Our findings suggest that metabolomic analysis provides insights into the complex interactions between immune cells, epithelial cells, and environmental factors. Potential therapeutic targets have been highlighted to further understand the metabolic regulation of eosinophils and ILC2s in allergy. Future research in metabolomics can facilitate the development of novel diagnostics and therapeutics for future application.
Collapse
Affiliation(s)
- Lea Ling-Yu Kan
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Peiting Li
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Sharon Sze-Man Hon
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Andrea Yin-Tung Lai
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Aixuan Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Katie Ching-Yau Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Danqi Huang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Ding MQ, Ding J, Zhang ZR, Li MX, Cui CH, Pang JW, Xing DF, Ren NQ, Wu WM, Yang SS. Biodegradation of various grades of polyethylene microplastics by Tenebrio molitor and Tenebrio obscurus larvae: Effects on their physiology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120832. [PMID: 38599089 DOI: 10.1016/j.jenvman.2024.120832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Polyethylene (PE) is the most productive plastic product and includes three major polymers including high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) variation in the PE depends on the branching of the polymer chain and its crystallinity. Tenebrio obscurus and Tenebrio molitor larvae biodegrade PE. We subsequently tested larval physiology, gut microbiome, oxidative stress, and PE degradation capability and degradation products under high-purity HDPE, LLDPE, and LDPE powders (<300 μm) diets for 21 days at 65 ± 5% humidity and 25 ± 0.5 °C. Our results demonstrated the specific PE consumption rates by T. molitor was 8.04-8.73 mg PE ∙ 100 larvae-1⋅day-1 and by T. obscurus was 7.68-9.31 for LDPE, LLDPE and HDPE, respectively. The larvae digested nearly 40% of the ingested three PE and showed similar survival rates and weight changes but their fat content decreased by 30-50% over 21-day period. All the PE-fed groups exhibited adverse effects, such as increased benzoquinone concentrations, intestinal tissue damage and elevated oxidative stress indicators, compared with bran-fed control. In the current study, the digestive tract or gut microbiome exhibited a high level of adaptability to PE exposure, altering the width of the gut microbial ecological niche and community diversity, revealing notable correlations between Tenebrio species and the physical and chemical properties (PCPs) of PE-MPs, with the gut microbiome and molecular weight change due to biodegradation. An ecotoxicological simulation by T.E.S.T. confirmed that PE degradation products were little ecotoxic to Daphnia magna and Rattus norvegicus providing important novel insights for future investigations into the environmentally-friendly approach of insect-mediated biodegradation of persistent plastics.
Collapse
Affiliation(s)
- Meng-Qi Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Zhi-Rong Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Mei-Xi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chen-Hao Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing, 100089, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA, 94305, USA
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
11
|
Gao F, Wu S, Zhang K, Xu Z, Quan F. Goat milk exosomal microRNAs alleviate LPS-induced intestinal inflammation in mice. Int J Biol Macromol 2024; 268:131698. [PMID: 38642690 DOI: 10.1016/j.ijbiomac.2024.131698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Intestinal inflammation is a common digestive system disease. Milk-derived exosomes can participate in intercellular communication and transport a variety of bioactive components, and the microRNAs (miRNAs) they carry play important roles in a variety of biological processes in the body. At present, the preventive effect and mechanism of action of goat milk exosomes and their derived miRNAs on intestinal inflammation are still unclear. In this study, the protective effect of goat milk exosomes on LPS-induced intestinal inflammation was investigated using mouse intestinal inflammation model and IEC-6 cell inflammation model. Small RNA sequencing was used to analyze the miRNA expression profile of goat milk exosomes. In this study, C-Exo and M-Exo alleviated intestinal inflammation by reducing the LPS-induced release of proinflammatory cytokines, inhibiting the increase in the NLRP3 protein and the activation of the TLR4/NFκB signaling pathway. C-Exo has a more significant inhibitory effect on them, and better therapeutic efficacy than M-Exo. Notably, the target genes of miRNAs in C-Exo and M-Exo were significantly enriched in immune-related pathways. Furthermore, their derived miR-26a-5p and miR-30a-5p were found to ameliorate the IEC-6 inflammatory response. These findings suggest that miRNAs in goat milk exosomes have the potential to attenuate LPS-induced intestinal inflammation.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shenghui Wu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kang Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zhiming Xu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
12
|
Zhu Y, Che R, Zong X, Wang J, Li J, Zhang C, Wang F. A comprehensive review on the source, ingestion route, attachment and toxicity of microplastics/nanoplastics in human systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120039. [PMID: 38218169 DOI: 10.1016/j.jenvman.2024.120039] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/15/2024]
Abstract
Microplastics (MPs)/nanoplastics (NPs) are widely found in the natural environment, including soil, water and the atmosphere, which are essential for human survival. In the recent years, there has been a growing concern about the potential impact of MPs/NPs on human health. Due to the increasing interest in this research and the limited number of studies related to the health effects of MPs/NPs on humans, it is necessary to conduct a systematic assessment and review of their potentially toxic effects on human organs and tissues. Humans can be exposed to microplastics through ingestion, inhalation and dermal contact, however, ingestion and inhalation are considered as the primary routes. The ingested MPs/NPs mainly consist of plastic particles with a particle size ranging from 0.1 to 1 μm, that distribute across various tissues and organs within the body, which in turn have a certain impact on the nine major systems of the human body, especially the digestive system and respiratory system, which are closely related to the intake pathway of MPs/NPs. The harmful effects caused by MPs/NPs primarily occur through potential toxic mechanisms such as induction of oxidative stress, generation of inflammatory responses, alteration of lipid metabolism or energy metabolism or expression of related functional factors. This review can help people to systematically understand the hazards of MPs/NPs and related toxicity mechanisms from the level of nine biological systems. It allows MPs/NPs pollution to be emphasized, and it is also hoped that research on their toxic effects will be strengthened in the future.
Collapse
Affiliation(s)
- Yining Zhu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Ruijie Che
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Xinyan Zong
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jinhan Wang
- School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
13
|
Zhang J, Xia X, Ma C, Zhang S, Li K, Yang Y, Yang Z. Nanoplastics Affect the Bioaccumulation and Gut Toxicity of Emerging Perfluoroalkyl Acid Alternatives to Aquatic Insects ( Chironomus kiinensis): Importance of Plastic Surface Charge. ACS NANO 2024. [PMID: 38323841 DOI: 10.1021/acsnano.3c12009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Persistent organic pollutants (POPs) have been widely suggested as contributors to the aquatic insect biomass decline, and their bioavailability is affected by engineered particles. However, the toxicity effects of emerging ionizable POPs mediated by differentially charged engineered nanoparticles on aquatic insects are unknown. In this study, 6:2 chlorinated polyfluoroalkyl ether sulfonate (F-53B, an emerging perfluoroalkyl acid alternative) was selected as a model emerging ionizable POP; the effect of differentially charged nanoplastics (NPs, 50 nm, 0.5 g/kg) on F-53B bioaccumulation and gut toxicity to Chironomus kiinensis were investigated through histopathology, biochemical index, and gut microbiota analysis. The results showed that when the dissolved concentration of F-53B remained constant, the presence of NPs enhanced the adverse effects on larval growth, emergence, gut oxidative stress and inflammation induced by F-53B, and the enhancement caused by positively charged NP-associated F-53B was stronger than that caused by the negatively charged one. This was mainly because positively charged NPs, due to their greater adsorption capacity and higher bioavailable fraction of associated F-53B, increased the bioaccumulation of F-53B in larvae more significantly than negatively charged NPs. In addition, positively charged NPs interact more easily with gut biomembranes and microbes with a negative charge, further increasing the probability of F-53B interacting with gut biomembranes and microbiota and thereby aggravating gut damage and key microbial dysbacteriosis related to gut health. These findings demonstrate that the surface charge of NPs can regulate the bioaccumulation and toxicity of ionizable POPs to aquatic insects.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Kaixuan Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yingying Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhifeng Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Sun X, Wang X, Booth AM, Zhu L, Sui Q, Chen B, Qu K, Xia B. New insights into the impact of polystyrene micro/nanoplastics on the nutritional quality of marine jacopever (Sebastes schlegelii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166560. [PMID: 37633373 DOI: 10.1016/j.scitotenv.2023.166560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are ubiquitous in the marine environments due to the wide use and mismanagement of plastics. However, the effect of MPs/NPs on the nutrition quality of economic species is poorly understood, and their underlying mechanisms remained unclear. We therefore investigated the impacts of polystyrene MPs/NPs on the nutrition composition of marine jacopever Sebastes schlegelii from the perspective of assimilation and metabolism. Results showed that NPs reduced more nutrition quality than MPs. Despite no notable impact on intestinal microbiota function, MPs/NPs influenced the assimilation of fish through intestinal damage. Furthermore, NPs induced greater damage to hepatocyte metabolism than MPs, caused by hepatocyte uptake through membrane protein pumps/channels and clathrin/caveolin-mediated endocytosis for NPs, while through phagocytosis/pinocytosis for MPs. NPs triggered more cell apoptosis signals in Ferroptosis and FoxO signaling pathways than MPs, destroying mitochondria structure. Compared with MP treatments, a significant upregulation of genes (PRODH and SLC25A25A) associated with the electron transfer chain of mitochondria was detected in the NP treatments, influencing the tricarboxylic acid cycle and interfering with liver metabolism of proteins, fatty acid, glycerol phospholipids, and carbohydrates. This work provides new insights into the potential impacts of MPs/NPs on the quality and safety of seafood.
Collapse
Affiliation(s)
- Xuemei Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Xuru Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Andy M Booth
- SINTEF Ocean, Department of Climate and Environment, Trondheim 7465, Norway.
| | - Lin Zhu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Qi Sui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Bijuan Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Keming Qu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Bin Xia
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
15
|
Hu S, Gao K, Jiao Y, Yuan Z. Glycolysis characteristics of intracellular polysaccharides from Agaricus bitorquis (Quél.) sacc. Chaidam and its effects on intestinal flora from different altitudes of mice in vitro fermentation. Food Res Int 2023; 173:113382. [PMID: 37803720 DOI: 10.1016/j.foodres.2023.113382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
The glycolysis characteristics and effects on intestinal flora of polysaccharides from Agaricus bitorquis (Quél.) Sacc. Chaidam (ABIPs) in vitro fermentation by different altitudes of mice feces was examined, including low, medium, and high altitudes groups (LG, MG, and HG). In vitro, fermentation of ABIPs forty-eight hours resulted in a remarkable decrease in total sugar content and improvement of short-chain fatty acids (SCFAs) (mainly acetate, propionate, and butyrate), which simultaneously induced the composition of monose and uronic acids and SCFAs continuously change. Besides, ABIPs influenced the abundance and composition of the intestinal flora, generally increasing the abundance of probiotic bacteria (such as Bifidobacterium and Faecalibacterium) and decreasing the abundance of harmful bacteria (such as Phenylobacterium and Streptococcus) in all groups, with the highland biology core genus Blautia significantly enriched in LG and MG groups. It was also found that ABIPs enhanced pathways associated with biosynthesis and metabolism. In addition, correlation analysis speculated that the metabolism of SCFAs by ABIPs may be associated with genera such as Anaerostipes, Roseburia, and Weissella. ABIPs may protect organismal health by regulating hypoxic intestinal flora composition and metabolic function, and more superior fermentation performance was observed in MG compared to other groups.
Collapse
Affiliation(s)
- Shicheng Hu
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Ke Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Yingchun Jiao
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China.
| |
Collapse
|
16
|
Qin C, Tang N, Gan Y, Zhao H, Li Y, Tian GB, Yang YY, Yuan P, Ding X. Liposomes Co-Delivering Curcumin and Colistin to Overcome Colistin Resistance in Bacterial Infections. Adv Healthc Mater 2023; 12:e2202903. [PMID: 37523195 DOI: 10.1002/adhm.202202903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Antibiotic colistin is the last line of defense against multidrug-resistant (MDR) Gram-negative bacterial infections. Emergence of colistin resistance in microbes is a critical challenge. Herein, curcumin is discovered, for the first time, to reverse the resistance phenotype of colistin-resistant bacteria via a checkerboard assay. For the co-delivery of curcumin and colistin, negatively charged poly(ethylene glycol)-functionalized liposomes encapsulating both drugs (Lipo-cc) are prepared. Killing kinetics and live/dead assays confirm the antibacterial activity of Lipo-cc against colistin-resistant bacteria, which is more potent than that of the free curcumin and colistin combination. Mechanistical studies reveal that Lipo-cc restores the affinity of colistin for the bacterial membrane and improves the uptake of curcumin, which leads to reduced efflux pump activity, achieving a synergistic effect of colistin and curcumin. At the effective antibacterial dose, Lipo-cc does not exhibit any toxicity. The therapeutic efficacy of Lipo-cc is further demonstrated in an intestinal bacterial infection model induced with colistin-resistant Escherichia coli. Lipo-cc reduces the bacterial burden with over 6-log reduction and alleviated inflammation caused by infection. Importantly, unlike colistin, Lipo-cc does not affect the homeostasis of the intestinal flora. Taken together, Lipo-cc successfully overcame colistin resistance, indicating its potential for the treatment of colistin-resistant bacterial infections.
Collapse
Affiliation(s)
- Chengyuan Qin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Ning Tang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Yingying Gan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Huimin Zhao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Yuzhen Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, P. R. China
| | - Yi Yan Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore, 138668, Singapore
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Xin Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, P. R. China
| |
Collapse
|
17
|
Weng Y, Xu T, Wang C, Jin Y. Oral Exposure to Epoxiconazole Disturbed the Gut Micro-Environment and Metabolic Profiling in Male Mice. Metabolites 2023; 13:metabo13040522. [PMID: 37110180 PMCID: PMC10144212 DOI: 10.3390/metabo13040522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Epoxiconazole (EPX), a triazole fungicide, is widely used in agriculture to control pests and diseases. High residual and occupational exposure to EPX increases health risks, and evidence of potential harm to mammals remains to be added. In the present study, 6-week-old male mice were exposed to 10 and 50 mg/kg bw EPX for 28 days. The results showed that EPX significantly increased the liver weights. EPX also decreased the mucus secretion of the colon and altered intestinal barrier function in mice including a reduced expression of some genes (Muc2, meprinβ, tjp1). Moreover, EPX altered the composition and abundance of gut microbiota in the colon of mice. The alpha diversity indices (Shannon, Simpson) in the gut microbiota increased after exposure to EPX for 28 days. Interestingly, EPX increased the ratio of Firmicutes to Bacteroides and the abundance of other harmful bacteria including Helicobacter and Alistipes. Based on the untargeted metabolomic analysis, it was found that EPX altered the metabolic profiles of the liver in mice. KEGG analysis of differential metabolites revealed that EPX disrupted the pathway related to glycolipid metabolism, and the mRNA levels of related genes were also confirmed. In addition, the correlation analysis showed that the most altered harmful bacteria were associated with some significantly altered metabolites. The findings highlight that EPX exposure changed the micro-environment and lipid metabolism disturbance. These results also suggest that the potential toxicity of triazole fungicides to mammals cannot be ignored.
Collapse
Affiliation(s)
- You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
18
|
Sampath V, Martinez M, Caplan M, Underwood MA, Cuna A. Necrotizing enterocolitis in premature infants-A defect in the brakes? Evidence from clinical and animal studies. Mucosal Immunol 2023; 16:208-220. [PMID: 36804483 DOI: 10.1016/j.mucimm.2023.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
A key aspect of postnatal intestinal adaptation is the establishment of symbiotic relationships with co-evolved gut microbiota. Necrotizing enterocolitis (NEC) is the most severe disease arising from failure in postnatal gut adaptation in premature infants. Although pathological activation of intestinal Toll-like receptors (TLRs) is believed to underpin NEC pathogenesis, the mechanisms are incompletely understood. We postulate that unregulated aberrant TLR activation in NEC arises from a failure in intestinal-specific mechanisms that tamponade TLR signaling (the brakes). In this review, we discussed the human and animal studies that elucidate the developmental mechanisms inhibiting TLR signaling in the postnatal intestine (establishing the brakes). We then evaluate evidence from preclinical models and human studies that point to a defect in the inhibition of TLR signaling underlying NEC. Finally, we provided a framework for the assessment of NEC risk by screening for signatures of TLR signaling and for NEC prevention by TLR-targeted therapy in premature infants.
Collapse
Affiliation(s)
- Venkatesh Sampath
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, Missouri, USA; School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA.
| | - Maribel Martinez
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, Missouri, USA; School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Michael Caplan
- Department of Pediatrics, North Shore University Health System, Evanston, Illinois, USA
| | - Mark A Underwood
- Department of Pediatrics, University of California Davis, Sacramento, California, USA
| | - Alain Cuna
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, Missouri, USA; School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
19
|
Yao W, Wang T, Huang L, Bao Z, Wen S, Huang F. Embelin alleviates weaned piglets intestinal inflammation and barrier dysfunction via PCAF/NF-κB signaling pathway in intestinal epithelial cells. J Anim Sci Biotechnol 2022; 13:139. [PMID: 36514139 PMCID: PMC9749222 DOI: 10.1186/s40104-022-00787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intestinal barrier plays key roles in maintaining intestinal homeostasis. Inflammation damage can severely destroy the intestinal integrity of mammals. This study was conducted to investigate the protective effects of embelin and its molecular mechanisms on intestinal inflammation in a porcine model. One hundred sixty 21-day-old castrated weaned pigs (Duroc × Landrace × Yorkshire, average initial body weight was 7.05 ± 0.28 kg, equal numbers of castrated males and females) were allotted to four groups and fed with a basal diet or a basal diet containing 200, 400, or 600 mg embelin/kg for 28 d. The growth performance, intestinal inflammatory cytokines, morphology of jejunum and ileum, tight junctions in the intestinal mucosa of piglets were tested. IPEC-1 cells with overexpression of P300/CBP associating factor (PCAF) were treated with embelin, the activity of PCAF and acetylation of nuclear factor-κB (NF-κB) were analyzed to determine the effect of embelin on PCAF/NF-κB pathway in vitro. RESULTS The results showed that embelin decreased (P < 0.05) serum D-lactate and diamine oxidase (DAO) levels, and enhanced the expression of ZO-1, occludin and claudin-1 protein in jejunum and ileum. Moreover, the expression levels of critical inflammation molecules (interleukin-1β, interleukin-6, tumor necrosis factor-α, and NF-κB) were down-regulated (P < 0.05) by embelin in jejunal and ileal mucosa. Meanwhile, the activity of PCAF were down-regulated (P < 0.05) by embelin. Importantly, transfection of PCAF siRNAs to IPEC-1 cell decreased NF-κB activities; embelin treatment downregulated (P < 0.05) the acetylation and activities of NF-κB by 31.7%-74.6% in IPEC-1 cells with overexpression of PCAF. CONCLUSIONS These results suggested that embelin ameliorates intestinal inflammation in weaned pigs, which might be mediated by suppressing the PCAF/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lu Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhengxi Bao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shu Wen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
20
|
Saha UB, Saroj SD. Lactic acid bacteria: prominent player in the fight against human pathogens. Expert Rev Anti Infect Ther 2022; 20:1435-1453. [PMID: 36154442 DOI: 10.1080/14787210.2022.2128765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The human microbiome is a unique repository of diverse bacteria. Over 1000 microbial species reside in the human gut, which predominantly influences the host's internal environment and plays a significant role in host health. Lactic acid bacteria have long been employed for multiple purposes, ranging from food to medicines. Lactobacilli, which are often used in commercial food fermentation, have improved to the point that they might be helpful in medical applications. AREAS COVERED This review summarises various clinical and experimental evidence on efficacy of lactobacilli in treating a wide range of infections. Both laboratory based and clinical studies have been discussed. EXPERT OPINION Lactobacilli are widely accepted as safe biological treatments and host immune modulators (GRAS- Generally regarded as safe) by the US Food and Drug Administration and Qualified Presumption of Safety. Understanding the molecular mechanisms of lactobacilli in the treatment and pathogenicity of bacterial infections can help with the prediction and development of innovative therapeutics aimed at pathogens which have gained resistance to antimicrobials. To formulate effective lactobacilli based therapy significant research on the effectiveness of different lactobacilli strains and its association with demographic distribution is required. Also, the side effects of such therapy needs to be evaluated.
Collapse
Affiliation(s)
- Ujjayni B Saha
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, India
| |
Collapse
|
21
|
Li W, He E, Zhang P, Li Y, Qiu H. Multiomics analyses uncover nanoceria triggered oxidative injury and nutrient imbalance in earthworm Eisenia fetida. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129354. [PMID: 35717815 DOI: 10.1016/j.jhazmat.2022.129354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The toxic stress caused by nanoceria remains vague owing to the limited efforts scrutinizing its molecular mechanisms. Herein, we investigated the impacts of nanoceria on earthworm Eisenia fetida, at the molecular level using the multiomics-based profiling approaches (transcriptomics, metabolomics, and 16 S rRNA sequencing). Nanoceria (50 and 500 mg/kg) significantly increased the contents of malondialdehyde (MDA), Fe, and K in worms, suggesting oxidative injury and nutrient imbalance. This was corroborated by the transcriptomic and metabolomic analyses. Nanoceria decreased the levels of certain genes and metabolites associated with glycerolipid and glycerophospholipid metabolisms, suggesting the production of reactive oxygen species and subsequent oxidative stress. Additionally, the ABCD3 gene belonging to ABC transporter family was upregulated, facilitating Fe uptake by worms. Moreover, the higher contents of MDA, Fe, and K after exposure were tightly associated with the imbalanced intestinal flora. Specifically, a higher relative abundance of Actinobacteriota and a lower relative abundance of Proteobacteria and Patescibacteria were induced. This study, for the first time, revealed that nanoceria at nonlethal levels caused oxidative stress and nutrient imbalance of earthworms from the perspective of genes, metabolites, and gut microbiome perturbations, and also established links between the gut microbiome and the overall physiological responses of the host.
Collapse
Affiliation(s)
- Wenxing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Peihua Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
22
|
Feehan B, Ran Q, Dorman V, Rumback K, Pogranichniy S, Ward K, Goodband R, Niederwerder MC, Summers KL, Lee STM. Stability and volatility shape the gut bacteriome and Kazachstania slooffiae dynamics in preweaning, nursery and adult pigs. Sci Rep 2022; 12:15080. [PMID: 36064754 PMCID: PMC9445069 DOI: 10.1038/s41598-022-19093-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
The gut microbiome plays important roles in the maintenance of health and pathogenesis of diseases in the growing host. In order to fully comprehend the interplay of the gut microbiome and host, a foundational understanding of longitudinal microbiome, including bacteria and fungi, development is necessary. In this study, we evaluated enteric microbiome and host dynamics throughout the lifetime of commercial swine. We collected a total of 234 fecal samples from ten pigs across 31 time points in three developmental stages (5 preweaning, 15 nursery, and 11 growth adult). We then performed 16S rRNA gene amplicon sequencing for bacterial profiles and qPCR for the fungus Kazachstania slooffiae. We identified distinct bacteriome clustering according to the host developmental stage, with the preweaning stage exhibiting low bacterial diversity and high volatility amongst samples. We further identified clusters of bacteria that were considered core, increasing, decreasing or stage-associated throughout the host lifetime. Kazachstania slooffiae was absent in the preweaning stage but peaked during the nursery stage of the host. We determined that all host growth stages contained negative correlations between K. slooffiae and bacterial genera, with only the growth adult stage containing positive correlates. Our stage-associated bacteriome results suggested the neonate contained a volatile gut microbiome. Upon weaning, the microbiome became relatively established with comparatively fewer perturbations in microbiome composition. Differential analysis indicated bacteria might play distinct stage-associated roles in metabolism and pathogenesis. The lack of positive correlates and shared K. slooffiae-bacteria interactions between stages warranted future research into the interactions amongst these kingdoms for host health. This research is foundational for understanding how bacteria and fungi develop singularly, as well as within a complex ecosystem in the host's gut environment.
Collapse
Affiliation(s)
- Brandi Feehan
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Qinghong Ran
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Victoria Dorman
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Kourtney Rumback
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Sophia Pogranichniy
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Kaitlyn Ward
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Robert Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, 66506, USA
| | - Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.,Swine Health Information Center, Ames, IA, 50010, USA
| | - Katie Lynn Summers
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Center, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Sonny T M Lee
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
23
|
Liu S, Li H, Wang J, Wu B, Guo X. Polystyrene microplastics aggravate inflammatory damage in mice with intestinal immune imbalance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155198. [PMID: 35427627 DOI: 10.1016/j.scitotenv.2022.155198] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) have been detected in drinking water, seafood, and commodities relevant to human daily life, causing widespread concern. Although there have been studies on the health risks of MPs to mammals, the impact of MPs on populations with intestinal immune imbalance has been greatly ignored. The vulnerability of the body with intestinal immune imbalance may increase the likelihood of its response to MPs, which is in urgent need of relevant research. Here, we compared the effects of 500 μg/L polystyrene microplastics (PSMPs) on healthy mice and mice with intestinal immune imbalance through colon photographs, histopathological analysis, expression of inflammatory cytokines, PSMPs distribution, microbial community analysis, and metabolomics analysis. The results demonstrated that intestinal immune imbalance aggravated the colonic response to PSMPs. PSMPs exposure significantly increased the expression of inflammation factors (TNF-α, IL-1β and IFN-γ) in mice with intestinal immune imbalance. In addition, the exposure of PSMPs aggravated the histopathological damage of colonic mucosa in mice with intestinal immune imbalance, and exerted great disturbance on the colonic microbial community and metabolism. This may be due to the significant increase of PSMPs accumulation owing to the damage of intestinal barrier in mice with intestinal immune imbalance. In addition, the increase of several pathogenic bacteria including Bacteroides caused by intestinal immune imbalance also increased the toxicity of PSMPs. Our results highlight that individual with intestinal immune imbalance could be more sensitive to environmental pollution, which should be considered during health risk assessment.
Collapse
Affiliation(s)
- Su Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Huan Li
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Wang
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xuechao Guo
- Beijing Enterprises Water Group Limited, Beijing 100102, China
| |
Collapse
|
24
|
Tomasek K, Leithner A, Glatzova I, Lukesch MS, Guet CC, Sixt M. Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14. eLife 2022; 11:e78995. [PMID: 35881547 PMCID: PMC9359703 DOI: 10.7554/elife.78995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
A key attribute of persistent or recurring bacterial infections is the ability of the pathogen to evade the host's immune response. Many Enterobacteriaceae express type 1 pili, a pre-adapted virulence trait, to invade host epithelial cells and establish persistent infections. However, the molecular mechanisms and strategies by which bacteria actively circumvent the immune response of the host remain poorly understood. Here, we identified CD14, the major co-receptor for lipopolysaccharide detection, on mouse dendritic cells (DCs) as a binding partner of FimH, the protein located at the tip of the type 1 pilus of Escherichia coli. The FimH amino acids involved in CD14 binding are highly conserved across pathogenic and non-pathogenic strains. Binding of the pathogenic strain CFT073 to CD14 reduced DC migration by overactivation of integrins and blunted expression of co-stimulatory molecules by overactivating the NFAT (nuclear factor of activated T-cells) pathway, both rate-limiting factors of T cell activation. This response was binary at the single-cell level, but averaged in larger populations exposed to both piliated and non-piliated pathogens, presumably via the exchange of immunomodulatory cytokines. While defining an active molecular mechanism of immune evasion by pathogens, the interaction between FimH and CD14 represents a potential target to interfere with persistent and recurrent infections, such as urinary tract infections or Crohn's disease.
Collapse
Affiliation(s)
- Kathrin Tomasek
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Ivana Glatzova
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Calin C Guet
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Michael Sixt
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
25
|
Mittinty MM, Lee JY, Walton DM, El-Omar EM, Elliott JM. Integrating the Gut Microbiome and Stress-Diathesis to Explore Post-Trauma Recovery: An Updated Model. Pathogens 2022; 11:pathogens11070716. [PMID: 35889962 PMCID: PMC9323039 DOI: 10.3390/pathogens11070716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Musculoskeletal conditions of traumatic and non-traumatic origin represent an ongoing health challenge. While the last three decades have seen significant advancement in our understanding of musculoskeletal conditions, the mechanisms of a delayed or lack of recovery are still a mystery. Here, we present an expansion of the integrated stress-diathesis model through the inclusion of the gut microbiome. Connecting the microbiome with known adverse neurobiologic, microbiologic and pathophysiologic sequelae following an injury, trauma or stressful event may help improve our knowledge of the pathogenesis of poor recovery. Such knowledge could provide a foundation for the exploration and development of more effective interventions to prevent the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Manasi Murthy Mittinty
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2065, Australia
- Correspondence: ; Tel.: +61-2-9463-1516
| | - Joshua Y. Lee
- School of Physical Therapy, Western University, London, ON N6G 1H1, Canada; (J.Y.L.); (D.M.W.)
| | - David M. Walton
- School of Physical Therapy, Western University, London, ON N6G 1H1, Canada; (J.Y.L.); (D.M.W.)
| | - Emad M. El-Omar
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia;
| | - James M. Elliott
- School of Health Sciences, Faculty of Medicine and Health, The Kolling Institute, The University of Sydney, Sydney, NSW 2065, Australia;
- The Northern Sydney Local Health District, Sydney, NSW 2006, Australia
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
26
|
Effects of Dietary Enterococcus faecalis YFI-G720 on the Growth, Immunity, Serum Biochemical, Intestinal Morphology, Intestinal Microbiota, and Disease Resistance of Crucian Carp (Carassius auratus). FISHES 2022. [DOI: 10.3390/fishes7010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diseases of crucian carp (Carassius auratus) are closely related to intestinal parameters. Enterococcus faecalis has strong colonization ability in the intestinal tract, and produces natural antibiotics, bacteriocin, and other bacteriostatic substances, which can effectively inhibit some pathogenic bacteria and improve the intestinal microenvironment. This study aimed to assess the effects of E. faecalis YFI-G720 which was isolated from the intestinal of crucian carp on the growth, immunity, intestinal health, and disease resistance of crucian carp. Fish (48.16 ± 0.55 g) were fed four diets, commercial diet or diet containing E. faecalis at 105 CFU/g (EF1), 106 CFU/g (EF2), or 107 CFU/g (EF3) for 28 days. The results showed that supplementation of E. faecalis significantly improved the weight gain ratio (WGR) and the specific growth rate (SGR) compared with control group (p < 0.05). Intestinal mucosal epithelial cells in EF2 were intact and normal, but there was obvious vacuolation in CG. Compared with CG, serum C3 and IgM in EF2 were significantly increased at the end of the experiment (p < 0.05), and serum alkaline phosphatase was significantly higher in all experimental groups (p < 0.05). Among studied immune-related genes, expression was detected by qPCR, C3, IgM, and IL-1βwere upregulated in all experimental groups to varying degrees from 14 days, with highest expression in EF2 at 28 days. Intestinal microbiota structure analyzed through high-throughput sequencing, and the results showed that the relative abundance of Aeromonas and Acinetobacter decreased while Cetobacterium increased in all experimental groups, with the greatest changes in EF2. Challenge tests showed that fish fed E. faecalis were more resistant to Aeromonas veronii (p < 0.05). In conclusion, dietary E. faecalis YFI-G720 at 106 CFU/g can improve the health status, immune parameters, intestinal microbiota composition, and disease resistance of crucian carp.
Collapse
|
27
|
Saldana-Morales FB, Kim DV, Tsai MT, Diehl GE. Healthy Intestinal Function Relies on Coordinated Enteric Nervous System, Immune System, and Epithelium Responses. Gut Microbes 2022; 13:1-14. [PMID: 33929291 PMCID: PMC8096330 DOI: 10.1080/19490976.2021.1916376] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During both health and disease, a coordinated response between the epithelium, immune system, and enteric nervous system is required for proper intestinal function. While each system responds to a number of common stimuli, their coordinated responses support digestion as well as responses and recovery following injury or pathogenic infections. In this review, we discuss how individual responses to common signals work together to support these critical functions.
Collapse
Affiliation(s)
- Fatima B. Saldana-Morales
- Graduate School of Biomedical Sciences, Baylor College of Medicine, HoustonTXUSA,Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA
| | - Dasom V. Kim
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA,Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Ming-Ting Tsai
- Graduate School of Biomedical Sciences, Baylor College of Medicine, HoustonTXUSA,Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA
| | - Gretchen E. Diehl
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA,Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA,CONTACT Gretchen E. Diehl Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10021, USA. Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA
| |
Collapse
|
28
|
Wang C, Weng Y, Tu W, Jin C, Jin Y. Maternal exposure to sodium ρ-perfluorous nonenoxybenzene sulfonate during pregnancy and lactation disrupts intestinal barrier and may cause obstacles to the nutrient transport and metabolism in F0 and F1 generations of mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148775. [PMID: 34323766 DOI: 10.1016/j.scitotenv.2021.148775] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Sodium ρ-perfluorous nonenoxybenzene sulfonate (OBS), a novel kind of perfluoroalkyl and polyfluoroalkyl compound, has been widely detected in the environment. The toxicity of OBS to living organisms has become a public concern. A growing body of research showed that maternal exposure to environmental pollutants caused intestinal and metabolic diseases that could be conserved across offspring. Here, female C57BL/6 mice were treated OBS at dietary levels of 0.0 mg/L (CON), 0.5 mg/L (OBS-L) and 5.0 mg/L (OBS-H) during the gestation and lactation periods. The results demonstrated that OBS treatment not only induced significant changes in the mucus secretion and ionic transport, but also disrupted the expression of antimicrobial peptides (AMPs) in the intestine of F0 and F1 generations. Additionally, OBS exposure altered bile acids metabolism and affected the transcriptional levels of critical genes involved in bile acids synthesis, signaling transfer, transportation and apical uptake. Together, all these results indicated that OBS exposure was perceived as a major stress by the intestinal epithelium that strongly affected the intestinal barrier function (including mucus, CFTR, AMPs, inflammation), and ultimately led to imbalance in the metabolism of bile acids (BAs). Moreover, we found that maternal OBS exposure had a more obvious toxicity effect on the male offspring in this experiment. Taken together, maternal OBS exposure during pregnancy and lactation had the intestinal and metabolism toxic effects on the dams and offspring, indicating that effects of maternal exposure on the toxicity of offspring could not be ignored.
Collapse
Affiliation(s)
- Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China.
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
29
|
Sun X, Piao L, Jin H, Nogoy KMC, Zhang J, Sun B, Jin Y, Lee DH, Choi S, Li X. Dietary glucose oxidase and/or catalase supplementation alleviates intestinal oxidative stress induced by diquat in weaned piglets. Anim Sci J 2021; 92:e13634. [PMID: 34605115 DOI: 10.1111/asj.13634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/17/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022]
Abstract
This study investigated the effects of dietary exogenous glucose oxidase (GOD) and/or catalase (CAT) on the intestinal antioxidant capacity and barrier function in piglets under oxidative stress. Sixty pigs assigned randomly to five treatment groups-CON: basal diet; DIQ: basal diet; GOD: basal diet + 40-U GOD/kg diet; CAT: basal diet + 50-U CAT/kg diet; and GC: basal diet + 40-U GOD/kg diet + 50-U CAT/kg diet-were analyzed. On Day 14, the CON group was injected with saline, and the others were treated with diquat. The results showed that in diquat-treated piglets, supplementation of dietary GOD and CAT elevated the superoxide dismutase and CAT activities and attenuated the malondialdehyde level in plasma and intestinal mucosa, enhanced the duodenal villus height and villus height/crypt depth ratio, upregulated ZO-1 mRNA level, and attenuated the apoptosis of the epithelial cells and caspase-3 mRNA level in the intestine. Additionally, the supplementation upregulated mRNA expression of the intestinal NF-E2-related factor 2-regulated genes in diquat-treated piglets. However, GOD combined with CAT could not alleviate oxidative damage better than supplementation of CAT or GOD alone under oxidative stress. Overall, the study provides a potential alternative that could relieve the weaning stress in piglets and help formulate antibiotic-free diets.
Collapse
Affiliation(s)
- Xiaojiao Sun
- Department of Animal Science, Yanbian University, Yanji, China.,Department of Swine R&D, CJ Cheiljedang Feed R&D Center, Shenyang, China
| | - Longguo Piao
- Department of Swine R&D, CJ Cheiljedang Feed R&D Center, Shenyang, China
| | - Haifeng Jin
- Department of Swine R&D, CJ Cheiljedang Feed R&D Center, Shenyang, China
| | | | - Junfang Zhang
- Department of Animal Science, Yanbian University, Yanji, China
| | - Bin Sun
- Department of Animal Science, Yanbian University, Yanji, China
| | - Yi Jin
- Department of Animal Science, Yanbian University, Yanji, China
| | - Dong Hoon Lee
- Department of Biosystems Engineering, Chungbuk National University, Cheongju City, South Korea
| | - Seongho Choi
- Department of Animal Science, Chungbuk National University, Cheongju City, South Korea
| | - Xiangzi Li
- Department of Animal Science, Yanbian University, Yanji, China
| |
Collapse
|
30
|
Vieira JRP, Rezende ATDO, Fernandes MR, da Silva NA. Intestinal microbiota and active systemic lupus erythematosus: a systematic review. Adv Rheumatol 2021; 61:42. [PMID: 34215348 DOI: 10.1186/s42358-021-00201-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Systemic Lupus Erythematosus (SLE) is an autoimmune disease, characterized by being multi-systemic and, therefore, reaching various organs and affecting mainly young women. Its pathogenesis comprehends many factors, including the interaction between microbiota and immune system. This systematic review assessed the relationship between intestinal microbiota and SLE in activity, highlighting microbiota representative patterns regarding quantity and diversity. METHODS This study considered researches carried out in patients with SLE, with no restriction of age or gender, which fulfilled the classification criteria of either Systemic Lupus International Collaborating Clinic (SLICC), American College of Rheumatology (ACR) or European League Against Rheumatism (EULAR) and used the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) to classify disease in activity or remission were included. The search was carried out from October, 2020 to January, 2021 using the following databases: Medline via Pubmed, Scopus, and Embase. Five papers were included with a total of 288 participants with SLE. RESULTS Regarding microbiota in patients with SLE in activity, there was significant increase in the following genera: Lactobacillus, Streptococcus, Megasphaera, Fusobacterium, Veillonella, Oribacterium, Odoribacter, Blautia, and Campylobacter. On the other hand, decrease in Faecalibacterium and Roseburia genera as well as Ruminococcus gnavus species was observed in remission cases, showing differences between the microbiota profile in SLE in activity and in remission. CONCLUSIONS Results suggest that dysbiosis may be involved in the disease activity process. TRIAL REGISTRATION CRD42021229322 .
Collapse
Affiliation(s)
- Juliana Rosa Pires Vieira
- Postgraduate Program in Health Sciences, School of Medicine of the Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | | | - Marcos Rassi Fernandes
- Postgraduate Program in Health Sciences, School of Medicine of the Universidade Federal de Goiás (UFG), Goiânia, Brazil.,Department of Orthopedics/Traumatology, School of Medicine of the Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | - Nilzio Antonio da Silva
- Postgraduate Program in Health Sciences, School of Medicine of the Universidade Federal de Goiás (UFG), Goiânia, Brazil.,Rheumatology Service of Hospital das Clínicas, School of Medicine of the Universidade Federal de Goiás (UFG), Goiânia, Brazil
| |
Collapse
|
31
|
Xu Y, Li Y, Xue M, Yang T, Luo X, Fan Y, Meng Y, Liu W, Lin G, Li B, Zeng L, Zhou Y. Effects of Dietary Saccharomyces cerevisiae YFI-SC2 on the Growth Performance, Intestinal Morphology, Immune Parameters, Intestinal Microbiota, and Disease Resistance of Crayfish (Procambarus clarkia). Animals (Basel) 2021; 11:ani11071963. [PMID: 34209070 PMCID: PMC8300296 DOI: 10.3390/ani11071963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to evaluate the effect of the dietary supplementation of Saccharomyces cerevisiae YFI-SC2 on the growth performance, intestinal morphology, immune parameters, intestinal microbiota, and disease resistance of crayfish (Procambarus clarkia). Crayfish were randomly assigned to six different boxes and two different groups in triplicate. The control group received a basal diet and the treatment group received a diet containing S. cerevisiae at 107 CFU/g. After feeding for 28 days, crayfish of the treatment group exhibited a significantly better weight gain ratio (WGR) and a specific growth rate (SGR) (p < 0.05) than crayfish of the control group. Compared to the treatment group, the control group intestines showed an oedema connective tissue layer and a weak muscle layer. For immune-related genes, Crustin2 expression was similar between the groups, whereas Lysozyme and prophenoloxidase from treatment group expression levels were upregulated significantly (p < 0.05) after 14 and 28 days of feeding. Prophenoloxidase showed the highest expression, with 10.5- and 8.2-fold higher expression than in the control group at 14 and 28 days, respectively. The intestinal microbiota community structure was markedly different between the two groups. After 14 and 28 days of feeding, the relative abundance of Cetobacterium and Lactobacillus increased, whereas Citrobacter and Bacteroides decreased in the treatment group compared with that of the control group. The challenge test showed that crayfish of the treatment group had a significantly enhanced resistance against Citrobacter freundii (p < 0.05). Our results suggest that a S. cerevisiae-containing diet positively influenced the health status, immune parameters, intestinal microbiota composition, and disease resistance of crayfish.
Collapse
Affiliation(s)
- Yan Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
| | - Tao Yang
- Animal Health Research Institute, Tongwei Co., Ltd., Chengdu 610041, China;
| | - Xiaowen Luo
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
| | - Ge Lin
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
| | - Bo Li
- Wuhan Academy of Agricultural Science, Wuhan 430207, China;
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
- Correspondence: (L.Z.); (Y.Z.); Tel.: +86-18627783535 (L.Z.); +86-13554642560 (Y.Z.)
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
- Correspondence: (L.Z.); (Y.Z.); Tel.: +86-18627783535 (L.Z.); +86-13554642560 (Y.Z.)
| |
Collapse
|
32
|
Li Z, Feng C, Pang W, Tian C, Zhao Y. Nanoplastic-Induced Genotoxicity and Intestinal Damage in Freshwater Benthic Clams ( Corbicula fluminea): Comparison with Microplastics. ACS NANO 2021; 15:9469-9481. [PMID: 33988023 DOI: 10.1021/acsnano.1c02407] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the wide application of plastics in daily life, nanoplastics (NPs) are ubiquitous in freshwater environments. However, to date, few studies have focused on the mechanism underlying the toxicity of NPs, and the differences between this mechanism and that governing the toxicity of MPs have also not been thoroughly characterized. In this study, the genotoxicity, intestinal damage, and intestinal flora in Corbicula fluminea exposed to micro/nanoplastics were investigated through RNA sequencing, histopathology, and 16S rRNA sequencing, respectively. Significant differences in differentially expressed genes (DEGs) were observed between MP and NP exposure groups. It was observed that NPs preferentially elicited the process related to cellular components and triggered the apoptosis through the mitochondrial pathway in various tissues, especially in indirectly contacted tissues, while MPs induced the innate immune response and activated the complement and coagulation cascades (complement system) pathway. Both MPs and NPs can induce an inflammatory response and cause epithelial damage in the intestines, and they can notably change the gut microbial community structure. However, the abundance of pathogenic bacteria (e.g., Mycoplasma) was observed to increase only in the MP-treated group, which exacerbated intestinal damage. Unlike MPs, the effect of NPs on the intestinal microflora was highly limited, while NPs elicited more severe damage to the intestinal mucosal barrier. The results of this study may help to elucidate the toxicity mechanisms governing the responses of bivalves to MPs and NPs and to evaluate the detriment of MPs and NPs to the benthic ecosystem.
Collapse
Affiliation(s)
- Zhenling Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| | - Wen Pang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| | - Chenhao Tian
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| | - Yue Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
33
|
Role of Microbiota-Derived Extracellular Vesicles in Gut-Brain Communication. Int J Mol Sci 2021; 22:ijms22084235. [PMID: 33921831 PMCID: PMC8073592 DOI: 10.3390/ijms22084235] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
Human intestinal microbiota comprise of a dynamic population of bacterial species and other microorganisms with the capacity to interact with the rest of the organism and strongly influence the host during homeostasis and disease. Commensal and pathogenic bacteria coexist in homeostasis with the intestinal epithelium and the gastrointestinal tract’s immune system, or GALT (gut-associated lymphoid tissue), of the host. However, a disruption to this homeostasis or dysbiosis by different factors (e.g., stress, diet, use of antibiotics, age, inflammatory processes) can cause brain dysfunction given the communication between the gut and brain. Recently, extracellular vesicles (EVs) derived from bacteria have emerged as possible carriers in gut-brain communication through the interaction of their vesicle components with immune receptors, which lead to neuroinflammatory immune response activation. This review discusses the critical role of bacterial EVs from the gut in the neuropathology of brain dysfunctions by modulating the immune response. These vesicles, which contain harmful bacterial EV contents such as lipopolysaccharide (LPS), peptidoglycans, toxins and nucleic acids, are capable of crossing tissue barriers including the blood-brain barrier and interacting with the immune receptors of glial cells (e.g., Toll-like receptors) to lead to the production of cytokines and inflammatory mediators, which can cause brain impairment and behavioral dysfunctions.
Collapse
|
34
|
Mucosal Epithelial Jak Kinases in Health and Diseases. Mediators Inflamm 2021; 2021:6618924. [PMID: 33814980 PMCID: PMC7990561 DOI: 10.1155/2021/6618924] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/02/2021] [Accepted: 03/06/2021] [Indexed: 12/22/2022] Open
Abstract
Janus kinases (Jaks) are a family of nonreceptor tyrosine kinase that include four different members, viz., Jak1, Jak2, Jak3, and Tyk2. Jaks play critical roles in immune cells functions; however, recent studies suggest they also play essential roles in nonimmune cell physiology. This review highlights the significance of epithelial Jaks in understanding the molecular basis of some of the diseases through regulation of epithelial-mesenchymal transition, cell survival, cell growth, development, and differentiation. Growth factors and cytokines produced by the cells of hematopoietic origin use Jak kinases for signal transduction in both immune and nonimmune cells. Among Jaks, Jak3 is widely expressed in both immune cells and in intestinal epithelial cells (IECs) of both humans and mice. Mutations that abrogate Jak3 functions cause an autosomal severe combined immunodeficiency disease (SCID) while activating Jak3 mutations lead to the development of hematologic and epithelial cancers. A selective Jak3 inhibitor CP-690550 (Xeljanz) approved by the FDA for certain chronic inflammatory conditions demonstrates immunosuppressive activity in rheumatoid arthritis, psoriasis, and organ transplant rejection. Here, we also focus on the consequences of Jak3-directed drugs on adverse effects in light of recent discoveries in mucosal epithelial functions of Jak3 with some information on other Jaks. Lastly, we brief on structural implications of Jak3 domains beyond the immune cells. As information about the roles of Jak3 in gastrointestinal functions and associated diseases are only just emerging, in the review, we summarize its implications in gastrointestinal wound repair, inflammatory bowel disease, obesity-associated metabolic syndrome, and epithelial cancers. Lastly, we shed lights on identifying potential novel targets in developing therapeutic interventions of diseases associated with dysfunctional IEC.
Collapse
|
35
|
Zhang JM, Liu XY, Gu W, Xu HY, Jiao HC, Zhao JP, Wang XJ, Li HF, Lin H. Different effects of probiotics and antibiotics on the composition of microbiota, SCFAs concentrations and FFAR2/3 mRNA expression in broiler chickens. J Appl Microbiol 2021; 131:913-924. [PMID: 33263216 DOI: 10.1111/jam.14953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/26/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022]
Abstract
AIMS The aims of this study were to investigate the effects of probiotics and antibiotics on microbial composition, short chain fatty acids (SCFAs) concentration and free fatty acid receptor 2/3 (FFAR2/3) expression in boiler chickens. METHODS AND RESULTS A total of 150 1-day-old male broilers were randomly allocated into three groups, control (CON) group, probiotics (PB) group and antibiotics (ATB) group. Results indicated that PB improved the average body weight from 1 to 21 days and feed intake from 21 to 42 days (P < 0·05), while ATB improved the feed efficiency from 1 to 42 days (P < 0·05). Based on 16s rRNA sequencing, PB treatment increased the amount of kingdom bacteria, and the relative abundance of the main bacteria including acetate and butyrate producing bacteria of phylum Firmicutes, family Ruminococcaceae and genus Faecalibacterium. ATB treatment also increased the relative abundance of phylum Firmicutes, family Ruminococcaceae and Lachnospiraceae, however, it introduced some pathogenic bacteria, such as bacteria of family Rikenellaceae and Enterobacteriaceae. Gas chromatography and mass spectrometry (GC-MS) assay revealed that PB increased acetate and butyrate concentrations at both 21 and 42 days, and propionate at 42 days in the colorectum. Moreover qRT-PCR analysis showed PB treatment significantly activated the FFAR2/3 mRNA expressions. On the contrast, ATB treatment lowered the colorectal propionate at 21 days, and decreased acetate, propionate and butyrate concentrations at 42 days, accompanied with decreased FFAR2/3 mRNA expressions. CONCLUSIONS Compared to the CON birds, an enriched SCFAs producing bacteria with higher SCFAs contents and activated FFAR2/3 expressions are prominent features of PB birds. However, antibiotics treatment plays the reverse effect compared to PB treatment. SIGNIFICANCE AND IMPACT OF THE STUDY This study brings a significant idea that less SCFAs concentration may be another reason why the antibiotics inhibit the immune system development and immunity of the body.
Collapse
Affiliation(s)
- J-M Zhang
- College of Animal Science and Veterinary Medicine, Shandong Key Lab for Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an, China.,Biological Research Institute, Shandong Key Laboratory of Animal Microecological agents, Shandong Baolai-leelai Bioengineering Co., Ltd, Tai'an, China
| | - X-Y Liu
- Shandong Institute of Scientific and Technical Information, Ji Nan, China
| | - W Gu
- Biological Research Institute, Shandong Key Laboratory of Animal Microecological agents, Shandong Baolai-leelai Bioengineering Co., Ltd, Tai'an, China
| | - H-Y Xu
- Biological Research Institute, Shandong Key Laboratory of Animal Microecological agents, Shandong Baolai-leelai Bioengineering Co., Ltd, Tai'an, China
| | - H-C Jiao
- College of Animal Science and Veterinary Medicine, Shandong Key Lab for Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an, China
| | - J-P Zhao
- College of Animal Science and Veterinary Medicine, Shandong Key Lab for Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an, China
| | - X-J Wang
- College of Animal Science and Veterinary Medicine, Shandong Key Lab for Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an, China
| | - H-F Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - H Lin
- College of Animal Science and Veterinary Medicine, Shandong Key Lab for Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
36
|
Grosheva I, Zheng D, Levy M, Polansky O, Lichtenstein A, Golani O, Dori-Bachash M, Moresi C, Shapiro H, Del Mare-Roumani S, Valdes-Mas R, He Y, Karbi H, Chen M, Harmelin A, Straussman R, Yissachar N, Elinav E, Geiger B. High-Throughput Screen Identifies Host and Microbiota Regulators of Intestinal Barrier Function. Gastroenterology 2020; 159:1807-1823. [PMID: 32653496 DOI: 10.1053/j.gastro.2020.07.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The intestinal barrier protects intestinal cells from microbes and antigens in the lumen-breaches can alter the composition of the intestinal microbiota, the enteric immune system, and metabolism. We performed a screen to identify molecules that disrupt and support the intestinal epithelial barrier and tested their effects in mice. METHODS We performed an imaging-based, quantitative, high-throughput screen (using CaCo-2 and T84 cells incubated with lipopolysaccharide; tumor necrosis factor; histamine; receptor antagonists; and libraries of secreted proteins, microbial metabolites, and drugs) to identify molecules that altered epithelial tight junction (TJ) and focal adhesion morphology. We then tested the effects of TJ stabilizers on these changes. Molecules we found to disrupt or stabilize TJs were administered mice with dextran sodium sulfate-induced colitis or Citrobacter rodentium-induced intestinal inflammation. Colon tissues were collected and analyzed by histology, fluorescence microscopy, and RNA sequencing. RESULTS The screen identified numerous compounds that disrupted or stabilized (after disruption) TJs and monolayers of epithelial cells. We associated distinct morphologic alterations with changes in barrier function, and identified a variety of cytokines, metabolites, and drugs (including inhibitors of actomyosin contractility) that prevent disruption of TJs and restore TJ integrity. One of these disruptors (putrescine) disrupted TJ integrity in ex vivo mouse colon tissues; administration to mice exacerbated colon inflammation, increased gut permeability, reduced colon transepithelial electrical resistance, increased pattern recognition receptor ligands in mesenteric lymph nodes, and decreased colon length and survival times. Putrescine also increased intestine levels and fecal shedding of viable C rodentium, increased bacterial attachment to the colonic epithelium, and increased levels of inflammatory cytokines in colon tissues. Colonic epithelial cells from mice given putrescine increased expression of genes that regulate metal binding, oxidative stress, and cytoskeletal organization and contractility. Co-administration of taurine with putrescine blocked disruption of TJs and the exacerbated inflammation. CONCLUSIONS We identified molecules that disrupt and stabilize intestinal epithelial TJs and barrier function and affect development of colon inflammation in mice. These agents might be developed for treatment of barrier intestinal impairment-associated and inflammatory disorders in patients, or avoided to prevent inflammation.
Collapse
Affiliation(s)
- Inna Grosheva
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Danping Zheng
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel; Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Maayan Levy
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Omer Polansky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Claudia Moresi
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Hagit Shapiro
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sara Del Mare-Roumani
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Rafael Valdes-Mas
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Yiming He
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel; Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hodaya Karbi
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nissan Yissachar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel; Cancer-Microbiome Research Division, DKFZ, Heidelberg, Germany.
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
37
|
Yan J, Wang D, Li K, Chen Q, Lai W, Tian L, Lin B, Tan Y, Liu X, Xi Z. Toxic effects of the food additives titanium dioxide and silica on the murine intestinal tract: Mechanisms related to intestinal barrier dysfunction involved by gut microbiota. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103485. [PMID: 32891757 DOI: 10.1016/j.etap.2020.103485] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/16/2020] [Accepted: 08/26/2020] [Indexed: 05/28/2023]
Abstract
This study aimed to compare the effects of three food-grade particles (micro-TiO2, nano-TiO2, and nano-SiO2) on the murine intestinal tract and to investigate their potential mechanisms of action. A 28-day oral exposure murine model was established. Samples of blood, intestinal tissues and colon contents were collected for detection. The results showed that all three particles could cause inflammatory damage to the intestine, with nano-TiO2 showing the strongest effects. Exposure also led to changes in gut microbiota, especially mucus-associated bacteria. Our results suggest that the toxic effects on the intestine were due to reduced intestinal mucus barrier function and an increase in metabolite lipopolysaccharides which activated the expression of inflammatory factors downstream. In mice exposed to nano-TiO2, the intestinal PKC/TLR4/NF-κB signalling pathway was activated. These findings will raise awareness of toxicities associated with the use of food-grade TiO2 and SiO2.
Collapse
Affiliation(s)
- Jun Yan
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Degang Wang
- National Center of Biomedical Analysis, No. 27, Tai-Ping Road, Beijing, 100850, China
| | - Kang Li
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Qi Chen
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Bencheng Lin
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Yizhe Tan
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China.
| |
Collapse
|
38
|
McLaren MR, Callahan BJ. Pathogen resistance may be the principal evolutionary advantage provided by the microbiome. Philos Trans R Soc Lond B Biol Sci 2020. [PMID: 32772671 DOI: 10.1098/rstb.2019.0592rstb20190592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
To survive, plants and animals must continually defend against pathogenic microbes that would invade and disrupt their tissues. Yet they do not attempt to extirpate all microbes. Instead, they tolerate and even encourage the growth of commensal microbes, which compete with pathogens for resources and via direct inhibition. We argue that hosts have evolved to cooperate with commensals in order to enhance the pathogen resistance this competition provides. We briefly describe competition between commensals and pathogens within the host, consider how natural selection might favour hosts that tilt this competition in favour of commensals, and describe examples of extant host traits that may serve this purpose. Finally, we consider ways that this cooperative immunity may have facilitated the adaptive evolution of non-pathogen-related host traits. On the basis of these observations, we argue that pathogen resistance vies with other commensal-provided benefits for being the principal evolutionary advantage provided by the microbiome to host lineages across the tree of life. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Michael R McLaren
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA
| | - Benjamin J Callahan
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
39
|
McLaren MR, Callahan BJ. Pathogen resistance may be the principal evolutionary advantage provided by the microbiome. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190592. [PMID: 32772671 PMCID: PMC7435163 DOI: 10.1098/rstb.2019.0592] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
To survive, plants and animals must continually defend against pathogenic microbes that would invade and disrupt their tissues. Yet they do not attempt to extirpate all microbes. Instead, they tolerate and even encourage the growth of commensal microbes, which compete with pathogens for resources and via direct inhibition. We argue that hosts have evolved to cooperate with commensals in order to enhance the pathogen resistance this competition provides. We briefly describe competition between commensals and pathogens within the host, consider how natural selection might favour hosts that tilt this competition in favour of commensals, and describe examples of extant host traits that may serve this purpose. Finally, we consider ways that this cooperative immunity may have facilitated the adaptive evolution of non-pathogen-related host traits. On the basis of these observations, we argue that pathogen resistance vies with other commensal-provided benefits for being the principal evolutionary advantage provided by the microbiome to host lineages across the tree of life. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Michael R. McLaren
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA
| | - Benjamin J. Callahan
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
40
|
Wellington MO, Hamonic K, Krone JEC, Htoo JK, Van Kessel AG, Columbus DA. Effect of dietary fiber and threonine content on intestinal barrier function in pigs challenged with either systemic E. coli lipopolysaccharide or enteric Salmonella Typhimurium. J Anim Sci Biotechnol 2020; 11:38. [PMID: 32318266 PMCID: PMC7158091 DOI: 10.1186/s40104-020-00444-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/09/2020] [Indexed: 01/10/2023] Open
Abstract
Background The independent and interactive effects of dietary fiber (DF) and threonine (Thr) were investigated in growing pigs challenged with either systemic E. coli lipopolysaccharide (LPS) or enteric Salmonella Typhimurium (ST) to characterise their effect on intestinal barrier function. Results In experiment 1, intestinal barrier function was assessed via oral lactulose and mannitol (L:M) gavage and fecal mucin analysis in pigs challenged with E. coli LPS and fed low fiber (LF) or high fiber (HF) diets with graded dietary Thr. Urinary lactulose recovery and L:M ratio increased (P < 0.05) during the LPS inoculation period in LF fed pigs but not in HF fed pigs. Fecal mucin output was increased (P < 0.05) in pigs fed HF compared to LF fed pigs. In experiment 2, RT-qPCR, ileal morphology, digesta volatile fatty acid (VFA) content, and fecal mucin output were measured in Salmonella Typhimurium challenged pigs, fed LF or HF diets with standard or supplemented dietary Thr. Salmonella inoculation increased (P < 0.05) fecal mucin output compared to the unchallenged period. Supplemental Thr increased fecal mucin output in the HF-fed pigs (Fib × Thr; P < 0.05). Feeding HF increased (P < 0.05) VFA concentration in cecum and colon. No effect of either Thr or fiber on expression of gene markers was observed except a tendency (P = 0.06) for increased MUC2 expression with the HF diet. Feeding HF increased goblet cell numbers (P < 0.05). Conclusion Dietary fiber appears to improve barrier function through increased mucin production capacity (i.e., goblet cell numbers, MUC2 gene expression) and secretion (i.e., fecal mucin output). The lack of effect of dietary Thr in Salmonella-challenged pigs provides further evidence that mucin secretion in the gut is conserved and, therefore, Thr may be limiting for growth under conditions of increased mucin production.
Collapse
Affiliation(s)
- Michael O Wellington
- 1Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9 Canada.,2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Kimberley Hamonic
- 2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Jack E C Krone
- 1Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9 Canada.,2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - John K Htoo
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Germany
| | - Andrew G Van Kessel
- 2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Daniel A Columbus
- 1Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9 Canada.,2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| |
Collapse
|
41
|
Selenium-Enriched Yeast Alleviates Oxidative Stress-Induced Intestinal Mucosa Disruption in Weaned Pigs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5490743. [PMID: 32256952 PMCID: PMC7106930 DOI: 10.1155/2020/5490743] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
To explore the effect of selenium-enriched yeast (SeY) on intestinal barrier functions in weaned pigs upon oxidative stress, a 2 × 2 factorial design was utilized and thirty-two pigs were randomly assigned into four groups. Pigs with or without exposure to oxidative stress (diquat challenge) were fed with a basal diet or a SeY-containing diet. The trial lasted for 21 days, and result showed that SeY supplementation attenuated body-weight reduction and significantly decreased the serum concentrations of diamine oxidase (DAO) and D-lactic acid in pigs upon diquat challenge (P < 0.05). Diquat challenge decreased the villus height and the ratio of villus height to crypt depth (V/C) in the jejunum and ileum (P < 0.05). However, SeY supplementation not only elevated the villus height and the ratio of V/C (P < 0.05) but also improved the distribution and abundance of tight-junction protein ZO-1 in the jejunum epithelium. Interestingly, SeY supplementation acutely decreased the total apoptosis rate of intestinal epithelial cells in pigs upon diquat challenge (P < 0.05). Moreover, SeY elevated the content of antioxidant molecules such as glutathione peroxidase (GSH-Px) and catalase (CAT) but significantly decreased the content of malondialdehyde (MDA) in the intestinal mucosa (P < 0.05). Importantly, SeY elevated the expression levels of critical functional genes such as the nuclear factor erythroid-2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), sodium/glucose cotransporter 1 (SGLT1), and B-cell lymphoma-2 (BCL-2) in the intestinal mucosa upon diquat challenge (P < 0.05). Moreover, the expression of caspase-3 was downregulated by SeY in the duodenum and jejunum mucosa (P < 0.05). These results indicated that SeY attenuated oxidative stress-induced intestinal mucosa disruption, which was associated with elevated mucosal antioxidative capacity and improved intestinal barrier functions.
Collapse
|
42
|
Sun W, Sun J, Li M, Xu Q, Zhang X, Tang Z, Chen J, Zhen J, Sun Z. The effects of dietary sodium butyrate supplementation on the growth performance, carcass traits and intestinal microbiota of growing-finishing pigs. J Appl Microbiol 2020; 128:1613-1623. [PMID: 32048746 DOI: 10.1111/jam.14612] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022]
Abstract
AIM This study was carried out to investigate the effects of dietary sodium butyrate supplementation on growth performance, carcass traits and intestinal of growing-finishing pigs. METHODS AND RESULTS Thirty pigs (27·4 ± 0·4 kg) were randomly assigned to receive one of three diets: basal diet (negative control group), basal diet + 40 ppm zinc bacitracin (positive control group) and basal diet + 0·2% sodium butyrate (sodium butyrate group), respectively. The experiment lasted for 69 days, including 3 days for diet and housing condition adaptation. On day 70, five piglets from each diet group were slaughtered for collecting blood and tissue samples. When compared to the control group, final body weight, daily body weight gain and daily feed intake of pigs in the sodium butyrate group were increased (P < 0·05) and feed intake/body weight gain ratio was decreased (P < 0·05). Carcass weight of pigs in the sodium butyrate group was higher than that of pigs in the negative and positive groups (P < 0·05); backfat thickness of pigs in the positive group was higher than that of pigs in the negative group and sodium butyrate group (P < 0·001). When compared to the negative and positive groups, pigs fed diet supplemented with sodium butyrate showed a increased relative abundance of bacteroidetes in the caecum and a decreased relative abundance of fiemicutes and proteobacteria in the caecum (P < 0·05). CONCLUSION The results indicated that dietary sodium butyrate supplementation increased growth performance of growing-finishing pigs and improved the carcass traits and intestinal health. SIGNIFICANCE AND IMPACT OF THE STUDY Antibiotic-free feed has become an inevitable worldwide trend. This study showed that dietary sodium butyrate supplementation improved the growth performance and intestinal health of growing-finishing pigs. Thus, sodium butyrate can be applied in growing-finishing pig feed as an alternative of antibiotics.
Collapse
Affiliation(s)
- W Sun
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - J Sun
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - M Li
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Q Xu
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - X Zhang
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Z Tang
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - J Chen
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - J Zhen
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Z Sun
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| |
Collapse
|
43
|
Zhang Y, Chen S, Zong X, Wang C, Shi C, Wang F, Wang Y, Lu Z. Peptides derived from fermented soybean meal suppresses intestinal inflammation and enhances epithelial barrier function in piglets. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1705766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Yu Zhang
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shan Chen
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xin Zong
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, People’s Republic of China
| | - Cheng Wang
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, People’s Republic of China
| | - Changyou Shi
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, People’s Republic of China
| | - Fengqin Wang
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yizhen Wang
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zeqing Lu
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture (East China), Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
44
|
Chen J, Xu Q, Li Y, Tang Z, Sun W, Zhang X, Sun J, Sun Z. Comparative effects of dietary supplementations with sodium butyrate, medium-chain fatty acids, and n-3 polyunsaturated fatty acids in late pregnancy and lactation on the reproductive performance of sows and growth performance of suckling piglets. J Anim Sci 2019; 97:4256-4267. [PMID: 31504586 PMCID: PMC6776281 DOI: 10.1093/jas/skz284] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/24/2019] [Indexed: 12/22/2022] Open
Abstract
This study was conducted to compare the effects of adding sodium butyrate (SB), medium-chain fatty acids (MCFAs), or n-3 polyunsaturated fatty acids (n-3 PUFAs) to the diet of sows during late gestation and lactation on the reproductive performance of sows and the growth performance and intestinal health of suckling piglets. Twenty-four sows (Landrace × Large-White hybrid; third parity; 200 ± 15 kg) were randomly assigned to receive 1 of 4 diets: basal diet (control group), basal diet + 1 g SB/kg (SB group), basal diet + 7.75 g MCFA/kg (MCFA group), or basal diet + 68.2 g n-3 PUFA/kg (n-3 PUFA group). The experiment began on day 85 of gestation and ended day 22 of lactation. Colostrum samples were collected from each sow. After the experiment, blood and tissue samples were collected from 1 randomly selected piglet. The results showed that the weaning-to-estrus interval of sows in the SB, MCFA, and n-3 PUFA groups was shorter than that of sows in the control group (P < 0.05). The incidence of diarrhea in suckling piglets in the SB, MCFA, and n-3 PUFA groups was lower than that of piglets in the control group (P < 0.05). The fat, protein, IgA, IgG, and IgM concentration in colostrum from sows increased following dietary supplementation with SB, MCFA, or n-3 PUFA (P < 0.05). Comparison with the control group, the mRNA expression of claudin-1, zona occludens 1, and interleukin-10 increased in the jejunum mucosa of suckling piglets in the SB, MCFA, and n-3 PUFA groups, while that of TLR4 decreased (P < 0.05). Compared with the control group, the Chao1 and ACE indexes of microbial flora in the colon contents of piglets in the SB, MCFA, and MCFA groups increased (P < 0.05), while the relative abundance of Firmicutes, Actinobacteria, and Synergistetes decreased at the phylum level (P < 0.05). In conclusion, during late pregnancy and lactation, dietary SB supplementation had a greater effect on intestinal health and caused a greater decrease in preweaning mortality of suckling piglets than did dietary MCFA or n-3 PUFA supplementation; dietary MCFA supplementation shortened the weaning-to-estrus interval of sows to a greater extent than did dietary SB or n-3 PUFA supplementation; and dietary n-3 PUFA supplementation increased the fat and protein content in the colostrum to the greatest extent.
Collapse
Affiliation(s)
- Jinchao Chen
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Qingqing Xu
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Yunxia Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhiru Tang
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Weizhong Sun
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Xiangxin Zhang
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Jiajing Sun
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Zhihong Sun
- Laboratory of Bio-feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| |
Collapse
|
45
|
Luo T, Wang C, Pan Z, Jin C, Fu Z, Jin Y. Maternal Polystyrene Microplastic Exposure during Gestation and Lactation Altered Metabolic Homeostasis in the Dams and Their F1 and F2 Offspring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10978-10992. [PMID: 31448906 DOI: 10.1021/acs.est.9b03191] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Microplastics (MPs) are considered as a pollutant of marine environments and have become a global environmental problem in recent years. A number of studies have demonstrated that MPs can enter the human food chain, and MPs have even been detected in human stools. Therefore, there is increasing concern about the potential risks of MPs to human and animal health. Here, we investigated maternal polystyrene MPs exposure during gestation and lactation and evaluated the potential effects on dams and the F1 (both PND 42 and 280) and F2 (PND 42) generations. The results of transcriptome and 16S rRNA sequencing indicated that MPs caused the metabolic disorder in maternal MPs associated with gut microbiota dysbiosis and gut barrier dysfunction. Simultaneously, maternal MPs exposure also had the intergenerational effects and even caused long-term metabolic consequences in the F1 and F2 generations. In addition, in F1 (PND 42), the composition of gut microbiota did not change significantly, while the hepatic transcriptome and serum metabolite changes showed the potential risk in metabolic disorder. Then, the potential of hepatic lipid accumulation was observed in adult F1 mice (PND 280), especially in the female mice. Our results demonstrated that maternal MPs exposure during gestation and lactation increases the risk of metabolic disorder, and these results provide new insight into the potential long-term hazards of MPs.
Collapse
Affiliation(s)
- Ting Luo
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Caiyun Wang
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Zihong Pan
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| |
Collapse
|
46
|
Wang C, Zhang Y, Deng M, Wang X, Tu W, Fu Z, Jin Y. Bioaccumulation in the gut and liver causes gut barrier dysfunction and hepatic metabolism disorder in mice after exposure to low doses of OBS. ENVIRONMENT INTERNATIONAL 2019; 129:279-290. [PMID: 31146162 DOI: 10.1016/j.envint.2019.05.056] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 05/23/2023]
Abstract
The compound sodium ρ-perfluorous nonenoxybenzene sulfonate (OBS), a new kind of perfluoroalkyl and polyfluoroalkyl compound, is a surfactant for increasing oil production, and it has been widely detected in various organisms. Because of its wide use, OBS is detectable in the environment. However, knowledge about the biological toxicity of OBS to animals is very limited. Here, male mice were exposed to 0, 0.1, 1 or 10 μg/L of OBS for 6 weeks via drinking water. It was demonstrated that OBS was highly bioaccumulated both in the liver and gut in the mice after low doses of OBS exposure. Curiously, a low dose of OBS exposure also caused gut barrier dysfunction by decreasing mucus secretion and altering Ionic transport in the gut via the CFTR pathway. In addition, liver function was influenced by OBS at both the histopathological and physiological levels. Hepatic transcriptomics and metabolomics analysis showed a total of 1157 genes, and multiple metabolites changed significantly in the livers of mice exposed to low-dose OBS for 6 weeks. The functions of these changed genes and metabolites are tightly related to glycolysis, fatty acid synthesis, fatty acid transport, and β-oxidation. All these results indicate that the liver and gut are important target tissues for OBS exposure. Importantly, it is possible that high levels of bioaccumulation of OBS in the gut and liver might directly cause gut barrier dysfunction and hepatic metabolism disorder in mice.
Collapse
Affiliation(s)
- Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yi Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mi Deng
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China
| | - Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China.
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
47
|
Physiological and Transcriptional Responses in Weaned Piglets Fed Diets with Varying Phosphorus and Calcium Levels. Nutrients 2019; 11:nu11020436. [PMID: 30791512 PMCID: PMC6412343 DOI: 10.3390/nu11020436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022] Open
Abstract
Phosphorus (P) is an important element of various metabolic and signalling processes, including bone metabolism and immune function. To elucidate the routes of P homeostasis and utilization, a five-week feeding study was conducted with weaned piglets receiving a diet with recommended amounts of P and Ca (M), or a diet with lower (L) or higher (H) P values and a constant Ca:P ratio. Routes of P utilization were deduced via bone characteristics (MicroCT), genome-wide transcriptomic profiles of peripheral blood mononuclear cells (PBMCs), and serum mineral levels. MicroCT revealed significantly lower bone mineral density, trabecular number, and mechanical fracture load in (L). Gene expression analyses showed transcripts of 276 and 115 annotated genes with higher or lower abundance in (H) than (L) that were related to basic cellular and metabolic processes as well as response to stimuli, developmental processes and immune system processes. This study shows the many molecular routes involved in P homeostasis that should be considered to improve endogenous mechanisms of P utilization.
Collapse
|
48
|
Liu C, Guo YM, Cao JZ, Zhang DF, Chang OQ, Li K, Wang F, Shi CB, Jiang L, Wang Q, Lin L. Detection and quantification of Aeromonas schubertii in Channa maculata by TaqMan MGB probe fluorescence real-time quantitative PCR. JOURNAL OF FISH DISEASES 2019; 42:109-117. [PMID: 30474192 DOI: 10.1111/jfd.12911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/22/2018] [Accepted: 09/23/2018] [Indexed: 06/09/2023]
Abstract
Aeromonas schubertii is a major epidemiological agent that threatens cultured snakeheads (Channidae) and has caused great economic losses in fish-farming industries in China in recent years. In present study, a specific TaqMan minor groove binder (MGB) probe fluorescence real-time quantitative PCR (qPCR) assay was developed to rapidly detect and quantify A. schubertii. A pair of qPCR primers and a TaqMan MGB probe were selected from the rpoD gene, which were shown to be specific for A. schubertii. A high correlation coefficient (R2 = 0.9998) in a standard curve with a 103% efficiency was obtained. Moreover, the qPCR method's detection limit was as low as 18 copies/μl, which was 100 times more sensitive than that of conventional PCR. The detection results for the A. schubertii in pond water and fish tissue were consistent with those of the viable counts. Bacterial load changes detected by qPCR in different tissues of snakeheads infected with A. schubertii showed that the gills and intestines may be the entry for A. schubertii, and the spleen and kidney are major sites for A. schubertii replication. The established method in present study should be a useful tool for the early surveillance and quantitation of A. schubertii.
Collapse
Affiliation(s)
- Chun Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Yanming M Guo
- College of Medical Science and Technology, Heze University, Heze, Shandong, China
| | - Jizhen Z Cao
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - De-Feng Zhang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Ou-Qin Chang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Kaibin Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Fang Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Cun-Bin Shi
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Lan Jiang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Li Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
49
|
Ren D, Gong S, Shu J, Zhu J, Liu H, Chen P. Effects of mixed lactic acid bacteria on intestinal microbiota of mice infected with Staphylococcus aureus. BMC Microbiol 2018; 18:109. [PMID: 30189834 PMCID: PMC6127954 DOI: 10.1186/s12866-018-1245-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
Background The stability of intestinal microorganisms plays an important role in human health, as the intestines perform important functions in the human body. Staphylococcus aureus is a Gram-positive, facultative anaerobic bacteria, it causes human infection worldwide, and is a major pathogen that causes intestinal infection. Mixed lactic acid bacteria (LAB) may have potential in the prevention and treatment of S. aureus infection. In the present study, we examined the effects of mixed LAB treatment on intestinal microbiota modulation in mice infected with S. aureus. Results High-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene showed that the mixed LAB maintained the richness and diversity of the microbiota in the mouse intestine. By establishing operational taxonomic units and using rarefaction analysis, rank-abundance distribution curves, heat maps, Venn diagrams, bacterial community structures, and hierarchical clustering analysis, Bacteroidales, Lachnospiraceae, Bacteroides and Prevotellaceae were the most abundant taxa in the samples, we found that the composition of the intestinal microbiota was similar between the protection group administered mixed LAB and the negative control group. Conclusions Staphylococcus aureus destroys the stable intestinal microbiota structure of mice, treatment with mixed LAB could prevent S. aureus infection in mice and improve the structure of the intestinal microbiota.
Collapse
Affiliation(s)
- Dayong Ren
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Shengjie Gong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jingyan Shu
- Veterinary Science Department, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Jianwei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Hongyan Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Ping Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| |
Collapse
|
50
|
Jazayeri O, Daghighi SM, Rezaee F. Lifestyle alters GUT-bacteria function: Linking immune response and host. Best Pract Res Clin Gastroenterol 2017; 31:625-635. [PMID: 29566905 DOI: 10.1016/j.bpg.2017.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/03/2017] [Indexed: 02/07/2023]
Abstract
Microbiota in human is a "mixture society" of different species (i.e. bacteria, viruses, funguses) populations with a different way of relationship classification to Human. Human GUT serves as the host of the majority of different bacterial populations (GUT flora, more than 500 species), which are with us ("from the beginning") in an innate manner known as the commensal (no harm to each other) and symbiotic (mutual benefit) relationship. A homeostatic balance of host-bacteria relationship is very important and vital for a normal health process. However, this beneficial relationship and delicate homeostatic state can be disrupted by the imbalance of microbiome-composition of gut microbiota, expressing a pathogenic state. A strict homeostatic balance of microbiome-composition strongly depends on several factors; 1- lifestyle, 2- geography, 3- ethnicities, 4- "mom" as prime of the type of bacterial colonization in infant and 5- the disease. With such diversity in individuals combined with huge number of different bacterial species and their interactions, it is wise to perform an in-depth systems biology (e.g. genomics, proteomics, glycomics, and etcetera) analysis of personalized microbiome. Only in this way, we are able to generate a map of complete GUT microbiota and, in turn, to determine its interaction with host and intra-interaction with pathogenic bacteria. A specific microbiome analysis provides us the knowledge to decipher the nature of interactions between the GUT microbiota and the host and its response to the invading bacteria in a pathogenic state. The GUT-bacteria composition is independent of geography and ethnicity but lifestyle well affects GUT-bacteria composition and function. Microbiome knowledge obtained by systems biology also helps us to change the behavior of GUT microbiota in response to the pathogenic microbes as protection. Functional microbiome changes in response to environmental factors will be discussed in this review.
Collapse
Affiliation(s)
- Omid Jazayeri
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - S Mojtaba Daghighi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Iran
| | - Farhad Rezaee
- Department of Gastroenterology-Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|