1
|
Liu H, Yuan Y, Li J, Lan Z, Dai Z, Li G, Xiao K, Pu Y, He C, Qin S, Su Z. Establishment of an efficient and economical method for primary oligodendrocyte progenitor cell culture from neonatal mouse brain. Brain Res 2025; 1853:149519. [PMID: 40023233 DOI: 10.1016/j.brainres.2025.149519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
The primary culture of oligodendrocyte progenitor cells (OPCs) provides an indispensable tool for characterizing their biological properties and myelin repair potential. However, the current OPC preparation methods are mainly limited to rat tissues, and it remains a substantial challenge for replicating the primary culture from mouse tissues to generate large quantities of high-quality OPCs. Here, we describe a protocol to successfully establish highly enriched OPC cultures from the cerebral cortex of mice at the age of neonatal 3 days. OPCs were isolated and purified from the bed layer of astrocytes by shaking for 6 h at 250 rpm. Using this protocol, mouse OPCs can be easily produced in bulk and economically without the need for specific cell-surface antibodies and equipment. These mouse OPC cultures were identified by immunocytochemical, immunobloting and RNA-seq analysis. Furthermore, they could be expanded in vitro and differentiate into mature oligodendrocytes. We propose this method as a viable and affordable protocol to obtain mouse OPC culture, which should significantly facilitate studies on OPC lineage progression and their application in myelin-related disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China; Department of Pain Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Jiali Li
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Zhida Lan
- Department of Anatomy, College of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Ziwei Dai
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Guanyu Li
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Kouwei Xiao
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yingyan Pu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
He X, Lei M, Chen X, Xu F, Liu H, Wei Z. Dynamic Hydrogel-Based Strategy for Traumatic Brain Injury Modeling and Therapy. CNS Neurosci Ther 2025; 31:e70148. [PMID: 39788897 PMCID: PMC11717553 DOI: 10.1111/cns.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most traumatizing and poses serious health risks to people's bodies due to its unique pathophysiological characteristics. The investigations on the pathological mechanism and valid interventions of TBI have attracted widespread attention worldwide. With bio-mimic mechanic cues, the dynamic hydrogels with dynamic stiffness changes or reversible crosslinking have been suggested to construct the in vitro disease models or novel therapeutic agents for TBI. However, there is a lack of clarification on the dynamic hydrogels currently reported and their biomedical applications on TBI. Our review starts with introducing the native mechanical characters and changes in TBI and then summarizes the common chemical strategies of the dynamic hydrogels with dynamically tunable stiffness and reversible networks for in vitro modeling and therapy. Finally, we prospect the future development of dynamic hydrogels in the mechanical modeling of TBI, providing new mechanical insights for TBI and guidance for tailored brain-targeted biomaterials.
Collapse
Affiliation(s)
- Xin He
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher EducationZunyiPeople's Republic of China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Meng Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Xuewen Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Heng Liu
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher EducationZunyiPeople's Republic of China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
3
|
Rogujski P, Lukomska B, Janowski M, Stanaszek L. Glial-restricted progenitor cells: a cure for diseased brain? Biol Res 2024; 57:8. [PMID: 38475854 DOI: 10.1186/s40659-024-00486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The central nervous system (CNS) is home to neuronal and glial cells. Traditionally, glia was disregarded as just the structural support across the brain and spinal cord, in striking contrast to neurons, always considered critical players in CNS functioning. In modern times this outdated dogma is continuously repelled by new evidence unravelling the importance of glia in neuronal maintenance and function. Therefore, glia replacement has been considered a potentially powerful therapeutic strategy. Glial progenitors are at the center of this hope, as they are the source of new glial cells. Indeed, sophisticated experimental therapies and exciting clinical trials shed light on the utility of exogenous glia in disease treatment. Therefore, this review article will elaborate on glial-restricted progenitor cells (GRPs), their origin and characteristics, available sources, and adaptation to current therapeutic approaches aimed at various CNS diseases, with particular attention paid to myelin-related disorders with a focus on recent progress and emerging concepts. The landscape of GRP clinical applications is also comprehensively presented, and future perspectives on promising, GRP-based therapeutic strategies for brain and spinal cord diseases are described in detail.
Collapse
Affiliation(s)
- Piotr Rogujski
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| |
Collapse
|
4
|
Shim G, Romero-Morales AI, Sripathy SR, Maher BJ. Utilizing hiPSC-derived oligodendrocytes to study myelin pathophysiology in neuropsychiatric and neurodegenerative disorders. Front Cell Neurosci 2024; 17:1322813. [PMID: 38273973 PMCID: PMC10808804 DOI: 10.3389/fncel.2023.1322813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Oligodendrocytes play a crucial role in our central nervous system (CNS) by myelinating axons for faster action potential conduction, protecting axons from degeneration, structuring the position of ion channels, and providing nutrients to neurons. Oligodendrocyte dysfunction and/or dysmyelination can contribute to a range of neurodegenerative diseases and neuropsychiatric disorders such as Multiple Sclerosis (MS), Leukodystrophy (LD), Schizophrenia (SCZ), and Autism Spectrum Disorder (ASD). Common characteristics identified across these disorders were either an inability of oligodendrocytes to remyelinate after degeneration or defects in oligodendrocyte development and maturation. Unfortunately, the causal mechanisms of oligodendrocyte dysfunction are still uncertain, and therapeutic targets remain elusive. Many studies rely on the use of animal models to identify the molecular and cellular mechanisms behind these disorders, however, such studies face species-specific challenges and therefore lack translatability. The use of human induced pluripotent stem cells (hiPSCs) to model neurological diseases is becoming a powerful new tool, improving our understanding of pathophysiology and capacity to explore therapeutic targets. Here, we focus on the application of hiPSC-derived oligodendrocyte model systems to model disorders caused by oligodendrocyte dysregulation.
Collapse
Affiliation(s)
- Gina Shim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
| | - Alejandra I. Romero-Morales
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Srinidhi R. Sripathy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
| | - Brady J. Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Dzurov M, Pospíšilová Š, Krafčíková M, Trantírek L, Vojtová L, Ryneš J. A thermosensitive gel matrix for bioreactor-assisted in-cell NMR of nucleic acids and proteins. JOURNAL OF BIOMOLECULAR NMR 2023; 77:203-215. [PMID: 37688760 PMCID: PMC10687187 DOI: 10.1007/s10858-023-00422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/15/2023] [Indexed: 09/11/2023]
Abstract
Introducing the flow through the bioreactor has revolutionized in-cell NMR spectroscopy by prolonging the measurement time available to acquire spectral information about biomacromolecules in metabolically active cells. Bioreactor technology relies on immobilizer matrices, which secure cells in the active volume of the NMR coil and enable uniform perfusion of the growth medium, supplying fresh nutrients to the cells while removing toxic byproducts of their metabolism. The main drawbacks of commonly used matrices include the inability to recover intact cells post-measurement for additional analyses and/or requirements for specific operating temperatures. Here, we report on the development and characterization of a set of thermosensitive and nontoxic triblock copolymers based on poly(D,L-lactide)-b-poly(ethylene glycol)-b-poly(D,L-lactide) (PLA-PEG-PLA). Here, we show for the first time that these copolymers are suitable as immobilizer matrices for the acquisition of in-cell NMR spectra of nucleic acids and proteins over a commonly used sample temperature range of 15-40 °C and, importantly, allow recovery of cells after completion of in-cell NMR spectra acquisition. We compared the performances of currently used matrices in terms of cell viability (dye exclusion assays), cellular metabolism (1D 31P NMR), and quality of in-cell NMR spectra of two model biomacromolecules (hybrid double-stranded/i-motif DNA and ubiquitin). Our results demonstrate the suitability and advantages of PLA-PEG-PLA copolymers for application in bioreactor-assisted in-cell NMR.
Collapse
Affiliation(s)
- Matej Dzurov
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 612 00, Czech Republic
| | - Šárka Pospíšilová
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Michaela Krafčíková
- National Centre for Biomolecular Research, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic
- Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 12, Utrecht, 3584 CH, The Netherlands
| | - Lukáš Trantírek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Lucy Vojtová
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 612 00, Czech Republic.
| | - Jan Ryneš
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic.
| |
Collapse
|
6
|
Thede AT, Tang JD, Cocker CE, Harold LJ, Amelung CD, Kittel AR, Taylor PA, Lampe KJ. Effects of Cell-Adhesive Ligand Presentation on Pentapeptide Supramolecular Assembly and Gelation: Simulations and Experiments. Cells Tissues Organs 2023; 212:468-483. [PMID: 37751723 DOI: 10.1159/000534280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/21/2023] [Indexed: 09/28/2023] Open
Abstract
The extracellular matrix (ECM) is a complex, hierarchical material containing structural and bioactive components. This complexity makes decoupling the effects of biomechanical properties and cell-matrix interactions difficult, especially when studying cellular processes in a 3D environment. Matrix mechanics and cell adhesion are both known regulators of specific cellular processes such as stem cell proliferation and differentiation. However, more information is required about how such variables impact various neural lineages that could, upon transplantation, therapeutically improve neural function after a central nervous system injury or disease. Rapidly Assembling Pentapeptides for Injectable Delivery (RAPID) hydrogels are one biomaterial approach to meet these goals, consisting of a family of peptide sequences that assemble into physical hydrogels in physiological media. In this study, we studied our previously reported supramolecularly-assembling RAPID hydrogels functionalized with the ECM-derived cell-adhesive peptide ligands RGD, IKVAV, and YIGSR. Using molecular dynamics simulations and experimental rheology, we demonstrated that these integrin-binding ligands at physiological concentrations (3-12 mm) did not impact the assembly of the KYFIL peptide system. In simulations, molecular measures of assembly such as hydrogen bonding and pi-pi interactions appeared unaffected by cell-adhesion sequence or concentration. Visualizations of clustering and analysis of solvent-accessible surface area indicated that the integrin-binding domains remained exposed. KYFIL or AYFIL hydrogels containing 3 mm of integrin-binding domains resulted in mechanical properties consistent with their non-functionalized equivalents. This strategy of doping RAPID gels with cell-adhesion sequences allows for the precise tuning of peptide ligand concentration, independent of the rheological properties. The controllability of the RAPID hydrogel system provides an opportunity to investigate the effect of integrin-binding interactions on encapsulated neural cells to discern how hydrogel microenvironment impacts growth, maturation, or differentiation.
Collapse
Affiliation(s)
- Andrew T Thede
- University of Virginia Biomedical Engineering, Charlottesville, Virginia, USA
| | - James D Tang
- University of Virginia Chemical Engineering, Charlottesville, Virginia, USA
| | - Clare E Cocker
- University of Virginia Chemical Engineering, Charlottesville, Virginia, USA
| | - Liza J Harold
- University of Virginia Biomedical Engineering, Charlottesville, Virginia, USA
| | - Connor D Amelung
- University of Virginia Biomedical Engineering, Charlottesville, Virginia, USA
| | - Anna R Kittel
- University of Virginia Biomedical Engineering, Charlottesville, Virginia, USA
| | - Phillip A Taylor
- University of Virginia Chemical Engineering, Charlottesville, Virginia, USA
| | | |
Collapse
|
7
|
Hong Y, Yang Q, Song H, Ming GL. Opportunities and limitations for studying neuropsychiatric disorders using patient-derived induced pluripotent stem cells. Mol Psychiatry 2023; 28:1430-1439. [PMID: 36782062 PMCID: PMC10213114 DOI: 10.1038/s41380-023-01990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Neuropsychiatric disorders affect a large proportion of the global population and there is an urgent need to understand the pathogenesis and to develop novel and improved treatments of these devastating disorders. However, the diverse symptomatology combined with complex polygenic etiology, and the limited access to disorder-relevant cell types in human brains represent a major obstacle for mechanistic disease research. Conventional animal models, such as rodents, are limited by inherent species differences in brain development, architecture, and function. Advances in human induced pluripotent stem cells (hiPSCs) technologies have provided platforms for new discoveries in neuropsychiatric disorders. First, hiPSC-based disease models enable unprecedented investigation of psychiatric disorders at the molecular, cellular, and structural levels. Second, hiPSCs derived from patients with known genetics, symptoms, and drug response profiles offer an opportunity to recapitulate pathogenesis in relevant cell types and provide novel approaches for understanding disease mechanisms and for developing effective treatments. Third, genome-editing technologies have extended the potential of hiPSCs for generating models to elucidate the genetic basis of rare monogenetic and complex polygenic psychiatric disorders and to establish the causality between genotype and phenotype. Here we review opportunities and limitations for studying psychiatric disorders using various hiPSC-derived model systems.
Collapse
Affiliation(s)
- Yan Hong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qian Yang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Dwivedi S, Choudhary P, Gupta A, Singh S. Therapeutical growth in oligodendroglial fate induction via transdifferentiation of stem cells for neuroregenerative therapy. Biochimie 2023; 211:35-56. [PMID: 36842627 DOI: 10.1016/j.biochi.2023.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/20/2022] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
The merits of stem cell therapy and research are undisputed due to their widespread usage in the treatment of neurodegenerative diseases and demyelinating disorders. Cell replacement therapy especially revolves around stem cells and their induction into different cell lineages both adult and progenitor - belonging to each germ layer, prior to transplantation or disease modeling studies. The nervous system is abundant in glial cells and among these are oligodendrocytes capable of myelinating new-born neurons and remyelination of axons with lost or damaged myelin sheath. But demyelinating diseases generate tremendous deficit between myelin loss and recovery. To compensate for this loss, analyze the defects in remyelination mechanisms as well as to trigger full recovery in such patients mesenchymal stem cells (MSCs) have been induced to transdifferentiate into oligodendrocytes. But such experiments are riddled with problems like prolonged, tenuous and complicated protocols that stretch longer than the time taken for the spread of demyelination-associated after-effects. This review delves into such protocols and the combinations of different molecules and factors that have been recruited to derive bona fide oligodendrocytes from in vitro differentiation of embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and MSCs with special focus on MSC-derived oligodendrocytes.
Collapse
Affiliation(s)
- Shrey Dwivedi
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India
| | - Princy Choudhary
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India
| | - Ayushi Gupta
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India
| | - Sangeeta Singh
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India.
| |
Collapse
|
9
|
McCaughey-Chapman A, Connor B. Cell reprogramming for oligodendrocytes: A review of protocols and their applications to disease modeling and cell-based remyelination therapies. J Neurosci Res 2023; 101:1000-1028. [PMID: 36749877 DOI: 10.1002/jnr.25173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Oligodendrocytes are a type of glial cells that produce a lipid-rich membrane called myelin. Myelin assembles into a sheath and lines neuronal axons in the brain and spinal cord to insulate them. This not only increases the speed and efficiency of nerve signal transduction but also protects the axons from damage and degradation, which could trigger neuronal cell death. Demyelination, which is caused by a loss of myelin and oligodendrocytes, is a prominent feature of many neurological conditions, including Multiple sclerosis (MS), spinal cord injuries (SCI), and leukodystrophies. Demyelination is followed by a time of remyelination mediated by the recruitment of endogenous oligodendrocyte precursor cells, their migration to the injury site, and differentiation into myelin-producing oligodendrocytes. Unfortunately, endogenous remyelination is not sufficient to overcome demyelination, which explains why there are to date no regenerative-based treatments for MS, SCI, or leukodystrophies. To better understand the role of oligodendrocytes and develop cell-based remyelination therapies, human oligodendrocytes have been derived from somatic cells using cell reprogramming. This review will detail the different cell reprogramming methods that have been developed to generate human oligodendrocytes and their applications to disease modeling and cell-based remyelination therapies. Recent developments in the field have seen the derivation of brain organoids from pluripotent stem cells, and protocols have been devised to incorporate oligodendrocytes within the organoids, which will also be reviewed.
Collapse
Affiliation(s)
- Amy McCaughey-Chapman
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Paes-Colli Y, Trindade PMP, Vitorino LC, Piscitelli F, Iannotti FA, Campos RMP, Isaac AR, de Aguiar AFL, Allodi S, de Mello FG, Einicker-Lamas M, de Siqueira-Santos R, Di Marzo V, Tannous BA, Carvalho LA, De Melo Reis RA, Sampaio LS. Activation of cannabinoid type 1 receptor (CB1) modulates oligodendroglial process branching complexity in rat hippocampal cultures stimulated by olfactory ensheathing glia-conditioned medium. Front Cell Neurosci 2023; 17:1134130. [PMID: 37138770 PMCID: PMC10150319 DOI: 10.3389/fncel.2023.1134130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/16/2023] [Indexed: 05/05/2023] Open
Abstract
The endocannabinoid system (ECS) refers to a complex cell-signaling system highly conserved among species formed by numerous receptors, lipid mediators (endocannabinoids) and synthetic and degradative enzymes. It is widely distributed throughout the body including the CNS, where it participates in synaptic signaling, plasticity and neurodevelopment. Besides, the olfactory ensheathing glia (OEG) present in the olfactory system is also known to play an important role in the promotion of axonal growth and/or myelination. Therefore, both OEG and the ECS promote neurogenesis and oligodendrogenesis in the CNS. Here, we investigated if the ECS is expressed in cultured OEG, by assessing the main markers of the ECS through immunofluorescence, western blotting and qRT-PCR and quantifying the content of endocannabinoids in the conditioned medium of these cells. After that, we investigated whether the production and release of endocannabinoids regulate the differentiation of oligodendrocytes co-cultured with hippocampal neurons, through Sholl analysis in oligodendrocytes expressing O4 and MBP markers. Additionally, we evaluated through western blotting the modulation of downstream pathways such as PI3K/Akt/mTOR and ERK/MAPK, being known to be involved in the proliferation and differentiation of oligodendrocytes and activated by CB1, which is the major endocannabinoid responsive receptor in the brain. Our data show that OEG expresses key genes of the ECS, including the CB1 receptor, FAAH and MAGL. Besides, we were able to identify AEA, 2-AG and AEA related mediators palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), in the conditioned medium of OEG cultures. These cultures were also treated with URB597 10-9 M, a FAAH selective inhibitor, or JZL184 10-9 M, a MAGL selective inhibitor, which led to the increase in the concentrations of OEA and 2-AG in the conditioned medium. Moreover, we found that the addition of OEG conditioned medium (OEGCM) enhanced the complexity of oligodendrocyte process branching in hippocampal mixed cell cultures and that this effect was inhibited by AM251 10-6 M, a CB1 receptor antagonist. However, treatment with the conditioned medium enriched with OEA or 2-AG did not alter the process branching complexity of premyelinating oligodendrocytes, while decreased the branching complexity in mature oligodendrocytes. We also observed no change in the phosphorylation of Akt and ERK 44/42 in any of the conditions used. In conclusion, our data show that the ECS modulates the number and maturation of oligodendrocytes in hippocampal mixed cell cultures.
Collapse
Affiliation(s)
- Yolanda Paes-Colli
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila M. P. Trindade
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Louise C. Vitorino
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli, Italy
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli, Italy
| | - Raquel M. P. Campos
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alinny R. Isaac
- Laboratório de Doenças Neurodegenerativas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrey Fabiano Lourenço de Aguiar
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando G. de Mello
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raphael de Siqueira-Santos
- Laboratório de Agregação de Proteínas e Amiloidoses, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis, Laval University, Quebec, QC, Canada
| | - Bakhos A. Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Massachusetts General Hospital, Boston, MA, United States
- Neuroscience Program, Harvard Medical School, Boston, MA, United States
| | - Litia A. Carvalho
- Experimental Therapeutics and Molecular Imaging Laboratory, Massachusetts General Hospital, Boston, MA, United States
- Neuroscience Program, Harvard Medical School, Boston, MA, United States
| | - Ricardo A. De Melo Reis
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luzia S. Sampaio
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Luzia S. Sampaio,
| |
Collapse
|
11
|
Johnson HJ, Chakraborty S, Muckom RJ, Balsara NP, Schaffer DV. A scalable and tunable thermoreversible polymer for 3D human pluripotent stem cell biomanufacturing. iScience 2022; 25:104971. [PMID: 36147944 PMCID: PMC9485071 DOI: 10.1016/j.isci.2022.104971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/07/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are an exciting and promising source to enable cell replacement therapies for a variety of unmet medical needs. Though hPSCs can be successfully derived into numerous physiologically relevant cell types, effective translation to the clinic is limited by challenges in scalable production of high-quality cells, cellular immaturity following the differentiation process, and the use of animal-derived components in culture. To address these limitations, we have developed a fully defined, reproducible, and tunable thermoreversible polymer for high-quality, scalable 3D cell production. Our reproducible synthesis method enables precise control of gelation temperature (24°C–32°C), hydrogel stiffness (100–4000 Pa), and the prevention of any unintended covalent crosslinking. After material optimization, we demonstrated hPSC expansion, pluripotency maintenance, and differentiation into numerous lineages within the hydrogel. Overall, this 3D thermoreversible hydrogel platform has broad applications in scalable, high-quality cell production to overcome the biomanufacturing burden of stem cell therapy. Synthesis of a scalable, tunable, and reproducible thermoreversible hydrogel Optimization of hydrogel properties including stiffness, LCST, and viscosity Expansion and pluripotency maintenance of hESCs in the hydrogel platform Differentiation of neurons, cardiomyocytes, and hepatocytes in the hydrogel platform
Collapse
|
12
|
Abstract
The successful transplantation of stem cells has the potential to transform regenerative medicine approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate regulation, and insufficient integration with host tissues constitute significant challenges. The success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, specific lineage differentiation, assembly, and maintenance of long-term function. Advances in biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical cues and emulating tissue microenvironments. This review highlights leading biomaterials-based approaches for enhancing stem cell transplantation.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
13
|
Liu Z, Wang J, Chen H, Zhang G, Lv Z, Li Y, Zhao S, Li W. Coaxial Electrospun PLLA Fibers Modified with Water-Soluble Materials for Oligodendrocyte Myelination. Polymers (Basel) 2021; 13:polym13203595. [PMID: 34685353 PMCID: PMC8537353 DOI: 10.3390/polym13203595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Myelin sheaths are essential in maintaining the integrity of axons. Development of the platform for in vitro myelination would be especially useful for demyelinating disease modeling and drug screening. In this study, a fiber scaffold with a core-shell structure was prepared in one step by the coaxial electrospinning method. A high-molecular-weight polymer poly-L-lactic acid (PLLA) was used as the core, while the shell was a natural polymer material such as hyaluronic acid (HA), sodium alginate (SA), or chitosan (CS). The morphology, differential scanning calorimetry (DSC), Fourier transform infrared spectra (FTIR), contact angle, viability assay, and in vitro myelination by oligodendrocytes were characterized. The results showed that such fibers are bead-free and continuous, with an average size from 294 ± 53 to 390 ± 54 nm. The DSC and FTIR curves indicated no changes in the phase state of coaxial brackets. Hyaluronic acid/PLLA coaxial fibers had the minimum contact angle (53.1° ± 0.24°). Myelin sheaths were wrapped around a coaxial electrospun scaffold modified with water-soluble materials after a 14-day incubation. All results suggest that such a scaffold prepared by coaxial electrospinning potentially provides a novel platform for oligodendrocyte myelination.
Collapse
Affiliation(s)
- Zhepeng Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
- Correspondence: (Z.L.); (W.L.)
| | - Jing Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
| | - Haini Chen
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
| | - Guanyu Zhang
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China; (G.Z.); (Z.L.)
| | - Zhuman Lv
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China; (G.Z.); (Z.L.)
| | - Yijun Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
| | - Shoujin Zhao
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
| | - Wenlin Li
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China; (G.Z.); (Z.L.)
- Correspondence: (Z.L.); (W.L.)
| |
Collapse
|
14
|
Walker AS, Raliski BK, Karbasi K, Zhang P, Sanders K, Miller EW. Optical Spike Detection and Connectivity Analysis With a Far-Red Voltage-Sensitive Fluorophore Reveals Changes to Network Connectivity in Development and Disease. Front Neurosci 2021; 15:643859. [PMID: 34054405 PMCID: PMC8155641 DOI: 10.3389/fnins.2021.643859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
The ability to optically record dynamics of neuronal membrane potential promises to revolutionize our understanding of neurobiology. In this study, we show that the far-red voltage sensitive fluorophore, Berkeley Red Sensor of Transmembrane potential-1, or BeRST 1, can be used to monitor neuronal membrane potential changes across dozens of neurons at a sampling rate of 500 Hz. Notably, voltage imaging with BeRST 1 can be implemented with affordable, commercially available illumination sources, optics, and detectors. BeRST 1 is well-tolerated in cultures of rat hippocampal neurons and provides exceptional optical recording fidelity, as judged by dual fluorescence imaging and patch-clamp electrophysiology. We developed a semi-automated spike-picking program to reduce user bias when calling action potentials and used this in conjunction with BeRST 1 to develop an optical spike and connectivity analysis (OSCA) for high-throughput dissection of neuronal activity dynamics. The high temporal resolution of BeRST 1 enables dissection of firing rate changes in response to acute, pharmacological interventions with commonly used inhibitors like gabazine and picrotoxin. Over longer periods of time, BeRST 1 also tracks chronic perturbations to neurons exposed to amyloid beta 1-42 (Aβ 1-42), revealing modest changes to spiking frequency but profound changes to overall network connectivity. Finally, we use OSCA to track changes in neuronal connectivity during maturation in culture, providing a functional readout of network assembly. We envision that use of BeRST 1 and OSCA described here will be of use to the broad neuroscience community.
Collapse
Affiliation(s)
- Alison S. Walker
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Benjamin K. Raliski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Kaveh Karbasi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Patrick Zhang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Kate Sanders
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
15
|
Galichet C, Clayton RW, Lovell-Badge R. Novel Tools and Investigative Approaches for the Study of Oligodendrocyte Precursor Cells (NG2-Glia) in CNS Development and Disease. Front Cell Neurosci 2021; 15:673132. [PMID: 33994951 PMCID: PMC8116629 DOI: 10.3389/fncel.2021.673132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs), also referred to as NG2-glia, are the most proliferative cell type in the adult central nervous system. While the primary role of OPCs is to serve as progenitors for oligodendrocytes, in recent years, it has become increasingly clear that OPCs fulfil a number of other functions. Indeed, independent of their role as stem cells, it is evident that OPCs can regulate the metabolic environment, directly interact with and modulate neuronal function, maintain the blood brain barrier (BBB) and regulate inflammation. In this review article, we discuss the state-of-the-art tools and investigative approaches being used to characterize the biology and function of OPCs. From functional genetic investigation to single cell sequencing and from lineage tracing to functional imaging, we discuss the important discoveries uncovered by these techniques, such as functional and spatial OPC heterogeneity, novel OPC marker genes, the interaction of OPCs with other cells types, and how OPCs integrate and respond to signals from neighboring cells. Finally, we review the use of in vitro assay to assess OPC functions. These methodologies promise to lead to ever greater understanding of this enigmatic cell type, which in turn will shed light on the pathogenesis and potential treatment strategies for a number of diseases, such as multiple sclerosis (MS) and gliomas.
Collapse
Affiliation(s)
- Christophe Galichet
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, United Kingdom
| | | | | |
Collapse
|
16
|
Gong J, Meng T, Yang J, Hu N, Zhao H, Tian T. Three-dimensional in vitro tissue culture models of brain organoids. Exp Neurol 2021; 339:113619. [PMID: 33497645 DOI: 10.1016/j.expneurol.2021.113619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
Brain organoids are three-dimensional self-assembled structures that are derived from human induced pluripotent stem cells (hiPSCs). They can recapitulate the spatiotemporal organization and function of the brain, presenting a robust system for in vitro modeling of brain development, evolution, and diseases. Significant advances in biomaterials, microscale technologies, gene editing technologies, and stem cell biology have enabled the construction of human specific brain structures in vitro. However, the limitations of long-term culture, necrosis, and hypoxic cores in different culture models obstruct brain organoid growth and survival. The in vitro models should facilitate oxygen and nutrient absorption, which is essential to generate complex organoids and provides a biomimetic microenvironment for modeling human brain organogenesis and human diseases. This review aims to highlight the progress in the culture devices of brain organoids, including dish, bioreactor, and organ-on-a-chip models. With the modulation of bioactive molecules and biomaterials, the generated organoids recapitulate the key features of the human brain in a more reproducible and hyperoxic fashion. Furthermore, an outlook for future preclinical studies and the genetic modifications of brain organoids is presented.
Collapse
Affiliation(s)
- Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Tianyue Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hezhao Zhao
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Tian Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
17
|
Chang PH, Chao HM, Chern E, Hsu SH. Chitosan 3D cell culture system promotes naïve-like features of human induced pluripotent stem cells: A novel tool to sustain pluripotency and facilitate differentiation. Biomaterials 2020; 268:120575. [PMID: 33341735 DOI: 10.1016/j.biomaterials.2020.120575] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/03/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
A simplified and cost-effective culture system for maintaining the pluripotency of human induced pluripotent stem cells (hiPSCs) is crucial for stem cell applications. Although recombinant protein-based feeder-free hiPSC culture systems have been developed, their manufacturing processes are expensive and complicated, which hinders hiPSC technology progress. Chitosan, a versatile biocompatible polysaccharide, has been reported as a biomaterial for three-dimensional (3D) cell culture system that promotes the physiological activities of mesenchymal stem cells and cancer cells. In the current study, we demonstrated that chitosan membranes sustained proliferation and pluripotency of hiPSCs in long-term culture (up to 365 days). Moreover, using vitronectin as the comparison group, the pluripotency of hiPSCs grown on the membranes was altered into a naïve-like state, which, for pluripotent stem cells, is an earlier developmental stage with higher stemness. On the chitosan membranes, hiPSCs self-assembled into 3D spheroids with an average diameter of ~100 μm. These hiPSC spheroids could be directly differentiated into lineage-specific cells from the three germ layers with 3D structures. Collectively, chitosan membranes not only promoted the naïve pluripotent features of hiPSCs but also provided a novel 3D differentiation platform. This convenient biomaterial-based culture system may enable the effective expansion and accessibility of hiPSCs for regenerative medicine, disease modeling, and drug screening.
Collapse
Affiliation(s)
- Po-Hsiang Chang
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiao-Mei Chao
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan; Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
18
|
Muckom RJ, Sampayo RG, Johnson HJ, Schaffer DV. Advanced Materials to Enhance Central Nervous System Tissue Modeling and Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002931. [PMID: 33510596 PMCID: PMC7840150 DOI: 10.1002/adfm.202002931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 05/04/2023]
Abstract
The progressively deeper understanding of mechanisms underlying stem cell fate decisions has enabled parallel advances in basic biology-such as the generation of organoid models that can further one's basic understanding of human development and disease-and in clinical translation-including stem cell based therapies to treat human disease. Both of these applications rely on tight control of the stem cell microenvironment to properly modulate cell fate, and materials that can be engineered to interface with cells in a controlled and tunable manner have therefore emerged as valuable tools for guiding stem cell growth and differentiation. With a focus on the central nervous system (CNS), a broad range of material solutions that have been engineered to overcome various hurdles in constructing advanced organoid models and developing effective stem cell therapeutics is reviewed. Finally, regulatory aspects of combined material-cell approaches for CNS therapies are considered.
Collapse
Affiliation(s)
- Riya J Muckom
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Rocío G Sampayo
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Hunter J Johnson
- Department of Bioengineering, UC Berkeley, Berkeley, CA 94704, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
19
|
Assetta B, Tang C, Bian J, O'Rourke R, Connolly K, Brickler T, Chetty S, Huang YWA. Generation of Human Neurons and Oligodendrocytes from Pluripotent Stem Cells for Modeling Neuron-Oligodendrocyte Interactions. J Vis Exp 2020. [PMID: 33226027 DOI: 10.3791/61778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In Alzheimer's disease (AD) and other neurodegenerative disorders, oligodendroglial failure is a common early pathological feature, but how it contributes to disease development and progression, particularly in the gray matter of the brain, remains largely unknown. The dysfunction of oligodendrocyte lineage cells is hallmarked by deficiencies in myelination and impaired self-renewal of oligodendrocyte precursor cells (OPCs). These two defects are caused at least in part by the disruption of interactions between neuron and oligodendrocytes along the buildup of pathology. OPCs give rise to myelinating oligodendrocytes during CNS development. In the mature brain cortex, OPCs are the major proliferative cells (comprising ~5% of total brain cells) and control new myelin formation in a neural activity-dependent manner. Such neuron-to-oligodendrocyte communications are significantly understudied, especially in the context of neurodegenerative conditions such as AD, due to the lack of appropriate tools. In recent years, our group and others have made significant progress to improve currently available protocols to generate functional neurons and oligodendrocytes individually from human pluripotent stem cells. In this manuscript, we describe our optimized procedures, including the establishment of a co-culture system to model the neuron-oligodendrocyte connections. Our illustrative results suggest an unexpected contribution from OPCs/oligodendrocytes to the brain amyloidosis and synapse integrity and highlight the utility of this methodology for AD research. This reductionist approach is a powerful tool to dissect the specific hetero-cellular interactions out of the inherent complexity inside the brain. The protocols we describe here are expected to facilitate future studies on oligodendroglial defects in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Benedetta Assetta
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Changyong Tang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University; Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University
| | - Jing Bian
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| | - Ryan O'Rourke
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Kevin Connolly
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Thomas Brickler
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| | - Sundari Chetty
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University; Department of Neurology, Warren Alpert Medical School of Brown University; Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University;
| |
Collapse
|
20
|
Muckom R, Bao X, Tran E, Chen E, Murugappan A, Dordick JS, Clark DS, Schaffer DV. High-throughput 3D screening for differentiation of hPSC-derived cell therapy candidates. SCIENCE ADVANCES 2020; 6:eaaz1457. [PMID: 32821815 PMCID: PMC7413735 DOI: 10.1126/sciadv.aaz1457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 06/25/2020] [Indexed: 05/12/2023]
Abstract
The emergence of several cell therapy candidates in the clinic is an encouraging sign for human diseases/disorders that currently have no effective treatment; however, scalable production of these cell therapies has become a bottleneck. To overcome this barrier, three-dimensional (3D) cell culture strategies have been considered for enhanced cell production. Here, we demonstrate a high-throughput 3D culture platform used to systematically screen 1200 culture conditions with varying doses, durations, dynamics, and combinations of signaling cues to derive oligodendrocyte progenitor cells and midbrain dopaminergic neurons from human pluripotent stem cells (hPSCs). Statistical models of the robust dataset reveal previously unidentified patterns about cell competence to Wnt, retinoic acid, and sonic hedgehog signals, and their interactions, which may offer insights into the combinatorial roles these signals play in human central nervous system development. These insights can be harnessed to optimize production of hPSC-derived cell replacement therapies for a range of neurological indications.
Collapse
Affiliation(s)
- Riya Muckom
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Xiaoping Bao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Eric Tran
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Evelyn Chen
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Abirami Murugappan
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jonathan S. Dordick
- Department of Chemical and Biomolecular Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Douglas S. Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Corresponding author. (D.S.C.); (D.V.S.)
| | - David V. Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Corresponding author. (D.S.C.); (D.V.S.)
| |
Collapse
|
21
|
Åstrand C, Chotteau V, Falk A, Hedhammar M. Assembly of FN-silk with laminin-521 to integrate hPSCs into a three-dimensional culture for neural differentiation. Biomater Sci 2020; 8:2514-2525. [PMID: 32215392 DOI: 10.1039/c9bm01624d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three-dimensional (3D) neural tissue cultures recapitulate the basic concepts during development and disease better than what can be obtained using conventional two-dimensional cultures. Here, we use a recombinant spider silk protein functionalized with a cell binding motif from fibronectin (FN-silk) in combination with a human recombinant laminin 521 (LN-521) to create a fully defined stem cell niche in 3D. A novel method to assemble silk blended with LN-521 together with human pluripotent stem cells (hPSC) is used to create centimeter-sized foams, which upon cultivation develop into 3D cell constructs supported by a microfibrillar network. After initial cell expansion, neural differentiation was induced to form a homogenous layer of continuous neuroectodermal tissue that allows further differentiation into neuronal subtypes. The silk-supported 3D cell constructs could then be detached from the bottom of the well and cultured as floating entities, where cells appeared in distinctive radial organization resembling early neural tube. This shows that the neural progenitors retain their cellular self-organization ability in the FN-silk/LN-521-supported 3D culture. Calcium imaging demonstrated spontaneous activity, which is important for the formation of neuronal networks. Together, the results show that hPSCs integrated into FN-silk/LN-521 foam develop into neural progenitors and that these stay viable during long-term differentiations. FN-silk/LN-521 also supports morphogenesis mimicking the human brain development and can serve as base for engineering of hPSC-derived neural tissue.
Collapse
Affiliation(s)
- Carolina Åstrand
- Dept. of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, SE-10691, Stockholm, Sweden.
| | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW We review the ways in which stem cells are used in psychiatric disease research, including the related advances in gene editing and directed cell differentiation. RECENT FINDINGS The recent development of induced pluripotent stem cell (iPSC) technologies has created new possibilities for the study of psychiatric disease. iPSCs can be derived from patients or controls and differentiated to an array of neuronal and non-neuronal cell types. Their genomes can be edited as desired, and they can be assessed for a variety of phenotypes. This makes them especially interesting for studying genetic variation, which is particularly useful today now that our knowledge on the genetics of psychiatric disease is quickly expanding. The recent advances in cell engineering have led to powerful new methods for studying psychiatric illness including schizophrenia, bipolar disorder, and autism. There is a wide array of possible applications as illustrated by the many examples from the literature, most of which are cited here.
Collapse
Affiliation(s)
- Debamitra Das
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyra Feuer
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marah Wahbeh
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Abstract
Membrane potential is a fundamental biophysical property maintained by every cell on earth. In specialized cells like neurons, rapid changes in membrane potential drive the release of chemical neurotransmitters. Coordinated, rapid changes in neuronal membrane potential across large numbers of interconnected neurons form the basis for all of human cognition, sensory perception, and memory. Despite the importance of this highly orchestrated and distributed activity, the traditional method for recording membrane potential is through the use of highly invasive single-cell electrodes that offer only a small glimpse of the total activity within a system. Fluorescent dyes that change their optical properties in response to changes in biological voltage have the potential to provide a powerful complement to traditional electrode-based methods of inquiry. Voltage-sensitive fluorescent indicators would allow the direct observation of membrane potential changes, significantly expanding our ability to monitor membrane potential dynamics in living systems. Toward this end, we have initiated a program to design, synthesize, and apply voltage-sensitive fluorophores that report on membrane potential dynamics with high sensitivity and speed. The basis for this optical voltage sensing is membrane potential-dependent photoinduced electron transfer (PeT). Voltage-sensitive fluorophores, or VoltageFluors, possess a fluorophore, a conjugated molecular wire, and an aniline donor. At resting potentials, in which the cell has a hyperpolarized or negative potential relative to the outside of the cell, PeT from the aniline donor is enhanced and fluorescence is diminished. At depolarized potentials, the membrane potential decreases the rate of PeT, allowing an increase in fluorescence. We show that a number of different fluorophores, molecular wires, and aniline donors can be employed to generate fast and sensitive VoltageFluor dyes. Multiple lines of evidence point to a PeT-based mechanism for voltage sensing, delivering fast response kinetics (∼25 ns), good sensitivity (>60% ΔF/F), compatibility with two-photon illumination, excellent signal-to-noise, and the ability to detect neuronal and cardiac action potentials in single trials. In this Account, we provide an overview of the challenges facing the design of fluorescent voltage indicators. We trace the development of molecular wire-based fluorescent voltage indicators within our group, beginning from fluorescein-based VoltageFluor to long-wavelength indicators that use modern fluorophores like silicon rhodamine and carbofluorescein. We examine design principles for PeT-based voltage indicators, showcase the use of our recent indicators for two-photon voltage imaging in intact brains, and explore the development of hybrid indicators that can localize to genetically defined cells. Finally, we highlight outstanding challenges to and opportunities for voltage imaging.
Collapse
Affiliation(s)
- Pei Liu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States
- Department of Helen Wills Neuroscience Institute. University of California, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Makhija EP, Espinosa-Hoyos D, Jagielska A, Van Vliet KJ. Mechanical regulation of oligodendrocyte biology. Neurosci Lett 2020; 717:134673. [PMID: 31838017 PMCID: PMC12023767 DOI: 10.1016/j.neulet.2019.134673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 12/27/2022]
Abstract
Oligodendrocytes (OL) are a subset of glial cells in the central nervous system (CNS) comprising the brain and spinal cord. The CNS environment is defined by complex biochemical and biophysical cues during development and response to injury or disease. In the last decade, significant progress has been made in understanding some of the key biophysical factors in the CNS that modulate OL biology, including their key role in myelination of neurons. Taken together, those studies offer translational implications for remyelination therapies, pharmacological research, identification of novel drug targets, and improvements in methods to generate human oligodendrocyte progenitor cells (OPCs) and OLs from donor stem cells in vitro. This review summarizes current knowledge of how various physical and mechanical cues affect OL biology and its implications for disease, therapeutic approaches, and generation of human OPCs and OLs.
Collapse
Affiliation(s)
- Ekta P Makhija
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, 138602, Singapore
| | - Daniela Espinosa-Hoyos
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Anna Jagielska
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
| | - Krystyn J Van Vliet
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, 138602, Singapore; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
| |
Collapse
|
25
|
Freel BA, Sheets JN, Francis KR. iPSC modeling of rare pediatric disorders. J Neurosci Methods 2019; 332:108533. [PMID: 31811832 DOI: 10.1016/j.jneumeth.2019.108533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
Discerning the underlying pathological mechanisms and the identification of therapeutic strategies to treat individuals affected with rare neurological diseases has proven challenging due to a host of factors. For instance, rare diseases affecting the nervous system are inherently lacking in appropriate patient sample availability compared to more common diseases, while animal models often do not accurately recapitulate specific disease phenotypes. These challenges impede research that may otherwise illuminate aspects of disease initiation and progression, leading to the ultimate identification of potential therapeutics. The establishment of induced pluripotent stem cells (iPSCs) as a human cellular model with defined genetics has provided the unique opportunity to study rare diseases within a controlled environment. iPSC models enable researchers to define mutational effects on specific cell types and signaling pathways within increasingly complex systems. Among rare diseases, pediatric diseases affecting neurodevelopment and neurological function highlight the critical need for iPSC-based disease modeling due to the inherent difficulty associated with collecting human neural tissue and the complexity of the mammalian nervous system. Rare neurodevelopmental disorders are therefore ideal candidates for utilization of iPSC-based in vitro studies. In this review, we address both the state of the iPSC field in the context of their utility and limitations for neurodevelopmental studies, as well as speculating about the future applications and unmet uses for iPSCs in rare diseases.
Collapse
Affiliation(s)
- Bethany A Freel
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, USA
| | - Jordan N Sheets
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, USA
| | - Kevin R Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, USA; Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA.
| |
Collapse
|
26
|
Bao X, Adil MM, Muckom R, Zimmermann JA, Tran A, Suhy N, Xu Y, Sampayo RG, Clark DS, Schaffer DV. Gene Editing to Generate Versatile Human Pluripotent Stem Cell Reporter Lines for Analysis of Differentiation and Lineage Tracing. Stem Cells 2019; 37:1556-1566. [DOI: 10.1002/stem.3096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/22/2019] [Accepted: 08/23/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Xiaoping Bao
- Department of Bioengineering; University of California; Berkeley California USA
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
- Davidson School of Chemical Engineering; Purdue University; West Lafayette Indiana USA
| | - Maroof M. Adil
- Department of Bioengineering; University of California; Berkeley California USA
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
| | - Riya Muckom
- Department of Bioengineering; University of California; Berkeley California USA
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
| | - Joshua A. Zimmermann
- Department of Bioengineering; University of California; Berkeley California USA
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
| | - Aurelie Tran
- Department of Molecular and Cell Biology; University of California; Berkeley California USA
| | - Natalie Suhy
- Department of Molecular and Cell Biology; University of California; Berkeley California USA
| | - Yibo Xu
- Davidson School of Chemical Engineering; Purdue University; West Lafayette Indiana USA
| | - Rocío G. Sampayo
- Department of Bioengineering; University of California; Berkeley California USA
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
| | - Douglas S. Clark
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
- Department of Chemistry; University of California; Berkeley California USA
| | - David V. Schaffer
- Department of Bioengineering; University of California; Berkeley California USA
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
- Davidson School of Chemical Engineering; Purdue University; West Lafayette Indiana USA
- Department of Molecular and Cell Biology; University of California; Berkeley California USA
| |
Collapse
|
27
|
Essayan-Perez S, Zhou B, Nabet AM, Wernig M, Huang YWA. Modeling Alzheimer's disease with human iPS cells: advancements, lessons, and applications. Neurobiol Dis 2019; 130:104503. [PMID: 31202913 PMCID: PMC6689423 DOI: 10.1016/j.nbd.2019.104503] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/24/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
One in three people will develop Alzheimer's disease (AD) or another dementia and, despite intense research efforts, treatment options remain inadequate. Understanding the mechanisms of AD pathogenesis remains our principal hurdle to developing effective therapeutics to tackle this looming medical crisis. In light of recent discoveries from whole-genome sequencing and technical advances in humanized models, studying disease risk genes with induced human neural cells presents unprecedented advantages. Here, we first review the current knowledge of the proposed mechanisms underlying AD and focus on modern genetic insights to inform future studies. To highlight the utility of human pluripotent stem cell-based innovations, we then present an update on efforts in recapitulating the pathophysiology by induced neuronal, non-neuronal and a collection of brain cell types, departing from the neuron-centric convention. Lastly, we examine the translational potentials of such approaches, and provide our perspectives on the promise they offer to deepen our understanding of AD pathogenesis and to accelerate the development of intervention strategies for patients and risk carriers.
Collapse
Affiliation(s)
- Sofia Essayan-Perez
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, United States of America
| | - Bo Zhou
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, United States of America; Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University Medical School, Stanford, CA 94305, United States of America
| | - Amber M Nabet
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, United States of America
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University Medical School, Stanford, CA 94305, United States of America
| | - Yu-Wen Alvin Huang
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, United States of America.
| |
Collapse
|
28
|
Wiegand C, Banerjee I. Recent advances in the applications of iPSC technology. Curr Opin Biotechnol 2019; 60:250-258. [PMID: 31386977 DOI: 10.1016/j.copbio.2019.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/03/2019] [Accepted: 05/11/2019] [Indexed: 12/18/2022]
Abstract
Pluripotent stems cells (PSCs) can be expanded indefinitely and differentiated into almost any organ-specific cell type. This has enabled the generation of disease relevant tissues from patients in scalable quantities. iPSC-derived organs and organoids are currently being evaluated both in regenerative therapy which are proceeding towards clinical trials, and for disease modeling, which are facilitating drug screening efforts for discovery of novel therapeutics. Here we will review the current efforts and advances in iPSC technology and its subsequent applications and provide a brief commentary on future outlook of this promising technology.
Collapse
Affiliation(s)
- Connor Wiegand
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, United States
| | - Ipsita Banerjee
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, United States; Department of Bioengineering, University of Pittsburgh, United States; McGowan Institute for Regenerative Medicine, United States.
| |
Collapse
|
29
|
Zimmermann JA, Schaffer DV. Engineering biomaterials to control the neural differentiation of stem cells. Brain Res Bull 2019; 150:50-60. [DOI: 10.1016/j.brainresbull.2019.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/09/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
|
30
|
Bressan RB, Pollard SM. Genome Editing in Human Neural Stem and Progenitor Cells. Results Probl Cell Differ 2019; 66:163-182. [PMID: 30209659 DOI: 10.1007/978-3-319-93485-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
Experimental tools for precise manipulation of mammalian genomes enable reverse genetic approaches to explore biology and disease. Powerful genome editing technologies built upon designer nucleases, such as CRISPR/Cas9, have recently emerged. Parallel progress has been made in methodologies for the expansion and differentiation of human pluripotent and tissue stem cells. Together these innovations provide a remarkable new toolbox for human cellular genetics and are opening up vast opportunities for discoveries and applications across the breadth of life sciences research. In this chapter, we review the emergence of genome editing technologies and how these are being deployed in studies of human neurobiology, neurological disease, and neuro-oncology. We focus our discussion on CRISPR/Cas9 and its application in studies of human neural stem and progenitor cells.
Collapse
Affiliation(s)
- Raul Bardini Bressan
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, UK
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
31
|
Unal DB, Caliari SR, Lampe KJ. Engineering biomaterial microenvironments to promote myelination in the central nervous system. Brain Res Bull 2019; 152:159-174. [PMID: 31306690 DOI: 10.1016/j.brainresbull.2019.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/09/2019] [Accepted: 07/08/2019] [Indexed: 01/01/2023]
Abstract
Promoting remyelination and/or minimizing demyelination are key therapeutic strategies under investigation for diseases and injuries like multiple sclerosis (MS), spinal cord injury, stroke, and virus-induced encephalopathy. Myelination is essential for efficacious neuronal signaling. This myelination process is originated by oligodendrocyte progenitor cells (OPCs) in the central nervous system (CNS). Resident OPCs are capable of both proliferation and differentiation, and also migration to demyelinated injury sites. OPCs can then engage with these unmyelinated or demyelinated axons and differentiate into myelin-forming oligodendrocytes (OLs). However this process is frequently incomplete and often does not occur at all. Biomaterial strategies can now be used to guide OPC and OL development with the goal of regenerating healthy myelin sheaths in formerly damaged CNS tissue. Growth and neurotrophic factors delivered from such materials can promote proliferation of OPCs or differentiation into OLs. While cell transplantation techniques have been used to replace damaged cells in wound sites, they have also resulted in poor transplant cell viability, uncontrollable differentiation, and poor integration into the host. Biomaterial scaffolds made from extracellular matrix (ECM) mimics that are naturally or synthetically derived can improve transplanted cell survival, support both transplanted and endogenous cell populations, and direct their fate. In particular, stiffness and degradability of these scaffolds are two parameters that can influence the fate of OPCs and OLs. The future outlook for biomaterials research includes 3D in vitro models of myelination / remyelination / demyelination to better mimic and study these processes. These models should provide simple relationships of myelination to microenvironmental biophysical and biochemical properties to inform improved therapeutic approaches.
Collapse
Affiliation(s)
- Deniz B Unal
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, United States
| | - Steven R Caliari
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, United States; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, United States
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, United States.
| |
Collapse
|
32
|
Modeling neuropsychiatric disorders using human induced pluripotent stem cells. Protein Cell 2019; 11:45-59. [PMID: 31134525 PMCID: PMC6949328 DOI: 10.1007/s13238-019-0638-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/03/2019] [Indexed: 01/20/2023] Open
Abstract
Neuropsychiatric disorders are complex disorders characterized by heterogeneous genetic variations, variable symptoms, and widespread changes in anatomical pathology. In the context of neuropsychiatric disorders, limited access to relevant tissue types presents challenges for understanding disease etiology and developing effective treatments. Induced pluripotent stem cells (iPSCs) reprogrammed from patient somatic cells offer an opportunity to recapitulate disease development in relevant cell types, and they provide novel approaches for understanding disease mechanisms and for development of effective treatments. Here we review recent progress and challenges in differentiation paradigms for generating disease-relevant cells and recent studies of neuropsychiatric disorders using human pluripotent stem cell (hPSC) models where cellular phenotypes linked to disease have been reported. The use of iPSC-based disease models holds great promise for understanding disease mechanisms and supporting discovery of effective treatments.
Collapse
|
33
|
Harkness L, Chen X, Jia Z, Davies AM, Monteiro M, Gray P, Pera M. Fibronectin-conjugated thermoresponsive nanobridges generate three dimensional human pluripotent stem cell cultures for differentiation towards the neural lineages. Stem Cell Res 2019; 38:101441. [PMID: 31082678 DOI: 10.1016/j.scr.2019.101441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/31/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Production of 3-dimensional neural progenitor cultures from human pluripotent stem cells offers the potential to generate large numbers of cells. We utilised our nanobridge system to generate 3D hPSC aggregates for differentiation towards the neural lineage, and investigate the ability to passage aggregates while maintaining cells at a stem/progenitor stage. Over 38 days, aggregate cultures exhibited upregulation and maintenance of neural-associated markers and demonstrated up to 10 fold increase in cell number. Aggregates undergoing neural induction in the presence or absence of nanobridges demonstrated no differences in marker expression, proliferation or viability. However, aggregates formed without nanobridges were statistically significantly fewer and smaller by passage 3. Organoids, cultured from aggregates, and treated with retinoic acid or rock inhibitor demonstrated terminal differentiation as assessed by immunohistochemistry. These data demonstrate that nanobridge 3D hPSC can differentiate to neural stem/progenitor cells, and be maintained at this stage through serial passaging and expansion.
Collapse
Affiliation(s)
- Linda Harkness
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Xiaoli Chen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhongfan Jia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anthony M Davies
- Translational Cell Imaging Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4102, Australia
| | - Michael Monteiro
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Gray
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martin Pera
- The Florey Institute of Neuroscience and Mental Health and the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; The Jackson Laboratory, Bar Harbor, ME 04609, United States; The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
34
|
Chen Z, Cai X, Li M, Yan L, Wu L, Wang X, Tang N. CRISPR/Cas9-based liver-derived reporter cells for screening of mPGES-1 inhibitors. J Enzyme Inhib Med Chem 2019; 34:799-807. [PMID: 30879343 PMCID: PMC6427568 DOI: 10.1080/14756366.2019.1587416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
mPGES-1 is a terminal rate-limiting enzyme responsible for inflammation-induced PGE2 production. The inhibition of mPGES-1 has been considered as a safe and effective target for the treatment of inflammation and cancer. However, a specific, efficient, and simple method for high-throughput screening of mPGES-1 inhibitors is still lacking. In this study, we developed a fluorescence imaging strategy to monitor the expression of mPGES-1 via CRISPR/Cas9 knock-in system. Immunofluorescence colocalisation, Sanger sequencing, RNAi, and IL-1β treatment all confirmed the successful construction of mPGES-1 reporter cells. The fluorescence signal intensity of the reporter cells treated with four conventional mPGES-1 inhibitors was considerably attenuated via flow cytometry and fluorescent microplate reader, demonstrating that the reporter cells can be used as an efficient and convenient means for screening and optimising mPGES-1 inhibitors. Moreover, it provides a new technical support for the development of targeted small molecule compounds for anti-inflammatory and tumour therapy.
Collapse
Affiliation(s)
- Zhanfei Chen
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Xiaoling Cai
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Man Li
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - LinLin Yan
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Luxi Wu
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Xiaoqian Wang
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Nanhong Tang
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China.,b Key Laboratory of Ministry of Education for Gastrointestinal Cancer , Research Center for Molecular Medicine, Fujian Medical University , Fuzhou , China
| |
Collapse
|
35
|
Seidlits SK, Liang J, Bierman RD, Sohrabi A, Karam J, Holley SM, Cepeda C, Walthers CM. Peptide-modified, hyaluronic acid-based hydrogels as a 3D culture platform for neural stem/progenitor cell engineering. J Biomed Mater Res A 2019; 107:704-718. [PMID: 30615255 PMCID: PMC8862560 DOI: 10.1002/jbm.a.36603] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 07/26/2023]
Abstract
Neural stem/progenitor cell (NS/PC)-based therapies have shown exciting potential for regeneration of the central nervous system (CNS) and NS/PC cultures represent an important resource for disease modeling and drug screening. However, significant challenges limiting clinical translation remain, such as generating large numbers of cells required for model cultures or transplantation, maintaining physiologically representative phenotypes ex vivo and directing NS/PC differentiation into specific fates. Here, we report that culture of human NS/PCs in 3D, hyaluronic acid (HA)-rich biomaterial microenvironments increased differentiation toward oligodendrocytes and neurons over 2D cultures on laminin-coated glass. Moreover, NS/PCs in 3D culture exhibited a significant reduction in differentiation into reactive astrocytes. Many NS/PC-derived neurons in 3D, HA-based hydrogels expressed synaptophysin, indicating synapse formation, and displayed electrophysiological characteristics of immature neurons. While inclusion of integrin-binding, RGD peptides into hydrogels resulted in a modest increase in numbers of viable NS/PCs, no combination of laminin-derived, adhesive peptides affected differentiation outcomes. Notably, 3D cultures of differentiating NS/PCs were maintained for at least 70 days in medium with minimal growth factor supplementation. In sum, results demonstrate the use of 3D, HA-based biomaterials for long-term expansion and differentiation of NS/PCs toward oligodendroglial and neuronal fates, while inhibiting astroglial fates. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 704-718, 2019.
Collapse
Affiliation(s)
- Stephanie K. Seidlits
- Department of Bioengineering, UCLA, Los Angels, California
- Board Stem Cell Research Center, UCLA, Los Angels, California
- Brain Research Institute, UCLA, Los Angels, California
- Jonsson Comprehensive Cancer Center, UCLA, Los Angels, California
- Center for Minimally Invasive Therapeutics, UCLA, Los Angels, California
| | - Jesse Liang
- Department of Bioengineering, UCLA, Los Angels, California
| | | | | | - Joshua Karam
- Department of Bioengineering, UCLA, Los Angels, California
| | - Sandra M. Holley
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, California
| | | |
Collapse
|
36
|
Hermanto Y, Maki T, Takagi Y, Miyamoto S, Takahashi J. Xeno-free culture for generation of forebrain oligodendrocyte precursor cells from human pluripotent stem cells. J Neurosci Res 2019; 97:828-845. [PMID: 30891830 DOI: 10.1002/jnr.24413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/21/2023]
Abstract
Oligodendrocytes (OLs) show heterogeneous properties that depend on their location in the central nervous system (CNS). In this regard, the investigation of oligodendrocyte precursor cells (OPCs) derived from human pluripotent stem cells (hPSCs) should be reconsidered, particularly in cases of brain-predominant disorders for which brain-derived OPCs are more appropriate than spinal cord-derived OPCs. Furthermore, animal-derived components are responsible for culture variability in the derivation and complicate clinical translation. In the present study, we established a xeno-free system to induce forebrain OPCs from hPSCs. We induced human forebrain neural stem cells (NSCs) on Laminin 511-E8 and directed the differentiation to the developmental pathway for forebrain OLs with SHH and FGF signaling. OPCs were characterized by the expression of OLIG2, NKX2.2, SOX10, and PDGFRA, and subsequent maturation into O4+ cells. In vitro characterization showed that >85% of the forebrain OPCs (O4+ ) underwent maturation into OLs (MBP+ ) 3 weeks after mitogen removal. Upon intracranial transplantation, the OPCs survived, dispersed in the corpus callosum, and matured into (GSTπ+ ) OLs in the host brains 3 months after transplantation. These findings suggest our xeno-free induction of forebrain OPCs from hPSCs could accelerate clinical translation for brain-specific disorders.
Collapse
Affiliation(s)
- Yulius Hermanto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
37
|
Wen H, Xiao W, Biswas S, Cong ZQ, Liu XM, Lam KS, Liao YH, Deng W. Alginate Hydrogel Modified with a Ligand Interacting with α3β1 Integrin Receptor Promotes the Differentiation of 3D Neural Spheroids toward Oligodendrocytes in Vitro. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5821-5833. [PMID: 30645095 DOI: 10.1021/acsami.8b19438] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we established a long-term three-dimensional (3D) culture system by using integrin ligand modified alginate hydrogels to encapsulate and differentiate neural progenitor cells (NPCs) toward oligodendrocyte (OL) lineage cells. The porosity of the hydrogel was optimized by varying the alginate concentrations and then characterized by scanning electronic microscopy (SEM). The surface plasmon resonance (SPR) test was used to confirm the ligand-integrin interactions indicating adherence between the NPC surfaces and the hydrogels. Following encapsulation in the hydrogels, both mouse and human NPC sphere cultures could be maintained up to 90 days. Mouse NPC spheres were differentiated into viable neurons, astrocytes and mature OLs by day 60 in all groups whereas human NPC spheres were differentiated into neurons and later into GFAP positive astrocytes and O4 positive pre-OL within 90 days. The species difference in the timeline of OL development between mouse and human was reflected in this system. The ligand LXY30 interacting with the α3β1 integrin receptor was more effective in promoting the differentiation of hNPCs to OL lineage cells compared with the ligand LXW64 interacting with the αvβ3 integrin receptor, hyaluronic acid interacting with CD44 receptor or without any ligand. This study is the first to differentiate O4+ pre-OLs from hNPCs in a LXY30-α3β1 (integrin-ligand) modified alginate 3D hydrogel culture. This 3D platform could serve as a valuable tool in disease modeling, drug discovery, and NPC transplantation.
Collapse
Affiliation(s)
- Han Wen
- Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , 151 Malianwa North Road , Haidian District, Beijing 100193 , China
- Department of Biochemistry and Molecular Medicine, School of Medicine , University of California , 2700 Stockton Blvd , Davis , California 95817 , United States
- Institute for Pediatric Regenerative Medicine , Shriners Hospitals for Children-Northern California , 2425 Stockton Blvd , Sacramento , California 95817 , United States
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, School of Medicine , University of California , 2700 Stockton Blvd , Davis , California 95817 , United States
| | - Sangita Biswas
- Department of Biochemistry and Molecular Medicine, School of Medicine , University of California , 2700 Stockton Blvd , Davis , California 95817 , United States
- Institute for Pediatric Regenerative Medicine , Shriners Hospitals for Children-Northern California , 2425 Stockton Blvd , Sacramento , California 95817 , United States
- School of Pharmaceutical Sciences, Shenzhen Campus , Sun Yat-Sen University , 135 Xingang Xi Road , Guangzhou 510275 , China
| | - Zhao-Qing Cong
- Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , 151 Malianwa North Road , Haidian District, Beijing 100193 , China
| | - Xin-Min Liu
- Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , 151 Malianwa North Road , Haidian District, Beijing 100193 , China
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine , University of California , 2700 Stockton Blvd , Davis , California 95817 , United States
| | - Yong-Hong Liao
- Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , 151 Malianwa North Road , Haidian District, Beijing 100193 , China
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine , University of California , 2700 Stockton Blvd , Davis , California 95817 , United States
- Institute for Pediatric Regenerative Medicine , Shriners Hospitals for Children-Northern California , 2425 Stockton Blvd , Sacramento , California 95817 , United States
- School of Pharmaceutical Sciences, Shenzhen Campus , Sun Yat-Sen University , 135 Xingang Xi Road , Guangzhou 510275 , China
| |
Collapse
|
38
|
Bertucci TB, Dai G. Biomaterial Engineering for Controlling Pluripotent Stem Cell Fate. Stem Cells Int 2018; 2018:9068203. [PMID: 30627175 PMCID: PMC6304878 DOI: 10.1155/2018/9068203] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/11/2018] [Indexed: 01/02/2023] Open
Abstract
Pluripotent stem cells (PSCs) represent an exciting cell source for tissue engineering and regenerative medicine due to their self-renewal and differentiation capacities. The majority of current PSC protocols rely on 2D cultures and soluble factors to guide differentiation; however, many other environmental signals are beginning to be explored using biomaterial platforms. Biomaterials offer new opportunities to engineer the stem cell niches and 3D environments for exploring biophysical and immobilized signaling cues to further our control over stem cell fate. Here, we review the biomaterial platforms that have been engineered to control PSC fate. We explore how altering immobilized biochemical cues and biophysical cues such as dimensionality, stiffness, and topography can enhance our control over stem cell fates. Finally, we highlight biomaterial culture systems that assist in the translation of PSC technologies for clinical applications.
Collapse
Affiliation(s)
- Taylor B Bertucci
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
39
|
Studying and modulating schizophrenia-associated dysfunctions of oligodendrocytes with patient-specific cell systems. NPJ SCHIZOPHRENIA 2018; 4:23. [PMID: 30451850 PMCID: PMC6242875 DOI: 10.1038/s41537-018-0066-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Postmortem studies in patients with schizophrenia (SCZ) have revealed deficits in myelination, abnormalities in myelin gene expression and altered numbers of oligodendrocytes in the brain. However, gaining mechanistic insight into oligodendrocyte (OL) dysfunction and its contribution to SCZ has been challenging because of technical hurdles. The advent of individual patient-derived human-induced pluripotent stem cells (hiPSCs), combined with the generation of in principle any neuronal and glial cell type, including OLs and oligodendrocyte precursor cells (OPCs), holds great potential for understanding the molecular basis of the aetiopathogenesis of genetically complex psychiatric diseases such as SCZ and could pave the way towards personalized medicine. The development of neuronal and glial co-culture systems now appears to enable the in vitro study of SCZ-relevant neurobiological endophenotypes, including OL dysfunction and myelination, with unprecedented construct validity. Nonetheless, the meaningful stratification of patients before the subsequent functional analyses of patient-derived cell systems still represents an important bottleneck. Here, to improve the predictive power of ex vivo disease modelling we propose using hiPSC technology to focus on representatives of patient subgroups stratified for genomic and/or phenomic features and neurobiological cell systems. Therefore, this review will outline the evidence for the involvement of OPCs/OLs in SCZ in the context of their proposed functions, including myelination and axon support, the implications for hiPSC-based cellular disease modelling and potential strategies for patient selection.
Collapse
|
40
|
Jung-Klawitter S, Opladen T. Induced pluripotent stem cells (iPSCs) as model to study inherited defects of neurotransmission in inborn errors of metabolism. J Inherit Metab Dis 2018; 41:1103-1116. [PMID: 29980968 DOI: 10.1007/s10545-018-0225-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/08/2018] [Accepted: 06/25/2018] [Indexed: 11/29/2022]
Abstract
The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs) has revolutionized the way of modeling human disease. Especially for the modeling of rare human monogenetic diseases with limited numbers of patients available worldwide and limited access to the mostly affected tissues, iPSCs have become an invaluable tool. To study rare diseases affecting neurotransmitter biosynthesis and neurotransmission, stem cell models carrying patient-specific mutations have become highly important as most of the cell types present in the human brain and the central nervous system (CNS), including motoneurons, neurons, oligodendrocytes, astrocytes, and microglia, can be differentiated from iPSCs following distinct developmental programs. Differentiation can be performed using classical 2D differentiation protocols, thereby generating specific subtypes of neurons or glial cells in a dish. On the other side, 3D differentiation into "organoids" opened new ways to study misregulated developmental processes associated with rare neurological and neurometabolic diseases. For the analysis of defects in neurotransmission associated with rare neurometabolic diseases, different types of brain organoids have been made available during the last years including forebrain, midbrain and cerebral organoids. In this review, we illustrate reprogramming of somatic cells to iPSCs, differentiation in 2D and 3D, as well as already available disease-specific iPSC models, and discuss current and future applications of these techniques.
Collapse
Affiliation(s)
- Sabine Jung-Klawitter
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.
| | - Thomas Opladen
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| |
Collapse
|
41
|
Towards Three-Dimensional Dynamic Regulation and In Situ Characterization of Single Stem Cell Phenotype Using Microfluidics. Mol Biotechnol 2018; 60:843-861. [DOI: 10.1007/s12033-018-0113-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Zheng W, Li Q, Zhao C, Da Y, Zhang HL, Chen Z. Differentiation of Glial Cells From hiPSCs: Potential Applications in Neurological Diseases and Cell Replacement Therapy. Front Cell Neurosci 2018; 12:239. [PMID: 30140204 PMCID: PMC6094089 DOI: 10.3389/fncel.2018.00239] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
Glial cells are the most abundant cell type in the central nervous system (CNS) and play essential roles in maintaining brain homeostasis, forming myelin, and providing support and protection for neurons, etc. Over the past decade, significant progress has been made in the reprogramming field. Given the limited accessibility of human glial cells, in vitro differentiation of human induced pluripotent stem cells (hiPSCs) into glia may provide not only a valuable research tool for a better understanding of the functions of glia in the CNS but also a potential cellular source for clinical therapeutic purposes. In this review, we will summarize up-to-date novel strategies for the committed differentiation into the three major glial cell types, i.e., astrocyte, oligodendrocyte, and microglia, from hiPSCs, focusing on the non-neuronal cell effects on the pathology of some representative neurological diseases. Furthermore, the application of hiPSC-derived glial cells in neurological disease modeling will be discussed, so as to gain further insights into the development of new therapeutic targets for treatment of neurological disorders.
Collapse
Affiliation(s)
- Wei Zheng
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Qian Li
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Chao Zhao
- Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Beijing, China
| | - Zhiguo Chen
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
43
|
Liu X, Zhao G, Chen Z, Panhwar F, He X. Dual Suppression Effect of Magnetic Induction Heating and Microencapsulation on Ice Crystallization Enables Low-Cryoprotectant Vitrification of Stem Cell-Alginate Hydrogel Constructs. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16822-16835. [PMID: 29688697 PMCID: PMC6054798 DOI: 10.1021/acsami.8b04496] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Stem cells microencapsulated in hydrogel as stem cell-hydrogel constructs have wide applications in the burgeoning cell-based medicine. Due to their short shelf life at ambient temperature, long-term storage or banking of the constructs is essential to the "off-the-shelf" ready availability needed for their widespread applications. As a high-efficiency, easy-to-operate, low-toxicity, and low-cost method for long-term storage of the constructs, low-cryoprotectant (CPA) vitrification has attracted tremendous attention recently. However, we found many cells in the stem cell-alginate constructs (∼500 μm in diameter) could not attach to the substrate post low-CPA vitrification with ∼2 M penetrating CPAs. To address this problem, we introduced nanowarming via magnetic induction heating (MIH) of Fe3O4 nanoparticles to minimize recrystallization and devitrification during the warming step of the low-CPA vitrification procedure. Our results indicate that high-quality stem cell-alginate hydrogel constructs with an intact microstructure, high immediate cell survival (>80%), and greatly improved attachment efficiency (by nearly three times, 68% versus 24%) of the encapsulated cells could be obtained post-cryopreservation with nanowarming. Moreover, the cells encapsulated in the cell-hydrogel constructs post-cryopreservation maintained normal proliferation under 3D culture and retained intact biological function of multilineage differentiation. This novel low-CPA vitrification approach for cell cryopreservation enabled by the combined use of alginate hydrogel microencapsulation and Fe3O4 nanoparticles-mediated nanowarming may be valuable in facilitating the widespread application of stem cells in the clinic.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Zhongrong Chen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Fazil Panhwar
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
44
|
Armentano I, Puglia D, Luzi F, Arciola CR, Morena F, Martino S, Torre L. Nanocomposites Based on Biodegradable Polymers. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E795. [PMID: 29762482 PMCID: PMC5978172 DOI: 10.3390/ma11050795] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023]
Abstract
In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018) are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes). Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors' contribution to the state of the art in the field of biodegradable polymeric nanocomposites.
Collapse
Affiliation(s)
- Ilaria Armentano
- Department of Ecological and Biological Sciences, Tuscia University, 01100 Viterbo, Italy.
| | - Debora Puglia
- Civil and Environmental Engineering Department, Materials Engineering Center, University of Perugia, UdR INSTM, 05100 Terni, Italy.
| | - Francesca Luzi
- Civil and Environmental Engineering Department, Materials Engineering Center, University of Perugia, UdR INSTM, 05100 Terni, Italy.
| | - Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, 40136 Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy.
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy.
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy.
| | - Luigi Torre
- Civil and Environmental Engineering Department, Materials Engineering Center, University of Perugia, UdR INSTM, 05100 Terni, Italy.
| |
Collapse
|
45
|
hPSC-Derived Striatal Cells Generated Using a Scalable 3D Hydrogel Promote Recovery in a Huntington Disease Mouse Model. Stem Cell Reports 2018; 10:1481-1491. [PMID: 29628395 PMCID: PMC5995679 DOI: 10.1016/j.stemcr.2018.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 01/05/2023] Open
Abstract
Huntington disease (HD) is an inherited, progressive neurological disorder characterized by degenerating striatal medium spiny neurons (MSNs). One promising approach for treating HD is cell replacement therapy, where lost cells are replaced by MSN progenitors derived from human pluripotent stem cells (hPSCs). While there has been remarkable progress in generating hPSC-derived MSNs, current production methods rely on two-dimensional culture systems that can include poorly defined components, limit scalability, and yield differing preclinical results. To facilitate clinical translation, here, we generated striatal progenitors from hPSCs within a fully defined and scalable PNIPAAm-PEG three-dimensional (3D) hydrogel. Transplantation of 3D-derived striatal progenitors into a transgenic mouse model of HD slowed disease progression, improved motor coordination, and increased survival. In addition, the transplanted cells developed an MSN-like phenotype and formed synaptic connections with host cells. Our results illustrate the potential of scalable 3D biomaterials for generating striatal progenitors for HD cell therapy. 3D-generated striatal cells rapidly achieve functional maturity Transplanted cells delayed disease onset and alleviated symptoms in HD mice Transplanted striatal cells increased lifespan in HD mice HTT aggregates were observed in striatal cells transplanted into HD mice
Collapse
|
46
|
Yue Y, Zhang L, Qu Y, Mu DZ. [Neuroprotective effects of oligodendrocyte precursor cells on white matter damage in preterm infants]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:326-331. [PMID: 29658460 PMCID: PMC7390025 DOI: 10.7499/j.issn.1008-8830.2018.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
White matter damage, characterized by demyelination due to the damage of oligodendrocyte precursor cells (OPCs), is the most common type of brain damage in preterm infants. Survivors are often subject to long-term neurodevelopmental sequelae because of the lack of effective treatment. In recent years, it has been found that cell transplantation has the potential for the treatment of white matter damage. OPCs are frequently used cells in cell transplantation therapy. With abilities of migration and myelinization, OPCs are the best seed cells for the treatment of white matter damage. Several studies have found that OPCs may not only replace impaired cells to reconstruct the structure and function of white matter, but also inhibit neuronal apoptosis, promote the proliferation of endogenous neural stem cells, and enhance the repairment of the blood-brain barrier. However, the clinical application of OPC transplantation therapy faces many challenges, such as the effectiveness, risk of tumorigenesis and immune rejection. With reference to these studies, this article reviewed the development of myelination, the obtainment of OPCs, the therapeutic mechanism as well as application research, and analyzed the current challenges of OPC transplantation, in order to provide a new direction for clinical treatment of white matter damage in preterm infants.
Collapse
Affiliation(s)
- Yan Yue
- Department of Pediatrics, West China Second University Hospital/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China.
| | | | | | | |
Collapse
|
47
|
Dolci S, Pino A, Berton V, Gonzalez P, Braga A, Fumagalli M, Bonfanti E, Malpeli G, Pari F, Zorzin S, Amoroso C, Moscon D, Rodriguez FJ, Fumagalli G, Bifari F, Decimo I. High Yield of Adult Oligodendrocyte Lineage Cells Obtained from Meningeal Biopsy. Front Pharmacol 2017; 8:703. [PMID: 29075188 PMCID: PMC5643910 DOI: 10.3389/fphar.2017.00703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/21/2017] [Indexed: 12/25/2022] Open
Abstract
Oligodendrocyte loss can lead to cognitive and motor deficits. Current remyelinating therapeutic strategies imply either modulation of endogenous oligodendrocyte precursors or transplantation of in vitro expanded oligodendrocytes. Cell therapy, however, still lacks identification of an adequate source of oligodendrocyte present in adulthood and able to efficiently produce transplantable cells. Recently, a neural stem cell-like population has been identified in meninges. We developed a protocol to obtain high yield of oligodendrocyte lineage cells from one single biopsy of adult rat meningeal tissue. From 1 cm2 of adult rat spinal cord meninges, we efficiently expanded a homogenous culture of 10 millions of meningeal-derived oligodendrocyte lineage cells in a short period of time (approximately 4 weeks). Meningeal-derived oligodendrocyte lineage cells show typical mature oligodendrocyte morphology and express specific oligodendrocyte markers, such as galactosylceramidase and myelin basic protein. Moreover, when transplanted in a chemically demyelinated spinal cord model, meningeal-derived oligodendrocyte lineage cells display in vivo-remyelinating potential. This oligodendrocyte lineage cell population derives from an accessible and adult source, being therefore a promising candidate for autologous cell therapy of demyelinating diseases. In addition, the described method to differentiate meningeal-derived neural stem cells into oligodendrocyte lineage cells may represent a valid in vitro model to dissect oligodendrocyte differentiation and to screen for drugs capable to promote oligodendrocyte regeneration.
Collapse
Affiliation(s)
- Sissi Dolci
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Annachiara Pino
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Valeria Berton
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Pau Gonzalez
- Group of Molecular Neurology, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Alice Braga
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elisabetta Bonfanti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Giorgio Malpeli
- Section of General and Pancreatic Surgery, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Francesca Pari
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Stefania Zorzin
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Clelia Amoroso
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Denny Moscon
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
48
|
Kroehne V, Tsata V, Marrone L, Froeb C, Reinhardt S, Gompf A, Dahl A, Sterneckert J, Reimer MM. Primary Spinal OPC Culture System from Adult Zebrafish to Study Oligodendrocyte Differentiation In Vitro. Front Cell Neurosci 2017; 11:284. [PMID: 28959189 PMCID: PMC5603699 DOI: 10.3389/fncel.2017.00284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/31/2017] [Indexed: 01/24/2023] Open
Abstract
Endogenous oligodendrocyte progenitor cells (OPCs) are a promising target to improve functional recovery after spinal cord injury (SCI) by remyelinating denuded, and therefore vulnerable, axons. Demyelination is the result of a primary insult and secondary injury, leading to conduction blocks and long-term degeneration of the axons, which subsequently can lead to the loss of their neurons. In response to SCI, dormant OPCs can be activated and subsequently start to proliferate and differentiate into mature myelinating oligodendrocytes (OLs). Therefore, researchers strive to control OPC responses, and utilize small molecule screening approaches in order to identify mechanisms of OPC activation, proliferation, migration and differentiation. In zebrafish, OPCs remyelinate axons of the optic tract after lysophosphatidylcholine (LPC)-induced demyelination back to full thickness myelin sheaths. In contrast to zebrafish, mammalian OPCs are highly vulnerable to excitotoxic stress, a cause of secondary injury, and remyelination remains insufficient. Generally, injury induced remyelination leads to shorter internodes and thinner myelin sheaths in mammals. In this study, we show that myelin sheaths are lost early after a complete spinal transection injury, but are re-established within 14 days after lesion. We introduce a novel, easy-to-use, inexpensive and highly reproducible OPC culture system based on dormant spinal OPCs from adult zebrafish that enables in vitro analysis. Zebrafish OPCs are robust, can easily be purified with high viability and taken into cell culture. This method enables to examine why zebrafish OPCs remyelinate better than their mammalian counterparts, identify cell intrinsic responses, which could lead to pro-proliferating or pro-differentiating strategies, and to test small molecule approaches. In this methodology paper, we show efficient isolation of OPCs from adult zebrafish spinal cord and describe culture conditions that enable analysis up to 10 days in vitro. Finally, we demonstrate that zebrafish OPCs differentiate into Myelin Basic Protein (MBP)-expressing OLs when co-cultured with human motor neurons differentiated from induced pluripotent stem cells (iPSCs). This shows that the basic mechanisms of oligodendrocyte differentiation are conserved across species and that understanding the regulation of zebrafish OPCs can contribute to the development of new treatments to human diseases.
Collapse
Affiliation(s)
- Volker Kroehne
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität DresdenDresden, Germany
| | - Vasiliki Tsata
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität DresdenDresden, Germany
| | - Lara Marrone
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität DresdenDresden, Germany
| | - Claudia Froeb
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität DresdenDresden, Germany
| | - Susanne Reinhardt
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität DresdenDresden, Germany.,Deep Sequencing Group, Center for Molecular and Cellular Bioengineering (CMCB), Biotechnologisches Zentrum (BIOTEC), Technische Universität DresdenDresden, Germany
| | - Anne Gompf
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität DresdenDresden, Germany
| | - Andreas Dahl
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität DresdenDresden, Germany.,Deep Sequencing Group, Center for Molecular and Cellular Bioengineering (CMCB), Biotechnologisches Zentrum (BIOTEC), Technische Universität DresdenDresden, Germany
| | - Jared Sterneckert
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität DresdenDresden, Germany
| | - Michell M Reimer
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität DresdenDresden, Germany
| |
Collapse
|
49
|
Chung K. Accelerating the production of insulating brain cells. Sci Transl Med 2017; 9:9/398/eaan8203. [PMID: 28701477 DOI: 10.1126/scitranslmed.aan8203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A 3D hydrogel enables rapid and scalable production of oligodendrocyte progenitor cells for transplantation to treat demyelination diseases.
Collapse
Affiliation(s)
- Kwanghun Chung
- Department of Chemical Engineering, Institute for Medical Engineering and Science (IMES), Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
50
|
Temple S. Cultivating a Robust Stem Cell Field. Stem Cell Reports 2017; 8:1455-1456. [PMID: 28591646 PMCID: PMC5470339 DOI: 10.1016/j.stemcr.2017.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|