1
|
Horii M, Touma O, Bui T, Parast MM. Modeling human trophoblast, the placental epithelium at the maternal fetal interface. Reproduction 2020; 160:R1-R11. [PMID: 32485667 PMCID: PMC7286067 DOI: 10.1530/rep-19-0428] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Appropriate human trophoblast lineage specification and differentiation is crucial for the establishment of normal placentation and maintenance of pregnancy. However, due to the lack of proper modeling systems, the molecular mechanisms of these processes are still largely unknown. Much of the early studies in this area have been based on animal models and tumor-derived trophoblast cell lines, both of which are suboptimal for modeling this unique human organ. Recent advances in regenerative and stem cell biology methods have led to development of novel in vitro model systems for studying human trophoblast. These include derivation of human embryonic and induced pluripotent stem cells and establishment of methods for the differentiation of these cells into trophoblast, as well as the more recent derivation of human trophoblast stem cells. In addition, advances in culture conditions, from traditional two-dimensional monolayer culture to 3D culturing systems, have led to development of trophoblast organoid and placenta-on-a-chip model, enabling us to study human trophoblast function in context of more physiologically accurate environment. In this review, we will discuss these various model systems, with a focus on human trophoblast, and their ability to help elucidate the key mechanisms underlying placental development and function. This review focuses on model systems of human trophoblast differentiation, including advantages and limitations of stem cell-based culture, trophoblast organoid, and organ-on-a-chip methods and their applications in understanding placental development and disease.
Collapse
Affiliation(s)
- Mariko Horii
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, USA
| | - Ojeni Touma
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, USA
| | - Tony Bui
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Wu T, Yin F, Guang S, He F, Yang L, Peng J. The Glycosylphosphatidylinositol biosynthesis pathway in human diseases. Orphanet J Rare Dis 2020; 15:129. [PMID: 32466763 PMCID: PMC7254680 DOI: 10.1186/s13023-020-01401-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/06/2020] [Indexed: 01/15/2023] Open
Abstract
Glycosylphosphatidylinositol biosynthesis defects cause rare genetic disorders characterised by developmental delay/intellectual disability, seizures, dysmorphic features, and diverse congenital anomalies associated with a wide range of additional features (hypotonia, hearing loss, elevated alkaline phosphatase, and several other features). Glycosylphosphatidylinositol functions as an anchor to link cell membranes and protein. These proteins function as enzymes, adhesion molecules, complement regulators, or co-receptors in signal transduction pathways. Biallelic variants involved in the glycosylphosphatidylinositol anchored proteins biosynthetic pathway are responsible for a growing number of disorders, including multiple congenital anomalies-hypotonia-seizures syndrome; hyperphosphatasia with mental retardation syndrome/Mabry syndrome; coloboma, congenital heart disease, ichthyosiform dermatosis, mental retardation, and ear anomalies/epilepsy syndrome; and early infantile epileptic encephalopathy-55. This review focuses on the current understanding of Glycosylphosphatidylinositol biosynthesis defects and the associated genes to further understand its wide phenotype spectrum.
Collapse
Affiliation(s)
- Tenghui Wu
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Fei Yin
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Shiqi Guang
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Fang He
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Li Yang
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Jing Peng
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
3
|
Lukacs M, Roberts T, Chatuverdi P, Stottmann RW. Glycosylphosphatidylinositol biosynthesis and remodeling are required for neural tube closure, heart development, and cranial neural crest cell survival. eLife 2019; 8:45248. [PMID: 31232685 PMCID: PMC6611694 DOI: 10.7554/elife.45248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchors attach nearly 150 proteins to the cell membrane. Patients with pathogenic variants in GPI biosynthesis genes develop diverse phenotypes including seizures, dysmorphic facial features and cleft palate through an unknown mechanism. We identified a novel mouse mutant (cleft lip/palate, edema and exencephaly; Clpex) with a hypo-morphic mutation in Post-Glycophosphatidylinositol Attachment to Proteins-2 (Pgap2), a component of the GPI biosynthesis pathway. The Clpex mutation decreases surface GPI expression. Surprisingly, Pgap2 showed tissue-specific expression with enrichment in the brain and face. We found the Clpex phenotype is due to apoptosis of neural crest cells (NCCs) and the cranial neuroepithelium. We showed folinic acid supplementation in utero can partially rescue the cleft lip phenotype. Finally, we generated a novel mouse model of NCC-specific total GPI deficiency. These mutants developed median cleft lip and palate demonstrating a previously undocumented cell autonomous role for GPI biosynthesis in NCC development.
Collapse
Affiliation(s)
- Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States.,Medical Scientist Training Program, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Tia Roberts
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Praneet Chatuverdi
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States.,Medical Scientist Training Program, Cincinnati Children's Medical Center, Cincinnati, United States.,Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, United States
| |
Collapse
|
4
|
Kerr CL, Bol GM, Vesuna F, Raman V. Targeting RNA helicase DDX3 in stem cell maintenance and teratoma formation. Genes Cancer 2019; 10:11-20. [PMID: 30899416 PMCID: PMC6420792 DOI: 10.18632/genesandcancer.187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DDX3 is an RNA helicase that has antiapoptotic properties, and promotes proliferation and transformation. Besides the role of DDX3 in transformed cells, there is evidence to indicate that DDX3 expression is at its highest levels during early embryonic development and is also expressed in germ cells of adults. Even though there is a distinct pattern of DDX3 expression during embryonic development and in adults, very little is known regarding its role in embryonic stem cells and pluripotency. In this work, we examined the relationship between DDX3 and human embryonic stem cells and its differentiated lineages. DDX3 expression was analyzed by immunohistochemistry in human embryonic stem cells and embryonal carcinoma cells. From the data obtained, it was evident that DDX3 was overexpressed in undifferentiated stem cells compared to differentiated cells. Moreover, when DDX3 expression was abrogated in multiple stem cells, proliferation was decreased, but differentiation was facilitated. Importantly, this resulted in reduced potency to induce teratoma formation. Taken together, these findings indicate a distinct role for DDX3 in stem cell maintenance.
Collapse
Affiliation(s)
- Candace L Kerr
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guus M Bol
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, University Medical Center Utrecht Cancer Center, GA Utrecht, The Netherlands
| | - Farhad Vesuna
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, University Medical Center Utrecht Cancer Center, GA Utrecht, The Netherlands
| | - Venu Raman
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, University Medical Center Utrecht Cancer Center, GA Utrecht, The Netherlands
| |
Collapse
|
5
|
A hypomorphic PIGA gene mutation causes severe defects in neuron development and susceptibility to complement-mediated toxicity in a human iPSC model. PLoS One 2017; 12:e0174074. [PMID: 28441409 PMCID: PMC5404867 DOI: 10.1371/journal.pone.0174074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/02/2017] [Indexed: 12/11/2022] Open
Abstract
Mutations in genes involved in glycosylphosphatidylinositol (GPI) anchor biosynthesis underlie a group of congenital syndromes characterized by severe neurodevelopmental defects. GPI anchored proteins have diverse roles in cell adhesion, signaling, metabolism and complement regulation. Over 30 enzymes are required for GPI anchor biosynthesis and PIGA is involved in the first step of this process. A hypomorphic mutation in the X-linked PIGA gene (c.1234C>T) causes multiple congenital anomalies hypotonia seizure syndrome 2 (MCAHS2), indicating that even partial reduction of GPI anchored proteins dramatically impairs central nervous system development, but the mechanism is unclear. Here, we established a human induced pluripotent stem cell (hiPSC) model containing the PIGAc.1234C>T mutation to study the effects of a hypomorphic allele of PIGA on neuronal development. Neuronal differentiation from neural progenitor cells generated by EB formation in PIGAc.1234C>T is significantly impaired with decreased proliferation, aberrant synapse formation and abnormal membrane depolarization. The results provide direct evidence for a critical role of GPI anchor proteins in early neurodevelopment. Furthermore, neural progenitors derived from PIGAc.1234C>T hiPSCs demonstrate increased susceptibility to complement-mediated cytotoxicity, suggesting that defective complement regulation may contribute to neurodevelopmental disorders.
Collapse
|
6
|
Hosseini S, Jahangir S, Eslaminejad MB. Tooth tissue engineering. BIOMATERIALS FOR ORAL AND DENTAL TISSUE ENGINEERING 2017:467-501. [DOI: 10.1016/b978-0-08-100961-1.00027-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Gamage TK, Chamley LW, James JL. Stem cell insights into human trophoblast lineage differentiation. Hum Reprod Update 2016; 23:77-103. [PMID: 27591247 DOI: 10.1093/humupd/dmw026] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The human placenta is vital for fetal development, yet little is understood about how it forms successfully to ensure a healthy pregnancy or why this process is inadequate in 1 in 10 pregnancies, leading to miscarriage, intrauterine growth restriction or preeclampsia. Trophoblasts are placenta-specific epithelial cells that maximize nutrient exchange. All trophoblast lineages are thought to arise from a population of trophoblast stem cells (TSCs). However, whilst the isolation of murine TSC has led to an explosion in understanding murine placentation, the isolation of an analogous human TSC has proved more difficult. Consequently, alternative methods of studying human trophoblast lineage development have been employed, including human embryonic stem cells (hESCs), induced pluripotent stem cells (iPS) and transformed cell lines; but what do these proxy models tell us about what is happening during early placental development? OBJECTIVE AND RATIONALE In this systematic review, we evaluate current approaches to understanding human trophoblast lineage development in order to collate and refine these models and inform future approaches aimed at establishing human TSC lines. SEARCH METHODS To ensure all relevant articles were analysed, an unfiltered search of Pubmed, Embase, Scopus and Web of Science was conducted for 25 key terms on the 13th May 2016. In total, 47 313 articles were retrieved and manually filtered based on non-human, non-English, non-full text, non-original article and off-topic subject matter. This resulted in a total of 71 articles deemed relevant for review in this article. OUTCOMES Candidate human TSC populations have been identified in, and isolated from, both the chorionic membrane and villous tissue of the placenta, but further investigation is required to validate these as 'true' human TSCs. Isolating human TSCs from blastocyst trophectoderm has not been successful in humans as it was in mice, although recently the first reported TSC line (USFB6) was isolated from an eight-cell morula. In lieu of human TSC lines, trophoblast-like cells have been induced to differentiate from hESCs and iPS. However, differentiation in these model systems is difficult to control, culture conditions employed are highly variable, and the extent to which they accurately convey the biology of 'true' human TSCs remains unclear, particularly as a consensus has not been met among the scientific community regarding which characteristics a human TSC must possess. WIDER IMPLICATIONS Human TSC models have the potential to revolutionize our understanding of trophoblast differentiation, allowing us to make significant gains in understanding the underlying pathology of pregnancy disorders and to test potential therapeutic interventions on cell function in vitro. In order to do this, a collaborative effort is required to establish the criteria that define a human TSC to confirm the presence of human TSCs in both primary isolates and to determine how accurately trophoblast-like cells derived from current model systems reflect trophoblast from primary tissue. The in vitro systems currently used to model early trophoblast lineage formation have provided insights into early human placental formation but it is unclear whether these trophoblast-like cells are truly representative of primary human trophoblast. Consequently, continued refinement of current models, and standardization of culture protocols is essential to aid our ability to identify, isolate and propagate 'true' human TSCs from primary tissue.
Collapse
Affiliation(s)
- Teena Kjb Gamage
- Department of Obstetrics and Gynaecology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
8
|
Howden SE, Maufort JP, Duffin BM, Elefanty AG, Stanley EG, Thomson JA. Simultaneous Reprogramming and Gene Correction of Patient Fibroblasts. Stem Cell Reports 2015; 5:1109-1118. [PMID: 26584543 PMCID: PMC4682122 DOI: 10.1016/j.stemcr.2015.10.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022] Open
Abstract
The derivation of genetically modified induced pluripotent stem (iPS) cells typically involves multiple steps, requiring lengthy cell culture periods, drug selection, and several clonal events. We report the generation of gene-targeted iPS cell lines following a single electroporation of patient-specific fibroblasts using episomal-based reprogramming vectors and the Cas9/CRISPR system. Simultaneous reprogramming and gene targeting was tested and achieved in two independent fibroblast lines with targeting efficiencies of up to 8% of the total iPS cell population. We have successfully targeted the DNMT3B and OCT4 genes with a fluorescent reporter and corrected the disease-causing mutation in both patient fibroblast lines: one derived from an adult with retinitis pigmentosa, the other from an infant with severe combined immunodeficiency. This procedure allows the generation of gene-targeted iPS cell lines with only a single clonal event in as little as 2 weeks and without the need for drug selection, thereby facilitating "seamless" single base-pair changes.
Collapse
Affiliation(s)
- Sara E Howden
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA.
| | - John P Maufort
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA
| | - Bret M Duffin
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA
| | - Andrew G Elefanty
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Edouard G Stanley
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - James A Thomson
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA; Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53707-7365, USA; Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
9
|
Fauth C, Steindl K, Toutain A, Farrell S, Witsch-Baumgartner M, Karall D, Joset P, Böhm S, Baumer A, Maier O, Zschocke J, Weksberg R, Marshall CR, Rauch A. A recurrent germline mutation in the PIGA gene causes Simpson-Golabi-Behmel syndrome type 2. Am J Med Genet A 2015; 170A:392-402. [PMID: 26545172 DOI: 10.1002/ajmg.a.37452] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/15/2015] [Indexed: 11/10/2022]
Abstract
Hypomorphic germline mutations in the PIGA (phosphatidylinositol glycan class A) gene recently were recognized as the cause of a clinically heterogeneous spectrum of X-linked disorders including (i) early onset epileptic encephalopathy with severe muscular hypotonia, dysmorphism, multiple congenital anomalies, and early death ("MCAHS2"), (ii) neurodegenerative encephalopathy with systemic iron overload (ferro-cerebro-cutaneous syndrome, "FCCS"), and (iii) intellectual disability and seizures without dysmorphism. Previous studies showed that the recurrent PIGA germline mutation c.1234C>T (p.Arg412*) leads to a clinical phenotype at the most severe end of the spectrum associated with early infantile lethality. We identified three additional individuals from two unrelated families with the same PIGA mutation. Major clinical findings include early onset intractable epileptic encephalopathy with a burst-suppression pattern on EEG, generalized muscular hypotonia, structural brain abnormalities, macrocephaly and increased birth weight, joint contractures, coarse facial features, widely spaced eyes, a short nose with anteverted nares, gingival overgrowth, a wide mouth, short limbs with short distal phalanges, and a small penis. Based on the phenotypic overlap with Simpson-Golabi-Behmel syndrome type 2 (SGBS2), we hypothesized that both disorders might have the same underlying cause. We were able to confirm the same c.1234C>T (p.Arg412*) mutation in the DNA sample from an affected fetus of the original family affected with SGBS2. We conclude that the recurrent PIGA germline mutation c.1234C>T leads to a recognizable clinical phenotype with a poor prognosis and is the cause of SGBS2.
Collapse
Affiliation(s)
- Christine Fauth
- Division of Human Genetics, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| | - Annick Toutain
- Department of Genetics, Tours University Hospital, Tours, France
| | - Sandra Farrell
- Department of Laboratory Medicine and Genetics, Trillium Health Partners, Credit Valley Hospital, Mississauga, Ontario, Canada
| | - Martina Witsch-Baumgartner
- Division of Human Genetics, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Karall
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Pascal Joset
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| | - Sebastian Böhm
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Alessandra Baumer
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| | - Oliver Maier
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Johannes Zschocke
- Division of Human Genetics, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science and Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Christian R Marshall
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anita Rauch
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| |
Collapse
|
10
|
Bazley FA, Liu CF, Yuan X, Hao H, All AH, De Los Angeles A, Zambidis ET, Gearhart JD, Kerr CL. Direct Reprogramming of Human Primordial Germ Cells into Induced Pluripotent Stem Cells: Efficient Generation of Genetically Engineered Germ Cells. Stem Cells Dev 2015; 24:2634-48. [PMID: 26154167 DOI: 10.1089/scd.2015.0100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primordial germ cells (PGCs) share many properties with embryonic stem cells (ESCs) and innately express several key pluripotency-controlling factors, including OCT4, NANOG, and LIN28. Therefore, PGCs may provide a simple and efficient model for studying somatic cell reprogramming to induced pluripotent stem cells (iPSCs), especially in determining the regulatory mechanisms that fundamentally define pluripotency. Here, we report a novel model of PGC reprogramming to generate iPSCs via transfection with SOX2 and OCT4 using integrative lentiviral. We also show the feasibility of using nonintegrative approaches for generating iPSC from PGCs using only these two factors. We show that human PGCs express endogenous levels of KLF4 and C-MYC protein at levels similar to embryonic germ cells (EGCs) but lower levels of SOX2 and OCT4. Transfection with both SOX2 and OCT4 together was required to induce PGCs to a pluripotent state at an efficiency of 1.71%, and the further addition of C-MYC increased the efficiency to 2.33%. Immunohistochemical analyses of the SO-derived PGC-iPSCs revealed that these cells were more similar to ESCs than EGCs regarding both colony morphology and molecular characterization. Although leukemia inhibitory factor (LIF) was not required for the generation of PGC-iPSCs like EGCs, the presence of LIF combined with ectopic exposure to C-MYC yielded higher efficiencies. Additionally, the SO-derived PGC-iPSCs exhibited differentiation into representative cell types from all three germ layers in vitro and successfully formed teratomas in vivo. Several lines were generated that were karyotypically stable for up to 24 subcultures. Their derivation efficiency and survival in culture significantly supersedes that of EGCs, demonstrating their utility as a powerful model for studying factors regulating pluripotency in future studies.
Collapse
Affiliation(s)
- Faith A Bazley
- 1 Department of Biomedical Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Cyndi F Liu
- 2 Department of Genecology and Obstetrics, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Xuan Yuan
- 4 Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Haiping Hao
- 5 JHMI Deep Sequencing and Microarray Core, High Throughput Biology Center, Johns Hopkins University , Baltimore, Maryland
| | - Angelo H All
- 1 Department of Biomedical Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Alejandro De Los Angeles
- 6 Stem Cell Transplantation Program, Division of Pediatric Hematology Oncology, Children's Hospital Boston , Massachusetts.,7 Department of Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute , Harvard Medical School, Boston, Massachusetts.,8 Harvard Stem Cell Institute , Cambridge, Massachusetts
| | - Elias T Zambidis
- 3 Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,9 Division of Pediatric Oncology at the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - John D Gearhart
- 10 Department of Cell and Developmental Biology, School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,11 Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Candace L Kerr
- 2 Department of Genecology and Obstetrics, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,12 Department of Biochemistry and Molecular Biology, University of Maryland , Baltimore, Maryland
| |
Collapse
|
11
|
Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure. Proc Natl Acad Sci U S A 2015; 112:E2337-46. [PMID: 25870291 DOI: 10.1073/pnas.1504778112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human pluripotent stem cells (PSCs) show epiblast-type pluripotency that is maintained with ACTIVIN/FGF2 signaling. Here, we report the acquisition of a unique stem cell phenotype by both human ES cells (hESCs) and induced pluripotent stem cells (iPSCs) in response to transient (24-36 h) exposure to bone morphogenetic protein 4 (BMP4) plus inhibitors of ACTIVIN signaling (A83-01) and FGF2 (PD173074), followed by trypsin dissociation and recovery of colonies capable of growing on a gelatin substratum in standard medium for human PSCs at low but not high FGF2 concentrations. The self-renewing cell lines stain weakly for CDX2 and strongly for NANOG, can be propagated clonally on either Matrigel or gelatin, and are morphologically distinct from human PSC progenitors on either substratum but still meet standard in vitro criteria for pluripotency. They form well-differentiated teratomas in immune-compromised mice that secrete human chorionic gonadotropin (hCG) into the host mouse and include small areas of trophoblast-like cells. The cells have a distinct transcriptome profile from the human PSCs from which they were derived (including higher expression of NANOG, LEFTY1, and LEFTY2). In nonconditioned medium lacking FGF2, the colonies spontaneously differentiated along multiple lineages, including trophoblast. They responded to PD173074 in the absence of both FGF2 and BMP4 by conversion to trophoblast, and especially syncytiotrophoblast, whereas an A83-01/PD173074 combination favored increased expression of HLA-G, a marker of extravillous trophoblast. Together, these data suggest that the cell lines exhibit totipotent potential and that BMP4 can prime human PSCs to a self-renewing alternative state permissive for trophoblast development. The results may have implications for regulation of lineage decisions in the early embryo.
Collapse
|
12
|
Glycosyl phosphatidylinositol anchor biosynthesis is essential for maintaining epithelial integrity during Caenorhabditis elegans embryogenesis. PLoS Genet 2015; 11:e1005082. [PMID: 25807459 PMCID: PMC4373761 DOI: 10.1371/journal.pgen.1005082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/18/2015] [Indexed: 02/07/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) is a post-translational modification resulting in the attachment of modified proteins to the outer leaflet of the plasma membrane. Tissue culture experiments have shown GPI-anchored proteins (GPI-APs) to be targeted to the apical membrane of epithelial cells. However, the in vivo importance of this targeting has not been investigated since null mutations in GPI biosynthesis enzymes in mice result in very early embryonic lethality. Missense mutations in the human GPI biosynthesis enzyme pigv are associated with a multiple congenital malformation syndrome with a high frequency of Hirschsprung disease and renal anomalies. However, it is currently unknown how these phenotypes are linked to PIGV function. Here, we identify a temperature-sensitive hypomorphic allele of PIGV in Caenorhabditis elegans, pigv-1(qm34), enabling us to study the role of GPI-APs in development. At the restrictive temperature we found a 75% reduction in GPI-APs at the surface of embryonic cells. Consequently, ~80% of pigv-1(qm34) embryos arrested development during the elongation phase of morphogenesis, exhibiting internal cysts and/or surface ruptures. Closer examination of the defects revealed them all to be the result of breaches in epithelial tissues: cysts formed in the intestine and excretory canal, and ruptures occurred through epidermal cells, suggesting weakening of the epithelial membrane or membrane-cortex connection. Knockdown of piga-1, another GPI biosynthesis enzymes resulted in similar phenotypes. Importantly, fortifying the link between the apical membrane and actin cortex by overexpression of the ezrin/radixin/moesin ortholog ERM-1, significantly rescued cyst formation and ruptures in the pigv-1(qm34) mutant. In conclusion, we discovered GPI-APs play a critical role in maintaining the integrity of the epithelial tissues, allowing them to withstand the pressure and stresses of morphogenesis. Our findings may help to explain some of the phenotypes observed in human syndromes associated with pigv mutations. Cell surface proteins, such as receptors, either integrate into the plasma membrane through a transmembrane domain or are tethered to it by an accessory glycosylated phospholipid (GPI) anchor that is attached to them after they are made. The GPI-anchor biosynthesis pathway is highly conserved from yeast to humans and null mutations in any of the key enzymes are lethal at early developmental stages. Point mutations in several genes encoding for GPI-anchor biosynthesis enzymes have been linked to human disease. Specifically, mutations in PIGV are associated with multiple congenital malformations, including renal and anorectal malformation and mental retardation. It is currently not known how the mutations in PIGV lead to these diseases. Here we describe a point mutation in the PIGV ortholog of the nematode Caenorhabditis elegans, pigv-1, which is found to cause a high degree of embryonic lethality. We documented a substantial reduction in the level of GPI-anchors in the mutant. Importantly, following its development using 4D microscopy and employing tissue-specific rescue, we identified loss of epithelial integrity as the primary cause of developmental arrest. Our results highlight the importance of GPI-anchored proteins for epithelial integrity in vivo and suggest a possible etiology for human diseases associated with PIGV mutations.
Collapse
|
13
|
Li Y, Parast MM. BMP4 regulation of human trophoblast development. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2015; 58:239-46. [PMID: 25023690 DOI: 10.1387/ijdb.130341mp] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since the derivation of human embryonic stem cells, and the subsequent generation of induced pluripotent stem cells, there has been much excitement about the ability to model and evaluate human organ development in vitro. The finding that these cells, when treated with BMP4, are able to generate the extraembryonic cell type, trophoblast, which is the predominant functional epithelium in the placenta, has not been widely accepted. This review evaluates this model, providing comparison to early known events during placentation in both human and mouse and addresses specific challenges. Keeping in mind the ultimate goal of understanding human placental development and pregnancy disorders, our aim here is two-fold: to distinguish gaps in our knowledge arising from mis- or over-interpretation of data, and to recognize the limitations of both mouse and human models, but to work within those limitations towards the ultimate goal.
Collapse
Affiliation(s)
- Yingchun Li
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | |
Collapse
|
14
|
Tarailo-Graovac M, Sinclair G, Stockler-Ipsiroglu S, Van Allen M, Rozmus J, Shyr C, Biancheri R, Oh T, Sayson B, Lafek M, Ross CJ, Robinson WP, Wasserman WW, Rossi A, van Karnebeek CDM. The genotypic and phenotypic spectrum of PIGA deficiency. Orphanet J Rare Dis 2015; 10:23. [PMID: 25885527 PMCID: PMC4348372 DOI: 10.1186/s13023-015-0243-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/18/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Phosphatidylinositol glycan biosynthesis class A protein (PIGA) is one of the enzymes involved in the biosynthesis of glycosylphosphatidylinositol (GPI) anchor proteins, which function as enzymes, adhesion molecules, complement regulators and co-receptors in signal transduction pathways. Until recently, only somatic PIGA mutations had been reported in patients with paroxysmal nocturnal hemoglobinuria (PNH), while germline mutations had not been observed, and were suspected to result in lethality. However, in just two years, whole exome sequencing (WES) analyses have identified germline PIGA mutations in male patients with XLIDD (X-linked intellectual developmental disorder) with a wide spectrum of clinical presentations. METHODS AND RESULTS Here, we report on a new missense PIGA germline mutation [g.15342986C>T (p.S330N)] identified via WES followed by Sanger sequencing, in a Chinese male infant presenting with developmental arrest, infantile spasms, a pattern of lesion distribution on brain MRI resembling that typical of maple syrup urine disease, contractures, dysmorphism, elevated alkaline phosphatase, mixed hearing loss (a combination of conductive and sensorineural), liver dysfunction, mitochondrial complex I and V deficiency, and therapy-responsive dyslipidemia with confirmed lipoprotein lipase deficiency. X-inactivation studies showed skewing in the clinically unaffected carrier mother, and CD109 surface expression in patient fibroblasts was 57% of that measured in controls; together these data support pathogenicity of this mutation. Furthermore, we review all reported germline PIGA mutations (1 nonsense, 1 frameshift, 1 in-frame deletion, five missense) in 8 unrelated families. CONCLUSIONS Our case further delineates the heterogeneous phenotype of this condition for which we propose the term 'PIGA deficiency'. While the phenotypic spectrum is wide, it could be classified into two types (severe and less severe) with shared hallmarks of infantile spasms with hypsarrhythmia on EEG and profound XLIDD. In severe PIGA deficiency, as described in our patient, patients also present with dysmorphic facial features, multiple CNS abnormalities, such as thin corpus callosum and delayed myelination, as well as hypotonia and elevated alkaline phosphatase along with liver, renal, and cardiac involvement; its course is often fatal. The less severe form of PIGA deficiency does not involve facial dysmorphism and multiple CNS abnormalities; instead, patients present with milder IDD, treatable seizures and generally a longer lifespan.
Collapse
Affiliation(s)
- Maja Tarailo-Graovac
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada.
| | - Graham Sinclair
- Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada. .,Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada. .,Biochemical Genetics Laboratory, Department of Pathology, BC Children's Hospital, University of British Columbia, Vancouver, Canada.
| | - Sylvia Stockler-Ipsiroglu
- Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada. .,Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada. .,Child & Family Research Institute, Vancouver, BC, Canada.
| | - Margot Van Allen
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada. .,Child & Family Research Institute, Vancouver, BC, Canada.
| | - Jacob Rozmus
- Division of Hematology, Oncology & BMT, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada. .,Child & Family Research Institute, Vancouver, BC, Canada.
| | - Casper Shyr
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada.
| | - Roberta Biancheri
- Department of Paediatric Neurology, Children's Hospital Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Tracey Oh
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada. .,Child & Family Research Institute, Vancouver, BC, Canada.
| | - Bryan Sayson
- Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada. .,Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada.
| | - Mirafe Lafek
- Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada. .,Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada.
| | - Colin J Ross
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada. .,Child & Family Research Institute, Vancouver, BC, Canada.
| | - Wendy P Robinson
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada. .,Child & Family Research Institute, Vancouver, BC, Canada.
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada. .,Child & Family Research Institute, Vancouver, BC, Canada.
| | - Andrea Rossi
- Department of Neuroradiology, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, I-16147, Genoa, Italy.
| | - Clara D M van Karnebeek
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada. .,Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada. .,Child & Family Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Sarkar P, Randall SM, Collier TS, Nero A, Russell TA, Muddiman DC, Rao BM. Activin/nodal signaling switches the terminal fate of human embryonic stem cell-derived trophoblasts. J Biol Chem 2015; 290:8834-48. [PMID: 25670856 DOI: 10.1074/jbc.m114.620641] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 11/06/2022] Open
Abstract
Human embryonic stem cells (hESCs) have been routinely treated with bone morphogenetic protein and/or inhibitors of activin/nodal signaling to obtain cells that express trophoblast markers. Trophoblasts can terminally differentiate to either extravillous trophoblasts or syncytiotrophoblasts. The signaling pathways that govern the terminal fate of these trophoblasts are not understood. We show that activin/nodal signaling switches the terminal fate of these hESC-derived trophoblasts. Inhibition of activin/nodal signaling leads to formation of extravillous trophoblast, whereas loss of activin/nodal inhibition leads to the formation of syncytiotrophoblasts. Also, the ability of hESCs to form bona fide trophoblasts has been intensely debated. We have examined hESC-derived trophoblasts in the light of stringent criteria that were proposed recently, such as hypomethylation of the ELF5-2b promoter region and down-regulation of HLA class I antigens. We report that trophoblasts that possess these properties can indeed be obtained from hESCs.
Collapse
Affiliation(s)
| | - Shan M Randall
- the W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, and
| | - Timothy S Collier
- the W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, and
| | - Anthony Nero
- From the Department of Chemical and Biomolecular Engineering
| | - Teal A Russell
- the Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - David C Muddiman
- the W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, and
| | - Balaji M Rao
- From the Department of Chemical and Biomolecular Engineering,
| |
Collapse
|
16
|
Roberts RM, Loh KM, Amita M, Bernardo AS, Adachi K, Alexenko AP, Schust DJ, Schulz LC, Telugu BPVL, Ezashi T, Pedersen RA. Differentiation of trophoblast cells from human embryonic stem cells: to be or not to be? Reproduction 2014; 147:D1-12. [PMID: 24518070 DOI: 10.1530/rep-14-0080] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It is imperative to unveil the full range of differentiated cell types into which human pluripotent stem cells (hPSCs) can develop. The need is twofold: it will delimit the therapeutic utility of these stem cells and is necessary to place their position accurately in the developmental hierarchy of lineage potential. Accumulated evidence suggested that hPSC could develop in vitro into an extraembryonic lineage (trophoblast (TB)) that is typically inaccessible to pluripotent embryonic cells during embryogenesis. However, whether these differentiated cells are truly authentic TB has been challenged. In this debate, we present a case for and a case against TB differentiation from hPSCs. By analogy to other differentiation systems, our debate is broadly applicable, as it articulates higher and more challenging standards for judging whether a given cell type has been genuinely produced from hPSC differentiation.
Collapse
|
17
|
Murakami T, Saitoh I, Inada E, Kurosawa M, Iwase Y, Noguchi H, Terao Y, Yamasaki Y, Hayasaki H, Sato M. STO Feeder Cells Are Useful for Propagation of Primarily Cultured Human Deciduous Dental Pulp Cells by Eliminating Contaminating Bacteria and Promoting Cellular Outgrowth. CELL MEDICINE 2013; 6:75-81. [PMID: 26858883 DOI: 10.3727/215517913x674234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
STO feeder cells, a line established from mouse SIM embryonic fibroblasts, have been frequently used for establishing embryonic stem cells and maintaining them in an undifferentiated state. There are some reports demonstrating that fibroblastic cells have the ability to phagocytose Gram-positive bacterium (e.g., streptococci and staphylococci). In this study, we examined the possibility that STO cells could phagocytose Streptococcus mutans (a bacteria causing tooth decay), which always contaminates cultures of primarily isolated human deciduous dental pulp cells (HDDPCs). Simple cultivation of the primary HDDPCs in the absence of STO cells allowed S. mutans to massively propagate in the medium, thus leading to an opaque medium. In contrast, there was no bacterial contamination in the cultures containing mitomycin C (MMC)-inactivated STO cells. Furthermore, STO cells indicated bacterial phagocytic activity under fluorescent microscopy with the dye pHrodo. Besides removal of contaminating bacteria, STO feeder cells allowed the HDDPCs to spread out. These data suggest that MMC-treated STO cells can be useful for propagation of HDDPCs by eliminating contaminating bacteria and by promoting cellular outgrowth.
Collapse
Affiliation(s)
- Tomoya Murakami
- Division of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Emi Inada
- † Department of Pediatric Dentistry, Kagashima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Mie Kurosawa
- Division of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Yoko Iwase
- Division of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Hirofumi Noguchi
- ‡ Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Yutaka Terao
- § Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Youichi Yamasaki
- † Department of Pediatric Dentistry, Kagashima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Haruaki Hayasaki
- Division of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Masahiro Sato
- ¶ Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University , Kagoshima , Japan
| |
Collapse
|
18
|
Yuan X, Braunstein EM, Ye Z, Liu CF, Chen G, Zou J, Cheng L, Brodsky RA. Generation of glycosylphosphatidylinositol anchor protein-deficient blood cells from human induced pluripotent stem cells. Stem Cells Transl Med 2013; 2:819-29. [PMID: 24113066 DOI: 10.5966/sctm.2013-0069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PIG-A is an X-linked gene required for the biosynthesis of glycosylphosphatidylinositol (GPI) anchors; thus, PIG-A mutant cells have a deficiency or absence of all GPI-anchored proteins (GPI-APs). Acquired mutations in hematopoietic stem cells result in the disease paroxysmal nocturnal hemoglobinuria, and hypomorphic germline PIG-A mutations lead to severe developmental abnormalities, seizures, and early death. Human induced pluripotent stem cells (iPSCs) can differentiate into cell types derived from all three germ layers, providing a novel developmental system for modeling human diseases. Using PIG-A gene targeting and an inducible PIG-A expression system, we have established, for the first time, a conditional PIG-A knockout model in human iPSCs that allows for the production of GPI-AP-deficient blood cells. PIG-A-null iPSCs were unable to generate hematopoietic cells or any cells expressing the CD34 marker and were defective in generating mesodermal cells expressing KDR/VEGFR2 (kinase insert domain receptor) and CD56 markers. In addition, PIG-A-null iPSCs had a block in embryonic development prior to mesoderm differentiation that appears to be due to defective signaling through bone morphogenetic protein 4. However, early inducible PIG-A transgene expression allowed for the generation of GPI-AP-deficient blood cells. This conditional PIG-A knockout model should be a valuable tool for studying the importance of GPI-APs in hematopoiesis and human development.
Collapse
Affiliation(s)
- Xuan Yuan
- Division of Hematology, Department of Medicine, School of Medicine, and
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Placental trophoblast cell differentiation: Physiological regulation and pathological relevance to preeclampsia. Mol Aspects Med 2013; 34:981-1023. [DOI: 10.1016/j.mam.2012.12.008] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/01/2012] [Accepted: 12/19/2012] [Indexed: 12/11/2022]
|
20
|
Li Y, Moretto-Zita M, Soncin F, Wakeland A, Wolfe L, Leon-Garcia S, Pandian R, Pizzo D, Cui L, Nazor K, Loring JF, Crum CP, Laurent LC, Parast MM. BMP4-directed trophoblast differentiation of human embryonic stem cells is mediated through a ΔNp63+ cytotrophoblast stem cell state. Development 2013; 140:3965-76. [PMID: 24004950 DOI: 10.1242/dev.092155] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The placenta is a transient organ that is necessary for proper fetal development. Its main functional component is the trophoblast, which is derived from extra-embryonic ectoderm. Little is known about early trophoblast differentiation in the human embryo, owing to lack of a proper in vitro model system. Human embryonic stem cells (hESCs) differentiate into functional trophoblast following BMP4 treatment in the presence of feeder-conditioned media; however, this model has not been widely accepted, in part owing to a lack of proof for a trophoblast progenitor population. We have previously shown that p63, a member of the p53 family of nuclear proteins, is expressed in proliferative cytotrophoblast (CTB), precursors to terminally differentiated syncytiotrophoblast (STB) in chorionic villi and extravillous trophoblast (EVT) at the implantation site. Here, we show that BMP4-treated hESCs differentiate into bona fide CTB by direct comparison with primary human placental tissues and isolated CTB through gene expression profiling. We show that, in primary CTB, p63 levels are reduced as cells differentiate into STB, and that forced expression of p63 maintains cyclin B1 and inhibits STB differentiation. We also establish that, similar to in vivo events, hESC differentiation into trophoblast is characterized by a p63(+)/KRT7(+) CTB stem cell state, followed by formation of functional KLF4(+) STB and HLA-G(+) EVT. Finally, we illustrate that downregulation of p63 by shRNA inhibits differentiation of hESCs into functional trophoblast. Taken together, our results establish that BMP4-treated hESCs are an excellent model of human trophoblast differentiation, closely mimicking the in vivo progression from p63(+) CTB stem cells to terminally differentiated trophoblast subtypes.
Collapse
Affiliation(s)
- Yingchun Li
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4. Proc Natl Acad Sci U S A 2013; 110:E1212-21. [PMID: 23493551 DOI: 10.1073/pnas.1303094110] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human ES cells (hESC) exposed to bone morphogenic protein 4 (BMP4) in the absence of FGF2 have become widely used for studying trophoblast development, but the soundness of this model has been challenged by others, who concluded that differentiation was primarily toward mesoderm rather than trophoblast. Here we confirm that hESC grown under the standard conditions on a medium conditioned by mouse embryonic fibroblasts in the presence of BMP4 and absence of FGF2 on a Matrigel substratum rapidly convert to an epithelium that is largely KRT7(+) within 48 h, with minimal expression of mesoderm markers, including T (Brachyury). Instead, they begin to express a series of trophoblast markers, including HLA-G, demonstrate invasive properties that are independent of the continued presence of BMP4 in the medium, and, over time, produce extensive amounts of human chorionic gonadotropin, progesterone, placental growth factor, and placental lactogen. This process of differentiation is not dependent on conditioning of the medium by mouse embryonic fibroblasts and is accelerated in the presence of inhibitors of Activin and FGF2 signaling, which at day 2 provide colonies that are entirely KRT7(+) and in which the majority of cells are transiently CDX2(+). Colonies grown on two chemically defined media, including the one in which BMP4 was reported to drive mesoderm formation, also differentiate at least partially to trophoblast in response to BMP4. The experiments demonstrate that the in vitro BMP4/hESC model is valid for studying the emergence and differentiation of trophoblasts.
Collapse
|
22
|
Tiruthani K, Sarkar P, Rao B. Trophoblast differentiation of human embryonic stem cells. Biotechnol J 2013; 8:421-33. [PMID: 23325630 DOI: 10.1002/biot.201200203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/03/2012] [Accepted: 12/06/2012] [Indexed: 11/08/2022]
Abstract
Molecular mechanisms regulating human trophoblast differentiation remain poorly understood due to difficulties in obtaining primary tissues from very early developmental stages in humans. Therefore, the use of human embryonic stem cells (hESCs) as a source for generating trophoblast tissues is of significant interest. Trophoblast-like cells have been obtained through treatment of hESCs with bone morphogenetic protein (BMP) or inhibitors of activin/nodal/transforming growth factor-β signaling, or through protocols involving formation of embryoid bodies (EBs); however, there is controversy over whether hESC-derived cells are indeed analogous to true trophoblasts found in vivo. In this review, we provide an overview of previously described efforts to obtain trophoblasts from hESCs. We also discuss the merits and limitations of hESCs as a source of trophoblast derivatives.
Collapse
Affiliation(s)
- Karthik Tiruthani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, NC 27695, USA
| | | | | |
Collapse
|
23
|
Functions of BMP signaling in embryonic stem cell fate determination. Exp Cell Res 2013; 319:113-9. [DOI: 10.1016/j.yexcr.2012.09.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 09/30/2012] [Indexed: 01/08/2023]
|
24
|
Sudheer S, Bhushan R, Fauler B, Lehrach H, Adjaye J. FGF inhibition directs BMP4-mediated differentiation of human embryonic stem cells to syncytiotrophoblast. Stem Cells Dev 2012; 21:2987-3000. [PMID: 22724507 DOI: 10.1089/scd.2012.0099] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling is known to support differentiation of human embryonic stem cells (hESCs) into mesoderm and extraembryonic lineages, whereas other signaling pathways can largely influence this lineage specification. Here, we set out to reinvestigate the influence of ACTIVIN/NODAL and fibroblast growth factor (FGF) pathways on the lineage choices made by hESCs during BMP4-driven differentiation. We show that BMP activation, coupled with inhibition of both ACTIVIN/NODAL and FGF signaling, induces differentiation of hESCs, specifically to βhCG hormone-secreting multinucleated syncytiotrophoblast and does not support induction of embryonic and extraembryonic lineages, extravillous trophoblast, and primitive endoderm. It has been previously reported that FGF2 can switch BMP4-induced hESC differentiation outcome to mesendoderm. Here, we show that FGF inhibition alone, or in combination with either ACTIVIN/NODAL inhibition or BMP activation, supports hESC differentiation to hCG-secreting syncytiotrophoblast. We show that the inhibition of the FGF pathway acts as a key in directing BMP4-mediated hESC differentiation to syncytiotrophoblast.
Collapse
Affiliation(s)
- Smita Sudheer
- Department of Vertebrate Genomics, Molecular Embryology and Aging Group, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | | | | | |
Collapse
|
25
|
Han M, Neves AL, Serrano M, Brinez P, Huhta JC, Acharya G, Linask KK. Effects of alcohol, lithium, and homocysteine on nonmuscle myosin-II in the mouse placenta and human trophoblasts. Am J Obstet Gynecol 2012; 207:140.e7-19. [PMID: 22704764 DOI: 10.1016/j.ajog.2012.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/02/2012] [Accepted: 05/09/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Mouse embryonic exposure to alcohol, lithium, and homocysteine results in intrauterine growth restriction (IUGR) and cardiac defects. Our present study focused on the placental effects. We analyzed the hypothesis that expression of nonmuscle myosin (NMM)-II isoforms involved in cell motility, mechanosensing, and extracellular matrix assembly are altered by the 3 factors in human trophoblast (HTR8/SVneo) cells in vitro and in the mouse placenta in vivo. STUDY DESIGN After exposure during gastrulation to alcohol, homocysteine, or lithium, ultrasonography defined embryos exhibiting abnormal placental blood flow. RESULTS NMM-IIA/NMM-IIB are differentially expressed in trophoblasts and in mouse placental vascular endothelial cells under pathological conditions. Misexpression of NMM-IIA/NMM-IIB in the affected placentas continued stably to midgestation but can be prevented by folate and myoinositol supplementation. CONCLUSION It is concluded that folate and myoinositol initiated early in mouse pregnancy can restore NMM-II expression, permit normal placentation/embryogenesis, and prevent IUGR induced by alcohol, lithium, and homocysteine.
Collapse
Affiliation(s)
- Mingda Han
- Department of Pediatrics, University of South Florida/All Children's Hospital Children's Research Institute, St. Petersburg, FL, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Horst OV, Chavez MG, Jheon AH, Desai T, Klein OD. Stem cell and biomaterials research in dental tissue engineering and regeneration. Dent Clin North Am 2012; 56:495-520. [PMID: 22835534 PMCID: PMC3494412 DOI: 10.1016/j.cden.2012.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
This review summarizes approaches used in tissue engineering and regenerative medicine, with a focus on dental applications. Dental caries and periodontal disease are the most common diseases resulting in tissue loss. To replace or regenerate new tissues, various sources of stem cells have been identified such as somatic stem cells from teeth and peridontium. Advances in biomaterial sciences including microfabrication, self-assembled biomimetic peptides, and 3-dimensional printing hold great promise for whole-organ or partial tissue regeneration to replace teeth and periodontium.
Collapse
Affiliation(s)
- Orapin V. Horst
- Division of Endodontics, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, Box 0758, 521 Parnassus Avenue, Clinical Science Building 627, San Francisco, CA 94143-0758, USA
| | - Miquella G. Chavez
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2330, 1700 4th Street, San Francisco, CA 94158-2330, USA
- Department of Orofacial Sciences, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442, USA
| | - Andrew H. Jheon
- Department of Orofacial Sciences, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442, USA
| | - Tejal Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2330, 1700 4th Street, San Francisco, CA 94158-2330, USA
- Department of Physiology, University of California, San Francisco, Byers Hall Room 203C, MC 2520, 1700 4th Street, San Francisco, CA 94158-2330, USA
| | - Ophir D. Klein
- Department of Orofacial Sciences, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442, USA
- Department of Pediatrics, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442, USA
- Corresponding author. Department of Orofacial Sciences, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442.
| |
Collapse
|
27
|
Mikkers H, Pike-Overzet K, Staal FJT. Induced pluripotent stem cells and severe combined immunodeficiency: merely disease modeling or potentially a novel cure? Pediatr Res 2012; 71:427-32. [PMID: 22430378 DOI: 10.1038/pr.2011.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For most, but not all, types of severe combined immunodeficiency (SCID) the underlying molecular defects are known, in principle allowing the cure of affected children via gene therapy. Typically such approaches have used autologous hematopoietic stem cells modified to express a therapeutic gene via γ-retroviral vectors. Insertional mutagenesis has emerged as a significant risk for successful application of this type of gene therapy. Therefore, lentiviral vectors with a self-inactivating design have been developed. Recent advances in stem cell technology using induced pluripotent stem cells (iPSCs) allow an entire different approach to gene therapy for SCID and other genetic disorders, namely by correction of the affected gene in patient-specific iPSCs followed by hematopoietic differentiation. Here, we review these recent advances in the field from an efficacy and safety point of view.
Collapse
Affiliation(s)
- Harald Mikkers
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
28
|
Johnston J, Gropman A, Sapp J, Teer J, Martin J, Liu C, Yuan X, Ye Z, Cheng L, Brodsky R, Biesecker L. The phenotype of a germline mutation in PIGA: the gene somatically mutated in paroxysmal nocturnal hemoglobinuria. Am J Hum Genet 2012; 90:295-300. [PMID: 22305531 DOI: 10.1016/j.ajhg.2011.11.031] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/18/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022] Open
Abstract
Phosphatidylinositol glycan class A (PIGA) is involved in the first step of glycosylphosphatidylinositol (GPI) biosynthesis. Many proteins, including CD55 and CD59, are anchored to the cell by GPI. Loss of CD55 and CD59 on erythrocytes causes complement-mediated lysis in paroxysmal nocturnal hemoglobinuria (PNH), a disease that manifests after clonal expansion of hematopoietic cells with somatic PIGA mutations. Although somatic PIGA mutations have been identified in many PNH patients, it has been proposed that germline mutations are lethal. We report a family with an X-linked lethal disorder involving cleft palate, neonatal seizures, contractures, central nervous system (CNS) structural malformations, and other anomalies. An X chromosome exome next-generation sequencing screen identified a single nonsense PIGA mutation, c.1234C>T, which predicts p.Arg412(∗). This variant segregated with disease and carrier status in the family, is similar to mutations known to cause PNH as a result of PIGA dysfunction, and was absent in 409 controls. PIGA-null mutations are thought to be embryonic lethal, suggesting that p.Arg412(∗) PIGA has residual function. Transfection of a mutant p.Arg412(∗) PIGA construct into PIGA-null cells showed partial restoration of GPI-anchored proteins. The genetic data show that the c.1234C>T (p.Arg412(∗)) mutation is present in an affected child, is linked to the affected chromosome in this family, is rare in the population, and results in reduced, but not absent, biosynthesis of GPI anchors. We conclude that c.1234C>T in PIGA results in the lethal X-linked phenotype recognized in the reported family.
Collapse
|
29
|
Pu JJ, Hu R, Mukhina GL, Carraway HE, McDevitt MA, Brodsky RA. The small population of PIG-A mutant cells in myelodysplastic syndromes do not arise from multipotent hematopoietic stem cells. Haematologica 2012; 97:1225-33. [PMID: 22315493 DOI: 10.3324/haematol.2011.048215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Patients with paroxysmal nocturnal hemoglobinuria harbor clonal glycosylphosphatidylinositol-anchor deficient cells arising from a multipotent hematopoietic stem cell acquiring a PIG-A mutation. Many patients with aplastic anemia and myelodysplastic syndromes also harbor small populations of glycosylphosphatidylinositol-anchor deficient cells. Patients with aplastic anemia often evolve into paroxysmal nocturnal hemoglobinuria; however, myelodysplastic syndromes seldom evolve into paroxysmal nocturnal hemoglobinuria. Here, we investigate the origin and clonality of small glycosylphosphatidylinositol-anchor deficient cell populations in aplastic anemia and myelodysplastic syndromes. DESIGN AND METHODS We used peripheral blood flow cytometry to identify glycosylphosphatidylinositol-anchor deficient blood cells, a proaerolysin-resistant colony forming cell assay to select glycosylphosphatidylinositol-anchor deficient progenitor cells, a novel T-lymphocyte enrichment culture assay with proaerolysin selection to expand glycosylphosphatidylinositol-anchor deficient T lymphocytes, and PIG-A gene sequencing assays to identify and analyze PIG-A mutations in patients with aplastic anemia and myelodysplastic syndromes. RESULTS Twelve of 15 aplastic anemia patients were found to harbor a small population of glycosylphosphatidylinositol-anchor deficient granulocytes; 11 of them were found to harbor a small population of glycosylphosphatidylinositol-anchor deficient erythrocytes, 10 patients were detected to harbor glycosylphosphatidylinositol-anchor deficient T lymphocytes, and 3 of them were detected only after T-lymphocyte enrichment in proaerolysin selection. PIG-A mutation analyses on 3 patients showed that all of them harbored a matching PIG-A mutation between CFU-GM and enriched T lymphocytes. Two of 26 myelodysplastic syndromes were found to harbor small populations of glycosylphosphatidylinositol-anchor deficient granulocytes and erythrocytes transiently. Bone marrow derived CD34(+) cells from 4 patients grew proaerolysin-resistant colony forming cells bearing PIG-A mutations. No glycosylphosphatidylinositol-anchor deficient T lymphocytes were detected in myelodysplastic syndrome patients. CONCLUSIONS In contrast to aplastic anemia and paroxysmal nocturnal hemoglobinuria, where PIG-A mutations arise from multipotent hematopoietic stem cells, glycosylphosphatidylinositol-anchor deficient cells in myelodysplastic syndromes appear to arise from more committed progenitors.
Collapse
Affiliation(s)
- Jeffrey J Pu
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
30
|
L. Shirley M, Venable A, R. Rao R, L. Boyd N, L. Stice S, Puett D, Narayan P. Bone morphogenetic protein-4 affects both trophoblast and non-trophoblast lineage-associated gene expression in human embryonic stem cells. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/scd.2012.24021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Lipchina I, Elkabetz Y, Hafner M, Sheridan R, Mihailovic A, Tuschl T, Sander C, Studer L, Betel D. Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. Genes Dev 2011; 25:2173-86. [PMID: 22012620 DOI: 10.1101/gad.17221311] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MicroRNAs are important regulators in many cellular processes, including stem cell self-renewal. Recent studies demonstrated their function as pluripotency factors with the capacity for somatic cell reprogramming. However, their role in human embryonic stem (ES) cells (hESCs) remains poorly understood, partially due to the lack of genome-wide strategies to identify their targets. Here, we performed comprehensive microRNA profiling in hESCs and in purified neural and mesenchymal derivatives. Using a combination of AGO cross-linking and microRNA perturbation experiments, together with computational prediction, we identified the targets of the miR-302/367 cluster, the most abundant microRNAs in hESCs. Functional studies identified novel roles of miR-302/367 in maintaining pluripotency and regulating hESC differentiation. We show that in addition to its role in TGF-β signaling, miR-302/367 promotes bone morphogenetic protein (BMP) signaling by targeting BMP inhibitors TOB2, DAZAP2, and SLAIN1. This study broadens our understanding of microRNA function in hESCs and is a valuable resource for future studies in this area.
Collapse
Affiliation(s)
- Inna Lipchina
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Georgiou E, Layton M, Karadimitris A. Inherited GPI deficiency: a disorder of histone hypoacetylation. ACTA ACUST UNITED AC 2010; 87:327-34. [PMID: 19960552 DOI: 10.1002/bdrc.20166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Co-operative interaction of transcription factors (TF) with epigenetic processes, such as chromatin remodeling and modification (acetylation or methylation), as well as DNA methylation, determine transcriptional activity, activation or repression of a given gene. Mutations disrupting binding of TF to their cognate DNA motifs would be expected to alter the epigenetic landscape of the promoter and selectively affect transcription of the given gene. We review here the transcriptional, epigenetic, biochemical, and clinical consequences of a constitutional mutation in the promoter of PIGM, a housekeeping gene that disrupts binding of the general TF, SP1, thus causing the autosomal recessive disease, inherited glycosylphosphatidylinositol (GPI) deficiency. We suggest that detailed dissection of the function of the mutated PIGM promoter provides important lessons pertinent to the transcriptional and epigenetic control of housekeeping genes as a whole and might have wider therapeutic implications.
Collapse
Affiliation(s)
- Elisabeth Georgiou
- Department of Haematology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, Imperial College London, London, W12 0NN, United Kingdom
| | | | | |
Collapse
|
33
|
Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 2009; 114:5473-80. [PMID: 19797525 DOI: 10.1182/blood-2009-04-217406] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human induced pluripotent stem (iPS) cells derived from somatic cells hold promise to develop novel patient-specific cell therapies and research models for inherited and acquired diseases. We and others previously reprogrammed human adherent cells, such as postnatal fibroblasts to iPS cells, which resemble adherent embryonic stem cells. Here we report derivation of iPS cells from postnatal human blood cells and the potential of these pluripotent cells for disease modeling. Multiple human iPS cell lines were generated from previously frozen cord blood or adult CD34(+) cells of healthy donors, and could be redirected to hematopoietic differentiation. Multiple iPS cell lines were also generated from peripheral blood CD34(+) cells of 2 patients with myeloproliferative disorders (MPDs) who acquired the JAK2-V617F somatic mutation in their blood cells. The MPD-derived iPS cells containing the mutation appeared normal in phenotypes, karyotype, and pluripotency. After directed hematopoietic differentiation, the MPD-iPS cell-derived hematopoietic progenitor (CD34(+)CD45(+)) cells showed the increased erythropoiesis and gene expression of specific genes, recapitulating features of the primary CD34(+) cells of the corresponding patient from whom the iPS cells were derived. These iPS cells provide a renewable cell source and a prospective hematopoiesis model for investigating MPD pathogenesis.
Collapse
|
34
|
Toward clinical therapies using hematopoietic cells derived from human pluripotent stem cells. Blood 2009; 114:3513-23. [PMID: 19652198 DOI: 10.1182/blood-2009-03-191304] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) provide remarkable cellular platforms to better understand human hematopoiesis and to develop clinically applicable hematopoietic cell-based therapies. Over the past decade, hESCs have been used to characterize molecular and cellular mechanisms underpinning the differentiation of hematopoietic progenitors and mature, functional hematopoietic cells. These advances are now poised to lead to clinical translation of hESC- and iPSC-derived hematopoietic cells for novel therapies in the next few years. On the basis of areas of recent success, initial clinical use of hematopoietic cells derived from human pluripotent stem cells will probably be in the areas of transfusion therapies (erythrocytes and platelets) and immune therapies (natural killer cells). In contrast, efficient development and isolation of hematopoietic stem cells capable of long-term, multilineage engraftment still remains a significant challenge. Technical, safety, and regulatory concerns related to clinical applications of human PSCs must be appropriately addressed. However, proper consideration of these issues should facilitate and not inhibit clinical translation of new therapies. This review outlines the current status of hematopoietic cell development and what obstacles must be surmounted to bring hematopoietic cell therapies from human PSCs from "bench to bedside."
Collapse
|
35
|
Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK, Chen G, Ye Z, Park IH, Daley GQ, Porteus MH, Joung JK, Cheng L. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 2009; 5:97-110. [PMID: 19540188 PMCID: PMC2720132 DOI: 10.1016/j.stem.2009.05.023] [Citation(s) in RCA: 410] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/24/2009] [Accepted: 05/20/2009] [Indexed: 11/16/2022]
Abstract
We report here homologous recombination (HR)-mediated gene targeting of two different genes in human iPS cells (hiPSCs) and human ES cells (hESCs). HR-mediated correction of a chromosomally integrated mutant GFP reporter gene reaches efficiencies of 0.14%-0.24% in both cell types transfected by donor DNA with plasmids expressing zinc finger nucleases (ZFNs). Engineered ZFNs that induce a sequence-specific double-strand break in the GFP gene enhanced HR-mediated correction by > 1400-fold without detectable alterations in stem cell karyotypes or pluripotency. Efficient HR-mediated insertional mutagenesis was also achieved at the endogenous PIG-A locus, with a > 200-fold enhancement by ZFNs targeted to that gene. Clonal PIG-A null hESCs and iPSCs with normal karyotypes were readily obtained. The phenotypic and biological defects were rescued by PIG-A transgene expression. Our study provides the first demonstration of HR-mediated gene targeting in hiPSCs and shows the power of ZFNs for inducing specific genetic modifications in hiPSCs, as well as hESCs.
Collapse
Affiliation(s)
- Jizhong Zou
- Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Morgan L. Maeder
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Prashant Mali
- Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shondra M Pruett-Miller
- Departments of Pediatrics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stacey Thibodeau-Beganny
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bin-Kuan Chou
- Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guibin Chen
- Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhaohui Ye
- Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - In-Hyun Park
- Division of Hematology/Oncology, Children's Hospital Boston; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Boston, MA 02115
| | - George Q. Daley
- Division of Hematology/Oncology, Children's Hospital Boston; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Boston, MA 02115
- Howard Hughes Medical Institute
| | - Matthew H. Porteus
- Departments of Pediatrics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - J. Keith Joung
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Linzhao Cheng
- Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
36
|
|
37
|
Wu Z, Zhang W, Chen G, Cheng L, Liao J, Jia N, Gao Y, Dai H, Yuan J, Cheng L, Xiao L. Combinatorial signals of activin/nodal and bone morphogenic protein regulate the early lineage segregation of human embryonic stem cells. J Biol Chem 2008; 283:24991-5002. [PMID: 18596037 PMCID: PMC2529127 DOI: 10.1074/jbc.m803893200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cell fate commitment of pre-implantation blastocysts, to either the inner
cell mass or trophoblast, is the first step in cell lineage segregation of the
developing human embryo. However, the intercellular signals that control fate
determination of these cells remain obscure. Human embryonic stem cells
(hESCs) provide a unique model for studying human early embryonic development.
We have previously shown that Activin/Nodal signaling contributes to
maintaining pluripotency of hESCs, which are derivatives of the inner cell
mass. Here we further demonstrate that the inhibition of Activin/Nodal
signaling results in the loss of hESC pluripotency and trophoblast
differentiation, similar to BMP4-induced trophoblast differentiation from
hESCs. We also show that the trophoblast induction effect of BMP4 correlates
with and depends on the inhibition of Activin/Nodal signaling. However, the
activation of BMP signaling is still required for trophoblast differentiation
when Activin/Nodal signaling is inhibited. These data reveal that the early
lineage segregation of hESCs is determined by the combinatorial signals of
Activin/Nodal and BMP.
Collapse
Affiliation(s)
- Zhao Wu
- Laboratory of Molecular Cell Biology, Key Laboratory of Stem Cell Biology, Institute of Biochemistry and Cell Biology, the Cell Bank/Stem Cell Bank, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mali P, Ye Z, Hommond HH, Yu X, Lin J, Chen G, Zou J, Cheng L. Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells 2008; 26:1998-2005. [PMID: 18511599 DOI: 10.1634/stemcells.2008-0346] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It was reported recently that human fibroblasts can be reprogrammed into a pluripotent state that resembles that of human embryonic stem (hES) cells. This was achieved by ectopic expression of four genes followed by culture on mouse embryonic fibroblast (MEF) feeders under a condition favoring hES cell growth. However, the efficiency of generating human induced pluripotent stem (iPS) cells is low, especially for postnatal human fibroblasts. We started supplementing with an additional gene or bioactive molecules to increase the efficiency of generating iPS cells from human adult as well as fetal fibroblasts. We report here that adding SV40 large T antigen (T) to either set of the four reprogramming genes previously used enhanced the efficiency by 23-70-fold from both human adult and fetal fibroblasts. Discernible hES-like colonies also emerged 1-2 weeks earlier if T was added. With the improved efficiency, we succeeded in replacing MEFs with immortalized human feeder cells that we previously established for optimal hES cell growth. We further characterized individually picked hES-like colonies after expansion (up to 24 passages). The majority of them expressed various undifferentiated hES markers. Some but not all the hES-like clones can be induced to differentiate into the derivatives of the three embryonic germ layers in both teratoma formation and embryoid body (EB) formation assays. These pluripotent clones also differentiated into trophoblasts after EB formation or bone morphogenetic protein 4 induction as classic hES cells. Using this improved approach, we also generated hES-like cells from homozygous fibroblasts containing the sickle cell anemia mutation Hemoglobin Sickle. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Prashant Mali
- Stem Cell Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Broadway Research Building, Room 747, 733 North Broadway, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Brodsky RA. Paroxysmal nocturnal hemoglobinuria: stem cells and clonality. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2008; 2008:111-115. [PMID: 19074067 DOI: 10.1182/asheducation-2008.1.111] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Paroxysmal nocturnal hemoglobinuria is a clonal hematopoietic stem cell disease that manifests with intravascular hemolysis, bone marrow failure, thrombosis, and smooth muscle dystonias. The disease can arise de novo or in the setting of acquired aplastic anemia. All PNH patients to date have been shown to harbor PIG-A mutations; the product of this gene is required for the synthesis of glycosylphosphatidylinositol (GPI) anchored proteins. In PNH patients, PIG-A mutations arise from a multipotent hematopoietic stem cell. Interestingly, PIG-A mutations can also be found in the peripheral blood of most healthy controls; however, these mutations arise from progenitor cells rather than multipotent hematopoietic stem cells and do not propagate the disease. The mechanism of whereby PNH stem cells achieve clonal dominance remains unclear. The leading hypotheses to explain clonal outgrowth in PNH are: 1) PNH cells evade immune attack possibly, because of an absent cell surface GPI-AP that is the target of the immune attack; 2) The PIG-A mutation confers an intrinsic resistance to apoptosis that becomes more conspicuous when the marrow is under immune attack; and 3) A second mutation occurs in the PNH clone to give it an intrinsic survival advantage. These hypotheses may not be mutually exclusive, since data in support of all three models have been generated.
Collapse
Affiliation(s)
- Robert A Brodsky
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-0185, USA.
| |
Collapse
|