1
|
Almatary AM, Salem MSH, Elnagar MR, Aboutaleb MH, Ibrahim TS, Hamdi A, El-Sayed MAA. Dialkyloxyphenyl hybrids as PDE4B inhibitors: Design, synthesis, in vitro/in vivo anti-inflammatory activity and in silico insights. Bioorg Chem 2025; 161:108511. [PMID: 40311245 DOI: 10.1016/j.bioorg.2025.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
A series of novel dialkyloxyphenyl hybrids 11a-11h and 12a-12c were designed and synthesized as PDE4 inhibitors with anti-inflammatory activity. All compounds demonstrated nanomolar-range inhibitory activity against both PDE4B and PDE4D isoforms with notable selectivity for PDE4B. The 3,4-dimethoxyphenyl derivative 11e exhibited superior PDE4B inhibitory activity (IC50 = 2.82 nM), with nine-fold selectivity compared to 1.5 of Rolipram. In TNF-α inhibition assays, 11e demonstrated remarkable potency (IC50 = 7.20 nM), comparable to roflumilast, followed by 11d (IC50 = 15.54 nM) and 11b (IC50 = 28.52 nM). In vivo evaluation using LPS-induced sepsis model revealed that 11e achieved the highest inhibition of both TNF-α (52.19 %) and neutrophilia (56.47 %) compared to reference compounds. Molecular docking and dynamics studies revealed that hybrids 11b, 11d, and 11e exhibit a characteristic binding mode within the PDE4 active sites, rationalizing their activity through specific interactions, and demonstrating higher stability in the active site compared to Roflumilast.
Collapse
Affiliation(s)
- Aya M Almatary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt.
| | - Mohamed S H Salem
- SANKEN, The University of Osaka, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, 4.5 Km the Ring Road, Ismailia 41522, Egypt
| | - Mohamed R Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt; Department of Pharmacology, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
| | - Mohamed H Aboutaleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Abdelrahman Hamdi
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt.
| | - Magda A-A El-Sayed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt; Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Wang J, Ho M, Bunick CG. Chemical, Biochemical, and Structural Similarities and Differences of Dermatological cAMP Phosphodiesterase-IV Inhibitors. J Invest Dermatol 2025; 145:1471-1488.e1. [PMID: 39608668 PMCID: PMC12103293 DOI: 10.1016/j.jid.2024.10.597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Roflumilast, the third phosphodiesterase-IV (PDE4) inhibitor approved for use in dermatology, is indicated for topical treatment of psoriasis, seborrheic dermatitis, and atopic dermatitis, whereas its 2 predecessors, apremilast and crisaborole, are indicated for oral treatment of psoriasis and topical treatment of atopic dermatitis, respectively. All 3 are rationally designed PDE4 inhibitors, but roflumilast is the most potent and effective among the 3, with in vitro inhibitory constant half-maximal inhibitory concentration value of 0.7 nM (roflumilast), 0.14 μM (apremilast), and 0.24 μM (crisaborole), representing differences of over 3 orders of magnitude. PDE4 is a cAMP (an intracellular secondary messenger) hydrolase consisting of at least 4 subtypes of exon-spliced isoforms, which are primarily expressed in immune cells for inflammatory response. PDE4 inhibition lengthens the duration of cAMP signals and increases cellular cAMP concentrations, generating anti-inflammatory effects. We examined the physicochemical principles that make PDE4 inhibitors effective and propose chemical modifications to improve them. Sequence alignment of the catalytic domains of all phosphodiesterases identified many previously unreported invariant residues. These residues bind 1 Zn and 1 Mg ion plus 5 structural water molecules for orienting an attacking μ-hydroxyl/μ-oxo anion and for stabilizing 2 nonbridging phosphate oxygen atoms. The arrangement of the 2 divalent metal ions in phosphodiesterases is not related to that of the classic mechanism for general phosphoryl transfer.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA.
| | - Minh Ho
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christopher G Bunick
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Program in Translational Biomedicine, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
3
|
Mao T, Gao J, Jia J, Zou F, Wang K, Wang Y, Li J, Shen T, Li H. Small-molecule inhibitors in psoriasis: medicinal chemistry insights. Expert Opin Drug Discov 2025:1-22. [PMID: 40380777 DOI: 10.1080/17460441.2025.2507767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/17/2025] [Accepted: 05/14/2025] [Indexed: 05/19/2025]
Abstract
INTRODUCTION Psoriasis is a prevalent and widespread chronic immune disease and i s impacted by several variables. Although various medicines with diverse modes of operation have been licensed for the medical management of psoriasis, the ongoing investigation into its pathophysiological mechanisms, along with challenges related to administration and cost, has led to the increasing preference for new small molecule medications, namely janus kinase (JAK) and phosphodiesterase 4 (PDE4) inhibitors, in systemic therapy research. AREAS COVERED This review takes a medicinal chemistry perspective to comprehensively explore the development as psoriasis therapy targets for small molecule inhibitors of JAK and PDE4. We describe the chemical space explored by medicinal chemists from 2010 to 2024, with particular emphasis on the importance of inhibitors with diverse scaffolds in studies of selectivity, potency and binding modes. EXPERT OPINION Advancements in psoriasis treatment have shifted focus toward small-molecule drugs, such as JAK and PDE4 inhibitors, which offer advantages over biologics, including oral administration, improved cost-effectiveness, and reduced immunogenicity. Structural optimization based on receptor proteins and combination therapies further enhance drug performance and safety. Preclinical and clinical studies indicate that these strategies hold promise for developing more targeted, safer, and more effective treatments for psoriasis.
Collapse
Affiliation(s)
- Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jingjing Gao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jie Jia
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fengxia Zou
- College Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Kai Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yiyun Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jiyu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Tao Shen
- College Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Hu Q, Tang L, Xu Z, Yan F, Song G, Feng X. Design, Synthesis, and Biological Activity of 8-Hydroxyurolithin A Class PDE2 Inhibitors. Chem Biol Drug Des 2025; 105:e70119. [PMID: 40432205 DOI: 10.1111/cbdd.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 05/29/2025]
Abstract
Urolithin A (UA) is a dibenzo[b,d]pyran-6-one polyhydroxy derivative produced as intestinal microbe metabolize ellagitannin and ellagic acid. Because of its superior anti-inflammatory and antioxidant effects, it can cure neuronal damage in a variety of ways and play a neuroprotective role. More and more research has revealed that UA is a potential medicine for the treatment of neurodegenerative diseases. Due to UA source limitations, it is insufficient to achieve disease treatment concentrations, and the activity of UA inhibiting PDE2 needs further enhancement. As a result, we used UA as the parent nucleus structure, independently designed and used Discovery Studio software to assist in the structural design and molecular docking screening of the compounds, and tested the in vitro enzyme activity of the synthesized compounds, hoping to obtain UA-based PDE2 inhibitors. The IC50 of 6-18, 6-19, 6-20, 6-22, and 6-29 were 0.62, 0.85, 1.51, 1.09, and 1.58 μM, respectively. In this study, UA derivatives that can bind to the crystal structure of PDE2 protein 4HTX were proposed, which laid a groundwork for further structural modification, lead design, and development of small molecule inhibitors with inhibitory activity of PDE2.
Collapse
Affiliation(s)
- Qiulin Hu
- School of Pharmacy and School of Biological and Food Engineering, Changzhou University, Changzhou, China
| | - Long Tang
- School of Pharmacy and School of Biological and Food Engineering, Changzhou University, Changzhou, China
| | - Zhongqiu Xu
- School of Pharmacy and School of Biological and Food Engineering, Changzhou University, Changzhou, China
| | - Fen Yan
- School of Pharmacy and School of Biological and Food Engineering, Changzhou University, Changzhou, China
| | - Guoqiang Song
- School of Pharmacy and School of Biological and Food Engineering, Changzhou University, Changzhou, China
| | - Xiaoqing Feng
- School of Pharmacy and School of Biological and Food Engineering, Changzhou University, Changzhou, China
| |
Collapse
|
5
|
Zhang F, Zheng T, Wang X, Chen Y, Zhang F, Liu X, Wang S, Yang G, Xie S, Wu Q, Xu C, Zhou Q, Wu D, Luo HB, Huang YY. Structure-Based Optimization of Moracin M as Potent and Selective PDE4 Inhibitors with Antipsoriasis Effects. J Med Chem 2025; 68:6789-6803. [PMID: 40066994 DOI: 10.1021/acs.jmedchem.5c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Psoriasis is a complex chronic inflammatory disease that severely affects the quality of life of patients. However, current medications could only control the symptoms but not cure psoriasis with unmet medical needs. Herein, structure-based optimizations of natural product moracin M (IC50 of 2.9 μM) led to a novel PDE4 inhibitor L30 with greatly improved potency (IC50 of 8.6 nM) and remarkable selectivity across other PDEs families (>201-fold). The binding pattern of L30 with PDE4 revealed by cocrystal structure was different from that of roflumilast. Besides, L30 could effectively inhibit the release of inflammatory cytokines and chemokines in Raw264.7 and HaCaT cell lines. Furthermore, topical administration of L30 exhibited significant therapeutic effects in an imiquimod-induced psoriasis mouse model. These findings highlighted the potential of PDE4 inhibitor L30 as a novel lead for the treatment of psoriasis.
Collapse
Affiliation(s)
- Furong Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- School of Life and Health Science, Hainan University, Haikou 570228, China
| | - Tiansheng Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xue Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yu Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Feng Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xingfu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Sen Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Guofeng Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Shenghong Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Qi Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Chao Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Qian Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Deyan Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Yi-You Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Swapna B, Kotha S, Selvaraj D, Ramachandra S, Acharya A. Probing the dark chemical matter against PDE4 for the management of psoriasis using in silico, in vitro and in vivo approach. Mol Divers 2025:10.1007/s11030-025-11159-w. [PMID: 40095248 DOI: 10.1007/s11030-025-11159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
The potential downsides for the present treatment for psoriasis are drug resistance, reduced efficacy, risk of mental episodes, and drug interactions. Hence, this study aims to discover a new drug for psoriasis by considering global research efforts and exploring underrepresented chemical space regions. The objective was to identify novel PDE4D inhibitors from the dark chemical matter (DCM) database for treating psoriasis. To address this we have coupled molecular docking and pharmacophore screening with molecular dynamics (MD) to identify hit molecules. Additionally, pharmacokinetics optimization was performed using machine learning and artificial intelligence which are key parts of drug discovery and development processes. The 139,353 DCM molecules were evaluated for their binding mode and interaction with critical residues such as GLN369, ILE336, PHE340, and PHE372 of the phosphodiesterase-4D (PDE4D) enzyme. Here, 15 hits were obtained through successive virtual screening procedures and all the 15 molecules were subjected to MD simulations for hit identification. In the MD studies, a stable root mean square deviation (RMSD) and ligand-protein interactions were found with four molecules, namely 027230, 060628, 060576, and 085881. The ligand 085881 was found promising because it inhibits LPS-induced IL-6 and TNF-alpha secretion from THP-1 cells with IC50 of 18.41 μM and 34.43 μM, respectively. In vivo erythema grading showed that 085881 possesses mild to moderate anti-psoriatic action. This study demonstrates the effective use of computational techniques to discover novel PDE4D inhibitors and provides insight into their therapeutic potential for treating inflammatory diseases such as psoriasis.
Collapse
Affiliation(s)
- B Swapna
- Department of Pharmacology, Government College of Pharmacy, Bengaluru, Karnataka, India.
| | - Satvik Kotha
- Department of Pharmacology, Government College of Pharmacy, Bengaluru, Karnataka, India
| | - Divakar Selvaraj
- Department of Pharmacology, Prime College of Pharmacy, Erattayal, Palakkad, Kerala, India
| | | | - Aruna Acharya
- Department of Pharmacology, Government College of Pharmacy, Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Teo LTK, Juantuah-Kusi N, Subramanian G, Sampath P. Psoriasis Treatments: Emerging Roles and Future Prospects of MicroRNAs. Noncoding RNA 2025; 11:16. [PMID: 39997616 PMCID: PMC11858470 DOI: 10.3390/ncrna11010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Psoriasis, a widespread and chronic inflammatory skin disorder, is marked by its persistence and the lack of a definitive cure. The pathogenesis of psoriasis is increasingly understood, with ongoing research highlighting the intricate interplay of genetic, immunological, and environmental factors. Recent advancements have illuminated the pivotal role of microRNAs in orchestrating complex processes in psoriasis and other hyperproliferative skin diseases. This narrative review highlights the emerging significance of miRNAs as key regulators in psoriasis pathogenesis and examines their potential as therapeutic targets. We discuss current treatment approaches and the promising future of miRNAs as next-generation therapeutic agents for this condition.
Collapse
Affiliation(s)
- Li Tian Keane Teo
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington, London SW7 2AZ, UK
| | - Nerissa Juantuah-Kusi
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Gowtham Subramanian
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
- Skin Research Institute of Singapore (SRIS), 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore 308232, Singapore
| | - Prabha Sampath
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
- Skin Research Institute of Singapore (SRIS), 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore 308232, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
8
|
Kwak HJ, Nam KH. Molecular Properties of Phosphodiesterase 4 and Its Inhibition by Roflumilast and Cilomilast. Molecules 2025; 30:692. [PMID: 39942796 PMCID: PMC11820465 DOI: 10.3390/molecules30030692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Phosphodiesterase 4 (PDE4) catalyzes cyclic adenosine monophosphate (cAMP) hydrolysis, playing a crucial role in the cAMP signaling pathway. cAMP is a secondary messenger involved in numerous physiological functions, such as inflammatory responses, immune responses, neural activity, learning, and memory. PDE4 inhibition is important for controlling anti-inflammatory and neuroprotective effects. In this review, we provide a comprehensive overview of the molecular functions and properties of human PDE4s. The study presents detailed sequence information for the PDE4 isoforms and the structural properties of the catalytic domain in members of the PDE4 family. We also review the inhibitory effects of the PDE4 inhibitors roflumilast and cilomilast related to respiratory diseases in PDE4. The crystal structures of PDE4 in complex with roflumilast and cilomilast are also analyzed. This review provides useful information for the future design of novel PDE4 inhibitors.
Collapse
Affiliation(s)
- Hyun Jeong Kwak
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Ki Hyun Nam
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
9
|
Zhong J, Yu X, Lin Z. Phosphodiesterase 4 inhibition as a novel treatment for stroke. PeerJ 2025; 13:e18905. [PMID: 39897494 PMCID: PMC11786714 DOI: 10.7717/peerj.18905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
The incidence of stroke ranks third among the leading causes of mortality worldwide. It has the characteristics of high morbidity, high disability rate and high recurrence rate. The current risk associated with stroke surgery is exceedingly high. It may potentially outweigh the benefits and fail to ameliorate the cerebral tissue damage following ischemia. Therefore, pharmacological intervention assumes paramount importance. The use of thrombolytic drugs is most common in the treatment of stroke; however, its efficacy is limited due to its time-sensitive nature and propensity for increased bleeding. Over the past few years, the treatment of stroke has witnessed a surge in interest towards neuroprotective drugs that possess the potential to enhance neurological function. The PDE4D gene has been demonstrated to have a positive correlation with the risk of ischemic stroke. Additionally, the utilization of phosphodiesterase 4 inhibitors can enhance synaptic plasticity within the neural circuitry, regulate cellular metabolism, and prevent secondary brain injury caused by impaired blood flow. These mechanisms collectively facilitate the recovery of functional neurons, thereby serving as potential therapeutic interventions. Therefore, the comprehensive investigation of phosphodiesterase 4 as an innovative pharmacological target for stroke injury provides valuable insights into the development of therapeutic interventions in stroke treatment. This review is intended for, but not limited to, pharmacological researchers, drug target researchers, neurologists, neuromedical researchers, and behavioral scientists.
Collapse
Affiliation(s)
- Jiahong Zhong
- Department of Clinical Pharmacy, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Xihui Yu
- Department of Pharmacy, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhuomiao Lin
- Department of Clinical Pharmacy, Meizhou People’s Hospital, Meizhou, Guangdong, China
| |
Collapse
|
10
|
Roy D, Balasubramanian S, Kunte PP, Natarajan J, Sola P, Rymbai E, R PKM. Roflumilast-loaded nanostructured lipid carriers attenuate oxidative stress and neuroinflammation in Parkinson's disease model. J Drug Target 2025; 33:127-142. [PMID: 39316825 DOI: 10.1080/1061186x.2024.2408724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/08/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with limited symptomatic treatment options. Targeting phosphodiesterase 4 (PDE4) has shown a promising result in several preclinical studies. In our study, we aim to repurpose US FDA-approved PDE4 inhibitor for PD. Through in-silico study, we identified roflumilast (ROF) as the potential candidate targeting PDE4B2. In Drosophila PD expressing the A30P mutant α-synuclein model, ROF exhibited anti-PD effects as indicated by negative geotaxis and antioxidant activities. Given the low brain distribution of ROF (<50%) at clinical doses, incorporation into nanostructured lipid carriers (NLCs) was carried out to enhanced blood-brain barrier permeability. In vitro release studies indicated sustained ROF release from NLCs (≈75%) over 24 h. Single-dose oral toxicity studies reported no mortality or toxicity signs. ROF-loaded NLCs significantly alleviated behavioural deficits, increased antioxidant parameters (p < 0.05), and reduced TNF-α and IL-6 levels (p < 0.5) in the striatum compared to pure ROF. ROF-loaded NLCs demonstrated potential anti-PD effects with high efficacy than pure ROF. Our study suggests that nanostructured lipid carriers (NLCs) can be a promising drug delivery system to overcome limitations associated with poor brain bioavailability of lipophilic drugs like ROF for PD treatment. Further investigation related to brain occupancy and underlying mechanisms of our formulation is warranted to confirm and strengthen our current findings.
Collapse
Affiliation(s)
- Dhritiman Roy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Shivaramakrishnan Balasubramanian
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Prajwal P Kunte
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Jawahar Natarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Piyong Sola
- Department of Pharmacology, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Praharsh Kumar M R
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
11
|
Li G, He D, Qian X, Liu Y, Ou Y, Li M, Song L, Xu Z, Zhang G, Wang J, Pan W, Chen J, Zhang Y, Wu JQ, Chen D, Chen C, Peng S, Yao H, Ke H. Development of selective heterocyclic PDE4 inhibitors for treatment of psoriasis. Eur J Med Chem 2024; 280:116930. [PMID: 39383652 DOI: 10.1016/j.ejmech.2024.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Psoriasis is a chronic autoimmune disease that badly affects the life quality of patients and their families. Inadequate efficacy, safety risks, high cost and low compliance of current psoriasis drugs urge development of novel small molecular drugs. In this study, two series of 37 novel compounds were designed and synthesized as inhibitors of phosphodiesterase 4 (PDE4) that specifically hydrolyzes second messenger cAMP and is an effective target for treatment of inflammatory diseases. Comprehensive structural-activity optimization led to finding of inhibitor 2e with IC50 = 2.4 nM for PDE4D and >4100-fold selectivity over other PDE families. Compound 2e inhibited the release of TNF-α (IC50 = 21.36 μM) and IL-6 (IC50 = 29.22 μM) in the LPS-stimulated Raw264.7 cells. Topical application of 2e exhibited remarkable therapeutic efficacy in imiquimod-induced psoriasis mice model, suggesting that 2e is a strong drug candidate for treatment of psoriasis.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Xudong Qian
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Yuanhui Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yanghui Ou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Liyan Song
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Zichen Xu
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, China
| | - Guoping Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Jun Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Wei Pan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Jiaxin Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Jia-Qiang Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Dandan Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Cheng Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Siying Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
12
|
Zhao X, Hu Q, Wang X, Li C, Chen X, Zhao D, Qiu Y, Xu H, Wang J, Ren L, Zhang N, Li S, Gong P, Hou Y. Dual-target inhibitors based on acetylcholinesterase: Novel agents for Alzheimer's disease. Eur J Med Chem 2024; 279:116810. [PMID: 39243456 DOI: 10.1016/j.ejmech.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly, accounting for 60 %-70 % of cases. At present, the pathogenesis of this condition remains unclear, but the hydrolysis of acetylcholine (ACh) is thought to play a role. Acetylcholinesterase (AChE) can break down ACh transmission from the presynaptic membrane and stop neurotransmitters' excitatory effect on the postsynaptic membrane, which plays a key role in nerve conduction. Acetylcholinesterase inhibitors (AChEIs) can delay the hydrolysis of acetylcholine (ACh), which represents a key strategy for treating AD. Due to its complex etiology, AD has proven challenging to treat. Various inhibitors and antagonists targeting key enzymes and proteins implicated in the disease's pathogenesis have been explored as potential therapeutic agents. These include Glycogen Synthase Kinase 3β (GSK-3β) inhibitors, β-site APP Cleaving Enzyme (BACE-1) inhibitors, Monoamine Oxidase (MAO) inhibitors, Phosphodiesterase inhibitors (PDEs), N-methyl--aspartic Acid (NMDA) antagonists, Histamine 3 receptor antagonists (H3R), Serotonin receptor subtype 4 (5-HT4R) antagonists, Sigma1 receptor antagonists (S1R) and soluble Epoxide Hydrolase (sEH) inhibitors. The drug development strategy of multi-target-directed ligands (MTDLs) offers unique advantages in the treatment of complex diseases. On the one hand, it can synergistically enhance the therapeutic efficacy of single-target drugs. On the other hand, it can also reduce the side effects. In this review, we discuss the design strategy of dual inhibitors based on acetylcholinesterase and the structure-activity relationship of these drugs.
Collapse
Affiliation(s)
- Xingyi Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qiaoguan Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiaoqian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Chunting Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiao Chen
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Dong Zhao
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yue Qiu
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Haoyu Xu
- Yangtze River Pharmaceutical (Group) CO., Ltd. NO.1 South Yangtze River Road, Taizhou City, Jiangsu Province, 225321, China
| | - Jiaqi Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Le Ren
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Na Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Shuang Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Ping Gong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
13
|
Moussa AM, Abdelrasheed Allam H, El-Ashrey MK, Fouad MA, Al-Karmalawy AA. Rationale design and synthesis of new roflumilast analogues as preferential selective and potent PDE-4B inhibitors. Bioorg Chem 2024; 153:107911. [PMID: 39467506 DOI: 10.1016/j.bioorg.2024.107911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
In this study, we designed and synthesized novel analogues of roflumilast that exhibit selective inhibition of PDE-4B. To accomplish this target; synthesis of novel series (4a-u, 5a-i, and 6) was done, aiming at obtaining new PDE-4B inhibitors hits based on the proposed pharmacophore, 1-(cyclopropylmethoxy)-2-(difluoromethoxy) benzene moiety. Enzyme assay was used to measure the IC50 values for the PDE-4B inhibition of all the synthesized compounds along with roflumilast as a reference drug. The results demonstrated that most of the examined candidates exhibited considerable inhibitory activity against the PDE-4B enzyme. The four compounds (4i, 4k, 4p, and 4q) exhibited the highest potency (IC50 = 7.25, 7.15, 5.50, 7.19 nM, respectively) with no significant inhibition difference from roflumilast (no statistical difference at p < 0.05). Interestingly, compound 4p with 3-OH and 4-OCH3 substituents was found to be the most potent against PDE-4B enzyme (IC50 = 5.50 nM), compared to that of roflumilast (IC50 = 2.36 nM). Moreover, the most potent derivatives 4i, 4k, 4p, and 4q were further tested for PDE-4D inhibitory activity to investigate their PDE-4D/PDE-4B selectivity ratio. Compound 4k showed the highest selectivity towards PDE-4B isozyme more than the reference drug roflumilast (PDE-4D/4B IC50 ratio for compound 4k and roflumilast = 3.22 and 3.02, respectively). Additionally, compound 4p was chosen to test its selectivity for PDE-4B over PDE-8A, PDE-11A, and PDE-1B compared to thereference drug roflumilast. Compound 4p showed approximately 6-fold selectivity for PDE-4B over PDE-8A, about 5-fold selectivity for PDE-4B over PDE-11A, and about 11-fold selectivity of PDE-4B over PDE-1B. Compound 4p showed a higher selectivity towards PDE-4B than PDE-1B, more than the reference compound roflumilast. Furthermore, the most potent compounds (4i, 4k, 4p, 4q) were subjected to further investigation, and their effects on the cAMP level and percentage of inhibition of tumor necrosis factor-alpha (TNF-α) were studied and compared with reference drug roflumilast. Compound 4q showed the highest increase in the level of intracellular cAMP (6.55 ± 0.37 pmol/mL) and compound 4i showed the highest % of TNF-α inhibition (77.22 %). On the other side, a molecular docking study against PDE-4B clarified that all the examined candidates achieved nearly similar binding modes with similar orientations to that of the native roflumilast ligand and showed higher docking scores than roflumilast.
Collapse
Affiliation(s)
- Ahmed M Moussa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt.
| | - Mohamed K El-Ashrey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt; Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, South Sinai 46612, Egypt
| | - Marwa A Fouad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt; Pharmaceutical Chemistry Department, School of Pharmacy, Newgiza University, Newgiza, km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq, Baghdad 10023, Iraq.
| |
Collapse
|
14
|
Jiang MY, Zhang C, Huang QH, Feng LL, Yang YY, Zhou Q, Luo HB, Wu Y. Discovery of Selective PDE1 Inhibitors with Anti-pulmonary Fibrosis Effects by Targeting the Metal Pocket. J Med Chem 2024; 67:20203-20213. [PMID: 39546471 DOI: 10.1021/acs.jmedchem.4c01533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with no ideal drugs. Our previous research demonstrated that phosphodiesterase 1 (PDE1) could be a promising target for the treatment of IPF. However, only a few selective PDE1 inhibitors are available, and the mechanism of recognition between inhibitors and the PDE1 protein is not fully understood. This study carried out a step-by-step optimization of a dihydropyrimidine hit Z94555858. By targeting the metal pocket of PDE1, a lead compound 3f was obtained, exhibiting an IC50 value of 11 nM against PDE1, moderate selectivity over other PDEs, and significant anti-fibrotic effects in bleomycin-induced pulmonary fibrosis rats. The structure-activity relationship study aided by molecular docking revealed that forming halogen bonds with water in the metal pocket greatly enhanced the PDE1 inhibition, providing a novel strategy for further rational design of PDE1 inhibitors.
Collapse
Affiliation(s)
- Mei-Yan Jiang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chen Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qing-Hua Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ling-Ling Feng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yi-Yi Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China
| | - Qian Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China
- Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Yinuo Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
15
|
He D, Li G, Wu JQ, Geng Y, Qian X, Liu Y, Ou Y, Li M, Wang J, Pan W, Zhang G, Chen D, Chen J, Xu Z, Ke H, Yao H. Design, Synthesis, and Biological Evaluation of New Selective PDE4 Inhibitors for Topical Treatment of Psoriasis. J Med Chem 2024; 67:20353-20371. [PMID: 39535061 DOI: 10.1021/acs.jmedchem.4c01804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Psoriasis is a complex and chronic inflammatory disease. Current drugs help control the symptoms of psoriasis but make no cure, urging discovery of novel drugs. We report in this paper the discovery of new phosphodiesterase 4 (PDE4) inhibitors for treatment of psoriasis. We designed and synthesized 45 new compounds, among which 14h exhibited IC50 of 0.57 nM for PDE4D and >4100-fold selectivity over other PDE families. Compound 14h inhibited release of inflammatory cytokines of TNF-α (IC50 = 34.2 μM) and IL-6 (IC50 = 40.9 μM) in Raw264.7 cells and reduced the expression of IL-1β and IL-17A in the skin of psoriasis mice. In addition, 14h alleviated IMQ-induced psoriasis in the mouse model and reduced the erythema level, scales, and thickness of the back skin of the mice. In short, our results suggested that PDE4 inhibitor 14h is a strong candidate for the topical treatment of psoriasis.
Collapse
Affiliation(s)
- Dengqin He
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Jia-Qiang Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Yan Geng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Xudong Qian
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Yuanhui Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Yanghui Ou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Jun Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Wei Pan
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Guoping Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Dandan Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Jiaxin Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Zichen Xu
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| |
Collapse
|
16
|
Xia C, Wen H, Zheng L, Ni Y, Bi H, Wang H, Xu J, Zhou ZZ. Discovery of 7-alkoxybenzofurans as PDE4 inhibitors with hepatoprotective activity in D-GalN/LPS-induced hepatic sepsis. Eur J Med Chem 2024; 275:116576. [PMID: 38861808 DOI: 10.1016/j.ejmech.2024.116576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Sepsis can quickly result in fatality for critically ill individuals, while liver damage can expedite the progression of sepsis, necessitating the exploration of new strategies for treating hepatic sepsis. PDE4 has been identified as a potential target for the treatment of liver damage. The scaffold hopping of lead compounds FCPR16 and Z19153 led to the discovery of a novel 7-methoxybenzofuran PDE4 inhibitor 4e, demonstrating better PDE4B (IC50 = 10.0 nM) and PDE4D (IC50 = 15.2 nM) inhibitor activity as a potential anti-hepatic sepsis drug in this study. Compared with FCPR16 and Z19153, 4e displayed improved oral bioavailability (F = 66 %) and longer half-life (t1/2 = 2.0 h) in SD rats, which means it can be more easily administered and has a longer-lasting effect. In the D-GalN/LPS-induced liver injury model, 4e exhibited excellent hepatoprotective activity against hepatic sepsis by decreasing ALT and AST levels and inflammatory infiltrating areas.
Collapse
Affiliation(s)
- Chuang Xia
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huizhen Wen
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lei Zheng
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yujie Ni
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huichang Bi
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Haitao Wang
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiangping Xu
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
17
|
de Moraes-Souza R, Chahine Chater R, Pera Calvi I, Mesquita Y, Sarto R, Lapenda I, Figueiredo Pereira L, Moury L, Herranz-Pinto P. Efficacy and Safety of Topical Roflumilast for the Treatment of Psoriasis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin Drug Investig 2024; 44:655-665. [PMID: 39172296 PMCID: PMC11455807 DOI: 10.1007/s40261-024-01368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND AND OBJECTIVE Plaque psoriasis is commonly treated topically with glucocorticoids and vitamin D derivatives. However, potential side effects such as skin atrophy underscore the need for safe and effective alternative topical therapies. Recently, the US Food and Drug Administration (FDA) and Health Canada approved roflumilast 0.3% cream as an option for treating this disease. A systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to assess the efficacy and safety of topical roflumilast 0.3% compared with vehicle for plaque psoriasis. METHODS PubMed, Embase, ClinicalTrials.gov, and Cochrane databases were searched from inception to 1 May 2024, assessing the outcomes of Investigator's Global Assessment (IGA) or body-IGA success (clear or almost clear status plus an at least 2-grade improvement from baseline), Psoriasis Area and Severity Index (PASI)-50, PASI-75, PASI-90, intertriginous-IGA success (clear or almost clear status on the intertriginous-IGA plus an at least 2-grade improvement from baseline), and adverse events (AEs). Statistical analysis was performed using Review Manager, R software, and RStudio. Heterogeneity was determined using the Cochran Q test and I2 statistics. RESULTS Four RCTs were included, comprising a total of 1403 patients, of whom 885 (63.1%) received topical roflumilast 0.3% and 518 (36.9%) received vehicle. At week 8, the achievement of IGA or body-IGA success was significantly higher among those treated with topical roflumilast than in the vehicle group [relative risk (RR) 5.07; 95% confidence interval (CI) 3.55-7.23; p < 0.01]. Similar findings were observed at week 8 for PASI-50 (RR 2.73; 95% CI 2.27-3.29; p < 0.01), PASI-75 (RR 4.48; 95% CI 2.26-8.89; p < 0.01), and PASI-90 (RR 5.61; 95% CI 2.57-12.25; p < 0.01). Corresponding outcomes were found at weeks 2, 4, and 6. Additionally, a higher percentage of patients treated with topical roflumilast 0.3% once daily achieved intertriginous-IGA success, compared with those receiving vehicle, at week 8 (71.9% versus 20.5%; RR 3.32; 95% CI 2.11-5.22; p < 0.01), with similar findings at weeks 2, 4, and 6. While a significant difference was observed in the overall incidence of AEs between the topical roflumilast and vehicle groups, there was no difference in treatment-related AEs, serious AEs, or AEs leading to study discontinuation. CONCLUSION These findings support the superiority of topical roflumilast 0.3% over vehicle and suggest its use as a valuable asset for the treatment of plaque psoriasis. PROTOCOL REGISTRATION International Prospective Register of Systematic Reviews (PROSPERO), CRD42023456494.
Collapse
Affiliation(s)
- Rafaela de Moraes-Souza
- Department of Dermatology, Faculty of Medicine, Autonomous University of Madrid, La Paz University Hospital, Madrid, Comunidad de Madrid, Spain
| | - Regina Chahine Chater
- Division of Medicine, Albert Einstein Israeli Faculty of Health Sciences, São Paulo, São Paulo, Brazil
| | - Izabela Pera Calvi
- Division of Medicine, Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad Oblast, Russia
| | - Yasmin Mesquita
- Division of Medicine, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Rubiana Sarto
- Division of Medicine, Nevill Hall Hospital, Abergavenny, Monmouthshire, Wales
| | - Izadora Lapenda
- Division of Medicine, Faculdade Pernambucana de Saúde, Recife, Pernambuco, Brazil
| | - Lívia Figueiredo Pereira
- Division of Medicine, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luana Moury
- Department of Dermatology, Mount Sinai Hospital, New York, New York State, USA
| | - Pedro Herranz-Pinto
- Department of Dermatology, Faculty of Medicine, Autonomous University of Madrid, La Paz University Hospital, Madrid, Comunidad de Madrid, Spain.
| |
Collapse
|
18
|
Zhang C, Xue ZH, Luo WH, Jiang MY, Wu Y. The therapeutic potential of phosphodiesterase 9 (PDE9) inhibitors: a patent review (2018-present). Expert Opin Ther Pat 2024; 34:759-772. [PMID: 38979973 DOI: 10.1080/13543776.2024.2376632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Phosphodiesterase 9 (PDE9) has been demonstrated as a potential target for neurological disorders and cardiovascular diseases, such as Alzheimer's disease and heart failure. For the last few years, a series of PDE9 inhibitors with structural diversities have been developed and patented by researchers and pharmaceutical companies, providing insights into first-in-class therapies of PDE9 drug candidates. AREA COVERED This review provides an overview of PDE9 inhibitors in patents from 2018 to the present. EXPERT OPINION Only a few of the current PDE9 inhibitors are highly selective over other PDEs, which limits their application in pharmacological and clinical research. The design and development of highly selective PDE9 inhibitors remain the top priority in future research. The advantages of targeting PDE9 rather than other PDEs in treating neurodegenerative diseases need to be explained thoroughly. Besides, application of PDE9 inhibitor-based combination therapies sheds light on treating diabetes and refractory heart diseases. Finally, PDE9 inhibitors should be further explored in clinical indications beyond neurological disorders and cardiovascular diseases.
Collapse
Affiliation(s)
- Chen Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, P. R. China
| | - Zhao-Hang Xue
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, P. R. China
| | - Wei-Hao Luo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, P. R. China
| | - Mei-Yan Jiang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yinuo Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
19
|
Maryam A, Siddiqi AR, Chaitanya Vedithi S, Ece A, Khalid RR. Identification of selective inhibitors for phosphodiesterase 5A using e-pharmacophore modelling and large-scale virtual screening-based structure guided drug discovery approaches. J Biomol Struct Dyn 2024; 42:7812-7827. [PMID: 37545162 DOI: 10.1080/07391102.2023.2242491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
The inhibition of Phosphodiesterase 5A (PDEA5) has the potential to modulate pulmonary arterial hypertension and cardiovascular diseases. Exploring the cross-reactivity of clinically available PDE5A therapeutics with PDE6A is intriguing in order to develop highly selective PDE5A compounds in cardiovascular arena. In the current study, we leveraged e-pharmacophore based screening and molecular dynamics (MD) simulation to discover more selective PDE5A inhibitors as compared to the PDE6A catalytic domain. e-Pharmacophore based mapping of the CoCoCo database (7 million compounds: ∼ 150,000,000 conformers), followed by Glide docking, MM-GBSA, and protein-inhibitor interaction analysis, revealed 1536427, 4832637 and 6788240 as stable, tight binders of PDE5A instead of PDE6A. These compounds adhere to Lipinski Rule of Five (RO5) and ADME/Tox criteria. MD simulations analysis showed that 1536427 stays stable and tightly binds to catalytic (Q-region) core of PDE5A catalytic domain as compared to sildenafil. Pronounced inward motions of the hydrophobic (H-region) and Lid region indicate the closure of PDE5A-1536427 complex, whereas this region in PDE6A-1536427 is more open. Significant differences in the interactions, stability, and dynamics of 1536427 were observed in the catalytic domain of PDE6A, demonstrating less specificity for PDE6A in comparison to PDE5A. After lead optimization and therapeutic interventions, this proposed lead may emerge as a promising PDE5A selective inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arooma Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | | | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Rana Rehan Khalid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
20
|
Wang S, Yang G, Zhang K, Chen Z, Qiu M, Hou S, Zheng T, Wu Z, Ma Q, Zhang F, Gao G, Huang YY, Zhou Q, Luo HB, Wu D. Structural optimization of Moracin M as novel selective phosphodiesterase 4 inhibitors for the treatment of idiopathic pulmonary fibrosis. Bioorg Chem 2024; 149:107474. [PMID: 38805909 DOI: 10.1016/j.bioorg.2024.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and high mortality lung disease. Although the antifibrotic drugs pirfenidone and nintedanib could slow the rate of lung function decline, the usual course of the condition is inexorably to respiratory failure and death. Therefore, new approaches and novel therapeutic drugs for the treatment of IPF are urgently needed. And the selective PDE4 inhibitor has in vivo and in vitro anti-fibrotic effects in IPF models. But the clinical application of most PDE4 inhibitors are limited by their unexpected and severe side effects such as nausea, vomiting, and diarrhea. Herein, structure-based optimizations of the natural product Moracin M resulted in a novel a novel series of 2-arylbenzofurans as potent PDE4 inhibitors. The most potent inhibitor L13 has an IC50 of 36 ± 7 nM with remarkable selectivity across the PDE families and administration of L13·citrate (10.0 mg/kg) exhibited comparable anti-pulmonary fibrosis effects to pirfenidone (300 mg/kg) in a bleomycin-induced IPF mice model, indicate that L13 is a potential lead for the treatment of IPF.
Collapse
Affiliation(s)
- Sen Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Guofeng Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Kai Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Zhexin Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Meiying Qiu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Siyu Hou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Tiansheng Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zongmin Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Qinjiang Ma
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Furong Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Ge Gao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yi-You Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Qian Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Deyan Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
21
|
Lusardi M, Rapetti F, Spallarossa A, Brullo C. PDE4D: A Multipurpose Pharmacological Target. Int J Mol Sci 2024; 25:8052. [PMID: 39125619 PMCID: PMC11311937 DOI: 10.3390/ijms25158052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Phosphodiesterase 4 (PDE4) enzymes catalyze cyclic adenosine monophosphate (cAMP) hydrolysis and are involved in a variety of physiological processes, including brain function, monocyte and macrophage activation, and neutrophil infiltration. Among different PDE4 isoforms, Phosphodiesterases 4D (PDE4Ds) play a fundamental role in cognitive, learning and memory consolidation processes and cancer development. Selective PDE4D inhibitors (PDE4Dis) could represent an innovative and valid therapeutic strategy for the treatment of various neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and Lou Gehrig's diseases, but also for stroke, traumatic brain and spinal cord injury, mild cognitive impairment, and all demyelinating diseases such as multiple sclerosis. In addition, small molecules able to block PDE4D isoforms have been recently studied for the treatment of specific cancer types, particularly hepatocellular carcinoma and breast cancer. This review overviews the PDE4DIsso far identified and provides useful information, from a medicinal chemistry point of view, for the development of a novel series of compounds with improved pharmacological properties.
Collapse
Affiliation(s)
- Matteo Lusardi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy; (F.R.); (A.S.)
| | | | | | - Chiara Brullo
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy; (F.R.); (A.S.)
| |
Collapse
|
22
|
Staller DW, Bennett RG, Mahato RI. Therapeutic perspectives on PDE4B inhibition in adipose tissue dysfunction and chronic liver injury. Expert Opin Ther Targets 2024; 28:545-573. [PMID: 38878273 PMCID: PMC11305103 DOI: 10.1080/14728222.2024.2369590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Chronic liver disease (CLD) is a complex disease associated with profound dysfunction. Despite an incredible burden, the first and only pharmacotherapy for metabolic-associated steatohepatitis was only approved in March of this year, indicating a gap in the translation of preclinical studies. There is a body of preclinical work on the application of phosphodiesterase 4 inhibitors in CLD, none of these molecules have been successfully translated into clinical use. AREAS COVERED To design therapies to combat CLD, it is essential to consider the dysregulation of other tissues that contribute to its development and progression. As such, proper therapies must combat this throughout the body rather than focusing only on the liver. To detail this, literature characterizing the pathogenesis of CLD was pulled from PubMed, with a particular focus placed on the role of PDE4 in inflammation and metabolism. Then, the focus is shifted to detailing the available information on existing PDE4 inhibitors. EXPERT OPINION This review gives a brief overview of some of the pathologies of organ systems that are distinct from the liver but contribute to disease progression. The demonstrated efficacy of PDE4 inhibitors in other human inflammatory diseases should earn them further examination for the treatment of CLD.
Collapse
Affiliation(s)
- Dalton W. Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Robert G. Bennett
- Department of Internal Medicine, Division of Diabetes Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Ram I. Mahato
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
23
|
Gu C, Liu J, Qian F, Yu W, Huang D, Shen J, Feng C, Chen K, Li Y, Jiang X, Xu Y, Zhang L. Identification of Dihydrobenzofuran Neolignans as Novel PDE4 Inhibitors and Evaluation of Antiatopic Dermatitis Efficacy in DNCB-Induced Mice Model. J Med Chem 2024; 67:4855-4869. [PMID: 38489246 DOI: 10.1021/acs.jmedchem.3c02424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Atopic dermatitis is a chronic relapsing skin disease characterized by recurrent, pruritic, localized eczema, while PDE4 inhibitors have been reported to be effective as antiatopic dermatitis agents. 3',4-O-dimethylcedrusin (DCN) is a natural dihydrobenzofuran neolignan isolated from Magnolia biondii with moderate potency against PDE4 (IC50 = 3.26 ± 0.28 μM) and a binding mode similar to that of apremilast, an approved PDE4 inhibitor for the treatment of psoriasis. The structure-based optimization of DCN led to the identification of 7b-1 that showed high inhibitory potency on PDE4 (IC50 = 0.17 ± 0.02 μM), good anti-TNF-α activity (EC50 = 0.19 ± 0.10 μM), remarkable selectivity profile, and good skin permeability. The topical treatment of 7b-1 resulted in the significant benefits of pharmacological intervention in a DNCB-induced atopic dermatitis-like mice model, demonstrating its potential for the development of novel antiatopic dermatitis agents.
Collapse
Affiliation(s)
- Chenming Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayuan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenchao Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Doudou Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingshan Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chenguo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiangrui Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Liuqiang Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
24
|
Kuschke S, Thon S, Sattler C, Schwabe T, Benndorf K, Schmauder R. cAMP binding to closed pacemaker ion channels is cooperative. Proc Natl Acad Sci U S A 2024; 121:e2315132121. [PMID: 38377199 PMCID: PMC10907242 DOI: 10.1073/pnas.2315132121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
The cooperative action of the subunits in oligomeric receptors enables fine-tuning of receptor activation, as demonstrated for the regulation of voltage-activated HCN pacemaker ion channels by relating cAMP binding to channel activation in ensemble signals. HCN channels generate electric rhythmicity in specialized brain neurons and cardiomyocytes. There is conflicting evidence on whether binding cooperativity does exist independent of channel activation or not, as recently reported for detergent-solubilized receptors positioned in zero-mode waveguides. Here, we show positive cooperativity in ligand binding to closed HCN2 channels in native cell membranes by following the binding of individual fluorescence-labeled cAMP molecules. Kinetic modeling reveals that the affinity of the still empty binding sites rises with increased degree of occupation and that the transition of the channel to a flip state is promoted accordingly. We conclude that ligand binding to the subunits in closed HCN2 channels not pre-activated by voltage is already cooperative. Hence, cooperativity is not causally linked to channel activation by voltage. Our analysis also shows that single-molecule binding measurements at equilibrium can quantify cooperativity in ligand binding to receptors in native membranes.
Collapse
Affiliation(s)
- Stefan Kuschke
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Susanne Thon
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Christian Sattler
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Tina Schwabe
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Klaus Benndorf
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Ralf Schmauder
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| |
Collapse
|
25
|
Zhu Z, Tang W, Qiu X, Xin X, Zhang J. Advances in targeting Phosphodiesterase 1: From mechanisms to potential therapeutics. Eur J Med Chem 2024; 263:115967. [PMID: 38000211 DOI: 10.1016/j.ejmech.2023.115967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Phosphodiesterase 1 (PDE1) is an enzyme entrusted with the hydrolysis of the second messengers cAMP and cGMP, thereby governing a plethora of metabolic processes, encompassing ion channel modulation and cellular apoptosis. Recent advancements in the realm of small molecule structural variations have greatly facilitated the exploration of innovative applications for PDE1. Remarkably, a recent series of PDE1 inhibitors (PDE1i) have been meticulously formulated and devised, showcasing enhanced selectivity and potency. Among them, ITI-214 has entered Phase II clinical trials, holding promise for the treatment of Parkinson's disease and heart failure. Nevertheless, the majority of current PDE1 inhibitors have encountered substantial side effects in clinical trials attributable to their limited selectivity, this predicament presents a formidable obstacle in the development of specific small molecule inhibitors targeting PDE1. This Perspective endeavors to illuminate the potential design approaches, structure-activity relationships, and biological activities of current PDE1i, aiming to offer support and insights for clinical practice and the development of novel PDE1i.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wentao Tang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuemei Qiu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xin Xin
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
26
|
Kubota-Ishida N, Kaji C, Matsumoto S, Wakabayashi T, Matsuhira T, Okura I, Cho N, Isshiki S, Kumura K, Tabata Y. ME3183, a novel phosphodiesterase-4 inhibitor, exhibits potent anti-inflammatory effects and is well tolerated in a non-clinical study. Eur J Pharmacol 2024; 962:176202. [PMID: 37996010 DOI: 10.1016/j.ejphar.2023.176202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors are expected to exhibit efficacy against inflammatory diseases due to their broad pharmacological activity. The launched PDE4 inhibitors apremilast, crisaborole, and roflumilast have not exhibited sufficient inhibitory potential due to poor margins of effectiveness and tolerability. In this report, we describe the non-clinical efficacy, brain translocation, and vomit-inducing effects of ME3183 compared with apremilast. ME3183 showed extensive cytokine suppression in vitro studies using human peripheral blood mononuclear cells and T cells. ME3183 also significantly suppressed skin inflammation in a chronic oxazolone-induced dermatitis model and showed antipruritic effects in a substance P-induced mouse pruritus model. In these in vitro and in vivo studies, ME3183 also significantly suppressed cytokines, and focusing on tumor necrosis factor-α as a psoriasis-related cytokine and interleukin-4 as an atopic dermatitis-related cytokine, ME3183 potently inhibited both cytokines. ME3183 showed in vivo efficacy at lower doses than apremilast. The brain distribution of ME3183 was sufficiently low in mice and rats. The effective dose of ME3183 for emesis was similar to that of apremilast in ferrets. Given its high-potency inhibitory effects, ME3183 would have a wide margin of efficacy and tolerability. These wide margins demonstrate the effectiveness of ME3183 in treating many inflammatory diseases, such as psoriasis and atopic dermatitis. An on-going phase 2 trial is expected to further demonstrate the efficacy and safety of ME3183.
Collapse
Affiliation(s)
- Natsuki Kubota-Ishida
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan.
| | - Chizuko Kaji
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Shogo Matsumoto
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Tsubasa Wakabayashi
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Takashi Matsuhira
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Iori Okura
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Naoki Cho
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Satoshi Isshiki
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Ko Kumura
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Yuji Tabata
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| |
Collapse
|
27
|
Metkar SK, Yan Y, Lu Y, Lu J, Zhu X, Du F, Xu Y. Phosphodiesterase 2 and Its Isoform A as Therapeutic Targets in the Central Nervous System Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:941-955. [PMID: 37855295 DOI: 10.2174/1871527323666230811093126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/15/2023] [Accepted: 07/07/2023] [Indexed: 10/20/2023]
Abstract
Cyclic adenosine monophosphates (cAMP) and cyclic guanosine monophosphate (cGMP) are two essential second messengers, which are hydrolyzed by phosphodiesterase's (PDEs), such as PDE-2. Pharmacological inhibition of PDE-2 (PDE2A) in the central nervous system improves cAMP and cGMP signaling, which controls downstream proteins related to neuropsychiatric, neurodegenerative, and neurodevelopmental disorders. Considering that there are no specific treatments for these disorders, PDE-2 inhibitors' development has gained more attention in the recent decade. There is high demand for developing new-generation drugs targeting PDE2 for treating diseases in the central nervous and peripheral systems. This review summarizes the relationship between PDE-2 with neuropsychiatric, neurodegenerative, and neurodevelopmental disorders as well as its possible treatment, mainly involving inhibitors of PDE2.
Collapse
Affiliation(s)
- Sanjay K Metkar
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yuqing Yan
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yue Lu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Jianming Lu
- Codex BioSolutions Inc. 12358 Parklawn Drive, Suite 250A, Rockville, MD 20852, Maryland
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106; USA
| | - Fu Du
- FD NeuroTechnologies Consulting & Services, Inc., Columbia, MD 21046, Maryland
| | - Ying Xu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
28
|
Liu R, Li W, Yao Y, Wu Y, Luo HB, Li Z. Accelerating and Automating the Free Energy Perturbation Absolute Binding Free Energy Calculation with the RED-E Function. J Chem Inf Model 2023; 63:7755-7767. [PMID: 38048439 DOI: 10.1021/acs.jcim.3c01670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The accurate prediction of the binding affinities between small molecules and biological macromolecules plays a fundamental role in structure-based drug design, which is still challenging. The free energy perturbation-based absolute binding free energy (FEP-ABFE) approach has shown potential in its reliability. To correctly calculate the energy related to the ligand being restrained by the receptor, additional restraints between the ligand and the receptor are needed. However, determining the restraint parameters for individual ligands empirically is too trivial to be automated, and usually gives rise to numerical instabilities, which set back the applications of FEP-ABFE. To address these issues, we derived the analytical expression for the probability distribution of energy differences, P(ΔU), during the process of restraint addition, which is called the RED-E (restraint energy distribution at equilibrium position) function. Simulations indicated that the RED-E function can accurately describe P(ΔU) when restraints are added at the equilibrium position. Based on the RED-E function, an automatic restraint selection method was proposed to select the best restraint. With this method, there is a high phase-space overlap between the free and restrained states, such that using a 2-λ perturbation can accurately calculate the free energy of the restraint addition, which is a nearly 6 times acceleration compared with current widely used 12-λ perturbation method. The RED-E function gives insight into the non-Gaussian behavior of the sampled P(ΔU) in certain FEP processes in an analytical way. The highly automated and accelerated restraint selection also makes it possible for the large-scale application of FEP-ABFE in real drug discovery practices.
Collapse
Affiliation(s)
- Runduo Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenchao Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yufen Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
- Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
29
|
Liu J, Zhang X, Chen G, Shao Q, Zou Y, Li Z, Su H, Li M, Xu Y. Drug repurposing and structure-based discovery of new PDE4 and PDE5 inhibitors. Eur J Med Chem 2023; 262:115893. [PMID: 37918035 DOI: 10.1016/j.ejmech.2023.115893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
Phosphodiesterase-4 (PDE4) and PDE5 responsible for the hydrolysis of intracellular cAMP and cGMP, respectively, are promising targets for therapeutic intervention in a wide variety of diseases. Here, we report the discovery of novel, drug-like PDE4 inhibitors by performing a high-throughput drug repurposing screening of 2560 approved drugs and drug candidates in clinical trial studies. It allowed us to identify eight potent PDE4 inhibitors with IC50 values ranging from 0.41 to 2.46 μM. Crystal structures of PDE4 in complex with four compounds, namely ethaverine hydrochloride (EH), benzbromarone (BBR), CX-4945, and CVT-313, were further solved to elucidate molecular mechanisms of action of these new inhibitors, providing a solid foundation for optimizing the inhibitors to improve their potency as well as selectivity. Unexpectedly, selectivity profiling of other PDE subfamilies followed by crystal structure determination revealed that CVT-313 was also a potent PDE5 inhibitor with a binding mode similar to that of tadalafil, a marketed PDE5 inhibitor, but distinctively different from the binding mode of CVT-313 with PDE4. Structure-guided modification of CVT-313 led to the discovery of a new inhibitor, compound 2, with significantly improved inhibitory activity as well as selectivity towards PDE5 over PDE4. Together, these results highlight the utility of the drug repurposing in combination with structure-based drug design in identifying novel inhibitors of PDE4 and PDE5, which provides a prime example for efficient discovery of drug-like hits towards a given target protein.
Collapse
Affiliation(s)
- Jiayuan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xianglei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guofeng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Shao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhewen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Minjun Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yechun Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Ma R, Song N, Wang L, Gu X, Xiong F, Zhang S, Zhang J, Yang W, Zuo Z. Discovery of 2-(Methylcarbonylamino) thiazole as PDE4 inhibitors via virtual screening and biological evaluation. J Mol Graph Model 2023; 124:108567. [PMID: 37481883 DOI: 10.1016/j.jmgm.2023.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Phosphodiesterase-4, the primary enzyme responsible for cAMP degradation in the majority of immune and inflammatory cells, plays a critical role in the regulation of intracellular cAMP levels. Consequently, small molecular entities capable of inhibiting PDE4 have been employed in the treatment of inflammation-associated disorders, such as chronic obstructive pulmonary disease (COPD), psoriasis, atopic dermatitis (AD), inflammatory bowel diseases (IBD), rheumatic arthritis (RA). In the present investigation, a multi-faceted approach was employed to identify novel PDE4 inhibitors, utilizing the co-crystallization structure of PDE4B available in the Protein Data Bank (PDB) database, drug-like screening, false positive filtration, similarity and ADMET screen, as well as molecular docking via multiple software platforms, in conjunction with bioactivity assays. A thiazol-3-propanamides derivative, designated MR9, was discovered to inhibit PDE4B activity with IC50 values of 2.12 μM and suppress cellular inflammatory factor TNF-α release with an EC50 value of 3.587 μM. These findings suggest that the innovative active scaffold of MR9 offers a promising foundation for further structural refinement aimed at developing more potent PDE4 inhibitors.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Na Song
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, PR China
| | - Lveli Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, PR China
| | - Xi Gu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Feng Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Jie Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, PR China
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, PR China.
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
31
|
Nicolas SE, Bear MD, Kanaan AO, Coman OA, Dima L. Roflumilast 0.3% Cream: a Phosphodiesterase 4 Inhibitor for the Treatment of Chronic Plaque Psoriasis. Am J Ther 2023; 30:e535-e542. [PMID: 37921681 DOI: 10.1097/mjt.0000000000001678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
BACKGROUND Plaque psoriasis is a chronic dermatologic autoimmune disease that affects adults and children. Roflumilast 0.3% cream is currently the only topical phosphodiesterase 4 inhibitor indicated for the treatment of plaque psoriasis in patients 12 years or older. PHARMACODYNAMICS AND PHARMACOKINETICS Roflumilast inhibits phosphodiesterase 4 inhibitor enzyme leading to the accumulation of cyclic adenosine monophosphate, which suppresses the inflammatory mediators interferon-γ and tumor necrosis factor-α. Roflumilast, applied once daily, reaches steady state by day 15 and has a half life of approximately 4 days in adults. Roflumilast undergoes extensive hepatic metabolism by cytochrome P450 enzymes and conjugation. Roflumilast is 99% bound to plasma proteins. CLINICAL TRIALS Roflumilast efficacy and safety were evaluated in the DERMIS-1 and DERMIS-2 clinical trials. These identically designed, double-blind, vehicle-controlled phase 3 trials randomized 881 patients to roflumilast 0.3% cream or vehicle, applied once daily for 8 weeks. In DERMIS-1, the Investigator Global Assessment success rate was 42.4% with roflumilast 0.3% cream compared with 6.1% with the vehicle (32.3%-46.9%; P <0.001). Similarly, in DERMIS-2, the Investigator Global Assessment success rate was 37.5% with roflumilast 0.3% cream compared with 6.9% with the vehicle (20.8%-36.9%; P <0.001). Of 881 participants, 1% discontinued treatment with roflumilast cream due to adverse reactions compared with 1.3% treated with vehicle. Urticaria at the application site (0.3%) was the most common adverse reaction that led to discontinuation of roflumilast. THERAPEUTIC ADVANCE To date, topical corticosteroids are the most commonly used agents to treat mild plaque psoriasis. Sensitive areas are often challenging to treat with existing topical therapy, including corticosteroids. Topical roflumilast has shown to be effective in treating sensitive areas, including skin folds, and may be an alternative to systemic therapy for some patients. The Food and Drug Administration approved topical roflumilast for the treatment of plaque psoriasis, including intertriginous areas, for patients 12 years or older.
Collapse
Affiliation(s)
- Samar E Nicolas
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Worcester, MA
| | - Michael D Bear
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Worcester, MA
| | - Abir O Kanaan
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Worcester, MA
| | - Oana Andreia Coman
- Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania; and
| | - Lorena Dima
- Transilvania University of Brasov, Romania, Faculty of Medicine, Department of Fundamental Disciplines and Clinical Prevention, Brasov, Romania
| |
Collapse
|
32
|
Guo Y, Ou C, Zhang N, Liu Q, Xiong K, Yu J, Cheng H, Chen L, Ma M, Xu J, Wu J. Roflumilast attenuates neuroinflammation post retinal ischemia/reperfusion injury by regulating microglia phenotype via the Nrf2/STING/NF-κB pathway. Int Immunopharmacol 2023; 124:110952. [PMID: 37751655 DOI: 10.1016/j.intimp.2023.110952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE The abnormal polarisation of microglial cells (MGs) following retinal ischemia/reperfusion (RIR) initiates neuroinflammation and progressive death of retinal ganglion cells (RGCs), causing increasingly severe and irreversible visual dysfunction. Roflumilast (Roflu) is a promising candidate for treating neuroinflammatory diseases. This study aimed to explore whether Roflu displayed a cytoprotective effect against RIR-induced neuroinflammation and to characterise the underlying signalling pathway. METHODS The effects and mechanism of Roflu against RIR injury were investigated in C57BL/6J mice and the BV2 cell line. We used quantitative real-time PCR and enzyme-linked immunosorbent assay to examine the levels of inflammatory factors. Furthermore, haematoxylin and eosin and immunofluorescence (IF) stainings were used to assess the morphology of the retina and the states of MGs and RGCs. Reactive oxygen species (ROS) levels were examined using a ROS assay kit, while whole-genome sequencing analysis was conducted to identify altered pathways and molecules. Western blotting and IF staining were used to quantify the proteins associated with the nuclear factor erythroid 2-related factor 2 (Nrf2)/stimulator of interferon gene (STING)/nuclear factor kappa beta (NF-κB) pathway. RESULTS MG polarisation includes the pro-inflammatory and neurotoxic M1 phenotype as well as the anti-inflammatory and neuroprotective M2 phenotype. Roflu significantly attenuated MG activation and contributed to a shift in the MG phenotype from M1 to M2. Moreover, Roflu decreased ROS release and increased heme oxygenase 1 and NAD(P)H quinone oxidoreductase 1 expression. In vitro and in vivo experiments validated that Roflu exerted its neuroprotective effects primarily by upregulating the Nrf2/STING/NF-κB pathway. However, these effects were abrogated when the Nrf2 expression was inhibited by pharmacological or genetic manipulation. CONCLUSIONS Roflu suppressed RIR-induced neuroinflammation by driving the shift of MG polarisation from M1 to M2 phenotype, which was mediated by the upregulation of the Nrf2/STING/NK-κB pathway.
Collapse
Affiliation(s)
- Yuyan Guo
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Ophthalmology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Chunlian Ou
- Department of General Practice, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Naiyuan Zhang
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qiong Liu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ke Xiong
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jian Yu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Hao Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Linjiang Chen
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ming Ma
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jing Xu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Jing Wu
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
33
|
Xu C, Liu R, Huang S, Li W, Li Z, Luo HB. 3D-SMGE: a pipeline for scaffold-based molecular generation and evaluation. Brief Bioinform 2023; 24:bbad327. [PMID: 37756591 DOI: 10.1093/bib/bbad327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
In the process of drug discovery, one of the key problems is how to improve the biological activity and ADMET properties starting from a specific structure, which is also called structural optimization. Based on a starting scaffold, the use of deep generative model to generate molecules with desired drug-like properties will provide a powerful tool to accelerate the structural optimization process. However, the existing generative models remain challenging in extracting molecular features efficiently in 3D space to generate drug-like 3D molecules. Moreover, most of the existing ADMET prediction models made predictions of different properties through a single model, which can result in reduced prediction accuracy on some datasets. To effectively generate molecules from a specific scaffold and provide basis for the structural optimization, the 3D-SMGE (3-Dimensional Scaffold-based Molecular Generation and Evaluation) work consisting of molecular generation and prediction of ADMET properties is presented. For the molecular generation, we proposed 3D-SMG, a novel deep generative model for the end-to-end design of 3D molecules. In the 3D-SMG model, we designed the cross-aggregated continuous-filter convolution (ca-cfconv), which is used to achieve efficient and low-cost 3D spatial feature extraction while ensuring the invariance of atomic space rotation. 3D-SMG was proved to generate valid, unique and novel molecules with high drug-likeness. Besides, the proposed data-adaptive multi-model ADMET prediction method outperformed or maintained the best evaluation metrics on 24 out of 27 ADMET benchmark datasets. 3D-SMGE is anticipated to emerge as a powerful tool for hit-to-lead structural optimizations and accelerate the drug discovery process.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, P.R. China
| | - Runduo Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, P.R. China
| | - Shuheng Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, P.R. China
| | - Wenchao Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, P.R. China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, P.R. China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, P.R. China
| |
Collapse
|
34
|
Zhang T, Jiang S, Li T, Liu Y, Zhang Y. Identified Isosteric Replacements of Ligands' Glycosyl Domain by Data Mining. ACS OMEGA 2023; 8:25165-25184. [PMID: 37483233 PMCID: PMC10357434 DOI: 10.1021/acsomega.3c02243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023]
Abstract
Biologically equivalent replacements of key moieties in molecules rationalize scaffold hopping, patent busting, or R-group enumeration. Yet, this information may depend upon the expert-defined space, and might be subjective and biased toward the chemistries they get used to. Most importantly, these practices are often informatively incomplete since they are often compromised by a try-and-error cycle, and although they depict what kind of substructures are suitable for the replacement occurrence, they fail to explain the driving forces to support such interchanges. The protein data bank (PDB) encodes a receptor-ligand interaction pattern and could be an optional source to mine structural surrogates. However, manual decoding of PDB has become almost impossible and redundant to excavate the bioisosteric know-how. Therefore, a text parsing workflow has been developed to automatically extract the local structural replacement of a specific structure from PDB by finding spatial and steric interaction overlaps between the fragments in endogenous ligands and particular ligand fragments. Taking the glycosyl domain for instance, a total of 49 520 replacements that overlap on nucleotide ribose were identified and categorized based on their SMILE codes. A predominately ring system, such as aliphatic and aromatic rings, was observed; yet, amide and sulfonamide replacements also occur. We believe these findings may enlighten medicinal chemists on the structure design and optimization of ligands using the bioisosteric replacement strategy.
Collapse
Affiliation(s)
- Tinghao Zhang
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
| | - Shenghao Jiang
- School of
Computer Science, Northwestern Polytechnical
University, 127 West
Youyi Road, Xi’an 710072, China
| | - Ting Li
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
| | - Yan Liu
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
| | - Yuezhou Zhang
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
- Ningbo
Institute of Northwestern Polytechnical University, Frontiers Science
Center for Flexible Electronics (FSCFE), Key laboratory of Flexible
Electronics of Zhejiang Province, Ningbo Institute of Northwestern
Polytechnical University, 218 Qingyi Road, Ningbo 315103, China
| |
Collapse
|
35
|
Jin J, Mazzacuva F, Crocetti L, Giovannoni MP, Cilibrizzi A. PDE4 Inhibitors: Profiling Hits through the Multitude of Structural Classes. Int J Mol Sci 2023; 24:11518. [PMID: 37511275 PMCID: PMC10380597 DOI: 10.3390/ijms241411518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Cyclic nucleotide phosphodiesterases 4 (PDE4) are a family of enzymes which specifically promote the hydrolysis and degradation of cAMP. The inhibition of PDE4 enzymes has been widely investigated as a possible alternative strategy for the treatment of a variety of respiratory diseases, including chronic obstructive pulmonary disease and asthma, as well as psoriasis and other autoimmune disorders. In this context, the identification of new molecules as PDE4 inhibitors continues to be an active field of investigation within drug discovery. This review summarizes the medicinal chemistry journey in the design and development of effective PDE4 inhibitors, analyzed through chemical classes and taking into consideration structural aspects and binding properties, as well as inhibitory efficacy, PDE4 selectivity and the potential as therapeutic agents.
Collapse
Affiliation(s)
- Jian Jin
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
| | - Francesca Mazzacuva
- School of Health, Sport and Bioscience, University of East London, London E15 4LZ, UK
| | - Letizia Crocetti
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Via Ugo Schiff 6, Sesto Fiorentino, University of Florence, 50019 Florence, Italy
| | - Maria Paola Giovannoni
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Via Ugo Schiff 6, Sesto Fiorentino, University of Florence, 50019 Florence, Italy
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
36
|
Hainsworth AH, Arancio O, Elahi FM, Isaacs JD, Cheng F. PDE5 inhibitor drugs for use in dementia. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12412. [PMID: 37766832 PMCID: PMC10520293 DOI: 10.1002/trc2.12412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 09/29/2023]
Abstract
Alzheimer's disease and related dementias (ADRD) remain a major health-care challenge with few licensed medications. Repurposing existing drugs may afford prevention and treatment. Phosphodiesterase-5 (PDE5) is widely expressed in vascular myocytes, neurons, and glia. Potent, selective, Food and Drug Administration-approved PDE5 inhibitors are already in clinical use (sildenafil, vardenafil, tadalafil) as vasodilators in erectile dysfunction and pulmonary arterial hypertension. Animal data indicate cognitive benefits of PDE5 inhibitors. In humans, real-world patient data suggest that sildenafil and vardenafil are associated with reduced dementia risk. While a recent clinical trial of acute tadalafil on cerebral blood flow was neutral, there may be chronic actions of PDE5 inhibition on cerebrovascular or synaptic function. We provide a perspective on the potential utility of PDE5 inhibitors for ADRD. We conclude that further prospective clinical trials with PDE5 inhibitors are warranted. The choice of drug will depend on brain penetration, tolerability in older people, half-life, and off-target effects. HIGHLIGHTS Potent phosphodiesterase-5 (PDE5) inhibitors are in clinical use as vasodilators.In animals PDE5 inhibitors enhance synaptic function and cognitive ability.In humans the PDE5 inhibitor sildenafil is associated with reduced risk of Alzheimer's disease.Licensed PDE5 inhibitors have potential for repurposing in dementia.Prospective clinical trials of PDE5 inhibitors are warranted.
Collapse
Affiliation(s)
- Atticus H. Hainsworth
- Molecular & Clinical Sciences Research InstituteSt George's University of LondonLondonUK
- Department of NeurologySt George's University Hospitals NHS Foundation TrustLondonUK
| | - Ottavio Arancio
- Department of Pathology and Cell BiologyTaub Institute for Research on Alzheimer's Disease and the Aging BrainDepartment of MedicineColumbia UniversityNew YorkNew YorkUSA
| | - Fanny M. Elahi
- Departments of Neurology and NeuroscienceRonald M. Loeb Center for Alzheimer's DiseaseFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jeremy D. Isaacs
- Molecular & Clinical Sciences Research InstituteSt George's University of LondonLondonUK
- Department of NeurologySt George's University Hospitals NHS Foundation TrustLondonUK
| | - Feixiong Cheng
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Department of Molecular MedicineCleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
37
|
Wang Y, Wang H, Yang G, Hao Q, Yang K, Shen H, Wang Y, Wang J. Design and synthesis of a novel class of PDE4 inhibitors with antioxidant properties as bifunctional agents for the potential treatment of COPD. Eur J Med Chem 2023; 256:115374. [PMID: 37150057 DOI: 10.1016/j.ejmech.2023.115374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
It is well known that chronic obstructive pulmonary disease (COPD) patients are always trapped in the vicious circle of inflammation and oxidative stress, therefore anti-inflammatory and antioxidant bifunctional agents may interrupt this vicious cycle in COPD. Phosphodiesterase 4 (PDE4) inhibitors, as anti-inflammatory drugs, have been used for COPD treatment in clinical, and the PDE4 inhibitors with antioxidant properties may be a good strategy to design bifunctional agents for COPD. Sappanone A was the first PDE4 inhibitor with antioxidant properties we identified from natural products in our previous study, which was used by us as a hit compound to design new bifunctional agents for COPD in this study. 27 derivatives of sappanone A including homoisoflavonoids, aurones and chalcones were designed and synthesized by innovatively fusing the antioxidant pharmacophore of catechol from polyphenols and the pharmacophore of catechol ether abstracted from the PDE4 inhibitors of the catechol ether class such as rolipram, roflumilast and apremilast respectively. All the compounds were assayed for the PDE4 inhibitory and radical scavenging against 2, 2-diphenyl-1-picrylhydrazyl (DPPH) activities in vitro. Herein we obtained a series of bifunctional compounds with better PDE4 inhibitory activity than sappanone A, and their free radical scavenging activities were superior to edaravone in vitro. In addition, they can reduce tumour necrosis factor-alpha (TNF-α) production induced by lipopolysaccharide (LPS) in RAW264.7 macrophages and malondialdehyde (MDA) production induced by Fe2+ in mouse lung homogenate. Meanwhile, it showed outstanding abilities in reducing Fe3+ and complexing Fe2+. 6o, as the candidate anti-inflammatory and antioxidant bifunctional compound, exhibited good drug-likeness, ADME (Absorption, Distribution, Metabolism, Excretion) properties and human liver microsomal stability. In vivo, 6o (50 mg/kg and 100 mg/kg, i. p.) distinctly prevented LPS-induced serum levels of TNF-α in mice. In conclusion, the preliminary investigation provided a novel class of PDE4 inhibitors with antioxidant properties as bifunctional agents for the potential treatment of COPD, which can interrupt the vicious cycle of chronic inflammation and oxidative stress in COPD.
Collapse
Affiliation(s)
- Youzhi Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Huifang Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Guoqing Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qingjing Hao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Huizhen Shen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yulong Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
38
|
Chandy RJ, Bridgeman SG, Godinich BM, Feldman SR. New synthetic pharmacotherapeutic approaches to the treatment of moderate-to-severe plaque psoriasis in adults. Expert Opin Pharmacother 2023; 24:959-967. [PMID: 37083505 DOI: 10.1080/14656566.2023.2206014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
INTRODUCTION Psoriasis is a chronic inflammatory and immune-mediated condition affecting 3.2% of the United States population. There are many options for psoriasis treatment including topicals, oral systemic agents, and biologics. A greater understanding of the pathophysiology of psoriasis has led to an increase in the therapeutic options for treatment. AREAS COVERED In this review, we outline the novel synthetic agents for moderate-to-severe plaque psoriasis and discuss a strategy for implementing these agents in clinical practice. A literature search was performed using PubMed to identify articles relevant to the topic published before October 2022. EXPERT OPINION Topicals are first-line for treatment of moderate-to-severe plaque psoriasis, most commonly including topical steroids, vitamin D analogs, and topical calcineurin inhibitors. While new topical agents have favorable properties, they are not always effective and adherence to topical agents is poor. Biologics are safe and effective, but patients often prefer oral therapy as opposed to injectable medications. Additionally, anti-drug antibodies can reduce effectiveness of biologics over time. Oral medications are preferred, but we now have a high bar for efficacy and safety. Cost is also a barrier for many patients. Recent development of new synthetic treatment options is promising, and we recommend that providers consider these agents as they develop holistic and individualized treatment plans for their patients.
Collapse
Affiliation(s)
- Rithi J Chandy
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Sarah G Bridgeman
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Brandon M Godinich
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Steven R Feldman
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Social Sciences & Health Policy, Wake Forest University School of Medicine, Winston Salem, North Carolina
- Department of Dermatology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
39
|
Zheng Y, Schroeder S, Kanev GK, Botros SS, William S, Sabra ANA, Maes L, Caljon G, Gil C, Martinez A, Salado IG, Augustyns K, Edink E, Sijm M, de Heuvel E, de Esch IJP, van der Meer T, Siderius M, Sterk GJ, Brown D, Leurs R. To Target or Not to Target Schistosoma mansoni Cyclic Nucleotide Phosphodiesterase 4A? Int J Mol Sci 2023; 24:ijms24076817. [PMID: 37047792 PMCID: PMC10095301 DOI: 10.3390/ijms24076817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease with high morbidity. Recently, the Schistosoma mansoni phosphodiesterase SmPDE4A was suggested as a putative new drug target. To support SmPDE4A targeted drug discovery, we cloned, isolated, and biochemically characterized the full-length and catalytic domains of SmPDE4A. The enzymatically active catalytic domain was crystallized in the apo-form (PDB code: 6FG5) and in the cAMP- and AMP-bound states (PDB code: 6EZU). The SmPDE4A catalytic domain resembles human PDE4 more than parasite PDEs because it lacks the parasite PDE-specific P-pocket. Purified SmPDE4A proteins (full-length and catalytic domain) were used to profile an in-house library of PDE inhibitors (PDE4NPD toolbox). This screening identified tetrahydrophthalazinones and benzamides as potential hits. The PDE inhibitor NPD-0001 was the most active tetrahydrophthalazinone, whereas the approved human PDE4 inhibitors roflumilast and piclamilast were the most potent benzamides. As a follow-up, 83 benzamide analogs were prepared, but the inhibitory potency of the initial hits was not improved. Finally, NPD-0001 and roflumilast were evaluated in an in vitro anti-S. mansoni assay. Unfortunately, both SmPDE4A inhibitors were not effective in worm killing and only weakly affected the egg-laying at high micromolar concentrations. Consequently, the results with these SmPDE4A inhibitors strongly suggest that SmPDE4A is not a suitable target for anti-schistosomiasis therapy.
Collapse
Affiliation(s)
- Yang Zheng
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | | | - Georgi K Kanev
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Sanaa S Botros
- Pharmacology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Samia William
- Parasitology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Abdel-Nasser A Sabra
- Pharmacology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Carmen Gil
- Centro de Investigaciones Biologicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biologicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Irene G Salado
- Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Koen Augustyns
- Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ewald Edink
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Maarten Sijm
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Erik de Heuvel
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Tiffany van der Meer
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Marco Siderius
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Geert Jan Sterk
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - David Brown
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
40
|
Al-Nema M, Gaurav A, Lee VS. Designing of 2,3-dihydrobenzofuran derivatives as inhibitors of PDE1B using pharmacophore screening, ensemble docking and molecular dynamics approach. Comput Biol Med 2023; 159:106869. [PMID: 37071939 DOI: 10.1016/j.compbiomed.2023.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
In recent years, the PDE1B enzyme has become a desirable drug target for the treatment of psychological and neurological disorders, particularly schizophrenia disorder, due to the expression of PDE1B in brain regions involved in volitional behaviour, learning and memory. Although several inhibitors of PDE1 have been identified using different methods, none of these inhibitors has reached the market yet. Thus, searching for novel PDE1B inhibitors is considered a major scientific challenge. In this study, pharmacophore-based screening, ensemble docking and molecular dynamics simulations have been performed to identify a lead inhibitor of PDE1B with a new chemical scaffold. Five PDE1B crystal structures have been utilised in the docking study to improve the possibility of identifying an active compound compared to the use of a single crystal structure. Finally, the structure-activity- relationship was studied, and the structure of the lead molecule was modified to design novel inhibitors with a high affinity for PDE1B. As a result, two novel compounds have been designed that exhibited a higher affinity to PDE1B compared to the lead compound and the other designed compounds.
Collapse
Affiliation(s)
- Mayasah Al-Nema
- Faculty of Pharmaceutical Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, 56000, Kuala Lumpur, Malaysia.
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Li G, He D, Cai X, Guan W, Zhang Y, Wu JQ, Yao H. Advances in the development of phosphodiesterase-4 inhibitors. Eur J Med Chem 2023; 250:115195. [PMID: 36809706 DOI: 10.1016/j.ejmech.2023.115195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Phosphodiesterase 4 (PDE4) hydrolyzes cyclic adenosine monophosphate (cAMP) and plays a vital roles in many biological processes. PDE4 inhibitors have been widely studied as therapeutics for the treatment of various diseases, including asthma, chronic obstructive pulmonary disease (COPD) and psoriasis. Many PDE4 inhibitors have progressed to clinical trials and some have been approved as therapeutic drugs. Although many PDE4 inhibitors have been approved to enter clinical trials, however, the development of PDE4 inhibitors for the treatment of COPD or psoriasis has been hampered by their side effects of emesis. Herein, this review summarizes advances in the development of PDE4 inhibitors over the last ten years, focusing on PDE4 sub-family selectivity, dual target drugs, and therapeutic potential. Hopefully, this review will contribute to the development of novel PDE4 inhibitors as potential drugs.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jianmen, 529020, China
| | - Xiaojia Cai
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jianmen, 529020, China
| | - Wen Guan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jianmen, 529020, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
42
|
Does Testosterone Salvage PDE5i Non-Responders? A Scoping Review. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Erectile physiology, in order to function normally, requires the complex coordination of endocrine, neurocognitive, neuromuscular and vascular mechanisms. Testosterone (T) influences male sexuality as well as penile erections at multiple levels, including a direct influence on the nitric oxide synthase (NOS)/cGMP/phosphodiesterase 5 pathway in the penis. However, the precise role of testosterone replacement (TRT) to “salvage” men with mixed ED failing phosphdiesterase-5 inhibitors (PDE5i) remains unclear. We conducted a scoping review identifying the rationale for TRT in ED failing PDE5i, and we critically discuss clinical trials that have examined TRT in the setting of PDE5i use. Overall, TRT replacement appears to be well tolerated and may enhance the response to PDE5i and quality of life, particularly for men with mixed ED, and particularly among men with very low levels of testosterone. However, most of the available literature examines concurrent TRT alone or simultaneous TRT + PDE5i usage, without necessarily selecting for PDE5i failure cases. The present studies are limited to heterogenous studies with small sample sizes, without an exact predominant etiologic factor causing ED. Furthermore, studies showing the most benefit are non-placebo-controlled trials; however, the correction of more profound hypogonadism may lead to an improved response to PDE5i. Stronger conclusions would require properly selected patient populations and larger placebo-controlled RCTs.
Collapse
|
43
|
Kobayashi A, Nakajima M, Noguchi Y, Morikawa R, Matsuo Y, Takasu M. Molecular Dynamics Simulation of the Complex of PDE5 and Evodiamine. Life (Basel) 2023; 13:life13020578. [PMID: 36836935 PMCID: PMC9968203 DOI: 10.3390/life13020578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Alzheimer's disease is an irreversible neurological disorder for which there are no effective small molecule therapeutics. A phosphodiesterase 5 (PDE5) inhibitor is a candidate medicine for the treatment of Alzheimer's disease. Rutaecarpine, an indole alkaloid found in Euodiae Fructus, has inhibitory activity for PDE5. Euodiae Fructus contains more evodiamine than rutaecarpine. Therefore, we performed molecular dynamics simulations of the complex of PDE5 and evodiamine. The results showed that the PDE5 and (-)-evodiamine complexes were placed inside the reaction center compared to the case of PDE5 and (+)-evodiamine complex. The binding of (-)-evodiamine to PDE5 increased the root-mean-square deviation and radius of gyration of PDE5. In the PDE5 with (-)-evodiamine complex, the value of the root-mean-square fluctuation of the M-loop, which is thought to be important for activity, increased. This result suggests that (-)-evodiamine may have inhibitory activity.
Collapse
Affiliation(s)
- Ayame Kobayashi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Motokuni Nakajima
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Yoh Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- The Institute of Statistical Mathematics, Tokyo 190-8562, Japan
- Correspondence: ; Tel.: +81-042-676-4561
| | - Ryota Morikawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Yukiko Matsuo
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Masako Takasu
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| |
Collapse
|
44
|
Jiang M, Lu S, Telu S, Pike VW. An Empirical Quantitative Structure-Activity Relationship Equation Assists the Discovery of High-Affinity Phosphodiesterase 4D Inhibitors as Leads to PET Radioligands. J Med Chem 2023; 66:1543-1561. [PMID: 36608175 PMCID: PMC10433104 DOI: 10.1021/acs.jmedchem.2c01745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A positron emission tomography (PET) radioligand for imaging phosphodiesterase 4D (PDE4D) would benefit drug discovery and the investigation of neuropsychiatric disorders. The most promising radioligand to date, namely, [11C]T1650, has shown unstable quantification in humans. Structural elaboration of [11C]T1650 was therefore deemed necessary. High target affinity in the low nM range is usually required for successful PET radioligands. In our PDE4D PET radioligand development, we formulated and optimized an empirical equation (log[IC50 (nM)] = P1 + P2 + P3 + P4) that well described the relationship between binding affinity and empirically derived values (P1-P4) for the individual fragments in four subregions commonly composing each inhibitor (R2 = 0.988, n = 62). This equation was used to predict compounds that would have high inhibitory potency. Fourteen new compounds were obtained with IC50 of 0.3-10 nM. Finally, eight compounds were judged to be worthy of future radiolabeling and evaluation as PDE4D PET radioligands.
Collapse
Affiliation(s)
- Meijuan Jiang
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| |
Collapse
|
45
|
Giuzio F, Bonomo MG, Catalano A, Infantino V, Salzano G, Monné M, Geronikaki A, Petrou A, Aquaro S, Sinicropi MS, Saturnino C. Potential PDE4B inhibitors as promising candidates against SARS-CoV-2 infection. Biomol Concepts 2023; 14:bmc-2022-0033. [PMID: 37909122 DOI: 10.1515/bmc-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/10/2023] [Indexed: 11/02/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an RNA virus belonging to the coronavirus family responsible for coronavirus disease 2019 (COVID-19). It primarily affects the pulmonary system, which is the target of chronic obstructive pulmonary disease (COPD), for which many new compounds have been developed. In this study, phosphodiesterase 4 (PDE4) inhibitors are being investigated. The inhibition of PDE4 enzyme produces anti-inflammatory and bronchodilator effects in the lung by inducing an increase in cAMP concentrations. Piclamilast and rolipram are known selective inhibitors of PDE4, which are unfortunately endowed with common side effects, such as nausea and emesis. The selective inhibition of the phosphodiesterase 4B (PDE4B) subtype may represent an intriguing technique for combating this highly contagious disease with fewer side effects. In this article, molecular docking studies for the selective inhibition of the PDE4B enzyme have been carried out on 21 in-house compounds. The compounds were docked into the pocket of the PDE4B catalytic site, and in most cases, they were almost completely superimposed onto piclamilast. Then, in order to enlarge our study, drug-likeness prediction studies were performed on the compounds under study.
Collapse
Affiliation(s)
- Federica Giuzio
- International PhD Programme 'Sciences', Department of Science, University of Basilicata, Viale dell'Ateneo Lucano n.10, 85100 Potenza, Italy
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | | | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70126 Bari, Italy
| | | | - Giovanni Salzano
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Magnus Monné
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anthi Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
46
|
Somnarin T, Pobsuk N, Chantakul R, Panklai T, Temkitthawon P, Hannongbua S, Chootip K, Ingkaninan K, Boonyarattanakalin K, Gleeson D, Paul Gleeson M. Computational design, synthesis and biological evaluation of PDE5 inhibitors based on N 2,N 4-diaminoquinazoline and N 2,N 6-diaminopurine scaffolds. Bioorg Med Chem 2022; 76:117092. [PMID: 36450167 DOI: 10.1016/j.bmc.2022.117092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
We report the synthesis, and characterization of twenty-nine new inhibitors of PDE5. Structure-based design was employed to modify to our previously reported 2,4-diaminoquinazoline series. Modification include scaffold hopping to 2,6-diaminopurine core as well as incorporation of ionizable groups to improve both activity and solubility. The prospective binding mode of the compounds was determined using 3D ligand-based similarity methods to inhibitors of known binding mode, combined with a PDE5 docking and molecular dynamics based-protocol, each of which pointed to the same binding mode. Chemical modifications were then designed to both increase potency and solubility as well as validate the binding mode prediction. Compounds containing a quinazoline core displayed IC50s ranging from 0.10 to 9.39 µM while those consisting of a purine scaffold ranging from 0.29 to 43.16 µM. We identified 25 with a PDE5 IC50 of 0.15 µM, and much improved solubility (1.77 mg/mL) over the starting lead. Furthermore, it was found that the predicted binding mode was consistent with the observed SAR validating our computationally driven approach.
Collapse
Affiliation(s)
- Thanachon Somnarin
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Nattakarn Pobsuk
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Ruttanaporn Chantakul
- Center of Excellence in Cannabis Research, Faculty of Pharmaceutical Sciences & Center of Excellence in Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Teerapap Panklai
- Center of Excellence in Cannabis Research, Faculty of Pharmaceutical Sciences & Center of Excellence in Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Prapapan Temkitthawon
- Center of Excellence in Cannabis Research, Faculty of Pharmaceutical Sciences & Center of Excellence in Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Krongkarn Chootip
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Kornkanok Ingkaninan
- Center of Excellence in Cannabis Research, Faculty of Pharmaceutical Sciences & Center of Excellence in Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand.
| | - Kanokthip Boonyarattanakalin
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Duangkamol Gleeson
- Department of Chemistry & Applied Computational Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - M Paul Gleeson
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
47
|
Targeting phosphodiesterase 4 as a therapeutic strategy for cognitive improvement. Bioorg Chem 2022; 130:106278. [DOI: 10.1016/j.bioorg.2022.106278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/22/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
48
|
Liu H, Wang Q, Huang Y, Deng J, Xie X, Zhu J, Yuan Y, He YM, Huang YY, Luo HB, He X. Discovery of novel PDE4 inhibitors targeting the M-pocket from natural mangostanin with improved safety for the treatment of Inflammatory Bowel Diseases. Eur J Med Chem 2022; 242:114631. [PMID: 35985255 DOI: 10.1016/j.ejmech.2022.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 11/28/2022]
Abstract
Inflammatory Bowel Diseases (IBDs) are chronic disorders with iterative intestinal mucosal inflammation which remain unmet medical needs. PDE4 inhibitors were reported to be novel anti-IBD agents, but their clinical use was hampered by side effects such as emesis and nausea. Herein, structure-based discovery of natural mangostanin (1) targeting the M-pocket resulted in the novel and potent PDE4 inhibitor 22d (IC50 = 3.5 nM) and favorable physico-chemical properties. X-Ray study revealed that 22d interacted tightly with the M-pocket and maintained the key interactions between PDE4 and roflumilast. Worthy to note that compounds 22d and our previously reported 4e and 18a, originating from mangostanin, all caused no emesis on beagle dogs at the oral dose of 10 mg/kg, confirming the safety superiority of scaffold in mangostanin derivatives over that in positive roflumilast. Finally, administration of 22d (5.0 mg/kg, twice-daily) exhibited comparable anti-IBD effects to the positive control dipyridamole (25.0 mg/kg, twice-daily) in the dextran sulfate sodium (DSS)-induced IBD mice model, indicating its potential as a novel anti-IBD agent.
Collapse
Affiliation(s)
- Haobai Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Quan Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Yue Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Jinhui Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Jiaqi Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yijun Yuan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China; Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya, 572000, China
| | - Yue-Ming He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yi-You Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China; Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya, 572000, China.
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China; Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya, 572000, China.
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| |
Collapse
|
49
|
Crocetti L, Floresta G, Cilibrizzi A, Giovannoni MP. An Overview of PDE4 Inhibitors in Clinical Trials: 2010 to Early 2022. Molecules 2022; 27:4964. [PMID: 35956914 PMCID: PMC9370432 DOI: 10.3390/molecules27154964] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Since the early 1980s, phosphodiesterase 4 (PDE4) has been an attractive target for the treatment of inflammation-based diseases. Several scientific advancements, by both academia and pharmaceutical companies, have enabled the identification of many synthetic ligands for this target, along with the acquisition of precise information on biological requirements and linked therapeutic opportunities. The transition from pre-clinical to clinical phase was not easy for the majority of these compounds, mainly due to their significant side effects, and it took almost thirty years for a PDE4 inhibitor to become a drug i.e., Roflumilast, used in the clinics for the treatment of chronic obstructive pulmonary disease. Since then, three additional compounds have reached the market a few years later: Crisaborole for atopic dermatitis, Apremilast for psoriatic arthritis and Ibudilast for Krabbe disease. The aim of this review is to provide an overview of the compounds that have reached clinical trials in the last ten years, with a focus on those most recently developed for respiratory, skin and neurological disorders.
Collapse
Affiliation(s)
- Letizia Crocetti
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, UK
| | - Maria Paola Giovannoni
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
50
|
Zhou F, Huang Y, Liu L, Song Z, Hou KQ, Yang Y, Luo HB, Huang YY, Xiong XF. Structure-based optimization of Toddacoumalone as highly potent and selective PDE4 inhibitors with anti-inflammatory effects. Biochem Pharmacol 2022; 202:115123. [PMID: 35688178 DOI: 10.1016/j.bcp.2022.115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
Abstract
Phosphodiesterase-4 (PDE4) is an important drug target for inflammatory diseases. Previously, we identified a series of novel PDE4 inhibitors derived from the natural Toddacoumalone, among which the hit compound 2 with a naphthyridine scaffold showed moderate potency with the IC50 value of 400 nM. Based on the co-crystal structure of PDE4D-2, further structural optimizations and structure-activity relationship studies led to a highly potent PDE4 inhibitor 23a with the IC50 value of 0.25 nM and excellent selectivity profiles over other PDEs (>4000-fold). The co-crystal structure of PDE4D-23a elucidated that 23a has strong interactions with the M and Q pocket of PDE4D. Importantly, compound 23a significantly inhibits the release of inflammatory cytokines TNF-α and IL-6 in lipopolysaccharide-stimulated RAW264.7 cells. Thus, compound 23a with a naphthyridine scaffold is a promising PDE4 inhibitor for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Feng Zhou
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China
| | - Yue Huang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China
| | - Lu Liu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China
| | - Zhendong Song
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China
| | - Ke-Qiang Hou
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China
| | - Yifan Yang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China
| | - Hai-Bin Luo
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, 570228 Haikou, PR China
| | - Yi-You Huang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, 570228 Haikou, PR China.
| | - Xiao-Feng Xiong
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China.
| |
Collapse
|