1
|
Watanabe T, Kawamura T, Harada A, Taira M, Yoshioka D, Shimamura K, Watabe T, Shimosegawa E, Ueno T, Miyagawa S. Human induced pluripotent stem cell-derived cardiomyocyte patches ameliorate right ventricular function in a rat pressure-overloaded right ventricle model. J Artif Organs 2025; 28:234-243. [PMID: 39638947 PMCID: PMC12078445 DOI: 10.1007/s10047-024-01479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024]
Abstract
Right ventricular (RV) failure following surgical repair of congenital heart disease affects survival. Human induced pluripotent stem cell-derived cardiomyocyte (hiPS-CM) sheet transplantation ameliorated left ventricular dysfunction in preclinical studies, indicating its efficacy in RV failure in congenital heart disease. This study aimed to evaluate whether hiPS-CMs could improve RV function in rats with pressure-overloaded RV failure. F344/NJcl-rnu/rnu rats underwent pulmonary artery banding (PAB) via left thoracotomy. Four weeks after PAB, hiPS-CM patch transplantation to the RV was performed in the hiPS-CM group (n = 33), and a sham operation was performed in the sham group (n = 18). We evaluated cardiac catheterization, positron emission tomography data, and pathological results 8 weeks following PAB. RV end-diastolic pressure, the time constant of isovolumic relaxation, and end-diastolic pressure-volume relation were significantly ameliorated in the hiPS-CM group compared with in the sham group. Picrosirius red staining revealed that anti-fibrotic effects were significantly higher in the hiPS-CM group than in the sham group. Von Willebrand factor staining revealed significantly higher myocardial capillary vascular density in the hiPS-CM group than in the sham group. hiPS-CMs were detected in the epicardium 4 weeks after hiPS-CM sheet transplantation. The angiogenic gene expression in the myocardium was significantly higher in the hiPS-CM group than in the sham group. Overall, in rats with pressure-overloaded RV failure, hiPS-CM patch transplantation could improve diastolic function, suppress ventricular fibrosis, and increase capillary density, suggesting that it is a promising treatment for RV failure.
Collapse
Affiliation(s)
- Takuji Watanabe
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Masaki Taira
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Yoshioka
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kazuo Shimamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eku Shimosegawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takayoshi Ueno
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Montague EC, Ozcan B, Sefton E, Wulkan F, Alibhai FJ, Laflamme MA. Human pluripotent stem cell-based cardiac repair: Lessons learned and challenges ahead. Adv Drug Deliv Rev 2025; 222:115594. [PMID: 40334814 DOI: 10.1016/j.addr.2025.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 05/01/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
The transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) and hPSC-derived cardiac progenitors (hPSC-CPs) represents a promising strategy for regenerating hearts damaged by myocardial infarction (MI). After nearly two decades of experience testing these cell populations in various small- and large-animal MI models, multiple clinical trials have recently been initiated. In this review, we consider the principal lessons learned from preclinical experience with hPSC-CMs and -CPs, focusing on three conclusions that have been supported by the majority of reported transplantation studies. First, hPSC-CMs and -CPs stably engraft in injured hearts and partially remuscularize the infarct scar, but more progress is needed to improve graft cell retention and survival. Second, the transplantation of hPSC-CMs and -CPs has been found to improve contractile function in infarcted hearts, but the mechanistic basis for these effects remains incompletely elucidated. Third, the graft tissue formed by these cells can integrate and activate synchronously with host myocardium, but this capacity for electromechanical integration has been associated with an elevated risk of graft-related arrhythmias. Here, we summarize the preclinical evidence supporting these three observations, identify the relevant gaps and barriers to translation, and summarize ongoing efforts to improve the safety and efficacy of hPSC-CM- and -CP-based regenerative therapies.
Collapse
Affiliation(s)
- E Coulter Montague
- Department of Biomedical Engineering, University of Toronto, ON, Canada; McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Bilgehan Ozcan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Elana Sefton
- Department of Biomedical Engineering, University of Toronto, ON, Canada; McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Fanny Wulkan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Faisal J Alibhai
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Zhu F, Nie G. Cell reprogramming: methods, mechanisms and applications. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:12. [PMID: 40140235 PMCID: PMC11947411 DOI: 10.1186/s13619-025-00229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
Cell reprogramming represents a powerful approach to achieve the conversion cells of one type into cells of another type of interest, which has substantially changed the landscape in the field of developmental biology, regenerative medicine, disease modeling, drug discovery and cancer immunotherapy. Cell reprogramming is a complex and ordered process that involves the coordination of transcriptional, epigenetic, translational and metabolic changes. Over the past two decades, a range of questions regarding the facilitators/barriers, the trajectories, and the mechanisms of cell reprogramming have been extensively investigated. This review summarizes the recent advances in cell reprogramming mediated by transcription factors or chemical molecules, followed by elaborating on the important roles of biophysical cues in cell reprogramming. Additionally, this review will detail our current understanding of the mechanisms that govern cell reprogramming, including the involvement of the recently discovered biomolecular condensates. Finally, the review discusses the broad applications and future directions of cell reprogramming in developmental biology, disease modeling, drug development, regenerative/rejuvenation therapy, and cancer immunotherapy.
Collapse
Affiliation(s)
- Fei Zhu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Henden C, Fjerdingstad HB, Bjørnsen EG, Thiruchelvam-Kyle L, Daws MR, Inngjerdingen M, Glover JC, Dissen E. NK-cell cytotoxicity toward pluripotent stem cells and their neural progeny: impacts of activating and inhibitory receptors and KIR/HLA mismatch. Stem Cells 2025; 43:sxae083. [PMID: 39708357 PMCID: PMC11929945 DOI: 10.1093/stmcls/sxae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/14/2024] [Indexed: 12/23/2024]
Abstract
Pluripotent stem cells provide opportunities for treating injuries and previously incurable diseases. A major concern is the immunogenicity of stem cells and their progeny. Here, we have dissected the molecular mechanisms that allow natural killer (NK) cells to respond to human pluripotent stem cells, investigating a wide selection of activating and inhibitory NK-cell receptors and their ligands. Reporter cells expressing the activating receptor NKG2D responded strongly to embryonic stem (ES) cell lines and induced pluripotent stem (iPS) cell lines, whereas reporter cells expressing the activating receptors NKp30, NKp46, KIR2DS1, KIR2DS2, and KIR2DS4 did not respond. Human ES and iPS cells invariably expressed several ligands for NKG2D. Expression of HLA-C and HLA-E was lacking or low, insufficient to trigger reporter cells expressing the inhibitory receptors KIR2DL1, -2DL2, or -2DL3. Similar results were obtained for the pluripotent embryonic carcinoma cell lines NTERA-2 and 2102Ep, and also iPS-cell-derived neural progenitor cells. Importantly, neural progenitor cells and iPS-cell-derived motoneurons also expressed B7H6, the ligand for the activating receptor NKp30. In line with these observations, IL-2-stimulated NK cells showed robust cytotoxic responses to ES and iPS cells as well as to iPS-cell-derived motoneurons. No significant differences in cytotoxicity levels were observed between KIR/HLA matched and mismatched combinations of NK cells and pluripotent targets. Together, these data indicate that pluripotent stem cells and their neural progeny are targets for NK-cell killing both by failing to sufficiently express ligands for inhibitory receptors and by expression of ligands for activating receptors.
Collapse
Affiliation(s)
- Camilla Henden
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Hege B Fjerdingstad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, N-0317 Oslo, Norway
| | - Elisabeth G Bjørnsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Lavanya Thiruchelvam-Kyle
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Michael R Daws
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Marit Inngjerdingen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, N-0317 Oslo, Norway
| | - Joel C Glover
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, N-0317 Oslo, Norway
| | - Erik Dissen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| |
Collapse
|
5
|
Maiers M, Sullivan S, McClain C, Leonhard-Melief C, Turner ML, Turner D. Harnessing global HLA data for enhanced patient matching in iPSC haplobanks. Cytotherapy 2025; 27:300-306. [PMID: 39718520 DOI: 10.1016/j.jcyt.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Several countries have either developed or are developing national induced pluripotent stem cell (iPSC) banks of cell lines derived from donors with HLA homozygous genotypes (two identical haplotypes) prevalent in their local populations to provide immune matched tissues and cells to support regenerative medicine therapies. This 'haplobank' approach relies on knowledge of the HLA genotypes of the population to identify the most beneficial haplotypes for patient coverage, and ultimately identify donors or cord blood units carrying two copies of the target haplotype. AIMS A potentially more efficient alternative to a national bank approach is to assess the haplotypes required to provide global patient coverage and to produce a single, global haplobank. Toward that end, we have developed an algorithm to prioritize HLA haplotypes that optimize coverage across the global population. METHODS We analyzed data from eighteen countries participating in the Global Alliance for iPS Therapy (GAiT). A representative pool of HLA genotypes, reflecting the HLA of patients, was derived by sampling from each country's WMDA hematopoietic stem cell donor registry, or surrogate population. An algorithm was created based on HLA-A, -B and -DRB1 haplotype homozygous types with population HLA matching coverage defined by the absence of Host versus Graft (HvG) mismatches at these loci. HLA matching coverage was determined by iteratively selecting HLA haplotypes that provide the largest coverage against patient HLA genotypes sampled from the same population, excluding genotypes compatible with previous iterations. RESULTS The top 10 haplotypes for each of the 18 countries were identified with patient coverage ranging from 19.5% in Brazil to 63.8% in Japan, with a mean coverage of 33.3%. In a 'global' model, utilizing the 180 most frequent haplotypes across all 18 populations (equivalent to 10 lines per country), the patient coverage ranged from 54.6% in India to 81.7% in Sweden, with a mean of 68.4%. Our findings demonstrate that global collaboration could more than double the potential for patient HLA matching coverage. CONCLUSIONS Interrogation of unrelated hematopoietic stem cell donor registry and cord blood bank HLA data demonstrated that HLA-A, -B, and -DRB1 homozygous donors for the top 180 global haplotypes are widely available. These results show that a globally coordinated strategy for haplobanking would reduce redundancy and allow more patients to be treated with the same investment.
Collapse
Affiliation(s)
- Martin Maiers
- CIBMTR (Center for International Blood and Marrow Transplant Research), NMDP, Minneapolis, Minnesota, USA.
| | - Stephen Sullivan
- iPSirius, Paris, France; Lindville Bio, Edinburgh, UK; Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK
| | | | - Christina Leonhard-Melief
- CIBMTR (Center for International Blood and Marrow Transplant Research), NMDP, Minneapolis, Minnesota, USA
| | - Marc L Turner
- Scottish National Blood Transfusion Service, Edinburgh, UK; Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK
| | - David Turner
- Scottish National Blood Transfusion Service, Edinburgh, UK; Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK
| |
Collapse
|
6
|
Madrid M, Lakshmipathy U, Zhang X, Bharti K, Wall DM, Sato Y, Muschler G, Ting A, Smith N, Deguchi S, Kawamata S, Moore JC, Makovoz B, Sullivan S, Falco V, Al-Riyami AZ. Considerations for the development of iPSC-derived cell therapies: a review of key challenges by the JSRM-ISCT iPSC Committee. Cytotherapy 2024; 26:1382-1399. [PMID: 38958627 PMCID: PMC11471376 DOI: 10.1016/j.jcyt.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024]
Abstract
Since their first production in 2007, human induced pluripotent stem cells (iPSCs) have provided a novel platform for the development of various cell therapies targeting a spectrum of diseases, ranging from rare genetic eye disorders to cancer treatment. However, several challenges must be tackled for iPSC-based cell therapy to enter the market and achieve broader global adoption. This white paper, authored by the Japanese Society for Regenerative Medicine (JSRM) - International Society for Cell Therapy (ISCT) iPSC Committee delves into the hurdles encountered in the pursuit of safe and economically viable iPSC-based therapies, particularly from the standpoint of the cell therapy industry. It discusses differences in global guidelines and regulatory frameworks, outlines a series of quality control tests required to ensure the safety of the cell therapy, and provides details and important considerations around cost of goods (COGs), including the impact of automated advanced manufacturing.
Collapse
Affiliation(s)
| | | | | | - Kapil Bharti
- National Eye Institute of the National Institutes of Health, Bethesda, USA
| | - Dominic M Wall
- Peter MacCallum Cancer Centre, Melbourne Australia; Cell Therapies Pty Ltd, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Yoji Sato
- National Institute of Health Sciences, Kawasaki, Japan
| | | | | | | | - Shuhei Deguchi
- CIRA Foundation, Facility for iPS Cell Therapy (FiT), Kyoto, Japan
| | - Shin Kawamata
- Cyto-Facto Inc., Kobe, Japan; Kobe University, Kobe, Japan.
| | | | | | | | | | - Arwa Z Al-Riyami
- Department of Hematology, Sultan Qaboos University Hospital, University Medical City, Muscat, Oman
| |
Collapse
|
7
|
Konno H, Miyamae J, Kataoka H, Akai M, Miida H, Tsuchiya Y. Dog leukocyte antigen genotyping across class I and class II genes in beagle dogs as laboratory animals. Immunogenetics 2024; 76:261-270. [PMID: 38922357 DOI: 10.1007/s00251-024-01344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Dog leukocyte antigen (DLA) polymorphisms have been found to be associated with inter-individual variations in the risk, susceptibility, and severity of immune-related phenomena. While DLA class II genes have been extensively studied, less research has been performed on the polymorphisms of DLA class I genes, especially in beagle dogs commonly used as laboratory animals for safety evaluations in drug development. We genotyped four DLA class I genes and four DLA class II genes by locus-specific Sanger sequencing using 93 laboratory beagle dogs derived from two different strains: TOYO and Marshall. The results showed that, for DLA class I genes, 11, 4, 1, and 2 alleles, including a novel allele, were detected in DLA-88, DLA-12/88L, DLA-64, and DLA-79, while, for DLA class II genes, 1, 10, 6, and 7 alleles were detected in DLA-DRA, DLA-DRB1, DLA-DQA1, and DLA-DQB1, respectively. It was estimated that there were 14 DLA haplotypes, six of which had a frequency of ≥ 5%. Furthermore, when comparing the DLA diversity between TOYO and Marshall strains, the most common alleles and haplotypes differed between them. This is the first study to genotype all DLA loci and determine DLA haplotypes including all DLA class I and class II genes in dogs. Integrating information on the DLA diversity of laboratory beagle dogs should reinforce their benefit as an animal model for understanding various diseases associated with a specific DLA type.
Collapse
Affiliation(s)
- Hiroya Konno
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan.
| | - Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Japan
| | - Hiroko Kataoka
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Makoto Akai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Hiroaki Miida
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Yoshimi Tsuchiya
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan
| |
Collapse
|
8
|
Matsumoto R, Enzhi Y, Takeda K, Morimoto K, Yogo K, Harada M, Tokushige K, Maehara Y, Hirota S, Kojima Y, Ito M, Sougawa N, Miyagawa S, Sawa Y, Okumura K, Uchida K. CD8 + T cell-mediated rejection of allogenic human-induced pluripotent stem cell-derived cardiomyocyte sheets in human PBMC-transferred NOG MHC double knockout mice. J Heart Lung Transplant 2024; 43:1348-1357. [PMID: 38657776 DOI: 10.1016/j.healun.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Transplantation of human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) has emerged as a promising therapy to treat end-stage heart failure. However, the immunogenicity of hiPS-CMs in transplanted patients has not been fully elucidated. Thus, in vivo models are required to estimate immune responses against hiPS-CMs in transplant recipients. METHODS We transferred human peripheral blood mononuclear cells (hPBMCs) into NOD/Shi-scid IL-2rgnull (NOG) MHC class I/II double knockout (NOG-ΔMHC) mice, which were reported to accept hPBMCs without xenogeneic-graft-versus-host disease (xeno-GVHD). Then, hiPS-CM sheets generated from the hiPS cell line 201B7 harboring a luciferase transgene were transplanted into the subcutaneous space of NOG-ΔMHC mice. Graft survival was monitored by bioluminescent images using a Xenogen In Vivo Imaging System. RESULTS The human immune cells were engrafted for more than 3 months in NOG-ΔMHC mice without lethal xeno-GVHD. The hiPS-CMs expressed a moderate level of human leukocyte antigen (HLA)-class I, but not HLA-class II, molecules even after interferon-gamma (IFN-γ) stimulation. Consistently, the allogenic IFN-γ-treated hiPS-CMs induced weak CD8+ but not CD4+ T cell responses in vitro. hiPS-CM sheets disappeared approximately 17 to 24 days after transplantation in hPBMC-transferred NOG-ΔMHC mice, and CD8+ T cell depletion significantly prolonged graft survival, similar to what was observed following tacrolimus treatment. CONCLUSIONS hiPS-CMs are less immunogenic in vitro but induce sufficient CD8+ T cell-mediated immune responses for graft rejection in vivo.
Collapse
Affiliation(s)
- Ryu Matsumoto
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yin Enzhi
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuyoshi Takeda
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan; Laboratory of Cell Biology, Research Support Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kodai Morimoto
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kyoko Yogo
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaki Harada
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Tokushige
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yui Maehara
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saori Hirota
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuko Kojima
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mamoru Ito
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Nagako Sougawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Physiology, Osaka Dental University, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ko Okumura
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan; Atopy (Allergy) Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Koichiro Uchida
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
9
|
Ji X, Wang Q, Cao N. Monkey see, monkey do: Tracking iPS-cardiomyocyte survival and maturation in autografts. Cell Stem Cell 2024; 31:941-943. [PMID: 38971143 DOI: 10.1016/j.stem.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
Induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) therapy has emerged as a highly promising field of heart repair. Lin et al.1 presented compelling evidence on the long-term engraftment and maturation of autologous iPSC-CMs in two rhesus macaques, demonstrating unprecedented cardiac autografting data in large animal models without the need of immunosuppressants.
Collapse
Affiliation(s)
- Xiaoqian Ji
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 518107, China; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Qiyuan Wang
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 518107, China; Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China
| | - Nan Cao
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 518107, China; Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China.
| |
Collapse
|
10
|
Lin Y, Sato N, Hong S, Nakamura K, Ferrante EA, Yu ZX, Chen MY, Nakamura DS, Yang X, Clevenger RR, Hunt TJ, Taylor JL, Jeffries KR, Keeran KJ, Neidig LE, Mehta A, Schwartzbeck R, Yu SJ, Kelly C, Navarengom K, Takeda K, Adler SS, Choyke PL, Zou J, Murry CE, Boehm M, Dunbar CE. Long-term engraftment and maturation of autologous iPSC-derived cardiomyocytes in two rhesus macaques. Cell Stem Cell 2024; 31:974-988.e5. [PMID: 38843830 PMCID: PMC11227404 DOI: 10.1016/j.stem.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/14/2024] [Accepted: 05/10/2024] [Indexed: 07/08/2024]
Abstract
Cellular therapies with cardiomyocytes produced from induced pluripotent stem cells (iPSC-CMs) offer a potential route to cardiac regeneration as a treatment for chronic ischemic heart disease. Here, we report successful long-term engraftment and in vivo maturation of autologous iPSC-CMs in two rhesus macaques with small, subclinical chronic myocardial infarctions, all without immunosuppression. Longitudinal positron emission tomography imaging using the sodium/iodide symporter (NIS) reporter gene revealed stable grafts for over 6 and 12 months, with no teratoma formation. Histological analyses suggested capability of the transplanted iPSC-CMs to mature and integrate with endogenous myocardium, with no sign of immune cell infiltration or rejection. By contrast, allogeneic iPSC-CMs were rejected within 8 weeks of transplantation. This study provides the longest-term safety and maturation data to date in any large animal model, addresses concerns regarding neoantigen immunoreactivity of autologous iPSC therapies, and suggests that autologous iPSC-CMs would similarly engraft and mature in human hearts.
Collapse
Affiliation(s)
- Yongshun Lin
- iPSC Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Noriko Sato
- Laboratory of Cellular Therapeutics, Molecular Imaging Branch, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Sogun Hong
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Kenta Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195, USA
| | - Elisa A Ferrante
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Zu Xi Yu
- Pathology Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Marcus Y Chen
- Cardiovascular Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Daisy S Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Timothy J Hunt
- Animal Surgery and Resources Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Joni L Taylor
- Animal Surgery and Resources Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | | | - Karen J Keeran
- Animal Surgery and Resources Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Lauren E Neidig
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Atul Mehta
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Robin Schwartzbeck
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Shiqin Judy Yu
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Conor Kelly
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Keron Navarengom
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Kazuyo Takeda
- Microscopy and Imaging Core, CBER, FDA, Silver Spring, MD, USA
| | - Stephen S Adler
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Peter L Choyke
- Laboratory of Cellular Therapeutics, Molecular Imaging Branch, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | - Manfred Boehm
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA.
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Goto T, Nakamura Y, Ito Y, Miyagawa S. Regenerative medicine in cardiovascular disease. Regen Ther 2024; 26:859-866. [PMID: 39430582 PMCID: PMC11490749 DOI: 10.1016/j.reth.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024] Open
Abstract
Owing to the rapid increase in the number of people with severe heart failure, regenerative medicine is anticipated to play a role in overcoming the limitations inherent in existing surgical interventions. There are essentially two types of cardiac regenerative therapies for a failing heart. Cellular regenerative therapies using various stem cells improve the functional recovery of the heart mainly by cytokine paracrine effects. The implantation of induced pluripotent stem cell-derived cardiomyocytes can contribute not only to the inhibition of adverse heart remodeling by paracrine effects but also to the supply of newly born functional myocytes with the recipient myocardium as "mechanically working cells." Cell transplantation, including autologous myoblast transplantation, reduces heart failure exacerbations and benefits patients without the need for other treatment options. Although cellular therapy is currently the mainstream approach, it requires an in-house cell-processing center with an aseptic environment. In addition, these stem cells are usually introduced via several invasive delivery methods, including intracoronary administration, and cellular sheet implantation. Simplifying the culture methods for these cells is a crucial problem that needs to be resolved. Drug-induced regenerative therapy is another option that enhances self-endogenous regenerative systems in the human body and does not require invasive methods or cell cultures. Therefore, drug-induced regenerative therapies may overcome the disadvantages of these cellular therapies. The purpose of this report is to summarize cell transplantation therapy in the cardiovascular system and regenerative therapy for heart failure using an autologous endogenous regenerative system.
Collapse
Affiliation(s)
- Takasumi Goto
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Cardiovascular Surgery, Toyonaka Municipal Hospital, Osaka, Japan
| | - Yuki Nakamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshito Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
12
|
Ho BX, Teo AKK, Ng NHJ. Innovations in bio-engineering and cell-based approaches to address immunological challenges in islet transplantation. Front Immunol 2024; 15:1375177. [PMID: 38650946 PMCID: PMC11033429 DOI: 10.3389/fimmu.2024.1375177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 04/25/2024] Open
Abstract
Human allogeneic pancreatic islet transplantation is a life-changing treatment for patients with severe Type 1 Diabetes (T1D) who suffer from hypoglycemia unawareness and high risk of severe hypoglycemia. However, intensive immunosuppression is required to prevent immune rejection of the graft, that may in turn lead to undesirable side effects such as toxicity to the islet cells, kidney toxicity, occurrence of opportunistic infections, and malignancies. The shortage of cadaveric human islet donors further limits islet transplantation as a treatment option for widespread adoption. Alternatively, porcine islets have been considered as another source of insulin-secreting cells for transplantation in T1D patients, though xeno-transplants raise concerns over the risk of endogenous retrovirus transmission and immunological incompatibility. As a result, technological advancements have been made to protect transplanted islets from immune rejection and inflammation, ideally in the absence of chronic immunosuppression, to improve the outcomes and accessibility of allogeneic islet cell replacement therapies. These include the use of microencapsulation or macroencapsulation devices designed to provide an immunoprotective environment using a cell-impermeable layer, preventing immune cell attack of the transplanted cells. Other up and coming advancements are based on the use of stem cells as the starting source material for generating islet cells 'on-demand'. These starting stem cell sources include human induced pluripotent stem cells (hiPSCs) that have been genetically engineered to avoid the host immune response, curated HLA-selected donor hiPSCs that can be matched with recipients within a given population, and multipotent stem cells with natural immune privilege properties. These strategies are developed to provide an immune-evasive cell resource for allogeneic cell therapy. This review will summarize the immunological challenges facing islet transplantation and highlight recent bio-engineering and cell-based approaches aimed at avoiding immune rejection, to improve the accessibility of islet cell therapy and enhance treatment outcomes. Better understanding of the different approaches and their limitations can guide future research endeavors towards developing more comprehensive and targeted strategies for creating a more tolerogenic microenvironment, and improve the effectiveness and sustainability of islet transplantation to benefit more patients.
Collapse
Affiliation(s)
- Beatrice Xuan Ho
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- BetaLife Pte Ltd, Singapore, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Natasha Hui Jin Ng
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
13
|
Soma Y, Tani H, Morita-Umei Y, Kishino Y, Fukuda K, Tohyama S. Pluripotent stem cell-based cardiac regenerative therapy for heart failure. J Mol Cell Cardiol 2024; 187:90-100. [PMID: 38331557 DOI: 10.1016/j.yjmcc.2023.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 02/10/2024]
Abstract
Cardiac regenerative therapy using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is expected to become an alternative to heart transplantation for severe heart failure. It is now possible to produce large numbers of human pluripotent stem cells (hPSCs) and eliminate non-cardiomyocytes, including residual undifferentiated hPSCs, which can cause teratoma formation after transplantation. There are two main strategies for transplanting hPSC-CMs: injection of hPSC-CMs into the myocardium from the epicardial side, and implantation of hPSC-CM patches or engineered heart tissues onto the epicardium. Transplantation of hPSC-CMs into the myocardium of large animals in a myocardial infarction model improved cardiac function. The engrafted hPSC-CMs matured, and microvessels derived from the host entered the graft abundantly. Furthermore, as less invasive methods using catheters, injection into the coronary artery and injection into the myocardium from the endocardium side have recently been investigated. Since transplantation of hPSC-CMs alone has a low engraftment rate, various methods such as transplantation with the extracellular matrix or non-cardiomyocytes and aggregation of hPSC-CMs have been developed. Post-transplant arrhythmias, imaging of engrafted hPSC-CMs, and immune rejection are the remaining major issues, and research is being conducted to address them. The clinical application of cardiac regenerative therapy using hPSC-CMs has just begun and is expected to spread widely if its safety and efficacy are proven in the near future.
Collapse
Affiliation(s)
- Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Joint Research Laboratory for Medical Innovation in Heart Disease, Keio University School of Medicine, Tokyo, Japan
| | - Yuika Morita-Umei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
14
|
Scholz J, Secreto FJ, Wobig J, Kurian J, Hagen C, Zinnen A, Vu D, Johnson SJ, Cetta F, Qureshi Y, Reams R, Cannon B, Heyer CM, Chang M, Fadra N, Coonen J, Simmons HA, Mejia A, Hayes JM, Basu P, Capuano S, Bondarenko V, Metzger JM, Nelson TJ, Emborg ME. Human Stem Cell-Derived Cardiomyocytes Integrate Into the Heart of Monkeys With Right Ventricular Pressure Overload. Cell Transplant 2024; 33:9636897241290367. [PMID: 39487759 PMCID: PMC11531674 DOI: 10.1177/09636897241290367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 11/04/2024] Open
Abstract
Cardiac ventricular pressure overload affects patients with congenital heart defects and can cause cardiac insufficiency. Grafts of stem cell-derived cardiomyocytes are proposed as a complementary treatment to surgical repair of the cardiac defect, aiming to support ventricular function. Here, we report successful engraftment of human induced pluripotent stem cell-derived cardiac lineage cells into the heart of immunosuppressed rhesus macaques with a novel surgical model of right ventricular pressure overload. The human troponin+ grafts were detected in low-dose (2 × 106 cells/kg) and high-dose (10 × 106 cells/kg) treatment groups up to 12 weeks post-injection. Transplanted cells integrated and progressively matched the organization of the surrounding host myocardium. Ventricular tachycardia occurred in five out of 16 animals receiving cells, with episodes of incessant tachycardia observed in two animals; ventricular tachycardia events resolved within 19 days. Our results demonstrate that grafted cardiomyocytes mature and integrate into the myocardium of nonhuman primates modeling right ventricular pressure overload.
Collapse
Affiliation(s)
- Jodi Scholz
- Department of Comparative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Frank J. Secreto
- Department of Medicine, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Joan Wobig
- Todd and Karen Wanek Family Program for HLHS at Mayo Clinic, Rochester, MN, USA
| | - Joe Kurian
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Clint Hagen
- Todd and Karen Wanek Family Program for HLHS at Mayo Clinic, Rochester, MN, USA
| | - Alexandra Zinnen
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Don Vu
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Steven J. Johnson
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Frank Cetta
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yasir Qureshi
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Bryan Cannon
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christina M. Heyer
- Todd and Karen Wanek Family Program for HLHS at Mayo Clinic, Rochester, MN, USA
| | | | - Numrah Fadra
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jennifer Coonen
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Jennifer M. Hayes
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Puja Basu
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Viktoriya Bondarenko
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Jeanette M. Metzger
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Timothy J. Nelson
- Department of Medicine, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Todd and Karen Wanek Family Program for HLHS at Mayo Clinic, Rochester, MN, USA
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Marina E. Emborg
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
15
|
Chang SH, Park CG. Comparing the Benefits and Drawbacks of Stem Cell Therapy Based on the Cell Origin or Manipulation Process: Addressing Immunogenicity. Immune Netw 2023; 23:e44. [PMID: 38188600 PMCID: PMC10767552 DOI: 10.4110/in.2023.23.e44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/12/2023] [Indexed: 01/09/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are effective in treating autoimmune diseases and managing various conditions, such as engraftment of allogeneic islets. Additionally, autologous and HLA-matched allogeneic MSCs can aid in the engraftment of human allogeneic kidneys with or without low doses of tacrolimus, respectively. However, HLA alloantigens are problematic because cell therapy uses more HLA-mismatched allogeneic cells than autologous for convenience and standardization. In particular, HLA-mismatched MSCs showed increased Ag-specific T/B cells and reduced viability faster than HLA-matched MSCs. In CRISPR/Cas9-based cell therapy, Cas9 induce T cell activation in the recipient's immune system. Interestingly, despite their immunogenicity being limited to the cells with foreign Ags, the accumulation of HLA alloantigen-sensitized T/B cells may lead to allograft rejection, suggesting that alloantigens may have a greater scope of adverse effects than foreign Ags. To avoid alloantigen recognition, the β2-microglobulin knockout (B2MKO) system, eliminating class-I MHC, was able to avoid rejection by alloreactive CD8 T cells compared to controls. Moreover, universal donor cells in which both B2M and Class II MHC transactivator (CIITA) were knocked out was more effective in avoiding immune rejection than single KO. However, B2MKO and CIITA KO system remain to be controlled and validated for adverse effects such as the development of tumorigenicity due to deficient Ag recognition by CD8 T and CD4 T cells, respectively. Overall, better HLA-matching or depletion of HLA alloantigens prior to cell therapy can reduce repetitive transplantation through the long-term survival of allogeneic cell therapy, which may be especially important for patients seeking allogeneic transplantation.
Collapse
Affiliation(s)
- Sung-Ho Chang
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea
| | - Chung Gyu Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Transplantation Research Institute, Medical Research center, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
16
|
Gravina A, Tediashvili G, Zheng Y, Iwabuchi KA, Peyrot SM, Roodsari SZ, Gargiulo L, Kaneko S, Osawa M, Schrepfer S, Deuse T. Synthetic immune checkpoint engagers protect HLA-deficient iPSCs and derivatives from innate immune cell cytotoxicity. Cell Stem Cell 2023; 30:1538-1548.e4. [PMID: 37922880 DOI: 10.1016/j.stem.2023.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/23/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Immune rejection of allogeneic cell therapeutics remains a major problem for immuno-oncology and regenerative medicine. Allogeneic cell products so far have inferior persistence and efficacy when compared with autologous alternatives. Engineering of hypoimmune cells may greatly improve their therapeutic benefit. We present a new class of agonistic immune checkpoint engagers that protect human leukocyte antigen (HLA)-depleted induced pluripotent stem cell-derived endothelial cells (iECs) from innate immune cells. Engagers with agonistic functionality to their inhibitory receptors TIM3 and SIRPα effectively protect engineered iECs from natural killer (NK) cell and macrophage killing. The SIRPα engager can be combined with truncated CD64 to generate fully immune evasive iECs capable of escaping allogeneic cellular and immunoglobulin G (IgG) antibody-mediated rejection. Synthetic immune checkpoint engagers have high target specificity and lack retrograde signaling in the engineered cells. This modular design allows for the exploitation of more inhibitory immune pathways for immune evasion and could contribute to the advancement of allogeneic cell therapeutics.
Collapse
Affiliation(s)
- Alessia Gravina
- Transplant and Stem Cell Immunobiology (TSI)-Lab, Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Grigol Tediashvili
- Transplant and Stem Cell Immunobiology (TSI)-Lab, Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Yueting Zheng
- Shinobi Therapeutics, 2 Tower Place, South San Francisco, CA 94080, USA
| | - Kumiko A Iwabuchi
- Shinobi Therapeutics, 2 Tower Place, South San Francisco, CA 94080, USA
| | - Sara M Peyrot
- Shinobi Therapeutics, 2 Tower Place, South San Francisco, CA 94080, USA
| | - Susan Z Roodsari
- Shinobi Therapeutics, 2 Tower Place, South San Francisco, CA 94080, USA
| | - Lauren Gargiulo
- Shinobi Therapeutics, 2 Tower Place, South San Francisco, CA 94080, USA
| | - Shin Kaneko
- Laboratory of Regenerative Immunotherapy, Department of Cell Growth and Differentiation, Center for iPS cell Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mitsujiro Osawa
- Shinobi Therapeutics, Med-Pharm Collaboration Building 46-29, Yoshida-Shimo-Adachi-Cho, Sakyo-Ku, Kyoto, Japan
| | - Sonja Schrepfer
- Transplant and Stem Cell Immunobiology (TSI)-Lab, Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Tobias Deuse
- Transplant and Stem Cell Immunobiology (TSI)-Lab, Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
17
|
Menasché P. Human PSC-derived cardiac cells and their products: therapies for cardiac repair. J Mol Cell Cardiol 2023; 183:14-21. [PMID: 37595498 DOI: 10.1016/j.yjmcc.2023.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Despite the dramatic improvements in the management of patients with chronic heart failure which have occurred over the last decades, some of them still exhaust conventional drug-based therapies without being eligible for more aggressive options like heart transplantation or implantation of a left ventricular assist device. Cell therapy has thus emerged as a possible means of filling this niche. Multiple cell types have now been tested both in the laboratory but also in the clinics and it is fair to acknowledge that none of the clinical trials have yet conclusively proven the efficacy of cell-based approaches. These clinical studies, however, have entailed the use of cells from various sources but of non-cardiac lineage origins. Although this might not be the main reason for their failures, the discovery of pluripotent stem cells capable of generating cardiomyocytes now raises the hope that such cardiac-committed cells could be therapeutically more effective. In this review, we will first describe where we currently are with regard to the clinical trials using PSC-differentiated cells and discuss the main issues which remain to be addressed. In parallel, because the capacity of cells to stably engraft in the recipient heart has increasingly been questioned, it has been hypothesized that a major mechanism of action could be the cell-triggered release of biomolecules that foster host-associated reparative pathways. Thus, in the second part of this review, we will discuss the rationale, clinically relevant advantages and pitfalls associated with the use of these PSC "products".
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Université Paris Cité, Inserm, PARCC, F-75015 Paris, France.
| |
Collapse
|
18
|
Kawamura T, Ito Y, Ito E, Takeda M, Mikami T, Taguchi T, Mochizuki-Oda N, Sasai M, Shimamoto T, Nitta Y, Yoshioka D, Kawamura M, Kawamura A, Misumi Y, Sakata Y, Sawa Y, Miyagawa S. Safety confirmation of induced pluripotent stem cell-derived cardiomyocyte patch transplantation for ischemic cardiomyopathy: first three case reports. Front Cardiovasc Med 2023; 10:1182209. [PMID: 37781295 PMCID: PMC10540447 DOI: 10.3389/fcvm.2023.1182209] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction With the expected increase in patients with heart failure and ischemic 15 cardiomyopathy, the development of myocardial regenerative medicine using cell transplantation as a novel treatment method is progressing. This first-in-human clinical trial aimed to confirm the safety of cardiomyocyte patch transplantation derived from allogeneic induced pluripotent stem (iPS) cells based on the results of several preclinical studies. Study design The inclusion criteria were left ventricular ejection fraction of 35% or less; heart failure symptoms of New York Heart Association class III or higher despite existing therapies such as revascularization; and a 1-year observation period that included a 3-month immunosuppressive drug administration period after transplantation of iPS cell-derived cardiomyocyte patches to evaluate adverse events, cardiac function, myocardial blood flow, heart failure symptoms, and immune response. Results In the first three cases of this trial, no transplanted cell-related adverse events were observed during the 1-year observation period, and improvement in heart failure symptoms was observed. In addition, improvements in left ventricular contractility and myocardial blood flow were observed in two of the three patients. Regarding immune response, an increase in transplant cell-specific antibody titer was observed in all three patients after immunosuppressive drug administration. In one patient with poor improvement in cardiac function and myocardial blood flow, an increase in antibody titer against HLA-DQ was observed even before cell transplantation. Conclusions Our case findings demonstrate that the transplantation of iPS cell-derived cardiomyocyte patches for ischemic cardiomyopathy can be safely performed; however, further investigation of the therapeutic effect and its relationship with an immune response is needed by accumulating the number of patients through continued clinical trials.
Collapse
Affiliation(s)
- Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshito Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Emiko Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Maki Takeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tsubasa Mikami
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takura Taguchi
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Noriko Mochizuki-Oda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masao Sasai
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomomi Shimamoto
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yukako Nitta
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Daisuke Yoshioka
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masashi Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ai Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yusuke Misumi
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasushi Sakata
- Department of Cardiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiki Sawa
- Devision of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
19
|
Murata T, Hama N, Kamatani T, Mori A, Otsuka R, Wada H, Seino KI. Induced pluripotent stem cell-derived hematopoietic stem and progenitor cells induce mixed chimerism and donor-specific allograft tolerance. Am J Transplant 2023; 23:1331-1344. [PMID: 37244443 DOI: 10.1016/j.ajt.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
In transplantation using allogeneic induced pluripotent stem cells (iPSCs), strategies focused on major histocompatibility complexes were adopted to avoid immune rejection. We showed that minor antigen mismatches are a risk factor for graft rejection, indicating that immune regulation remains one of the most important issues. In organ transplantation, it has been known that mixed chimerism using donor-derived hematopoietic stem/progenitor cells (HSPCs) can induce donor-specific tolerance. However, it is unclear whether iPSC-derived HSPCs (iHSPCs) can induce allograft tolerance. We showed that 2 hematopoietic transcription factors, Hoxb4 and Lhx2, can efficiently expand iHSPCs with a c-Kit+Sca-1+Lineage- phenotype, which possesses long-term hematopoietic repopulating potential. We also demonstrated that these iHSPCs can form hematopoietic chimeras in allogeneic recipients and induce allograft tolerance in murine skin and iPSC transplantation. With mechanistic analyses, both central and peripheral mechanisms were suggested. We demonstrated the basic concept of tolerance induction using iHSPCs in allogeneic iPSC-based transplantation.
Collapse
Affiliation(s)
- Tomoki Murata
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoki Hama
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomoki Kamatani
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akihiro Mori
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryo Otsuka
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
20
|
Esteves F, Brito D, Rajado AT, Silva N, Apolónio J, Roberto VP, Araújo I, Nóbrega C, Castelo-Branco P, Bragança J. Reprogramming iPSCs to study age-related diseases: Models, therapeutics, and clinical trials. Mech Ageing Dev 2023; 214:111854. [PMID: 37579530 DOI: 10.1016/j.mad.2023.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
The unprecedented rise in life expectancy observed in the last decades is leading to a global increase in the ageing population, and age-associated diseases became an increasing societal, economic, and medical burden. This has boosted major efforts in the scientific and medical research communities to develop and improve therapies to delay ageing and age-associated functional decline and diseases, and to expand health span. The establishment of induced pluripotent stem cells (iPSCs) by reprogramming human somatic cells has revolutionised the modelling and understanding of human diseases. iPSCs have a major advantage relative to other human pluripotent stem cells as their obtention does not require the destruction of embryos like embryonic stem cells do, and do not have a limited proliferation or differentiation potential as adult stem cells. Besides, iPSCs can be generated from somatic cells from healthy individuals or patients, which makes iPSC technology a promising approach to model and decipher the mechanisms underlying the ageing process and age-associated diseases, study drug effects, and develop new therapeutic approaches. This review discusses the advances made in the last decade using iPSC technology to study the most common age-associated diseases, including age-related macular degeneration (AMD), neurodegenerative and cardiovascular diseases, brain stroke, cancer, diabetes, and osteoarthritis.
Collapse
Affiliation(s)
- Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - David Brito
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Ana Teresa Rajado
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Nádia Silva
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Joana Apolónio
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Vânia Palma Roberto
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal
| | - Inês Araújo
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal.
| |
Collapse
|
21
|
Ito E, Kawamura A, Kawamura T, Takeda M, Harada A, Mochizuki-Oda N, Sawa Y, Miyagawa S. Establishment of a protocol to administer immunosuppressive drugs for iPS cell-derived cardiomyocyte patch transplantation in a rat myocardial infarction model. Sci Rep 2023; 13:10530. [PMID: 37385993 PMCID: PMC10310705 DOI: 10.1038/s41598-023-37235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023] Open
Abstract
Transplantation of human allogeneic induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is a new, promising treatment for severe heart failure. However, immunorejection is a significant concern in allogeneic hiPSC-CM transplantation, requiring the administration of several immunosuppressive agents. An appropriate protocol for the administration of immunosuppressants may substantially affect the efficacy of hiPSC-CM transplantation in case of heart failure owing to allogeneic transplantation. In this study, we investigated the effect of immunosuppressant administration duration on the efficacy and safety of allogenic hiPSC-CM patch transplantation. We used a rat model of myocardial infarction to evaluate cardiac function using echocardiography six months after the transplantation of hiPSC-CM patches with immunosuppressant administration for either two or four months and compared them to control rats (sham operation, no immunosuppressant administration). Histological analysis performed at 6 months after hiPSC-CM patch transplantation revealed significant improvement in cardiac function in immunosuppressant-treated rats compared with those in the control group. Moreover, fibrosis and cardiomyocyte size was significantly reduced and the number of structurally mature blood vessels was significantly increased in the immunosuppressant-treated rats compared to control rats. However, there were no significant differences between the two immunosuppressant-treated groups. Our results show that prolonged administration of immunosuppressive agents did not enhance the effectiveness of hiPSC-CM patch transplantation, and therefore, highlight the importance of an appropriate immunological regimen for the clinical application of such transplantation.
Collapse
Affiliation(s)
- Emiko Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ai Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Maki Takeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Noriko Mochizuki-Oda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
22
|
Baik J, Ortiz-Cordero C, Magli A, Azzag K, Crist SB, Yamashita A, Kiley J, Selvaraj S, Mondragon-Gonzalez R, Perrin E, Maufort JP, Janecek JL, Lee RM, Stone LH, Rangarajan P, Ramachandran S, Graham ML, Perlingeiro RCR. Establishment of Skeletal Myogenic Progenitors from Non-Human Primate Induced Pluripotent Stem Cells. Cells 2023; 12:1147. [PMID: 37190056 PMCID: PMC10137227 DOI: 10.3390/cells12081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Pluripotent stem (PS) cells enable the scalable production of tissue-specific derivatives with therapeutic potential for various clinical applications, including muscular dystrophies. Given the similarity to human counterparts, the non-human primate (NHP) is an ideal preclinical model to evaluate several questions, including delivery, biodistribution, and immune response. While the generation of human-induced PS (iPS)-cell-derived myogenic progenitors is well established, there have been no data for NHP counterparts, probably due to the lack of an efficient system to differentiate NHP iPS cells towards the skeletal muscle lineage. Here, we report the generation of three independent Macaca fascicularis iPS cell lines and their myogenic differentiation using PAX7 conditional expression. The whole-transcriptome analysis confirmed the successful sequential induction of mesoderm, paraxial mesoderm, and myogenic lineages. NHP myogenic progenitors efficiently gave rise to myotubes under appropriate in vitro differentiation conditions and engrafted in vivo into the TA muscles of NSG and FKRP-NSG mice. Lastly, we explored the preclinical potential of these NHP myogenic progenitors in a single wild-type NHP recipient, demonstrating engraftment and characterizing the interaction with the host immune response. These studies establish an NHP model system through which iPS-cell-derived myogenic progenitors can be studied.
Collapse
Affiliation(s)
- June Baik
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Alessandro Magli
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Karim Azzag
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah B. Crist
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aline Yamashita
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - James Kiley
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sridhar Selvaraj
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Elizabeth Perrin
- Stem Cell Resources and the Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - John P. Maufort
- Stem Cell Resources and the Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Jody L. Janecek
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachael M. Lee
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laura Hocum Stone
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Melanie L. Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
23
|
Yu Y, Tham SK, Roslan FF, Shaharuddin B, Yong YK, Guo Z, Tan JJ. Large animal models for cardiac remuscularization studies: A methodological review. Front Cardiovasc Med 2023; 10:1011880. [PMID: 37008331 PMCID: PMC10050756 DOI: 10.3389/fcvm.2023.1011880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
Myocardial infarction is the most common cause of heart failure, one of the most fatal non-communicable diseases worldwide. The disease could potentially be treated if the dead, ischemic heart tissues are regenerated and replaced with viable and functional cardiomyocytes. Pluripotent stem cells have proven the ability to derive specific and functional cardiomyocytes in large quantities for therapy. To test the remuscularization hypothesis, the strategy to model the disease in animals must resemble the pathophysiological conditions of myocardial infarction as in humans, to enable thorough testing of the safety and efficacy of the cardiomyocyte therapy before embarking on human trials. Rigorous experiments and in vivo findings using large mammals are increasingly important to simulate clinical reality and increase translatability into clinical practice. Hence, this review focus on large animal models which have been used in cardiac remuscularization studies using cardiomyocytes derived from human pluripotent stem cells. The commonly used methodologies in developing the myocardial infarction model, the choice of animal species, the pre-operative antiarrhythmics prophylaxis, the choice of perioperative sedative, anaesthesia and analgesia, the immunosuppressive strategies in allowing xenotransplantation, the source of cells, number and delivery method are discussed.
Collapse
Affiliation(s)
- Yuexin Yu
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, China
| | | | - Fatin Fazrina Roslan
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Bakiah Shaharuddin
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, China
- Correspondence: Jun Jie Tan Zhikun Guo
| | - Jun Jie Tan
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- Correspondence: Jun Jie Tan Zhikun Guo
| |
Collapse
|
24
|
Yoshida S, Kato TM, Sato Y, Umekage M, Ichisaka T, Tsukahara M, Takasu N, Yamanaka S. A clinical-grade HLA haplobank of human induced pluripotent stem cells matching approximately 40% of the Japanese population. MED 2023; 4:51-66.e10. [PMID: 36395757 DOI: 10.1016/j.medj.2022.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/02/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Human induced pluripotent stem cells (iPSCs) are expected to be useful for regenerative medicine for many diseases. Many researchers have focused on and enabled the generation of differentiated cells or tissue-like structures, including organoids, which help to ameliorate target diseases. To promote such cell therapies, we established a clinically applicable iPSC haplobank matching as many people as possible in Japan. METHODS Through cooperation with several organizations, we recruited donors whose human leukocyte antigens (HLAs) involved in immunorejection were homozygous. The peripheral or umbilical cord blood collected from the donors was used for iPSC production by electroporation of episomal vectors. These iPSC lines were then subjected to testing, including genome analyses and sterility, to maximize safety. FINDINGS We constructed a clinical-grade haplobank of 27 iPSC lines from 7 donors according to good manufacturing practice regulations. However, reasons to avoid using iPSC lines include the presence of residual episomal vectors or genetic mutations in cancer-related genes. CONCLUSIONS This haplobank provides HLA-matched iPSC lines for approximately 40% of the Japanese population. Since the haplobank's release in 2015, these iPSC lines have been used in more than 10 clinical trials. The establishment of this haplobank is an important step toward the clinical application of iPSCs in cell therapies. FUNDING This study was supported by a research center network for the realization of regenerative medicine of the Japan Agency for Medical Research and Development (AMED) under grant number JP20bm0104001h0108.
Collapse
Affiliation(s)
- Shinsuke Yoshida
- CiRA Foundation, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Tomoaki M Kato
- CiRA Foundation, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Yoshiko Sato
- Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masafumi Umekage
- CiRA Foundation, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Tomoko Ichisaka
- CiRA Foundation, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | | | - Naoko Takasu
- CiRA Foundation, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Shinya Yamanaka
- CiRA Foundation, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan; Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA.
| |
Collapse
|
25
|
He X, Liang J, Paul C, Huang W, Dutta S, Wang Y. Advances in Cellular Reprogramming-Based Approaches for Heart Regenerative Repair. Cells 2022; 11:3914. [PMID: 36497171 PMCID: PMC9740402 DOI: 10.3390/cells11233914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Continuous loss of cardiomyocytes (CMs) is one of the fundamental characteristics of many heart diseases, which eventually can lead to heart failure. Due to the limited proliferation ability of human adult CMs, treatment efficacy has been limited in terms of fully repairing damaged hearts. It has been shown that cell lineage conversion can be achieved by using cell reprogramming approaches, including human induced pluripotent stem cells (hiPSCs), providing a promising therapeutic for regenerative heart medicine. Recent studies using advanced cellular reprogramming-based techniques have also contributed some new strategies for regenerative heart repair. In this review, hiPSC-derived cell therapeutic methods are introduced, and the clinical setting challenges (maturation, engraftment, immune response, scalability, and tumorigenicity), with potential solutions, are discussed. Inspired by the iPSC reprogramming, the approaches of direct cell lineage conversion are merging, such as induced cardiomyocyte-like cells (iCMs) and induced cardiac progenitor cells (iCPCs) derived from fibroblasts, without induction of pluripotency. The studies of cellular and molecular pathways also reveal that epigenetic resetting is the essential mechanism of reprogramming and lineage conversion. Therefore, CRISPR techniques that can be repurposed for genomic or epigenetic editing become attractive approaches for cellular reprogramming. In addition, viral and non-viral delivery strategies that are utilized to achieve CM reprogramming will be introduced, and the therapeutic effects of iCMs or iCPCs on myocardial infarction will be compared. After the improvement of reprogramming efficiency by developing new techniques, reprogrammed iCPCs or iCMs will provide an alternative to hiPSC-based approaches for regenerative heart therapies, heart disease modeling, and new drug screening.
Collapse
Affiliation(s)
- Xingyu He
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jialiang Liang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Christian Paul
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Wei Huang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Suchandrima Dutta
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yigang Wang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
26
|
Li J, Liu L, Zhang J, Qu X, Kawamura T, Miyagawa S, Sawa Y. Engineered Tissue for Cardiac Regeneration: Current Status and Future Perspectives. Bioengineering (Basel) 2022; 9:605. [PMID: 36354516 PMCID: PMC9688015 DOI: 10.3390/bioengineering9110605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2023] Open
Abstract
Heart failure (HF) is the leading cause of death worldwide. The most effective HF treatment is heart transplantation, the use of which is restricted by the limited supply of donor hearts. The human pluripotent stem cell (hPSC), including human embryonic stem cell (hESC) and the induced pluripotent stem cells (hiPSC), could be produced in an infinite manner and differentiated into cardiomyocytes (CMs) with high efficiency. The hPSC-CMs have, thus, offered a promising alternative for heart transplant. In this review, we introduce the tissue-engineering technologies for hPSC-CM, including the materials for cell culture and tissue formation, and the delivery means into the heart. The most recent progress in clinical application of hPSC-CMs is also introduced. In addition, the bottleneck limitations and future perspectives for clinical translation are further discussed.
Collapse
Affiliation(s)
- Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Xiang Qu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiki Sawa
- Cardiovascular Division, Osaka Police Hospital, Tennoji, Osaka 543-0035, Japan
| |
Collapse
|
27
|
Yoshinaga Y, Soma T, Azuma S, Maruyama K, Hashikawa Y, Katayama T, Sasamoto Y, Takayanagi H, Hosen N, Shiina T, Ogasawara K, Hayashi R, Nishida K. Long-term survival in non-human primates of stem cell-derived, MHC-unmatched corneal epithelial cell sheets. Stem Cell Reports 2022; 17:1714-1729. [PMID: 35750044 PMCID: PMC9287743 DOI: 10.1016/j.stemcr.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
When corneal epithelial stem cells residing in the corneal limbus become dysfunctional, called a limbal stem cell deficiency (LSCD), corneal transparency is decreased, causing severe vision loss. Transplantation of corneal epithelial cell sheets (CEPS) derived from stem cells, including induced pluripotent stem cells, is a promising treatment for LSCD. However, the potential effect of human leukocyte antigen (HLA) concordance on CEPS transplantation has not been addressed. Here, we show that there is no difference in the immune response to CEPS between HLA-matched and -unmatched peripheral blood mononuclear cells in mixed lymphocyte reactions. CEPS transplantation in cynomolgus monkeys revealed that the immune response to major histocompatibility-unmatched CEPS was not strong and could be controlled by local steroid administration. Furthermore, programmed death ligand 1 was identified as an immunosuppressive molecule in CEPS under inflammatory conditions in vitro. Our results indicate that corneal epithelium has low immunogenicity and allogeneic CEPS transplantation requires mild immunosuppression. There is no difference in the immune response to CEPS owing to HLA conformity in MLR The immune response to MHC-unmatched CEPS is not strong after transplantation Local steroid administration could control the immune response to MHC-unmatched CEPS PD-L1 was identified as an immunosuppressive molecule in CEPS
Collapse
Affiliation(s)
- Yu Yoshinaga
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Takeshi Soma
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Shohei Azuma
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Kazuichi Maruyama
- Department of Innovative Visual Science, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Yoshiko Hashikawa
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai City, Miyagi 980-8575, Japan
| | - Tomohiko Katayama
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Yuzuru Sasamoto
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hiroshi Takayanagi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Naoki Hosen
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara City, Kanagawa 259-1193, Japan
| | - Kazumasa Ogasawara
- Department of Pathology, Shiga University of Medical Science, Ohtsu City, Shiga 520-2192, Japan
| | - Ryuhei Hayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita City, Osaka 565-0871, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita City, Osaka 565-0871, Japan.
| |
Collapse
|
28
|
Utility of iPSC-Derived Cells for Disease Modeling, Drug Development, and Cell Therapy. Cells 2022; 11:cells11111853. [PMID: 35681550 PMCID: PMC9180434 DOI: 10.3390/cells11111853] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
The advent of induced pluripotent stem cells (iPSCs) has advanced our understanding of the molecular mechanisms of human disease, drug discovery, and regenerative medicine. As such, the use of iPSCs in drug development and validation has shown a sharp increase in the past 15 years. Furthermore, many labs have been successful in reproducing many disease phenotypes, often difficult or impossible to capture, in commonly used cell lines or animal models. However, there still remain limitations such as the variability between iPSC lines as well as their maturity. Here, we aim to discuss the strategies in generating iPSC-derived cardiomyocytes and neurons for use in disease modeling, drug development and their use in cell therapy.
Collapse
|
29
|
Rossbach B, Hariharan K, Mah N, Oh SJ, Volk HD, Reinke P, Kurtz A. Human iPSC-Derived Renal Cells Change Their Immunogenic Properties during Maturation: Implications for Regenerative Therapies. Cells 2022; 11:cells11081328. [PMID: 35456007 PMCID: PMC9032821 DOI: 10.3390/cells11081328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
The success of human induced pluripotent stem cell (hiPSC)-based therapy critically depends on understanding and controlling the immunological effects of the hiPSC-derived transplant. While hiPSC-derived cells used for cell therapy are often immature with post-grafting maturation, immunological properties may change, with adverse effects on graft tolerance and control. In the present study, the allogeneic and autologous cellular immunity of hiPSC-derived progenitor and terminally differentiated cells were investigated in vitro. In contrast to allogeneic primary cells, hiPSC-derived early renal progenitors and mature renal epithelial cells are both tolerated not only by autologous but also by allogeneic T cells. These immune-privileged properties result from active immunomodulation and low immune visibility, which decrease during the process of cell maturation. However, autologous and allogeneic natural killer (NK) cell responses are not suppressed by hiPSC-derived renal cells and effectively change NK cell activation status. These findings clearly show a dynamic stage-specific dependency of autologous and allogeneic T and NK cell responses, with consequences for effective cell therapies. The study suggests that hiPSC-derived early progenitors may provide advantageous immune-suppressive properties when applied in cell therapy. The data furthermore indicate a need to suppress NK cell activation in allogeneic as well as autologous settings.
Collapse
Affiliation(s)
- Bella Rossbach
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.H.); (S.-J.O.); (H.-D.V.); (P.R.)
- Fraunhofer Institute for Biomedical Engineering (IBMT), Fraunhofer-Forum Berlin, 10178 Berlin, Germany;
- Correspondence: (B.R.); (A.K.)
| | - Krithika Hariharan
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.H.); (S.-J.O.); (H.-D.V.); (P.R.)
- Fraunhofer Institute for Biomedical Engineering (IBMT), Fraunhofer Project Center for Stem Cell Processing, 97082 Würzburg, Germany
| | - Nancy Mah
- Fraunhofer Institute for Biomedical Engineering (IBMT), Fraunhofer-Forum Berlin, 10178 Berlin, Germany;
| | - Su-Jun Oh
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.H.); (S.-J.O.); (H.-D.V.); (P.R.)
| | - Hans-Dieter Volk
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.H.); (S.-J.O.); (H.-D.V.); (P.R.)
- Institute for Medical Immunology (IMI), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.H.); (S.-J.O.); (H.-D.V.); (P.R.)
- Berlin Center for Advanced Therapies (BeCat), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Andreas Kurtz
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.H.); (S.-J.O.); (H.-D.V.); (P.R.)
- Fraunhofer Institute for Biomedical Engineering (IBMT), Fraunhofer-Forum Berlin, 10178 Berlin, Germany;
- Correspondence: (B.R.); (A.K.)
| |
Collapse
|
30
|
Progress in Bioengineering Strategies for Heart Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23073482. [PMID: 35408844 PMCID: PMC8998628 DOI: 10.3390/ijms23073482] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
The human heart has the least regenerative capabilities among tissues and organs, and heart disease continues to be a leading cause of mortality in the industrialized world with insufficient therapeutic options and poor prognosis. Therefore, developing new therapeutic strategies for heart regeneration is a major goal in modern cardiac biology and medicine. Recent advances in stem cell biology and biotechnologies such as human pluripotent stem cells (hPSCs) and cardiac tissue engineering hold great promise for opening novel paths to heart regeneration and repair for heart disease, although these areas are still in their infancy. In this review, we summarize and discuss the recent progress in cardiac tissue engineering strategies, highlighting stem cell engineering and cardiomyocyte maturation, development of novel functional biomaterials and biofabrication tools, and their therapeutic applications involving drug discovery, disease modeling, and regenerative medicine for heart disease.
Collapse
|
31
|
Cardiac Cell Therapy with Pluripotent Stem Cell-Derived Cardiomyocytes: What Has Been Done and What Remains to Do? Curr Cardiol Rep 2022; 24:445-461. [PMID: 35275365 PMCID: PMC9068652 DOI: 10.1007/s11886-022-01666-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Exciting pre-clinical data presents pluripotent stem cell-derived cardiomyocytes (PSC-CM) as a novel therapeutic prospect following myocardial infarction, and worldwide clinical trials are imminent. However, despite notable advances, several challenges remain. Here, we review PSC-CM pre-clinical studies, identifying key translational hurdles. We further discuss cell production and characterization strategies, identifying markers that may help generate cells which overcome these barriers. RECENT FINDINGS PSC-CMs can robustly repopulate infarcted myocardium with functional, force generating cardiomyocytes. However, current differentiation protocols produce immature and heterogenous cardiomyocytes, creating related issues such as arrhythmogenicity, immunogenicity and poor engraftment. Recent efforts have enhanced our understanding of cardiovascular developmental biology. This knowledge may help implement novel differentiation or gene editing strategies that could overcome these limitations. PSC-CMs are an exciting therapeutic prospect. Despite substantial recent advances, limitations of the technology remain. However, with our continued and increasing biological understanding, these issues are addressable, with several worldwide clinical trials anticipated in the coming years.
Collapse
|
32
|
Yoshida S, Miyagawa S, Matsuzaki T, Ishii Y, Fukuda-Kawaguchi E, Kawamura T, Kawamura A, Nakamura Y, Toda K, Sawa Y. Chimerism through the activation of invariant natural killer T cells prolongs graft survival after transplantation of induced pluripotent stem cell–derived allogeneic cardiomyocytes. PLoS One 2022; 17:e0264317. [PMID: 35235568 PMCID: PMC8890721 DOI: 10.1371/journal.pone.0264317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
The loss of functional cells through immunological rejection after transplantation reduces the efficacy of regenerative therapies for cardiac failure that use allogeneic induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Recently, mixed-chimera mice with donor-specific immunotolerance have been established using the RGI-2001 (liposomal formulation of α-galactosyl ceramide) ligand, which activates invariant natural killer T (iNKT) cells. The present study aimed to investigate whether mixed chimerism, established using RGI-2001, prolongs graft survival in allogeneic iPSC-CM transplantation. Mixed-chimera mice were established via combinatorial treatment with RGI-2001 and anti-CD154 antibodies in an irradiated murine bone marrow transplant model. Luciferase-expressing allogeneic iPSC-CMs were transplanted into mixed-chimera and untreated mice, followed by in vivo imaging. RGI-2001 enhanced iNKT cell activation in mice, and mixed chimerism was successfully established. In vivo imaging revealed that while the allografts were completely obliterated within 2 weeks when transplanted to untreated mice, their survivals were not affected in the mixed-chimera mice. Furthermore, numerous CD3+ cells infiltrated allografts in untreated mice, but fewer CD3+ cells were present in mixed-chimera mice. We conclude that mixed-chimera mice established using RGI-2001 showed prolonged graft survival after allogeneic iPSC-CM transplantation. This donor-specific immunotolerance might increase the efficacy of regenerative therapies for heart failure with allogeneic iPSC-CMs.
Collapse
Affiliation(s)
- Shohei Yoshida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Matsuzaki
- Department of DDS Pharmaceutical Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuyuki Ishii
- REGiMMUNE Corp, Tokyo, Japan
- Department of Immunological Diagnosis, Juntendo University Graduate School of Medicine, Bunkyo City, Japan
| | | | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ai Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Nakamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Toda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| |
Collapse
|
33
|
Wang G, Heimendinger P, Ramelmeier RA, Wang W. Pluripotent stem cell-based cell therapies: current applications and future prospects. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Yuasa S. Recent Technological Innovations to Promote Cardiovascular Research. Circ J 2022; 86:919-922. [DOI: 10.1253/circj.cj-21-0978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine
| |
Collapse
|
35
|
Do Human iPSC-Derived Cardiomyocytes Cultured on PLA Scaffolds Induce Expression of CD28/CTLA-4 by T Lymphocytes? J Funct Biomater 2022; 13:jfb13010006. [PMID: 35076538 PMCID: PMC8788528 DOI: 10.3390/jfb13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
Many research groups have developed various types of tissue-engineered cardiac constructs. However, the immunological properties of such artificial tissues are not yet fully understood. Previously, we developed microfiber scaffolds carrying human iPSC-derived cardiomyocytes (hiPSC-CM). In this work, we evaluated the ability of these tissue-engineered constructs to activate the expression of CD28 and CTLA-4 proteins on T lymphocytes, which are early markers of the immune response. For this purpose, electrospun PLA microfiber scaffolds were seeded with hiPSC-CM and cultured for 2 weeks. Allogeneic mononuclear cells were then co-cultured for 48 h with three groups of samples: bare scaffolds, pure cardiomyocyte culture and tissue-engineered constructs, followed by analysis of CD28/CTLA-4 expression on T lymphocytes using flow cytometry. PLA scaffolds and concanavalin A stimulation (positive control) statistically significantly increased CD28 expression on CD4+ T cells (up to 61.3% and 66.3%) CD8+ T cells (up to 17.8% and 21.7%). CD28/CTLA-4 expression was not increased when T lymphocytes were co-cultured with cardiac tissue-engineered constructs and iPSC-CM monolayers. Thus, iPSC-CM in monolayers and on PLA microfiber scaffolds did not induce T cell activation, which suggests that such cardiac constructs would not be a cause of rejection after implantation.
Collapse
|
36
|
Patel H, Samaha Y, Ives G, Lee TY, Cui X, Ray E. Chest Feminization in Male-to-Female Transgender Patients: A Review of Options. Transgend Health 2022; 6:244-255. [PMID: 34993297 DOI: 10.1089/trgh.2020.0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Management of a transgender (TG) woman's gender dysphoria is individualized to address the sources of her distress. This typically involves some combination of psychological therapy, hormone modulation, and surgical intervention. Breast enhancement is the most commonly pursued physical modification in this population. Because hormone manipulation provides disappointing results for most TG women, surgical treatment is frequently required to achieve the goal of a feminine chest. Creating a female breast from natal male chest anatomy poses significant challenges; the sexual dimorphism requires a different approach than that used in cisgender breast augmentation. The options and techniques used continue to evolve as experience in this field grows.
Collapse
Affiliation(s)
- Harsh Patel
- Department of Surgery, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Yasmina Samaha
- Department of Surgery, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Graham Ives
- Department of Surgery, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Tian-Yu Lee
- Department of Surgery, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Xiaojiang Cui
- Department of Surgery, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Edward Ray
- Department of Surgery, Cedars Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
37
|
From genome editing to blastocyst complementation: a new horizon in heart transplantation? JTCVS Tech 2022; 12:177-184. [PMID: 35403039 PMCID: PMC8987386 DOI: 10.1016/j.xjtc.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/12/2022] [Indexed: 11/21/2022] Open
|
38
|
Martínez-Falguera D, Iborra-Egea O, Gálvez-Montón C. iPSC Therapy for Myocardial Infarction in Large Animal Models: Land of Hope and Dreams. Biomedicines 2021; 9:1836. [PMID: 34944652 PMCID: PMC8698445 DOI: 10.3390/biomedicines9121836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Myocardial infarction is the main driver of heart failure due to ischemia and subsequent cell death, and cell-based strategies have emerged as promising therapeutic methods to replace dead tissue in cardiovascular diseases. Research in this field has been dramatically advanced by the development of laboratory-induced pluripotent stem cells (iPSCs) that harbor the capability to become any cell type. Like other experimental strategies, stem cell therapy must meet multiple requirements before reaching the clinical trial phase, and in vivo models are indispensable for ensuring the safety of such novel therapies. Specifically, translational studies in large animal models are necessary to fully evaluate the therapeutic potential of this approach; to empirically determine the optimal combination of cell types, supplementary factors, and delivery methods to maximize efficacy; and to stringently assess safety. In the present review, we summarize the main strategies employed to generate iPSCs and differentiate them into cardiomyocytes in large animal species; the most critical differences between using small versus large animal models for cardiovascular studies; and the strategies that have been pursued regarding implanted cells' stage of differentiation, origin, and technical application.
Collapse
Affiliation(s)
- Daina Martínez-Falguera
- Faculty of Medicine, University of Barcelona (UB), 08036 Barcelona, Spain;
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Oriol Iborra-Egea
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
39
|
Osada H, Kawatou M, Fujita D, Tabata Y, Minatoya K, Yamashita JK, Masumoto H. Therapeutic potential of clinical-grade human induced pluripotent stem cell-derived cardiac tissues. JTCVS OPEN 2021; 8:359-374. [PMID: 36004071 PMCID: PMC9390608 DOI: 10.1016/j.xjon.2021.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/24/2021] [Indexed: 11/12/2022]
Abstract
Objectives To establish a protocol to prepare and transplant clinical-grade human induced pluripotent stem cell (hiPSC)-derived cardiac tissues (HiCTs) and to evaluate the therapeutic potential in an animal myocardial infarction (MI) model. Methods We simultaneously differentiated clinical-grade hiPSCs into cardiovascular cell lineages with or without the administration of canonical Wnt inhibitors, generated 5- layer cell sheets with insertion of gelatin hydrogel microspheres (GHMs) (HiCTs), and transplanted them onto an athymic rat MI model. Cardiac function was evaluated by echocardiography and cardiac magnetic resonance imaging and compared with that in animals with sham and transplantation of 5-layer cell sheets without GHMs. Graft survival, ventricular remodeling, and neovascularization were evaluated histopathologically. Results The administration of Wnt inhibitors significantly promoted cardiomyocyte (CM) (P < .0001) and vascular endothelial cell (EC) (P = .006) induction, which resulted in cellular components of 52.0 ± 6.1% CMs and 9.9 ± 3.0% ECs. Functional analyses revealed the significantly lowest left ventricular end-diastolic volume and highest ejection fraction in the HiCT group. Histopathologic evaluation revealed that the HiCT group had a significantly larger median engrafted area (4 weeks, GHM(-) vs HiCT: 0.4 [range, 0.2-0.7] mm2 vs 2.2 [range, 1.8-3.1] mm2; P = .005; 12 weeks, 0 [range, 0-0.2] mm2 vs 1.9 [range, 0.1-3.2] mm2; P = .026), accompanied by the smallest scar area and highest vascular density at the MI border zone. Conclusions Transplantation of HiCTs generated from clinical-grade hiPSCs exhibited a prominent therapeutic potential in a rat MI model and may provide a promising therapeutic strategy in cardiac regenerative medicine.
Collapse
|
40
|
Mennander AA. Commentary: A pile of vital cells is needed to treat myocardial infarction. JTCVS OPEN 2021; 8:377-378. [PMID: 36004067 PMCID: PMC9390190 DOI: 10.1016/j.xjon.2021.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Ari A. Mennander
- Tampere University Heart Hospital and Tampere University, Tampere, Finland
| |
Collapse
|
41
|
Human embryonic stem cell-derived melanocytes exhibit limited immunogenicity. Biochem Biophys Res Commun 2021; 573:151-157. [PMID: 34416435 DOI: 10.1016/j.bbrc.2021.07.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023]
Abstract
Although surgical interventions have become optional for refractory vitiligo, grafting related injuries is inevitable. Embryonic stem cell (ESC) derivatives can be used in transplantation to address this issue, but the immune rejection due to allogeneic transplantation is of great concern. To investigate the immunogenicity of ESC derived melanocytes (ES-MC), we established a co-culture system of ES-MC and allogeneic PBMC. The results showed that ES-MC were similar to human primary melanocytes, with low expression of immune related molecules, and limited capability of stimulating allogeneic lymphocytes in vitro. Taken together, our findings confirm that ES-MC are of limited immunogenicity, providing new insights into the application of ES-MC in the regenerative medicine such as treating vitiligo.
Collapse
|
42
|
Rombaut M, Boeckmans J, Rodrigues RM, van Grunsven LA, Vanhaecke T, De Kock J. Direct reprogramming of somatic cells into induced hepatocytes: Cracking the Enigma code. J Hepatol 2021; 75:690-705. [PMID: 33989701 DOI: 10.1016/j.jhep.2021.04.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/10/2023]
Abstract
There is an unmet need for functional primary human hepatocytes to support the pharmaceutical and (bio)medical demand. The unique discovery, a decade ago, that somatic cells can be drawn out of their apparent biological lockdown to reacquire a pluripotent state has revealed a completely new avenue of possibilities for generating surrogate human hepatocytes. Since then, the number of papers reporting the direct conversion of somatic cells into induced hepatocytes (iHeps) has burgeoned. A hepatic cell fate can be established via the ectopic expression of native liver-enriched transcription factors in somatic cells, thereby bypassing the need for an intermediate (pluripotent) stem cell state. That said, understanding and eventually controlling the processes that give rise to functional iHeps remains challenging. In this review, we provide an overview of the state-of-the-art reprogramming cocktails and techniques, as well as their corresponding conversion efficiencies. Special attention is paid to the role of liver-enriched transcription factors as hepatogenic reprogramming tools and small molecules as facilitators of hepatic transdifferentiation. To conclude, we formulate recommendations to optimise, standardise and enrich the in vitro production of iHeps to reach clinical standards, and propose minimal criteria for their characterisation.
Collapse
Affiliation(s)
- Matthias Rombaut
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| |
Collapse
|
43
|
Gao Y, Pu J. Differentiation and Application of Human Pluripotent Stem Cells Derived Cardiovascular Cells for Treatment of Heart Diseases: Promises and Challenges. Front Cell Dev Biol 2021; 9:658088. [PMID: 34055788 PMCID: PMC8149736 DOI: 10.3389/fcell.2021.658088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are derived from human embryos (human embryonic stem cells) or reprogrammed from human somatic cells (human induced pluripotent stem cells). They can differentiate into cardiovascular cells, which have great potential as exogenous cell resources for restoring cardiac structure and function in patients with heart disease or heart failure. A variety of protocols have been developed to generate and expand cardiovascular cells derived from hPSCs in vitro. Precisely and spatiotemporally activating or inhibiting various pathways in hPSCs is required to obtain cardiovascular lineages with high differentiation efficiency. In this concise review, we summarize the protocols of differentiating hPSCs into cardiovascular cells, highlight their therapeutic application for treatment of cardiac diseases in large animal models, and discuss the challenges and limitations in the use of cardiac cells generated from hPSCs for a better clinical application of hPSC-based cardiac cell therapy.
Collapse
Affiliation(s)
- Yu Gao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
44
|
Abstract
Human pluripotent stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provide unprecedented opportunities for cell therapies against intractable diseases and injuries. Both ESCs and iPSCs are already being used in clinical trials. However, we continue to encounter practical issues that limit their use, including their inherent properties of tumorigenicity, immunogenicity, and heterogeneity. Here, I review two decades of research aimed at overcoming these three difficulties.
Collapse
|
45
|
Povsic TJ, Gersh BJ. Stem Cells in Cardiovascular Diseases: 30,000-Foot View. Cells 2021; 10:cells10030600. [PMID: 33803227 PMCID: PMC8001267 DOI: 10.3390/cells10030600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Stem cell and regenerative approaches that might rejuvenate the heart have immense intuitive appeal for the public and scientific communities. Hopes were fueled by initial findings from preclinical models that suggested that easily obtained bone marrow cells might have significant reparative capabilities; however, after initial encouraging pre-clinical and early clinical findings, the realities of clinical development have placed a damper on the field. Clinical trials were often designed to detect exceptionally large treatment effects with modest patient numbers with subsequent disappointing results. First generation approaches were likely overly simplistic and relied on a relatively primitive understanding of regenerative mechanisms and capabilities. Nonetheless, the field continues to move forward and novel cell derivatives, platforms, and cell/device combinations, coupled with a better understanding of the mechanisms that lead to regenerative capabilities in more primitive models and modifications in clinical trial design suggest a brighter future.
Collapse
Affiliation(s)
- Thomas J. Povsic
- Department of Medicine, and Duke Clinical Research Institute, Duke University, Durham, NC 27705, USA
- Correspondence:
| | - Bernard J. Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA;
| |
Collapse
|
46
|
Establishment of Human Leukocyte Antigen-Mismatched Immune Responses after Transplantation of Human Liver Bud in Humanized Mouse Models. Cells 2021; 10:cells10020476. [PMID: 33672150 PMCID: PMC7927063 DOI: 10.3390/cells10020476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
Humanized mouse models have contributed significantly to human immunology research. In transplant immunity, human immune cell responses to donor grafts have not been reproduced in a humanized animal model. To elicit human T-cell immune responses, we generated immune-compromised nonobese diabetic/Shi-scid, IL-2RγKO Jic (NOG) with a homozygous expression of human leukocyte antigen (HLA) class I heavy chain (NOG-HLA-A2Tg) mice. After the transplantation of HLA-A2 human hematopoietic stem cells into NOG-HLA-A2Tg, we succeeded in achieving alloimmune responses after the HLA-mismatched human-induced pluripotent stem cell (hiPSC)-derived liver-like tissue transplantation. This immune response was inhibited by administering tacrolimus. In this model, we reproduced allograft rejection after the human iPSC-derived liver-like tissue transplantation. Human tissue transplantation on the humanized mouse liver surface is a good model that can predict T-cell-mediated cellular rejection that may occur when organ transplantation is performed.
Collapse
|
47
|
Myocyte-specific enhancer factor 2c triggers transdifferentiation of adipose tissue-derived stromal cells into spontaneously beating cardiomyocyte-like cells. Sci Rep 2021; 11:1520. [PMID: 33452355 PMCID: PMC7810870 DOI: 10.1038/s41598-020-80848-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/29/2020] [Indexed: 01/10/2023] Open
Abstract
Cardiomyocyte regeneration is limited in adults. The adipose tissue-derived stromal vascular fraction (Ad-SVF) contains pluripotent stem cells that rarely transdifferentiate into spontaneously beating cardiomyocyte-like cells (beating CMs). However, the characteristics of beating CMs and the factors that regulate the differentiation of Ad-SVF toward the cardiac lineage are unknown. We developed a simple culture protocol under which the adult murine inguinal Ad-SVF reproducibly transdifferentiates into beating CMs without induction. The beating CMs showed the striated ventricular phenotype of cardiomyocytes and synchronised oscillation of the intracellular calcium concentration among cells on day 28 of Ad-SVF primary culture. We also identified beating CM-fated progenitors (CFPs) and performed single-cell transcriptome analysis of these CFPs. Among 491 transcription factors that were differentially expressed (≥ 1.75-fold) in CFPs and the beating CMs, myocyte-specific enhancer 2c (Mef2c) was key. Transduction of Ad-SVF cells with Mef2c using a lentiviral vector yielded CFPs and beating CMs with ~ tenfold higher cardiac troponin T expression, which was abolished by silencing of Mef2c. Thus, we identified the master gene required for transdifferentiation of Ad-SVF into beating CMs. These findings will facilitate the development of novel cardiac regeneration therapies based on gene-modified, cardiac lineage-directed Ad-SVF cells.
Collapse
|
48
|
Ishigaki H, Pham VL, Terai J, Sasamura T, Nguyen CT, Ishida H, Okahara J, Kaneko S, Shiina T, Nakayama M, Itoh Y, Ogasawara K. No Tumorigenicity of Allogeneic Induced Pluripotent Stem Cells in Major Histocompatibility Complex-matched Cynomolgus Macaques. Cell Transplant 2021; 30:963689721992066. [PMID: 33588604 PMCID: PMC7894586 DOI: 10.1177/0963689721992066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/11/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Tumorigenicity of induced pluripotent stem cells (iPSCs) is anticipated when cells derived from iPSCs are transplanted. It has been reported that iPSCs formed a teratoma in vivo in autologous transplantation in a nonhuman primate model without immunosuppression. However, there has been no study on tumorigenicity in major histocompatibility complex (MHC)-matched allogeneic iPSC transplantation with immune-competent hosts. To examine the tumorigenicity of allogeneic iPSCs, we generated four iPSC clones carrying a homozygous haplotype of the MHC. Two clones were derived from female fibroblasts by using a retrovirus and the other two clones were derived from male peripheral blood mononuclear cells by using Sendai virus (episomal approach). The iPSC clones were transplanted into allogenic MHC-matched immune-competent cynomolgus macaques. After transplantation of the iPSCs into subcutaneous tissue of an MHC-matched female macaque and into four testes of two MHC-matched male macaques, histological analysis showed no tumor, inflammation, or regenerative change in the excised tissues 3 months after transplantation, despite the results that iPSCs formed teratomas in immune-deficient mice and in autologous transplantation as previously reported. The results in the present study suggest that there is no tumorigenicity of iPSCs in MHC-matched allogeneic transplantation in clinical application.
Collapse
Affiliation(s)
- Hirohito Ishigaki
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Van Loi Pham
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
- Biomolecular and Genetic Unit, Department of Hematology, Choray Hospital, Ho Chi Minh City, Vietnam
| | - Jun Terai
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takako Sasamura
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Cong Thanh Nguyen
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hideaki Ishida
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Junko Okahara
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Shin Kaneko
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Misako Nakayama
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yasushi Itoh
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kazumasa Ogasawara
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
49
|
Shiba Y. Pluripotent Stem Cells for Cardiac Regeneration - Current Status, Challenges, and Future Perspectives. Circ J 2020; 84:2129-2135. [PMID: 33087630 DOI: 10.1253/circj.cj-20-0755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of myocardium permanently impairs cardiac function because the adult mammalian heart has limited regenerative capacity. Strategies to regenerate injured heart tissue include the transplantation of multiple types of stem cells. Among them, pluripotent stem cells (PSCs) are a promising option because of their unlimited self-renewal and unequivocal cardiomyogenic ability. To date, advances in stem cell biology allow generation of relatively homogeneous human PSC-derived cardiomyocytes (CMs). In this regard, preclinical studies of PSC-CM transplantation in rodents and larger animal models have provided convincing proof-of-concept results, triggering clinical studies in multiple countries. However, a few important uncertainties are yet to be addressed, warranting further investigation before clinical implementation of this novel therapy. An overview of the potential of stem cell therapy to provide new CMs for cardiac regeneration is presented.
Collapse
Affiliation(s)
- Yuji Shiba
- Department of Regenerative Science and Medicine, Institute for Biomedical Sciences, Shinshu University
| |
Collapse
|
50
|
Ford E, Pearlman J, Ruan T, Manion J, Waller M, Neely GG, Caron L. Human Pluripotent Stem Cells-Based Therapies for Neurodegenerative Diseases: Current Status and Challenges. Cells 2020; 9:E2517. [PMID: 33233861 PMCID: PMC7699962 DOI: 10.3390/cells9112517] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are characterized by irreversible cell damage, loss of neuronal cells and limited regeneration potential of the adult nervous system. Pluripotent stem cells are capable of differentiating into the multitude of cell types that compose the central and peripheral nervous systems and so have become the major focus of cell replacement therapies for the treatment of neurological disorders. Human embryonic stem cell (hESC) and human induced pluripotent stem cell (hiPSC)-derived cells have both been extensively studied as cell therapies in a wide range of neurodegenerative disease models in rodents and non-human primates, including Parkinson's disease, stroke, epilepsy, spinal cord injury, Alzheimer's disease, multiple sclerosis and pain. In this review, we discuss the latest progress made with stem cell therapies targeting these pathologies. We also evaluate the challenges in clinical application of human pluripotent stem cell (hPSC)-based therapies including risk of oncogenesis and tumor formation, immune rejection and difficulty in regeneration of the heterogeneous cell types composing the central nervous system.
Collapse
Affiliation(s)
- Elizabeth Ford
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW 2006, Australia; (E.F.); (J.P.); (T.R.); (J.M.); (M.W.); (G.G.N.)
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Jodie Pearlman
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW 2006, Australia; (E.F.); (J.P.); (T.R.); (J.M.); (M.W.); (G.G.N.)
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Travis Ruan
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW 2006, Australia; (E.F.); (J.P.); (T.R.); (J.M.); (M.W.); (G.G.N.)
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - John Manion
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW 2006, Australia; (E.F.); (J.P.); (T.R.); (J.M.); (M.W.); (G.G.N.)
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Surgery and Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Waller
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW 2006, Australia; (E.F.); (J.P.); (T.R.); (J.M.); (M.W.); (G.G.N.)
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Gregory G. Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW 2006, Australia; (E.F.); (J.P.); (T.R.); (J.M.); (M.W.); (G.G.N.)
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Leslie Caron
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW 2006, Australia; (E.F.); (J.P.); (T.R.); (J.M.); (M.W.); (G.G.N.)
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|