1
|
Yuan WC, Earl AS, Ma S, Alcedo K, Russell JO, Duarte FM, Chu YT, Chang PC, Chen HY, Chi HH, Zhu Q, Rodriguez-Fraticelli AE, Patel SH, Lee YR, Buenrostro JD, Camargo FD. HBO1 functions as an epigenetic barrier to hepatocyte plasticity and reprogramming during liver injury. Cell Stem Cell 2025:S1934-5909(25)00177-8. [PMID: 40403721 DOI: 10.1016/j.stem.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 02/19/2025] [Accepted: 04/22/2025] [Indexed: 05/24/2025]
Abstract
Hepatocytes can reprogram into biliary epithelial cells (BECs) during liver injury, but the underlying epigenetic mechanisms remain poorly understood. Here, we define the chromatin dynamics of this process using single-cell ATAC-seq and identify YAP/TEAD activation as a key driver of chromatin remodeling. An in vivo CRISPR screen highlights the histone acetyltransferase HBO1 as a critical barrier to reprogramming. HBO1 is recruited by YAP to target loci, where it promotes histone H3 lysine 14 acetylation (H3K14ac) and engages the chromatin reader zinc-finger MYND-type containing 8 (ZMYND8) to suppress YAP/TEAD-driven transcription. Loss of HBO1 accelerates chromatin remodeling, enhances YAP binding, and enables a more complete hepatocyte-to-BEC transition. Our findings position HBO1 as an epigenetic brake that restrains YAP-mediated reprogramming, suggesting that targeting HBO1 may enhance hepatocyte plasticity for liver regeneration.
Collapse
Affiliation(s)
- Wei-Chien Yuan
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| | - Andrew S Earl
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sai Ma
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10026 USA
| | - Karel Alcedo
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jacquelyn O Russell
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fabiana M Duarte
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yen-Ting Chu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Pei-Chi Chang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Hsin-Hui Chi
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Qian Zhu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Lester Sue Smith Breast Center, Department of Molecular and Human Genetics, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Alejo E Rodriguez-Fraticelli
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sachin H Patel
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yu-Ru Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fernando D Camargo
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
2
|
Brown GE, Bodke VV, Ware BR, Khetani SR. Liver portal fibroblasts induce the functions of primary human hepatocytes in vitro. Commun Biol 2025; 8:721. [PMID: 40346200 PMCID: PMC12064700 DOI: 10.1038/s42003-025-08135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
In vitro human liver models are critical to mitigate species-specific differences observed for toxicology, disease modeling, and regenerative medicine. Interactions with mesenchyme (i.e., fibroblasts) can promote phenotypic functions of primary human hepatocytes (PHHs) in culture; however, using liver-derived fibroblasts remains elusive. Portal fibroblasts (PFs) around the portal triad influence bile duct formation during development, but their role in regulating homeostatic hepatic functions remains unknown. Here, we show that human liver PFs induce long-term phenotypic functions in PHHs at higher levels than activated hepatic stellate cells across 2-dimensional and 3-dimensional culture formats. While PF-conditioned media induces some hepatic functions, partly via insulin-like growth factor binding protein-5 signaling, direct contact is necessary to induce optimal functional levels. Inhibiting Notch signaling reduces progenitor-like characteristics of PHHs and further enhances functionality. Overall, this work demonstrates a unique role for PFs in modulating hepatic functions and provides all-human and all-liver coculture strategies for downstream applications.
Collapse
Affiliation(s)
- Grace E Brown
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Vedant V Bodke
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Brenton R Ware
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Salman R Khetani
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Sussman JH, Cure HW, Yuan S, Ito K, Asangani IA, Garcia BA, Stanger BZ, Katsuda T. In vivo CRISPR screening reveals epigenetic regulators of hepatobiliary plasticity. Genes Dev 2025; 39:603-616. [PMID: 40169232 PMCID: PMC12047657 DOI: 10.1101/gad.352420.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025]
Abstract
Following prolonged liver injury, a small fraction of hepatocytes undergoes reprogramming to become cholangiocytes or biliary epithelial cells (BECs). This physiological process involves chromatin and transcriptional remodeling, but the epigenetic mediators are largely unknown. Here, we exploited a lineage-traced model of liver injury to investigate the role of histone post-translational modification in biliary reprogramming. Using mass spectrometry, we defined the repertoire of histone marks that are globally altered in quantity during reprogramming. Next, applying an in vivo CRISPR screening approach, we identified seven histone-modifying enzymes that alter the efficiency of hepatobiliary reprogramming. Among these, the histone methyltransferase and demethylase Nsd1 and Kdm2a were found to have reciprocal effects on H3K36 methylation that regulated the early and late stages of reprogramming, respectively. Although loss of Nsd1 and Kdm2a affected reprogramming efficiency, cells ultimately acquired the same transcriptomic states. These findings reveal that multiple chromatin regulators exert dynamic and complementary activities to achieve robust cell fate switching, serving as a model for the cell identity changes that occur in various forms of physiological metaplasia or reprogramming.
Collapse
Affiliation(s)
- Jonathan H Sussman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hector W Cure
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Salina Yuan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kenji Ito
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Irfan A Asangani
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Benjamin A Garcia
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ben Z Stanger
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Takeshi Katsuda
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Meng L, Du M, Li H, Kong F, Yang J, Dong R, Zheng S, Chen G, Shen Z, Wang J. Single-cell transcription reveals hepatocyte-to-cholangiocyte reprogramming and biliary gene profile in biliary atresia. Hepatol Commun 2025; 9:e0710. [PMID: 40366121 PMCID: PMC12055120 DOI: 10.1097/hc9.0000000000000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/06/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Ductular reaction (DR), characterized by the expansion of biliary epithelial cells in the portal area, is a typical hepatic pathology for biliary atresia (BA). The cellular source and function of DR remain poorly understood. Herein, we performed single-cell RNA sequencing (scRNA-seq) in BA to resolve the complexity of DR in BA. METHODS A total of 4 BA and 3 normal control livers underwent scRNA-seq. The epithelial cells were extracted from all cells for further analysis. The cell types, functions, and differentiational trajectory of epithelial cells were determined. The biliary markers and transcription factors (TFs) were identified by combing public bulk and scRNA-seq data and validated by immunohistochemistry. RESULTS ScRNA-seq identified the existence of biliary reprogramming in BA, and the reprogrammed cells expressed both hepatocyte and cholangiocyte markers. When compared with hepatocytes, genes of epithelial-mesenchymal transition, fibrosis, inflammation, and RNA metabolism were enriched in cholangiocytes and upregulated in BA. Pseudotime analysis depicted a differentiation trajectory from hepatocytes across reprogrammed cells to cholangiocytes in BA. Matrix metalloproteinase 7 (MMP7), VTCN1, and LAMC2 were identified as the biliary markers, and KLF5 and HNF1B were determined as the biliary TFs in BA. All the biliary markers and TFs were upregulated in BA when compared with controls. CONCLUSIONS Dissecting the cellular source and function of cholangiocytes is essential to understand the pathological role of DR in BA. The identified specific biliary markers and TFs provide important insights into its potential diagnosis and mechanism exploration for BA in the future.
Collapse
Affiliation(s)
- Lingdu Meng
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, P.R. China
| | - Min Du
- Department of Pediatric Gastroenterology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Haodong Li
- Department of Pediatric Orthopedics, Children’s Hospital of Fudan University, Shanghai, P.R. China
| | - Fanyang Kong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, P.R. China
| | - Jiajian Yang
- Department of Pediatric Surgery, Children’s Hospital of Fudan University (Xiamen Branch), Xiamen Children’s Hospital, Xiamen, P.R. China
| | - Rui Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, P.R. China
| | - Shan Zheng
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, P.R. China
| | - Gong Chen
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, P.R. China
| | - Zhen Shen
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, P.R. China
| | - Junfeng Wang
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, P.R. China
| |
Collapse
|
5
|
Zhang X, Li S, Hao L, Jia F, Yu F, Hu X. Influencing factors and mechanism of hepatocyte regeneration. J Transl Med 2025; 23:493. [PMID: 40307789 PMCID: PMC12042435 DOI: 10.1186/s12967-025-06278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/20/2025] [Indexed: 05/02/2025] Open
Abstract
As a research hotspot in the field of regenerative medicine, hepatocyte regeneration has great potential in the treatment of liver diseases. This paper comprehensively summarizes the diverse sources of hepatocyte regeneration and its complex influencing factors, and deeply discusses the typical mechanism. According to the existing research, we observed that Wnt signaling pathway and Notch signaling pathway can play a synergistic role in the process of hepatocyte regeneration. So we further analyzed the crosstalk between Wnt and Notch signal pathway and the cross mechanism with TGF-β, YAP/TAZ pathway during regeneration. Despite the remarkable progress in the study of liver regeneration at the cellular and molecular levels, the comprehensive understanding of the fine regulation of influencing factors and the interaction between mechanisms still needs to be deepened. This paper aims to systematically analyze the interaction between influencing factors and classical mechanisms of hepatocyte regeneration by integrating multi-group data and advanced bioinformatics methods, so as to provide feasible ideas for the treatment of liver diseases and lay a solid theoretical foundation for the future development of regenerative medicine. It is believed that focusing on the rational development of innovative means such as inducing gene tendentiousness expression and anti-aging therapy, and in-depth analysis of the complex interactive network between hepatocyte regeneration mechanisms are expected to open up a new road for the development of more effective treatment strategies for liver diseases.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China
- Clinical Medical College of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Shenghao Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China
- Clinical Medical College of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China
- Clinical Medical College of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Fukang Jia
- Henan University of Traditional Chinese, Zhengzhou, China
| | - Fei Yu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China
- Clinical Medical College of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Adams MT, Jasper H, Mosteiro L. Unlocking regeneration: how partial reprogramming resembles tissue healing. Curr Opin Genet Dev 2025; 93:102351. [PMID: 40311172 DOI: 10.1016/j.gde.2025.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 05/03/2025]
Abstract
Partial reprogramming achieved by the transient expression of the transcription factors (TFs) Oct4, Sox2, Klf4 and C-Myc (abbreviated OSKM) can erase aging and damage features in cells, leading to increased healthspan, lifespan and tissue regeneration. Recent reports suggest that the mechanisms of partial reprogramming may share some similarities with natural dedifferentiation and regeneration. Both processes appear to involve the transient repression of somatic identity through the sequestration of somatic identity TFs to noncanonical sites, which are opened by the high expression of pioneer TFs, leading to transient dedifferentiation into a fetal-like state. Here, we review the reported benefits of partial reprogramming on tissue regeneration and propose a common mechanism of epigenetic remodeling with natural regeneration after tissue injury.
Collapse
Affiliation(s)
- Melissa T Adams
- Department of Regenerative Medicine, Genentech, South San Francisco, USA
| | - Heinrich Jasper
- Department of Regenerative Medicine, Genentech, South San Francisco, USA
| | - Lluc Mosteiro
- Department of Regenerative Medicine, Genentech, South San Francisco, USA.
| |
Collapse
|
7
|
Hammond NL, Murtuza Baker S, Georgaka S, Al-Anbaki A, Jokl E, Simpson K, Sanchez-Alvarez R, Athwal VS, Purssell H, Siriwardena AK, Spiers HVM, Dixon MJ, Bere LD, Jones AP, Haley MJ, Couper KN, Bobola N, Sharrocks AD, Hanley NA, Rattray M, Piper Hanley K. Spatial gene regulatory networks driving cell state transitions during human liver disease. EMBO Mol Med 2025:10.1038/s44321-025-00230-6. [PMID: 40281306 DOI: 10.1038/s44321-025-00230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Liver fibrosis is a major cause of death worldwide. As a progressive step in chronic liver disease, fibrosis is almost always diagnosed too late with limited treatment options. Here, we uncover the spatial transcriptional landscape driving human liver fibrosis using single nuclei RNA and Assay for Transposase-Accessible Chromatin (ATAC) sequencing to deconvolute multi-cell spatial transcriptomic profiling in human liver cirrhosis. Through multi-modal data integration, we define molecular signatures driving cell state transitions in liver disease and define an impaired cellular response and directional trajectory between hepatocytes and cholangiocytes associated with disease remodelling. We identify pro-fibrogenic signatures in non-parenchymal cell subpopulations co-localised within the fibrotic niche and localise transitional cell states at the scar interface. This combined approach provides a spatial atlas of gene regulation and defines molecular signatures associated with liver disease for targeted therapeutics or as early diagnostic markers of progressive liver disease.
Collapse
Affiliation(s)
- Nigel L Hammond
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Syed Murtuza Baker
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Sokratia Georgaka
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Ali Al-Anbaki
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Elliot Jokl
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Kara Simpson
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Rosa Sanchez-Alvarez
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Varinder S Athwal
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Huw Purssell
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Ajith K Siriwardena
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | | | - Mike J Dixon
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Leoma D Bere
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Adam P Jones
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Michael J Haley
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Kevin N Couper
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Nicoletta Bobola
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Neil A Hanley
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Magnus Rattray
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Karen Piper Hanley
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
8
|
Gupta V, Sehrawat TS, Pinzani M, Strazzabosco M. Portal Fibrosis and the Ductular Reaction: Pathophysiological Role in the Progression of Liver Disease and Translational Opportunities. Gastroenterology 2025; 168:675-690. [PMID: 39251168 PMCID: PMC11885590 DOI: 10.1053/j.gastro.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 09/11/2024]
Abstract
A consistent feature of chronic liver diseases and the hallmark of pathologic repair is the so-called "ductular reaction." This is a histologic abnormality characterized by an expansion of dysmorphic cholangiocytes inside and around portal spaces infiltrated by inflammatory, mesenchymal, and vascular cells. The ductular reaction is a highly regulated response based on the reactivation of morphogenetic signaling mechanisms and a complex crosstalk among a multitude of cell types. The nature and mechanism of these exchanges determine the difference between healthy regenerative liver repair and pathologic repair. An orchestrated signaling among cell types directs mesenchymal cells to deposit a specific extracellular matrix with distinct physical and biochemical properties defined as portal fibrosis. Progression of fibrosis leads to vast architectural and vascular changes known as "liver cirrhosis." The signals regulating the ecology of this microenvironment are just beginning to be addressed. Contrary to the tumor microenvironment, immune modulation inside this "benign" microenvironment is scarcely known. One of the reasons for this is that both the ductular reaction and portal fibrosis have been primarily considered a manifestation of cholestatic liver disease, whereas this phenomenon is also present, albeit with distinctive features, in all chronic human liver diseases. Novel human-derived cellular models and progress in "omics" technologies are increasing our knowledge at a fast pace. Most importantly, this knowledge is on the edge of generating new diagnostic and therapeutic advances. Here, we will critically review the latest advances, in terms of mechanisms, pathophysiology, and treatment prospects. In addition, we will delineate future avenues of research, including innovative translational opportunities.
Collapse
Affiliation(s)
- Vikas Gupta
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Tejasav S Sehrawat
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Massimo Pinzani
- UCL Institute for Liver & Digestive Health, Royal Free Hospital, London, United Kingdom; University of Pittsburgh Medical Center-Mediterranean Institute for Transplantation and Highly Specialized Therapies, Palermo, Italy
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
9
|
Pita-Juarez Y, Karagkouni D, Kalavros N, Melms JC, Niezen S, Delorey TM, Essene AL, Brook OR, Pant D, Skelton-Badlani D, Naderi P, Huang P, Pan L, Hether T, Andrews TS, Ziegler CGK, Reeves J, Myloserdnyy A, Chen R, Nam A, Phelan S, Liang Y, Gregory M, He S, Patrick M, Rane T, Wardhani A, Amin AD, Biermann J, Hibshoosh H, Veregge M, Kramer Z, Jacobs C, Yalcin Y, Phillips D, Slyper M, Subramanian A, Ashenberg O, Bloom-Ackermann Z, Tran VM, Gomez J, Sturm A, Zhang S, Fleming SJ, Warren S, Beechem J, Hung D, Babadi M, Padera RF, MacParland SA, Bader GD, Imad N, Solomon IH, Miller E, Riedel S, Porter CBM, Villani AC, Tsai LTY, Hide W, Szabo G, Hecht J, Rozenblatt-Rosen O, Shalek AK, Izar B, Regev A, Popov YV, Jiang ZG, Vlachos IS. A single-nucleus and spatial transcriptomic atlas of the COVID-19 liver reveals topological, functional, and regenerative organ disruption in patients. Genome Biol 2025; 26:56. [PMID: 40087773 PMCID: PMC11907808 DOI: 10.1186/s13059-025-03499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/07/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND The molecular underpinnings of organ dysfunction in severe COVID-19 and its potential long-term sequelae are under intense investigation. To shed light on these in the context of liver function, we perform single-nucleus RNA-seq and spatial transcriptomic profiling of livers from 17 COVID-19 decedents. RESULTS We identify hepatocytes positive for SARS-CoV-2 RNA with an expression phenotype resembling infected lung epithelial cells, and a central role in a pro-fibrotic TGFβ signaling cell-cell communications network. Integrated analysis and comparisons with healthy controls reveal extensive changes in the cellular composition and expression states in COVID-19 liver, providing the underpinning of hepatocellular injury, ductular reaction, pathologic vascular expansion, and fibrogenesis characteristic of COVID-19 cholangiopathy. We also observe Kupffer cell proliferation and erythrocyte progenitors for the first time in a human liver single-cell atlas. Despite the absence of a clinical acute liver injury phenotype, endothelial cell composition is dramatically impacted in COVID-19, concomitantly with extensive alterations and profibrogenic activation of reactive cholangiocytes and mesenchymal cells. CONCLUSIONS Our atlas provides novel insights into liver physiology and pathology in COVID-19 and forms a foundational resource for its investigation and understanding.
Collapse
Affiliation(s)
- Yered Pita-Juarez
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dimitra Karagkouni
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nikolaos Kalavros
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, HMS Initiative for RNA Medicine / Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Johannes C Melms
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Sebastian Niezen
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Toni M Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam L Essene
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Olga R Brook
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deepti Pant
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Disha Skelton-Badlani
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Pourya Naderi
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Pinzhu Huang
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Liuliu Pan
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Tallulah S Andrews
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Carly G K Ziegler
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Program in Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Andriy Myloserdnyy
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rachel Chen
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Andy Nam
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Yan Liang
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Shanshan He
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Tushar Rane
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Amit Dipak Amin
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Jana Biermann
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Molly Veregge
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Zachary Kramer
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Christopher Jacobs
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Yusuf Yalcin
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Devan Phillips
- Present Address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Michal Slyper
- Present Address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | | | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zohar Bloom-Ackermann
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Victoria M Tran
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James Gomez
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander Sturm
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shuting Zhang
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen J Fleming
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Deborah Hung
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Mehrtash Babadi
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sonya A MacParland
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, Toronto, ON, Canada
| | - Nasser Imad
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Eric Miller
- NanoString Technologies, Inc., Seattle, WA, USA
| | - Stefan Riedel
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Caroline B M Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Linus T-Y Tsai
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Winston Hide
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Gyongyi Szabo
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jonathan Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Present Address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Alex K Shalek
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA.
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Program in Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Program in Immunology, Harvard Medical School, Boston, MA, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA.
- Columbia Center for Translational Immunology, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Present Address: Genentech, 1 DNA Way, South San Francisco, CA, USA.
| | - Yury V Popov
- Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Z Gordon Jiang
- Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Ioannis S Vlachos
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Spatial Technologies Unit, HMS Initiative for RNA Medicine / Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA.
| |
Collapse
|
10
|
Kuse Y, Matsumoto S, Tsuzuki S, Carolina E, Okumura T, Kasai T, Yamabe S, Yamaguchi K, Furukawa Y, Tadokoro T, Ueno Y, Oba T, Tanimizu N, Taniguchi H. Placenta-derived factors contribute to human iPSC-liver organoid growth. Nat Commun 2025; 16:2493. [PMID: 40082402 PMCID: PMC11906828 DOI: 10.1038/s41467-025-57551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
Organoids derived from human induced pluripotent stem cells (hiPSC) are potentially applicable for regenerative medicine. However, the applications have been hampered by limited organoid size and function as a consequence of a lack of progenitor expansion. Here, we report the recapitulation of progenitor expansion in hiPSC-liver organoids based on the analysis of mouse development. Visualization of blood perfusion and oxygen levels in mouse embryos reveals a transient hypoxic environment during hepatoblast expansion, despite active blood flow. During this specific stage, the placenta expresses various growth factors. Human and mouse placenta-liver interaction analysis identifies various placenta-derived factors. Among them, IL1α efficiently induces the growth in hiPSC-liver organoids as well as mouse fetal livers following progenitor expansion under hypoxia. Furthermore, subsequent oxygenation demonstrates that progenitors expanded by IL1α contribute to hiPSC-liver organoid size and function. Taken together, we demonstrate that treatment with the placenta-derived factor under hypoxia is a crucial human organoid culture technique that efficiently induces progenitor expansion.
Collapse
Affiliation(s)
- Yoshiki Kuse
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinya Matsumoto
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Syusaku Tsuzuki
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Erica Carolina
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, Computational Biology and Medical Science, Kashiwa, Japan
| | - Takashi Okumura
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshiharu Kasai
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Soichiro Yamabe
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, Computational Biology and Medical Science, Kashiwa, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomomi Tadokoro
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Yasuharu Ueno
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takayoshi Oba
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hideki Taniguchi
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan.
| |
Collapse
|
11
|
Lindblad KE, Donne R, Liebling I, Bresnahan E, Barcena-Varela M, Lozano A, Park E, Giotti B, Burn O, Fiel MI, Alsinet C, Monga SP, Xue R, Bravo-Cordero JJ, Tsankov AM, Lujambio A. NOTCH1 drives tumor plasticity and metastasis in hepatocellular carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.23.619856. [PMID: 39484457 PMCID: PMC11527037 DOI: 10.1101/2024.10.23.619856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background & Aims Liver cancer, the third leading cause of cancer-related mortality worldwide, has two main subtypes: hepatocellular carcinoma (HCC), accounting the majority of the cases, and cholangiocarcinoma (CAA). Notch pathway primarily regulates the intrahepatic development of bile ducts, which are lined with cholangiocytes, but it can also be upregulated in 1/3 of HCCs. To better understand the role of NOTCH1 in HCC, we developed a novel mouse model driven by activated Notch1 intracellular domain (NICD1) and MYC overexpression in hepatocytes. Methods Using the hydrodynamic tail-vein injection method for establishing primary liver tumors, we generated a novel murine model of liver cancer harboring MYC overexpression and NOTCH1 activation. We characterized this model histopathologically as well as transcriptomically, utilizing both bulk and single cell RNA-sequencing. We also performed functional experiments using monoclonal antibodies. Results MYC;NICD1 tumors displayed a combined HCC-CCA phenotype with temporal plasticity. At early time-points, histology was predominantly "cholangiocellular", which then progressed to mainly "hepatocellular". The "hepatocellular" component was enriched in mesenchymal genes and gave rise to lung metastasis. Metastatic cells were enriched in the TGFB and VEGF pathways and their inhibition significantly reduced the metastatic burden. Conclusions Our novel mouse model uncovered NOTCH1 as a driver of temporal plasticity and metastasis in HCC, the latter of which is, in part, mediated by angiogenesis and TGFß pathways. Impact and Implications This study develops a novel murine model of NOTCH1-driven liver cancer, an understudied oncogene in HCC. Using this model, we show that NOTCH1 drives plasticity in HCC and metastasis to the lungs that can be therapeutically targeted through inhibition of VEGF and TGFß pathways. Highlights NOTCH1 activation in combination with MYC overexpression drives combined HCC-CCA.NOTCH1 activation in hepatocytes drives temporal plasticity.NOTCH1 activation drives metastasis of HCC cells to the lungs, but not of CCA cells.Angiogenesis and TGFß pathways mediate NOTCH1-induced lung metastasis. Graphical abstract
Collapse
|
12
|
Guest RV, Goeppert B, Nault JC, Sia D. Morphomolecular Pathology and Genomic Insights into the Cells of Origin of Cholangiocarcinoma and Combined Hepatocellular-Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:345-361. [PMID: 39341365 PMCID: PMC11841493 DOI: 10.1016/j.ajpath.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
Cholangiocarcinomas are a highly heterogeneous group of malignancies that, despite recent progress in the understanding of their molecular pathogenesis and clinical management, continue to pose a major challenge to public health. The traditional view posits that cholangiocarcinomas derive from the neoplastic transformation of cholangiocytes lining the biliary tree. However, increasing genetic and experimental evidence has recently pointed to a more complex, and nuanced, scenario for the potential cell of origin of cholangiocarcinomas. Hepatocytes as well as hepatic stem/progenitor cells are being considered as additional potential sources, depending on microenvironmental contexts, including liver injury. The hypothesis of potentially diverse cells of origin for cholangiocarcinoma, albeit controversial, is certainly not surprising given the plasticity of the cells populating the liver as well as the existence of liver cancer subtypes with mixed histologic and molecular features. This review carefully examines the current pathologic, genomic, and experimental evidence supporting the existence of multiple cells of origin of liver and biliary tract cancers, with particular focus on cholangiocarcinoma and combined hepatocellular-cholangiocarcinoma.
Collapse
Affiliation(s)
- Rachel V Guest
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin Goeppert
- Institute of Pathology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany; Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Team "Functional Genomics of Solid Tumors", Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France; Liver Unit, Avicenne Hospital, APHP, University Sorbonne Paris Nord, Bobigny, France
| | - Daniela Sia
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
13
|
Kaur I, Vasudevan A, Sanchez-Romero N, Sanyal A, Sharma A, Hemati H, Juneja P, Sharma A, Pla Palacin I, Rastogi A, Vijayaragavan P, Ghosh S, Ramakrishna S, Sarin SK, Baptista PM, Tripathi DM, Kaur S. In vivo transplantation of intrahepatic cholangiocyte organoids with decellularized liver-derived hydrogels supports hepatic cellular proliferation and differentiation in chronic liver injury. J Mater Chem B 2025; 13:918-928. [PMID: 39656267 DOI: 10.1039/d4tb01503g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The limited replicative potential of primary hepatocytes (Hep) is a major hurdle for obtaining sufficient quantity and quality hepatocytes during cell therapy in patients with liver failure. Intrahepatic cholangiocyte organoids (ICOs) derived from intrahepatic bile ducts differentiate into both hepatocytes and cholangiocytes in vitro. Here, we studied in vivo effects of transplanting ICOs and Hep in chronic liver injury mice models. Well characterized primary mouse ICOs and Hep were mixed in decellularized liver (DCL) matrix hydrogels and injected into the subcapsular left lateral liver lobe of CCl4-induced liver injury models whereas mice given DCL alone were in the sham group. Two weeks post-transplantation, transplanted liver lobes were collected and studied by histology and RNA sequencing. Transplanted animals did not exhibit any tumors, mortality or morbidity. Mice livers transplanted with ICOs had increased cellular proliferation and vascularization as compared to Hep transplanted mice or sham. Collagen deposition in the liver was significantly reduced and serum albumin levels were significantly increased in transplanted groups compared to the sham group. Expression of genes associated with hepatocyte differentiation was highest in Hep transplanted livers among the three groups, but they were also upregulated in ICO transplanted livers compared to sham. Our study demonstrates that ICOs encapsulated in DCL hydrogels when transplanted in chronically injured mice livers engraft well and show hepatocyte differentiation and reduction of fibrosis, indicating that hydrogel transplanted cholangiocyte organoids may serve as an efficient cell source and therapy for renewal of hepatocytes, restoration of hepatocyte functions and resolution of liver injury.
Collapse
Affiliation(s)
- Impreet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Ashwini Vasudevan
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida 201301, Uttar Pradesh, India
| | - Natalia Sanchez-Romero
- Instituto de Investigación Sanitária de Aragón (IIS Aragón), Zaragoza, Spain
- Be Cytes Biotechnologies, Barcelona, Spain
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 km 299, 50830, Villanueva de Gallego, Zaragoza, Spain
| | - Arka Sanyal
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi, India
| | - Aarushi Sharma
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi, India
| | - Hamed Hemati
- Department of Toxicology and Cancer Biology, University of Kentucky, KY, USA
| | - Pinky Juneja
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Aarti Sharma
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Iris Pla Palacin
- Instituto de Investigación Sanitária de Aragón (IIS Aragón), Zaragoza, Spain
| | | | - Pooja Vijayaragavan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida 201301, Uttar Pradesh, India
| | - Sourabh Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi, India
| | | | - Shiv K Sarin
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Pedro M Baptista
- Instituto de Investigación Sanitária de Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd), Madrid, Spain
- Fundación ARAID, Zaragoza, Spain
- Department of Biomedical and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Dinesh M Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| |
Collapse
|
14
|
He J, Li S, Yang Z, Ma J, Qian C, Huang Z, Li L, Yang Y, Chen J, Sun Y, Zhao T, Luo L. Gallbladder-derived retinoic acid signalling drives reconstruction of the damaged intrahepatic biliary ducts. Nat Cell Biol 2025; 27:39-47. [PMID: 39779943 DOI: 10.1038/s41556-024-01568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/25/2024] [Indexed: 01/11/2025]
Abstract
Severe damage to the intrahepatic biliary duct (IHBD) network occurs in multiple human advanced cholangiopathies, such as primary sclerosing cholangitis, biliary atresia and end-stage primary biliary cholangitis. Whether and how a severely damaged IHBD network could reconstruct has remained unclear. Here we show that, although the gallbladder is not directly connected to the IHBD, there is a common hepatic duct (CHD) in between, and severe damage to the IHBD network induces migration of gallbladder smooth muscle cells (SMCs) to coat the CHD in mouse and zebrafish models. These gallbladder-derived, CHD-coating SMCs produce retinoic acid to activate Sox9b in the CHD, which drives proliferation and ingrowth of CHD cells into the inner liver to reconstruct the IHBD network. This study reveals a hitherto unappreciated function of the gallbladder in the recovery of injured liver, and characterizes mechanisms involved in how the gallbladder and liver communicate through inter-organ cell migration to drive tissue regeneration. Carrying out cholecystectomy will thus cause previously unexpected impairments to liver health.
Collapse
Affiliation(s)
- Jianbo He
- State Key laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Shuang Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Zhuolin Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Jianlong Ma
- State Key laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanfang Qian
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Zhuofu Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Linke Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Yun Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Jingying Chen
- State Key laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunfan Sun
- State Key laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianyu Zhao
- State Key laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingfei Luo
- State Key laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China.
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China.
| |
Collapse
|
15
|
Defamie V, Aliar K, Sarkar S, Vyas F, Shetty R, Reddy Narala S, Fang H, Saw S, Tharmapalan P, Sanchez O, Knox JJ, Waterhouse PD, Khokha R. Metalloproteinase inhibitors regulate biliary progenitor cells through sDLK1 in organoid models of liver injury. J Clin Invest 2024; 135:e164997. [PMID: 39699962 PMCID: PMC11785925 DOI: 10.1172/jci164997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Understanding cell fate regulation in the liver is necessary to advance cell therapies for hepatic disease. Liver progenitor cells (LPCs) contribute to tissue regeneration after severe hepatic injury, yet signals instructing progenitor cell dynamics and fate are largely unknown. Tissue inhibitor of metalloproteinases 1 (TIMP1) and TIMP3 control the sheddases ADAM10 and ADAM17, key for NOTCH activation. Here we uncover the role of the TIMP/ADAM/NOTCH/DLK1 axis in LPC maintenance and cholangiocyte specification. Combined TIMP1/TIMP3 loss in vivo caused abnormal portal triad stoichiometry accompanied by collagen deposits, dysregulated Notch signaling, and increased soluble DLK1. The MIC1-1C3+CD133+CD26- biliary progenitor population was reduced following acute CCl4 or chronic DDC liver injury and in aged TIMP-deficient livers. Single-cell RNA sequencing data interrogation and RNAscope identified portal mesenchymal cells coexpressing ADAM17/DLK1 as enzymatically equipped to process DLK1 and direct LPC differentiation. Specifically, TIMP-deficient biliary fragment-derived organoids displayed increased propensity for cholangiocyte differentiation. ADAM17 inhibition reduced Sox9-mediated cholangiocyte differentiation, prolonging organoid growth and survival, whereas WT organoids treated with soluble DLK1 triggered Sox9 expression and cholangiocyte specification in mouse and patient-derived liver organoids. Thus, metalloproteinase inhibitors regulate instructive signals for biliary cell differentiation and LPC preservation within the portal niche, providing a new basis for cell therapy strategies.
Collapse
Affiliation(s)
- Virginie Defamie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kazeera Aliar
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Soumili Sarkar
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Foram Vyas
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ronak Shetty
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Swami Reddy Narala
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Hui Fang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sanjay Saw
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Otto Sanchez
- Ontario Tech University, Oshawa, Ontario, Canada
| | - Jennifer J. Knox
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Paul D. Waterhouse
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rama Khokha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Zhang L, Deng Y, Bai X, Wei X, Ren Y, Chen S, Deng H. Cell therapy for end-stage liver disease: Current state and clinical challenge. Chin Med J (Engl) 2024; 137:2808-2820. [PMID: 39602326 DOI: 10.1097/cm9.0000000000003332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Indexed: 11/29/2024] Open
Abstract
ABSTRACT Liver disease involves a complex interplay of pathological processes, including inflammation, hepatocyte necrosis, and fibrosis. End-stage liver disease (ESLD), such as liver failure and decompensated cirrhosis, has a high mortality rate, and liver transplantation is the only effective treatment. However, to overcome problems such as the shortage of donor livers and complications related to immunosuppression, there is an urgent need for new treatment strategies that need to be developed for patients with ESLD. For instance, hepatocytes derived from donor livers or stem cells can be engrafted and multiplied in the liver, substituting the host hepatocytes and rebuilding the liver parenchyma. Stem cell therapy, especially mesenchymal stem cell therapy, has been widely proved to restore liver function and alleviate liver injury in patients with severe liver disease, which has contributed to the clinical application of cell therapy. In this review, we discussed the types of cells used to treat ESLD and their therapeutic mechanisms. We also summarized the progress of clinical trials around the world and provided a perspective on cell therapy.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Frau C, Vallier L. Exploiting the plasticity of cholangiocytes to repair the biliary tree. Curr Opin Genet Dev 2024; 89:102257. [PMID: 39255689 DOI: 10.1016/j.gde.2024.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024]
Abstract
Cholangiocytes are the main cell type lining the epithelium of the biliary tree of the liver. This cell type has been implicated not only in diseases affecting the biliary tree but also in chronic liver diseases targeting other hepatic cells such as hepatocytes. However, the isolation and culture of cholangiocytes have been particularly arduous, thereby limiting the development of new therapies. The emergence of organoids has the potential to address in part this challenge. Indeed, cholangiocyte organoids can be established from both the intra- and extrahepatic regions of the biliary tree, providing an advantageous platform for disease modeling and mechanism investigations. Accordingly, recent studies on cholangiocyte organoids, together with the advent of single-cell -omics, have opened the field to exciting discoveries concerning the plastic nature of these cells and their capability to adapt to different environments and stimuli. This review will focus on describing how these plasticity properties could be exploited in regenerative medicine and cell-based therapy, opening new frontiers for treating disorders affecting the biliary tree and beyond.
Collapse
Affiliation(s)
- Carla Frau
- Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany; Max Planck Institute for Molecular Genetics, Berlin, Germany; Berlin Institute of Health @Charite, Berlin, Germany.
| | - Ludovic Vallier
- Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany; Max Planck Institute for Molecular Genetics, Berlin, Germany; Berlin Institute of Health @Charite, Berlin, Germany.
| |
Collapse
|
18
|
Chen Y, Wu Y, Sun H, Zhang H, Tang D, Yuan T, Chen C, Huang W, Zhou X, Wu H, Xu S, Liu W, Jiao Y, Yang L, Li Q, Yan H, Yu W. Human liver progenitor-like cells-derived extracellular vesicles promote liver regeneration during acute liver failure. Cell Biol Toxicol 2024; 40:106. [PMID: 39604571 PMCID: PMC11602810 DOI: 10.1007/s10565-024-09954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Hepatocyte-derived liver progenitor-like cells (HepLPCs) exhibit a remarkable capacity to support liver function by detoxifying ammonia, promoting native liver regeneration, and suppressing inflammation, which leads to improvements in the recovery and survival of animals with acute liver failure (ALF). However, the mechanism through which HepLPCs promote liver regeneration is unclear. Here, we isolated HepLPC-derived extracellular vesicles (HepLPC-EVs) from conditioned media and performed microRNA sequencing analysis. Our results showed HepLPC-EVs promoted liver regeneration in mice with carbon tetrachloride or acetaminophen induced ALF. Cell cycle progression and proliferation of primary human hepatocytes were promoted after coculture with HepLPC-EVs. Exosomal miRNA sequencing confirmed that HepLPC-EVs were enriched with miR-183-5p, which played an essential role in ameliorating ALF. Mechanistically, HepLPC-derived exosomal miR-183-5p negatively regulated the expression of the target gene FoxO1, activated the Akt/GSK3β/β-catenin signaling pathway, and thereby promoted liver regeneration and restoration of normal liver function. These results indicate that during ALF, HepLPC-Exos mediate liver regeneration mainly through a paracrine exosome-dependent mechanism and these effects accelerate liver regeneration and lead to the restoration of normal liver function.
Collapse
Affiliation(s)
- Yi Chen
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Yuling Wu
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Hanyong Sun
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Hongdan Zhang
- Celliver Biotechnology Co. Ltd., Shanghai, 200120, China
| | - Dan Tang
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Tianjie Yuan
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Caiyang Chen
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Weijian Huang
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Xu Zhou
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Hongping Wu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, 200438, China
| | - Saihong Xu
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Wenming Liu
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Yingfu Jiao
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Liqun Yang
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Qigen Li
- Department of Organ Transplantation, the Second Affiliated Hospital of Nanchang University, Nanchang, 330200, China.
| | - Hexin Yan
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China.
- Celliver Biotechnology Co. Ltd., Shanghai, 200120, China.
| | - Weifeng Yu
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China.
| |
Collapse
|
19
|
Xu K, Kessler A, Nichetti F, Hoffmeister-Wittmann P, Scherr AL, Nader L, Kelmendi E, Schmitt N, Schwab M, García-Beccaria M, Sobol B, Nieto OA, Isele H, Gärtner U, Vaquero-Siguero N, Volk J, Korell F, Mock A, Heide D, Ramadori P, Lenoir B, Albrecht T, Hüllein J, Jäger D, Fröhling S, Springfeld C, Jackstadt R, Heikenwälder M, Dill MT, Roessler S, Goeppert B, Köhler BC. Lymphotoxin beta-activated LTBR/NIK/RELB axis drives proliferation in cholangiocarcinoma. Liver Int 2024; 44:2950-2963. [PMID: 39164890 DOI: 10.1111/liv.16069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is an aggressive malignancy arising from the intrahepatic (iCCA) or extrahepatic (eCCA) bile ducts with poor prognosis and limited treatment options. Prior evidence highlighted a significant contribution of the non-canonical NF-κB signalling pathway in initiation and aggressiveness of different tumour types. Lymphotoxin-β (LTβ) stimulates the NF-κB-inducing kinase (NIK), resulting in the activation of the transcription factor RelB. However, the functional contribution of the non-canonical NF-κB signalling pathway via the LTβ/NIK/RelB axis in CCA carcinogenesis and progression has not been established. METHODS Human CCA-derived cell lines and organoids were examined to determine the expression of NF-κB pathway components upon activation or inhibition. Proliferation and cell death were analysed using real-time impedance measurement and flow cytometry. Immunoblot, qRT-PCR, RNA sequencing and in situ hybridization were employed to analyse gene and protein expression. Four in vivo models of iCCA were used to probe the activation and regulation of the non-canonical NF-κB pathway. RESULTS Exposure to LTα1/β2 activates the LTβ/NIK/RelB axis and promotes proliferation in CCA. Inhibition of NIK with the small molecule inhibitor B022 efficiently suppresses RelB expression in patient-derived CCA organoids and nuclear co-translocation of RelB and p52 stimulated by LTα1/β2 in CCA cell lines. In murine CCA, RelB expression is significantly increased and LTβ is the predominant ligand of the non-canonical NF-κB signalling pathway. CONCLUSIONS Our study confirms that the non-canonical NF-κB axis LTβ/NIK/RelB drives cholangiocarcinogenesis and represents a candidate therapeutic target.
Collapse
Affiliation(s)
- Kaiyu Xu
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Annika Kessler
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Münster, Germany
| | - Federico Nichetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paula Hoffmeister-Wittmann
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of RadioOncology and Radiation Therapy, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna-Lena Scherr
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Luisa Nader
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Eblina Kelmendi
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Nathalie Schmitt
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Maximilian Schwab
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - María García-Beccaria
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- Madrid Institute for Advanced Study (MIAS), Madrid, Spain
| | - Benjamin Sobol
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Osama Azzam Nieto
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Hanna Isele
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ulrike Gärtner
- Interfaculty Biomedical Research Facility, University of Heidelberg, Heidelberg, Germany
| | - Nuria Vaquero-Siguero
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Julia Volk
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Felix Korell
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Mock
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Pathology, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Bénédicte Lenoir
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Albrecht
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Medical Faculty, Institute for Pathology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Jennifer Hüllein
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Rene Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- The M3 Research Center, Medical Faculty, University Clinic Tübingen (UKT), Tübingen, Germany
| | - Michael T Dill
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Gastroenterology, Infectious Diseases and Intoxication, Heidelberg University Hospital, Heidelberg, Germany
- Research Group Experimental Hepatology, Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Roessler
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Medical Faculty, Institute for Pathology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Benjamin Goeppert
- Institute of Pathology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Bruno C Köhler
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
20
|
Wani SI, Mir TA, Nakamura M, Tsuchiya T, Alzhrani A, Iwanaga S, Arai K, Alshehri EA, Shamma T, Obeid DA, Chinnappan R, Assiri AM, Yaqinuddin A, Vashist YK, Broering DC. A review of current state-of-the-art materiobiology and technological approaches for liver tissue engineering. BIOPRINTING 2024; 42:e00355. [DOI: 10.1016/j.bprint.2024.e00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
|
21
|
Chen Y, Yan Y, Li Y, Zhang L, Luo T, Zhu X, Qin D, Chen N, Huang W, Chen X, Wang L, Zhu X, Zhang L. Deletion of Tgm2 suppresses BMP-mediated hepatocyte-to-cholangiocyte metaplasia in ductular reaction. Cell Prolif 2024; 57:e13646. [PMID: 38623945 PMCID: PMC11471396 DOI: 10.1111/cpr.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Transglutaminase 2 (Tgm2) plays an essential role in hepatic repair following prolonged toxic injury. During cholestatic liver injury, the intrahepatic cholangiocytes undergo dynamic tissue expansion and remodelling, referred to as ductular reaction (DR), which is crucial for liver regeneration. However, the molecular mechanisms governing the dynamics of active cells in DR are still largely unclear. Here, we generated Tgm2-knockout mice (Tgm2-/-) and Tgm2-CreERT2-Rosa26-mTmG flox/flox (Tgm2CreERT2-R26T/Gf/f) mice and performed a three-dimensional (3D) collagen gel culture of mouse hepatocytes to demonstrate how Tgm2 signalling is involved in DR to remodel intrahepatic cholangiocytes. Our results showed that the deletion of Tgm2 adversely affected the functionality and maturity of the proliferative cholangiocytes in DR, thus leading to more severe cholestasis during DDC-induced liver injury. Additionally, Tgm2 hepatocytes played a crucial role in the regulation of DR through metaplasia. We unveiled that Tgm2 regulated H3K4me3Q5ser via serotonin to promote BMP signalling activation to participate in DR. Besides, we revealed that the activation or inhibition of BMP signalling could promote or suppress the development and maturation of cholangiocytes in DDC-induced DR. Furthermore, our 3D collagen gel culture assay indicated that Tgm2 was vital for the development of cholangiocytes in vitro. Our results uncovered a considerable role of BMP signalling in controlling metaplasia of Tgm2 hepatocytes in DR and revealed the phenotypic plasticity of mature hepatocytes.
Collapse
Affiliation(s)
- Yaqing Chen
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Yi Yan
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Yujing Li
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Liang Zhang
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Tingting Luo
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Xinlong Zhu
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Dan Qin
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Ning Chen
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Wendong Huang
- Department of Diabetes Complications and MetabolismDiabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical CenterDuarteCaliforniaUSA
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General HospitalNephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease ResearchBeijingChina
| | - Liqiang Wang
- Department of Nephrology, First Medical Center of Chinese PLA General HospitalNephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease ResearchBeijingChina
| | - Xianmin Zhu
- Department of Hepatobiliary and Pancreatic SurgeryCancer Hospital of Wuhan University (Hubei Cancer Hospital)WuhanChina
| | - Lisheng Zhang
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
22
|
Diwan R, Gaytan SL, Bhatt HN, Pena-Zacarias J, Nurunnabi M. Liver fibrosis pathologies and potentials of RNA based therapeutics modalities. Drug Deliv Transl Res 2024; 14:2743-2770. [PMID: 38446352 DOI: 10.1007/s13346-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
Liver fibrosis (LF) occurs when the liver tissue responds to injury or inflammation by producing excessive amounts of scar tissue, known as the extracellular matrix. This buildup stiffens the liver tissue, hinders blood flow, and ultimately impairs liver function. Various factors can trigger this process, including bloodborne pathogens, genetic predisposition, alcohol abuse, non-steroidal anti-inflammatory drugs, non-alcoholic steatohepatitis, and non-alcoholic fatty liver disease. While some existing small-molecule therapies offer limited benefits, there is a pressing need for more effective treatments that can truly cure LF. RNA therapeutics have emerged as a promising approach, as they can potentially downregulate cytokine levels in cells responsible for liver fibrosis. Researchers are actively exploring various RNA-based therapeutics, such as mRNA, siRNA, miRNA, lncRNA, and oligonucleotides, to assess their efficacy in animal models. Furthermore, targeted drug delivery systems hold immense potential in this field. By utilizing lipid nanoparticles, exosomes, nanocomplexes, micelles, and polymeric nanoparticles, researchers aim to deliver therapeutic agents directly to specific biomarkers or cytokines within the fibrotic liver, increasing their effectiveness and reducing side effects. In conclusion, this review highlights the complex nature of liver fibrosis, its underlying causes, and the promising potential of RNA-based therapeutics and targeted delivery systems. Continued research in these areas could lead to the development of more effective and personalized treatment options for LF patients.
Collapse
Affiliation(s)
- Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA
| | - Samantha Lynn Gaytan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Interdisciplinary Health Sciences, College of Health Sciences, The University of Texas El Paso, El Paso, Texas, 79968, USA
| | - Himanshu Narendrakumar Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA
| | - Jacqueline Pena-Zacarias
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biological Sciences, College of Science, The University of Texas El Paso, El Paso, Texas, 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA.
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA.
- Department of Interdisciplinary Health Sciences, College of Health Sciences, The University of Texas El Paso, El Paso, Texas, 79968, USA.
- Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
23
|
Qin X, Tape CJ. Functional analysis of cell plasticity using single-cell technologies. Trends Cell Biol 2024; 34:854-864. [PMID: 38355348 DOI: 10.1016/j.tcb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Metazoan organisms are heterocellular systems composed of hundreds of different cell types, which arise from an isogenic genome through differentiation. Cellular 'plasticity' further enables cells to alter their fate in response to exogenous cues and is involved in a variety of processes, such as wound healing, infection, and cancer. Recent advances in cellular model systems, high-dimensional single-cell technologies, and lineage tracing have sparked a renaissance in plasticity research. Here, we discuss the definition of cell plasticity, evaluate state-of-the-art model systems and techniques to study cell-fate dynamics, and explore the application of single-cell technologies to obtain functional insights into cell plasticity in healthy and diseased tissues. The integration of advanced biomimetic model systems, single-cell technologies, and high-throughput perturbation studies is enabling a new era of research into non-genetic plasticity in metazoan systems.
Collapse
Affiliation(s)
- Xiao Qin
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Oxford, OX3 9DS, UK.
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK.
| |
Collapse
|
24
|
Li X, Zhu G, Zhao B. Chromatin remodeling in tissue stem cell fate determination. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:18. [PMID: 39348027 PMCID: PMC11442411 DOI: 10.1186/s13619-024-00203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Tissue stem cells (TSCs), which reside in specialized tissues, constitute the major cell sources for tissue homeostasis and regeneration, and the contribution of transcriptional or epigenetic regulation of distinct biological processes in TSCs has been discussed in the past few decades. Meanwhile, ATP-dependent chromatin remodelers use the energy from ATP hydrolysis to remodel nucleosomes, thereby affecting chromatin dynamics and the regulation of gene expression programs in each cell type. However, the role of chromatin remodelers in tissue stem cell fate determination is less well understood. In this review, we systematically discuss recent advances in epigenetic control by chromatin remodelers of hematopoietic stem cells, intestinal epithelial stem cells, neural stem cells, and skin stem cells in their fate determination and highlight the importance of their essential role in tissue homeostasis, development, and regeneration. Moreover, the exploration of the molecular and cellular mechanisms of TSCs is crucial for advancing our understanding of tissue maintenance and for the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Xinyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China
| | - Gaoxiang Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China
| | - Bing Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China.
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China.
| |
Collapse
|
25
|
Radwan A, Eccleston J, Sabag O, Marcus H, Sussman J, Ouro A, Rahamim M, Azagury M, Azria B, Stanger BZ, Cedar H, Buganim Y. Transdifferentiation occurs without resetting development-specific DNA methylation, a key determinant of full-function cell identity. Proc Natl Acad Sci U S A 2024; 121:e2411352121. [PMID: 39292740 PMCID: PMC11441492 DOI: 10.1073/pnas.2411352121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
A number of studies have demonstrated that it is possible to directly convert one cell type to another by factor-mediated transdifferentiation, but in the vast majority of cases, the resulting reprogrammed cells are unable to maintain their new cell identity for prolonged culture times and have a phenotype only partially similar to their endogenous counterparts. To better understand this phenomenon, we developed an analytical approach for better characterizing trans-differentiation-associated changes in DNA methylation, a major determinant of long-term cell identity. By examining various models of transdifferentiation both in vitro and in vivo, our studies indicate that despite convincing expression changes, transdifferentiated cells seem unable to alter their original developmentally mandated methylation patterns. We propose that this blockage is due to basic developmental limitations built into the regulatory sequences that govern epigenetic programming of cell identity. These results shed light on the molecular rules necessary to achieve complete somatic cell reprogramming.
Collapse
Affiliation(s)
- Ahmed Radwan
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Jason Eccleston
- Department of Medicine and Cell, The Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Department of Development Biology, The Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
| | - Ofra Sabag
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Howard Marcus
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Jonathan Sussman
- Department of Medicine and Cell, The Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Department of Development Biology, The Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
| | - Alberto Ouro
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Moran Rahamim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Meir Azagury
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Batia Azria
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Ben Z. Stanger
- Department of Medicine and Cell, The Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Department of Development Biology, The Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| |
Collapse
|
26
|
Chatterjee N, Sharma R, Kale PR, Trehanpati N, Ramakrishna G. Is the liver resilient to the process of ageing? Ann Hepatol 2024; 30:101580. [PMID: 39276981 DOI: 10.1016/j.aohep.2024.101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
The liver's unique regenerative capacity, immunotolerant feature, and polyploidy status distinguish it as a metabolic organ unlike any other in the body. Despite aging, the liver generally exhibits fewer pathological abnormalities than other organs (such as the kidney), maintaining its functions near-normal balanced manner. Subtle changes in the liver, including reduced blood flow, detoxification alterations, pseudo-capillarization, and lipofuscin deposition, may occur with chronological age. Research indicates that carefully selected liver grafts from octogenarian donors can perform well post-transplant, emphasizing instances where age doesn't necessarily compromise liver function. Notably, a recent report suggests that the liver is a youthful organ, with hepatocytes averaging an age of only 3 years. Despite the liver's impressive regenerative capabilities and cellular reserve, a lingering question persists: how does the liver maintain its youthful characteristic amidst the chronological aging of the entire organism? The various adaptive mechanism possibly include:(a) cellular hypertrophy to maintain physiological capacity even before proliferation initiates, (b) the "ploidy conveyor" as a genetic adaptation to endure aging-related stress, (c) sustained telomere length indicative of youthfulness (d) active extracellular matrix remodelling for normal cellular functioning, (e) Mitochondria-Endoplasmic Reticulum based metabolic adaptation and (c) cellular plasticity as fitness mechanisms for healthy aging. However, it is crucial to note that aged livers may have compromised regenerative capacity and chronic liver disease is often associated with declining function due to premature hepatocyte senescence. This review delves into varied cellular adaptations sustaining liver homeostasis with chronological aging and briefly explores the role of accelerated hepatocyte aging as a precursor to chronic liver disease.
Collapse
Affiliation(s)
- Nirupama Chatterjee
- Artemis Education and Research Foundation, Artemis Health Institute, Sector 51 Gurugram, India
| | - Rishabh Sharma
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana Amity Education Valley, Panchgaon, Manesar Gurugram, HR 122413, India
| | - Pratibha R Kale
- Department of Clinical Microbiology, Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, India.
| |
Collapse
|
27
|
Poss KD, Tanaka EM. Hallmarks of regeneration. Cell Stem Cell 2024; 31:1244-1261. [PMID: 39163854 PMCID: PMC11410156 DOI: 10.1016/j.stem.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Regeneration is a heroic biological process that restores tissue architecture and function in the face of day-to-day cell loss or the aftershock of injury. Capacities and mechanisms for regeneration can vary widely among species, organs, and injury contexts. Here, we describe "hallmarks" of regeneration found in diverse settings of the animal kingdom, including activation of a cell source, initiation of regenerative programs in the source, interplay with supporting cell types, and control of tissue size and function. We discuss these hallmarks with an eye toward major challenges and applications of regenerative biology.
Collapse
Affiliation(s)
- Kenneth D Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Elly M Tanaka
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
28
|
Chen Z, Ding C, Chen K, Lu C, Li Q. Exploring the impact of inflammatory cytokines on alcoholic liver disease: a Mendelian randomization study with bioinformatics insights into potential biological mechanisms. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:643-658. [PMID: 39321414 DOI: 10.1080/00952990.2024.2402569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
Background: Alcoholic liver disease (ALD) significantly contributes to global morbidity and mortality. The role of inflammatory cytokines in alcohol-induced liver injury is pivotal yet not fully elucidated.Objectives: To establish a causal link between inflammatory cytokines and ALD using a Mendelian Randomization (MR) framework.Methods: This MR study utilized genome-wide significant variants as instrumental variables (IVs) for assessing the relationship between inflammatory cytokines and ALD risk, focusing on individuals of European descent. The approach was supported by comprehensive sensitivity analyses and augmented by bioinformatics tools including differential gene expression, protein-protein interactions (PPI), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and analysis of immune cell infiltration.Results: Our findings reveal that increased levels of stem cell growth factor beta (SCGF-β, beta = 0.141, p = .032) and interleukin-7 (IL-7, beta = 0.311, p = .002) are associated with heightened ALD risk, whereas higher levels of macrophage inflammatory protein-1α (MIP-1α, beta = -0.396, p = .004) and basic fibroblast growth factor (bFGF, beta = -0.628, p = .008) are linked to reduced risk. The sensitivity analyses support these robust causal relationships. Bioinformatics analyses around inflammatory cytokine-associated SNP loci suggest multiple pathways through which cytokines influence ALD.Conclusion: The genetic evidence from this study convincingly demonstrates that certain inflammatory cytokines play directional roles in ALD pathogenesis. These findings provide insights into the complex biological pathways involved and underscore the potential for developing targeted therapies that modulate these inflammatory responses, ultimately improving clinical outcomes for ALD patients.
Collapse
Affiliation(s)
- Zhitao Chen
- Department of Hepatobiliary Surgery, International Medical College, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan, Hangzhou, China
| | - Chenchen Ding
- Mental Health Centre & Hangzhou Seventh People's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kailei Chen
- School of Medicine, Zhejiang Shuren University, Hangzhou, China
| | - Chicheng Lu
- School of Medicine, Zhejiang Shuren College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiyong Li
- Department of Hepatobiliary Surgery, International Medical College, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan, Hangzhou, China
| |
Collapse
|
29
|
Funahashi N, Okada H, Kaneko R, Nio K, Yamashita T, Koshikawa N. Hepatocyte transformation is induced by laminin γ2 monomer. Cancer Sci 2024; 115:2972-2984. [PMID: 38951133 PMCID: PMC11462950 DOI: 10.1111/cas.16265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Serum laminin-γ2 monomer (Lm-γ2m) is a potent predictive biomarker for hepatocellular carcinoma (HCC) onset in patients with hepatitis C infection who achieve a sustained virologic response with liver cirrhosis (LC) and for the onset of extrahepatic metastases in early-stage HCC. Although Lm-γ2m involvement in late-stage cancer progression has been well investigated, its precise roles in HCC onset remain to be systematically investigated. Therefore, we analyzed an HCC model, human hepatocytes and cholangiocytes, and surgically resected liver tissues from patients with HCC to understand the roles of Lm-γ2m in HCC onset. Ck-19- and EpCAM-positive hepatic progenitor cells (HPCs) in the liver of pdgf-c transgenic HCC mouse model with ductular reaction showed ectopic expression of Lm-γ2m. Forced expression of Lm-γ2m in hepatocytes adjacent to HPCs resulted in enhanced tumorigenicity, cell proliferation, and migration in immortalized hepatocytes, but not in cholangiocytes in vitro. Further, pharmacological inhibition of epidermal growth factor receptor (EGFR) and c-Jun activator JNK suppressed Lm-γ2m-induced hepatocyte transformation, suggesting the involvement of EGFR/c-Jun signaling in the transformation, leading to HCC development. Finally, immunohistochemical staining of HCC tissues revealed a high level of Lm-γ2 expression in the HPCs of the liver with ductular reaction in normal liver adjacent to HCC tissues. Overall, HPC-derived Lm-γ2m in normal liver with ductular reaction acts as a paracrine growth factor on surrounding hepatocytes and promotes their cellular transformation through the EGFR/c-Jun signaling pathway. Furthermore, this is the first report on Lm-γ2m expression detected in the normal liver with ductular reaction, a human precancerous lesion of HCC.
Collapse
Affiliation(s)
- Nobuaki Funahashi
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaKanagawaJapan
| | - Hikari Okada
- Department of Gastroenterology, Graduate School of Medical ScienceKanazawa UniversityKanazawaIshikawaJapan
| | - Ryo Kaneko
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaKanagawaJapan
| | - Kouki Nio
- Department of Gastroenterology, Graduate School of Medical ScienceKanazawa UniversityKanazawaIshikawaJapan
| | - Taro Yamashita
- Department of Gastroenterology, Graduate School of Medical ScienceKanazawa UniversityKanazawaIshikawaJapan
| | - Naohiko Koshikawa
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaKanagawaJapan
- Clinical Cancer Proteomics LaboratoryKanagawa Cancer Center Research InstituteYokohamaKanagawaJapan
| |
Collapse
|
30
|
Chen F, Zhang K, Wang M, He Z, Yu B, Wang X, Pan X, Luo Y, Xu S, Lau JTY, Han C, Shi Y, Sun YE, Li S, Hu YP. VEGF-FGF Signaling Activates Quiescent CD63 + Liver Stem Cells to Proliferate and Differentiate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308711. [PMID: 38881531 PMCID: PMC11434209 DOI: 10.1002/advs.202308711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/07/2024] [Indexed: 06/18/2024]
Abstract
Understanding the liver stem cells (LSCs) holds great promise for new insights into liver diseases and liver regeneration. However, the heterogenicity and plasticity of liver cells have made it controversial. Here, by employing single-cell RNA-sequencing technology, transcriptome features of Krt19+ bile duct lineage cells isolated from Krt19CreERT; Rosa26R-GFP reporter mouse livers are examined. Distinct biliary epithelial cells which include adult LSCs, as well as their downstream hepatocytes and cholangiocytes are identified. Importantly, a novel cell surface LSCs marker, CD63, as well as CD56, which distinguished active and quiescent LSCs are discovered. Cell expansion and bi-potential differentiation in culture demonstrate the stemness ability of CD63+ cells in vitro. Transplantation and lineage tracing of CD63+ cells confirm their contribution to liver cell mass in vivo upon injury. Moreover, CD63+CD56+ cells are proved to be activated LSCs with vigorous proliferation ability. Further studies confirm that CD63+CD56- quiescent LSCs express VEGFR2 and FGFR1, and they can be activated to proliferation and differentiation through combination of growth factors: VEGF-A and bFGF. These findings define an authentic adult liver stem cells compartment, make a further understanding of fate regulation on LSCs, and highlight its contribution to liver during pathophysiologic processes.
Collapse
Affiliation(s)
- Fei Chen
- Department of Cell Biology, Basic Medical College, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Kunshan Zhang
- Stem Cell Translational Research Center, School of Medicine and the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200065, China
| | - Minjun Wang
- Department of Cell Biology, Basic Medical College, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Zhiying He
- Department of Cell Biology, Basic Medical College, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Bing Yu
- Department of Cell Biology, Basic Medical College, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Xin Wang
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Xinghua Pan
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Yuping Luo
- Stem Cell Translational Research Center, School of Medicine and the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200065, China
| | - Shoujia Xu
- Shanghai Baixian Biotechnology co., Ltd, Shanghai, 201318, China
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yufang Shi
- Child Health Institute of New Jersey, Robert-Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Yi E Sun
- Stem Cell Translational Research Center, School of Medicine and the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200065, China
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Siguang Li
- Stem Cell Translational Research Center, School of Medicine and the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200065, China
| | - Yi-Ping Hu
- Department of Cell Biology, Basic Medical College, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| |
Collapse
|
31
|
Youssef KK, Nieto MA. Epithelial-mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol 2024; 25:720-739. [PMID: 38684869 DOI: 10.1038/s41580-024-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Epithelial-mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.
Collapse
Affiliation(s)
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain.
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.
| |
Collapse
|
32
|
Wang S, Wang X, Wang Y. The Progress and Promise of Lineage Reprogramming Strategies for Liver Regeneration. Cell Mol Gastroenterol Hepatol 2024; 18:101395. [PMID: 39218152 PMCID: PMC11530608 DOI: 10.1016/j.jcmgh.2024.101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The liver exhibits remarkable regenerative capacity. However, the limited ability of primary human hepatocytes to proliferate in vitro, combined with a compromised regenerative capacity induced by pathological conditions in vivo, presents significant obstacles to effective liver regeneration following liver injuries and diseases. Developing strategies to compensate for the loss of endogenous hepatocytes is crucial for overcoming these challenges, and this remains an active area of investigation. Lineage reprogramming, the process of directly converting one cell type into another bypassing the intermediate pluripotent state, has emerged as a promising method for generating specific cell types for therapeutic purposes in regenerative medicine. Here, we discuss the recent progress and emergent technologies in lineage reprogramming into hepatic cells, and their potential applications in enhancing liver regeneration or treating liver disease models. We also address controversies and challenges that confront this field.
Collapse
Affiliation(s)
- Shuyong Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China.
| | - Xuan Wang
- Hepatopancreatobiliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yunfang Wang
- Hepatopancreatobiliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Beijing, China.
| |
Collapse
|
33
|
Xie S, Xu J, Chen L, Qi Y, Yang H, Tan B. Single-Cell Transcriptomic Analysis Revealed the Cell Population Changes and Cell-Cell Communication in the Liver of a Carnivorous Fish in Response to High-Carbohydrate Diet. J Nutr 2024; 154:2381-2395. [PMID: 38945299 DOI: 10.1016/j.tjnut.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Carnivorous fish have a low carbohydrate utilization ability, and the physiologic and molecular basis of glucose intolerance has not been fully illustrated. OBJECTIVES This study aimed to use largemouth bass as a model to investigate the possible mechanism of glucose intolerance in carnivorous fish with the help of single-nuclei RNA sequencing (snRNA-seq). METHODS Two diets were formulated, a low-carbohydrate (LC) diet and a high-carbohydrate (HC) diet. The feeding trial lasted for 6 wk, and then, growth performance, biochemical parameters, liver histology, and snRNA-seq were performed. RESULTS Growth performance of fish was not affected by the HC diet, while liver glucolipid metabolism disorder and liver injury were observed. A total of 13,247 and 12,848 cells from the liver derived from 2 groups were isolated and sequenced, and 7 major liver cell types were annotated by the marker genes. Hepatocytes and cholangiocytes were lower and hepatic stellate cells (HSCs) and immune cells were higher in the HC group than those in the LC group. Reclustering analysis identified 7 subtypes of hepatocytes and immune cells, respectively. The HSCs showed more cell communication with other cell types, and periportal hepatocytes showed more cell communication with other hepatocyte subtypes. Cell-cell communication mainly focused on cell junction-related signaling pathways. Uncovered by the pseudotime analysis, midzonal hepatocytes were differentiated into 2 major branches-biliary epithelial hepatocytes and hepatobiliary hybrid progenitor. Cell junction and liver fibrosis-related genes were highly expressed in the HC group. HC diet induced the activation of HSCs and, therefore, led to the liver fibrosis of largemouth bass. CONCLUSIONS HC diet induces liver glucolipid metabolism disorder and liver injury of largemouth bass. The increase and activation of HSCs might be the main reason for the liver injury. In adaption to HC diet, midzonal hepatocytes differentiates into 2 major branches-biliary epithelial hepatocytes and hepatobiliary hybrid progenitors.
Collapse
Affiliation(s)
- Shiwei Xie
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China; Guangdong Provincial Key Lab of Aquatic Animals Disease Control and Healthy Culture, Zhanjiang, China.
| | - Jia Xu
- Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Liutong Chen
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Yu Qi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Huijun Yang
- Guangzhou Chengyi Aquaculture, Guangzhou, Guangdong, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China.
| |
Collapse
|
34
|
Liu Q, Wang S, Fu J, Chen Y, Xu J, Wei W, Song H, Zhao X, Wang H. Liver regeneration after injury: Mechanisms, cellular interactions and therapeutic innovations. Clin Transl Med 2024; 14:e1812. [PMID: 39152680 PMCID: PMC11329751 DOI: 10.1002/ctm2.1812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024] Open
Abstract
The liver possesses a distinctive capacity for regeneration within the human body. Under normal circumstances, liver cells replicate themselves to maintain liver function. Compensatory replication of healthy hepatocytes is sufficient for the regeneration after acute liver injuries. In the late stage of chronic liver damage, a large number of hepatocytes die and hepatocyte replication is blocked. Liver regeneration has more complex mechanisms, such as the transdifferentiation between cell types or hepatic progenitor cells mediated. Dysregulation of liver regeneration causes severe chronic liver disease. Gaining a more comprehensive understanding of liver regeneration mechanisms would facilitate the advancement of efficient therapeutic approaches. This review provides an overview of the signalling pathways linked to different aspects of liver regeneration in various liver diseases. Moreover, new knowledge on cellular interactions during the regenerative process is also presented. Finally, this paper explores the potential applications of new technologies, such as nanotechnology, stem cell transplantation and organoids, in liver regeneration after injury, offering fresh perspectives on treating liver disease.
Collapse
Affiliation(s)
- Qi Liu
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Senyan Wang
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Jing Fu
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| | - Yao Chen
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| | - Jing Xu
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Wenjuan Wei
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Hao Song
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Xiaofang Zhao
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Hongyang Wang
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| |
Collapse
|
35
|
van Luyk ME, Krotenberg Garcia A, Lamprou M, Suijkerbuijk SJE. Cell competition in primary and metastatic colorectal cancer. Oncogenesis 2024; 13:28. [PMID: 39060237 PMCID: PMC11282291 DOI: 10.1038/s41389-024-00530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Adult tissues set the scene for a continuous battle between cells, where a comparison of cellular fitness results in the elimination of weaker "loser" cells. This phenomenon, named cell competition, is beneficial for tissue integrity and homeostasis. In fact, cell competition plays a crucial role in tumor suppression, through elimination of early malignant cells, as part of Epithelial Defense Against Cancer. However, it is increasingly apparent that cell competition doubles as a tumor-promoting mechanism. The comparative nature of cell competition means that mutational background, proliferation rate and polarity all factor in to determine the outcome of these processes. In this review, we explore the intricate and context-dependent involvement of cell competition in homeostasis and regeneration, as well as during initiation and progression of primary and metastasized colorectal cancer. We provide a comprehensive overview of molecular and cellular mechanisms governing cell competition and its parallels with regeneration.
Collapse
Affiliation(s)
- Merel Elise van Luyk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ana Krotenberg Garcia
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Maria Lamprou
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Jacoba Elisabeth Suijkerbuijk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
36
|
Nishikawa Y. Aberrant differentiation and proliferation of hepatocytes in chronic liver injury and liver tumors. Pathol Int 2024; 74:361-378. [PMID: 38837539 PMCID: PMC11551836 DOI: 10.1111/pin.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Chronic liver injury induces liver cirrhosis and facilitates hepatocarcinogenesis. However, the effects of this condition on hepatocyte proliferation and differentiation are unclear. We showed that rodent hepatocytes display a ductular phenotype when they are cultured within a collagenous matrix. This process involves transdifferentiation without the emergence of hepatoblastic features and is at least partially reversible. During the ductular reaction in chronic liver diseases with progressive fibrosis, some hepatocytes, especially those adjacent to ectopic ductules, demonstrate ductular transdifferentiation, but the majority of increased ductules originate from the existing bile ductular system that undergoes extensive remodeling. In chronic injury, hepatocyte proliferation is weak but sustained, and most regenerative nodules in liver cirrhosis are composed of clonally proliferating hepatocytes, suggesting that a small fraction of hepatocytes maintain their proliferative capacity in chronic injury. In mouse hepatocarcinogenesis models, hepatocytes activate the expression of various fetal/neonatal genes, indicating that these cells undergo dedifferentiation. Hepatocyte-specific somatic integration of various oncogenes in mice demonstrated that hepatocytes may be the cells of origin for a broad spectrum of liver tumors through transdifferentiation and dedifferentiation. In conclusion, the phenotypic plasticity and heterogeneity of mature hepatocytes are important for understanding the pathogenesis of chronic liver diseases and liver tumors.
Collapse
Affiliation(s)
- Yuji Nishikawa
- President's OfficeAsahikawa Medical UniversityAsahikawaHokkaidoJapan
| |
Collapse
|
37
|
Rathgeber AC, Ludwig LS, Penter L. Single-cell genomics-based immune and disease monitoring in blood malignancies. Clin Hematol Int 2024; 6:62-84. [PMID: 38884110 PMCID: PMC11180218 DOI: 10.46989/001c.117961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/25/2023] [Indexed: 06/18/2024] Open
Abstract
Achieving long-term disease control using therapeutic immunomodulation is a long-standing concept with a strong tradition in blood malignancies. Besides allogeneic hematopoietic stem cell transplantation that continues to provide potentially curative treatment for otherwise challenging diagnoses, recent years have seen impressive progress in immunotherapies for leukemias and lymphomas with immune checkpoint blockade, bispecific monoclonal antibodies, and CAR T cell therapies. Despite their success, non-response, relapse, and immune toxicities remain frequent, thus prioritizing the elucidation of the underlying mechanisms and identifying predictive biomarkers. The increasing availability of single-cell genomic tools now provides a system's immunology view to resolve the molecular and cellular mechanisms of immunotherapies at unprecedented resolution. Here, we review recent studies that leverage these technological advancements for tracking immune responses, the emergence of immune resistance, and toxicities. As single-cell immune monitoring tools evolve and become more accessible, we expect their wide adoption for routine clinical applications to catalyze more precise therapeutic steering of personal immune responses.
Collapse
Affiliation(s)
- Anja C. Rathgeber
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine
- Department of Hematology, Oncology, and TumorimmunologyCharité - Universitätsmedizin Berlin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin
| | - Leif S. Ludwig
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin
| | - Livius Penter
- Department of Hematology, Oncology, and TumorimmunologyCharité - Universitätsmedizin Berlin
- BIH Biomedical Innovation AcademyBerlin Institute of Health at Charité - Universitätsmedizin Berlin
| |
Collapse
|
38
|
Yamazaki Y, Kikuchi K, Yamada Y, Neo S, Nitta S, Igarashi H, Kamiya A, Hisasue M. Reprogramming canine cryopreserved hepatocytes to hepatic progenitor cells using small molecule compounds. Regen Ther 2024; 26:1078-1086. [PMID: 39582800 PMCID: PMC11585473 DOI: 10.1016/j.reth.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Exploring techniques for differentiating and culturing canine hepatocytes serves as a means to establish systems for liver transplantation and drug metabolism testing. However, establishing consistent methods for culturing stable hepatocytes remains a challenge. Recently, several investigations have shown the reprogramming of mature hepatocytes into hepatic progenitor cells by applying specific small molecule compounds, including Y-27632, (a ROCK inhibitor), A-83-01 (a TGFβ inhibitor), and CHIR99021 (a GSK3 inhibitor) (termed YAC) in rat, mouse, and humans, respectively. However, reports or evidence of successful reprogramming using these small-molecule compounds in dogs are absent. This study aimed to induce the differentiation of mature canine hepatocytes into progenitor cells. Methods Cryopreserved canine hepatocytes (cHep) were cultured for 14 d in a YAC-supplemented hepatocyte growth medium. Subsequently, an assessment was conducted involving morphological observations, quantitative real-time polymerase chain reaction (qRT-PCR), and immunocytochemistry. Results Notably, cryopreserved cHep cells emerged and exhibited ongoing proliferation and concurrently developed colonies within the YAC-enriched culture. These observations indicated that the mature hepatocytes reprogrammed into hepatic progenitor cells. Moreover, qRT-PCR analysis revealed a notable enhancement in gene expression levels. Specifically, the genes encoding α-fetoprotein (AFP), epithelial cell adhesion molecule (EpCAM), Cytokeratin 19 (CK19) and SRY-box9 (Sox9) displayed approximately 12-, 2.2-, 517- and 2.9- increases in hepatic progenitor cells, respectively, on day 14 as compared to their state before induction of differentiation. Hepatocyte-related protein expression of AFP, EPCAM, SOX9 and CK19 was confirmed via immunocytochemistry on day 21. In contrast, ALB and MRP2, which are highly expressed in mature hepatocytes, were decreased compared to those before YAC addition, which is consistent with the characteristics of undifferentiated hepatocytes. Conclusions Herein, we effectively promoted the reprogramming of cryopreserved cHep cells into hepatic progenitor cells using three small-molecule compounds. The mRNA and protein expression analyses demonstrated increased levels of hepatic progenitor cells-specific markers, whereas markers related to mature hepatocytes decreased, suggesting that reprogramming cryopreserved cHep cells to hepatic progenitor cells was achieved using YAC. Therefore, cultivating liver progenitor cells holds the potential to offer valuable insights into the development of artificial livers for drug discovery research and transplantation therapy aimed at addressing liver diseases in dogs.
Collapse
Affiliation(s)
- Yu Yamazaki
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Kaoruko Kikuchi
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Yoko Yamada
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Sakurako Neo
- Laboratory of Clinical Diagnostics, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Suguru Nitta
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Hirotaka Igarashi
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, Kanagawa, Japan
| | - Masaharu Hisasue
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| |
Collapse
|
39
|
Gribben C, Galanakis V, Calderwood A, Williams EC, Chazarra-Gil R, Larraz M, Frau C, Puengel T, Guillot A, Rouhani FJ, Mahbubani K, Godfrey E, Davies SE, Athanasiadis E, Saeb-Parsy K, Tacke F, Allison M, Mohorianu I, Vallier L. Acquisition of epithelial plasticity in human chronic liver disease. Nature 2024; 630:166-173. [PMID: 38778114 PMCID: PMC11153150 DOI: 10.1038/s41586-024-07465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
For many adult human organs, tissue regeneration during chronic disease remains a controversial subject. Regenerative processes are easily observed in animal models, and their underlying mechanisms are becoming well characterized1-4, but technical challenges and ethical aspects are limiting the validation of these results in humans. We decided to address this difficulty with respect to the liver. This organ displays the remarkable ability to regenerate after acute injury, although liver regeneration in the context of recurring injury remains to be fully demonstrated. Here we performed single-nucleus RNA sequencing (snRNA-seq) on 47 liver biopsies from patients with different stages of metabolic dysfunction-associated steatotic liver disease to establish a cellular map of the liver during disease progression. We then combined these single-cell-level data with advanced 3D imaging to reveal profound changes in the liver architecture. Hepatocytes lose their zonation and considerable reorganization of the biliary tree takes place. More importantly, our study uncovers transdifferentiation events that occur between hepatocytes and cholangiocytes without the presence of adult stem cells or developmental progenitor activation. Detailed analyses and functional validations using cholangiocyte organoids confirm the importance of the PI3K-AKT-mTOR pathway in this process, thereby connecting this acquisition of plasticity to insulin signalling. Together, our data indicate that chronic injury creates an environment that induces cellular plasticity in human organs, and understanding the underlying mechanisms of this process could open new therapeutic avenues in the management of chronic diseases.
Collapse
Affiliation(s)
- Christopher Gribben
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK
| | - Vasileios Galanakis
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- Liver Unit, Department of Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alexander Calderwood
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Eleanor C Williams
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ruben Chazarra-Gil
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Miguel Larraz
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Carla Frau
- Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany
| | - Tobias Puengel
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Edmund Godfrey
- Department of Radiology, Addenbrooke's Hospital, Cambridge, UK
| | - Susan E Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Emmanouil Athanasiadis
- Greek Genome Centre, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Medical Image and Signal Processing Laboratory, Department of Biomedical Engineering, University of West Attica, Athens, Greece
| | | | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Allison
- Open Targets, Wellcome Genome Campus, Hinxton, UK.
- Liver Unit, Department of Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Irina Mohorianu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, UK.
- Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
40
|
Afonso MB, Marques V, van Mil SW, Rodrigues CM. Human liver organoids: From generation to applications. Hepatology 2024; 79:1432-1451. [PMID: 36815360 PMCID: PMC11095893 DOI: 10.1097/hep.0000000000000343] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
In the last decade, research into human hepatology has been revolutionized by the development of mini human livers in a dish. These liver organoids are formed by self-organizing stem cells and resemble their native counterparts in cellular content, multicellular architecture, and functional features. Liver organoids can be derived from the liver tissue or pluripotent stem cells generated from a skin biopsy, blood cells, or renal epithelial cells present in urine. With the development of liver organoids, a large part of previous hurdles in modeling the human liver is likely to be solved, enabling possibilities to better model liver disease, improve (personalized) drug testing, and advance bioengineering options. In this review, we address strategies to generate and use organoids in human liver disease modeling, followed by a discussion of their potential application in drug development and therapeutics, as well as their strengths and limitations.
Collapse
Affiliation(s)
- Marta B. Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Saskia W.C. van Mil
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, The Netherlands
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| |
Collapse
|
41
|
Vij M, Veerankutty FH, Rammohan A, Rela M. Combined hepatocellular cholangiocarcinoma: A clinicopathological update. World J Hepatol 2024; 16:766-775. [PMID: 38818284 PMCID: PMC11135265 DOI: 10.4254/wjh.v16.i5.766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a rare primary liver cancer associated with an appalling prognosis. The diagnosis and management of this entity have been challenging to physicians, radiologists, surgeons, pathologists, and oncologists alike. The diagnostic and prognostic value of biomarkers such as the immunohistochemical expression of nestin, a progenitor cell marker, have been explored recently. With a better understanding of biology and the clinical course of cHCC-CCA, newer treatment modalities like immune checkpoint inhibitors are being tried to improve the survival of patients with this rare disease. In this review, we give an account of the recent developments in the pathology, diagnostic approach, and management of cHCC-CCA.
Collapse
Affiliation(s)
- Mukul Vij
- Department of Pathology, Institute of Liver Disease and Transplantation, Chennai 600044, India
| | - Fadl H Veerankutty
- Comprehensive Liver Care Institute, VPS Lakeshore, Cochin 682040, India
- Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Chennai 600044, India.
| | - Ashwin Rammohan
- Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Chennai 600044, India
| | - Mohamed Rela
- Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Chennai 600044, India
| |
Collapse
|
42
|
Miura S, Horisawa K, Iwamori T, Tsujino S, Inoue K, Karasawa S, Yamamoto J, Ohkawa Y, Sekiya S, Suzuki A. Hepatocytes differentiate into intestinal epithelial cells through a hybrid epithelial/mesenchymal cell state in culture. Nat Commun 2024; 15:3940. [PMID: 38750036 PMCID: PMC11096382 DOI: 10.1038/s41467-024-47869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/14/2024] [Indexed: 05/18/2024] Open
Abstract
Hepatocytes play important roles in the liver, but in culture, they immediately lose function and dedifferentiate into progenitor-like cells. Although this unique feature is well-known, the dynamics and mechanisms of hepatocyte dedifferentiation and the differentiation potential of dedifferentiated hepatocytes (dediHeps) require further investigation. Here, we employ a culture system specifically established for hepatic progenitor cells to study hepatocyte dedifferentiation. We found that hepatocytes dedifferentiate with a hybrid epithelial/mesenchymal phenotype, which is required for the induction and maintenance of dediHeps, and exhibit Vimentin-dependent propagation, upon inhibition of the Hippo signaling pathway. The dediHeps re-differentiate into mature hepatocytes by forming aggregates, enabling reconstitution of hepatic tissues in vivo. Moreover, dediHeps have an unexpected differentiation potential into intestinal epithelial cells that can form organoids in three-dimensional culture and reconstitute colonic epithelia after transplantation. This remarkable plasticity will be useful in the study and treatment of intestinal metaplasia and related diseases in the liver.
Collapse
Affiliation(s)
- Shizuka Miura
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kenichi Horisawa
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tokuko Iwamori
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Satoshi Tsujino
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kazuya Inoue
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Satsuki Karasawa
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Junpei Yamamoto
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sayaka Sekiya
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
43
|
Wu B, Shentu X, Nan H, Guo P, Hao S, Xu J, Shangguan S, Cui L, Cen J, Deng Q, Wu Y, Liu C, Song Y, Lin X, Wang Z, Yuan Y, Ma W, Li R, Li Y, Qian Q, Du W, Lai T, Yang T, Liu C, Ma X, Chen A, Xu X, Lai Y, Liu L, Esteban MA, Hui L. A spatiotemporal atlas of cholestatic injury and repair in mice. Nat Genet 2024; 56:938-952. [PMID: 38627596 DOI: 10.1038/s41588-024-01687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/09/2024] [Indexed: 05/09/2024]
Abstract
Cholestatic liver injuries, characterized by regional damage around the bile ductular region, lack curative therapies and cause considerable mortality. Here we generated a high-definition spatiotemporal atlas of gene expression during cholestatic injury and repair in mice by integrating spatial enhanced resolution omics sequencing and single-cell transcriptomics. Spatiotemporal analyses revealed a key role of cholangiocyte-driven signaling correlating with the periportal damage-repair response. Cholangiocytes express genes related to recruitment and differentiation of lipid-associated macrophages, which generate feedback signals enhancing ductular reaction. Moreover, cholangiocytes express high TGFβ in association with the conversion of liver progenitor-like cells into cholangiocytes during injury and the dampened proliferation of periportal hepatocytes during recovery. Notably, Atoh8 restricts hepatocyte proliferation during 3,5-diethoxycarbonyl-1,4-dihydro-collidin damage and is quickly downregulated after injury withdrawal, allowing hepatocytes to respond to growth signals. Our findings lay a keystone for in-depth studies of cellular dynamics and molecular mechanisms of cholestatic injuries, which may further develop into therapies for cholangiopathies.
Collapse
Affiliation(s)
- Baihua Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyi Shentu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haitao Nan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Shijie Hao
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiangshan Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Shuncheng Shangguan
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- BGI Research, Shenzhen, China
| | - Lei Cui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuting Deng
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yan Wu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Chang Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yumo Song
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Xiumei Lin
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | | | - Yue Yuan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Wen Ma
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Ronghai Li
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qiwei Qian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Wensi Du
- China National GeneBank, BGI Research, Shenzhen, China
| | - Tingting Lai
- China National GeneBank, BGI Research, Shenzhen, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, China
| | - Chuanyu Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ao Chen
- BGI Research, Shenzhen, China
| | - Xun Xu
- BGI Research, Shenzhen, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Yiwei Lai
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Longqi Liu
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- China National GeneBank, BGI Research, Shenzhen, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Miguel A Esteban
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
44
|
Matsuguma K, Hara T, Miyamoto D, Soyama A, Matsushima H, Fukumoto M, Imamura H, Yamashita M, Adachi T, Eguchi S. Improvement in aged liver regeneration using cell transplantation with chemically induced liver progenitors. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2024. [PMID: 38567454 DOI: 10.1002/jhbp.1425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND A decrease in the regenerative capacity of age-damaged liver tissue has been reported. Liver progenitor cells may play an important role in the regeneration of injured livers. In the present study we aimed to investigate improvements in the regenerative capacity of age-damaged livers using chemically induced liver progenitors (CLiPs) derived from mature hepatocytes. METHODS Old (>90 weeks) and young (<20 weeks) mice underwent 70% hepatectomy, with or without trans-splenic CLiP administration. The residual liver/bodyweight (LW/BW) ratio was measured on postoperative days 1 and 7, and changes in liver regeneration and histology were evaluated. RESULTS At 7 days post-hepatectomy, LW/BW ratios were significantly better in CLiP-treated old mice than in untreated old mice (p = .02). By contrast, no effect of CLiP transplantation was observed in young mice (p = .62). Immunofluorescence staining of liver tissue after CLiP administration showed an increase in Ki67-positive cells (p < .01). Flow cytometry analysis of green fluorescent protein-labeled CLiPs indicated that transplanted CLiPs differentiated into mature hepatocytes and were present in the recipient liver. CONCLUSIONS CLiP transplantation appears to ameliorate the age-related decline in liver regeneration in mice.
Collapse
Affiliation(s)
- Kunihito Matsuguma
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daisuke Miyamoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hajime Matsushima
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masayuki Fukumoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hajime Imamura
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mampei Yamashita
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
45
|
Cantallops Vilà P, Ravichandra A, Agirre Lizaso A, Perugorria MJ, Affò S. Heterogeneity, crosstalk, and targeting of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology 2024; 79:941-958. [PMID: 37018128 DOI: 10.1097/hep.0000000000000206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/25/2022] [Indexed: 04/06/2023]
Abstract
Cholangiocarcinoma (CCA) comprises diverse tumors of the biliary tree and is characterized by late diagnosis, short-term survival, and chemoresistance. CCAs are mainly classified according to their anatomical location and include diverse molecular subclasses harboring inter-tumoral and intratumoral heterogeneity. Besides the tumor cell component, CCA is also characterized by a complex and dynamic tumor microenvironment where tumor cells and stromal cells crosstalk in an intricate network of interactions. Cancer-associated fibroblasts, one of the most abundant cell types in the tumor stroma of CCA, are actively involved in cholangiocarcinogenesis by participating in multiple aspects of the disease including extracellular matrix remodeling, immunomodulation, neo-angiogenesis, and metastasis. Despite their overall tumor-promoting role, recent evidence indicates the presence of transcriptional and functional heterogeneous CAF subtypes with tumor-promoting and tumor-restricting properties. To elucidate the complexity and potentials of cancer-associated fibroblasts as therapeutic targets in CCA, this review will discuss the origin of cancer-associated fibroblasts, their heterogeneity, crosstalk, and role during tumorigenesis, providing an overall picture of the present and future perspectives toward cancer-associated fibroblasts targeting CCA.
Collapse
Affiliation(s)
| | - Aashreya Ravichandra
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, Munich, Germany
| | - Aloña Agirre Lizaso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
- CIBERehd, Institute of Health Carlos III, Madrid, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Silvia Affò
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
46
|
Mavila N, Siraganahalli Eshwaraiah M, Kennedy J. Ductular Reactions in Liver Injury, Regeneration, and Disease Progression-An Overview. Cells 2024; 13:579. [PMID: 38607018 PMCID: PMC11011399 DOI: 10.3390/cells13070579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Ductular reaction (DR) is a complex cellular response that occurs in the liver during chronic injuries. DR mainly consists of hyper-proliferative or reactive cholangiocytes and, to a lesser extent, de-differentiated hepatocytes and liver progenitors presenting a close spatial interaction with periportal mesenchyme and immune cells. The underlying pathology of DRs leads to extensive tissue remodeling in chronic liver diseases. DR initiates as a tissue-regeneration mechanism in the liver; however, its close association with progressive fibrosis and inflammation in many chronic liver diseases makes it a more complicated pathological response than a simple regenerative process. An in-depth understanding of the cellular physiology of DRs and their contribution to tissue repair, inflammation, and progressive fibrosis can help scientists develop cell-type specific targeted therapies to manage liver fibrosis and chronic liver diseases effectively.
Collapse
Affiliation(s)
- Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mallikarjuna Siraganahalli Eshwaraiah
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| | - Jaquelene Kennedy
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| |
Collapse
|
47
|
Xiang X, He Y, Zhang Z, Yang X. Interrogations of single-cell RNA splicing landscapes with SCASL define new cell identities with physiological relevance. Nat Commun 2024; 15:2164. [PMID: 38461306 PMCID: PMC10925056 DOI: 10.1038/s41467-024-46480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
RNA splicing shapes the gene regulatory programs that underlie various physiological and disease processes. Here, we present the SCASL (single-cell clustering based on alternative splicing landscapes) method for interrogating the heterogeneity of RNA splicing with single-cell RNA-seq data. SCASL resolves the issue of biased and sparse data coverage on single-cell RNA splicing and provides a new scheme for classifications of cell identities. With previously published datasets as examples, SCASL identifies new cell clusters indicating potentially precancerous and early-tumor stages in triple-negative breast cancer, illustrates cell lineages of embryonic liver development, and provides fine clusters of highly heterogeneous tumor-associated CD4 and CD8 T cells with functional and physiological relevance. Most of these findings are not readily available via conventional cell clustering based on single-cell gene expression data. Our study shows the potential of SCASL in revealing the intrinsic RNA splicing heterogeneity and generating biological insights into the dynamic and functional cell landscapes in complex tissues.
Collapse
Affiliation(s)
- Xianke Xiang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Yao He
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Cancer Research Institute, Shenzhen Bay Lab, Shenzhen, 518132, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
48
|
Katsuda T, Sussman JH, Ito K, Katznelson A, Yuan S, Takenaka N, Li J, Merrell AJ, Cure H, Li Q, Rasool RU, Asangani IA, Zaret KS, Stanger BZ. Cellular reprogramming in vivo initiated by SOX4 pioneer factor activity. Nat Commun 2024; 15:1761. [PMID: 38409161 PMCID: PMC10897393 DOI: 10.1038/s41467-024-45939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
Tissue damage elicits cell fate switching through a process called metaplasia, but how the starting cell fate is silenced and the new cell fate is activated has not been investigated in animals. In cell culture, pioneer transcription factors mediate "reprogramming" by opening new chromatin sites for expression that can attract transcription factors from the starting cell's enhancers. Here we report that SOX4 is sufficient to initiate hepatobiliary metaplasia in the adult mouse liver, closely mimicking metaplasia initiated by toxic damage to the liver. In lineage-traced cells, we assessed the timing of SOX4-mediated opening of enhancer chromatin versus enhancer decommissioning. Initially, SOX4 directly binds to and closes hepatocyte regulatory sequences via an overlapping motif with HNF4A, a hepatocyte master regulatory transcription factor. Subsequently, SOX4 exerts pioneer factor activity to open biliary regulatory sequences. The results delineate a hierarchy by which gene networks become reprogrammed under physiological conditions, providing deeper insight into the basis for cell fate transitions in animals.
Collapse
Affiliation(s)
- Takeshi Katsuda
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jonathan H Sussman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenji Ito
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Katznelson
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Salina Yuan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Naomi Takenaka
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinyang Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Allyson J Merrell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Hector Cure
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Qinglan Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Reyaz Ur Rasool
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Irfan A Asangani
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ben Z Stanger
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
- The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Ye L, Schneider JS, Ben Khaled N, Schirmacher P, Seifert C, Frey L, He Y, Geier A, De Toni EN, Zhang C, Reiter FP. Combined Hepatocellular-Cholangiocarcinoma: Biology, Diagnosis, and Management. Liver Cancer 2024; 13:6-28. [PMID: 38344449 PMCID: PMC10857821 DOI: 10.1159/000530700] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/03/2023] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Combined hepatocellular-cholangiocarcinoma (cHCC-iCCA) is a rare type of primary liver cancer displaying characteristics of both hepatocytic and cholangiocytic differentiation. SUMMARY Because of its aggressive nature, patients with cHCC-iCCA exhibit a poorer prognosis than those with HCC. Surgical resection and liver transplantation may be considered curative treatment approaches; however, only a minority of patients are eligible at the time of diagnosis, and postoperative recurrence rates are high. For cases that are not eligible for surgery, locoregional and systemic therapy are often administered based on treatment protocols applied for HCC or iCCA. Owing to the rarity of this cancer, there are still no established standard treatment protocols; therefore, the choice of therapy is often personalized and guided by the suspected predominant component. Further, the genomic and molecular heterogeneity of cHCC-iCCA can severely compromise the efficacy of the available therapies. KEY MESSAGES In the present review, we summarize the latest advances in cHCC-iCCA and attempt to clarify its terminology and molecular biology. We provide an overview of the etiology of cHCC-iCCA and present new insights into the molecular pathology of this disease that could contribute to further studies aiming to improve the patient outcomes through new systemic therapies.
Collapse
Affiliation(s)
- Liangtao Ye
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Julia S. Schneider
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | | | - Carolin Seifert
- Institute for Pathology, University Würzburg, Würzburg, Germany
| | - Lea Frey
- Institute for Pathology, University Würzburg, Würzburg, Germany
| | - Yulong He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Enrico N. De Toni
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Changhua Zhang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Florian P. Reiter
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
50
|
Zhang C, Sun C, Zhao Y, Ye B, Yu G. Signaling pathways of liver regeneration: Biological mechanisms and implications. iScience 2024; 27:108683. [PMID: 38155779 PMCID: PMC10753089 DOI: 10.1016/j.isci.2023.108683] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023] Open
Abstract
The liver possesses a unique regenerative ability to restore its original mass, in this regard, partial hepatectomy (PHx) and partial liver transplantation (PLTx) can be executed smoothly and safely, which has important implications for the treatment of liver disease. Liver regeneration (LR) can be the very complicated procedure that involves multiple cytokines and transcription factors that interact with each other to activate different signaling pathways. Activation of these pathways can drive the LR process, which can be divided into three stages, namely, the initiation, progression, and termination stages. Therefore, it is important to investigate the pathways involved in LR to elucidate the mechanism of LR. This study reviews the latest research on the key signaling pathways in the different stages of LR.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Caifang Sun
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Yabin Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Bingyu Ye
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - GuoYing Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|