1
|
Mocciaro E, Kidd M, Johnson K, Bishop E, Johnson K, Zeng YP, Perrotta C, Micci MA. Mechanosensitive ion channel Piezo1 modulates the response of rat hippocampus neural stem cells to rapid stretch injury. PLoS One 2025; 20:e0323191. [PMID: 40359437 PMCID: PMC12074584 DOI: 10.1371/journal.pone.0323191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/02/2025] [Indexed: 05/15/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the primary causes of long-term brain disabilities among military personnel and civilians, regardless of gender. A plethora of secondary events are triggered by a primary brain insult, increasing the complexity of TBI. One of the most affected brain regions is the hippocampus, where neurogenesis occurs throughout life due to the presence of neural stem cells (NSC). Preclinical models have been extensively used to better understand TBI and develop effective treatments. Among these, rapid stretch injury has been used to mimic the effect of mechanical stress produced by a TBI on neurons and glia in vitro. In this study, we aimed to determine the impact of rapid stretch on the viability, proliferation, and differentiation of NSC isolated from rat hippocampus (Hipp-NSC) and to determine the role of the stretch-activated ion channel Piezo-1 in modulating their response to mechanical stress. We found that while rapid stretch (30 and 50 PSI) reduced Hipp-NSC viability (measured as a function of LDH release), it did not change their proliferation and differentiation potentials. Interestingly, rapid stretch in the presence of a selective Piezo-1 inhibitor, GsMTx4, or Piezo1 targeting siRNA, directed Hipp-NSC differentiation toward a neurogenic lineage. Additionally, we found that inhibiting Piezo1 with the addition of a rapid stretch injury increased the expression of miRNAs known to regulate neurogenesis. This work uses a novel approach for studying the effect of mechanical stress on NSC in vitro and points to the critical role the stretch-activated ion channel Piezo-1 has in modulating the impact of TBI on hippocampal neurogenesis.
Collapse
Affiliation(s)
- Emanuele Mocciaro
- Gene Expression Regulation Unit, San Raffaele Scientific Institute, Milan, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Madison Kidd
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kevin Johnson
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Elizabeth Bishop
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kathia Johnson
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ya Ping Zeng
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Cristiana Perrotta
- Gene Expression Regulation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Maria-Adelaide Micci
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
2
|
Xu F, Ren Y, Teng Y, Mu J, Tang J, Sundaram K, Zhang L, Park JW, Hwang JY, Yan J, Dryden G, Zhang H. Tryptophan As a New Member of RNA-Induced Silencing Complexes Prevents Colon Cancer Liver Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307937. [PMID: 39031551 PMCID: PMC11336974 DOI: 10.1002/advs.202307937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/15/2024] [Indexed: 07/22/2024]
Abstract
Essential amino acids (EAA) and microRNAs (miRs) control biological activity of a cell. Whether EAA regulates the activity of miR has never been demonstrated. Here, as proof-of-concept, a tryptophan (Trp, an EAA) complex containing Argonaute 2 (Ago2) and miRs including miR-193a (Trp/Ago2/miR-193a) is identified. Trp binds miR-193a-3p and interacts with Ago2. Trp/Ago2/miR-193a increases miR-193a-3p activity via enhancing Argonaute 2 (Ago2) RNase activity. Other miRs including miR-103 and miR-107 in the Trp complex enhance miR-193a activity by targeting the same genes. Mechanistically, the Trp/Ago2/miR-193a complex interacts with Trp-binding pockets of the PIWI domain of Ago2 to enhance Ago2 mediated miR activity. This newly formed Ago2/Trp/miR-193a-3p complex is more efficient than miR-193a-3p alone in inhibiting the expression of targeted genes and inhibiting colon cancer liver metastasis. The findings show that Trp regulates miR activity through communication with the RNA-induced silencing complexes (RISC), which provides the basis for tryptophan based miR therapy.
Collapse
Affiliation(s)
- Fangyi Xu
- Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
- Department of Central LaboratoryCancer CenterThe affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'an223300China
| | - Yi Ren
- Department of Breast and Thyroid SurgeryThe affiliated Huaian first People's Hospital of Nanjing Medical UniversityHuaianJiangsu223300China
| | - Yun Teng
- Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
| | - Jingyao Mu
- Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
| | - Jie Tang
- Department of Breast and Thyroid SurgeryThe affiliated Huaian first People's Hospital of Nanjing Medical UniversityHuaianJiangsu223300China
| | | | - Lifeng Zhang
- Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
| | - Juw Won Park
- Department of Computer Science and EngineeringUniversity of LouisvilleLouisvilleKY40202USA
| | - Jae Yeon Hwang
- Department of Computer Science and EngineeringUniversity of LouisvilleLouisvilleKY40202USA
| | - Jun Yan
- Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
| | - Gerald Dryden
- Robley Rex Veterans Affairs Medical CenterLouisvilleKY40206USA
| | - Huang‐Ge Zhang
- Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
- Robley Rex Veterans Affairs Medical CenterLouisvilleKY40206USA
- Department of Microbiology & ImmunologyUniversity of LouisvilleLouisvilleKY40202USA
| |
Collapse
|
3
|
Yang X, Wang X, Xia J, Jia J, Zhang S, Wang W, He W, Song X, Chen L, Niu P, Chen T. Small extracellular vesicles-derived from 3d cultured human nasal mucosal mesenchymal stem cells during differentiation to dopaminergic progenitors promote neural damage repair via miR-494-3p after manganese exposed mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116569. [PMID: 38878331 DOI: 10.1016/j.ecoenv.2024.116569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024]
Abstract
Manganese (Mn) exposure is a common environmental risk factor for Parkinson's disease (PD), with pathogenic mechanisms associated with dopaminergic neuron damage and neuroinflammation. Mesenchymal stem cells (MSCs)-derived small extracellular vesicles (sEVs) have emerged as a novel therapeutic approach for neural damage repair. The functional sEVs released from MSCs when they are induced into dopaminergic progenitors may have a better repair effect on neural injury. Therefore, we collected sEVs obtained from primary human nasal mucosal mesenchymal stem cells (hnmMSC-sEVs) or cells in the process of dopaminergic progenitor cell differentiation (da-hnmMSC-sEVs), which were cultured in a 3D dynamic system, and observed their repair effects and mechanisms of Mn-induced neural damage by intranasal administration of sEVs. In Mn-exposed mice, sEVs could reach the site of brain injury after intranasal administration, da-hnmMSC enhanced the repair effects of sEVs in neural damage and behavioral competence, as evidenced by restoration of motor dysfunction, enhanced neurogenesis, decreased microglia activation, up-regulation of anti-inflammatory factors, and down-regulation of pro-inflammatory factors. The transcriptomics of hnmMSC-sEVs and da-hnmMSC-sEVs revealed that miRNAs, especially miR-494-3p in sEVs were involved in neuroprotective and anti-inflammatory effects. Overexpression of miR-494-3p in sEVs inhibited Mn-induced inflammation and neural injury, and its repair mechanism might be related to the down-regulation of CMPK2 and NLRP3 in vitro experiments. Thus, intranasal delivery of da-hnmMSC-sEVs is an effective strategy for the treatment of neural injury repair.
Collapse
Affiliation(s)
- Xin Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xueting Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jiao Xia
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, China
| | - Jiaxin Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Shixuan Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Weiwei Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, China
| | - Weifeng He
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Song
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Tian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
4
|
Comas M, De Pietri Tonelli D, Berdondini L, Astiz M. Ontogeny of the circadian system: a multiscale process throughout development. Trends Neurosci 2024; 47:36-46. [PMID: 38071123 DOI: 10.1016/j.tins.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/02/2023] [Accepted: 11/12/2023] [Indexed: 01/12/2024]
Abstract
The 24 h (circadian) timing system develops in mammals during the perinatal period. It carries out the essential task of anticipating daily recurring environmental changes to identify the best time of day for each molecular, cellular, and systemic process. Although significant knowledge has been acquired about the organization and function of the adult circadian system, relatively little is known about its ontogeny. During the perinatal period, the circadian system progressively gains functionality under the influence of the early environment. This review explores current evidence on the development of the circadian clock in mammals, highlighting the multilevel complexity of the process and the importance of gaining a better understanding of its underlying biology.
Collapse
Affiliation(s)
- Maria Comas
- Circadian Physiology of Neurons and Glia Laboratory, Achucarro Basque Center for Neuroscience, 48940 Leioa, Basque Country, Spain
| | | | - Luca Berdondini
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Mariana Astiz
- Circadian Physiology of Neurons and Glia Laboratory, Achucarro Basque Center for Neuroscience, 48940 Leioa, Basque Country, Spain; Ikerbasque - Basque Foundation for Science, Bilbao, Spain; Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany.
| |
Collapse
|
5
|
Epp S, Chuah SM, Halasz M. Epigenetic Dysregulation in MYCN-Amplified Neuroblastoma. Int J Mol Sci 2023; 24:17085. [PMID: 38069407 PMCID: PMC10707345 DOI: 10.3390/ijms242317085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Neuroblastoma (NB), a childhood cancer arising from the neural crest, poses significant clinical challenges, particularly in cases featuring amplification of the MYCN oncogene. Epigenetic factors play a pivotal role in normal neural crest and NB development, influencing gene expression patterns critical for tumorigenesis. This review delves into the multifaceted interplay between MYCN and known epigenetic modifications during NB genesis, shedding light on the intricate regulatory networks underlying the disease. We provide an extensive survey of known epigenetic mechanisms, encompassing DNA methylation, histone modifications, non-coding RNAs, super-enhancers (SEs), bromodomains (BET), and chromatin modifiers in MYCN-amplified (MNA) NB. These epigenetic changes collectively contribute to the dysregulated gene expression landscape observed in MNA NB. Furthermore, we review emerging therapeutic strategies targeting epigenetic regulators, including histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi), and DNA methyltransferase inhibitors (DNMTi). We also discuss and summarize current drugs in preclinical and clinical trials, offering insights into their potential for improving outcomes for MNA NB patients.
Collapse
Affiliation(s)
- Soraya Epp
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
| | - Shin Mei Chuah
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
| | - Melinda Halasz
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
6
|
Pulcrano S, De Gregorio R, De Sanctis C, Volpicelli F, Piscitelli RM, Speranza L, Perrone-Capano C, di Porzio U, Caiazzo M, Martini A, Giacomet C, Medina D, Awatramani R, Viggiano D, Federici M, Mercuri NB, Guatteo E, Bellenchi GC. miR-218 Promotes Dopaminergic Differentiation and Controls Neuron Excitability and Neurotransmitter Release through the Regulation of a Synaptic-Related Genes Network. J Neurosci 2023; 43:8104-8125. [PMID: 37816598 PMCID: PMC10697421 DOI: 10.1523/jneurosci.0431-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 10/12/2023] Open
Abstract
In the brain, microRNAs (miRNAs) are believed to play a role in orchestrating synaptic plasticity at a higher level by acting as an additional mechanism of translational regulation, alongside the mRNA/polysome system. Despite extensive research, our understanding of the specific contribution of individual miRNA to the function of dopaminergic neurons (DAn) remains limited. By performing a dopaminergic-specific miRNA screening, we have identified miR-218 as a critical regulator of DAn activity in male and female mice. We have found that miR-218 is specifically expressed in mesencephalic DAn and is able to promote dopaminergic differentiation of embryonic stem cells and functional maturation of transdifferentiated induced DA neurons. Midbrain-specific deletion of both genes encoding for miR-218 (referred to as miR-218-1 and mir218-2) affects the expression of a cluster of synaptic-related mRNAs and alters the intrinsic excitability of DAn, as it increases instantaneous frequencies of evoked action potentials, reduces rheobase current, affects the ionic current underlying the action potential after hyperpolarization phase, and reduces dopamine efflux in response to a single electrical stimulus. Our findings provide a comprehensive understanding of the involvement of miR-218 in the dopaminergic system and highlight its role as a modulator of dopaminergic transmission.SIGNIFICANCE STATEMENT In the past decade, several miRNAs have emerged as potential regulators of synapse activity through the modulation of specific gene expression. Among these, we have identified a dopaminergic-specific miRNA, miR-218, which is able to promote dopaminergic differentiation and regulates the translation of an entire cluster of synapse related mRNAs. Deletion of miR-218 has notable effects on dopamine release and alters the intrinsic excitability of dopaminergic neurons, indicating a direct control of dopaminergic activity by miR-218.
Collapse
Affiliation(s)
- Salvatore Pulcrano
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
| | - Roberto De Gregorio
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021
| | - Claudia De Sanctis
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Neuropathology Brain Bank at Mount Sinai, New York, New York 10029
| | - Floriana Volpicelli
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, 80131, Italy
| | - Rosa Maria Piscitelli
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| | - Luisa Speranza
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| | - Carla Perrone-Capano
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, 80131, Italy
| | - Umberto di Porzio
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Alessandro Martini
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| | - Cecilia Giacomet
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| | - Diego Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli, 80078, Italy
- Department of Medical and Translational Science, Federico II University, Naples, 80131, Italy
| | | | - Davide Viggiano
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli," Naples, 80131, Italy
| | - Mauro Federici
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| | - Nicola B Mercuri
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
- University of Tor Vergata, Department of Systems Medicine, Rome, 00133, Italy
| | - Ezia Guatteo
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
- Department of Motor Science and Wellness, Parthenope University, Naples, 80133, Italy
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| |
Collapse
|
7
|
Bartelt-Kirbach B, Golenhofen N. Regulation of rat HspB5/alphaB-Crystallin by microRNAs miR-101a-3p, miR-140-5p, miR-330-5p, and miR-376b-3p. Cell Stress Chaperones 2023; 28:787-799. [PMID: 37584866 PMCID: PMC10746672 DOI: 10.1007/s12192-023-01371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023] Open
Abstract
HspB5/alphaB-crystallin is an ubiquitously expressed member of the small heat shock protein family which help cells to survive cellular stress conditions and are also implicated in neurodegenerative diseases. MicroRNAs are small non-coding RNAs fine-tuning protein expression mainly by inhibiting the translation of target genes. Our earlier finding of an increase in HspB5/alphaB-crystallin protein amount after heat shock in rat hippocampal neurons without a concomitant increase of mRNA prompted us to look for microRNAs as a posttranscriptional regulatory mechanism. Microarray miRNA expression data of rat hippocampal neurons under control and stress conditions in combination with literature search, miRNA binding site prediction and conservation of target sites yielded nine candidate microRNAs. Of these candidates, five (miR-101a-3p, miR-129-2-3p, miR-330-5p, miR-376b-3p, and miR-491-5p) were able to convey a downregulation by binding to the HspB5 3'- or 5'-UTR in a luciferase reporter gene assay while one (miR-140-5p) led to an upregulation. Overexpression of these six microRNAs in C6 glioma cells showed that three of them (miR-101a-3p, miR-140-5p, and miR-376b-3p) regulated endogenous HspB5 protein amount significantly in the same direction as in the reporter gene assay. In addition, overexpression of miR-330-5p and miR-491-5p in C6 cells resulted in regulation of HspB5 in the opposite direction as expected from the luciferase assay. Analysis of miRNA expression in rat hippocampal neurons after cellular stress by qPCR showed that miR-491-5p was not expressed in these cells. In total, we therefore identified four microRNAs, namely miR-101a-3p, miR-140-5p, miR-330-5p, and miR-376b-3p, which can regulate rat HspB5 directly or indirectly.
Collapse
Affiliation(s)
- Britta Bartelt-Kirbach
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
8
|
Deng LJ, Wu D, Yang XF, Li T. miR-146a-5p Modulates Adult Hippocampal Neurogenesis Deficits Through Klf4/p-Stat3 Signaling in APP/PS1 Mice. Neuroscience 2023; 526:314-325. [PMID: 37321367 DOI: 10.1016/j.neuroscience.2023.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, and currently, no effective treatment strategies exist for this condition. MicroRNAs (miRNAs) have emerged as promising therapeutic targets of AD. Previous studies have highlighted the significant role of miR-146a-5p in regulating adult hippocampal neurogenesis (AHN). Here, we aimed to investigate whether miR-146a-5p plays a role in the mechanisms of AD. We employed quantitative real-time PCR (qRT-PCR) to assess the expression of miR-146a-5p. Additionally, we examined the expression of Krüppel-like factor 4 (Klf4), Signal transducer and activator of transcription 3 (Stat3), and phosphorylated Stat3 (p-Stat3) using western blot analysis. Furthermore, we validated the interaction between miR-146a-5p and Klf4 using a dual-luciferase reporter assay. Immunofluorescence staining was employed to evaluate AHN. And Contextual fear conditioning discrimination learning (CFC-DL) experiment was used to detect pattern separation. Our findings in the hippocampus of APP/PS1 mice revealed upregulated levels of miR-146a-5p and p-Stat3, while Klf4 levels were downregulated. Interestingly, both miR-146a-5p antagomir and p-Stat3 inhibitor obviously rescued neurogenesis and pattern separation in APP/PS1 mice. Moreover, application of miR-146a-5p agomir reversed the protective effects of Klf4 upregulation. These findings open new avenues for protection against AD through the modulation of neurogenesis and cognitive decline via the miR-146a-5p/Klf4/p-Stat3 pathway.
Collapse
Affiliation(s)
- Li-Jun Deng
- Department of Neurosurgery, The Affiliated Hospital of Jianghan University, Wuhan 430022, PR China
| | - Dan Wu
- Department of Neurosurgery, The Affiliated Hospital of Jianghan University, Wuhan 430022, PR China
| | - Xiao-Fan Yang
- Department of Hand Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Tao Li
- Department of Hand Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
9
|
Marques BL, Maciel GF, Brito MR, Dias LD, Scalzo S, Santos AK, Kihara AH, da Costa Santiago H, Parreira RC, Birbrair A, Resende RR. Regulatory mechanisms of stem cell differentiation: Biotechnological applications for neurogenesis. Semin Cell Dev Biol 2023; 144:11-19. [PMID: 36202693 DOI: 10.1016/j.semcdb.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022]
Abstract
The world population's life expectancy is growing, and neurodegenerative disorders common in old age require more efficient therapies. In this context, neural stem cells (NSCs) are imperative for the development and maintenance of the functioning of the nervous system and have broad therapeutic applicability for neurodegenerative diseases. Therefore, knowing all the mechanisms that govern the self-renewal, differentiation, and cell signaling of NSC is necessary. This review will address some of these aspects, including the role of growth and transcription factors, epigenetic modulators, microRNAs, and extracellular matrix components. Furthermore, differentiation and transdifferentiation processes will be addressed as therapeutic strategies showing their significance for stem cell-based therapy.
Collapse
Affiliation(s)
- Bruno L Marques
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Marcello R Brito
- Centro Universitário de Mineiros - UNIFIMES, Campus Trindade, GO, Brazil
| | - Lucas D Dias
- Centro Universitário de Mineiros - UNIFIMES, Campus Trindade, GO, Brazil
| | - Sérgio Scalzo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anderson K Santos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Hiroaki Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Helton da Costa Santiago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo C Parreira
- Centro Universitário de Mineiros - UNIFIMES, Campus Trindade, GO, Brazil
| | - Alexander Birbrair
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
10
|
Vinogradova A, Sysova M, Smirnova P, Sidorova M, Turkin A, Kurilova E, Tuchina O. Enriched Environment Induces Sex-Specific Changes in the Adult Neurogenesis, Cytokine and miRNA Expression in Rat Hippocampus. Biomedicines 2023; 11:1341. [PMID: 37239012 PMCID: PMC10215805 DOI: 10.3390/biomedicines11051341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
An enriched environment stimulates adult hippocampal plasticity, but the exact cellular and molecular mechanisms are complex, and thus a matter of debate. We studied the behavior and hippocampal neurogenesis in adult male and female Wistar rats that were housed in an enriched environment (EE) for two months. Both EE males and females performed better than control animals in a Barnes maze, meaning that EE enhances spatial memory. However, the expression levels of neurogenesis markers KI67, DCX, Nestin, and Syn1 increased only in EE females, while in EE males only KI67 and BDNF were higher than in the corresponding control. The number of DCX+ neurons on brain slices increased in the dentate gyrus of EE females only, i.e., the level of adult hippocampal neurogenesis was increased in female but not in male rats. The level of anti-inflammatory IL-10 and signaling pathway components was upregulated in EE females. Of 84 miRNAs tested, in the hippocampi of EE female rats we detected upregulation in the expression levels of 12 miRNAs related to neuronal differentiation and morphogenesis, while in EE males four miRNAs were upregulated and involved in the regulation of cell proliferation/differentiation, and one was downregulated and associated with the stimulation of proliferation. Taken altogether, our results point to sex-specific differences in adult hippocampal plasticity, IL-10 expression, and miRNA profiles induced by an enriched environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Oksana Tuchina
- Educational and Scientific Cluster “Institute of Medicine and Life Sciences (MEDBIO)”, Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., 236016 Kaliningrad, Russia
| |
Collapse
|
11
|
Antoniou A, Auderset L, Kaurani L, Sebastian E, Zeng Y, Allahham M, Cases-Cunillera S, Schoch S, Gründemann J, Fischer A, Schneider A. Neuronal extracellular vesicles and associated microRNAs induce circuit connectivity downstream BDNF. Cell Rep 2023; 42:112063. [PMID: 36753414 DOI: 10.1016/j.celrep.2023.112063] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as mediators of cellular communication, in part via the delivery of associated microRNAs (miRNAs), small non-coding RNAs that regulate gene expression. We show that brain-derived neurotrophic factor (BDNF) mediates the sorting of miR-132-5p, miR-218-5p, and miR-690 in neuron-derived EVs. BDNF-induced EVs in turn increase excitatory synapse formation in recipient hippocampal neurons, which is dependent on the inter-neuronal delivery of these miRNAs. Transcriptomic analysis further indicates the differential expression of developmental and synaptogenesis-related genes by BDNF-induced EVs, many of which are predicted targets of miR-132-5p, miR-218-5p, and miR-690. Furthermore, BDNF-induced EVs up-regulate synaptic vesicle (SV) clustering in a transmissible manner, thereby increasing synaptic transmission and synchronous neuronal activity. As BDNF and EV-miRNAs miR-218 and miR-132 were previously implicated in neuropsychiatric disorders such as anxiety and depression, our results contribute to a better understanding of disorders characterized by aberrant neural circuit connectivity.
Collapse
Affiliation(s)
- Anna Antoniou
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.
| | - Loic Auderset
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Lalit Kaurani
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075 Göttingen, Germany; Department for Systems Medicine and Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075 Göttingen, Germany
| | - Eva Sebastian
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Yuzhou Zeng
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Maria Allahham
- Institute of Bio- and Geosciences 1, Forschungszentrum Jülich, 52428 Jülich, Germany; Aachen Biology and Biotechnology, RWTH Aachen University, 52056 Aachen, Germany
| | - Silvia Cases-Cunillera
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Jan Gründemann
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Andre Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075 Göttingen, Germany; Department for Systems Medicine and Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075 Göttingen, Germany
| | - Anja Schneider
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.
| |
Collapse
|
12
|
Gasperini C, Tuntevski K, Beatini S, Pelizzoli R, Lo Van A, Mangoni D, Cossu RM, Pascarella G, Bianchini P, Bielefeld P, Scarpato M, Pons‐Espinal M, Sanges R, Diaspro A, Fitzsimons CP, Carninci P, Gustincich S, De Pietri Tonelli D. Piwil2 (Mili) sustains neurogenesis and prevents cellular senescence in the postnatal hippocampus. EMBO Rep 2023; 24:e53801. [PMID: 36472244 PMCID: PMC9900342 DOI: 10.15252/embr.202153801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Adult neural progenitor cells (aNPCs) ensure lifelong neurogenesis in the mammalian hippocampus. Proper regulation of aNPC fate has thus important implications for brain plasticity and healthy aging. Piwi proteins and the small noncoding RNAs interacting with them (piRNAs) have been proposed to control memory and anxiety, but the mechanism remains elusive. Here, we show that Piwil2 (Mili) is essential for proper neurogenesis in the postnatal mouse hippocampus. RNA sequencing of aNPCs and their differentiated progeny reveal that Mili and piRNAs are dynamically expressed in neurogenesis. Depletion of Mili and piRNAs in the adult hippocampus impairs aNPC differentiation toward a neural fate, induces senescence, and generates reactive glia. Transcripts modulated upon Mili depletion bear sequences complementary or homologous to piRNAs and include repetitive elements and mRNAs encoding essential proteins for proper neurogenesis. Our results provide evidence of a critical role for Mili in maintaining fitness and proper fate of aNPCs, underpinning a possible involvement of the piRNA pathway in brain plasticity and successful aging.
Collapse
Affiliation(s)
- Caterina Gasperini
- Neurobiology of miRNA LaboratoryIstituto Italiano di TecnologiaGenoaItaly
| | - Kiril Tuntevski
- Neurobiology of miRNA LaboratoryIstituto Italiano di TecnologiaGenoaItaly
- The Open University Affiliated Research Centre at Istituto Italiano di Tecnologia (ARC@IIT)GenoaItaly
| | - Silvia Beatini
- Neurobiology of miRNA LaboratoryIstituto Italiano di TecnologiaGenoaItaly
| | - Roberta Pelizzoli
- Neurobiology of miRNA LaboratoryIstituto Italiano di TecnologiaGenoaItaly
| | - Amanda Lo Van
- Neurobiology of miRNA LaboratoryIstituto Italiano di TecnologiaGenoaItaly
| | - Damiano Mangoni
- Central RNA LaboratoryIstituto Italiano di TecnologiaGenoaItaly
| | - Rosa M Cossu
- Central RNA LaboratoryIstituto Italiano di TecnologiaGenoaItaly
| | - Giovanni Pascarella
- Division of Genomic TechnologiesRIKEN Center for Life Science TechnologiesYokohamaJapan
| | - Paolo Bianchini
- Nanoscopy, CHT ErzelliIstituto Italiano di TecnologiaGenoaItaly
| | - Pascal Bielefeld
- Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| | | | | | - Remo Sanges
- Central RNA LaboratoryIstituto Italiano di TecnologiaGenoaItaly
- Area of NeuroscienceSISSATriesteItaly
| | - Alberto Diaspro
- Nanoscopy, CHT ErzelliIstituto Italiano di TecnologiaGenoaItaly
| | - Carlos P Fitzsimons
- Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Piero Carninci
- Division of Genomic TechnologiesRIKEN Center for Life Science TechnologiesYokohamaJapan
- Human TechnopoleMilanItaly
| | | | | |
Collapse
|
13
|
Estrada-Meza C, Torres-Copado A, Loreti González-Melgoza L, Ruiz-Manriquez LM, De Donato M, Sharma A, Pathak S, Banerjee A, Paul S. Recent insights into the microRNA and long non-coding RNA-mediated regulation of stem cell populations. 3 Biotech 2022; 12:270. [PMID: 36101546 PMCID: PMC9464284 DOI: 10.1007/s13205-022-03343-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
Stem cells are undifferentiated cells that have multi-lineage differentiation. The transition from self-renewal to differentiation requires rapid and extensive gene expression alterations. Since different stem cells exhibit diverse non-coding RNAs (ncRNAs) expression profiles, the critical roles of ncRNAs in stem cell reprogramming, pluripotency maintenance, and differentiation have been widely investigated over the past few years. Hence, in this current review, the two main categories of ncRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are discussed. While the primary way by which miRNAs restrict mRNA transcription is through miRNA-mRNA interaction, lncRNAs have a wide range of effects on mRNA functioning, including interactions with miRNAs. Both of these ncRNAs participate in the post-transcriptional regulation of crucial biological mechanisms, such as cell cycle regulation, apoptosis, aging, and cell fate decisions. These findings shed light on a previously unknown aspect of gene regulation in stem cell fate determination and behavior. Overall, we summarized the key roles of miRNAs (including exosomal miRNAs) and lncRNAs in the regulation of stem cell populations, such as cardiac, hematopoietic, mesenchymal, neural, and spermatogonial, as well ncRNAs' influence on malignancy through modulating cancer stem cells, which might significantly contribute to clinical stem cell therapy and in regenerative medicine.
Collapse
Affiliation(s)
- Carolina Estrada-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Andrea Torres-Copado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Luisa Loreti González-Melgoza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Luis M. Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Marcos De Donato
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| |
Collapse
|
14
|
Wang J, Yokoyama Y, Hirose H, Shimomura Y, Bonkobara S, Itakura H, Kouda S, Morimoto Y, Minami K, Takahashi H, Shibata S, Kobayashi S, Uemura M, Tanaka S, Wu X, Tanaka S, Mori M, Yamamoto H. Functional assessment of miR‑1291 in colon cancer cells. Int J Oncol 2022; 60:13. [PMID: 34981812 PMCID: PMC8759348 DOI: 10.3892/ijo.2022.5303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
miR‑1291 exerts an anti‑tumor effect in a subset of human carcinomas, including pancreatic cancer. However, its role in colorectal cancer (CRC) is largely unknown. In the present study, the expression and effect of miR‑1291 in CRC cells was investigated. It was identified that miR‑1291 significantly suppressed the proliferation, invasion, cell mobility and colony formation of CRC cells. Additionally, miR‑1291 induced cell apoptosis. A luciferase reporter assay revealed that miR‑1291 directly bound the 3'‑untranslated region sequence of doublecortin‑like kinase 1 (DCLK1). miR‑1291 also suppressed DCLK1 mRNA and protein expression in HCT116 cells that expressed DCLK1. Furthermore, miR‑1291 suppressed cancer stem cell markers BMI1 and CD133, and inhibited sphere formation. The inhibitory effects on sphere formation, invasion and mobility in HCT116 cells were also explored and verified using DCLK1 siRNAs. Furthermore, miR‑1291 induced CDK inhibitors p21WAF1/CIP1 and p27KIP1 in three CRC cell lines, and the overexpression of DCLK1 in HCT116 cells led to a decrease of p21WAF1/CIP1 and p27KIP1. Intravenous administration of miR‑1291 loaded on the super carbonate apatite delivery system significantly inhibited tumor growth in the DLD‑1 xenograft mouse model. Additionally, the resultant tumors exhibited significant upregulation of the p21WAF1/CIP1 and p27KIP1 protein with treatment of miR‑1291. Taken together, the results indicated that miR‑1291 served an anti‑tumor effect by modulating multiple functions, including cancer stemness and cell cycle regulation. The current data suggested that miR‑1291 may be a promising nucleic acid medicine against CRC.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Molecular Pathology, Division of Health Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Haruka Hirose
- Department of Molecular Pathology, Division of Health Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Shimomura
- Department of Molecular Pathology, Division of Health Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Saki Bonkobara
- Department of Molecular Pathology, Division of Health Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Itakura
- Department of Surgery and Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shihori Kouda
- Department of Molecular Pathology, Division of Health Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Morimoto
- Department of Surgery and Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazumasa Minami
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Surgery and Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satoshi Shibata
- Department of Molecular Pathology, Division of Health Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shogo Kobayashi
- Department of Surgery and Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mamoru Uemura
- Department of Surgery and Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Susumu Tanaka
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Xin Wu
- Department of Molecular Pathology, Division of Health Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- Department of Hepato-Billiary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masaki Mori
- Tokai University, Graduate School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Surgery and Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Gordino G, Costa‐Pereira S, Corredeira P, Alves P, Costa L, Gomes AQ, Silva‐Santos B, Ribot JC. MicroRNA-181a restricts human γδ T cell differentiation by targeting Map3k2 and Notch2. EMBO Rep 2022; 23:e52234. [PMID: 34821000 PMCID: PMC8728617 DOI: 10.15252/embr.202052234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
γδ T cells are a conserved population of lymphocytes that contributes to anti-tumor responses through its overt type 1 inflammatory and cytotoxic properties. We have previously shown that human γδ T cells acquire this profile upon stimulation with IL-2 or IL-15, in a differentiation process dependent on MAPK/ERK signaling. Here, we identify microRNA-181a as a key modulator of human γδ T cell differentiation. We observe that miR-181a is highly expressed in patients with prostate cancer and that this pattern associates with lower expression of NKG2D, a critical mediator of cancer surveillance. Interestingly, miR-181a expression negatively correlates with an activated type 1 effector profile obtained from in vitro differentiated γδ T cells and miR-181a overexpression restricts their levels of NKG2D and TNF-α. Upon in silico analysis, we identify two miR-181a candidate targets, Map3k2 and Notch2, which we validate via overexpression coupled with luciferase assays. These results reveal a novel role for miR-181a as critical regulator of human γδ T cell differentiation and highlight its potential for manipulation of γδ T cells in next-generation immunotherapies.
Collapse
Affiliation(s)
- Gisela Gordino
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Sara Costa‐Pereira
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Patrícia Corredeira
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Patrícia Alves
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Luís Costa
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Medical Oncology DivisionHospital de Santa MariaCentro Hospitalar Universitário Lisboa NorteLisbonPortugal
| | - Anita Q Gomes
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Escola Superior de Tecnologia da Saúde de LisboaLisbonPortugal
| | - Bruno Silva‐Santos
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Julie C Ribot
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| |
Collapse
|
16
|
Penning A, Tosoni G, Abiega O, Bielefeld P, Gasperini C, De Pietri Tonelli D, Fitzsimons CP, Salta E. Adult Neural Stem Cell Regulation by Small Non-coding RNAs: Physiological Significance and Pathological Implications. Front Cell Neurosci 2022; 15:781434. [PMID: 35058752 PMCID: PMC8764185 DOI: 10.3389/fncel.2021.781434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/09/2021] [Indexed: 01/11/2023] Open
Abstract
The adult neurogenic niches are complex multicellular systems, receiving regulatory input from a multitude of intracellular, juxtacrine, and paracrine signals and biological pathways. Within the niches, adult neural stem cells (aNSCs) generate astrocytic and neuronal progeny, with the latter predominating in physiological conditions. The new neurons generated from this neurogenic process are functionally linked to memory, cognition, and mood regulation, while much less is known about the functional contribution of aNSC-derived newborn astrocytes and adult-born oligodendrocytes. Accumulating evidence suggests that the deregulation of aNSCs and their progeny can impact, or can be impacted by, aging and several brain pathologies, including neurodevelopmental and mood disorders, neurodegenerative diseases, and also by insults, such as epileptic seizures, stroke, or traumatic brain injury. Hence, understanding the regulatory underpinnings of aNSC activation, differentiation, and fate commitment could help identify novel therapeutic avenues for a series of pathological conditions. Over the last two decades, small non-coding RNAs (sncRNAs) have emerged as key regulators of NSC fate determination in the adult neurogenic niches. In this review, we synthesize prior knowledge on how sncRNAs, such as microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs), may impact NSC fate determination in the adult brain and we critically assess the functional significance of these events. We discuss the concepts that emerge from these examples and how they could be used to provide a framework for considering aNSC (de)regulation in the pathogenesis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Amber Penning
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Giorgia Tosoni
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Oihane Abiega
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Pascal Bielefeld
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Caterina Gasperini
- Neurobiology of miRNAs Lab, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Carlos P. Fitzsimons
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Evgenia Salta
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
17
|
A regulatory network of microRNAs confers lineage commitment during early developmental trajectories of B and T lymphocytes. Proc Natl Acad Sci U S A 2021; 118:2104297118. [PMID: 34750254 DOI: 10.1073/pnas.2104297118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 11/18/2022] Open
Abstract
The commitment of hematopoietic multipotent progenitors (MPPs) toward a particular lineage involves activation of cell type-specific genes and silencing of genes that promote alternate cell fates. Although the gene expression programs of early-B and early-T lymphocyte development are mutually exclusive, we show that these cell types exhibit significantly correlated microRNA (miRNA) profiles. However, their corresponding miRNA targetomes are distinct and predominated by transcripts associated with natural killer, dendritic cell, and myeloid lineages, suggesting that miRNAs function in a cell-autonomous manner. The combinatorial expression of miRNAs miR-186-5p, miR-128-3p, and miR-330-5p in MPPs significantly attenuates their myeloid differentiation potential due to repression of myeloid-associated transcripts. Depletion of these miRNAs caused a pronounced de-repression of myeloid lineage targets in differentiating early-B and early-T cells, resulting in a mixed-lineage gene expression pattern. De novo motif analysis combined with an assay of promoter activities indicates that B as well as T lineage determinants drive the expression of these miRNAs in lymphoid lineages. Collectively, we present a paradigm that miRNAs are conserved between developing B and T lymphocytes, yet they target distinct sets of promiscuously expressed lineage-inappropriate genes to suppress the alternate cell-fate options. Thus, our studies provide a comprehensive compendium of miRNAs with functional implications for B and T lymphocyte development.
Collapse
|
18
|
Xu H, Liu X, Li W, Xi Y, Su P, Meng B, Shao X, Tang B, Yang Q, Mao Z. p38 MAPK-mediated loss of nuclear RNase III enzyme Drosha underlies amyloid beta-induced neuronal stress in Alzheimer's disease. Aging Cell 2021; 20:e13434. [PMID: 34528746 PMCID: PMC8521488 DOI: 10.1111/acel.13434] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/26/2021] [Accepted: 07/03/2021] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs ubiquitously expressed in the brain and regulate gene expression at the post‐transcriptional level. The nuclear RNase III enzyme Drosha initiates the maturation process of miRNAs in the nucleus. Strong evidence suggests that dysregulation of miRNAs is involved in many neurological disorders including Alzheimer's disease (AD). Dysfunction of miRNA biogenesis components may be involved in the processes of those diseases. However, the role of Drosha in AD remains unknown. By using immunohistochemistry, biochemistry, and subcellular fractionation methods, we show here that the level of Drosha protein was significantly lower in the postmortem brain of human AD patients as well as in the transgenic rat model of AD. Interestingly, Drosha level was specifically reduced in neurons of the cortex and hippocampus but not in the cerebellum in the AD brain samples. In primary cortical neurons, amyloid‐beta (Aβ) oligomers caused a p38 MAPK‐dependent phosphorylation of Drosha, leading to its redistribution from the nucleus to the cytoplasm and a decrease in its level. This loss of Drosha function preceded Aβ‐induced neuronal death. Importantly, inhibition of p38 MAPK activity or overexpression of Drosha protected neurons from Aβ oligomers‐induced apoptosis. Taken together, these results establish a role for p38 MAPK‐Drosha pathway in modulating neuronal viability under Aβ oligomers stress condition and implicate loss of Drosha as a key molecular change in the pathogenesis of AD.
Collapse
Affiliation(s)
- Haidong Xu
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Xiaolei Liu
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Wenming Li
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Ye Xi
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Peng Su
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Bo Meng
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Xiaoyun Shao
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Beisha Tang
- Department of Neurology Xiangya Hospital Central South University Changsha China
| | - Qian Yang
- Department of Neurosurgery Tangdu Hospital The Fourth Military Medical University Xi'an China
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
- Department of Neurology Emory University School of Medicine Atlanta Georgia USA
| |
Collapse
|
19
|
Tutino V, De Nunzio V, Milella RA, Gasparro M, Cisternino AM, Gigante I, Lanzilotta E, Iacovazzi PA, Lippolis A, Lippolis T, Caruso MG, Notarnicola M. Impact of Fresh Table Grape Intake on Circulating microRNAs Levels in Healthy Subjects: A Significant Modulation of Gastrointestinal Cancer-Related Pathways. Mol Nutr Food Res 2021; 65:e2100428. [PMID: 34495579 DOI: 10.1002/mnfr.202100428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Indexed: 12/11/2022]
Abstract
SCOPE The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated. METHODS AND RESULTS Autumn Royal table grape, used in this study, is chosen for its high polyphenolic content and antioxidant properties. The study is a randomized controlled trial, in which 40 consecutive subjects are recruited on a voluntary basis and randomly assigned to two groups of the study, the control group, receiving only dietary recommendations and a grape group receiving a daily dose of 5 g of fresh table grape per kg of body weight for 21 days. All analyses are performed at baseline and after 21 days of dietary treatment. Circulating miRNAs levels are detected by Real-Time quantitative PCR (RT-qPCR) followed by bioinformatic functional analysis. The study identifies 20 circulating miRNAs differentially expressed in healthy subjects after grape intake, and in particular, 18 of 20 are down-regulated and 2 are up-regulated. CONCLUSION The dietary intake of table grape affects circulating miRNAs levels in healthy subjects, particularly the miRNAs related to pathways involved in counteracting cancer development, including gastrointestinal cancers.
Collapse
Affiliation(s)
- Valeria Tutino
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Rosa Anna Milella
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Turi, Bari, 70010, Italy
| | - Marica Gasparro
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Turi, Bari, 70010, Italy
| | - Anna Maria Cisternino
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Isabella Gigante
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Elsa Lanzilotta
- Laboratory of Clinical Pathology, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Palma Aurelia Iacovazzi
- Laboratory of Clinical Pathology, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Antonio Lippolis
- Laboratory of Clinical Pathology, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Tamara Lippolis
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Maria Gabriella Caruso
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| |
Collapse
|
20
|
Fiori LM, Kos A, Lin R, Théroux JF, Lopez JP, Kühne C, Eggert C, Holzapfel M, Huettl RE, Mechawar N, Belzung C, Ibrahim EC, Chen A, Turecki G. miR-323a regulates ERBB4 and is involved in depression. Mol Psychiatry 2021; 26:4191-4204. [PMID: 33219358 DOI: 10.1038/s41380-020-00953-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) is a complex and debilitating illness whose etiology remains unclear. Small RNA molecules, such as micro RNAs (miRNAs) have been implicated in MDD, where they display differential expression in the brain and the periphery. In this study, we quantified miRNA expression by small RNA sequencing in the anterior cingulate cortex and habenula of individuals with MDD and psychiatrically-healthy controls. Thirty-two miRNAs showed significantly correlated expression between the two regions (False Discovery Rate < 0.05), of which four, miR-204-5p, miR-320b, miR-323a-3p, and miR-331-3p, displayed upregulated expression in MDD. We assessed the expression of predicted target genes of differentially expressed miRNAs in the brain, and found that the expression of erb-b2 receptor tyrosine kinase 4 (ERBB4), a gene encoding a neuregulin receptor, was downregulated in both regions, and was influenced by miR-323a-3p in vitro. Finally, we assessed the effects of manipulating miRNA expression in the mouse ACC on anxiety- and depressive-like behaviors. Mice in which miR-323-3p was overexpressed or knocked-down displayed increased and decreased emotionality, respectively. Additionally, these mice displayed significantly downregulated and upregulated expression of Erbb4, respectively. Overall, our findings indicate the importance of brain miRNAs in the pathology of MDD, and emphasize the involvement of miR-323a-3p and ERBB4 in this phenotype. Future studies further characterizing miR-323a-3p and neuregulin signaling in depression are warranted.
Collapse
Affiliation(s)
- Laura M Fiori
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Aron Kos
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Rixing Lin
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Jean-Francois Théroux
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Juan Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Claudia Kühne
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Carola Eggert
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Maria Holzapfel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rosa-Eva Huettl
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Naguib Mechawar
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Catherine Belzung
- UMR 1253, iBrain, UFR Sciences et Techniques, Parc Grandmont, Tours, France
| | - El Chérif Ibrahim
- Aix-Marseille Université, CNRS, INT, Institute Neuroscience Timone, Marseille, France
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany. .,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| | - Gustavo Turecki
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
21
|
Cheng X, Li W, Zhao R, Li H, Qin J, Tian M, Zhang X, Jin G. The role of hippocampal niche exosomes in rat hippocampal neurogenesis after fimbria-fornix transection. J Biol Chem 2021; 296:100188. [PMID: 33334882 PMCID: PMC7948408 DOI: 10.1074/jbc.ra120.015561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023] Open
Abstract
Exosomes transfer signaling molecules such as proteins, lipids, and RNAs to facilitate cell–cell communication and play an important role in the stem cell microenvironment. In previous work, we demonstrated that rat fimbria–fornix transection (FFT) enhances neurogenesis from neural stem cells (NSCs) in the subgranular zone (SGZ). However, how neurogenesis is modulated after denervation remains unknown. Here, we investigated whether exosomes in a denervated hippocampal niche may affect neurogenesis. Using the FFT rat model, we extracted hippocampal exosomes and identified them using western blots, transmission electron microscopy (TEM), and nanoparticle size measurement. We also used RNA sequencing and bioinformatic analysis of exosomes to identify noncoding RNA expression profiles and neurogenesis-related miRNAs, respectively. RNA sequencing analysis demonstrated 9 upregulated and 15 downregulated miRNAs. miR-3559-3P and miR-6324 increased gradually after FFT. Thus, we investigated the function of miR-3559-3P and miR-6324 with NSC proliferation and differentiation assays. Transfection of miR-3559-3p and miR-6324 mimics inhibited the proliferation of NSCs and promoted the differentiation of NSCs into neurons, while miR-3559-3p and miR-6324 inhibitors promoted NSC proliferation and inhibited neuronal differentiation. Additionally, the exosome marker molecules CD9, CD63, and Alix were expressed in exosomes extracted from the hippocampal niche. Finally, TEM showed that exosomes were ∼100 nm in diameter and had a “saucer-like” bilayer membrane structure. Taken together, these findings suggest that differentially expressed exosomes and their related miRNAs in the denervated hippocampal niche can promote differentiation of NSCs into neurons.
Collapse
Affiliation(s)
- Xiang Cheng
- Department of Human Anatomy, Institue of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, PR China
| | - Wen Li
- Department of Human Anatomy, Institue of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, PR China
| | - Rongzhen Zhao
- Department of Human Anatomy, Institue of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, PR China
| | - Haoming Li
- Department of Human Anatomy, Institue of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, PR China
| | - Jianbing Qin
- Department of Human Anatomy, Institue of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, PR China
| | - Meiling Tian
- Department of Human Anatomy, Institue of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, PR China
| | - Xinhua Zhang
- Department of Human Anatomy, Institue of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, PR China.
| | - Guohua Jin
- Department of Human Anatomy, Institue of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, PR China; Key Laboratory Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, PR China.
| |
Collapse
|
22
|
Saw G, Tang FR. Epigenetic Regulation of the Hippocampus, with Special Reference to Radiation Exposure. Int J Mol Sci 2020; 21:ijms21249514. [PMID: 33327654 PMCID: PMC7765140 DOI: 10.3390/ijms21249514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/28/2023] Open
Abstract
The hippocampus is crucial in learning, memory and emotion processing, and is involved in the development of different neurological and neuropsychological disorders. Several epigenetic factors, including DNA methylation, histone modifications and non-coding RNAs, have been shown to regulate the development and function of the hippocampus, and the alteration of epigenetic regulation may play important roles in the development of neurocognitive and neurodegenerative diseases. This review summarizes the epigenetic modifications of various cell types and processes within the hippocampus and their resulting effects on cognition, memory and overall hippocampal function. In addition, the effects of exposure to radiation that may induce a myriad of epigenetic changes in the hippocampus are reviewed. By assessing and evaluating the current literature, we hope to prompt a more thorough understanding of the molecular mechanisms that underlie radiation-induced epigenetic changes, an area which can be further explored.
Collapse
|
23
|
Devoto C, Lai C, Qu BX, Guedes VA, Leete J, Wilde E, Walker WC, Diaz-Arrastia R, Kenney K, Gill J. Exosomal MicroRNAs in Military Personnel with Mild Traumatic Brain Injury: Preliminary Results from the Chronic Effects of Neurotrauma Consortium Biomarker Discovery Project. J Neurotrauma 2020; 37:2482-2492. [PMID: 32458732 PMCID: PMC7698974 DOI: 10.1089/neu.2019.6933] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic symptoms after mild traumatic brain injury (mTBI) are common among veterans and service members, and represent a significant source of morbidity, with those who sustain multiple mTBIs at greatest risk. Exosomal micro-RNAs (miRNAs), mediators of intercellular communication, may be involved in chronic TBI symptom persistence. Exosomal miRNA (exomiR) was extracted from 153 participants enrolled in the Chronic Effect of Neurotrauma Consortium (CENC) longitudinal study (no TBI, n = 35; ≥ 3 mTBIs (rTBI), n = 45; 1-2 mTBIs, n = 73). Analyses were performed with nCounter® Human miRNA Expression Panels and Ingenuity Pathway Analysis (IPA) for identification of gene networks associated with TBI. Generalized linear models were used to analyze the predictive value of exomiR dysregulation and remote neurobehavioral symptoms. Compared with controls, there were 17 dysregulated exomiRs in the entire mTBI group and 32 dysregulated exomiRs in the rTBI group. Two miRNAs, hsa-miR-139-5p and hsa-miR-18a-5p, were significantly differentially expressed in the rTBI and 1-2 mTBI groups. IPA analyses showed that these dysregulated exomiRs correlated with pathways of inflammatory regulation, neurological disease, and cell development. Within the rTBI group, exomiRs correlated with gene activity for hub-genes of tumor protein TP53, insulin-like growth factor 1 receptor, and transforming growth factor beta. TBI history and neurobehavioral symptom survey scores negatively and significantly correlated with hsa-miR-103a-3p expression. Participants with remote mTBI have distinct exomiR profiles, which are significantly linked to inflammatory and neuronal repair pathways. These profiles suggest that analysis of exosomal miRNA expression may provide novel insights into the underlying pathobiology of chronic TBI symptom persistence.
Collapse
Affiliation(s)
- Christina Devoto
- Tissue Injury Branch, National Institutes of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
- Center for Neuroscience and Rehabilitation Medicine, Uniformed Services University of the Health Sciences and National Institutes of Health, Bethesda, Maryland, USA
| | - Chen Lai
- Tissue Injury Branch, National Institutes of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Bao-Xi Qu
- Department of Neurology, Uniformed Services University of the Health Sciences and National Institutes of Health, Bethesda, Maryland, USA
- CENC Biorepository, Uniformed Services University of the Health Sciences, Twinbrook, Rockville, Maryland, USA
| | - Vivian A. Guedes
- Tissue Injury Branch, National Institutes of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacqueline Leete
- Tissue Injury Branch, National Institutes of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Elisabeth Wilde
- CENC Imaging Core, University of Utah, Salt Lake City, Utah, USA
| | - William C. Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences and National Institutes of Health, Bethesda, Maryland, USA
- CENC Biorepository, Uniformed Services University of the Health Sciences, Twinbrook, Rockville, Maryland, USA
| | - Jessica Gill
- Tissue Injury Branch, National Institutes of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
- Center for Neuroscience and Rehabilitation Medicine, Uniformed Services University of the Health Sciences and National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Xia X, Wang Y, Zheng JC. The microRNA-17 ~ 92 Family as a Key Regulator of Neurogenesis and Potential Regenerative Therapeutics of Neurological Disorders. Stem Cell Rev Rep 2020; 18:401-411. [PMID: 33030674 PMCID: PMC8930872 DOI: 10.1007/s12015-020-10050-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
AbstractmiR-17 ~ 92, an miRNA family containing three paralogous polycistronic clusters, was initially considered as an oncogene and was later demonstrated to trigger various physiological and pathological processes. Emerging evidence has implicated miR-17 ~ 92 family as a master regulator of neurogenesis. Through targeting numerous genes that affect cell cycle arrest, stemness deprivation, and lineage commitment, miR-17 ~ 92 family controls the proliferation and neuronal differentiation of neural stem/progenitor cells in both developmental and adult brains. Due to the essential roles of miR-17 ~ 92 family, its misexpression is widely associated with acute and chronic neurological disorders by attenuating neurogenesis and facilitating neuronal apoptosis. The promising neurogenic potential of miR-17 ~ 92 family also makes it a promising “medicine” to activate the endogenous and exogenous regenerative machinery, thus enhance tissue repair and function recovery after brain injury. In this review, we focus on the recent progress made toward understanding the involvement of miR-17 ~ 92 family in regulating both developmental and adult neurogenesis, and discuss the regenerative potential of miR-17 ~ 92 family in treating neurological disorders.
Collapse
|
25
|
MicroRNAs are indispensable for the proliferation and differentiation of adult neural progenitor cells in mice. Biochem Biophys Res Commun 2020; 530:209-214. [PMID: 32828287 DOI: 10.1016/j.bbrc.2020.06.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/18/2023]
Abstract
More than two decades after the discovery of adult neurogenesis in humans, researchers still struggle to elucidate the underlying transcriptional and post-transcriptional mechanisms. RNA interference is a crucially important process in the central nervous system, and its role in adult neurogenesis is poorly understood. In this work, we address the role of Dicer-dependent microRNA biogenesis in neuronal differentiation of adult neural stem cells within the subventricular zone of the mouse brain. Loss of the Dicer1 gene in the tailless (Tlx)-positive cells did not cause the decline in their numbers, but severely affected differentiation. Thus, our findings identify yet another phenomenon associated with microRNA pathway deregulation in adult neural stem cells which might be of relevance both for neuroscience and clinical practice.
Collapse
|
26
|
ZEB1 Represses Neural Differentiation and Cooperates with CTBP2 to Dynamically Regulate Cell Migration during Neocortex Development. Cell Rep 2020; 27:2335-2353.e6. [PMID: 31116980 DOI: 10.1016/j.celrep.2019.04.081] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 02/28/2019] [Accepted: 04/16/2019] [Indexed: 01/08/2023] Open
Abstract
Zinc-finger E-box binding homeobox 1 (Zeb1) is a key regulator of epithelial-mesenchymal transition and cancer metastasis. Mutation of ZEB1 is associated with human diseases and defective brain development. Here we show that downregulation of Zeb1 expression in embryonic cortical neural progenitor cells (NPCs) is necessary for proper neuronal differentiation and migration. Overexpression of Zeb1 during neuronal differentiation, when its expression normally declines, blocks NPC lineage progression and disrupts multipolar-to-bipolar transition of differentiating neurons, leading to severe migration defects and subcortical heterotopia bands at postnatal stages. ZEB1 regulates a cohort of genes involved in cell differentiation and migration, including Neurod1 and Pard6b. The interaction between ZEB1 and CTBP2 in the embryonic cerebral cortex is required for ZEB1 to elicit its effect on the multipolar-to-bipolar transition, but not its suppression of Neurod1. These findings provide insights into understanding the complexity of transcriptional regulation during neuronal differentiation.
Collapse
|
27
|
Mocciaro E, Grant A, Esenaliev RO, Petrov IY, Petrov Y, Sell SL, Hausser NL, Guptarak J, Bishop E, Parsley MA, Bolding IJ, Johnson KM, Lidstone M, Prough DS, Micci MA. Non-Invasive Transcranial Nano-Pulsed Laser Therapy Ameliorates Cognitive Function and Prevents Aberrant Migration of Neural Progenitor Cells in the Hippocampus of Rats Subjected to Traumatic Brain Injury. J Neurotrauma 2020; 37:1108-1123. [DOI: 10.1089/neu.2019.6534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Emanuele Mocciaro
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Auston Grant
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Rinat O. Esenaliev
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas
| | - Irene Y. Petrov
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas
| | - Yuriy Petrov
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas
| | - Stacy L. Sell
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Nicole L Hausser
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Jutatip Guptarak
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Elizabeth Bishop
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Margaret A. Parsley
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Ian J. Bolding
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Kathia M. Johnson
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Maxwell Lidstone
- College of Natural Sciences, University of Texas at Austin, Austin, Texas
| | - Donald S. Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Maria-Adelaide Micci
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
28
|
Doxakis E. Cell-free microRNAs in Parkinson's disease: potential biomarkers that provide new insights into disease pathogenesis. Ageing Res Rev 2020; 58:101023. [PMID: 32001380 DOI: 10.1016/j.arr.2020.101023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are master post-transcriptional regulators of gene expression and their specific footprints reflect disease conditions. Over the last few years, several primary reports have described the deregulation of cell-free miRNAs in Parkinson's disease (PD), however, results have been rather inconsistent due to preanalytical and analytical challenges. This study integrated the data across twenty-four reports to identify steadily deregulated miRNAs that may assist in the path towards biomarker development and molecular characterization of the underlying pathology. Stringent KEGG pathway analysis of the miRNA targets revealed FoxO, Prolactin, TNF, and ErbB signaling pathways as the most significantly enriched categories while Gene Ontology analysis revealed that the protein targets are mostly associated with transcription. Chromosomal location of the consistently deregulated miRNAs revealed that over a third of them were clustered at the same location at Chr14q32 suggesting that they are co-regulated by specific transcription factors. This genomic region is inherently unstable due to expanded TGG repeats and responsible for human abnormalities. Stringent analysis of transcription factor sites surrounding the deregulated miRNAs revealed that CREB1, CEBPB and MAZ sites existed in approximately half of the miRNAs, including all of the miRNAs located at Chr14q32. Additional studies are now needed to determine the biomarker potential of the consistently deregulated miRNAs in PD and the therapeutic implications of these bioinformatics insights.
Collapse
|
29
|
Marchetti B, Tirolo C, L'Episcopo F, Caniglia S, Testa N, Smith JA, Pluchino S, Serapide MF. Parkinson's disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell 2020; 19:e13101. [PMID: 32050297 PMCID: PMC7059166 DOI: 10.1111/acel.13101] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/27/2019] [Accepted: 12/25/2019] [Indexed: 12/14/2022] Open
Abstract
A common hallmark of age-dependent neurodegenerative diseases is an impairment of adult neurogenesis. Wingless-type mouse mammary tumor virus integration site (Wnt)/β-catenin (WβC) signalling is a vital pathway for dopaminergic (DAergic) neurogenesis and an essential signalling system during embryonic development and aging, the most critical risk factor for Parkinson's disease (PD). To date, there is no known cause or cure for PD. Here we focus on the potential to reawaken the impaired neurogenic niches to rejuvenate and repair the aged PD brain. Specifically, we highlight WβC-signalling in the plasticity of the subventricular zone (SVZ), the largest germinal region in the mature brain innervated by nigrostriatal DAergic terminals, and the mesencephalic aqueduct-periventricular region (Aq-PVR) Wnt-sensitive niche, which is in proximity to the SNpc and harbors neural stem progenitor cells (NSCs) with DAergic potential. The hallmark of the WβC pathway is the cytosolic accumulation of β-catenin, which enters the nucleus and associates with T cell factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors, leading to the transcription of Wnt target genes. Here, we underscore the dynamic interplay between DAergic innervation and astroglial-derived factors regulating WβC-dependent transcription of key genes orchestrating NSC proliferation, survival, migration and differentiation. Aging, inflammation and oxidative stress synergize with neurotoxin exposure in "turning off" the WβC neurogenic switch via down-regulation of the nuclear factor erythroid-2-related factor 2/Wnt-regulated signalosome, a key player in the maintenance of antioxidant self-defense mechanisms and NSC homeostasis. Harnessing WβC-signalling in the aged PD brain can thus restore neurogenesis, rejuvenate the microenvironment, and promote neurorescue and regeneration.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology and Physiology SectionsMedical SchoolUniversity of CataniaCataniaItaly
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | - Cataldo Tirolo
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | | | | | - Nunzio Testa
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | - Jayden A. Smith
- Department of Clinical Neurosciences and NIHR Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Maria F. Serapide
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology and Physiology SectionsMedical SchoolUniversity of CataniaCataniaItaly
| |
Collapse
|
30
|
Baskara-Yhuellou I, Tost J. The impact of microRNAs on alterations of gene regulatory networks in allergic diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:237-312. [PMID: 32085883 DOI: 10.1016/bs.apcsb.2019.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allergic diseases including asthma are worldwide on the rise and contribute significantly to health expenditures. Allergic diseases are prototypic diseases with a strong gene by environment interaction component and epigenetic mechanisms might mediate the effects of the environment on the disease phenotype. MicroRNAs, small non-coding RNAs (miRNAs), regulate gene expression post-transcriptionally. Functional single-stranded miRNAs are generated in multiple steps of enzymatic processing from their precursors and mature miRNAs are included into the RNA-induced silencing complex (RISC). They imperfectly base-pair with the 3'UTR region of targeted genes leading to translational repression or mRNA decay. The cellular context and microenvironment as well the isoform of the mRNA control the dynamics and complexity of the regulatory circuits induced by miRNAs that regulate cell fate decisions and function. MiR-21, miR-146a/b and miR-155 are among the best understood miRNAs of the immune system and implicated in different diseases including allergic diseases. MiRNAs are implicated in the induction of the allergy reinforcing the Th2 phenotype (miR-19a, miR-24, miR-27), while other miRNAs promote regulatory T cells associated with allergen tolerance or unresponsiveness. In the current chapter we describe in detail the biogenesis and regulatory function of miRNAs and summarize current knowledge on miRNAs in allergic diseases and allergy relevant cell fate decisions focusing mainly on immune cells. Furthermore, we evoke the principles of regulatory loops and feedback mechanisms involving miRNAs on examples with relevance for allergic diseases. Finally, we show the potential of miRNAs and exosomes containing miRNAs present in several biological fluids that can be exploited with non-invasive procedures for diagnostic and potentially therapeutic purposes.
Collapse
Affiliation(s)
- Indoumady Baskara-Yhuellou
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| |
Collapse
|
31
|
New insights into the regulatory roles of microRNAs in adult neurogenesis. Curr Opin Pharmacol 2020; 50:38-45. [DOI: 10.1016/j.coph.2019.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022]
|
32
|
Omega-3 Docosahexaenoic Acid Is a Mediator of Fate-Decision of Adult Neural Stem Cells. Int J Mol Sci 2019; 20:ijms20174240. [PMID: 31480215 PMCID: PMC6747551 DOI: 10.3390/ijms20174240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
The mammalian brain is enriched with lipids that serve as energy catalyzers or secondary messengers of essential signaling pathways. Docosahexaenoic acid (DHA) is an omega-3 fatty acid synthesized de novo at low levels in humans, an endogenous supply from its precursors, and is mainly incorporated from nutrition, an exogeneous supply. Decreased levels of DHA have been reported in the brains of patients with neurodegenerative diseases. Preventing this decrease or supplementing the brain with DHA has been considered as a therapy for the DHA brain deficiency that could be linked with neuronal death or neurodegeneration. The mammalian brain has, however, a mechanism of compensation for loss of neurons in the brain: neurogenesis, the birth of neurons from neural stem cells. In adulthood, neurogenesis is still present, although at a slower rate and with low efficiency, where most of the newly born neurons die. Neural stem/progenitor cells (NSPCs) have been shown to require lipids for proper metabolism for proliferation maintenance and neurogenesis induction. Recent studies have focused on the effects of these essential lipids on the neurobiology of NSPCs. This review aimed to introduce the possible use of DHA to impact NSPC fate-decision as a therapy for neurodegenerative diseases.
Collapse
|
33
|
Integrated Computational Analysis Highlights unique miRNA Signatures in the Subventricular Zone and Striatum of GM2 Gangliosidosis Animal Models. Int J Mol Sci 2019; 20:ijms20133179. [PMID: 31261761 PMCID: PMC6651736 DOI: 10.3390/ijms20133179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
This work explores for the first time the potential contribution of microRNAs (miRNAs) to the pathophysiology of the GM2 gangliosidosis, a group of Lysosomal Storage Diseases. In spite of the genetic origin of GM2 gangliosidosis, the cascade of events leading from the gene/protein defects to the cell dysfunction and death is not fully elucidated. At present, there is no cure for patients. Taking advantage of the animal models of two forms of GM2 gangliosidosis, Tay-Sachs (TSD) and Sandhoff (SD) diseases, we performed a microRNA screening in the brain subventricular zone (SVZ) and striatum (STR), which feature the neurogenesis and neurodegeneration states, respectively, in adult mutant mice. We found abnormal expression of a panel of miRNAs involved in lipid metabolism, CNS development and homeostasis, and neuropathological processes, highlighting region- and disease-specific profiles of miRNA expression. Moreover, by using a computational analysis approach, we identified a unique disease- (SD or TSD) and brain region-specific (SVZ vs. STR) miRNAs signatures of predicted networks potentially related to the pathogenesis of the diseases. These results may contribute to the understanding of GM2 gangliosidosis pathophysiology, with the aim of developing effective treatments.
Collapse
|
34
|
Pallarès-Albanell J, Zomeño-Abellán MT, Escaramís G, Pantano L, Soriano A, Segura MF, Martí E. A High-Throughput Screening Identifies MicroRNA Inhibitors That Influence Neuronal Maintenance and/or Response to Oxidative Stress. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:374-387. [PMID: 31302497 PMCID: PMC6626867 DOI: 10.1016/j.omtn.2019.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 11/21/2022]
Abstract
Small non-coding RNAs (sncRNAs), including microRNAs (miRNAs) are important post-transcriptional gene expression regulators relevant in physiological and pathological processes. Here, we combined a high-throughput functional screening (HTFS) platform with a library of antisense oligonucleotides (ASOs) to systematically identify sncRNAs that affect neuronal cell survival in basal conditions and in response to oxidative stress (OS), a major hallmark in neurodegenerative diseases. We considered hits commonly detected by two statistical methods in three biological replicates. Forty-seven ASOs targeting miRNAs (miRNA-ASOs) consistently decreased cell viability under basal conditions. A total of 60 miRNA-ASOs worsened cell viability impairment mediated by OS, with 36.6% commonly affecting cell viability under basal conditions. In addition, 40 miRNA-ASOs significantly protected neuronal cells from OS. In agreement with cell viability impairment, damaging miRNA-ASOs specifically induced increased free radical biogenesis. miRNAs targeted by the detrimental ASOs are enriched in the fraction of miRNAs downregulated by OS, suggesting that the miRNA expression pattern after OS contributes to neuronal damage. The present HTFS highlighted potentially druggable sncRNAs. However, future studies are needed to define the pathways by which the identified ASOs regulate cell survival and OS response and to explore the potential of translating the current findings into clinical applications.
Collapse
Affiliation(s)
- Joan Pallarès-Albanell
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - M Teresa Zomeño-Abellán
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Georgia Escaramís
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain; Research Group on Statistics, Econometrics and Health, Universitat de Girona, 17003, Girona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, Madrid, Spain
| | - Lorena Pantano
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Aroa Soriano
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Passeig Vall d'Hebron 119, Barcelona 08035, Spain
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Passeig Vall d'Hebron 119, Barcelona 08035, Spain
| | - Eulàlia Martí
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain; Research Group on Statistics, Econometrics and Health, Universitat de Girona, 17003, Girona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, Madrid, Spain.
| |
Collapse
|
35
|
Mokabber H, Najafzadeh N, Mohammadzadeh Vardin M. miR-124 promotes neural differentiation in mouse bulge stem cells by repressing Ptbp1 and Sox9. J Cell Physiol 2019; 234:8941-8950. [PMID: 30417370 DOI: 10.1002/jcp.27563] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023]
Abstract
Hair follicle stem cells (HFSCs) are able to differentiate into neurons and glial cells. Distinct microRNAs (miRNAs) regulate the proliferation and differentiation of HFSCs. However, the exact role of miR-124 in the neural differentiation of HFSCs has not been elucidated. HFSCs were isolated from mouse whisker follicles. miR-9, let-7b, and miR-124, Ptbp1 , and Sox9 expression levels were detected by real-time polymerase chain reaction (RT-PCR). The influence of miR-124 transfection was evaluated using immunostaining. We demonstrated that miR-124 and let-7b expression levels were significantly increased after the neural differentiation. Sox9 and Ptbp1 were identified as the target of miR-124 in the HFSCs. During neural differentiation and miR-124 mimicking, Ptbp1 and Sox9 levels were decreased. Moreover, the miR-124 overexpression increased MAP2 (58.43 ± 11.26) and NeuN (48.34 ± 11.15) proteins expression. The results demonstrated that miR-124 may promote the differentiation of HFSCs into neuronal cells by targeting Sox9 and Ptbp1.
Collapse
Affiliation(s)
- Haleh Mokabber
- Department of Anatomical Sciences and Pathology, Research Laboratory for Embryology and Stem Cells, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran
| | - Nowruz Najafzadeh
- Department of Anatomical Sciences and Pathology, Research Laboratory for Embryology and Stem Cells, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Mohammadzadeh Vardin
- Department of Anatomical Sciences and Pathology, Research Laboratory for Embryology and Stem Cells, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
36
|
Pons-Espinal M, Gasperini C, Marzi MJ, Braccia C, Armirotti A, Pötzsch A, Walker TL, Fabel K, Nicassio F, Kempermann G, De Pietri Tonelli D. MiR-135a-5p Is Critical for Exercise-Induced Adult Neurogenesis. Stem Cell Reports 2019; 12:1298-1312. [PMID: 31130358 PMCID: PMC6565832 DOI: 10.1016/j.stemcr.2019.04.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Physical exercise stimulates adult hippocampal neurogenesis and is considered a relevant strategy for preventing age-related cognitive decline in humans. The underlying mechanisms remains controversial. Here, we show that exercise increases proliferation of neural precursor cells (NPCs) of the mouse dentate gyrus (DG) via downregulation of microRNA 135a-5p (miR-135a). MiR-135a inhibition stimulates NPC proliferation leading to increased neurogenesis, but not astrogliogenesis, in DG of resting mice, and intriguingly it re-activates NPC proliferation in aged mice. We identify 17 proteins (11 putative targets) modulated by miR-135 in NPCs. Of note, inositol 1,4,5-trisphosphate (IP3) receptor 1 and inositol polyphosphate-4-phosphatase type I are among the modulated proteins, suggesting that IP3 signaling may act downstream miR-135. miR-135 is the first noncoding RNA essential modulator of the brain's response to physical exercise. Prospectively, the miR-135-IP3 axis might represent a novel target of therapeutic intervention to prevent pathological brain aging.
Collapse
Affiliation(s)
| | - Caterina Gasperini
- Neurobiology of miRNA, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Matteo J Marzi
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Clarissa Braccia
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Alexandra Pötzsch
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Tara L Walker
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Klaus Fabel
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
37
|
Guo WT, Wang Y. Dgcr8 knockout approaches to understand microRNA functions in vitro and in vivo. Cell Mol Life Sci 2019; 76:1697-1711. [PMID: 30694346 PMCID: PMC11105204 DOI: 10.1007/s00018-019-03020-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 01/07/2023]
Abstract
Biologic function of the majority of microRNAs (miRNAs) is still unknown. Uncovering the function of miRNAs is hurdled by redundancy among different miRNAs. The deletion of Dgcr8 leads to the deficiency in producing all canonical miRNAs, therefore, overcoming the redundancy issue. Dgcr8 knockout strategy has been instrumental in understanding the function of miRNAs in a variety of cells in vitro and in vivo. In this review, we will first give a brief introduction about miRNAs, miRNA biogenesis pathway and the role of Dgcr8 in miRNA biogenesis. We will then summarize studies performed with Dgcr8 knockout cell models with a focus on embryonic stem cells. After that, we will summarize results from various in vivo Dgcr8 knockout models. Given significant phenotypic differences in various tissues between Dgcr8 and Dicer knockout, we will also briefly review current progresses on understanding miRNA-independent functions of miRNA biogenesis factors. Finally, we will discuss the potential use of a new strategy to stably express miRNAs in Dgcr8 knockout cells. In future, Dgcr8 knockout approaches coupled with innovations in miRNA rescue strategy may provide further insights into miRNA functions in vitro and in vivo.
Collapse
Affiliation(s)
- Wen-Ting Guo
- Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Yangming Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
38
|
Bielefeld P, Schouten M, Meijer GM, Breuk MJ, Geijtenbeek K, Karayel S, Tiaglik A, Vuuregge AH, Willems RAL, Witkamp D, Lucassen PJ, Encinas JM, Fitzsimons CP. Co-administration of Anti microRNA-124 and -137 Oligonucleotides Prevents Hippocampal Neural Stem Cell Loss Upon Non-convulsive Seizures. Front Mol Neurosci 2019; 12:31. [PMID: 30837840 PMCID: PMC6389789 DOI: 10.3389/fnmol.2019.00031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022] Open
Abstract
Convulsive seizures promote adult hippocampal neurogenesis (AHN) through a transient activation of neural stem/progenitor cells (NSPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG). However, in a significant population of epilepsy patients, non-convulsive seizures (ncSZ) are observed. The response of NSPCs to non-convulsive seizure induction has not been characterized before. We here studied first the short-term effects of controlled seizure induction on NSPCs fate and identity. We induced seizures of controlled intensity by intrahippocampally injecting increasing doses of the chemoconvulsant kainic acid (KA) and analyzed their effect on subdural EEG recordings, hippocampal structure, NSPC proliferation and the number and location of immature neurons shortly after seizure onset. After establishing a KA dose that elicits ncSZ, we then analyzed the effects of ncSZ on NSPC proliferation and NSC identity in the hippocampus. ncSZ specifically triggered neuroblast proliferation, but did not induce proliferation of NSPCs in the SGZ, 3 days post seizure onset. However, ncSZ induced significant changes in NSPC composition in the hippocampus, including the generation of reactive NSCs. Interestingly, intrahippocampal injection of a combination of two anti microRNA oligonucleotides targeting microRNA-124 and -137 normalized neuroblast proliferation and prevented NSC loss in the DG upon ncSZ. Our results show for the first time that ncSZ induce significant changes in neuroblast proliferation and NSC composition. Simultaneous antagonism of both microRNA-124 and -137 rescued seizure-induced alterations in NSPC, supporting their coordinated action in the regulation of NSC fate and proliferation and their potential for future seizure therapies.
Collapse
Affiliation(s)
- Pascal Bielefeld
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Marijn Schouten
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Guido M Meijer
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Marit J Breuk
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Karlijne Geijtenbeek
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Sedef Karayel
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Alisa Tiaglik
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Anna H Vuuregge
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ruth A L Willems
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Diede Witkamp
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Paul J Lucassen
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Juan M Encinas
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain.,Ikerbasque Foundation, Bilbao, Spain.,University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Carlos P Fitzsimons
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
39
|
MicroRNA-135a-5p promotes neuronal differentiation of pluripotent embryonal carcinoma cells by repressing Sox6/CD44 pathway. Biochem Biophys Res Commun 2018; 509:603-610. [PMID: 30606481 DOI: 10.1016/j.bbrc.2018.12.162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/25/2018] [Indexed: 12/13/2022]
Abstract
MicroRNA-135a-5p has been reported to play a potential role in the generation of new neurons. However, the underlying targets of miR-135a-5p in regulating neuronal differentiation have been poorly understood. Our study recently has uncovered that Sox6 and CD44 genes were significantly downregulated during neuronal differentiation of P19 cells, a multipotent cell type. We then found that Sox6 directly bound to the promoter of CD44. Importantly, we identified Sox6 as a direct target of miR-135a-5p. Additionally, we demonstrated that miR-135a-5p is crucial for the neuronal differentiation of P19 cells. More significantly, we found that Sox6 overexpression could overturn miR-135a-5p-mediated neuronal differentiation and dendrite development. In conclusion, these findings indicated that miR-135a-5p/Sox6/CD44 axis provides an important molecular target mechanism for neurodifferentiation.
Collapse
|
40
|
Suh H, Zhou QG, Fernandez-Carasa I, Clemenson GD, Pons-Espinal M, Ro EJ, Marti M, Raya A, Gage FH, Consiglio A. Long-Term Labeling of Hippocampal Neural Stem Cells by a Lentiviral Vector. Front Mol Neurosci 2018; 11:415. [PMID: 30498432 PMCID: PMC6249367 DOI: 10.3389/fnmol.2018.00415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Abstract
Using a lentivirus-mediated labeling method, we investigated whether the adult hippocampus retains long-lasting, self-renewing neural stem cells (NSCs). We first showed that a single injection of a lentiviral vector expressing a green fluorescent protein (LV PGK-GFP) into the subgranular zone (SGZ) of the adult hippocampus enabled an efficient, robust, and long-term marking of self-renewing NSCs and their progeny. Interestingly, a subset of labeled cells showed the ability to proliferate multiple times and give rise to Sox2+ cells, clearly suggesting the ability of NSCs to self-renew for an extensive period of time (up to 6 months). In addition, using GFP+ cells isolated from the SGZ of mice that received a LV PGK-GFP injection 3 months earlier, we demonstrated that some GFP+ cells displayed the essential properties of NSCs, such as self-renewal and multipotency. Furthermore, we investigated the plasticity of NSCs in a perforant path transection, which has been shown to induce astrocyte formation in the molecular layer of the hippocampus. Our lentivirus (LV)-mediated labeling study revealed that hippocampal NSCs are not responsible for the burst of astrocyte formation, suggesting that signals released from the injured perforant path did not influence NSC fate determination. Therefore, our studies showed that a gene delivery system using LVs is a unique method to be used for understanding the complex nature of NSCs and may have translational impact in gene therapy by efficiently targeting NSCs.
Collapse
Affiliation(s)
- Hoonkyo Suh
- Department of Neurosciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Qi-Gang Zhou
- Department of Neurosciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Irene Fernandez-Carasa
- Department of Pathology and Experimental Therapeutics, Institut d'Investigació Biomédica de Bellvitge, Bellvitge University Hospital, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona, Barcelona, Spain
| | - Gregory Dane Clemenson
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Meritxell Pons-Espinal
- Department of Pathology and Experimental Therapeutics, Institut d'Investigació Biomédica de Bellvitge, Bellvitge University Hospital, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona, Barcelona, Spain
| | - Eun Jeoung Ro
- Department of Neurosciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Mercè Marti
- Center of Regenerative Medicine in Barcelona, Hospital Duran i Reynals, Barcelona, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona, Hospital Duran i Reynals, Barcelona, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Fred H Gage
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Institut d'Investigació Biomédica de Bellvitge, Bellvitge University Hospital, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona, Barcelona, Spain.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
41
|
Stappert L, Klaus F, Brüstle O. MicroRNAs Engage in Complex Circuits Regulating Adult Neurogenesis. Front Neurosci 2018; 12:707. [PMID: 30455620 PMCID: PMC6230569 DOI: 10.3389/fnins.2018.00707] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022] Open
Abstract
The finding that the adult mammalian brain is still capable of producing neurons has ignited a new field of research aiming to identify the molecular mechanisms regulating adult neurogenesis. An improved understanding of these mechanisms could lead to the development of novel approaches to delay cognitive decline and facilitate neuroregeneration in the adult human brain. Accumulating evidence suggest microRNAs (miRNAs), which represent a class of post-transcriptional gene expression regulators, as crucial part of the gene regulatory networks governing adult neurogenesis. This review attempts to illustrate how miRNAs modulate key processes in the adult neurogenic niche by interacting with each other and with transcriptional regulators. We discuss the function of miRNAs in adult neurogenesis following the life-journey of an adult-born neuron from the adult neural stem cell (NSCs) compartment to its final target site. We first survey how miRNAs control the initial step of adult neurogenesis, that is the transition of quiescent to activated proliferative adult NSCs, and then go on to discuss the role of miRNAs to regulate neuronal differentiation, survival, and functional integration of the newborn neurons. In this context, we highlight miRNAs that converge on functionally related targets or act within cross talking gene regulatory networks. The cooperative manner of miRNA action and the broad target repertoire of each individual miRNA could make the miRNA system a promising tool to gain control on adult NSCs in the context of therapeutic approaches.
Collapse
Affiliation(s)
- Laura Stappert
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Center, Bonn, Germany
| | - Frederike Klaus
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Center, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
42
|
Vieira MS, Santos AK, Vasconcellos R, Goulart VAM, Parreira RC, Kihara AH, Ulrich H, Resende RR. Neural stem cell differentiation into mature neurons: Mechanisms of regulation and biotechnological applications. Biotechnol Adv 2018; 36:1946-1970. [PMID: 30077716 DOI: 10.1016/j.biotechadv.2018.08.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
The abilities of stem cells to self-renew and form different mature cells expand the possibilities of applications in cell-based therapies such as tissue recomposition in regenerative medicine, drug screening, and treatment of neurodegenerative diseases. In addition to stem cells found in the embryo, various adult organs and tissues have niches of stem cells in an undifferentiated state. In the central nervous system of adult mammals, neurogenesis occurs in two regions: the subventricular zone and the dentate gyrus in the hippocampus. The generation of the different neural lines originates in adult neural stem cells that can self-renew or differentiate into astrocytes, oligodendrocytes, or neurons in response to specific stimuli. The regulation of the fate of neural stem cells is a finely controlled process relying on a complex regulatory network that extends from the epigenetic to the translational level and involves extracellular matrix components. Thus, a better understanding of the mechanisms underlying how the process of neurogenesis is induced, regulated, and maintained will provide elues for development of novel for strategies for neurodegenerative therapies. In this review, we focus on describing the mechanisms underlying the regulation of the neuronal differentiation process by transcription factors, microRNAs, and extracellular matrix components.
Collapse
Affiliation(s)
- Mariana S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Anderson K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rebecca Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Vânia A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo C Parreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Alexandre H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil.
| |
Collapse
|
43
|
Tu J, Tian G, Cheung HH, Wei W, Lee TL. Gas5 is an essential lncRNA regulator for self-renewal and pluripotency of mouse embryonic stem cells and induced pluripotent stem cells. Stem Cell Res Ther 2018; 9:71. [PMID: 29562912 PMCID: PMC5863440 DOI: 10.1186/s13287-018-0813-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The regulatory role of long noncoding RNAs (lncRNAs) have been partially proved in embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). METHODS In the current study, we investigated mouse ESC (mESC) self-renewal, differentiation, and proliferation in vitro by knocking down a lncRNA, growth arrest specific 5 (Gas5). A series of related indicators were examined by cell counting kit-8 (CCK-8) assay, quantitative reverse-transcription polymerase chain reaction (qRT-PCR), Western blot, alkaline phosphatase staining, propidium iodide (PI) staining, Annexin V staining, competition growth assay, immunofluorescence, and chromatin immunoprecipitation (ChIP)-qPCR. An in vivo teratoma formation assay was also performed to validate the in vitro results. qRT-PCR, fluorescence-activated cell sorting (FACS), alkaline phosphatase staining, and immunofluorescence were used to evaluate the role of Gas5 during mouse iPSC reprogramming. The regulatory axis of Dicer-miR291a-cMyc-Gas5 and the relationship between Gas5 and Tet/5hmC in mESCs was examined by qRT-PCR, Dot blot, and Western blot. RESULTS We identified that Gas5 was required for self-renewal and pluripotency of mESCs and iPSCs. Gas5 formed a positive feedback network with a group of key pluripotent modulators (Sox2, Oct4, Nanog, Tcl1, Esrrb, and Tet1) in mESCs. Knockdown of Gas5 promoted endodermal differentiation of mESCs and impaired the efficiency of iPSC reprogramming. In addition, Gas5 was regulated by the Dicer-miR291a-cMyc axis and was involved in the DNA demethylation process in mESCs. CONCLUSIONS Taken together, our results suggest that the lncRNA Gas5 plays an important role in modulating self-renewal and pluripotency of mESCs as well as iPSC reprogramming.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, 81# Meishan Road, Hefei, Anhui China
| | - Geng Tian
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Shatin, N.T 622A Hong Kong, Special Administrative Region of China
| | - Hoi-Hung Cheung
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Shatin, N.T 622A Hong Kong, Special Administrative Region of China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, 81# Meishan Road, Hefei, Anhui China
| | - Tin-lap Lee
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Shatin, N.T 622A Hong Kong, Special Administrative Region of China
| |
Collapse
|
44
|
Braccia C, Espinal MP, Pini M, De Pietri Tonelli D, Armirotti A. A new SWATH ion library for mouse adult hippocampal neural stem cells. Data Brief 2018; 18:1-8. [PMID: 29896482 PMCID: PMC5995750 DOI: 10.1016/j.dib.2018.02.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/07/2018] [Accepted: 02/22/2018] [Indexed: 12/31/2022] Open
Abstract
Over the last years, the SWATH data-independent acquisition protocol (Sequential Window acquisition of All THeoretical mass spectra) has become a cornerstone for the worldwide proteomics community (Collins et al., 2017) [1]. In this approach, a high-resolution quadrupole-ToF mass spectrometer acquires thousands of MS/MS data by selecting not just a single precursor at a time, but by allowing a broad m/z range to be fragmented. This acquisition window is then sequentially moved from the lowest to the highest mass selection range. This technique enables the acquisition of thousands of high-resolution MS/MS spectra per minute in a standard LC–MS run. In the subsequent data analysis phase, the corresponding dataset is searched in a “triple quadrupole-like” mode, thus not considering the whole MS/MS scan spectrum, but by searching for several precursor to fragment transitions that identify and quantify the corresponding peptide. This search is made possible with the use of an ion library, previously acquired in a classical data dependent, full-spectrum mode (Fabre et al., 2017; Wu et al., 2017) [2], [3]. The SWATH protocol, combining the protein identification power of high-resolution MS/MS spectra with the robustness and accuracy in analyte quantification of triple-quad targeted workflows, has become very popular in proteomics research. The major drawback lies in the ion library itself, which is normally demanding and time-consuming to build. Conversely, through the realignment of chromatographic retention times, an ion library of a given proteome can relatively easily be tailored upon “any” proteomics experiment done on the same proteome. We are thus hereby sharing with the worldwide proteomics community our newly acquired ion library of mouse adult hippocampal neural stem cells. Given the growing effort in neuroscience research involving proteomics experiments (Pons-Espinal et al., 2017; Sarnyai and Guest, 2017; Sethi et al., 2015; Bramini et al., 2016) [4,[5], [6], [7], we believe that this data might be of great help for the neuroscience community. All the here reported data (RAW files, results and ion library) can be freely downloaded from the SWATHATLAS (Deutsch et al., 2008) [8] website (http://www.peptideatlas.org/PASS/PASS01110)
Collapse
Key Words
- ACN, Acetonitrile
- DDA, Data dependent acquisition
- DTT, Dithiothreitol
- EGF, Epidermal growth factor
- FA, Formic acid
- FGF, Fibroblast growth factor
- IAA, Iodoacetamide
- Neural stem cells
- Neuroscience
- PDL, Poly-D-Lysine
- PSM, Peptide spectrum match
- PTMs, Post translational modifications
- Proteomics
- SWATH
- TEA, Triethylamine
Collapse
Affiliation(s)
- Clarissa Braccia
- D3 PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Meritxell Pons Espinal
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Mattia Pini
- D3 PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Davide De Pietri Tonelli
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Armirotti
- D3 PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Corresponding author.
| |
Collapse
|
45
|
Liu Q, Zhang L, Li H. New Insights: MicroRNA Function in CNS Development and Psychiatric Diseases. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40495-018-0129-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
46
|
O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne) 2018; 9:402. [PMID: 30123182 PMCID: PMC6085463 DOI: 10.3389/fendo.2018.00402] [Citation(s) in RCA: 3244] [Impact Index Per Article: 463.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in regulating gene expression. The majority of miRNAs are transcribed from DNA sequences into primary miRNAs and processed into precursor miRNAs, and finally mature miRNAs. In most cases, miRNAs interact with the 3' untranslated region (3' UTR) of target mRNAs to induce mRNA degradation and translational repression. However, interaction of miRNAs with other regions, including the 5' UTR, coding sequence, and gene promoters, have also been reported. Under certain conditions, miRNAs can also activate translation or regulate transcription. The interaction of miRNAs with their target genes is dynamic and dependent on many factors, such as subcellular location of miRNAs, the abundancy of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. miRNAs can be secreted into extracellular fluids and transported to target cells via vesicles, such as exosomes, or by binding to proteins, including Argonautes. Extracellular miRNAs function as chemical messengers to mediate cell-cell communication. In this review, we provide an update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations. We also summarize the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs.
Collapse
|
47
|
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in regulating gene expression. The majority of miRNAs are transcribed from DNA sequences into primary miRNAs and processed into precursor miRNAs, and finally mature miRNAs. In most cases, miRNAs interact with the 3' untranslated region (3' UTR) of target mRNAs to induce mRNA degradation and translational repression. However, interaction of miRNAs with other regions, including the 5' UTR, coding sequence, and gene promoters, have also been reported. Under certain conditions, miRNAs can also activate translation or regulate transcription. The interaction of miRNAs with their target genes is dynamic and dependent on many factors, such as subcellular location of miRNAs, the abundancy of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. miRNAs can be secreted into extracellular fluids and transported to target cells via vesicles, such as exosomes, or by binding to proteins, including Argonautes. Extracellular miRNAs function as chemical messengers to mediate cell-cell communication. In this review, we provide an update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations. We also summarize the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs.
Collapse
Affiliation(s)
- Jacob O'Brien
- Department of Biology, York University, Toronto, ON, Canada
| | - Heyam Hayder
- Department of Biology, York University, Toronto, ON, Canada
| | - Yara Zayed
- Department of Biology, York University, Toronto, ON, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
48
|
Encinas JM, Fitzsimons CP. Gene regulation in adult neural stem cells. Current challenges and possible applications. Adv Drug Deliv Rev 2017; 120:118-132. [PMID: 28751200 DOI: 10.1016/j.addr.2017.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Adult neural stem and progenitor cells (NSPCs) offer a unique opportunity for neural regeneration and niche modification in physiopathological conditions, harnessing the capability to modify from neuronal circuits to glial scar. Findings exposing the vast plasticity and potential of NSPCs have accumulated over the past years and we currently know that adult NSPCs can naturally give rise not only to neurons but also to astrocytes and reactive astrocytes, and eventually to oligodendrocytes through genetic manipulation. We can consider NSPCs as endogenous flexible tools to fight against neurodegenerative and neurological disorders and aging. In addition, NSPCs can be considered as active agents contributing to chronic brain alterations and as relevant cell populations to be preserved, so that their main function, neurogenesis, is not lost in damage or disease. Altogether we believe that learning to manipulate NSPC is essential to prevent, ameliorate or restore some of the cognitive deficits associated with brain disease and injury, and therefore should be considered as target for future therapeutic strategies. The first step to accomplish this goal is to target them specifically, by unveiling and understanding their unique markers and signaling pathways.
Collapse
Affiliation(s)
- Juan Manuel Encinas
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 205, 48170 Zamudio, Spain; Ikerbasque, The Basque Science Foundation, María Díaz de Haro 3, 6(th) Floor, 48013 Bilbao, Spain; University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - Carlos P Fitzsimons
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Ghibaudi M, Boido M, Vercelli A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog Neurobiol 2017; 158:69-93. [PMID: 28779869 DOI: 10.1016/j.pneurobio.2017.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023]
Abstract
New players are emerging in the game of peripheral and central nervous system injury since their physiopathological mechanisms remain partially elusive. These mechanisms are characterized by several molecules whose activation and/or modification following a trauma is often controlled at transcriptional level. In this scenario, microRNAs (miRNAs/miRs) have been identified as main actors in coordinating important molecular pathways in nerve or spinal cord injury (SCI). miRNAs are small non-coding RNAs whose functionality at network level is now emerging as a new level of complexity. Indeed they can act as an organized network to provide a precise control of several biological processes. Here we describe the functional synergy of some miRNAs in case of SCI and peripheral damage. In particular we show how several small RNAs can cooperate in influencing simultaneously the molecular pathways orchestrating axon regeneration, inflammation, apoptosis and remyelination. We report about the networks for which miRNA-target bindings have been experimentally demonstrated or inferred based on target prediction data: in both cases, the connection between one miRNA and its downstream pathway is derived from a validated observation or is predicted from the literature. Hence, we discuss the importance of miRNAs in some pathological processes focusing on their functional structure as participating in a cooperative and/or convergence network.
Collapse
Affiliation(s)
- M Ghibaudi
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy.
| | - M Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| | - A Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| |
Collapse
|