1
|
Baskin A, Soudah N, Gilad N, Halevi N, Darlyuk-Saadon I, Schoffman H, Engelberg D. All intrinsically active Erk1/2 mutants autophosphorylate threonine207/188, a plausible regulator of the TEY motif phosphorylation. J Biol Chem 2025; 301:108509. [PMID: 40222547 DOI: 10.1016/j.jbc.2025.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
The extracellular-activated kinases 1 & 2 (Erk1/2) are catalytically active when dually phosphorylated on a TEY motif located at the activation loop. In human patients with cardiac hypertrophy, Erk1/2 are phosphorylated on yet another activation loop's residue, T207/188. Intrinsically active variants of Erk1/2, mutated at R84/65, are also (auto)phosphorylated on T207/188. It is not known whether T207/188 phosphorylation is restricted to these cases, nor how it affects Erks' activity. We report that T207/188 phosphorylation is not rare, as we found that: 1) All known auto-activated Erk1/2 variants are phosphorylated on T207/188. 2) It occurs in various cell lines and mouse tissues. 3) It is extremely high in patients with skeletal muscle atrophies or myopathies. We propose that T207/188 controls the permissiveness of the TEY motif for phosphorylation because T207/188-mutated Erk1/2 and the yeast Erk/Mpk1 were efficiently dually phosphorylated when expressed in HEK293 or yeast cells, respectively. The T207/188-mutated Mpk1 was not TEY-phosphorylated in cells knocked out for MEKs, suggesting that its enhanced phosphorylation in wild-type cells is MEK-dependent. Thus, as T207/188-mutated Erk1/2 and Mpk1 recruit MEKs, the role of T207/188 is to impede MEKs' ability to phosphorylate Erks. T207/188 also impedes autophosphorylation as recombinant Erk2 mutated at T188 is spontaneously autophosphorylated, although exclusively on Y185. The role of T207/188 in regulating activation loop phosphorylation may be common to most Ser/Thr kinases, as 86% of them (in the human kinome) possess T207/188 orthologs, and 160 of them were already reported to be phosphorylated on this residue.
Collapse
Affiliation(s)
- Alexey Baskin
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadine Soudah
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nechama Gilad
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore
| | - Neriya Halevi
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilona Darlyuk-Saadon
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore
| | - Hanan Schoffman
- Stein Family Mass Spectrometry Unit, The Research Infrastructure Center, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Engelberg
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
2
|
Haider M, Sharma S, Agrahari AK, Dikshit M, Pathak DP, Asthana S. Crystallographic mining driven computer-guided approach to identify the ASK1 inhibitor likely to perturb the catalytic region. J Biomol Struct Dyn 2025; 43:1290-1304. [PMID: 38069610 DOI: 10.1080/07391102.2023.2291545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/18/2023] [Indexed: 01/16/2025]
Abstract
The pathological levels of reactive oxygen species (ROS) and oxidative stress has been recognized as a critical driver for inflammatory disorders. Apoptosis signal-regulating kinase 1 (ASK1) has been reported to be activated by intracellular ROS and its inhibition leads to a down regulation of p38-and JNK-dependent signaling. ASK1 inhibitors are reported to have the potential to treat clinically important inflammatory pathologies including liver, pulmonary and renal disorders. In view of its biological and pathological significance, inhibition of ASK1 with small molecules has been pursued as an attractive strategy to combat human diseases such as non-alcoholic steatohepatitis (NASH). Despite several ASK1 inhibitors being developed, the failure in Phase 3 clinical trials of most advanced candidate selonsertib's, underscores to discover therapeutic agents with diverse chemical moiety. Here, by using structural pharmacophore and enumeration strategy on mining co-crystals of ASK1, different scaffolds were generated to enhance the chemical diversity keeping the critical molecular interaction in the catalytic site intact. A total of 15,772 compounds were generated from diverse chemical scaffolds and were evaluated using a virtual screening pipeline. Based on docking and MM-GBSA scores, a lead candidate, S3C-1-D424 was identified from top hits. A comparative molecular dynamics simulations (MD) of APO, Selonsertib and shortlisted potential candidates combined with pharmacokinetics profiling and thermodynamic analysis, demonstrating their suitability as potential ASK1 inhibitors to explore further for establishment towards hit-to-lead campaign.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamad Haider
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Shilpa Sharma
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Ashish Kumar Agrahari
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Madhu Dikshit
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
- Pharmacology Division, Central Drug Research Institute, Lucknow, India
| | - Dharam Pal Pathak
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Shailendra Asthana
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| |
Collapse
|
3
|
Esteban-Collado J, Fernández-Mañas M, Fernández-Moreno M, Maeso I, Corominas M, Serras F. Reactive oxygen species activate the Drosophila TNF receptor Wengen for damage-induced regeneration. EMBO J 2024; 43:3604-3626. [PMID: 39020149 PMCID: PMC11377715 DOI: 10.1038/s44318-024-00155-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/19/2024] Open
Abstract
Tumor necrosis factor receptors (TNFRs) control pleiotropic pro-inflammatory functions that range from apoptosis to cell survival. The ability to trigger a particular function will depend on the upstream cues, association with regulatory complexes, and downstream pathways. In Drosophila melanogaster, two TNFRs have been identified, Wengen (Wgn) and Grindelwald (Grnd). Although several reports associate these receptors with JNK-dependent apoptosis, it has recently been found that Wgn activates a variety of other functions. We demonstrate that Wgn is required for survival by protecting cells from apoptosis. This is mediated by dTRAF1 and results in the activation of p38 MAP kinase. Remarkably, Wgn is required for apoptosis-induced regeneration and is activated by the reactive oxygen species (ROS) produced following apoptosis. This ROS activation is exclusive for Wgn, but not for Grnd, and can occur after knocking down Eiger/TNFα. The extracellular cysteine-rich domain of Grnd is much more divergent than that of Wgn, which is more similar to TNFRs from other animals, including humans. Our results show a novel TNFR function that responds to stressors by ensuring p38-dependent regeneration.
Collapse
Affiliation(s)
- José Esteban-Collado
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Mar Fernández-Mañas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Manuel Fernández-Moreno
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute for Biodiversity Research (IRBio), Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Ignacio Maeso
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute for Biodiversity Research (IRBio), Barcelona, Spain
| | - Montserrat Corominas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.
| |
Collapse
|
4
|
Zaky YA, Rashad MW, Zaater MA, El Kerdawy AM. Discovery of dual rho-associated protein kinase 1 (ROCK1)/apoptosis signal-regulating kinase 1 (ASK1) inhibitors as a novel approach for non-alcoholic steatohepatitis (NASH) treatment. BMC Chem 2024; 18:2. [PMID: 38172941 PMCID: PMC10765837 DOI: 10.1186/s13065-023-01081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024] Open
Abstract
In the current study we suggest a novel approach to curb non-alcoholic steatohepatitis (NASH) progression, and we suggest privileged scaffolds for the design of novel compounds for this aim. NASH is an advanced form of non-alcoholic fatty liver disease that can further progress into fibrosis, cirrhosis, and hepatocellular carcinoma. It is a widely emerging disease affecting 25% of the global population and has no current approved treatments. Protein kinases are key regulators of cellular pathways, of which, Rho-associated protein kinase 1 (ROCK1) and apoptosis signal-regulating kinase 1 (ASK1) play an important role in the progression of NASH and they stand out as promising targets for NASH therapy. Interestingly, their kinase domains are found to be similar in sequence and topology; therefore, dual inhibition of ROCK1 and ASK1 is expected to be amenable and could achieve a more favourable outcome. To reach this goal, a training set of ROCK1 and ASK1 protein structures co-crystalized with type 1 (ATP-competitive) inhibitors was constructed to manually generate receptor-based pharmacophore models representing ROCK1 and ASK1 inhibitors' common pharmacophoric features. The models produced were assessed using a test set of both ROCK1 and ASK1 actives and decoys, and their performance was evaluated using different assessment metrics. The best pharmacophore model obtained, showing a Mathew's correlation coefficient (MCC) of 0.71, was then used to screen the ZINC purchasable database retrieving 6178 hits that were filtered accordingly using several medicinal chemistry and pharmacokinetics filters returning 407 promising compounds. To confirm that these compounds are capable of binding to the target kinases, they were subjected to molecular docking simulations at both protein structures. The results were then assessed individually and filtered, setting the spotlight on various privileged scaffolds that could be exploited as the nucleus for designing novel ROCK1/ASK1 dual inhibitors.
Collapse
Affiliation(s)
- Yara A Zaky
- Department of Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt.
| | - Mai W Rashad
- Department of Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Marwa A Zaater
- Master Postgraduate Program, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M El Kerdawy
- Department of Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- School of Pharmacy, College of Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire, UK
| |
Collapse
|
5
|
Kostyak JC, McKenzie SE, Naik UP. The Function of ASK1 in Sepsis and Stress-Induced Disorders. Int J Mol Sci 2023; 25:213. [PMID: 38203381 PMCID: PMC10778746 DOI: 10.3390/ijms25010213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is a serine-threonine kinase that is ubiquitously expressed in nucleated cells and is responsible for the activation of multiple mitogen-activated protein kinases (MAPK) to regulate cell stress. Activation of ASK1 via cellular stress leads to activation of downstream signaling components, activation of transcription factors, and proinflammatory cytokine production. ASK1 is also expressed in anucleate platelets and is a key player in platelet activation as it is important for signaling. Interestingly, the mechanism of ASK1 activation is cell type-dependent. In this review we will explore how ASK1 regulates a variety of cellular processes from innate immune function to thrombosis and hemostasis. We will discuss how ASK1 influences FcγRIIA-mediated platelet reactivity and how that reactivity drives platelet clearance. Furthermore, we will explore the role of ASK1 in thromboxane (TxA2) generation, which highlights differences in the way ASK1 functions in mouse and human platelets.
Collapse
Affiliation(s)
- John C. Kostyak
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (S.E.M.); (U.P.N.)
| | | | | |
Collapse
|
6
|
Wang T, Pang L, He M, Wang Z. Small-molecule inhibitors targeting apoptosis signal-regulated kinase 1. Eur J Med Chem 2023; 262:115889. [PMID: 37883895 DOI: 10.1016/j.ejmech.2023.115889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Apoptosis signal regulated kinase 1 (ASK1, also known as MAP3K5) is a member of the mitogen activated protein kinase kinase kinase (MAP3K) family. Since its first isolation from a human macrophage library in 1996, its research has been ongoing for over 25 years. A large number of reports have revealed that ASK1, as a key activator of the p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK) signaling cascade, responds to various stressors, and its inhibitors have important potential value in the treatment of diseases such as inflammation, cancer, and the nervous system and so on. This review summarizes the recent development in this field, including the structure and signaling pathways of ASK1, with a particular focus on the structure-activity relationships, and the hit-to-lead optimization strategies.
Collapse
Affiliation(s)
- Tiantian Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, PR China
| | - Lidan Pang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China
| | - Mengni He
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China
| | - Zengtao Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China.
| |
Collapse
|
7
|
Chen Q, Guo J, Qiu T, Zhou J. Mechanism of ASK1 involvement in liver diseases and related potential therapeutic targets: A critical pathway molecule worth investigating. J Gastroenterol Hepatol 2023; 38:378-385. [PMID: 36533997 DOI: 10.1111/jgh.16087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/30/2022]
Abstract
Since the discovery of apoptosis signal-regulated kinase 1 (ASK1), the signal transduction mechanism and pathophysiological process involved in its regulation have been continuously revealed. Many previous studies have identified that ASK1 is involved and plays a critical role in the development of diseases affecting the nervous, cardiac, renal, and other systems. As a mitogen-activated protein kinase (MAPK) kinase kinase, ASK1 mediates apoptosis, necrosis, inflammation, and other pathological processes by activating its downstream c-Jun N-terminal kinase (JNK)/p38 MAPK. Owing to the important role of ASK1, an increasing number of studies in recent years have focused on its status in liver-related diseases. In this paper, we review the mechanisms and targets of ASK1 in liver-related diseases to emphasize its important role in the development of liver disease.
Collapse
Affiliation(s)
- Qi Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
8
|
Serras F. The sooner, the better: ROS, kinases and nutrients at the onset of the damage response in Drosophila. Front Cell Dev Biol 2022; 10:1047823. [PMID: 36353511 PMCID: PMC9637634 DOI: 10.3389/fcell.2022.1047823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
One of the main topics in regeneration biology is the nature of the early signals that trigger the damage response. Recent advances in Drosophila point to the MAP3 kinase Ask1 as a molecular hub that integrates several signals at the onset of regeneration. It has been discovered that reactive oxygen species (ROS) produced in damaged imaginal discs and gut epithelia will activate the MAP3 kinase Ask1. Severely damaged and apoptotic cells produce an enormous amount of ROS, which ensures their elimination by activating Ask1 and in turn the pro-apoptotic function of JNK. However, this creates an oxidative stress environment with beneficial effects that is sensed by neighboring healthy cells. This environment, in addition to the Pi3K/Akt nutrient sensing pathway, can be integrated into Ask1 to launch regeneration. Ultimately the activity of Ask1 depends on these and other inputs and modulates its signaling to achieve moderate levels of p38 and low JNK signaling and thus promote survival and regeneration. This model based on the dual function of Ask1 for early response to damage is discussed here.
Collapse
Affiliation(s)
- Florenci Serras
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Lu Y, Liu Y, Zheng M. The role and regulation of apoptosis signal-regulated kinase 1 in liver disease. Mol Biol Rep 2022; 49:10905-10914. [DOI: 10.1007/s11033-022-07783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 10/15/2022]
|
10
|
Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther 2022; 7:287. [PMID: 35963848 PMCID: PMC9376100 DOI: 10.1038/s41392-022-01119-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH) has become the leading cause of liver disease worldwide. NASH, an advanced form of NAFL, can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma. Currently, lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis. While there are still limited appropriate drugs specifically to treat NAFL/NASH, growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets. In this review, we discussed recent developments in etiology and prospective therapeutic targets, as well as pharmacological candidates in pre/clinical trials and patents, with a focus on diabetes, hepatic lipid metabolism, inflammation, and fibrosis. Importantly, growing evidence elucidates that the disruption of the gut-liver axis and microbe-derived metabolites drive the pathogenesis of NAFL/NASH. Extracellular vesicles (EVs) act as a signaling mediator, resulting in lipid accumulation, macrophage and hepatic stellate cell activation, further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH. Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH. Finally, other mechanisms, such as cell therapy and genetic approaches, also have enormous therapeutic potential. Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kyle L Poulsen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Liu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Qiaoling Song
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingda Wei
- School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
11
|
Crystallographic mining of ASK1 regulators to unravel the intricate PPI interfaces for the discovery of small molecule. Comput Struct Biotechnol J 2022; 20:3734-3754. [PMID: 35891784 PMCID: PMC9294202 DOI: 10.1016/j.csbj.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
Protein seldom performs biological activities in isolation. Understanding the protein–protein interactions’ physical rewiring in response to pathological conditions or pathogen infection can help advance our comprehension of disease etiology, progression, and pathogenesis, which allow us to explore the alternate route to control the regulation of key target interactions, timely and effectively. Nonalcoholic steatohepatitis (NASH) is now a global public health problem exacerbated due to the lack of appropriate treatments. The most advanced anti-NASH lead compound (selonsertib) is withdrawn, though it is able to inhibit its target Apoptosis signal-regulating kinase 1 (ASK1) completely, indicating the necessity to explore alternate routes rather than complete inhibition. Understanding the interaction fingerprints of endogenous regulators at the molecular level that underpin disease formation and progression may spur the rationale of designing therapeutic strategies. Based on our analysis and thorough literature survey of the various key regulators and PTMs, the current review emphasizes PPI-based drug discovery’s relevance for NASH conditions. The lack of structural detail (interface sites) of ASK1 and its regulators makes it challenging to characterize the PPI interfaces. This review summarizes key regulators interaction fingerprinting of ASK1, which can be explored further to restore the homeostasis from its hyperactive states for therapeutics intervention against NASH.
Collapse
Key Words
- ASK1
- ASK1, Apoptosis signal-regulating kinase 1
- CFLAR, CASP8 and FADD-like apoptosis regulator
- CREG, Cellular repressor of E1A-stimulated genes
- DKK3, Dickkopf-related protein 3
- Interaction fingerprint
- NAFLD, Non-alcoholic fatty liver disease
- NASH
- NASH, Nonalcoholic steatohepatitis
- PPI, Protein-protein interaction
- PTM, Post-trancriptional modification
- PTMs
- Protein-protein interaction
- TNFAIP3, TNF Alpha Induced Protein 3
- TRAF2/6, Tumor necrosis factor receptor (TNFR)-associated factor2/6
- TRIM48, Tripartite Motif Containing 48
- TRX, Thioredoxin
- USP9X, Ubiquitin Specific Peptidase 9 X-Linked
Collapse
|
12
|
Catalytic activity in vitro of the human protein kinase ASK1 mutants: Experimental and molecular simulation study. Comput Biol Chem 2022; 99:107712. [PMID: 35689994 DOI: 10.1016/j.compbiolchem.2022.107712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022]
Abstract
Kinases have become an important class of targets for drug discovery since the milestone approval of imatinib in 2001. Although a great success has been achieved for targeting kinases with over 70 inhibitors approved by the FDA, it is inevitable that drug resistance would emerge during treatment. Thus, assessment of the kinase mutations is an essential issue for the development of the next generation inhibitors. Apoptosis signal-regulating kinase 1 (ASK1) is a crucial regulator of classical mitogen-activated protein kinase cascade that is being explored under several clinical trials as a promising target. Herein, we investigate the catalytic activity in vitro of ASK1 by constructing two mutants: M754T and H729L, from gatekeeper and αC-helix, respectively. Compared to wild type, the mutation of M754T and H729L results in a roughly 3-fold and 2-fold decrease in binding affinity experimentally. In addition, their binding modes with substrate are theoretically predicted and compared by molecular dynamics. Trajectory analyses of simulations indicate that the decrease of binding affinity should be attributed to the loss of H-bond interaction with gatekeeper methionine. Unexpectedly, the conformation of αC-helix in H729L mutant did not alter significantly during the simulations, although the putatively important H-bond with H729 is lost. These simulations showed the regulatory role of H729 in αC-helix is maintained by leucine residue through the interaction with non-polar residues around H729 site.
Collapse
|
13
|
Gehi BR, Gadhave K, Uversky VN, Giri R. Intrinsic disorder in proteins associated with oxidative stress-induced JNK signaling. Cell Mol Life Sci 2022; 79:202. [PMID: 35325330 PMCID: PMC11073203 DOI: 10.1007/s00018-022-04230-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023]
Abstract
The c-Jun N-terminal kinase (JNK) signaling cascade is a mitogen-activated protein kinase (MAPK) signaling pathway that can be activated in response to a wide range of environmental stimuli. Based on the type, degree, and duration of the stimulus, the JNK signaling cascade dictates the fate of the cell by influencing gene expression through its substrate transcription factors. Oxidative stress is a result of a disturbance in the pro-oxidant/antioxidant homeostasis of the cell and is associated with a large number of diseases, such as neurodegenerative disorders, cancer, diabetes, cardiovascular diseases, and disorders of the immune system, where it activates the JNK signaling pathway. Among different biological roles ascribed to the intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered domains and intrinsically disordered protein regions (IDPRs) are signaling hub functions, as intrinsic disorder allows proteins to undertake multiple interactions, each with a different consequence. In order to ensure precise signaling, the cellular abundance of IDPs is highly regulated, and mutations or changes in abundance of IDPs/IDPRs are often associated with disease. In this study, we have used a combination of six disorder predictors to evaluate the presence of intrinsic disorder in proteins of the oxidative stress-induced JNK signaling cascade, and as per our findings, none of the 18 proteins involved in this pathway are ordered. The highest level of intrinsic disorder was observed in the scaffold proteins, JIP1, JIP2, JIP3; dual specificity phosphatases, MKP5, MKP7; 14-3-3ζ and transcription factor c-Jun. The MAP3Ks, MAP2Ks, MAPKs, TRAFs, and thioredoxin were the proteins that were predicted to be moderately disordered. Furthermore, to characterize the predicted IDPs/IDPRs in the proteins of the JNK signaling cascade, we identified the molecular recognition features (MoRFs), posttranslational modification (PTM) sites, and short linear motifs (SLiMs) associated with the disordered regions. These findings will serve as a foundation for experimental characterization of disordered regions in these proteins, which represents a crucial step for a better understanding of the roles of IDPRs in diseases associated with this important pathway.
Collapse
Affiliation(s)
- Bhuvaneshwari R Gehi
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, 560012, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region, 142290, Russia.
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India.
| |
Collapse
|
14
|
Obsilova V, Honzejkova K, Obsil T. Structural Insights Support Targeting ASK1 Kinase for Therapeutic Interventions. Int J Mol Sci 2021; 22:ijms222413395. [PMID: 34948191 PMCID: PMC8705584 DOI: 10.3390/ijms222413395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022] Open
Abstract
Apoptosis signal-regulating kinase (ASK) 1, a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, modulates diverse responses to oxidative and endoplasmic reticulum (ER) stress and calcium influx. As a crucial cellular stress sensor, ASK1 activates c-Jun N-terminal kinases (JNKs) and p38 MAPKs. Their excessive and sustained activation leads to cell death, inflammation and fibrosis in various tissues and is implicated in the development of many neurological disorders, such as Alzheimer’s, Parkinson’s and Huntington disease and amyotrophic lateral sclerosis, in addition to cardiovascular diseases, diabetes and cancer. However, currently available inhibitors of JNK and p38 kinases either lack efficacy or have undesirable side effects. Therefore, targeted inhibition of their upstream activator, ASK1, stands out as a promising therapeutic strategy for treating such severe pathological conditions. This review summarizes recent structural findings on ASK1 regulation and its role in various diseases, highlighting prospects for ASK1 inhibition in the treatment of these pathologies.
Collapse
Affiliation(s)
- Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- Correspondence: (V.O.); (T.O.); Tel.: +420-325-87-3513 (V.O.); +420-22-195-1303 (T.O.)
| | - Karolina Honzejkova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic;
| | - Tomas Obsil
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic;
- Correspondence: (V.O.); (T.O.); Tel.: +420-325-87-3513 (V.O.); +420-22-195-1303 (T.O.)
| |
Collapse
|
15
|
Takayanagi S, Watanabe K, Maruyama T, Ogawa M, Morishita K, Soga M, Hatta T, Natsume T, Hirano T, Kagechika H, Hattori K, Naguro I, Ichijo H. ASKA technology-based pull-down method reveals a suppressive effect of ASK1 on the inflammatory NOD-RIPK2 pathway in brown adipocytes. Sci Rep 2021; 11:22009. [PMID: 34759307 PMCID: PMC8581049 DOI: 10.1038/s41598-021-01123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies have shown that adipose tissue is an immunological organ. While inflammation in energy-storing white adipose tissues has been the focus of intense research, the regulatory mechanisms of inflammation in heat-producing brown adipose tissues remain largely unknown. We previously identified apoptosis signal-regulating kinase 1 (ASK1) as a critical regulator of brown adipocyte maturation; the PKA-ASK1-p38 axis facilitates uncoupling protein 1 (UCP1) induction cell-autonomously. Here, we show that ASK1 suppresses an innate immune pathway and contributes to maintenance of brown adipocytes. We report a novel chemical pull-down method for endogenous kinases using analog sensitive kinase allele (ASKA) technology and identify an ASK1 interactor in brown adipocytes, receptor-interacting serine/threonine-protein kinase 2 (RIPK2). ASK1 disrupts the RIPK2 signaling complex and inhibits the NOD-RIPK2 pathway to downregulate the production of inflammatory cytokines. As a potential biological significance, an in vitro model for intercellular regulation suggests that ASK1 facilitates the expression of UCP1 through the suppression of inflammatory cytokine production. In parallel to our previous report on the PKA-ASK1-p38 axis, our work raises the possibility of an auxiliary role of ASK1 in brown adipocyte maintenance through neutralizing the thermogenesis-suppressive effect of the NOD-RIPK2 pathway.
Collapse
Affiliation(s)
- Saki Takayanagi
- grid.26999.3d0000 0001 2151 536XLaboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Takeshi Maruyama
- grid.26999.3d0000 0001 2151 536XLaboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Motoyuki Ogawa
- grid.26999.3d0000 0001 2151 536XLaboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Kazuhiro Morishita
- grid.26999.3d0000 0001 2151 536XLaboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Mayumi Soga
- grid.26999.3d0000 0001 2151 536XLaboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Tomohisa Hatta
- grid.208504.b0000 0001 2230 7538Molecular Profiling Research Center for Drug Discovery, The National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064 Japan
| | - Tohru Natsume
- grid.208504.b0000 0001 2230 7538Cellular and Molecular Biotechnology Research Institute, The National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064 Japan
| | - Tomoya Hirano
- grid.265073.50000 0001 1014 9130Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062 Japan ,Present Address: Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 Japan
| | - Hiroyuki Kagechika
- grid.265073.50000 0001 1014 9130Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062 Japan
| | - Kazuki Hattori
- grid.26999.3d0000 0001 2151 536XLaboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Isao Naguro
- grid.26999.3d0000 0001 2151 536XLaboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
16
|
El-Sadek HM, Al-Shorbagy MY, Awny MM, Abdallah DM, El-Abhar HS. Pentoxifylline treatment alleviates kidney ischemia/reperfusion injury: Novel involvement of galectin-3 and ASK-1/JNK & ERK1/2/NF-κB/HMGB-1 trajectories. J Pharmacol Sci 2021; 146:136-148. [PMID: 34030796 DOI: 10.1016/j.jphs.2021.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the documented renoprotective effect of pentoxifylline (PTX), a non-selective phosphodiesterase-4 inhibitor, the studies appraised only its anti-inflammatory/-oxidant/-apoptotic capacities without assessment of the possible involved trajectories. Here, we evaluated the potential role of galectin-3 and the ASK-1/NF-κB p65 signaling pathway with its upstream/downstream signals in an attempt to unveil part of the cascades involved in the renotherapeutic effect using a renal bilateral ischemia/reperfusion (I/R) model. Rats were randomized into sham-operated, renal I/R (45 min/72 h) and I/R + PTX (100 mg/kg; p.o). Post-treatment with PTX improved renal function and abated serum levels of cystatin C, creatinine, BUN and renal KIM-1 content, effects that were reflected on an improvement of the I/R-induced renal histological changes. On the molecular level, PTX reduced renal contents of galectin-3, ASK-1 with its downstream molecule JNK and ERK1/2, as well as NF-κB p65 and HMGB1. This inhibitory effect extended also to suppress neutrophil infiltration, evidenced by diminishing ICAM-1 and MPO, as well as inflammatory cytokines (TNF-α/IL-18), oxidative stress (MDA/TAC), and caspase-3. The PTX novel renotherapeutic effect involved in part the inhibition of galectin-3 and ASK-1/JNK and ERK1/2/NF-κB/HMGB-1 trajectories to mitigate renal I/R injury and to provide basis for its anti-inflammatory, antioxidant, and anti-apoptotic impacts.
Collapse
Affiliation(s)
- Hagar M El-Sadek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, 4184, United Arab Emirates
| | - Magdy M Awny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, 84518, Egypt
| |
Collapse
|
17
|
Vo TN, Malo Pueyo J, Wahni K, Ezeriņa D, Bolduc J, Messens J. Prdx1 Interacts with ASK1 upon Exposure to H 2O 2 and Independently of a Scaffolding Protein. Antioxidants (Basel) 2021; 10:antiox10071060. [PMID: 34209102 PMCID: PMC8300624 DOI: 10.3390/antiox10071060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 01/02/2023] Open
Abstract
Hydrogen peroxide (H2O2) is a key redox signaling molecule that selectively oxidizes cysteines on proteins. It can accomplish this even in the presence of highly efficient and abundant H2O2 scavengers, peroxiredoxins (Prdxs), as it is the Prdxs themselves that transfer oxidative equivalents to specific protein thiols on target proteins via their redox-relay functionality. The first evidence of a mammalian cytosolic Prdx-mediated redox-relay—Prdx1 with the kinase ASK1—was presented a decade ago based on the outcome of a co-immunoprecipitation experiment. A second such redox-relay—Prdx2:STAT3—soon followed, for which further studies provided insights into its specificity, organization, and mechanism. The Prdx1:ASK1 redox-relay, however, has never undergone such a characterization. Here, we combine cellular and in vitro protein–protein interaction methods to investigate the Prdx1:ASK1 interaction more thoroughly. We show that, contrary to the Prdx2:STAT3 redox-relay, Prdx1 interacts with ASK1 at elevated H2O2 concentrations, and that this interaction can happen independently of a scaffolding protein. We also provide evidence of a Prdx2:ASK1 interaction, and demonstrate that it requires a facilitator that, however, is not annexin A2. Our results reveal that cytosolic Prdx redox-relays can be organized in different ways and yet again highlight the differentiated roles of Prdx1 and Prdx2.
Collapse
Affiliation(s)
- Trung Nghia Vo
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050 Brussels, Belgium; (T.N.V.); (J.M.P.); (K.W.); (D.E.); (J.B.)
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Julia Malo Pueyo
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050 Brussels, Belgium; (T.N.V.); (J.M.P.); (K.W.); (D.E.); (J.B.)
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Khadija Wahni
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050 Brussels, Belgium; (T.N.V.); (J.M.P.); (K.W.); (D.E.); (J.B.)
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Daria Ezeriņa
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050 Brussels, Belgium; (T.N.V.); (J.M.P.); (K.W.); (D.E.); (J.B.)
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Jesalyn Bolduc
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050 Brussels, Belgium; (T.N.V.); (J.M.P.); (K.W.); (D.E.); (J.B.)
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050 Brussels, Belgium; (T.N.V.); (J.M.P.); (K.W.); (D.E.); (J.B.)
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Correspondence:
| |
Collapse
|
18
|
Watanabe K, Morishita K, Zhou X, Shiizaki S, Uchiyama Y, Koike M, Naguro I, Ichijo H. Cells recognize osmotic stress through liquid-liquid phase separation lubricated with poly(ADP-ribose). Nat Commun 2021; 12:1353. [PMID: 33649309 PMCID: PMC7921423 DOI: 10.1038/s41467-021-21614-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/02/2021] [Indexed: 12/17/2022] Open
Abstract
Cells are under threat of osmotic perturbation; cell volume maintenance is critical in cerebral edema, inflammation and aging, in which prominent changes in intracellular or extracellular osmolality emerge. After osmotic stress-enforced cell swelling or shrinkage, the cells regulate intracellular osmolality to recover their volume. However, the mechanisms recognizing osmotic stress remain obscured. We previously clarified that apoptosis signal-regulating kinase 3 (ASK3) bidirectionally responds to osmotic stress and regulates cell volume recovery. Here, we show that macromolecular crowding induces liquid-demixing condensates of ASK3 under hyperosmotic stress, which transduce osmosensing signal into ASK3 inactivation. A genome-wide small interfering RNA (siRNA) screen identifies an ASK3 inactivation regulator, nicotinamide phosphoribosyltransferase (NAMPT), related to poly(ADP-ribose) signaling. Furthermore, we clarify that poly(ADP-ribose) keeps ASK3 condensates in the liquid phase and enables ASK3 to become inactivated under hyperosmotic stress. Our findings demonstrate that cells rationally incorporate physicochemical phase separation into their osmosensing systems.
Collapse
Affiliation(s)
- Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Kazuhiro Morishita
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Xiangyu Zhou
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shigeru Shiizaki
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
19
|
Liu H, Tian Z, Guo Y, Liu X, Ma Y, Du X, Wang R, Zhang S, Shi L, Guo H, Zhang H. Microcystin-leucine arginine exposure contributes to apoptosis and follicular atresia in mice ovaries by endoplasmic reticulum stress-upregulated Ddit3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144070. [PMID: 33288253 DOI: 10.1016/j.scitotenv.2020.144070] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Microcystin-leucine arginine (MC-LR), an intracellular toxin to cause reproduction toxicity, is produced by blooming cyanobacteria and widely distributed in eutrophic waters. It is revealed that MC-LR-induced female reproductive toxicity is more severe than male reproductive toxicity. Previous studies mainly focused on male reproductive toxicity, and the molecular mechanisms of MC-LR-induced apoptosis, follicular atresia and infertility in female remain largely unclear. Here, it was found that MC-LR treatment could induce apoptosis, inflammation, follicular atresia, and decrease of gonadal index in mice ovaries. RNA-Seq data showed that the up-regulation of DNA-damage inducible transcript 3 (Ddit3) under endoplasmic reticulum (ER) stress had predominantly regulatory role in MC-LR-induced apoptotic pathway. Furthermore, MC-LR exposure promoted cleavage of activating transcription factor 6 (ATF6, 50kd), inositol-requiring enzyme 1 (Ire1) expression, phosphorylation of IRE1, mitogen-activated protein kinase 5 (Map3k5) and Ddit3 expression, which was accompanied by the upregulation of death receptor 5 (Dr5) and active-caspase-3, and a decrease in Bcl-2 expression. ER stress inhibitor 4-Phenyl butyric acid (4-PBA) ameliorated these MC-LR-induced changes in protein or mRNA level. More importantly, knockdown of Ddit3 suppressed MC-LR-induced cell apoptosis and follicular atresia by directly regulating Dr5 and Bcl-2. Additionally, it was also found that MC-LR increased Map3k5 phosphorylation by inhibiting protein phosphatase 2A (PP2A) activity, and then promoted Ddit3 expression. In short, our data suggests that Ddit3 promotes MC-LR-induced mice ovarian cells apoptosis and follicular atresia via ER stress activation, which provides a new insight into the relation between infertility in females and the emerging water pollutant MC-LR.
Collapse
Affiliation(s)
- Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yaxin Guo
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
20
|
Rajapaksha H, Pandithavidana DR, Dahanayake JN. Demystifying Chronic Kidney Disease of Unknown Etiology (CKDu): Computational Interaction Analysis of Pesticides and Metabolites with Vital Renal Enzymes. Biomolecules 2021; 11:261. [PMID: 33578980 PMCID: PMC7916818 DOI: 10.3390/biom11020261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease of unknown etiology (CKDu) has been recognized as a global non-communicable health issue. There are many proposed risk factors for CKDu and the exact reason is yet to be discovered. Understanding the inhibition or manipulation of vital renal enzymes by pesticides can play a key role in understanding the link between CKDu and pesticides. Even though it is very important to take metabolites into account when investigating the relationship between CKDu and pesticides, there is a lack of insight regarding the effects of pesticide metabolites towards CKDu. In this study, a computational approach was used to study the effects of pesticide metabolites on CKDu. Further, interactions of selected pesticides and their metabolites with renal enzymes were studied using molecular docking and molecular dynamics simulation studies. It was evident that some pesticides and metabolites have affinity to bind at the active site or at regulatory sites of considered renal enzymes. Another important discovery was the potential of some metabolites to have higher binding interactions with considered renal enzymes compared to the parent pesticides. These findings raise the question of whether pesticide metabolites may be a main risk factor towards CKDu.
Collapse
Affiliation(s)
| | | | - Jayangika N. Dahanayake
- Department of Chemistry, Faculty of Science, University of Kelaniya, Dalugama, Kelaniya 11600, Western Province, Sri Lanka; (H.R.); (D.R.P.)
| |
Collapse
|
21
|
Pleinis JM, Norrell L, Akella R, Humphreys JM, He H, Sun Q, Zhang F, Sosa-Pagan J, Morrison DE, Schellinger JN, Jackson LK, Goldsmith EJ, Rodan AR. WNKs are potassium-sensitive kinases. Am J Physiol Cell Physiol 2021; 320:C703-C721. [PMID: 33439774 DOI: 10.1152/ajpcell.00456.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With no lysine (K) (WNK) kinases regulate epithelial ion transport in the kidney to maintain homeostasis of electrolyte concentrations and blood pressure. Chloride ion directly binds WNK kinases to inhibit autophosphorylation and activation. Changes in extracellular potassium are thought to regulate WNKs through changes in intracellular chloride. Prior studies demonstrate that in some distal nephron epithelial cells, intracellular potassium changes with chronic low- or high-potassium diet. We, therefore, investigated whether potassium regulates WNK activity independent of chloride. We found decreased activity of Drosophila WNK and mammalian WNK3 and WNK4 in fly Malpighian (renal) tubules bathed in high extracellular potassium, even when intracellular chloride was kept constant at either ∼13 mM or 26 mM. High extracellular potassium also inhibited chloride-insensitive mutants of WNK3 and WNK4. High extracellular rubidium was also inhibitory and increased tubule rubidium. The Na+/K+-ATPase inhibitor, ouabain, which is expected to lower intracellular potassium, increased tubule Drosophila WNK activity. In vitro, potassium increased the melting temperature of Drosophila WNK, WNK1, and WNK3 kinase domains, indicating ion binding to the kinase. Potassium inhibited in vitro autophosphorylation of Drosophila WNK and WNK3, and also inhibited WNK3 and WNK4 phosphorylation of their substrate, Ste20-related proline/alanine-rich kinase (SPAK). The greatest sensitivity of WNK4 to potassium occurred in the range of 80-180 mM, encompassing physiological intracellular potassium concentrations. Together, these data indicate chloride-independent potassium inhibition of Drosophila and mammalian WNK kinases through direct effects of potassium ion on the kinase.
Collapse
Affiliation(s)
- John M Pleinis
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Logan Norrell
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Radha Akella
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John M Humphreys
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Haixia He
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qifei Sun
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Feng Zhang
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Jason Sosa-Pagan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Daryl E Morrison
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Jeffrey N Schellinger
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Elizabeth J Goldsmith
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah.,Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Human Genetics, University of Utah, Salt Lake City, Utah.,Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| |
Collapse
|
22
|
Custodio JMF, Vaz WF, Bernardes A, Moura AF, Oliver AG, Molnár S, Perjési P, Noda-Perez C. Alternative mechanisms of action for the apoptotic activity of terpenoid-like chalcone derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj02086b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The structural basis of the cytotoxicity of terpenoid-like chalcone derivatives.
Collapse
Affiliation(s)
- Jean M. F. Custodio
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana, USA
| | - Wesley F. Vaz
- Departmento de Química, Instituto Federal de Ensino, Ciência e Tecnologia de Mato Grosso, Mato Grosso, Brazil
| | - Aline Bernardes
- Departmento de Química, Instituto Federal de Ensino, Ciência e Tecnologia de Mato Grosso, Mato Grosso, Brazil
| | - Andrea F. Moura
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, CE, Brazil
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana, USA
| | - Szilárd Molnár
- Institute of Pharmaceutical Chemistry, University of Pécs, Pécs, Hungary
| | - Pál Perjési
- Institute of Pharmaceutical Chemistry, University of Pécs, Pécs, Hungary
| | - Caridad Noda-Perez
- Institute of Pharmaceutical Chemistry, University of Pécs, Pécs, Hungary
- Instituto de Química, Universidade Federal de Goiás, Goiás, Brazil
| |
Collapse
|
23
|
Leng YR, Zhang MH, Luo JG, Zhang H. Pathogenesis of NASH and Promising Natural Products. Chin J Nat Med 2021; 19:12-27. [PMID: 33516448 DOI: 10.1016/s1875-5364(21)60002-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 02/08/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a common clinical condition that can lead to advanced liver diseases. The mechanism of the diaease progression, which is lacking effective therapy, remains obsure. Therefore, there is a need to understand the pathogenic mechanisms responsible for disease development and progression in order to develop innovative therapies. To accomplish this goal, experimental animal models that recapitulate the human disease are necessary. Currently, an increasing number of studies have focused on natural constituents from medicinal plants which have been emerged as a new hope for NASH. This review summarized the pathogenesis of NASH, animal models commonly used, and the promising targets for therapeutics. We also reviewed the natural constituents as potential NASH therapeutic agents.
Collapse
Affiliation(s)
- Ying-Rong Leng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mei-Hui Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Guang Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
24
|
The 14-3-3 Proteins as Important Allosteric Regulators of Protein Kinases. Int J Mol Sci 2020; 21:ijms21228824. [PMID: 33233473 PMCID: PMC7700312 DOI: 10.3390/ijms21228824] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphorylation by kinases governs many key cellular and extracellular processes, such as transcription, cell cycle progression, differentiation, secretion and apoptosis. Unsurprisingly, tight and precise kinase regulation is a prerequisite for normal cell functioning, whereas kinase dysregulation often leads to disease. Moreover, the functions of many kinases are regulated through protein–protein interactions, which in turn are mediated by phosphorylated motifs and often involve associations with the scaffolding and chaperon protein 14-3-3. Therefore, the aim of this review article is to provide an overview of the state of the art on 14-3-3-mediated kinase regulation, focusing on the most recent mechanistic insights into these important protein–protein interactions and discussing in detail both their structural aspects and functional consequences.
Collapse
|
25
|
Ran J, Liu M, Feng J, Li H, Ma H, Song T, Cao Y, Zhou P, Wu Y, Yang Y, Yang Y, Yu F, Guo H, Zhang L, Xie S, Li D, Gao J, Zhang X, Zhu X, Zhou J. ASK1-Mediated Phosphorylation Blocks HDAC6 Ubiquitination and Degradation to Drive the Disassembly of Photoreceptor Connecting Cilia. Dev Cell 2020; 53:287-299.e5. [PMID: 32275885 DOI: 10.1016/j.devcel.2020.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 01/20/2020] [Accepted: 03/12/2020] [Indexed: 01/08/2023]
Abstract
Retinopathy of prematurity (ROP) is a leading cause of childhood blindness. However, the pathogenesis and molecular mechanisms underlying ROP remain elusive. Herein, using the oxygen-induced retinopathy (OIR) mouse model of ROP, we demonstrate that disassembly of photoreceptor connecting cilia is an early event in response to oxygen changes. Histone deacetylase 6 (HDAC6) is upregulated in the retina of OIR mice and accumulates in the transition zone of connecting cilia. We also show that in response to oxygen changes, apoptosis signal-regulating kinase 1 (ASK1) is activated and phosphorylates HDAC6, blocking its ubiquitination by von Hippel-Lindau and subsequent degradation by the proteasome. Moreover, depletion of HDAC6 or inhibition of the ASK1/HDAC6 axis protects mice from oxygen-change-induced pathological changes of photoreceptors. These findings reveal a critical role for ASK1/HDAC6-mediated connecting cilium disassembly in the OIR mouse model of ROP and suggest a potential value of ASK1/HDAC6-targeted agents for prevention of this disease.
Collapse
Affiliation(s)
- Jie Ran
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Min Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Jie Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Haixia Li
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Huixian Ma
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ting Song
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yu Cao
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Peng Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yuhan Wu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yunfan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fan Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Heng Guo
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Liang Zhang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Songbo Xie
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinmin Gao
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiaomin Zhang
- Eye Institute, School of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
26
|
Brys R, Gibson K, Poljak T, Van Der Plas S, Amantini D. Discovery and development of ASK1 inhibitors. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:101-179. [PMID: 32362327 DOI: 10.1016/bs.pmch.2020.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant activation of mitogen-activated protein kinases (MAPKs) like c-Jun N-terminal kinase (JNK) and p38 is an event involved in the pathophysiology of numerous human diseases. The apoptosis signal-regulating kinase 1 (ASK1) is an upstream target that gets activated only under pathological conditions and as such is a promising target for therapeutic intervention. In the first part of this review the molecular mechanisms leading to ASK1 activation and regulation will be described as well as the evidences supporting a pathogenic role for ASK1 in human disease. In the second part, an update on drug discovery efforts towards the discovery and development of ASK1-targeting therapies will be provided.
Collapse
Affiliation(s)
| | - Karl Gibson
- Sandexis Medicinal Chemistry Ltd, Innovation House Discovery ParkSandwich, Kent, United Kingdom
| | | | | | | |
Collapse
|
27
|
Semba T, Sammons R, Wang X, Xie X, Dalby KN, Ueno NT. JNK Signaling in Stem Cell Self-Renewal and Differentiation. Int J Mol Sci 2020; 21:E2613. [PMID: 32283767 PMCID: PMC7177258 DOI: 10.3390/ijms21072613] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
C-JUN N-terminal kinases (JNKs), which belong to the mitogen-activated protein kinase (MAPK) family, are evolutionarily conserved kinases that mediate cell responses to various types of extracellular stress insults. They regulate physiological processes such as embryonic development and tissue regeneration, playing roles in cell proliferation and programmed cell death. JNK signaling is also involved in tumorigenesis and progression of several types of malignancies. Recent studies have shown that JNK signaling has crucial roles in regulating the traits of cancer stem cells (CSCs). Here we describe the functions of the JNK signaling pathway in self-renewal and differentiation, which are essential features of various types of stem cells, such as embryonic, induced pluripotent, and adult tissue-specific stem cells. We also review current knowledge of JNK signaling in CSCs and discuss its role in maintaining the CSC phenotype. A better understanding of JNK signaling as an essential regulator of stemness may provide a basis for the development of regenerative medicine and new therapeutic strategies against malignant tumors.
Collapse
Affiliation(s)
- Takashi Semba
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rachel Sammons
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.S.); (K.N.D.)
| | - Xiaoping Wang
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuemei Xie
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.S.); (K.N.D.)
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Naoto T. Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
28
|
Trevelyan SJ, Brewster JL, Burgess AE, Crowther JM, Cadell AL, Parker BL, Croucher DR, Dobson RCJ, Murphy JM, Mace PD. Structure-based mechanism of preferential complex formation by apoptosis signal–regulating kinases. Sci Signal 2020; 13:13/622/eaay6318. [DOI: 10.1126/scisignal.aay6318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Apoptosis signal–regulating kinases (ASK1, ASK2, and ASK3) are activators of the p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways. ASK1–3 form oligomeric complexes known as ASK signalosomes that initiate signaling cascades in response to diverse stress stimuli. Here, we demonstrated that oligomerization of ASK proteins is driven by previously uncharacterized sterile-alpha motif (SAM) domains that reside at the carboxy-terminus of each ASK protein. SAM domains from ASK1–3 exhibited distinct behaviors, with the SAM domain of ASK1 forming unstable oligomers, that of ASK2 remaining predominantly monomeric, and that of ASK3 forming a stable oligomer even at a low concentration. In contrast to their behavior in isolation, the ASK1 and ASK2 SAM domains preferentially formed a stable heterocomplex. The crystal structure of the ASK3 SAM domain, small-angle x-ray scattering, and mutagenesis suggested that ASK3 oligomers and ASK1-ASK2 complexes formed discrete, quasi-helical rings through interactions between the mid-loop of one molecule and the end helix of another molecule. Preferential ASK1-ASK2 binding was consistent with mass spectrometry showing that full-length ASK1 formed hetero-oligomeric complexes incorporating large amounts of ASK2. Accordingly, disrupting the association between SAM domains impaired ASK activity in the context of electrophilic stress induced by 4-hydroxy-2-nonenal (HNE). These findings provide a structural template for how ASK proteins assemble foci that drive inflammatory signaling and reinforce the notion that strategies to target ASK proteins should consider the concerted actions of multiple ASK family members.
Collapse
Affiliation(s)
- Sarah J. Trevelyan
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland St., Dunedin 9054, New Zealand
| | - Jodi L. Brewster
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland St., Dunedin 9054, New Zealand
| | - Abigail E. Burgess
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland St., Dunedin 9054, New Zealand
| | - Jennifer M. Crowther
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Antonia L. Cadell
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
| | - Benjamin L. Parker
- Department of Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David R. Croucher
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St Vincent’s Hospital Clinical School, University of New South Wales, Sydney, New South Wales, 2052, Australia
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James M. Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter D. Mace
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland St., Dunedin 9054, New Zealand
| |
Collapse
|
29
|
Yadav DK, Adhikari M, Kumar S, Ghimire B, Han I, Kim MH, Choi EH. Cold atmospheric plasma generated reactive species aided inhibitory effects on human melanoma cells: an in vitro and in silico study. Sci Rep 2020; 10:3396. [PMID: 32099012 PMCID: PMC7042335 DOI: 10.1038/s41598-020-60356-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/10/2020] [Indexed: 12/23/2022] Open
Abstract
Malignant melanoma is considered to be a heterogeneous disease that arises from altered genes and transformed melanocytes. In this study, special softjet cold atmospheric plasma was used to treat three different human melanoma cells using air and N2 gases to check the anti-melanoma activity. The physical effects by plasma revealed an increase in the temperature with the gradual reduction in pH at 60 sec, 180 sec and 300 sec air and N2 plasma treatment. Cellular toxicity revealed a decreased in cell survival (~50% cell survival using air gas and <~60% cell survival using N2 gas at 60 sec plasma treatment in G-361 cells). Gene analysis by q-PCR revealed that 3 min and 5 min air and N2 plasma treatment activated apoptotic pathways by triggering apoptotic genes in all three melanoma cell lines. The apoptosis was confirmed by DAPI staining and its related pathways were further explored according to protein-protein docking, and their probable activation mechanism was revealed. The pathways highlighted that activation of apoptosis which leads to cellular cascades and hence stimulation ASK1 (docking method) revealed that softjet plasma can be an effective modality for human melanoma treatment.
Collapse
Affiliation(s)
- Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea.
| | - Manish Adhikari
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Surendra Kumar
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Bhagirath Ghimire
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Mi-Hyun Kim
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Romero FA, Jones CT, Xu Y, Fenaux M, Halcomb RL. The Race to Bash NASH: Emerging Targets and Drug Development in a Complex Liver Disease. J Med Chem 2020; 63:5031-5073. [PMID: 31930920 DOI: 10.1021/acs.jmedchem.9b01701] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD) characterized by liver steatosis, inflammation, and hepatocellular damage. NASH is a serious condition that can progress to cirrhosis, liver failure, and hepatocellular carcinoma. The association of NASH with obesity, type 2 diabetes mellitus, and dyslipidemia has led to an emerging picture of NASH as the liver manifestation of metabolic syndrome. Although diet and exercise can dramatically improve NASH outcomes, significant lifestyle changes can be challenging to sustain. Pharmaceutical therapies could be an important addition to care, but currently none are approved for NASH. Here, we review the most promising targets for NASH treatment, along with the most advanced therapeutics in development. These include targets involved in metabolism (e.g., sugar, lipid, and cholesterol metabolism), inflammation, and fibrosis. Ultimately, combination therapies addressing multiple aspects of NASH pathogenesis are expected to provide benefit for patients.
Collapse
Affiliation(s)
- F Anthony Romero
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Christopher T Jones
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Yingzi Xu
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Martijn Fenaux
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Randall L Halcomb
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| |
Collapse
|
31
|
Himmelbauer MK, Xin Z, Jones JH, Enyedy I, King K, Marcotte DJ, Murugan P, Santoro JC, Hesson T, Spilker K, Johnson JL, Luzzio MJ, Gilfillan R, de Turiso FGL. Rational Design and Optimization of a Novel Class of Macrocyclic Apoptosis Signal-Regulating Kinase 1 Inhibitors. J Med Chem 2019; 62:10740-10756. [DOI: 10.1021/acs.jmedchem.9b01206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Rusnak L, Tang C, Qi Q, Mo X, Fu H. Large tumor suppressor 2, LATS2, activates JNK in a kinase-independent mechanism through ASK1. J Mol Cell Biol 2019; 10:549-558. [PMID: 30496488 DOI: 10.1093/jmcb/mjy061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022] Open
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is an important mediator of the cell stress response pathways. Because of its central role in regulating cell death, the activity of ASK1 is tightly regulated by protein-protein interactions and post-translational modifications. Deregulation of ASK1 activity has been linked to human diseases, such as neurological disorders and cancer. Here we describe the identification and characterization of large tumor suppressor 2 (LATS2) as a novel binding partner for ASK1. LATS2 is a core kinase in the Hippo signaling pathway and is commonly downregulated in cancer. We found that LATS2 interacts with ASK1 and increases ASK1-mediated signaling to promote apoptosis and activate the JNK mitogen-activated protein kinase (MAPK). This change in MAPK signaling is dependent on the catalytic activity of ASK1 but does not require LATS2 kinase activity. This work identifies a novel role for LATS2 as a positive regulator of the ASK1-MKK-JNK signaling pathway and establishes a kinase-independent function of LATS2 that may be part of the intricate regulatory system for cellular response to diverse stress signals.
Collapse
Affiliation(s)
- Lauren Rusnak
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA.,Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA
| | - Cong Tang
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA.,The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Qi Qi
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA
| | - Xiulei Mo
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA
| | - Haian Fu
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA.,Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA.,Winship Cancer Institute, Emory University, Atlanta, GA, USA.,Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| |
Collapse
|
33
|
Luxenburger A, Schmidt D, Ianes C, Pichlo C, Krüger M, von Drathen T, Brunstein E, Gainsford GJ, Baumann U, Knippschild U, Peifer C. Design, Synthesis and Biological Evaluation of Isoxazole-Based CK1 Inhibitors Modified with Chiral Pyrrolidine Scaffolds. Molecules 2019; 24:E873. [PMID: 30832206 PMCID: PMC6429214 DOI: 10.3390/molecules24050873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/23/2019] [Accepted: 02/27/2019] [Indexed: 01/27/2023] Open
Abstract
In this study, we report on the modification of a 3,4-diaryl-isoxazole-based CK1 inhibitor with chiral pyrrolidine scaffolds to develop potent and selective CK1 inhibitors. The pharmacophore of the lead structure was extended towards the ribose pocket of the adenosine triphosphate (ATP) binding site driven by structure-based drug design. For an upscale compatible multigram synthesis of the functionalized pyrrolidine scaffolds, we used a chiral pool synthetic route starting from methionine. Biological evaluation of key compounds in kinase and cellular assays revealed significant effects of the scaffolds towards activity and selectivity, however, the absolute configuration of the chiral moieties only exhibited a limited effect on inhibitory activity. X-ray crystallographic analysis of ligand-CK1δ complexes confirmed the expected binding mode of the 3,4-diaryl-isoxazole inhibitors. Surprisingly, the original compounds underwent spontaneous Pictet-Spengler cyclization with traces of formaldehyde during the co-crystallization process to form highly potent new ligands. Our data suggests chiral "ribose-like" pyrrolidine scaffolds have interesting potential for modifications of pharmacologically active compounds.
Collapse
Affiliation(s)
- Andreas Luxenburger
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand.
| | - Dorian Schmidt
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, D-24116 Kiel, Germany.
| | - Chiara Ianes
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, D-89081 Ulm, Germany.
| | - Christian Pichlo
- Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, D-50674 Cologne, Germany.
| | - Marc Krüger
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, D-89081 Ulm, Germany.
| | - Thorsten von Drathen
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, D-24116 Kiel, Germany.
| | - Elena Brunstein
- Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, D-50674 Cologne, Germany.
| | - Graeme J Gainsford
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand.
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, D-50674 Cologne, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, D-89081 Ulm, Germany.
| | - Christian Peifer
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, D-24116 Kiel, Germany.
| |
Collapse
|
34
|
Xiao F, Li H, Xu M, Li T, Wang J, Sun C, Hong K, Li W. Staurosporine Derivatives Generated by Pathway Engineering in a Heterologous Host and Their Cytotoxic Selectivity. JOURNAL OF NATURAL PRODUCTS 2018; 81:1745-1751. [PMID: 30106291 DOI: 10.1021/acs.jnatprod.8b00103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two new staurosporine derivatives, staurosporines M1 and M2 (4 and 5), in addition to five previously reported metabolites (1-3, 6, and 7), were generated by the heterologous expression of engineered spc gene clusters in Streptomyces coelicolor M1146. The structures of these derivatives were determined by a combination of spectroscopic methods and CD measurement. Compounds 1, 2, 4, and 5 showed effective activities against three tumor cell lines (HCT-116, K562, and Huh 7.5), and 3 was active against HCT-116 and K562 cells. In addition, compounds 3 and 5 showed undetectable toxicity up to 100 μM toward the normal hepatic cell line LO2. Based on the IC50 values, their structure and activity relationships are discussed.
Collapse
Affiliation(s)
- Fei Xiao
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266000 , People's Republic of China
| | - Mingyuan Xu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Tong Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Ju Wang
- Key Laboratory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , People's Republic of China
| | - Chaomin Sun
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266000 , People's Republic of China
- Key Laboratory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , People's Republic of China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education of China, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , People's Republic of China
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266000 , People's Republic of China
| |
Collapse
|
35
|
Rational approach to highly potent and selective apoptosis signal-regulating kinase 1 (ASK1) inhibitors. Eur J Med Chem 2017; 145:606-621. [PMID: 29348070 DOI: 10.1016/j.ejmech.2017.12.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/21/2022]
Abstract
Many diseases are believed to be driven by pathological levels of reactive oxygen species (ROS) and oxidative stress has long been recognized as a driver for inflammatory disorders. Apoptosis signal-regulating kinase 1 (ASK1) has been reported to be activated by intracellular ROS and its inhibition leads to a down regulation of p38-and JNK-dependent signaling. Consequently, ASK1 inhibitors may have the potential to treat clinically important inflammatory pathologies including renal, pulmonary and liver diseases. Analysis of the ASK1 ATP-binding site suggested that Gln756, an amino acid that rarely occurs at the GK+2 position, offered opportunities for achieving kinase selectivity for ASK1 which was applied to the design of a parallel medicinal chemistry library that afforded inhibitors of ASK1 with nanomolar potency and excellent kinome selectivity. A focused optimization strategy utilizing structure-based design resulted in the identification of ASK1 inhibitors with low nanomolar potency in a cellular assay, high selectivity when tested against kinase and broad pharmacology screening panels, and attractive physicochemical properties. The compounds we describe are attractive tool compounds to inform the therapeutic potential of ASK1 inhibition.
Collapse
|
36
|
Rusnak L, Fu H. Regulation of ASK1 signaling by scaffold and adaptor proteins. Adv Biol Regul 2017; 66:23-30. [PMID: 29102394 DOI: 10.1016/j.jbior.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway is a three-tiered kinase cascade where mitogen-activated protein kinase kinase kinases (MAP3Ks) lead to the activation of mitogen-activated protein kinase kinases (MAP2K), and ultimately MAPK proteins. MAPK signaling can promote a diverse set of biological outcomes, ranging from cell death to proliferation. There are multiple mechanisms which govern MAPK output, such as the duration and strength of the signal, cellular localization to upstream and downstream binding partners, pathway crosstalk and the binding to scaffold and adaptor molecules. This review will focus on scaffold and adaptor proteins that bind to and regulate apoptosis signal-regulating kinase 1 (ASK1), a MAP3K protein with a critical role in mediating stress response pathways.
Collapse
Affiliation(s)
- Lauren Rusnak
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA 30322, USA; Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA.
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA 30322, USA; Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA; Department of Hematology & Medical Oncology, Emory University, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
37
|
Liu T, Zhou HJ, Min W. ASK family in cardiovascular biology and medicine. Adv Biol Regul 2017; 66:54-62. [PMID: 29107568 PMCID: PMC5705453 DOI: 10.1016/j.jbior.2017.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 01/03/2023]
Abstract
Cardiovascular disease is a major cause of death worldwide. Mitogen-activated protein kinase (MAPK) signal cascades signaling pathways play crucial roles in cardiovascular pathophysiology. Apoptosis signal-regulating kinase (ASK) family members ASK1, ASK2 and ASK3 are the key molecules in MAPK signal cascades and are activated by various stresses. ASK1 is the most extensively studied MAPKKK and is involved in regulation of the cellular functions such as cell survival, proliferation, inflammation and apoptosis. The current review focuses on the relationship between ASK1 and cardiovascular disease, while exploring the novel therapeutic strategies for cardiovascular disease involved in the ASK1 signal pathway.
Collapse
Affiliation(s)
- Tingting Liu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Huanjiao Jenny Zhou
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Wang Min
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
38
|
Structural aspects of protein kinase ASK1 regulation. Adv Biol Regul 2017; 66:31-36. [PMID: 29066278 DOI: 10.1016/j.jbior.2017.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 11/21/2022]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1, also known as MAP3K5), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, activates the p38 mitogen-activated protein kinase and the c-Jun N-terminal kinase (JNK) signaling cascades in response to various stressors. ASK1 activity is tightly regulated through phosphorylation and interaction with various binding partners. However, the mechanistic details underlying the ASK1 regulation are still not fully understood. This review focuses on recent advances in structural studies of protein kinase ASK1 and on the insights they provide into its mechanism of regulation. In addition, we also discuss protein-protein interactions between ASK1 and its binding partners thioredoxin (TRX) and 14-3-3 protein.
Collapse
|
39
|
Abstract
Mitogen-activated protein kinase kinase 3 (MKK3) is a dual threonine/tyrosine protein kinase that regulates inflammation, proliferation and apoptosis through specific phosphorylation and activation of the p38 MAPK. However, the role of MKK3 beyond p38-signaling remains elusive. Recently, we reported a protein-protein interaction (PPI) network of cancer-associated genes, termed OncoPPi, as a resource for the scientific community to generate new biological models. Analysis of the OncoPPi connectivity identified MKK3 as one of the major hub proteins in the network. Here, we show that MKK3 interacts with a large number of proteins critical for cell growth and metabolism, including the major oncogenic driver MYC. Multiple complementary approaches were employed to demonstrate the direct interaction of MKK3 with MYC in vitro and in vivo. Computational modeling and experimental studies mapped the interaction interface to the MYC helix-loop-helix domain and a novel 15-residue MYC-binding motif in MKK3 (MBM). The MBM in MKK3 is distinct from the known binding sites for p38 or upstream kinases. Functionally, MKK3 stabilized MYC protein, enhanced its transcriptional activity and increased expression of MYC-regulated genes. The defined MBM peptide mimicked the MKK3 effect in promoting MYC activity. Together, the exploration of OncoPPi led to a new biological model in which MKK3 operates by two distinct mechanisms in cellular regulation through its phosphorylation of p38 and its activation of MYC through protein-protein interaction.
Collapse
|
40
|
Cobbaut M, Derua R, Döppler H, Lou HJ, Vandoninck S, Storz P, Turk BE, Seufferlein T, Waelkens E, Janssens V, Van Lint J. Differential regulation of PKD isoforms in oxidative stress conditions through phosphorylation of a conserved Tyr in the P+1 loop. Sci Rep 2017; 7:887. [PMID: 28428613 PMCID: PMC5430542 DOI: 10.1038/s41598-017-00800-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/13/2017] [Indexed: 01/06/2023] Open
Abstract
Protein kinases are essential molecules in life and their crucial function requires tight regulation. Many kinases are regulated via phosphorylation within their activation loop. This loop is embedded in the activation segment, which additionally contains the Mg2+ binding loop and a P + 1 loop that is important in substrate binding. In this report, we identify Abl-mediated phosphorylation of a highly conserved Tyr residue in the P + 1 loop of protein kinase D2 (PKD2) during oxidative stress. Remarkably, we observed that the three human PKD isoforms display very different degrees of P + 1 loop Tyr phosphorylation and we identify one of the molecular determinants for this divergence. This is paralleled by a different activation mechanism of PKD1 and PKD2 during oxidative stress. Tyr phosphorylation in the P + 1 loop of PKD2 increases turnover for Syntide-2, while substrate specificity and the role of PKD2 in NF-κB signaling remain unaffected. Importantly, Tyr to Phe substitution renders the kinase inactive, jeopardizing its use as a non-phosphorylatable mutant. Since large-scale proteomics studies identified P + 1 loop Tyr phosphorylation in more than 70 Ser/Thr kinases in multiple conditions, our results do not only demonstrate differential regulation/function of PKD isoforms under oxidative stress, but also have implications for kinase regulation in general.
Collapse
Affiliation(s)
- Mathias Cobbaut
- Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Rita Derua
- Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Heike Döppler
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sandy Vandoninck
- Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Etienne Waelkens
- Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Veerle Janssens
- Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Johan Van Lint
- Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium. .,Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium.
| |
Collapse
|
41
|
Weijman JF, Kumar A, Jamieson SA, King CM, Caradoc-Davies TT, Ledgerwood EC, Murphy JM, Mace PD. Structural basis of autoregulatory scaffolding by apoptosis signal-regulating kinase 1. Proc Natl Acad Sci U S A 2017; 114:E2096-E2105. [PMID: 28242696 PMCID: PMC5358389 DOI: 10.1073/pnas.1620813114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Apoptosis signal-regulating kinases (ASK1-3) are apical kinases of the p38 and JNK MAP kinase pathways. They are activated by diverse stress stimuli, including reactive oxygen species, cytokines, and osmotic stress; however, a molecular understanding of how ASK proteins are controlled remains obscure. Here, we report a biochemical analysis of the ASK1 kinase domain in conjunction with its N-terminal thioredoxin-binding domain, along with a central regulatory region that links the two. We show that in solution the central regulatory region mediates a compact arrangement of the kinase and thioredoxin-binding domains and the central regulatory region actively primes MKK6, a key ASK1 substrate, for phosphorylation. The crystal structure of the central regulatory region reveals an unusually compact tetratricopeptide repeat (TPR) region capped by a cryptic pleckstrin homology domain. Biochemical assays show that both a conserved surface on the pleckstrin homology domain and an intact TPR region are required for ASK1 activity. We propose a model in which the central regulatory region promotes ASK1 activity via its pleckstrin homology domain but also facilitates ASK1 autoinhibition by bringing the thioredoxin-binding and kinase domains into close proximity. Such an architecture provides a mechanism for control of ASK-type kinases by diverse activators and inhibitors and demonstrates an unexpected level of autoregulatory scaffolding in mammalian stress-activated MAP kinase signaling.
Collapse
Affiliation(s)
- Johannes F Weijman
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Abhishek Kumar
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Sam A Jamieson
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Chontelle M King
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | | | - Elizabeth C Ledgerwood
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
42
|
Pleinis JM, Davis CW, Cantrell CB, Qiu DY, Zhan X. Purification, auto-activation and kinetic characterization of apoptosis signal-regulating kinase I. Protein Expr Purif 2017; 132:34-43. [PMID: 28082061 DOI: 10.1016/j.pep.2017.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 01/16/2023]
Abstract
Apoptosis signal-regulating kinase I (ASK1) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates the downstream MAP kinase kinases (MKKs) from two MAP kinase cascades: c-Jun N-terminal kinase (JNK) and p38. The essential physiological functions of ASK1 have attracted extensive attention. However, our understanding of the molecular mechanisms of ASK1, including the activation mechanism of ASK1 and the catalytic mechanism of ASK1-mediated MKK phosphorylation, remain unclear. The lack of purified ASK1 protein has hindered the elucidation of ASK1-initiated signal transduction mechanisms. Here, we report a one-step chromatography method for the expression and purification of functional full-length ASK1 from Escherichia coli. The purified ASK1 demonstrates auto-phosphorylation activity. The kinase activity of auto-phosphorylated ASK1 (pASK1) was also evaluated on two MKK substrates, MKK4 and 7, from the JNK cascades. Our results show that MKK7 can be phosphorylated by pASK1 more effectively than MKK4. The steady-state kinetic analysis demonstrates that MKK7 is a better ASK1 substrate than MKK4. These observations are further confirmed by direct pull-down assays which shows ASK1 binds MKK7 significantly stronger than MKK4. Furthermore, robust phospho-tyrosine signal is observed in MKK4 phosphorylation by pASK1 in addition to the phospho-serine and phospho-threonine. This study provides novel mechanistic and kinetic insights into the ASK1-initiated MAPK signal transduction via highly controlled reconstructed protein systems.
Collapse
Affiliation(s)
- John M Pleinis
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505, USA
| | - Cameron W Davis
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505, USA
| | - Caleb B Cantrell
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505, USA
| | - David Y Qiu
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505, USA
| | - Xuanzhi Zhan
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505, USA.
| |
Collapse
|
43
|
Petrvalska O, Kosek D, Kukacka Z, Tosner Z, Man P, Vecer J, Herman P, Obsilova V, Obsil T. Structural Insight into the 14-3-3 Protein-dependent Inhibition of Protein Kinase ASK1 (Apoptosis Signal-regulating kinase 1). J Biol Chem 2016; 291:20753-65. [PMID: 27514745 DOI: 10.1074/jbc.m116.724310] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 11/06/2022] Open
Abstract
Apoptosis signal-regulating kinase 1 (ASK1, also known as MAP3K5), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, regulates diverse physiological processes. The activity of ASK1 is triggered by various stress stimuli and is involved in the pathogenesis of cancer, neurodegeneration, inflammation, and diabetes. ASK1 forms a high molecular mass complex whose activity is, under non-stress conditions, suppressed through interaction with thioredoxin and the scaffolding protein 14-3-3. The 14-3-3 protein binds to the phosphorylated Ser-966 motif downstream of the ASK1 kinase domain. The role of 14-3-3 in the inhibition of ASK1 has yet to be elucidated. In this study we performed structural analysis of the complex between the ASK1 kinase domain phosphorylated at Ser-966 (pASK1-CD) and the 14-3-3ζ protein. Small angle x-ray scattering (SAXS) measurements and chemical cross-linking revealed that the pASK1-CD·14-3-3ζ complex is dynamic and conformationally heterogeneous. In addition, structural analysis coupled with the results of phosphorus NMR and time-resolved tryptophan fluorescence measurements suggest that 14-3-3ζ interacts with the kinase domain of ASK1 in close proximity to its active site, thus indicating this interaction might block its accessibility and/or affect its conformation.
Collapse
Affiliation(s)
- Olivia Petrvalska
- From the Department of Physical and Macromolecular Chemistry, Faculty of Science, and Institute of Physiology and
| | - Dalibor Kosek
- From the Department of Physical and Macromolecular Chemistry, Faculty of Science, and Institute of Physiology and
| | - Zdenek Kukacka
- the Institute of Microbiology, The Czech Academy of Sciences, 14220 Prague, and
| | - Zdenek Tosner
- From the Department of Physical and Macromolecular Chemistry, Faculty of Science, and
| | - Petr Man
- the Institute of Microbiology, The Czech Academy of Sciences, 14220 Prague, and Department of Biochemistry, Faculty of Science, Charles University in Prague, 12843 Prague
| | - Jaroslav Vecer
- the Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, 12116 Prague, Czech Republic
| | - Petr Herman
- the Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, 12116 Prague, Czech Republic
| | | | - Tomas Obsil
- From the Department of Physical and Macromolecular Chemistry, Faculty of Science, and Institute of Physiology and
| |
Collapse
|
44
|
JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol Mol Biol Rev 2016; 80:793-835. [PMID: 27466283 DOI: 10.1128/mmbr.00043-14] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states.
Collapse
|
45
|
Chen M, Qu X, Zhang Z, Wu H, Qin X, Li F, Liu Z, Tian L, Miao J, Shu W. Cross-talk between Arg methylation and Ser phosphorylation modulates apoptosis signal-regulating kinase 1 activation in endothelial cells. Mol Biol Cell 2016; 27:1358-66. [PMID: 26912789 PMCID: PMC4831888 DOI: 10.1091/mbc.e15-10-0738] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/09/2016] [Indexed: 12/15/2022] Open
Abstract
Protein arginine methyltransferase 5 interacts with and methylates apoptosis signal–regulating kinase 1 at arginine residue 89, thereby negatively regulating its activity by promoting the interaction between ASK1 and Akt and thus phosphorylating ASK1 at serine residue 83. We describe a novel functional interaction between ASK1 and PRMT5. We show that PRMT5 interacts with and methylates ASK1 at arginine residue 89 and thereby negatively regulates its activity by promoting the interaction between ASK1 and Akt and thus phosphorylating ASK1 at serine residue 83. Furthermore, the association between ASK1 and Akt is enhanced by VEGF stimulation, and PRMT5 is required for this association. Moreover, PRMT5-mediated ASK1 methylation impaired the H2O2-induced activity of ASK1, and this inhibitory effect of PRMT5 was abolished by replacement of arginine 89 with Trp or depletion of PRMT5 expression by RNA interference. Together the results demonstrate cross-talk between arginine methylation and serine phosphorylation in ASK1.
Collapse
Affiliation(s)
- Ming Chen
- Center for Identification of Chinese Herbal Medicines, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China Tianjin Institute of Hygiene and Environmental Medicine, Tianjin 300050, China
| | - Xiaosheng Qu
- Center for Identification of Chinese Herbal Medicines, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Zhiqing Zhang
- Tianjin Institute of Hygiene and Environmental Medicine, Tianjin 300050, China
| | - Huayu Wu
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning 530021, China
| | - Xia Qin
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning 530021, China
| | - Fuji Li
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning 530021, China
| | - Zhenfang Liu
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Liyuan Tian
- Department of Specific Diagnosis, General Hospital of Airforce, Beijing 100142, China
| | - Jianhua Miao
- Center for Identification of Chinese Herbal Medicines, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Wei Shu
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
46
|
Lai S, Pelech S. Regulatory roles of conserved phosphorylation sites in the activation T-loop of the MAP kinase ERK1. Mol Biol Cell 2016; 27:1040-50. [PMID: 26823016 PMCID: PMC4791125 DOI: 10.1091/mbc.e15-07-0527] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/20/2016] [Indexed: 02/05/2023] Open
Abstract
The catalytic domains of most eukaryotic protein kinases are highly conserved in their primary structures. Their phosphorylation within the well-known activation T-loop, a variable region between protein kinase catalytic subdomains VII and VIII, is a common mechanism for stimulation of their phosphotransferase activities. Extracellular signal-regulated kinase 1 (ERK1), a member of the extensively studied mitogen-activated protein kinase (MAPK) family, serves as a paradigm for regulation of protein kinases in signaling modules. In addition to the well-documented T202 and Y204 stimulatory phosphorylation sites in the activation T-loop of ERK1 and its closest relative, ERK2, three additional flanking phosphosites have been confirmed (T198, T207, and Y210 from ERK1) by high-throughput mass spectrometry. In vitro kinase assays revealed the functional importance of T207 and Y210, but not T198, in negatively regulating ERK1 catalytic activity. The Y210 site could be important for proper conformational arrangement of the active site, and a Y210F mutant could not be recognized by MEK1 for phosphorylation of T202 and Y204 in vitro. Autophosphorylation of T207 reduces the catalytic activity and stability of activated ERK1. We propose that after the activation of ERK1 by MEK1, subsequent slower phosphorylation of the flanking sites results in inhibition of the kinase. Because the T207 and Y210 phosphosites of ERK1 are highly conserved within the eukaryotic protein kinase family, hyperphosphorylation within the kinase activation T-loop may serve as a general mechanism for protein kinase down-regulation after initial activation by their upstream kinases.
Collapse
Affiliation(s)
- Shenshen Lai
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Steven Pelech
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada Kinexus Bioinformatics Corporation, Vancouver, BC V6P 6T3, Canada
| |
Collapse
|
47
|
Aberrant Activation of p38 MAP Kinase-Dependent Innate Immune Responses Is Toxic to Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2016; 6:541-9. [PMID: 26818074 PMCID: PMC4777117 DOI: 10.1534/g3.115.025650] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inappropriate activation of innate immune responses in intestinal epithelial cells underlies the pathophysiology of inflammatory disorders of the intestine. Here we examine the physiological effects of immune hyperactivation in the intestine of the nematode Caenorhabditis elegans. We previously identified an immunostimulatory xenobiotic that protects C. elegans from bacterial infection by inducing immune effector expression via the conserved p38 MAP kinase pathway, but was toxic to nematodes developing in the absence of pathogen. To investigate a possible connection between the toxicity and immunostimulatory properties of this xenobiotic, we conducted a forward genetic screen for C. elegans mutants that are resistant to the deleterious effects of the compound, and identified five toxicity suppressors. These strains contained hypomorphic mutations in each of the known components of the p38 MAP kinase cassette (tir-1, nsy-1, sek-1, and pmk-1), demonstrating that hyperstimulation of the p38 MAPK pathway is toxic to animals. To explore mechanisms of immune pathway regulation in C. elegans, we conducted another genetic screen for dominant activators of the p38 MAPK pathway, and identified a single allele that had a gain-of-function (gf) mutation in nsy-1, the MAP kinase kinase kinase that acts upstream of p38 MAPK pmk-1. The nsy-1(gf) allele caused hyperinduction of p38 MAPK PMK-1-dependent immune effectors, had greater levels of phosphorylated p38 MAPK, and was more resistant to killing by the bacterial pathogen Pseudomonas aeruginosa compared to wild-type controls. In addition, the nsy-1(gf) mutation was toxic to developing animals. Together, these data suggest that the activity of the MAPKKK NSY-1 is tightly regulated as part of a physiological mechanism to control p38 MAPK-mediated innate immune hyperactivation, and ensure cellular homeostasis in C. elegans.
Collapse
|
48
|
Starosyla SA, Volynets GP, Lukashov SS, Gorbatiuk OB, Golub AG, Bdzhola VG, Yarmoluk SM. Identification of apoptosis signal-regulating kinase 1 (ASK1) inhibitors among the derivatives of benzothiazol-2-yl-3-hydroxy-5-phenyl-1,5-dihydro-pyrrol-2-one. Bioorg Med Chem 2015; 23:2489-97. [DOI: 10.1016/j.bmc.2015.03.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/12/2015] [Accepted: 03/19/2015] [Indexed: 12/11/2022]
|
49
|
Lin JH, Zhang JJ, Lin SL, Chertow GM. Design of a phase 2 clinical trial of an ASK1 inhibitor, GS-4997, in patients with diabetic kidney disease. Nephron Clin Pract 2014; 129:29-33. [PMID: 25531162 DOI: 10.1159/000369152] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/16/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Most patients with diabetic kidney disease (DKD) experience disease progression despite receiving standard care therapy. Oxidative stress is associated with DKD severity and risk of progression, but currently approved therapies do not directly attenuate the pathologic consequences of oxidative stress. GS-4997 is a once daily, oral molecule that inhibits Apoptosis Signal-regulating Kinase 1 (ASK1), which is a key mediator of the deleterious effects of oxidative stress. METHODS We describe the rationale and design of a Phase 2 placebo-controlled clinical trial investigating the effects of GS-4997 in patients with T2DM and stage 3/4 DKD receiving standard of care therapy. Approximately, 300 subjects will be randomized in a stratified manner, based on the estimated glomerular filtration rate (eGFR) and urine albumin to creatinine ratio, to one of four arms in this dose-ranging study. The primary endpoint is change in eGFR at 48 weeks, and the key secondary endpoint is change in albuminuria. CONCLUSION Guided by the biology of oxidative stress signaling through ASK1, the biology of DKD pathogenesis, and solid statistical methods, the decisions made for this Phase 2 study regarding delineating study population, efficacy outcomes, treatment period and statistical methods represent innovative attempts to resolve challenges specific to DKD study design.
Collapse
|
50
|
Tristan CA, Ramos A, Shahani N, Emiliani FE, Nakajima H, Noeh CC, Kato Y, Takeuchi T, Noguchi T, Kadowaki H, Sedlak TW, Ishizuka K, Ichijo H, Sawa A. Role of apoptosis signal-regulating kinase 1 (ASK1) as an activator of the GAPDH-Siah1 stress-signaling cascade. J Biol Chem 2014; 290:56-64. [PMID: 25391652 DOI: 10.1074/jbc.m114.596205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays roles in both energy maintenance, and stress signaling by forming a protein complex with seven in absentia homolog 1 (Siah1). Mechanisms to coordinate its glycolytic and stress cascades are likely to be very important for survival and homeostatic control of any living organism. Here we report that apoptosis signal-regulating kinase 1 (ASK1), a representative stress kinase, interacts with both GAPDH and Siah1 and is likely able to phosphorylate Siah1 at specific amino acid residues (Thr-70/Thr-74 and Thr-235/Thr-239). Phosphorylation of Siah1 by ASK1 triggers GAPDH-Siah1 stress signaling and activates a key downstream target, p300 acetyltransferase in the nucleus. This novel mechanism, together with the established S-nitrosylation/oxidation of GAPDH at Cys-150, provides evidence of how the stress signaling involving GAPDH is finely regulated. In addition, the present results imply crosstalk between the ASK1 and GAPDH-Siah1 stress cascades.
Collapse
Affiliation(s)
| | | | | | | | - Hidemitsu Nakajima
- the Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, and
| | | | - Yoshinori Kato
- Radiology and Radiological Science, Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Tadayoshi Takeuchi
- the Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, and
| | - Takuya Noguchi
- the Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Hisae Kadowaki
- the Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | | | | | - Hidenori Ichijo
- the Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Akira Sawa
- From the Departments of Psychiatry and Neuroscience,
| |
Collapse
|