1
|
Van Nerum K, Wenzel A, Argemi-Muntadas L, Kafkia E, Drews A, Brun IS, Lavro V, Roelofsen A, Stamidis N, Arnal SB, Zhao C, di Sanzo S, Völker-Albert M, Petropoulos S, Moritz T, Żylicz JJ. α-Ketoglutarate promotes trophectoderm induction and maturation from naive human embryonic stem cells. Nat Cell Biol 2025; 27:749-761. [PMID: 40269259 DOI: 10.1038/s41556-025-01658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/21/2025] [Indexed: 04/25/2025]
Abstract
Development and lineage choice are driven by interconnected transcriptional, epigenetic and metabolic changes. Specific metabolites, such as α-ketoglutarate (αKG), function as signalling molecules affecting the activity of chromatin-modifying enzymes. However, how metabolism coordinates cell-state changes, especially in human pre-implantation development, remains unclear. Here we uncover that inducing naive human embryonic stem cells towards the trophectoderm lineage results in considerable metabolic rewiring, characterized by αKG accumulation. Elevated αKG levels potentiate the capacity of naive embryonic stem cells to specify towards the trophectoderm lineage. Moreover, increased αKG levels promote blastoid polarization and trophectoderm maturation. αKG supplementation does not affect global histone methylation levels; rather, it decreases acetyl-CoA availability, reduces histone acetyltransferase activity and weakens the pluripotency network. We propose that metabolism functions as a positive feedback loop aiding in trophectoderm fate induction and maturation, highlighting that global metabolic rewiring can promote specificity in cell fate decisions through intricate regulation of signalling and chromatin.
Collapse
Affiliation(s)
- Karlien Van Nerum
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Anne Wenzel
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Lidia Argemi-Muntadas
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Eleni Kafkia
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Antar Drews
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Ida Sophie Brun
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Viktoria Lavro
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Annina Roelofsen
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaos Stamidis
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Sandra Bages Arnal
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Cheng Zhao
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Sophie Petropoulos
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montreal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jan Jakub Żylicz
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Liu Z, Tan Y, Flynn WF, Sun L, Pratumkaew P, Alcoforado Diniz J, Oliveira NAJ, McDonough JA, Skarnes WC, Robson P. HAND1, partially mediated through ape-specific LTR binding, is essential for human extra-embryonic mesenchyme derivation from iPSCs. Cell Rep 2025; 44:115568. [PMID: 40220298 DOI: 10.1016/j.celrep.2025.115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/23/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
The specification of extra-embryonic mesenchyme (ExMC) is a prime example of developmental divergence between mouse and human. Derived from definitive mesoderm during mouse gastrulation, the human ExMC first appears at peri-implantation prior to gastrulation and therefore its human cellular origin, still unknown, must differ. In a human pluripotent stem cell model, we report that ExMC shares progenitor cells with trophoblast, suggesting a trophectoderm origin. This ability to form ExMC appears to extend to human trophoblast stem cell lines. We define HAND1 as an essential regulator of ExMC specification, with null cells remaining in the trophoblast lineage. Bound by HAND1, ape-specific, endogenous retrovirus-derived LTR2B contributes to unique features of ExMC. Additionally, ExMC supports the maintenance of pluripotent stem cells, possibly reflecting a role in maintaining epiblast pluripotency through peri-implantation development. Our data emphasize the nascent evolutionary innovation in human early development and provide a cellular system to study this.
Collapse
Affiliation(s)
- Zukai Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yuliana Tan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - William F Flynn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Lili Sun
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Ponthip Pratumkaew
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | | | | | - William C Skarnes
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA.
| |
Collapse
|
3
|
Ren H, Jia X, Yu L. The building blocks of embryo models: embryonic and extraembryonic stem cells. Cell Discov 2025; 11:40. [PMID: 40258839 PMCID: PMC12012135 DOI: 10.1038/s41421-025-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/10/2025] [Indexed: 04/23/2025] Open
Abstract
The process of a single-celled zygote developing into a complex multicellular organism is precisely regulated at spatial and temporal levels in vivo. However, understanding the mechanisms underlying development, particularly in humans, has been constrained by technical and ethical limitations associated with studying natural embryos. Harnessing the intrinsic ability of embryonic stem cells (ESCs) to self-organize when induced and assembled, researchers have established several embryo models as alternative approaches to studying early development in vitro. Recent studies have revealed the critical role of extraembryonic cells in early development; and many groups have created more sophisticated and precise ESC-derived embryo models by incorporating extraembryonic stem cell lines, such as trophoblast stem cells (TSCs), extraembryonic mesoderm cells (EXMCs), extraembryonic endoderm cells (XENs, in rodents), and hypoblast stem cells (in primates). Here, we summarize the characteristics of existing mouse and human embryonic and extraembryonic stem cells and review recent advancements in developing mouse and human embryo models.
Collapse
Affiliation(s)
- Hongan Ren
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojie Jia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Leqian Yu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Liu L, Wu J. Stem cell-based models of early human development. Development 2025; 152:dev204543. [PMID: 40242957 PMCID: PMC12045636 DOI: 10.1242/dev.204543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Stem cell-based embryo models (SCBEMs) are structures generated from three-dimensional (3D) culture of pluripotent stem cells and their derivatives, utilizing mechanical and/or chemical cues to facilitate lineage differentiation, self-organization and morphogenesis. These models partially mimic early embryos, which would otherwise be difficult to access. SCBEMs have been established in mice, livestock, nonhuman primates and humans. Here, we focus on recently developed human models, with an emphasis on the peri-implantation stage and the aspects of human development these SCBEMs recapitulate.
Collapse
Affiliation(s)
- Lizhong Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
5
|
Sozen B, Tam PPL, Pera MF. Pluripotent cell states and fates in human embryo models. Development 2025; 152:dev204565. [PMID: 40171916 PMCID: PMC11993252 DOI: 10.1242/dev.204565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Pluripotency, the capacity to generate all cells of the body, is a defining property of a transient population of epiblast cells found in pre-, peri- and post-implantation mammalian embryos. As development progresses, the epiblast cells undergo dynamic transitions in pluripotency states, concurrent with the specification of extra-embryonic and embryonic lineages. Recently, stem cell-based models of pre- and post-implantation human embryonic development have been developed using stem cells that capture key properties of the epiblast at different developmental stages. Here, we review early primate development, comparing pluripotency states of the epiblast in vivo with cultured pluripotent cells representative of these states. We consider how the pluripotency status of the starting cells influences the development of human embryo models and, in turn, what we can learn about the human pluripotent epiblast. Finally, we discuss the limitations of these models and questions arising from the pioneering studies in this emerging field.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06501, USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06501, USA
| | - Patrick P. L. Tam
- Embryology Research Unit, Children's Medical Research Institute and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Martin F. Pera
- The Jackson Laboratory, Mammalian Genetics, Bar Harbor, ME 04609, USA
| |
Collapse
|
6
|
Fu Y, Fan Q, Wu Y, Bao M. Unlocking the potential of stem-cell-derived 'synthetic' embryo models. Trends Biotechnol 2025:S0167-7799(25)00078-2. [PMID: 40090786 DOI: 10.1016/j.tibtech.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/18/2025]
Abstract
Stem-cell-derived 'synthetic' embryo models represent a revolutionary avenue in developmental biology, offering unprecedented insights into embryogenesis and tissue formation. However, the majority of current research on embryo models resides predominantly in the engineering construction phase, with limited substantive applications. This review explores the utilization of these embryo models and their applications in deciphering fundamental developmental processes. We delve into the methodologies employed in generating these models, emphasizing their potential to advance our understanding of embryonic development and disease. By evaluating current advancements and challenges, this review provides a comprehensive overview of the opportunities and implications of employing stem-cell-derived embryo models.
Collapse
Affiliation(s)
- Yanqiong Fu
- OuJiang Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qin Fan
- OuJiang Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yanru Wu
- OuJiang Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Min Bao
- OuJiang Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Geriatric Medicine, First Affiliated Hospital of Wenzhou Medical Univesity, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
7
|
Xie H, An C, Bai B, Luo J, Sun N, Ci B, Jin L, Mo P, Lu Y, Zhong K, Yu Y, Tan T, Li R, Fan Y. Modeling early gastrulation in human blastoids with DNA methylation patterns of natural blastocysts. Cell Stem Cell 2025; 32:409-425.e8. [PMID: 39814012 DOI: 10.1016/j.stem.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/27/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
Blastoids are a promising model for studying early human embryogenesis, but current models have limitations in post-implantation development and lack comprehensive epigenetic assessments, especially regarding genomic imprinting. These issues can lead to failures in accurately modeling early embryonic development. In this study, we developed a high-fidelity blastoid model using 4 chemicals + leukemia inhibitory factor (LIF) (4CL) naive human pluripotent stem cells (hPSCs) (4CL blastoids). 4CL blastoids closely resemble human blastocysts in morphology and transcriptional profiles, exhibiting similar DNA methylation and gene imprinting patterns. By extending the 3D culture to 14 days, these blastoids mimic early gastrulation, demonstrating the specification and migration of cells. They also show the transcriptional signature of hemogenic angioblast (HAB) cells at Carnegie stage 6 (CS6). This model bridges pre- and post-implantation stages, offering valuable insights into early tissue formation and human development.
Collapse
Affiliation(s)
- Han Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Chenrui An
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Bing Bai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Jiajia Luo
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Nianqin Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Baiquan Ci
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Long Jin
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Peiting Mo
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Yawen Lu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Ke Zhong
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| | - Tao Tan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Rong Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| | - Yong Fan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China.
| |
Collapse
|
8
|
Dimova T, Alexandrova M, Vangelov I, You Y, Mor G. The modeling of human implantation and early placentation: achievements and perspectives. Hum Reprod Update 2025; 31:133-163. [PMID: 39673726 DOI: 10.1093/humupd/dmae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/29/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Successful implantation is a critical step for embryo survival. The major losses in natural and assisted human reproduction appeared to occur during the peri-implantation period. Because of ethical constraints, the fascinating maternal-fetal crosstalk during human implantation is difficult to study and thus, the possibility for clinical intervention is still limited. OBJECTIVE AND RATIONALE This review highlights some features of human implantation as a unique, ineffective and difficult-to-model process and summarizes the pros and cons of the most used in vivo, ex vivo and in vitro models. We point out the variety of cell line-derived models and how these data are corroborated by well-defined primary cells of the same nature. Important aspects related to the handling, standardization, validation, and modus operandi of the advanced 3D in vitro models are widely discussed. Special attention is paid to blastocyst-like models recapitulating the hybrid phenotype and HLA profile of extravillous trophoblasts, which are a unique yet poorly understood population with a major role in the successful implantation and immune mother-embryo recognition. Despite raising new ethical dilemmas, extended embryo cultures and synthetic embryo models are also in the scope of our review. SEARCH METHODS We searched the electronic database PubMed from inception until March 2024 by using a multi-stage search strategy of MeSH terms and keywords. In addition, we conducted a forward and backward reference search of authors mentioned in selected articles. OUTCOMES Primates and rodents are valuable in vivo models for human implantation research. However, the deep interstitial, glandular, and endovascular invasion accompanied by a range of human-specific factors responsible for the survival of the fetus determines the uniqueness of the human implantation and limits the cross-species extrapolation of the data. The ex vivo models are short-term cultures, not relevant to the period of implantation, and difficult to standardize. Moreover, the access to tissues from elective terminations of pregnancy raises ethical and legal concerns. Easy-to-culture cancer cell lines have many limitations such as being prone to spontaneous transformation and lacking decent tissue characteristics. The replacement of the original human explants, primary cells or cancer cell lines with cultures of immortalized cell lines with preserved stem cell characteristics appears to be superior for in vitro modeling of human implantation and early placentation. Remarkable advances in our understanding of the peri-implantation stages have also been made by advanced three dimensional (3D) models i.e. spheroids, organoids, and assembloids, as placental and endometrial surrogates. Much work remains to be done for the optimization and standardization of these integrated and complex models. The inclusion of immune components in these models would be an asset to delineate mechanisms of immune tolerance. Stem cell-based embryo-like models and surplus IVF embryos for research bring intriguing possibilities and are thought to be the trend for the next decade for in vitro modeling of human implantation and early embryogenesis. Along with this research, new ethical dilemmas such as the moral status of the human embryo and the potential exploitation of women consenting to donate their spare embryos have emerged. The careful appraisal and development of national legal and ethical frameworks are crucial for better regulation of studies using human embryos and embryoids to reach the potential benefits for human reproduction. WIDER IMPLICATIONS We believe that our data provide a systematization of the available information on the modeling of human implantation and early placentation and will facilitate further research in this field. A strict classification of the advanced 3D models with their pros, cons, applicability, and availability would help improve the research quality to provide reliable outputs.
Collapse
Affiliation(s)
- Tanya Dimova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marina Alexandrova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ivaylo Vangelov
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| |
Collapse
|
9
|
Nehme E, Panda A, Migeotte I, Pasque V. Extra-embryonic mesoderm during development and in in vitro models. Development 2025; 152:DEV204624. [PMID: 40085077 DOI: 10.1242/dev.204624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 03/16/2025]
Abstract
Extra-embryonic tissues provide protection and nutrition in vertebrates, as well as a connection to the maternal tissues in mammals. The extra-embryonic mesoderm is an essential and understudied germ layer present in amniotes. It is involved in hematopoiesis, as well as in the formation of extra-embryonic structures such as the amnion, umbilical cord and placenta. The origin and specification of extra-embryonic mesoderm are not entirely conserved across species, and the molecular mechanisms governing its formation and function are not fully understood. This Review begins with an overview of the embryonic origin and function of extra-embryonic mesoderm in vertebrates from in vivo studies. We then compare in vitro models that generate extra-embryonic mesoderm-like cells. Finally, we discuss how insights from studying both embryos and in vitro systems can aid in designing even more advanced stem cell-based embryo models.
Collapse
Affiliation(s)
- Eliana Nehme
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Amitesh Panda
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Isabelle Migeotte
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Wu B, Neupane J, Zhou Y, Zhang J, Chen Y, Surani MA, Zhang Y, Bao S, Li X. Stem cell-based embryo models: a tool to study early human development. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2741-1. [PMID: 39969747 DOI: 10.1007/s11427-024-2741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 02/20/2025]
Abstract
How a mammalian fertilized egg acquires totipotency and develops into a full-term offspring is a fundamental scientific question. Human embryonic development is difficult to study due to limited resources, technical challenges and ethics. Moreover, the precise regulatory mechanism underlying early human embryonic development remains unknown. In recent years, the emergence of stem cell-based embryo models (SCBEM) provides the opportunity to reconstitute pre- to post-implantation development in vitro. These models to some extent mimic the embryo morphologically and transcriptionally, and thus may be used to study key events in mammalian pre- and post-implantation development. Many groups have successfully generated SCBEM of the mouse and human. Here, we provide a comparative review of the mouse and human SCBEM, discuss the capability of these models to mimic natural embryos and give a perspective on their potential future applications.
Collapse
Affiliation(s)
- Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jitesh Neupane
- The Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Yang Zhou
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yanglin Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - M Azim Surani
- The Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, 011517, China.
| |
Collapse
|
11
|
Wu J, Shao T, Tang Z, Liu G, Li Z, Shi Y, Kang Y, Zuo J, Zhao B, Hu G, Liu J, Ji W, Zhang L, Niu Y. Highly efficient construction of monkey blastoid capsules from aged somatic cells. Nat Commun 2025; 16:1130. [PMID: 39875393 PMCID: PMC11775175 DOI: 10.1038/s41467-025-56447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Blastoids-blastocyst-like structures created in vitro-emerge as a valuable model for early embryonic development research. Non-human primates stem cell-derived blastoids are an ethically viable alternative to human counterparts, yet the low formation efficiency of monkey blastoid cavities, typically below 30%, has limited their utility. Prior research has predominantly utilized embryonic stem cells. In this work, we demonstrate the efficient generation of blastoids from induced pluripotent stem cells and somatic cell nuclear transfer embryonic stem cells derived from aged monkeys, achieving an 80% formation efficiency. We also introduce a hydrogel-based microfluidics platform for the scalable and reproducible production of size-adjustable, biodegradable blastoid capsules, providing a stable 3D structure and mechanical protection. This advancement in the high-efficiency, scalable production of monkey blastoid capsules from reprogrammed aged somatic cells significantly enhances the study of embryonic development and holds promise for regenerative medicine.
Collapse
Affiliation(s)
- Junmo Wu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Tianao Shao
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Zengli Tang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Southwest United Graduate School, Kunming, Yunnan, China
| | - Gaojing Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuoyao Li
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yuxi Shi
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yu Kang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Jiawei Zuo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Southwest United Graduate School, Kunming, Yunnan, China
| | - Bo Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Guangyu Hu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Jiaqi Liu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
| | - Lei Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
- Southwest United Graduate School, Kunming, Yunnan, China.
| |
Collapse
|
12
|
Gantner CW, Weatherbee BAT, Wang Y, Zernicka-Goetz M. Assembly of a stem cell-derived human postimplantation embryo model. Nat Protoc 2025; 20:67-91. [PMID: 39261744 DOI: 10.1038/s41596-024-01042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/24/2024] [Indexed: 09/13/2024]
Abstract
The embryonic and extraembryonic tissue interactions underlying human embryogenesis at implantation stages are not currently understood. We have generated a pluripotent stem cell-derived model that mimics aspects of peri-implantation development, allowing tractable experimentation otherwise impossible in the human embryo. Activation of the extraembryonic lineage-specific transcription factors GATA6 and SOX17 (hypoblast factors) or GATA3 and TFAP2C (encoding AP2γ; trophoblast factors) in human embryonic stem (ES) cells drive conversion to extraembryonic-like cells. When combined with wild-type ES cells, self-organized embryo-like structures form in the absence of exogenous factors, termed human inducible embryoids (hiEmbryoids). The epiblast-like domain of hiEmbryoids polarizes and differentiates in response to extraembryonic-secreted extracellular matrix and morphogen cues. Extraembryonic mesenchyme, amnion and primordial germ cells are specified in hiEmbryoids in a stepwise fashion. After establishing stable inducible ES lines and converting ES cells to RSeT culture media, the protocol takes 7-10 d to generate hiEmbryoids. Generation of hiEmbryoids can be performed by researchers with basic expertise in stem cell culture.
Collapse
Affiliation(s)
- Carlos W Gantner
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bailey A T Weatherbee
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Yuntao Wang
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Stem Cell Embryo Models Group, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
13
|
Zhao C, Plaza Reyes A, Schell JP, Weltner J, Ortega NM, Zheng Y, Björklund ÅK, Baqué-Vidal L, Sokka J, Trokovic R, Cox B, Rossant J, Fu J, Petropoulos S, Lanner F. A comprehensive human embryo reference tool using single-cell RNA-sequencing data. Nat Methods 2025; 22:193-206. [PMID: 39543283 PMCID: PMC11725501 DOI: 10.1038/s41592-024-02493-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024]
Abstract
Stem cell-based embryo models offer unprecedented experimental tools for studying early human development. The usefulness of embryo models hinges on their molecular, cellular and structural fidelities to their in vivo counterparts. To authenticate human embryo models, single-cell RNA sequencing has been utilized for unbiased transcriptional profiling. However, an organized and integrated human single-cell RNA-sequencing dataset, serving as a universal reference for benchmarking human embryo models, remains unavailable. Here we developed such a reference through the integration of six published human datasets covering development from the zygote to the gastrula. Lineage annotations are contrasted and validated with available human and nonhuman primate datasets. Using stabilized Uniform Manifold Approximation and Projection, we constructed an early embryogenesis prediction tool, where query datasets can be projected on the reference and annotated with predicted cell identities. Using this reference tool, we examined published human embryo models, highlighting the risk of misannotation when relevant references are not utilized for benchmarking and authentication.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Alvaro Plaza Reyes
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
- Department of Integrative Pathophysiology and Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - John Paul Schell
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Jere Weltner
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Nicolás M Ortega
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA
| | - Åsa K Björklund
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Laura Baqué-Vidal
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Joonas Sokka
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Ras Trokovic
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Brian Cox
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sophie Petropoulos
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden.
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada.
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montreal, Quebec, Canada.
| | - Fredrik Lanner
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden.
- Ming Wai Lau Center for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Proks M, Salehin N, Brickman JM. Deep learning-based models for preimplantation mouse and human embryos based on single-cell RNA sequencing. Nat Methods 2025; 22:207-216. [PMID: 39543284 PMCID: PMC11725497 DOI: 10.1038/s41592-024-02511-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
The rapid growth of single-cell transcriptomic technology has produced an increasing number of datasets for both embryonic development and in vitro pluripotent stem cell-derived models. This avalanche of data surrounding pluripotency and the process of lineage specification has meant it has become increasingly difficult to define specific cell types or states in vivo, and compare these with in vitro differentiation. Here we utilize a set of deep learning tools to integrate and classify multiple datasets. This allows the definition of both mouse and human embryo cell types, lineages and states, thereby maximizing the information one can garner from these precious experimental resources. Our approaches are built on recent initiatives for large-scale human organ atlases, but here we focus on material that is difficult to obtain and process, spanning early mouse and human development. Using publicly available data for these stages, we test different deep learning approaches and develop a model to classify cell types in an unbiased fashion at the same time as defining the set of genes used by the model to identify lineages, cell types and states. We used our models trained on in vivo development to classify pluripotent stem cell models for both mouse and human development, showcasing the importance of this resource as a dynamic reference for early embryogenesis.
Collapse
Affiliation(s)
- Martin Proks
- The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nazmus Salehin
- The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joshua M Brickman
- The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Turner DA, Martinez Arias A. Three-dimensional stem cell models of mammalian gastrulation. Bioessays 2024; 46:e2400123. [PMID: 39194406 PMCID: PMC11589689 DOI: 10.1002/bies.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Gastrulation is a key milestone in the development of an organism. It is a period of cell proliferation and coordinated cellular rearrangement, that creates an outline of the body plan. Our current understanding of mammalian gastrulation has been improved by embryo culture, but there are still many open questions that are difficult to address because of the intrauterine development of the embryos and the low number of specimens. In the case of humans, there are additional difficulties associated with technical and ethical challenges. Over the last few years, pluripotent stem cell models are being developed that have the potential to become useful tools to understand the mammalian gastrulation. Here we review these models with a special emphasis on gastruloids and provide a survey of the methods to produce them robustly, their uses, relationship to embryos, and their prospects as well as their limitations.
Collapse
Affiliation(s)
- David A. Turner
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | | |
Collapse
|
16
|
Smith A. Propagating pluripotency - The conundrum of self-renewal. Bioessays 2024; 46:e2400108. [PMID: 39180242 PMCID: PMC11589686 DOI: 10.1002/bies.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
The discovery of mouse embryonic stem cells in 1981 transformed research in mammalian developmental biology and functional genomics. The subsequent generation of human pluripotent stem cells (PSCs) and the development of molecular reprogramming have opened unheralded avenues for drug discovery and cell replacement therapy. Here, I review the history of PSCs from the perspective that long-term self-renewal is a product of the in vitro signaling environment, rather than an intrinsic feature of embryos. I discuss the relationship between pluripotent states captured in vitro to stages of epiblast in the embryo and suggest key considerations for evaluation of PSCs. A remaining fundamental challenge is to determine whether naïve pluripotency can be propagated from the broad range of mammals by exploiting common principles in gene regulatory architecture.
Collapse
Affiliation(s)
- Austin Smith
- Living Systems InstituteUniversity of ExeterExeterUK
| |
Collapse
|
17
|
Kim H, Kim E. Current Status of Synthetic Mammalian Embryo Models. Int J Mol Sci 2024; 25:12862. [PMID: 39684574 PMCID: PMC11641582 DOI: 10.3390/ijms252312862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Advances in three-dimensional culture technologies have facilitated the development of synthetic embryo models, such as blastoids, through the co-culturing of diverse stem cell types. These in vitro models enable precise investigation of developmental processes, including gastrulation, neurulation, and lineage specification, thereby advancing our understanding of early embryogenesis. By providing controllable, ethically viable platforms, they help circumvent the limitations of in vivo mammalian embryo studies and contribute to developing regenerative medicine strategies. Nonetheless, ethical challenges, particularly regarding human applications, persist. Comparative studies across various species-such as mice, humans, non-human primates, and ungulates, like pigs and cattle-offer crucial insights into both species-specific and conserved developmental mechanisms. In this review, we outline the species-specific differences in embryonic development and discuss recent advancements in stem cell and synthetic embryo models. Specifically, we focus on the latest stem cell research involving ungulates, such as pigs and cattle, and provide a comprehensive overview of the improvements in synthetic embryo technology. These insights contribute to our understanding of species-specific developmental biology, help improve model efficiency, and guide the development of new models.
Collapse
Affiliation(s)
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| |
Collapse
|
18
|
Zambuto SG, Scott AK, Oyen ML. Beyond 2D: Novel biomaterial approaches for modeling the placenta. Placenta 2024; 157:55-66. [PMID: 38514278 PMCID: PMC11399328 DOI: 10.1016/j.placenta.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
This review considers fully three-dimensional biomaterial environments of varying complexity as these pertain to research on the placenta. The developments in placental cell sources are first considered, along with the corresponding maternal cells with which the trophoblast interact. We consider biomaterial sources, including hybrid and composite biomaterials. Properties and characterization of biomaterials are discussed in the context of material design for specific placental applications. The development of increasingly complicated three-dimensional structures includes examples of advanced fabrication methods such as microfluidic device fabrication and 3D bioprinting, as utilized in a placenta context. The review finishes with a discussion of the potential for in vitro, three-dimensional placenta research to address health disparities and sexual dimorphism, especially in light of the exciting recent changes in the regulatory environment for in vitro devices.
Collapse
Affiliation(s)
- Samantha G Zambuto
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Adrienne K Scott
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Michelle L Oyen
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
19
|
Sozen B. Navigating human embryogenesis through tailored model selection. Nat Cell Biol 2024; 26:1819-1821. [PMID: 39528699 PMCID: PMC11951419 DOI: 10.1038/s41556-024-01525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Rapid advances in stem cell and bioengineering technologies have sparked a revolution in developmental biology, with stem cell-based embryo models emerging as crucial tools to uncover the intricacies of human embryogenesis. However, making progress relies on precisely posing our questions and selecting our models.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University, New Haven, CT, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
20
|
Zambuto SG, Kolluru SS, Harley BAC, Oyen ML. Gelatin methacryloyl biomaterials and strategies for trophoblast research. Placenta 2024; 157:67-75. [PMID: 39341721 PMCID: PMC11974609 DOI: 10.1016/j.placenta.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Rising maternal mortality rates in the U.S. are a significant public health issue that must be addressed; however, much of the basic science information required to target pregnancy-related pathologies have not yet been defined. Placental and blastocyst implantation research are challenging to perform in humans because of the early time frame of these processes in pregnancy and limited access to first trimester tissues. As a result, there is a critical need to develop model systems capable of studying these processes in increasing mechanistic detail. With the recent passing of the FDA Modernization Act 2.0 and advances in tissue engineering methods, three-dimensional microphysiological model systems offer an exciting opportunity to model early stages of placentation. Here, we detail the synthesis, characterization, and application of gelatin methacryloyl (GelMA) hydrogel platforms for studying trophoblast behavior in three-dimensional hydrogel systems. Photopolymerization strategies to fabricate GelMA hydrogels render the hydrogels homogeneous in terms of structure and stable under physiological temperatures, allowing for rigorous fabrication of reproducible hydrogel variants. Unlike other natural polymers that have minimal opportunity to tune their properties, GelMA hydrogel properties can be tuned across many axes of variation, including polymer degree of functionalization, gelatin bloom strength, light exposure time and intensity, polymer weight percent, photoinitiator concentration, and physical geometry. In this work, we aim to inspire and instruct the field to utilize GelMA biomaterial strategies for future placental research. With enhanced microphysiological models of pregnancy, we can now generate the basic science information required to address problems in pregnancy.
Collapse
Affiliation(s)
- Samantha G Zambuto
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63130, USA; Dept. of Biomedical Engineering, USA; Center for Women's Health Engineering, USA.
| | - Samyuktha S Kolluru
- Center for Women's Health Engineering, USA; The Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Michelle L Oyen
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63130, USA; Dept. of Biomedical Engineering, USA; Center for Women's Health Engineering, USA; The Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
21
|
Shahbazi MN, Pasque V. Early human development and stem cell-based human embryo models. Cell Stem Cell 2024; 31:1398-1418. [PMID: 39366361 PMCID: PMC7617107 DOI: 10.1016/j.stem.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
The use of stem cells to model the early human embryo promises to transform our understanding of developmental biology and human reproduction. In this review, we present our current knowledge of the first 2 weeks of human embryo development. We first focus on the distinct cell lineages of the embryo and the derivation of stem cell lines. We then discuss the intercellular crosstalk that guides early embryo development and how this crosstalk is recapitulated in vitro to generate stem cell-based embryo models. We highlight advances in this fast-developing field, discuss current limitations, and provide a vision for the future.
Collapse
Affiliation(s)
| | - Vincent Pasque
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Leuven Stem Cell Institute & Leuven Institute for Single-Cell Omics (LISCO), Leuven, Belgium.
| |
Collapse
|
22
|
Li M, Jin H, Zhao Y, Zhu G, Liu Y, Long H, Shen X. PHD2 safeguards modest mesendoderm development. Commun Biol 2024; 7:1100. [PMID: 39244636 PMCID: PMC11380689 DOI: 10.1038/s42003-024-06824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
PHD2 is essential in modulating HIF-1α levels upon oxygen fluctuations. Hypoxia, a hallmark of uterus, and HIF-1α have recently emerged as opposing regulators of mesendoderm specification, suggesting a role for PHD2 therein. We found that PHD2 expression initially covered the epiblast and gradually receded from the primitive streak, which was identical to hypoxia and exclusive to HIF-1α. The investigations performed in mESCs, embryoids, and mouse embryos together demonstrated that PHD2 negatively regulated mesendoderm specification. Single-cell RNA sequencing revealed that PHD2 governed the transition from epiblast to mesendoderm. The downstream effect of PHD2 relied on the HIF-1α regulated Wnt/β-catenin pathway, while it was regulated upstream by miR-429. In summary, our research highlights PHD2's essential role in mesendoderm specification and its interactions with hypoxia and HIF-1α.
Collapse
Affiliation(s)
- Meng Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Huaizhang Jin
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yun Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Guoping Zhu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Xiaopeng Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.
| |
Collapse
|
23
|
Eivazi Zadeh Z, Nour S, Kianersi S, Jonidi Shariatzadeh F, Williams RJ, Nisbet DR, Bruggeman KF. Mining human clinical waste as a rich source of stem cells for neural regeneration. iScience 2024; 27:110307. [PMID: 39156636 PMCID: PMC11326931 DOI: 10.1016/j.isci.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Neural diseases are challenging to treat and are regarded as one of the major causes of disability and morbidity in the world. Stem cells can provide a solution, by offering a mechanism to replace damaged circuitry. However, obtaining sufficient cell sources for neural regeneration remains a significant challenge. In recent years, waste-derived stem(-like) cells (WDS-lCs) extracted from both prenatal and adult clinical waste tissues/products, have gained increasing attention for application in neural tissue repair and remodeling. This often-overlooked pool of cells possesses favorable characteristics; including self-renewal, neural differentiation, secretion of neurogenic factors, cost-effectiveness, and low ethical concerns. Here, we offer a perspective regarding the biological properties, extraction protocols, and preclinical and clinical treatments where prenatal and adult WDS-lCs have been utilized for cell replacement therapy in neural applications, and the challenges involved in optimizing these approaches toward patient led therapies.
Collapse
Affiliation(s)
- Zahra Eivazi Zadeh
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sogol Kianersi
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences, University of Galway, Galway, Ireland
| | | | - Richard J. Williams
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - David R. Nisbet
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Founder and Scientific Advisory of Nano Status, Building 137, Sullivans Creek Rd, ANU, Acton, Canberra, ACT, Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research, School of Engineering, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
24
|
Ma X, Dai L, Tan C, Li J, He X, Wang Y, Xue J, Huang M, Ren J, Xia Y, Wu Q, Zhao H, Chan WY, Feng B. β-catenin mediates endodermal commitment of human ES cells via distinct transactivation functions. Cell Biosci 2024; 14:96. [PMID: 39049023 PMCID: PMC11267888 DOI: 10.1186/s13578-024-01279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND β-catenin, acting as the core effector of canonical Wnt signaling pathway, plays a pivotal role in controlling lineage commitment and the formation of definitive endoderm (DE) during early embryonic development. Despite extensive studies using various animal and cell models, the β-catenin-centered regulatory mechanisms underlying DE formation remain incompletely understood, partly due to the rapid and complex cell fate transitions during early differentiation. RESULTS In this study, we generated new CTNNB1-/- human ES cells (hESCs) using CRISPR-based insertional gene disruption approach and systematically rescued the DE defect in these cells by introducing various truncated or mutant forms of β-catenin. Our analysis showed that a truncated β-catenin lacking both N- and C-terminal domains (ΔN148C) could robustly rescue the DE formation, whereas hyperactive β-catenin mutants with S33Y mutation or N-terminal deletion (ΔN90) had limited ability to induce DE lineage. Notably, the ΔN148C mutant exhibited significant nuclear translocation that was positively correlated with successful DE rescue. Transcriptomic analysis further uncovered that two weak β-catenin mutants lacking the C-terminal transactivation domain (CTD) activated primitive streak (PS) genes, whereas the hyperactive β-catenin mutants activated mesoderm genes. CONCLUSION Our study uncovered an unconventional regulatory function of β-catenin through weak transactivation, indicating that the levels of β-catenin activity determine the lineage bifurcation from mesendoderm into endoderm and mesoderm.
Collapse
Affiliation(s)
- Xun Ma
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Liujiang Dai
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Chunlai Tan
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiangchuan Li
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiangjun He
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Junyi Xue
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Min Huang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Jianwei Ren
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, China
| | - Wai-Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
25
|
Almeida GHDR, da Silva RS, Gibin MS, Gonzaga VHDS, dos Santos H, Igleisa RP, Fernandes LA, Fernandes IC, Nesiyama TNG, Sato F, Baesso ML, Hernandes L, Rinaldi JDC, Meirelles FV, Astolfi-Ferreira CS, Ferreira AJP, Carreira ACO. Region-Specific Decellularization of Porcine Uterine Tube Extracellular Matrix: A New Approach for Reproductive Tissue-Engineering Applications. Biomimetics (Basel) 2024; 9:382. [PMID: 39056823 PMCID: PMC11274565 DOI: 10.3390/biomimetics9070382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The uterine tube extracellular matrix is a key component that regulates tubal tissue physiology, and it has a region-specific structural distribution, which is directly associated to its functions. Considering this, the application of biological matrices in culture systems is an interesting strategy to develop biomimetic tubal microenvironments and enhance their complexity. However, there are no established protocols to produce tubal biological matrices that consider the organ morphophysiology for such applications. Therefore, this study aimed to establish region-specific protocols to obtain decellularized scaffolds derived from porcine infundibulum, ampulla, and isthmus to provide suitable sources of biomaterials for tissue-engineering approaches. Porcine uterine tubes were decellularized in solutions of 0.1% SDS and 0.5% Triton X-100. The decellularization efficiency was evaluated by DAPI staining and DNA quantification. We analyzed the ECM composition and structure by optical and scanning electronic microscopy, FTIR, and Raman spectroscopy. DNA and DAPI assays validated the decellularization, presenting a significative reduction in cellular content. Structural and spectroscopy analyses revealed that the produced scaffolds remained well structured and with the ECM composition preserved. YS and HEK293 cells were used to attest cytocompatibility, allowing high cell viability rates and successful interaction with the scaffolds. These results suggest that such matrices are applicable for future biotechnological approaches in the reproductive field.
Collapse
Affiliation(s)
- Gustavo Henrique Doná Rodrigues Almeida
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Raquel Souza da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Mariana Sversut Gibin
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Victória Hellen de Souza Gonzaga
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Henrique dos Santos
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Rebeca Piatniczka Igleisa
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Leticia Alves Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Iorrane Couto Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Thais Naomi Gonçalves Nesiyama
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 05508-270, Brazil; (T.N.G.N.); (F.V.M.)
| | - Francielle Sato
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Mauro Luciano Baesso
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringá, Maringá 87020-900, Brazil; (L.H.); (J.d.C.R.)
| | | | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 05508-270, Brazil; (T.N.G.N.); (F.V.M.)
| | - Claudete S. Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (C.S.A.-F.); (A.J.P.F.)
| | - Antonio José Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (C.S.A.-F.); (A.J.P.F.)
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
- Centre for Natural and Human Sciences, Federal University of ABC, Santo André 09040-902, Brazil
| |
Collapse
|
26
|
Wu J, Fu J. Toward developing human organs via embryo models and chimeras. Cell 2024; 187:3194-3219. [PMID: 38906095 PMCID: PMC11239105 DOI: 10.1016/j.cell.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Developing functional organs from stem cells remains a challenging goal in regenerative medicine. Existing methodologies, such as tissue engineering, bioprinting, and organoids, only offer partial solutions. This perspective focuses on two promising approaches emerging for engineering human organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both approaches exploit the premise of guiding stem cells to mimic natural development. We begin by summarizing what is known about early human development as a blueprint for recapitulating organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields are discussed before highlighting the technological and knowledge gaps to be addressed before the goal of developing human organs could be achieved using the two approaches. We conclude by discussing challenges facing embryo modeling and interspecies organogenesis and outlining future prospects for advancing both fields toward the generation of human tissues and organs for basic research and translational applications.
Collapse
Affiliation(s)
- Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
27
|
Ramos R, Swedlund B, Ganesan AK, Morsut L, Maini PK, Monuki ES, Lander AD, Chuong CM, Plikus MV. Parsing patterns: Emerging roles of tissue self-organization in health and disease. Cell 2024; 187:3165-3186. [PMID: 38906093 PMCID: PMC11299420 DOI: 10.1016/j.cell.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/22/2024] [Accepted: 05/08/2024] [Indexed: 06/23/2024]
Abstract
Patterned morphologies, such as segments, spirals, stripes, and spots, frequently emerge during embryogenesis through self-organized coordination between cells. Yet, complex patterns also emerge in adults, suggesting that the capacity for spontaneous self-organization is a ubiquitous property of biological tissues. We review current knowledge on the principles and mechanisms of self-organized patterning in embryonic tissues and explore how these principles and mechanisms apply to adult tissues that exhibit features of patterning. We discuss how and why spontaneous pattern generation is integral to homeostasis and healing of tissues, illustrating it with examples from regenerative biology. We examine how aberrant self-organization underlies diverse pathological states, including inflammatory skin disorders and tumors. Lastly, we posit that based on such blueprints, targeted engineering of pattern-driving molecular circuits can be leveraged for synthetic biology and the generation of organoids with intricate patterns.
Collapse
Affiliation(s)
- Raul Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Benjamin Swedlund
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anand K Ganesan
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA; Department of Dermatology, University of California, Irvine, Irvine, CA, USA
| | - Leonardo Morsut
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Philip K Maini
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Edwin S Monuki
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA; Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Arthur D Lander
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
28
|
Rosner M, Hengstschläger M. Oct4 controls basement membrane development during human embryogenesis. Dev Cell 2024; 59:1439-1456.e7. [PMID: 38579716 DOI: 10.1016/j.devcel.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/02/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Basement membranes (BMs) are sheet-like structures of extracellular matrix (ECM) that provide structural support for many tissues and play a central role in signaling. They are key regulators of cell behavior and tissue functions, and defects in their assembly or composition are involved in numerous human diseases. Due to the differences between human and animal embryogenesis, ethical concerns, legal constraints, the scarcity of human tissue material, and the inaccessibility of the in vivo condition, BM regulation during human embryo development has remained elusive. Using the post-implantation amniotic sac embryoid (PASE), we delineate BM assembly upon post-implantation development and BM disassembly during primitive streak (PS) cell dissemination. Further, we show that the transcription factor Oct4 regulates the expression of BM structural components and receptors and controls BM development by regulating Akt signaling and the small GTPase Rac1. These results represent a relevant step toward a more comprehensive understanding of early human development.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
29
|
Luijkx DG, Ak A, Guo G, van Blitterswijk CA, Giselbrecht S, Vrij EJ. Monochorionic Twinning in Bioengineered Human Embryo Models. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313306. [PMID: 38593372 DOI: 10.1002/adma.202313306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Monochorionic twinning of human embryos increases the risk of complications during pregnancy. The rarity of such twinning events, combined with ethical constraints in human embryo research, makes investigating the mechanisms behind twinning practically infeasible. As a result, there is a significant knowledge gap regarding the origins and early phenotypic presentation of monochorionic twin embryos. In this study, a microthermoformed-based microwell screening platform is used to identify conditions that efficiently induce monochorionic twins in human stem cell-based blastocyst models, termed "twin blastoids". These twin blastoids contain a cystic GATA3+ trophectoderm-like epithelium encasing two distinct inner cell masses (ICMs). Morphological and morphokinetic analyses reveal that twinning occurs during the cavitation phase via splitting of the OCT4+ pluripotent core. Notably, each ICM in twin blastoids contains its own NR2F2+ polar trophectoderm-like region, ready for implantation. This is functionally tested in a microfluidic chip-based implantation assay with epithelial endometrium cells. Under defined flow regimes, twin blastoids show increased adhesion capacity compared to singleton blastoids, suggestive of increased implantation potential. In conclusion, the development of technology enabling large-scale formation of twin blastoids, coupled with high-sensitivity readout capabilities, presents an unprecedented opportunity for systematically exploring monochorionic twin formation and its impact on embryonic development.
Collapse
Affiliation(s)
- Dorian G Luijkx
- MERLN Institute of Technology-Inspired Regenerative Medicine, Department for Instructive Biomaterials Engineering (IBE), Maastricht University, Universiteitssingel 40, Maastricht, 6229ET, The Netherlands
| | - Asli Ak
- MERLN Institute of Technology-Inspired Regenerative Medicine, Department for Instructive Biomaterials Engineering (IBE), Maastricht University, Universiteitssingel 40, Maastricht, 6229ET, The Netherlands
| | - Ge Guo
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Clemens A van Blitterswijk
- MERLN Institute of Technology-Inspired Regenerative Medicine, Department for Instructive Biomaterials Engineering (IBE), Maastricht University, Universiteitssingel 40, Maastricht, 6229ET, The Netherlands
| | - Stefan Giselbrecht
- MERLN Institute of Technology-Inspired Regenerative Medicine, Department for Instructive Biomaterials Engineering (IBE), Maastricht University, Universiteitssingel 40, Maastricht, 6229ET, The Netherlands
| | - Erik J Vrij
- MERLN Institute of Technology-Inspired Regenerative Medicine, Department for Instructive Biomaterials Engineering (IBE), Maastricht University, Universiteitssingel 40, Maastricht, 6229ET, The Netherlands
- Gynaecology, Women Mother Child Centre, Maastricht University Medical Centre+ (MUMC+), P. Debyelaan 25, Maastricht, 6202AZ, The Netherlands
- GROW - Research Institute for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, Maastricht, 6229ET, The Netherlands
| |
Collapse
|
30
|
Rossant J. Why study human embryo development? Dev Biol 2024; 509:43-50. [PMID: 38325560 DOI: 10.1016/j.ydbio.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/31/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Understanding the processes and mechanisms underlying early human embryo development has become an increasingly active and important area of research. It has potential for insights into important clinical issues such as early pregnancy loss, origins of congenital anomalies and developmental origins of adult disease, as well as fundamental insights into human biology. Improved culture systems for preimplantation embryos, combined with the new tools of single cell genomics and live imaging, are providing new insights into the similarities and differences between human and mouse development. However, access to human embryo material is still restricted and extended culture of early embryos has regulatory and ethical concerns. Stem cell-derived models of different phases of human development can potentially overcome these limitations and provide a scalable source of material to explore the early postimplantation stages of human development. To date, such models are clearly incomplete replicas of normal development but future technological improvements can be envisaged. The ethical and regulatory environment for such studies remains to be fully resolved.
Collapse
Affiliation(s)
- Janet Rossant
- The Gairdner Foundation and the Hospital for Sick Children, University of Toronto, MaRS Centre, Heritage Building, 101 College Street, Suite 335, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
31
|
Azagury M, Buganim Y. Unlocking trophectoderm mysteries: In vivo and in vitro perspectives on human and mouse trophoblast fate induction. Dev Cell 2024; 59:941-960. [PMID: 38653193 DOI: 10.1016/j.devcel.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
In recent years, the pursuit of inducing the trophoblast stem cell (TSC) state has gained prominence as a compelling research objective, illuminating the establishment of the trophoblast lineage and unlocking insights into early embryogenesis. In this review, we examine how advancements in diverse technologies, including in vivo time course transcriptomics, cellular reprogramming to TSC state, chemical induction of totipotent stem-cell-like state, and stem-cell-based embryo-like structures, have enriched our insights into the intricate molecular mechanisms and signaling pathways that define the mouse and human trophectoderm/TSC states. We delve into disparities between mouse and human trophectoderm/TSC fate establishment, with a special emphasis on the intriguing role of pluripotency in this context. Additionally, we re-evaluate recent findings concerning the potential of totipotent-stem-like cells and embryo-like structures to fully manifest the trophectoderm/trophoblast lineage's capabilities. Lastly, we briefly discuss the potential applications of induced TSCs in pregnancy-related disease modeling.
Collapse
Affiliation(s)
- Meir Azagury
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
32
|
Dupont C. A comprehensive review: synergizing stem cell and embryonic development knowledge in mouse and human integrated stem cell-based embryo models. Front Cell Dev Biol 2024; 12:1386739. [PMID: 38715920 PMCID: PMC11074781 DOI: 10.3389/fcell.2024.1386739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mammalian stem cell-based embryo models have emerged as innovative tools for investigating early embryogenesis in both mice and primates. They not only reduce the need for sacrificing mice but also overcome ethical limitations associated with human embryo research. Furthermore, they provide a platform to address scientific questions that are otherwise challenging to explore in vivo. The usefulness of a stem cell-based embryo model depends on its fidelity in replicating development, efficiency and reproducibility; all essential for addressing biological queries in a quantitative manner, enabling statistical analysis. Achieving such fidelity and efficiency requires robust systems that demand extensive optimization efforts. A profound understanding of pre- and post-implantation development, cellular plasticity, lineage specification, and existing models is imperative for making informed decisions in constructing these models. This review aims to highlight essential differences in embryo development and stem cell biology between mice and humans, assess how these variances influence the formation of partially and fully integrated stem cell models, and identify critical challenges in the field.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
33
|
Rodriguez-Polo I, Moris N. Using Embryo Models to Understand the Development and Progression of Embryonic Lineages: A Focus on Primordial Germ Cell Development. Cells Tissues Organs 2024; 213:503-522. [PMID: 38479364 PMCID: PMC7616515 DOI: 10.1159/000538275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/05/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Recapitulating mammalian cell type differentiation in vitro promises to improve our understanding of how these processes happen in vivo, while bringing additional prospects for biomedical applications. The establishment of stem cell-derived embryo models and embryonic organoids, which have experienced explosive growth over the last few years, opens new avenues for research due to their scale, reproducibility, and accessibility. Embryo models mimic various developmental stages, exhibit different degrees of complexity, and can be established across species. Since embryo models exhibit multiple lineages organized spatially and temporally, they are likely to provide cellular niches that, to some degree, recapitulate the embryonic setting and enable "co-development" between cell types and neighbouring populations. One example where this is already apparent is in the case of primordial germ cell-like cells (PGCLCs). SUMMARY While directed differentiation protocols enable the efficient generation of high PGCLC numbers, embryo models provide an attractive alternative as they enable the study of interactions of PGCLCs with neighbouring cells, alongside the regulatory molecular and biophysical mechanisms of PGC competency. Additionally, some embryo models can recapitulate post-specification stages of PGC development (including migration or gametogenesis), mimicking the inductive signals pushing PGCLCs to mature and differentiate and enabling the study of PGCLC development across stages. Therefore, in vitro models may allow us to address questions of cell type differentiation, and PGC development specifically, that have hitherto been out of reach with existing systems. KEY MESSAGE This review evaluates the current advances in stem cell-based embryo models, with a focus on their potential to model cell type-specific differentiation in general and in particular to address open questions in PGC development and gametogenesis.
Collapse
Affiliation(s)
| | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, Somers Town, London, NW1 1AT, UK
| |
Collapse
|
34
|
Liu X, Polo JM. Human blastoid as an in vitro model of human blastocysts. Curr Opin Genet Dev 2024; 84:102135. [PMID: 38052115 DOI: 10.1016/j.gde.2023.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Human development is a highly coordinated process, with any abnormalities during the early embryonic stages that can often have detrimental consequences. The complexity and nuances of human development underpin its significance in embryo research. However, this research is often hindered by limited availability and ethical considerations associated with the use of donated blastocysts from in vitro fertilization (IVF) surplus. Human blastoids offer promising alternatives as they can be easily generated and manipulated in the laboratory while preserving key characteristics of human blastocysts. In this way, they hold the potential to serve as a scalable and ethically permissible resource in embryology research. By utilizing such human embryo models, we can establish a transformative platform that complements the study with IVF embryos, ultimately enhancing our understanding of human embryogenesis.
Collapse
Affiliation(s)
- Xiaodong Liu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Jose M Polo
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia; The South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia; Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Victoria, Australia.
| |
Collapse
|
35
|
Chandrasekaran AP, Li M. Extra (embryonic) dialogues: Keys to improved stem cell-based embryo models. Cell Stem Cell 2024; 31:155-157. [PMID: 38306991 DOI: 10.1016/j.stem.2024.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
Despite advances in stem cell cultures, modeling early human development with stem cells in a dish remains challenging. Research by Hislop et al.,1 Okubo et al.,2 and Wei et al.3 paves the way for improved in vitro embryo models and culture conditions, offering valuable insights for regenerative medicine.
Collapse
Affiliation(s)
- Arun Pandian Chandrasekaran
- Stem Cell and Regeneration Laboratory, Bioscience Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mo Li
- Stem Cell and Regeneration Laboratory, Bioscience Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Bioengineering Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
36
|
Guo M, Wu J, Chen C, Wang X, Gong A, Guan W, Karvas RM, Wang K, Min M, Wang Y, Theunissen TW, Gao S, Silva JCR. Self-renewing human naïve pluripotent stem cells dedifferentiate in 3D culture and form blastoids spontaneously. Nat Commun 2024; 15:668. [PMID: 38253551 PMCID: PMC10803796 DOI: 10.1038/s41467-024-44969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Human naïve pluripotent stem cells (hnPSCs) can generate integrated models of blastocysts termed blastoids upon switch to inductive medium. However, the underlying mechanisms remain obscure. Here we report that self-renewing hnPSCs spontaneously and efficiently give rise to blastoids upon three dimensional (3D) suspension culture. The spontaneous blastoids mimic early stage human blastocysts in terms of structure, size, and transcriptome characteristics and are capable of progressing to post-implantation stages. This property is conferred by the glycogen synthase kinase-3 (GSK3) signalling inhibitor IM-12 present in 5iLAF self-renewing medium. IM-12 upregulates oxidative phosphorylation-associated genes that underly the capacity of hnPSCs to generate blastoids spontaneously. Starting from day one of self-organization, hnPSCs at the boundary of all 3D aggregates dedifferentiate into E5 embryo-like intermediates. Intermediates co-express SOX2/OCT4 and GATA6 and by day 3 specify trophoblast fate, which coincides with cavity and blastoid formation. In summary, spontaneous blastoid formation results from 3D culture triggering dedifferentiation of hnPSCs into earlier embryo-like intermediates which are then competent to segregate blastocyst fates.
Collapse
Affiliation(s)
- Mingyue Guo
- Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China.
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Jinyi Wu
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Chuanxin Chen
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xinggu Wang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - An Gong
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Wei Guan
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Rowan M Karvas
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kexin Wang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Mingwei Min
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Yixuan Wang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Shaorong Gao
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - José C R Silva
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China.
| |
Collapse
|
37
|
De Santis R, Rice E, Croft G, Yang M, Rosado-Olivieri EA, Brivanlou AH. The emergence of human gastrulation upon in vitro attachment. Stem Cell Reports 2024; 19:41-53. [PMID: 38101401 PMCID: PMC10828709 DOI: 10.1016/j.stemcr.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
While studied extensively in model systems, human gastrulation remains obscure. The scarcity of fetal biological material as well as ethical considerations limit our understanding of this process. In vitro attachment of natural blastocysts shed light on aspects of the second week of human development in the absence of the morphological manifestation of gastrulation. Stem cell-derived blastocyst models, blastoids, provide the opportunity to reconstitute pre- to post-implantation development in vitro. Here we show that upon in vitro attachment, human blastoids self-organize a BRA+ population and undergo gastrulation. Single-cell RNA sequencing of these models replicates the transcriptomic signature of the human gastrula. Analysis of developmental timing reveals that in both blastoid models and natural human embryos, the onset of gastrulation as defined by molecular markers, can be traced to timescales equivalent to 12 days post fertilization. In all, natural human embryos and blastoid models self-organize primitive streak and mesoderm derivatives upon in vitro attachment.
Collapse
Affiliation(s)
- Riccardo De Santis
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Eleni Rice
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Gist Croft
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Min Yang
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Edwin A Rosado-Olivieri
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
38
|
Denker HW. Embryoids, models, embryos? We need to take a new look at legal norms concerning the beginning of organismic development. Mol Hum Reprod 2023; 30:gaad047. [PMID: 38113415 DOI: 10.1093/molehr/gaad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/24/2023] [Indexed: 12/21/2023] Open
|
39
|
Stringa B, Solnica-Krezel L. Signaling mechanisms that direct cell fate specification and morphogenesis in human embryonic stem cells-based models of human gastrulation. Emerg Top Life Sci 2023; 7:383-396. [PMID: 38087898 DOI: 10.1042/etls20230084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
During mammalian gastrulation, a mass of pluripotent cells surrounded by extraembryonic tissues differentiates into germ layers, mesoderm, endoderm, and ectoderm. The three germ layers are then organized into a body plan with organ rudiments via morphogenetic gastrulation movements of emboly, epiboly, convergence, and extension. Emboly is the most conserved gastrulation movement, whereby mesodermal and endodermal progenitors undergo epithelial-to-mesenchymal transition (EMT) and move via a blastopore/primitive streak beneath the ectoderm. Decades of embryologic, genetic, and molecular studies in invertebrates and vertebrates, delineated a BMP > WNT > NODAL signaling cascade underlying mesoderm and endoderm specification. Advances have been made in the research animals in understanding the cellular and molecular mechanisms underlying gastrulation morphogenesis. In contrast, little is known about human gastrulation, which occurs in utero during the third week of gestation and its investigations face ethical and methodological limitations. This is changing with the unprecedented progress in modeling aspects of human development, using human pluripotent stem cells (hPSCs), including embryonic stem cells (hESC)-based embryo-like models (SCEMs). In one approach, hESCs of various pluripotency are aggregated to self-assemble into structures that resemble pre-implantation or post-implantation embryo-like structures that progress to early gastrulation, and some even reach segmentation and neurulation stages. Another approach entails coaxing hESCs with biochemical signals to generate germ layers and model aspects of gastrulation morphogenesis, such as EMT. Here, we review the recent advances in understanding signaling cascades that direct germ layers specification and the early stages of gastrulation morphogenesis in these models. We discuss outstanding questions, challenges, and opportunities for this promising area of developmental biology.
Collapse
Affiliation(s)
- Blerta Stringa
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, U.S.A
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, U.S.A
| |
Collapse
|
40
|
Wilkinson AL, Zorzan I, Rugg-Gunn PJ. Epigenetic regulation of early human embryo development. Cell Stem Cell 2023; 30:1569-1584. [PMID: 37858333 DOI: 10.1016/j.stem.2023.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Studies of mammalian development have advanced our understanding of the genetic, epigenetic, and cellular processes that orchestrate embryogenesis and have uncovered new insights into the unique aspects of human embryogenesis. Recent studies have now produced the first epigenetic maps of early human embryogenesis, stimulating new ideas about epigenetic reprogramming, cell fate control, and the potential mechanisms underpinning developmental plasticity in human embryos. In this review, we discuss these new insights into the epigenetic regulation of early human development and the importance of these processes for safeguarding development. We also highlight unanswered questions and key challenges that remain to be addressed.
Collapse
Affiliation(s)
| | - Irene Zorzan
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
41
|
Lin M, Sigal M. Human embryo models: unveiling sophisticated self-organization of stem cells during post-implantation stages. Signal Transduct Target Ther 2023; 8:419. [PMID: 37926715 PMCID: PMC10625954 DOI: 10.1038/s41392-023-01677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Affiliation(s)
- Manqiang Lin
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
| | - Michael Sigal
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany.
| |
Collapse
|
42
|
|
43
|
Seo S, Patil SL, Ahn YO, Armetta J, Hegewisch-Solloa E, Castillo M, Guilz NC, Patel A, Corneo B, Borowiak M, Gunaratne P, Mace EM. iPSC-based modeling of helicase deficiency reveals impaired cell proliferation and increased apoptosis after NK cell lineage commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559149. [PMID: 37808662 PMCID: PMC10557596 DOI: 10.1101/2023.09.25.559149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Cell proliferation is a ubiquitous process required for organismal development and homeostasis. However, individuals with partial loss-of-function variants in DNA replicative helicase components often present with immunodeficiency due to specific loss of natural killer (NK) cells. Such lineage-specific disease phenotypes raise questions on how the proliferation is regulated in cell type-specific manner. We aimed to understand NK cell-specific proliferative dynamics and vulnerability to impaired helicase function using iPSCs from individuals with NK cell deficiency (NKD) due to hereditary compound heterozygous GINS4 variants. We observed and characterized heterogeneous cell populations that arise during the iPSC differentiation along with NK cells. While overall cell proliferation decreased with differentiation, early NK cell precursors showed a short burst of cell proliferation. GINS4 deficiency induced replication stress in these early NK cell precursors, which are poised for apoptosis, and ultimately recapitulate the NKD phenotype.
Collapse
Affiliation(s)
- Seungmae Seo
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Sagar L Patil
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Yong-Oon Ahn
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Jacqueline Armetta
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Micah Castillo
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA, 77204
| | - Nicole C Guilz
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Achchhe Patel
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA, 10032
| | - Barbara Corneo
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA, 10032
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA, 77204
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| |
Collapse
|