1
|
Duan X, Zhang Q, Gao L, Ling B, Du X, Chen L. ERK phosphorylates ESRRB to regulate the self-renewal and differentiation of mouse embryonic stem cells. Stem Cell Reports 2025; 20:102397. [PMID: 39919750 PMCID: PMC11960530 DOI: 10.1016/j.stemcr.2025.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
MEK (mitogen-activated protein kinase) inhibitor is widely used for culturing pluripotent stem cells, while prolonged MEK inhibition compromises the developmental potential of mouse embryonic stem cells (ESCs), implying a dual role of MEK/ERK (extracellular signal-regulated kinase) signaling in pluripotency maintenance. To better understand the mechanism of MEK/ERK in pluripotency maintenance, we performed quantitative phosphoproteomic analysis and identified 169 ERK substrates, which are enriched for proteins involved in stem cell population maintenance, embryonic development, and mitotic cell cycle. Next, we demonstrated that ERK phosphorylates a well-known pluripotency factor ESRRB on Serine 42 and 43. Dephosphorylation of ESRRB facilitates its binding to pluripotency genes, thus enhancing its activity to maintain pluripotency. In contrast, phosphorylation of ESRRB increases its binding to extraembryonic endoderm (XEN) genes, consequently promoting XEN differentiation of ESCs. Altogether, our study reveals that ERK may regulate ESC self-renewal and differentiation by phosphorylating multiple substrates, including ESRRB, which affects both ESC self-renewal and XEN differentiation.
Collapse
Affiliation(s)
- Xiaowei Duan
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qingye Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lulu Gao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bin Ling
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoling Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Bruno PS, Arshad A, Gogu MR, Waterman N, Flack R, Dunn K, Darie CC, Neagu AN. Post-Translational Modifications of Proteins Orchestrate All Hallmarks of Cancer. Life (Basel) 2025; 15:126. [PMID: 39860065 PMCID: PMC11766951 DOI: 10.3390/life15010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins. In this review, we summarized and analyzed a wide spectrum of PTMs of proteins involved in all regulatory mechanisms that drive tumorigenesis, genetic instability, epigenetic reprogramming, all events of the metastatic cascade, cytoskeleton and extracellular matrix (ECM) remodeling, angiogenesis, immune response, tumor-associated microbiome, and metabolism rewiring as the most important hallmarks of cancer. All cancer hallmarks develop due to PTMs of proteins, which modulate gene transcription, intracellular and extracellular signaling, protein size, activity, stability and localization, trafficking, secretion, intracellular protein degradation or half-life, and protein-protein interactions (PPIs). PTMs associated with cancer can be exploited to better understand the underlying molecular mechanisms of this heterogeneous and chameleonic disease, find new biomarkers of cancer progression and prognosis, personalize oncotherapies, and discover new targets for drug development.
Collapse
Affiliation(s)
- Pathea Shawnae Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Maria-Raluca Gogu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania;
| | - Natalie Waterman
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Rylie Flack
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Kimberly Dunn
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| |
Collapse
|
3
|
Mulas C, Stammers M, Salomaa SI, Heinzen C, Suter DM, Smith A, Chalut KJ. ERK signalling eliminates Nanog and maintains Oct4 to drive the formative pluripotency transition. Development 2024; 151:dev203106. [PMID: 39069943 DOI: 10.1242/dev.203106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024]
Abstract
Naïve epiblast cells in the embryo and pluripotent stem cells in vitro undergo developmental progression to a formative state competent for lineage specification. During this transition, transcription factors and chromatin are rewired to encode new functional features. Here, we examine the role of mitogen-activated protein kinase (ERK1/2) signalling in pluripotent state transition. We show that a primary consequence of ERK activation in mouse embryonic stem cells is elimination of Nanog, which precipitates breakdown of the naïve state gene regulatory network. Variability in pERK dynamics results in heterogeneous loss of Nanog and metachronous state transition. Knockdown of Nanog allows exit without ERK activation. However, transition to formative pluripotency does not proceed and cells collapse to an indeterminate identity. This outcome is due to failure to maintain expression of the central pluripotency factor Oct4. Thus, during formative transition ERK signalling both dismantles the naïve state and preserves pluripotency. These results illustrate how a single signalling pathway can both initiate and secure transition between cell states.
Collapse
Affiliation(s)
- Carla Mulas
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Randall Centre for Cell and Molecular Biology, King's College London, London SE1 1YR, UK
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge CB21 6GP, UK
| | - Melanie Stammers
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Siiri I Salomaa
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge CB21 6GP, UK
| | - Constanze Heinzen
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt 60439, Germany
| | - David M Suter
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Austin Smith
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Kevin J Chalut
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge CB21 6GP, UK
| |
Collapse
|
4
|
Ferreon JC, Ta HM, Yun H, Choi KJ, Quan MD, Tsoi PS, Kim C, Lee CW, Ferreon ACM. Stereospecific NANOG PEST Stabilization by Pin1. Biochemistry 2024; 63:1067-1074. [PMID: 38619104 PMCID: PMC12022813 DOI: 10.1021/acs.biochem.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
NANOG protein levels correlate with stem cell pluripotency. NANOG concentrations fluctuate constantly with low NANOG levels leading to spontaneous cell differentiation. Previous literature implicated Pin1, a phosphorylation-dependent prolyl isomerase, as a key player in NANOG stabilization. Here, using NMR spectroscopy, we investigate the molecular interactions of Pin1 with the NANOG unstructured N-terminal domain that contains a PEST sequence with two phosphorylation sites. Phosphorylation of NANOG PEST peptides increases affinity to Pin1. By systematically increasing the amount of cis PEST conformers, we show that the peptides bind tighter to the prolyl isomerase domain (PPIase) of Pin1. Phosphorylation and cis Pro enhancement at both PEST sites lead to a 5-10-fold increase in NANOG binding to the Pin1 WW domain and PPIase domain, respectively. The cis-populated NANOG PEST peptides can be potential inhibitors for disrupting Pin1-dependent NANOG stabilization in cancer stem cells.
Collapse
Affiliation(s)
- Josephine C. Ferreon
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Hai Minh Ta
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyoung-Jae Choi
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - My Diem Quan
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Phoebe S. Tsoi
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Choel Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Allan Chris M. Ferreon
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
5
|
He Q, Xu S, He F, Wu Z, Wu F, Zhou R, Zhou B, Li F, Yang X. Combined Proteomic and Phosphoproteomic Characterization of the Molecular Regulators and Functional Modules During Pancreatic Progenitor Cell Development. J Proteome Res 2024; 23:40-51. [PMID: 37993262 DOI: 10.1021/acs.jproteome.3c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Differentiated multipotent pancreatic progenitors have major advantages for both modeling pancreas development and preventing or treating diabetes. Despite significant advancements in inducing the differentiation of human pluripotent stem cells into insulin-producing cells, the complete mechanism governing proliferation and differentiation remains poorly understood. This study used large-scale mass spectrometry to characterize molecular processes at various stages of human embryonic stem cell (hESC) differentiation toward pancreatic progenitors. hESCs were induced into pancreatic progenitor cells in a five-stage differentiation protocol. A high-performance liquid chromatography-mass spectrometry platform was used to undertake comprehensive proteome and phosphoproteome profiling of cells at different stages. A series of bioinformatic explorations, including coregulated modules, gene regulatory networks, and phosphosite enrichment analysis, were then conducted. A total of 27,077 unique phosphorylated sites and 8122 proteins were detected, including several cyclin-dependent kinases at the initial stage of cell differentiation. Furthermore, we discovered that ERK1, a member of the MAPK cascade, contributed to proliferation at an early stage. Finally, Western blotting confirmed that the phosphosites from SIRT1 and CHEK1 could inhibit the corresponding substrate abundance in the late stage. Thus, this study extends our understanding of the molecular mechanism during pancreatic cell development.
Collapse
Affiliation(s)
- Qian He
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College of Jinan University), Shenzhen 518055, China
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shaohang Xu
- Deepxomics Co., Ltd., Shenzhen 518000, China
| | - Fei He
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College of Jinan University), Shenzhen 518055, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zubiao Wu
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College of Jinan University), Shenzhen 518055, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fujian Wu
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College of Jinan University), Shenzhen 518055, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruo Zhou
- Deepxomics Co., Ltd., Shenzhen 518000, China
| | - Baojin Zhou
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Furong Li
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College of Jinan University), Shenzhen 518055, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaofei Yang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College of Jinan University), Shenzhen 518055, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Mizutani A, Tan C, Sugita Y, Takada S. Micelle-like clusters in phase-separated Nanog condensates: A molecular simulation study. PLoS Comput Biol 2023; 19:e1011321. [PMID: 37486948 PMCID: PMC10399900 DOI: 10.1371/journal.pcbi.1011321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/03/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
The phase separation model for transcription suggests that transcription factors (TFs), coactivators, and RNA polymerases form biomolecular condensates around active gene loci and regulate transcription. However, the structural details of condensates remain elusive. In this study, for Nanog, a master TF in mammalian embryonic stem cells known to form protein condensates in vitro, we examined protein structures in the condensates using residue-level coarse-grained molecular simulations. Human Nanog formed micelle-like clusters in the condensate. In the micelle-like cluster, the C-terminal disordered domains, including the tryptophan repeat (WR) regions, interacted with each other near the cluster center primarily via hydrophobic interaction. In contrast, hydrophilic disordered N-terminal and DNA-binding domains were exposed on the surface of the clusters. Electrostatic attractions of these surface residues were responsible for bridging multiple micelle-like structures in the condensate. The micelle-like structure and condensate were dynamic and liquid-like. Mutation of tryptophan residues in the WR region which was implicated to be important for a Nanog function resulted in dissolution of the Nanog condensate. Finally, to examine the impact of Nanog cluster to DNA, we added DNA fragments to the Nanog condensate. Nanog DNA-binding domains exposed to the surface of the micelle-like cluster could recruit more than one DNA fragments, making DNA-DNA distance shorter.
Collapse
Affiliation(s)
- Azuki Mizutani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Cheng Tan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Yuji Sugita
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Hirosawa, Wako, Saitama, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Liao CY, Pu Y, Nolan TM, Montes C, Guo H, Walley JW, Yin Y, Bassham DC. Brassinosteroids modulate autophagy through phosphorylation of RAPTOR1B by the GSK3-like kinase BIN2 in Arabidopsis. Autophagy 2023; 19:1293-1310. [PMID: 36151786 PMCID: PMC10012961 DOI: 10.1080/15548627.2022.2124501] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Macroautophagy/autophagy is a conserved recycling process that maintains cellular homeostasis during environmental stress. Autophagy is negatively regulated by TOR (target of rapamycin), a nutrient-regulated protein kinase that in plants is activated by several phytohormones, leading to increased growth. However, the detailed molecular mechanisms by which TOR integrates autophagy and hormone signaling are poorly understood. Here, we show that TOR modulates brassinosteroid (BR)-regulated plant growth and stress-response pathways. Active TOR was required for full BR-mediated growth in Arabidopsis thaliana. Autophagy was constitutively up-regulated upon blocking BR biosynthesis or signaling, and down-regulated by increasing the activity of the BR pathway. BIN2 (brassinosteroid-insensitive 2) kinase, a GSK3-like kinase functioning as a negative regulator in BR signaling, directly phosphorylated RAPTOR1B (regulatory-associated protein of TOR 1B), a substrate-recruiting subunit in the TOR complex, at a conserved serine residue within a typical BIN2 phosphorylation motif. Mutation of RAPTOR1B serine 916 to alanine, to block phosphorylation by BIN2, repressed autophagy and increased phosphorylation of the TOR substrate ATG13a (autophagy-related protein 13a). By contrast, this mutation had only a limited effect on growth. We present a model in which RAPTOR1B is phosphorylated and inhibited by BIN2 when BRs are absent, activating the autophagy pathway. When BRs signal and inhibit BIN2, RAPTOR1B is thus less inhibited by BIN2 phosphorylation. This leads to increased TOR activity and ATG13a phosphorylation, and decreased autophagy activity. Our studies define a new mechanism by which coordination between BR and TOR signaling pathways helps to maintain the balance between plant growth and stress responses.
Collapse
Affiliation(s)
- Ching-Yi Liao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Yunting Pu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Christian Montes
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Hongqing Guo
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
8
|
Ng LY, Ma HT, Poon RYC. Cyclin A-CDK1 suppresses the expression of the CDK1 activator CDC25A to safeguard timely mitotic entry. J Biol Chem 2023; 299:102957. [PMID: 36717077 PMCID: PMC9986519 DOI: 10.1016/j.jbc.2023.102957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
Cyclin A and CDC25A are both activators of cyclin-dependent kinases (CDKs): cyclin A acts as an activating subunit of CDKs and CDC25A a phosphatase of the inhibitory phosphorylation sites of the CDKs. In this study, we uncovered an inverse relationship between the two CDK activators. As cyclin A is an essential gene, we generated a conditional silencing cell line using a combination of CRISPR-Cas9 and degron-tagged cyclin A. Destruction of cyclin A promoted an acute accumulation of CDC25A. The increase of CDC25A after cyclin A depletion occurred throughout the cell cycle and was independent on cell cycle delay caused by cyclin A deficiency. Moreover, we determined that the inverse relationship with cyclin A was specific for CDC25A and not for other CDC25 family members or kinases that regulate the same sites in CDKs. Unexpectedly, the upregulation of CDC25A was mainly caused by an increase in transcriptional activity instead of a change in the stability of the protein. Reversing the accumulation of CDC25A severely delayed G2-M in cyclin A-depleted cells. Taken together, these data provide evidence of a compensatory mechanism involving CDC25A that ensures timely mitotic entry at different levels of cyclin A.
Collapse
Affiliation(s)
- Lau Yan Ng
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hoi Tang Ma
- Department of Pathology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Randy Y C Poon
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
9
|
Tichy ED. Specialized Circuitry of Embryonic Stem Cells Promotes Genomic Integrity. Crit Rev Oncog 2023; 27:1-15. [PMID: 36734869 DOI: 10.1615/critrevoncog.2022042332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) give rise to all cell types of the organism. Given the importance of these cells in this process, ESCs must employ robust mechanisms to protect genomic integrity or risk catastrophic propagation of mutations throughout the organism. Should such an event occur in daughter cells that will eventually contribute to the germline, the overall species health could dramatically decline. This review describes several key mechanisms employed by ESCs that are unique to these cells, in order to maintain their genomic integrity. Additionally, the contributions of cell cycle regulators in modulating ESC differentiation, after DNA damage exposure, are also examined. Where data are available, findings reported in ESCs are extended to include observations described in induced pluripotent stem cells (IPSCs).
Collapse
Affiliation(s)
- Elisia D Tichy
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081
| |
Collapse
|
10
|
Santos GS, Martins MP, Luedke FE, Tanaka Y, Carreiro LE, Mendes CM, Goissis MD. Inhibition of FGF receptor impairs primitive endoderm differentiation in bovine embryos. Reprod Domest Anim 2023; 58:333-341. [PMID: 36336984 DOI: 10.1111/rda.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
The first cellular differentiation event in the pre-implantation embryo results in the trophectoderm (TE) and the inner cell mass (ICM). A second event occurs in the latter, resulting in the epiblast and the primitive endoderm (PE). This second differentiation is still not fully characterized in bovine development, although it is likely to involve FGF signalling. Thus, in this study, we tested the hypothesis that stimulation or inhibition of the FGF pathway during bovine embryo in vitro culture would only interfere with PE differentiation if maintained until later blastocyst stages. At first, we characterized the expression of PE marker SOX17 at different blastocyst stages. Then, we treated in vitro produced embryos during different windows of time: days 5.0-7.0 (D5-D7), D7-D9, and D5-D9 with 1 μg/ml FGF4 and 1 μg/ml heparin or 1 mM FGFR inhibitor, AZD4547. We observed that the SOX17-positive cell number only increases in late-stage blastocysts compared to early stages. Treatment of embryos with FGF4 did not change the number of SOX17-positive cells, while inhibition of FGFR signalling reduced SOX17-positive cells from D5-D7 and completely ablated SOX17 expression when kept until D9. In conclusion, FGFR inhibition repressed PE differentiation in bovine embryos at all time points, although stimulation with FGF4 did not interfere with PE cell numbers.
Collapse
Affiliation(s)
- Gabriel S Santos
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Matheus P Martins
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Felipe E Luedke
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Yuki Tanaka
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Letícia E Carreiro
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Camilla Mota Mendes
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo Demarchi Goissis
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
11
|
Magrath JW, Kang HJ, Hartono A, Espinosa-Cotton M, Somwar R, Ladanyi M, Cheung NKV, Lee SB. Desmoplastic small round cell tumor cancer stem cell-like cells resist chemotherapy but remain dependent on the EWSR1-WT1 oncoprotein. Front Cell Dev Biol 2022; 10:1048709. [PMID: 36506091 PMCID: PMC9732033 DOI: 10.3389/fcell.2022.1048709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
Desmoplastic Small Round Cell Tumor (DSRCT) is a rare and aggressive pediatric cancer driven by the EWSR1-WT1 fusion oncogene. Combinations of chemotherapy, radiation and surgery are not curative, and the 5-years survival rate is less than 25%. One potential explanation for refractoriness is the existence of a cancer stem cell (CSC) subpopulation able escape current treatment modalities. However, no study to-date has examined the role of CSCs in DSRCT or established in vitro culture conditions to model this subpopulation. In this study, we investigated the role of stemness markers in DSRCT survival and metastasis, finding that elevated levels of SOX2 and NANOG are associated with worse survival in sarcoma patients and are elevated in metastatic DSRCT tumors. We further develop the first in vitro DSRCT CSC model which forms tumorspheres, expresses increased levels of stemness markers (SOX2, NANOG, KLF4, and OCT4), and resists doxorubicin chemotherapy treatment. This model is an important addition to the DSRCT tool kit and will enable investigation of this critical DSRCT subpopulation. Despite lower sensitivity to chemotherapy, the DSRCT CSC model remained sensitive to knockdown of the EWSR1-WT1 fusion protein, suggesting that future therapies directed against this oncogenic driver have the potential to treat both DSRCT bulk tumor and CSCs.
Collapse
Affiliation(s)
- Justin W. Magrath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hong-Jun Kang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Alifiani Hartono
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Madelyn Espinosa-Cotton
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Nai-Kong V. Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sean B. Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
12
|
Montes C, Wang P, Liao C, Nolan TM, Song G, Clark NM, Elmore JM, Guo H, Bassham DC, Yin Y, Walley JW. Integration of multi-omics data reveals interplay between brassinosteroid and Target of Rapamycin Complex signaling in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:893-910. [PMID: 35892179 PMCID: PMC9804314 DOI: 10.1111/nph.18404] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/16/2022] [Indexed: 06/01/2023]
Abstract
Brassinosteroids (BRs) and Target of Rapamycin Complex (TORC) are two major actors coordinating plant growth and stress responses. Brassinosteroids function through a signaling pathway to extensively regulate gene expression and TORC is known to regulate translation and autophagy. Recent studies have revealed connections between these two pathways, but a system-wide view of their interplay is still missing. We quantified the level of 23 975 transcripts, 11 183 proteins, and 27 887 phosphorylation sites in wild-type Arabidopsis thaliana and in mutants with altered levels of either BRASSINOSTEROID INSENSITIVE 2 (BIN2) or REGULATORY ASSOCIATED PROTEIN OF TOR 1B (RAPTOR1B), two key players in BR and TORC signaling, respectively. We found that perturbation of BIN2 or RAPTOR1B levels affects a common set of gene-products involved in growth and stress responses. Furthermore, we used the multi-omic data to reconstruct an integrated signaling network. We screened 41 candidate genes identified from the reconstructed network and found that loss of function mutants of many of these proteins led to an altered BR response and/or modulated autophagy activity. Altogether, these results establish a predictive network that defines different layers of molecular interactions between BR- or TORC-regulated growth and autophagy.
Collapse
Affiliation(s)
- Christian Montes
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
| | - Ping Wang
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Ching‐Yi Liao
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Trevor M. Nolan
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
- Department of BiologyDuke UniversityDurhamNC27708USA
| | - Gaoyuan Song
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
| | - Natalie M. Clark
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
| | - J. Mitch Elmore
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
- USDA‐ARS Cereal Disease LaboratoryUniversity of MinnesotaSt PaulMN55108USA
| | - Hongqing Guo
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Diane C. Bassham
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
- Plant Sciences InstituteIowa State UniversityAmesIA50011USA
| | - Justin W. Walley
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
- Plant Sciences InstituteIowa State UniversityAmesIA50011USA
| |
Collapse
|
13
|
Kale HT, Rajpurohit RS, Jana D, Vishnu VV, Srivastava M, Mourya PR, Srinivas G, Shekar PC. A NANOG‐pERK reciprocal regulatory circuit regulates
Nanog
autoregulation and ERK signaling dynamics. EMBO Rep 2022; 23:e54421. [PMID: 36066347 PMCID: PMC9638859 DOI: 10.15252/embr.202154421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
The self‐renewal and differentiation potential of embryonic stem cells (ESCs) is maintained by the regulated expression of core pluripotency factors. Expression levels of the core pluripotency factor Nanog are tightly regulated by a negative feedback autorepression loop. However, it remains unclear how ESCs perceive NANOG levels and execute autorepression. Here, we show that a dose‐dependent induction of Fgfbp1 and Fgfr2 by NANOG activates autocrine‐mediated ERK signaling in Nanog‐high cells to trigger autorepression. pERK recruits NONO to the Nanog locus to repress transcription by preventing POL2 loading. This Nanog autorepression process establishes a self‐perpetuating reciprocal NANOG‐pERK regulatory circuit. We further demonstrate that this reciprocal regulatory circuit induces pERK heterogeneity and ERK signaling dynamics in pluripotent stem cells. Collectively our data suggest that NANOG induces Fgfr2 and Fgfbp1 to activate ERK signaling in Nanog‐high cells to establish a NANOG‐pERK reciprocal regulatory circuit. This circuit regulates ERK signaling dynamics and Nanog autoregulation in pluripotent cells.
Collapse
Affiliation(s)
- Hanuman T Kale
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | | | - Debabrata Jana
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - Vijay V Vishnu
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - Mansi Srivastava
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Preeti R Mourya
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - Gunda Srinivas
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - P Chandra Shekar
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
14
|
Hasani Fard AH, Valizadeh M, Mazaheri Z, Hosseini SJ. MiR-106b-5p Regulates the Reprogramming of Spermatogonial Stem Cells into iPSC (Induced Pluripotent Stem Cell)-Like Cells. IRANIAN BIOMEDICAL JOURNAL 2022; 26:291-300. [PMID: 35791490 PMCID: PMC9432470 DOI: 10.52547/ibj.3594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022]
Abstract
Background Recent years have brought notable progress in raising the efficiency of the reprogramming technique so that approaches have evolved from known transgenic factors to only a few miRNAs. Nevertheless, there is a poor understanding of both the key factors and biological networks underlying this reprogramming. The present study aimed to investigate the potential of miR-106b-5p in regulating spermatogonial stem cells (SSCs) to induced pluripotent stem cell (iPSC)-like cells. Methods We used SSCs because pluripotency is inducible in SSCs under defined culture conditions, and they have a few issues compared to other adult stem cells. As both signaling and post-transcriptional gene controls are critical for pluripotency regulation, we traced the expression of Oct-4, Sox-2, Klf-4, c-Myc, and Nanog (OSKMN). Besides, we considered miR-106b-5p targets using bioinformatic methods. Results Our results showed that transfected SSCs with miR-106b-5p increased the expression of the OSKMN factors, which was significantly more than negative control groups. Moreover, using the functional miRNA enrichment analysis, online tools, and databases, we predicted that miR-106b-5p targeted a signaling pathway gene named MAPK1/ERK2, related to regulating stem cell pluripotency. Conclusion Together, our data suggest that miR-106b-5p regulates the reprogramming of SSCs into iPSC-like cells. Furthermore, noteworthy progress in the in vitro development of SSCs indicates promise reservoirs and opportunities for future clinical trials.
Collapse
Affiliation(s)
- Amir Hossein Hasani Fard
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Valizadeh
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Mazaheri
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Jalil Hosseini
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Wijnen R, Pecoraro C, Carbone D, Fiuji H, Avan A, Peters GJ, Giovannetti E, Diana P. Cyclin Dependent Kinase-1 (CDK-1) Inhibition as a Novel Therapeutic Strategy against Pancreatic Ductal Adenocarcinoma (PDAC). Cancers (Basel) 2021; 13:4389. [PMID: 34503199 PMCID: PMC8430873 DOI: 10.3390/cancers13174389] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023] Open
Abstract
The role of CDK1 in PDAC onset and development is two-fold. Firstly, since CDK1 activity regulates the G2/M cell cycle checkpoint, overexpression of CDK1 can lead to progression into mitosis even in cells with DNA damage, a potentially tumorigenic process. Secondly, CDK1 overexpression leads to the stimulation of a range of proteins that induce stem cell properties, which can contribute to the development of cancer stem cells (CSCs). CSCs promote tumor-initiation and metastasis and play a crucial role in the development of PDAC. Targeting CDK1 showed promising results for PDAC treatment in different preclinical models, where CDK1 inhibition induced cell cycle arrest in the G2/M phase and led to induction of apoptosis. Next to this, PDAC CSCs are uniquely sensitive to CDK1 inhibition. In addition, targeting of CDK1 has shown potential for combination therapy with both ionizing radiation treatment and conventional chemotherapy, through sensitizing tumor cells and reducing resistance to these treatments. To conclude, CDK1 inhibition induces G2/M cell cycle arrest, stimulates apoptosis, and specifically targets CSCs, which makes it a promising treatment for PDAC. Screening of patients for CDK1 overexpression and further research into combination treatments is essential for optimizing this novel targeted therapy.
Collapse
Affiliation(s)
- Rosa Wijnen
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (R.W.); (C.P.); (G.J.P.)
| | - Camilla Pecoraro
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (R.W.); (C.P.); (G.J.P.)
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy;
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy;
| | - Hamid Fiuji
- Department of Biochemistry, Payame-Noor University, Mashhad 19395-4697, Iran;
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad 91886-17871, Iran;
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (R.W.); (C.P.); (G.J.P.)
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (R.W.); (C.P.); (G.J.P.)
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, 56124 Pisa, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy;
| |
Collapse
|
16
|
Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol 2021; 85:123-154. [PMID: 33992782 DOI: 10.1016/j.semcancer.2021.05.010] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
The RAF-MEK-ERK signaling cascade is a well-characterized MAPK pathway involved in cell proliferation and survival. The three-layered MAPK signaling cascade is initiated upon RTK and RAS activation. Three RAF isoforms ARAF, BRAF and CRAF, and their downstream MEK1/2 and ERK1/2 kinases constitute a coherently orchestrated signaling module that directs a range of physiological functions. Genetic alterations in this pathway are among the most prevalent in human cancers, which consist of numerous hot-spot mutations such as BRAFV600E. Oncogenic mutations in this pathway often override otherwise tightly regulated checkpoints to open the door for uncontrolled cell growth and neoplasia. The crosstalk between the RAF-MEK-ERK axis and other signaling pathways further extends the proliferative potential of this pathway in human cancers. In this review, we summarize the molecular architecture and physiological functions of the RAF-MEK-ERK pathway with emphasis on its dysregulations in human cancers, as well as the efforts made to target the RAF-MEK-ERK module using small molecule inhibitors.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Aidan H Snell
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
17
|
ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol 2020; 21:607-632. [PMID: 32576977 DOI: 10.1038/s41580-020-0255-7] [Citation(s) in RCA: 643] [Impact Index Per Article: 128.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The proteins extracellular signal-regulated kinase 1 (ERK1) and ERK2 are the downstream components of a phosphorelay pathway that conveys growth and mitogenic signals largely channelled by the small RAS GTPases. By phosphorylating widely diverse substrates, ERK proteins govern a variety of evolutionarily conserved cellular processes in metazoans, the dysregulation of which contributes to the cause of distinct human diseases. The mechanisms underlying the regulation of ERK1 and ERK2, their mode of action and their impact on the development and homeostasis of various organisms have been the focus of much attention for nearly three decades. In this Review, we discuss the current understanding of this important class of kinases. We begin with a brief overview of the structure, regulation, substrate recognition and subcellular localization of ERK1 and ERK2. We then systematically discuss how ERK signalling regulates six fundamental cellular processes in response to extracellular cues. These processes are cell proliferation, cell survival, cell growth, cell metabolism, cell migration and cell differentiation.
Collapse
|
18
|
Yiangou L, Grandy RA, Osnato A, Ortmann D, Sinha S, Vallier L. Cell cycle regulators control mesoderm specification in human pluripotent stem cells. J Biol Chem 2019; 294:17903-17914. [PMID: 31515269 PMCID: PMC6879335 DOI: 10.1074/jbc.ra119.008251] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
The mesoderm is one of the three germ layers produced during gastrulation from which muscle, bones, kidneys, and the cardiovascular system originate. Understanding the mechanisms that control mesoderm specification could inform many applications, including the development of regenerative medicine therapies to manage diseases affecting these tissues. Here, we used human pluripotent stem cells to investigate the role of cell cycle in mesoderm formation. To this end, using small molecules or conditional gene knockdown, we inhibited proteins controlling G1 and G2/M cell cycle phases during the differentiation of human pluripotent stem cells into lateral plate, cardiac, and presomitic mesoderm. These loss-of-function experiments revealed that regulators of the G1 phase, such as cyclin-dependent kinases and pRb (retinoblastoma protein), are necessary for efficient mesoderm formation in a context-dependent manner. Further investigations disclosed that inhibition of the G2/M regulator cyclin-dependent kinase 1 decreases BMP (bone morphogenetic protein) signaling activity specifically during lateral plate mesoderm formation while reducing fibroblast growth factor/extracellular signaling-regulated kinase 1/2 activity in all mesoderm subtypes. Taken together, our findings reveal that cell cycle regulators direct mesoderm formation by controlling the activity of key developmental pathways.
Collapse
Affiliation(s)
- Loukia Yiangou
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Wellcome Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Rodrigo A Grandy
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Anna Osnato
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Daniel Ortmann
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Sanjay Sinha
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Ludovic Vallier
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Wellcome Sanger Institute, Hinxton CB10 1SA, United Kingdom
| |
Collapse
|
19
|
Kusuyama J, Seong C, Makarewicz NS, Ohnishi T, Shima K, Semba I, Bandow K, Matsuguchi T. Low intensity pulsed ultrasound (LIPUS) maintains osteogenic potency by the increased expression and stability of Nanog through spleen tyrosine kinase (Syk) activation. Cell Signal 2019; 62:109345. [PMID: 31228531 DOI: 10.1016/j.cellsig.2019.109345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/22/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) are a powerful tool for cell-based, clinical therapies like bone regeneration. Therapeutic use of cell transplantation requires many cells, however, the expansion process needed to produce large quantities of cells reduces the differentiation potential of MSCs. Here, we examined the protective effects of low intensity pulsed ultrasound (LIPUS) on the maintenance of osteogenic potency. Primary osteoblastic cells were serially passaged between 2 and 12 times with daily LIPUS treatment. We found that LIPUS stimulation maintains osteogenic differentiation capacity in serially passaged cells, as characterized by improved matrix mineralization and Osteocalcin mRNA expression. Decreased expression of Nanog, Sox2, and Msx2, and increased expression of Pparg2 from serial passaging was recovered in LIPUS-stimulated cells. We found that LIPUS stimulation not only increased but also sustained expression of Nanog in primary osteoblasts and ST2 cells, a mouse mesenchymal stromal cell line. Nanog overexpression in serially passaged cells mimicked the recuperative effects of LIPUS on osteogenic potency, highlighting the important role of Nanog in LIPUS stimulation. Additionally, we found that spleen tyrosine kinase (Syk) is an important signaling molecule to induce Nanog expression in LIPUS-stimulated cells. Syk activation was regulated by both Rho-associated kinase 1 (ROCK1) and extracellular ATP in a paracrine manner. Interestingly, the LIPUS-induced increase in Nanog mRNA expression was regulated by ATP-P2X4-Syk Y323 activation, while the improvement of Nanog protein stability was controlled by the ROCK1-Syk Y525/526 pathway. Taken together, these results indicate that LIPUS stimulation recovers and maintains the osteogenic potency of serially passaged cells through a Syk-Nanog axis.
Collapse
Affiliation(s)
- Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA.
| | - Changhwan Seong
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Nathan S Makarewicz
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kaori Shima
- Department of Oral Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Ichiro Semba
- Department of Oral Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kenjiro Bandow
- Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakato 350-0283, Saitama, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
20
|
AMPK Promotes SPOP-Mediated NANOG Degradation to Regulate Prostate Cancer Cell Stemness. Dev Cell 2018; 48:345-360.e7. [PMID: 30595535 DOI: 10.1016/j.devcel.2018.11.033] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/11/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
Abstract
NANOG is an essential transcriptional factor for the maintenance of embryonic stem cells (ESCs) and cancer stem cells (CSCs) in prostate cancer (PCa). However, the regulation mechanism of NANOG protein stability in cancer progression is still elusive. Here, we report that NANOG is degraded by SPOP, a frequently mutated tumor suppressor of PCa. Cancer-associated mutations of SPOP or the mutation of NANOG at S68Y abrogates the SPOP-mediated NANOG degradation, leading to elevated PCa cancer stemness and poor prognosis. In addition, SPOP-mediated NANOG degradation is controlled by the AMPK-BRAF signal axis through the phosphorylation of NANOG at Ser68, which blocked the interaction between SPOP and NANOG. Thus, our study provides a regulation mechanism of PCa stemness controlled by phosphorylation-mediated NANOG stability, which helps to identify novel drug targets and improve therapeutic strategy for PCa.
Collapse
|
21
|
Rodríguez Varela MS, Mucci S, Videla Richardson GA, Morris Hanon O, Furmento VA, Miriuka SG, Sevlever GE, Scassa ME, Romorini L. Regulation of cyclin E1 expression in human pluripotent stem cells and derived neural progeny. Cell Cycle 2018; 17:1721-1744. [PMID: 29995582 DOI: 10.1080/15384101.2018.1496740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human pluripotent stem cells (hPSCs), including embryonic and induced pluripotent stem cells (hESCs and hiPSCs) show unique cell cycle characteristics, such as a short doubling time due to an abbreviated G1 phase. Whether or not the core cell cycle machinery directly regulates the stemness and/or the differentiation potential of hPSCs remains to be determined. To date, several scenarios describing the atypical cell cycle of hPSCs have been suggested, and therefore there is still controversy over how cyclins, master regulators of the cell cycle, are expressed and regulated. Furthermore, the cell cycle profile and the expression pattern of major cyclins in hESCs-derived neuroprogenitors (NP) have not been studied yet. Therefore, herein we characterized the expression pattern of major cyclins in hPSCs and NP. We determined that all studied cyclins mRNA expression levels fluctuate along cell cycle. Particularly, after a thorough analysis of synchronized cell populations, we observed that cyclin E1 mRNA levels increased sharply in G1/S concomitantly with cyclin E1 protein accumulation in hPSCs and NP. Additionally, we demonstrated that cyclin E1 mRNA expression levels involves the activation of MEK/ERK pathway and the transcription factors c-Myc and E2Fs in hPSCs. Lastly, our results reveal that proteasome mediates the marked down-regulation (degradation) of cyclin E1 protein observed in G2/M by a mechanism that requires a functional CDK2 but not GSK3β activity. ABBREVIATIONS hPSCs: human pluripotent stem cells; hESCs: human embryonic stem cells; hiPSCs: human induced pluripotent stem cells; NP: neuroprogenitors; HF: human foreskin fibroblasts; MEFs: mouse embryonic fibroblasts; iMEFs: irradiated mouse embryonic fibroblasts; CDKs: cyclindependent kinases; CKIs: CDK inhibitors; CNS: central nervous system; Oct-4: Octamer-4; EB: embryoid body; AFP: Alpha-fetoprotein; cTnT: Cardiac Troponin T; MAP-2: microtubule-associated protein; TUJ-1: neuron-specific class III β-tubulin; bFGF: basic fibroblastic growth factor; PI3K: Phosphoinositide 3-kinase; KSR: knock out serum replacement; CM: iMEF conditioned medium; E8: Essential E8 medium.
Collapse
Affiliation(s)
- María Soledad Rodríguez Varela
- a Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET) , Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) , Belén de Escobar , Provincia de Buenos Aires , Argentina
| | - Sofía Mucci
- a Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET) , Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) , Belén de Escobar , Provincia de Buenos Aires , Argentina
| | - Guillermo Agustín Videla Richardson
- a Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET) , Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) , Belén de Escobar , Provincia de Buenos Aires , Argentina
| | - Olivia Morris Hanon
- a Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET) , Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) , Belén de Escobar , Provincia de Buenos Aires , Argentina
| | - Verónica Alejandra Furmento
- a Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET) , Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) , Belén de Escobar , Provincia de Buenos Aires , Argentina
| | - Santiago Gabriel Miriuka
- a Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET) , Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) , Belén de Escobar , Provincia de Buenos Aires , Argentina
| | - Gustavo Emilio Sevlever
- a Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET) , Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) , Belén de Escobar , Provincia de Buenos Aires , Argentina
| | - María Elida Scassa
- a Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET) , Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) , Belén de Escobar , Provincia de Buenos Aires , Argentina
| | - Leonardo Romorini
- a Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET) , Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) , Belén de Escobar , Provincia de Buenos Aires , Argentina
| |
Collapse
|
22
|
Schulz EG. X-chromosome dosage as a modulator of pluripotency, signalling and differentiation? Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0366. [PMID: 28947662 DOI: 10.1098/rstb.2016.0366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 01/12/2023] Open
Abstract
Already during early embryogenesis, before sex-specific hormone production is initiated, sex differences in embryonic development have been observed in several mammalian species. Typically, female embryos develop more slowly than their male siblings. A similar phenotype has recently been described in differentiating murine embryonic stem cells, where a double dose of the X-chromosome halts differentiation until dosage-compensation has been achieved through X-chromosome inactivation. On the molecular level, several processes associated with early differentiation of embryonic stem cells have been found to be affected by X-chromosome dosage, such as the transcriptional state of the pluripotency network, the activity pattern of several signal transduction pathways and global levels of DNA-methylation. This review provides an overview of the sex differences described in embryonic stem cells from mice and discusses a series of X-linked genes that are associated with pluripotency, signalling and differentiation and their potential involvement in mediating the observed X-dosage-dependent effects.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- Edda G Schulz
- Otto-Warburg-Laboratorium, Max-Planck-Institut for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| |
Collapse
|
23
|
Bessonnard S, Coqueran S, Vandormael-Pournin S, Dufour A, Artus J, Cohen-Tannoudji M. ICM conversion to epiblast by FGF/ERK inhibition is limited in time and requires transcription and protein degradation. Sci Rep 2017; 7:12285. [PMID: 28947813 PMCID: PMC5612930 DOI: 10.1038/s41598-017-12120-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/04/2017] [Indexed: 01/02/2023] Open
Abstract
Inner cell Mass (ICM) specification into epiblast (Epi) and primitive endoderm (PrE) is an asynchronous and progressive process taking place between E3.0 to E3.75 under the control of the Fibroblast Growth Factor (FGF)/Extracellular signal-Regulated Kinase (ERK) signaling pathway. Here, we have analyzed in details the kinetics of specification and found that ICM cell responsiveness to the up and down regulation of FGF signaling activity are temporally distinct. We also showed that PrE progenitors are generated later than Epi progenitors. We further demonstrated that, during this late phase of specification, a 4 hours period of FGF/ERK inhibition prior E3.75 is sufficient to convert ICM cells into Epi. Finally, we showed that ICM conversion into Epi in response to inhibition during this short time window requires both transcription and proteasome degradation. Collectively, our data give new insights into the timing and mechanisms involved in the process of ICM specification.
Collapse
Affiliation(s)
- Sylvain Bessonnard
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, F-75015, Paris, France
| | - Sabrina Coqueran
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, F-75015, Paris, France
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, F-75015, Paris, France
| | - Alexandre Dufour
- Institut Pasteur, Bioimage Analysis Unit, CNRS UMR 3691, Paris, France.,INSERM UMR935, Paul Brousse Hospital, University Paris Sud, Villejuif, France
| | - Jérôme Artus
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, F-75015, Paris, France. .,INSERM UMR935, Paul Brousse Hospital, University Paris Sud, Villejuif, France. .,Faculty of Medicine, Kremlin-Bicêtre, University Paris Sud, Paris Saclay, France.
| | - Michel Cohen-Tannoudji
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, F-75015, Paris, France.
| |
Collapse
|
24
|
Abazova N, Krijgsveld J. Advances in stem cell proteomics. Curr Opin Genet Dev 2017; 46:149-155. [PMID: 28806595 DOI: 10.1016/j.gde.2017.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 12/15/2022]
Abstract
Stem cells are at the basis of organismal development, characterized by their potential to differentiate towards specific lineages upon receiving proper signals. To understand the molecular principles underlying gain and loss of pluripotency, proteomics plays an increasingly important role owing to technical developments in mass spectrometry and implementation of innovative biochemical approaches. Here we review how quantitative proteomics has been used to investigate protein expression, localization, interaction and modification in stem cells both in vitro and in vivo, thereby complementing other omics approaches to study fundamental properties of stem cell plasticity.
Collapse
Affiliation(s)
- Nade Abazova
- German Cancer Research Center (DKFZ), Heidelberg, Germany; Excellence Cluster CellNetworks, Heidelberg University, Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Heidelberg, Germany; Excellence Cluster CellNetworks, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
25
|
Jayaraman D, Richards AL, Westphall MS, Coon JJ, Ané JM. Identification of the phosphorylation targets of symbiotic receptor-like kinases using a high-throughput multiplexed assay for kinase specificity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1196-1207. [PMID: 28267253 PMCID: PMC5461195 DOI: 10.1111/tpj.13529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 02/17/2017] [Accepted: 03/01/2017] [Indexed: 05/29/2023]
Abstract
Detecting the phosphorylation substrates of multiple kinases in a single experiment is a challenge, and new techniques are being developed to overcome this challenge. Here, we used a multiplexed assay for kinase specificity (MAKS) to identify the substrates directly and to map the phosphorylation site(s) of plant symbiotic receptor-like kinases. The symbiotic receptor-like kinases nodulation receptor-like kinase (NORK) and lysin motif domain-containing receptor-like kinase 3 (LYK3) are indispensable for the establishment of root nodule symbiosis. Although some interacting proteins have been identified for these symbiotic receptor-like kinases, very little is known about their phosphorylation substrates. Using this high-throughput approach, we identified several other potential phosphorylation targets for both these symbiotic receptor-like kinases. In particular, we also discovered the phosphorylation of LYK3 by NORK itself, which was also confirmed by pairwise kinase assays. Motif analysis of potential targets for these kinases revealed that the acidic motif xxxsDxxx was common to both of them. In summary, this high-throughput technique catalogs the potential phosphorylation substrates of multiple kinases in a single efficient experiment, the biological characterization of which should provide a better understanding of phosphorylation signaling cascade in symbiosis.
Collapse
Affiliation(s)
- Dhileepkumar Jayaraman
- Department of Agronomy, 1575 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
| | - Alicia L. Richards
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
| | - Michael S. Westphall
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, 420 Henry Mall, WI 53706, USA
| | - Joshua J. Coon
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, 420 Henry Mall, WI 53706, USA
| | - Jean-Michel Ané
- Department of Agronomy, 1575 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
- Department of Bacteriology, 1550 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
| |
Collapse
|
26
|
Protein Kinases in Pluripotency—Beyond the Usual Suspects. J Mol Biol 2017; 429:1504-1520. [DOI: 10.1016/j.jmb.2017.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/14/2022]
|
27
|
Saunders A, Li D, Faiola F, Huang X, Fidalgo M, Guallar D, Ding J, Yang F, Xu Y, Zhou H, Wang J. Context-Dependent Functions of NANOG Phosphorylation in Pluripotency and Reprogramming. Stem Cell Reports 2017; 8:1115-1123. [PMID: 28457890 PMCID: PMC5425684 DOI: 10.1016/j.stemcr.2017.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 03/18/2017] [Accepted: 03/28/2017] [Indexed: 01/19/2023] Open
Abstract
The core pluripotency transcription factor NANOG is critical for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Although NANOG is phosphorylated at multiple residues, the role of NANOG phosphorylation in ESC self-renewal is incompletely understood, and no information exists regarding its functions during reprogramming. Here we report our findings that NANOG phosphorylation is beneficial, although nonessential, for ESC self-renewal, and that loss of phosphorylation enhances NANOG activity in reprogramming. Mutation of serine 65 in NANOG to alanine (S65A) alone has the most significant impact on increasing NANOG reprogramming capacity. Mechanistically, we find that pluripotency regulators (ESRRB, OCT4, SALL4, DAX1, and TET1) are transcriptionally primed and preferentially associated with NANOG S65A at the protein level due to presumed structural alterations in the N-terminal domain of NANOG. These results demonstrate that a single phosphorylation site serves as a critical interface for controlling context-dependent NANOG functions in pluripotency and reprogramming. NANOG phospho-residues are evolutionarily conserved in mammals Phosphorylation promotes NANOG function in sustaining ESC self-renewal Loss of phosphorylation improves NANOG function in reprogramming Pluripotency regulators are preferentially associated with NANOG S65A in pre-iPSCs
Collapse
Affiliation(s)
- Arven Saunders
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Li
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesco Faiola
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Huang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miguel Fidalgo
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana Guallar
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junjun Ding
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fan Yang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yang Xu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hongwei Zhou
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianlong Wang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
28
|
Baud A, Wessely F, Mazzacuva F, McCormick J, Camuzeaux S, Heywood WE, Little D, Vowles J, Tuefferd M, Mosaku O, Lako M, Armstrong L, Webber C, Cader MZ, Peeters P, Gissen P, Cowley SA, Mills K. Multiplex High-Throughput Targeted Proteomic Assay To Identify Induced Pluripotent Stem Cells. Anal Chem 2017; 89:2440-2448. [PMID: 28192931 DOI: 10.1021/acs.analchem.6b04368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Induced pluripotent stem cells have great potential as a human model system in regenerative medicine, disease modeling, and drug screening. However, their use in medical research is hampered by laborious reprogramming procedures that yield low numbers of induced pluripotent stem cells. For further applications in research, only the best, competent clones should be used. The standard assays for pluripotency are based on genomic approaches, which take up to 1 week to perform and incur significant cost. Therefore, there is a need for a rapid and cost-effective assay able to distinguish between pluripotent and nonpluripotent cells. Here, we describe a novel multiplexed, high-throughput, and sensitive peptide-based multiple reaction monitoring mass spectrometry assay, allowing for the identification and absolute quantitation of multiple core transcription factors and pluripotency markers. This assay provides simpler and high-throughput classification into either pluripotent or nonpluripotent cells in 7 min analysis while being more cost-effective than conventional genomic tests.
Collapse
Affiliation(s)
- Anna Baud
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health , London, WC1N 1EH, United Kingdom
| | - Frank Wessely
- Department of Physiology, Anatomy & Genetics, Oxford University , Oxford, OX1 3PT, United Kingdom
| | - Francesca Mazzacuva
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health , London, WC1N 1EH, United Kingdom
| | - James McCormick
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health , London, WC1N 1EH, United Kingdom
| | - Stephane Camuzeaux
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health , London, WC1N 1EH, United Kingdom
| | - Wendy E Heywood
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health , London, WC1N 1EH, United Kingdom
| | - Daniel Little
- MRC Laboratory for Molecular Cell Biology, University College London , London, WC1E 6BT, United Kingdom
| | - Jane Vowles
- Oxford Parkinson's Disease Centre, University of Oxford , Oxford, OX1 3QX, United Kingdom
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford , Oxford, OX1 3RE, United Kingdom
| | | | - Olukunbi Mosaku
- MRC Laboratory for Molecular Cell Biology, University College London , London, WC1E 6BT, United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University , Newcastle, NE1 3BZ, United Kingdom
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University , Newcastle, NE1 3BZ, United Kingdom
| | - Caleb Webber
- Department of Physiology, Anatomy & Genetics, Oxford University , Oxford, OX1 3PT, United Kingdom
| | - M Zameel Cader
- The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital , Oxford, OX3 9DS, United Kingdom
| | - Pieter Peeters
- Janssen Research and Development , Beerse, 2340, Belgium
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London , London, WC1E 6BT, United Kingdom
| | - Sally A Cowley
- Oxford Parkinson's Disease Centre, University of Oxford , Oxford, OX1 3QX, United Kingdom
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford , Oxford, OX1 3RE, United Kingdom
| | - Kevin Mills
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health , London, WC1N 1EH, United Kingdom
| |
Collapse
|
29
|
Jin J, Liu J, Chen C, Liu Z, Jiang C, Chu H, Pan W, Wang X, Zhang L, Li B, Jiang C, Ge X, Xie X, Wang P. The deubiquitinase USP21 maintains the stemness of mouse embryonic stem cells via stabilization of Nanog. Nat Commun 2016; 7:13594. [PMID: 27886188 PMCID: PMC5133637 DOI: 10.1038/ncomms13594] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 10/18/2016] [Indexed: 12/11/2022] Open
Abstract
Nanog is a master pluripotency factor of embryonic stem cells (ESCs). Stable expression of Nanog is essential to maintain the stemness of ESCs. However, Nanog is a short-lived protein and quickly degraded by the ubiquitin-dependent proteasome system. Here we report that the deubiquitinase USP21 interacts with, deubiquitinates and stabilizes Nanog, and therefore maintains the protein level of Nanog in mouse ESCs (mESCs). Loss of USP21 results in Nanog degradation, mESCs differentiation and reduces somatic cell reprogramming efficiency. USP21 is a transcriptional target of the LIF/STAT3 pathway and is downregulated upon differentiation. Moreover, differentiation cues promote ERK-mediated phosphorylation and dissociation of USP21 from Nanog, thus leading to Nanog degradation. In addition, USP21 is recruited to gene promoters by Nanog to deubiquitinate histone H2A at K119 and thus facilitates Nanog-mediated gene expression. Together, our findings provide a regulatory mechanism by which extrinsic signals regulate mESC fate via deubiquitinating Nanog. Nanog regulates embryonic stem cell (ESC) pluripotency but what controls Nanog protein stability is unclear. Here, the authors show that in mouse ESCs, Nanog protein is ubiquitinated and stabilized by the deubiquitinase USP21, which in turn is regulated by extrinsic signals, STAT3 and ERK.
Collapse
Affiliation(s)
- Jiali Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jian Liu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences No. 19A Yuquan Road, Beijing 100049, China
| | - Cong Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhenping Liu
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Cong Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hongshang Chu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Weijuan Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xinbo Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Bin Li
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cizhong Jiang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Xin Ge
- Department of Clinical Medicine, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai 200072, China
| | - Xin Xie
- Chinese Academy of Sciences Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences No. 19A Yuquan Road, Beijing 100049, China
| | - Ping Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.,Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200072, China
| |
Collapse
|
30
|
Liu X, Yao Y, Ding H, Han C, Chen Y, Zhang Y, Wang C, Zhang X, Zhang Y, Zhai Y, Wang P, Wei W, Zhang J, Zhang L. USP21 deubiquitylates Nanog to regulate protein stability and stem cell pluripotency. Signal Transduct Target Ther 2016; 1:16024. [PMID: 29263902 PMCID: PMC5661642 DOI: 10.1038/sigtrans.2016.24] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022] Open
Abstract
The homeobox transcription factor Nanog has a vital role in maintaining pluripotency and self-renewal of embryonic stem cells (ESCs). Stabilization of Nanog proteins is essential for ESCs. The ubiquitin-proteasome pathway mediated by E3 ubiquitin ligases and deubiquitylases is one of the key ways to regulate protein levels and functions. Although ubiquitylation of Nanog catalyzed by the ligase FBXW8 has been demonstrated, the deubiquitylase that maintains the protein levels of Nanog in ESCs yet to be defined. In this study, we identify the ubiquitin-specific peptidase 21 (USP21) as a deubiquitylase for Nanog, but not for Oct4 or Sox2. USP21 interacts with Nanog protein in ESCs in vivo and in vitro. The C-terminal USP domain of USP21 and the C-domain of Nanog are responsible for this interaction. USP21 deubiquitylates the K48-type linkage of the ubiquitin chain of Nanog, stabilizing Nanog. USP21-mediated Nanog stabilization is enhanced in mouse ESCs and this stabilization is required to maintain the pluripotential state of the ESCs. Depletion of USP21 in mouse ESCs leads to Nanog degradation and ESC differentiation. Overall, our results demonstrate that USP21 maintains the stemness of mouse ESCs through deubiquitylating and stabilizing Nanog.
Collapse
Affiliation(s)
- Xingyu Liu
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Yuying Yao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Huiguo Ding
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanchun Han
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuhan Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Yuan Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Chanjuan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Xin Zhang
- College of Life Sciences, Xiamen University, Xiamen, China
| | - Yiling Zhang
- Department of Orthopedics, the General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Yun Zhai
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ping Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
31
|
Pirouz M, Rahjouei A, Shamsi F, Eckermann KN, Salinas-Riester G, Pommerenke C, Kessel M. Destabilization of pluripotency in the absence of Mad2l2. Cell Cycle 2016; 14:1596-610. [PMID: 25928475 DOI: 10.1080/15384101.2015.1026485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The induction and maintenance of pluripotency requires the expression of several core factors at appropriate levels (Oct4, Sox2, Klf4, Prdm14). A subset of these proteins (Oct4, Sox2, Prdm14) also plays crucial roles for the establishment of primordial germ cells (PGCs). Here we demonstrate that the Mad2l2 (MAD2B, Rev7) gene product is not only required by PGCs, but also by pluripotent embryonic stem cells (ESCs), depending on the growth conditions. Mad2l2(-/-) ESCs were unstable in LIF/serum medium, and differentiated into primitive endoderm. However, they could be stably propagated using small molecule inhibitors of MAPK signaling. Several components of the MAPK cascade were up- or downregulated even in undifferentiated Mad2l2(-/-) ESCs. Global levels of repressive histone H3 variants were increased in mutant ESCs, and the epigenetic signatures on pluripotency-, primitive endoderm-, and MAPK-related loci differed. Thus, H3K9me2 repressed the Nanog promoter, while the promoter of Gata4 lost H3K27me3 and became de-repressed in LIF/serum condition. Promoters associated with genes involved in MAPK signaling also showed misregulation of these histone marks. Such epigenetic modifications could be indirect consequences of mutating Mad2l2. However, our previous observations suggested the histone methyltransferases as direct (G9a) or indirect (Ezh2) targets of Mad2l2. In effect, the intricate balance necessary for pluripotency becomes perturbed in the absence of Mad2l2.
Collapse
Affiliation(s)
- Mehdi Pirouz
- a Department of Molecular Cell Biology ; Max Planck Institute for Biophysical Chemistry ; Goettingen ; Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Ma X, Chen H, Chen L. A dual role of Erk signaling in embryonic stem cells. Exp Hematol 2016; 44:151-6. [PMID: 26751246 DOI: 10.1016/j.exphem.2015.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/25/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
Abstract
Erk signaling plays a critical role in maintaining the pluripotency of mouse embryonic stem cells (ESCs). Inhibition of Mek/Erk signaling by pharmacologic Mek inhibitor promotes self-renewal and pluripotency of mouse ESCs. However, knockout of Erk1/2 genes compromises the self-renewal and genomic stability of mouse ESCs. In this review, we summarize recent progress in understanding the role of Erk signaling in pluripotency maintenance, discuss the dual role of Erk in mouse ESCs, and provide explanations for the conflicting data regarding Mek inhibition and Erk knockout. Remaining questions and the prospects of Erk signaling in pluripotency maintenance are also discussed.
Collapse
Affiliation(s)
- Xinwei Ma
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences and College of Life Sciences, Nankai University, Tianjin, China
| | - Haixia Chen
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences and College of Life Sciences, Nankai University, Tianjin, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences and College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
33
|
Erk signaling is indispensable for genomic stability and self-renewal of mouse embryonic stem cells. Proc Natl Acad Sci U S A 2015; 112:E5936-43. [PMID: 26483458 DOI: 10.1073/pnas.1516319112] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inhibition of Mek/Erk signaling by pharmacological Mek inhibitors promotes self-renewal and pluripotency of mouse embryonic stem cells (ESCs). Intriguingly, Erk signaling is essential for human ESC self-renewal. Here we demonstrate that Erk signaling is critical for mouse ESC self-renewal and genomic stability. Erk-depleted ESCs cannot be maintained. Lack of Erk leads to rapid telomere shortening and genomic instability, in association with misregulated expression of pluripotency genes, reduced cell proliferation, G1 cell-cycle arrest, and increased apoptosis. Erk signaling is also required for the activation of differentiation genes but not for the repression of pluripotency genes during ESC differentiation. Furthermore, we find an Erk-independent function of Mek, which may explain the diverse effects of Mek inhibition and Erk knockout on ESC self-renewal. Together, in contrast to the prevailing view, Erk signaling is required for telomere maintenance, genomic stability, and self-renewal of mouse ESCs.
Collapse
|
34
|
Krivega MV, Geens M, Heindryckx B, Santos-Ribeiro S, Tournaye H, Van de Velde H. Cyclin E1 plays a key role in balancing between totipotency and differentiation in human embryonic cells. Mol Hum Reprod 2015; 21:942-56. [PMID: 26416983 DOI: 10.1093/molehr/gav053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 09/21/2015] [Indexed: 12/17/2022] Open
Abstract
STUDY HYPOTHESIS We aimed to investigate if Cyclin E1 (CCNE1) plays a role in human embryogenesis, in particular during the early developmental stages characterized by a short cell cycle. STUDY FINDING CCNE1 is expressed in plenipotent human embryonic cells and plays a critical role during hESC derivation via the naïve state and, potentially, normal embryo development. WHAT IS KNOWN ALREADY A short cell cycle due to a truncated G1 phase has been associated with the high developmental capacity of embryonic cells. CCNE1 is a critical G1/S transition regulator. CCNE1 overexpression can cause shortening of the cell cycle and it is constitutively expressed in mouse embryonic stem cells and cancer cells. STUDY DESIGN, SAMPLES/MATERIALS, METHODS We investigated expression of CCNE1 in human preimplantation embryo development and embryonic stem cells (hESC). Functional studies included CCNE1 overexpression in hESC and CCNE1 downregulation in the outgrowths formed by plated human blastocysts. Analysis was performed by immunocytochemistry and quantitative real-time PCR. Mann-Whitney statistical test was applied. MAIN RESULTS AND THE ROLE OF CHANCE The CCNE1 protein was ubiquitously and constitutively expressed in the plenipotent cells of the embryo from the 4-cell stage up to and including the full blastocyst. During blastocyst expansion, CCNE1 was downregulated in the trophectoderm (TE) cells. CCNE1 shortly co-localized with NANOG in the inner cell mass (ICM) of expanding blastocysts, mimicking the situation in naïve hESC. In the ICM of expanded blastocysts, which corresponds with primed hESC, CCNE1 defined a subpopulation of cells different from NANOG/POU5F1-expressing pluripotent epiblast (EPI) cells and GATA4/SOX17-expressing primitive endoderm (PrE) cells. This CCNE1-positive cell population was associated with visceral endoderm based on transthyretin expression and marked the third cell lineage within the ICM, besides EPI and PrE, which had never been described before. We also investigated the role of CCNE1 by plating expanded blastocysts for hESC derivation. As a result, all the cells including TE cells re-gained CCNE1 and, consequently, NANOG expression, resembling the phenotype of naïve hESC. The inhibition of CCNE1 expression with siRNA blocked proliferation and caused degeneration of those plated cells. LIMITATIONS, REASONS FOR CAUTION The study is based on a limited number of good-quality human embryos donated to research. WIDER IMPLICATIONS OF THE FINDINGS Our study sheds light on the processes underlying the high developmental potential of early human embryonic cells. The CCNE1-positive plenipotent cell type corresponds with a phenotype that enables early human embryos to recover after fragmentation, cryodamage or (single cell) biopsy on day 3 for preimplantation genetic diagnosis. Knowledge on the expression and function of genes responsible for this flexibility will help us to better understand the undifferentiated state in stem cell biology and might enable us to improve technologies in assisted reproduction. LARGE SCALE DATA NA STUDY FUNDING AND COMPETING INTERESTS: This research is supported by grants from the Fund for Scientific Research - Flanders (FWO-Vlaanderen), the Methusalem (METH) of the VUB and Scientific Research Fond Willy Gepts of UZ Brussel. There are no competing interests.
Collapse
Affiliation(s)
- M V Krivega
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - M Geens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - B Heindryckx
- Ghent Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - S Santos-Ribeiro
- Centre for Reproductive Medicine (CRG), Brussels University Hospital, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - H Tournaye
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium Centre for Reproductive Medicine (CRG), Brussels University Hospital, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - H Van de Velde
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium Centre for Reproductive Medicine (CRG), Brussels University Hospital, Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
35
|
Ohtsuka S, Nakai-Futatsugi Y, Niwa H. LIF signal in mouse embryonic stem cells. JAKSTAT 2015; 4:e1086520. [PMID: 27127728 PMCID: PMC4802755 DOI: 10.1080/21623996.2015.1086520] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/18/2015] [Indexed: 12/22/2022] Open
Abstract
Since the establishment of mouse embryonic stem cells (mESCs) in the 1980s, a number of important notions on the self-renewal of pluripotent stem cells in vitro have been found. In serum containing conventional culture, an exogenous cytokine, leukemia inhibitory factor (LIF), is absolutely essential for the maintenance of pluripotency. In contrast, in serum-free culture with simultaneous inhibition of Map-kinase and Gsk3 (so called 2i-culture), LIF is no longer required. However, recent findings also suggest that LIF may have a role not covered by the 2i for the maintenance of naïve pluripotency. These suggest that LIF functions for the maintenance of naïve pluripotency in a context dependent manner. We summarize how LIF-signal pathway is converged to maintain the naïve state of pluripotency.
Collapse
Affiliation(s)
- Satoshi Ohtsuka
- Laboratory for Pluripotent Stem Cell Studies; Center for Developmental Biology (CDB) RIKEN ; Kobe, Japan
| | - Yoko Nakai-Futatsugi
- Laboratory for Pluripotent Stem Cell Studies; Center for Developmental Biology (CDB) RIKEN ; Kobe, Japan
| | - Hitoshi Niwa
- Laboratory for Pluripotent Stem Cell Studies; Center for Developmental Biology (CDB) RIKEN; Kobe, Japan; Department of Pluripotent Stem Cell Biology; Institute of Molecular Embryology and Genetics (IMEG); Kumamoto University; Kumamoto, Japan
| |
Collapse
|
36
|
Mulvey CM, Schröter C, Gatto L, Dikicioglu D, Fidaner IB, Christoforou A, Deery MJ, Cho LTY, Niakan KK, Martinez-Arias A, Lilley KS. Dynamic Proteomic Profiling of Extra-Embryonic Endoderm Differentiation in Mouse Embryonic Stem Cells. Stem Cells 2015; 33:2712-25. [DOI: 10.1002/stem.2067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/20/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Claire M. Mulvey
- Cambridge Centre for Proteomics; Department of Biochemistry; University of Cambridge; Cambridge United Kingdom
- Cambridge Systems Biology Centre; Wellcome Trust Stem Cell building; University of Cambridge; Cambridge United Kingdom
- Department of Genetics; University of Cambridge; Cambridge United Kingdom
| | - Christian Schröter
- Department of Genetics; University of Cambridge; Cambridge United Kingdom
| | - Laurent Gatto
- Cambridge Centre for Proteomics; Department of Biochemistry; University of Cambridge; Cambridge United Kingdom
- Cambridge Systems Biology Centre; Wellcome Trust Stem Cell building; University of Cambridge; Cambridge United Kingdom
- Computational Proteomics Unit; Department of Biochemistry; University of Cambridge; Cambridge United Kingdom
| | - Duygu Dikicioglu
- Cambridge Systems Biology Centre; Wellcome Trust Stem Cell building; University of Cambridge; Cambridge United Kingdom
- Department of Biochemistry; University of Cambridge; Cambridge United Kingdom
| | - Isik Baris Fidaner
- Department of Computer Engineering; Bogazici University; Istanbul Turkey
| | - Andy Christoforou
- Cambridge Centre for Proteomics; Department of Biochemistry; University of Cambridge; Cambridge United Kingdom
- Cambridge Systems Biology Centre; Wellcome Trust Stem Cell building; University of Cambridge; Cambridge United Kingdom
- Department of Biochemistry; University of Cambridge; Cambridge United Kingdom
| | - Michael J. Deery
- Cambridge Centre for Proteomics; Department of Biochemistry; University of Cambridge; Cambridge United Kingdom
- Cambridge Systems Biology Centre; Wellcome Trust Stem Cell building; University of Cambridge; Cambridge United Kingdom
| | - Lily T. Y. Cho
- Neusentis; Pfizer Worldwide Research and Development; Granta Park Science Park, Great Abington; Cambridge United Kingdom
| | - Kathy K. Niakan
- The Francis Crick Institute, Mill Hill Laboratory; London United Kingdom
| | | | - Kathryn S. Lilley
- Cambridge Centre for Proteomics; Department of Biochemistry; University of Cambridge; Cambridge United Kingdom
- Cambridge Systems Biology Centre; Wellcome Trust Stem Cell building; University of Cambridge; Cambridge United Kingdom
- Department of Biochemistry; University of Cambridge; Cambridge United Kingdom
| |
Collapse
|
37
|
Gong S, Li Q, Jeter CR, Fan Q, Tang DG, Liu B. Regulation of NANOG in cancer cells. Mol Carcinog 2015; 54:679-87. [PMID: 26013997 DOI: 10.1002/mc.22340] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/19/2015] [Accepted: 05/01/2015] [Indexed: 12/14/2022]
Abstract
As one of the key pluripotency transcription factors, NANOG plays a critical role in maintaining the self-renewal and pluripotency in normal embryonic stem cells. Recent data indicate that NANOG is expressed in a variety of cancers and its expression correlates with poor survival in cancer patients. Of interest, many studies suggest that NANOG enhances the defined characteristics of cancer stem cells and may thus function as an oncogene to promote carcinogenesis. Therefore, NANOG expression determines the cell fate not only in pluripotent cells but also in cancer cells. Although the regulation of NANOG in normal embryonic stem cells is reasonably well understood, the regulation of NANOG in cancer cells has only emerged recently. The current review provides a most updated summary on how NANOG expression is regulated during tumor development and progression.
Collapse
Affiliation(s)
- Shuai Gong
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, city, Smithville, Texas.,The First Affiliated Hospital of Zhengzhou University, city, Henan, China
| | - Qiuhui Li
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, city, Smithville, Texas
| | - Collene R Jeter
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, city, Smithville, Texas
| | - Qingxia Fan
- The First Affiliated Hospital of Zhengzhou University, city, Henan, China
| | - Dean G Tang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, city, Smithville, Texas.,Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, city, Smithville, Texas
| |
Collapse
|
38
|
Neganova I, Tilgner K, Buskin A, Paraskevopoulou I, Atkinson SP, Peberdy D, Passos JF, Lako M. CDK1 plays an important role in the maintenance of pluripotency and genomic stability in human pluripotent stem cells. Cell Death Dis 2014; 5:e1508. [PMID: 25375373 PMCID: PMC4260724 DOI: 10.1038/cddis.2014.464] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/16/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022]
Abstract
Human embryonic stem cells (hESC) and induced pluripotent stem cells (hiPSC) are characterised by an unusual and tightly regulated cell cycle that has been shown to be important for the maintenance of a pluripotent phenotype. Cyclin-dependant kinase 1 (CDK1) is a key player in cell cycle regulation and particularly mitosis; however, its role has not been studied previously in hESC and hiPSC. To investigate the impacts of CDK1 downregulation, we performed RNA interference studies which in addition to expected mitotic deficiencies revealed a large range of additional phenotypes related to maintenance of pluripotency, ability to repair double strand breaks (DSBs) and commitment to apoptosis. Downregulation of CDK1 led to the loss of typical pluripotent stem cell morphology, downregulation of pluripotency markers and upregulation of a large number of differentiation markers. In addition, human pluripotent stem cells with reduced CDK1 expression accumulated a higher number of DSBs were unable to activate CHK2 expression and could not maintain G2/M arrest upon exposure to ionising radiation. CDK1 downregulation led to the accumulation of cells with abnormal numbers of mitotic organelles, multiple chromosomal abnormalities and polyploidy. Furthermore, such cells demonstrated an inability to execute apoptosis under normal culture conditions, despite a significant increase in the expression of active PARP1, resulting in tolerance and very likely further propagation of genomic instabilities and ensuing of differentiation process. On the contrary, apoptosis but not differentiation, was the preferred route for such cells when they were subjected to ionising radiation. Together these data suggest that CDK1 regulates multiple events in human pluripotent stem cells ranging from regulation of mitosis, G2/M checkpoint maintenance, execution of apoptosis, maintenance of pluripotency and genomic stability.
Collapse
Affiliation(s)
- I Neganova
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - K Tilgner
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - A Buskin
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - I Paraskevopoulou
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - S P Atkinson
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - D Peberdy
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - J F Passos
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - M Lako
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
39
|
Rijlaarsdam MA, Looijenga LHJ. An oncofetal and developmental perspective on testicular germ cell cancer. Semin Cancer Biol 2014; 29:59-74. [PMID: 25066859 DOI: 10.1016/j.semcancer.2014.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/17/2014] [Indexed: 12/19/2022]
Abstract
Germ cell tumors (GCTs) represent a diverse group of tumors presumably originating from (early fetal) developing germ cells. Most frequent are the testicular germ cell cancers (TGCC). Overall, TGCC is the most frequent malignancy in Caucasian males (20-40 years) and remains an important cause of (treatment related) mortality in these young men. The strong association between the phenotype of TGCC stem cell components and their totipotent ancestor (fetal primordial germ cell or gonocyte) makes these tumors highly relevant from an onco-fetal point of view. This review subsequently discusses the evidence for the early embryonic origin of TGCCs, followed by an overview of the crucial association between TGCC pathogenesis, genetics, environmental exposure and the (fetal) testicular micro-environment (genvironment). This culminates in an evaluation of three genvironmentally modulated hallmarks of TGCC directly related to the oncofetal pathogenesis of TGCC: (1) maintenance of pluripotency, (2) cell cycle control/cisplatin sensitivity and (3) regulation of proliferation/migration/apoptosis by KIT-KITL mediated receptor tyrosine kinase signaling. Briefly, TGCC exhibit identifiable stem cell components (seminoma and embryonal carcinoma) and progenitors that show large and consistent similarities to primordial/embryonic germ cells, their presumed totipotent cells of origin. TGCC pathogenesis depends crucially on a complex interaction of genetic and (micro-)environmental, i.e. genvironmental risk factors that have only been partly elucidated despite significant effort. TGCC stem cell components also show a high degree of similarity with embryonic stem/germ cells (ES) in the regulation of pluripotency and cell cycle control, directly related to their exquisite sensitivity to DNA damaging agents (e.g. cisplatin). Of note, (ES specific) micro-RNAs play a pivotal role in the crossover between cell cycle control, pluripotency and chemosensitivity. Moreover, multiple consistent observations reported TGCC to be associated with KIT-KITL mediated receptor tyrosine kinase signaling, a pathway crucially implicated in proliferation, migration and survival during embryogenesis including germ cell development. In conclusion, TGCCs are a fascinating model for onco-fetal developmental processes especially with regard to studying cell cycle control, pluripotency maintenance and KIT-KITL signaling. The knowledge presented here contributes to better understanding of the molecular characteristics of TGCC pathogenesis, translating to identification of at risk individuals and enhanced quality of care for TGCC patients (diagnosis, treatment and follow-up).
Collapse
Affiliation(s)
- Martin A Rijlaarsdam
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
40
|
McLean Z, Meng F, Henderson H, Turner P, Oback B. Increased MAP kinase inhibition enhances epiblast-specific gene expression in bovine blastocysts. Biol Reprod 2014; 91:49. [PMID: 25009207 DOI: 10.1095/biolreprod.114.120832] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mammalian blastocysts comprise three distinct lineages, namely, trophoblast, hypoblast, and epiblast, which develop into fetal placenta, extraembryonic yolk sac, and embryo proper, respectively. Pluripotent embryonic stem cells, capable of forming all adult cell types, can only be derived from the epiblast. In mouse and rat, this process is promoted by the double inhibition (2i) of mitogen-activated protein kinase kinase (MAP2K), which antagonizes FGF signaling, and glycogen synthase kinase 3 (GSK3), which stimulates the WNT pathway. We investigated variations of the 2i treatment on lineage segregation and pluripotency-related gene expression in bovine blastocysts. In vitro-fertilized embryos were cultured either in the presence of inhibitors of GSK3 (3 μM CHIR) and MAP2K (0.4 vs. 10 μM PD0325901, designated 2i and 2i+, respectively) or in 2i/2i+ with FGFR inhibitor (0.1 μM PD173074, designated 3i [2i and PD173074] and 3i+ [2i+ and PD173074]). Compared with 2i, both 2i+ and 3i+ potentiated the improvement in blastocyst morphology. Using an automated platform for multiplexed digital mRNA profiling, we simultaneously counted transcripts of 76 candidate genes in bovine blastocysts treated with multiple kinase inhibitors. We show that 2i+ medium specifically increased FGF4 and NANOG while reducing PDGFRalpha and SOX17 levels. The shift from a hypoblast to an epiblast gene expression signature was confirmed by quantitative PCR. A wide range of functionally related genes, including candidates involved in DNA methylation, were not significantly changed. This well-defined 2i+ effect was not observed after pharmacologically inhibiting FGF receptor or related MAP kinases (p38, JNK, and ERK5). In summary, our data suggest that increased MAP2K inhibition exerts its pluripotency-promoting effects through as yet unidentified signals.
Collapse
Affiliation(s)
- Zachariah McLean
- Reproductive Technologies, Ruakura Research Centre, AgResearch Ltd., Hamilton, New Zealand
| | - Fanli Meng
- Reproductive Technologies, Ruakura Research Centre, AgResearch Ltd., Hamilton, New Zealand
| | - Harold Henderson
- Reproductive Technologies, Ruakura Research Centre, AgResearch Ltd., Hamilton, New Zealand
| | - Pavla Turner
- Reproductive Technologies, Ruakura Research Centre, AgResearch Ltd., Hamilton, New Zealand
| | - Björn Oback
- Reproductive Technologies, Ruakura Research Centre, AgResearch Ltd., Hamilton, New Zealand
| |
Collapse
|