1
|
Van Hove H, De Feo D, Greter M, Becher B. Central Nervous System Macrophages in Health and Disease. Annu Rev Immunol 2025; 43:589-613. [PMID: 40036702 DOI: 10.1146/annurev-immunol-082423-041334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The central nervous system (CNS) has a unique set of macrophages that seed the tissue early during embryonic development. Microglia reside in the parenchyma, and border-associated macrophages are present in border regions, including the meninges, perivascular spaces, and choroid plexus. CNS-resident macrophages support brain homeostasis during development and steady state. In the diseased brain, however, the immune landscape is altered, with phenotypic and transcriptional changes in resident macrophages and the invasion of blood-borne monocytes, which differentiate into monocyte-derived macrophages upon entering the CNS. In this review, we focus on the fate and function of the macrophage compartment in health, neurodegenerative conditions such as amyloidosis, and neuroinflammation as observed in multiple sclerosis and infection. We discuss our current understanding that monocyte-derived macrophages contribute to neuropathology whereas native macrophages play a neuroprotective role in disease.
Collapse
Affiliation(s)
- Hannah Van Hove
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| |
Collapse
|
2
|
Dexter T, Anthias C, Nicholson E. Evaluating Axatilimab as a treatment option for chronic graft-versus-host disease. Immunotherapy 2025; 17:409-418. [PMID: 40338737 DOI: 10.1080/1750743x.2025.2501928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025] Open
Abstract
Allogeneic stem cell transplantation represents the only curative option for many patients with high risk hematological malignancies but is associated with a number of severe complications. Of these, chronic graft versus host disease (cGVHD) is the leading cause of late non-relapse mortality and of much morbidity. For over 30 years, glucocorticoids have been the mainstay of first line therapy, yet approximately 50% patients are refractory or dependent and traditionally there have been few options for these patients. In recent years, newer treatments including ruxolitinib and belumosudil have shown success in the second and third line settings. However, further effective nontoxic treatments are a necessary to address this complex debilitating disease. Axatilimab is an antibody to colony stimulating factor 1 (CSF-1), a tyrosine kinase receptor. CSF1R signaling dependent macrophages and monocytes are key mediators of inflammation and fibrosis in chronic GVHD, and thus, this therapy offers a targeted approach. Here we summarize the key clinical studies that have been performed to date of this novel therapy.
Collapse
Affiliation(s)
- Tania Dexter
- Department of Haemato-Oncology, Royal Marsden Hospital, London, UK
- Anthony Nolan, London, UK
- Institute of Cancer Research, London, UK
| | - Chloe Anthias
- Department of Haemato-Oncology, Royal Marsden Hospital, London, UK
- Anthony Nolan, London, UK
- Institute of Cancer Research, London, UK
| | - Emma Nicholson
- Department of Haemato-Oncology, Royal Marsden Hospital, London, UK
- Institute of Cancer Research, London, UK
| |
Collapse
|
3
|
Jobling AI, Greferath U, Dixon MA, Quiriconi P, Eyar B, van Koeverden AK, Mills SA, Vessey KA, Bui BV, Fletcher EL. Microglial regulation of the retinal vasculature in health and during the pathology associated with diabetes. Prog Retin Eye Res 2025; 106:101349. [PMID: 40020909 DOI: 10.1016/j.preteyeres.2025.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The high metabolic demand of retinal neurons requires a precisely regulated vascular system that can deliver rapid changes in blood flow in response to neural need. In the retina, this is achieved via the action of a coordinated group of cells that form the neurovascular unit. While cells such as pericytes, Müller cells, and astrocytes have long been linked to neurovascular coupling, more recently the resident microglial population have also been implicated. In the healthy retina, microglia make extensive contact with blood vessels, as well as neuronal synapses, and are important in vascular patterning during development. Work in the brain and retina has recently indicated that microglia can directly regulate the local vasculature. In the retina, the fractalkine-Cx3cr1 signalling axis has been shown to induce local capillary constriction within the superficial vascular plexus via a mechanism involving components of the renin-angiotensin system. Furthermore, aberrant microglial induced vasoconstriction may be at the centre of early vascular reactivity changes observed in those with diabetes. This review summarizes the recent emerging evidence that microglia play multiple roles in retinal homeostasis especially in regulating the vasculature. We highlight what is known about the role of microglia under normal circumstances, and then build on this to discuss how microglia contribute to early vascular compromise during diabetes. Further understanding of the mechanisms of microglial-vascular regulation may allow alternate treatment strategies to be devised to reduce vascular pathology in diseases such as diabetic retinopathy.
Collapse
Affiliation(s)
- Andrew I Jobling
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Michael A Dixon
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Pialuisa Quiriconi
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Belinda Eyar
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Anna K van Koeverden
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Samuel A Mills
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Kirstan A Vessey
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Knights AJ, Farrell EC, Ellis OM, Song MJ, Appleton CT, Maerz T. Synovial macrophage diversity and activation of M-CSF signaling in post-traumatic osteoarthritis. eLife 2025; 12:RP93283. [PMID: 39969512 PMCID: PMC11839164 DOI: 10.7554/elife.93283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Synovium is home to immune and stromal cell types that orchestrate inflammation following a joint injury; in particular, macrophages are central protagonists in this process. We sought to define the cellular and temporal dynamics of the synovial immune niche in a mouse model of post-traumatic osteoarthritis (PTOA), and to identify stromal-immune crosstalk mechanisms that coordinate macrophage function and phenotype. We induced PTOA in mice using a non-invasive tibial compression model of anterior cruciate ligament rupture (ACLR). Single-cell RNA-sequencing and flow cytometry were used to assess immune cell populations in healthy (Sham) and injured (7 and 28 days post-ACLR) synovium. Characterization of synovial macrophage polarization states was performed, alongside computational modeling of macrophage differentiation, as well as implicated transcriptional regulators and stromal-immune communication axes. Immune cell types are broadly represented in healthy synovium, but experience drastic expansion and speciation in PTOA, most notably in the macrophage portion. We identified several polarization states of macrophages in synovium following joint injury, underpinned by distinct transcriptomic signatures, and regulated in part by stromal-derived macrophage colony-stimulating factor signaling. The transcription factors Pu.1, Cebpα, Cebpβ, and Jun were predicted to control differentiation of systemically derived monocytes into pro-inflammatory synovial macrophages. In summary, we defined different synovial macrophage subpopulations present in healthy and injured mouse synovium. Nuanced characterization of the distinct functions, origins, and disease kinetics of macrophage subtypes in PTOA will be critical for targeting these highly versatile cells for therapeutic purposes.
Collapse
Affiliation(s)
- Alexander J Knights
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
| | - Easton C Farrell
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Olivia M Ellis
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Michelle J Song
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - C Thomas Appleton
- Department of Physiology and Pharmacology, Western UniversityLondonCanada
- Bone and Joint Institute, Western UniversityLondonCanada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western UniversityLondonCanada
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Department of Internal Medicine – Division of Rheumatology, University of MichiganAnn ArborUnited States
| |
Collapse
|
5
|
Penati S, Brioschi S, Cai Z, Han CZ, Colonna M. Mechanisms and environmental factors shaping the ecosystem of brain macrophages. Front Immunol 2025; 16:1539988. [PMID: 39925814 PMCID: PMC11802581 DOI: 10.3389/fimmu.2025.1539988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Brain macrophages encompass two major populations: microglia in the parenchyma and border-associated macrophages (BAMs) in the extra-parenchymal compartments. These cells play crucial roles in maintaining brain homeostasis and immune surveillance. Microglia and BAMs are phenotypically and epigenetically distinct and exhibit highly specialized functions tailored to their environmental niches. Intriguingly, recent studies have shown that both microglia and BAMs originate from the same myeloid progenitor during yolk sac hematopoiesis, but their developmental fates diverge within the brain. Several works have partially unveiled the mechanisms orchestrating the development of microglia and BAMs in both mice and humans; however, many questions remain unanswered. Defining the molecular underpinnings controlling the transcriptional and epigenetic programs of microglia and BAMs is one of the upcoming challenges for the field. In this review, we outline current knowledge on ontogeny, phenotypic diversity, and the factors shaping the ecosystem of brain macrophages. We discuss insights garnered from human studies, highlighting similarities and differences compared to mice. Lastly, we address current research gaps and potential future directions in the field. Understanding how brain macrophages communicate with their local environment and how the tissue instructs their developmental trajectories and functional features is essential to fully comprehend brain physiology in homeostasis and disease.
Collapse
Affiliation(s)
- Silvia Penati
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Simone Brioschi
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Claudia Z. Han
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
- Brain Immunology and Glia (BIG) Center, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
- Brain Immunology and Glia (BIG) Center, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| |
Collapse
|
6
|
Greven JA, Wydra JR, Greer RA, Zhi C, Price DA, Svoboda JD, Camitta CLM, Washington M, Leung DW, Song Y, Alexander-Brett J, Brett TJ. Biophysical mapping of TREM2-ligand interactions reveals shared surfaces for engagement of multiple Alzheimer's disease ligands. Mol Neurodegener 2025; 20:3. [PMID: 39789647 PMCID: PMC11721465 DOI: 10.1186/s13024-024-00795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
TREM2 is a signaling receptor expressed on microglia that has emerged as an important drug target for Alzheimer's disease and other neurodegenerative diseases. While a number of TREM2 ligands have been identified, little is known regarding the structural details of how they engage. To better understand this, we created a protein library of 28 different TREM2 variants that could be used to map interactions with various ligands using biolayer interferometry. The variants are located in previously identified putative binding surfaces on TREM2 called the hydrophobic site, basic site, and site 2. We found that mutations to the hydrophobic site ablated binding to apoE4 and TDP-43. Competition binding experiments indicated that apoE4 and oAβ42 share overlapping binding sites on TREM2. In contrast, binding to C1q was disrupted most strongly by mutations to the basic site, including R46, with some mutations to the hydrophobic site also attenuating binding, thus suggesting a broader mediation of binding across the two sites. Supporting this, competition experiments indicated that C1q binding could be blocked by both apoE and oAβ42. TREM2 binding to IL-34 was mediated by the basic site at a surface centering on R76. Competition binding experiments validated the unique site for IL-34, showing little to no competition with either oAβ42 or apoE4. However, competition experiments between C1q and IL34 suggest that the ligands compete for binding at the basic site. Altogether, our results suggest that TREM2 utilizes the hydrophobic site (consisting of CDR1, CDR2, and CDR3) as a common site to engage multiple ligands, and uses distinct basic sites to engage others. Our findings imply that pharmaceutical strategies targeting these surfaces might be effective to modulate TREM2 functions.
Collapse
Affiliation(s)
- Jessica A Greven
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua R Wydra
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rory A Greer
- Department of Biomedical Engineering, University of Alabama, Birmingham, AL, USA
| | - Cynthia Zhi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - David A Price
- Division of Infectious Disease, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jordyn D Svoboda
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher L M Camitta
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mya Washington
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daisy W Leung
- Division of Infectious Disease, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama, Birmingham, AL, USA
| | - Jen Alexander-Brett
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- , 660 S. Euclid, Box 8052, St. Louis, MO, 63110, USA.
| | - Tom J Brett
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- , 660 S. Euclid, Box 8052, St. Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Wangkahart E, Wang T, Secombes CJ. Characterization of two novel MCSFR paralogues in rainbow trout Oncorhynchus mykiss: New insights into the molecular mechanism underlying macrophage differentiation and modulation in fish. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110036. [PMID: 39571632 DOI: 10.1016/j.fsi.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Colony-stimulating factor-1 (CSF-1) receptor, also known as macrophage colony-stimulating factor (MCSF) receptor, belongs to the type III protein tyrosine kinase receptor family. MCSF and IL-34 play essential roles in both innate and adaptive immune systems in vertebrates through their shared receptor MCSFR. While the functional study of MCSFR in mammals has been well-demonstrated, its role in fish remains limited. Therefore, this report aims to identify and study the expression of the MCSFR genes in rainbow trout Oncorhynchus mykiss, where four paralogues were found present at different genomic loci, two identified for the first time in this study. The deduced protein structure of these MCSFRs reveals five immunoglobulin (Ig)-like domains, a transmembrane domain and a conserved intracellular domain containing a glycine-rich motif (Gly-x-Gly-x-x-Gly), similar to other species. Phylogenetic and synteny analyses demonstrate that MCSFR are present throughout vertebrates, with two forms present in teleost fish more generally (type I and type II MCSFR), existing as pairs of genes (MCSFR1a/MCSFR1b, MCSFR2a/MCSFR2b) in trout. The MCSFR genes are widely expressed, with higher transcript levels observed in immune tissues such as the spleen, blood and head kidney. The paralogues showed marked differences in expression modulation. Following Yersinia ruckeri infection, MCSFR2a was highly induced but after stimulation of RTS-11 cells, a trout monocyte/macrophage-like cell line, with Y. ruckeri flagellin both MCSFR1b and MCSFR2a were induced. However, none of the different paralogues of MCSFR were induced by proinflammatory cytokines (trout rTNF-α, rIL-6 and rIFN-γ). This study adds to our knowledge of the molecules/pathways present in fish that drive macrophage regulation and activation, and emphasizes the complexity present with multiple ligands and receptors involved.
Collapse
Affiliation(s)
- Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand; Scottish Fish Immunology Research Centre, School of Biological Sciences, The University of Aberdeen, Aberdeen AB24 2TZ United Kingdom.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, The University of Aberdeen, Aberdeen AB24 2TZ United Kingdom
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, The University of Aberdeen, Aberdeen AB24 2TZ United Kingdom
| |
Collapse
|
8
|
Wiens KR, Wasti N, Ulloa OO, Klegeris A. Diversity of Microglia-Derived Molecules with Neurotrophic Properties That Support Neurons in the Central Nervous System and Other Tissues. Molecules 2024; 29:5525. [PMID: 39683685 DOI: 10.3390/molecules29235525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Microglia, the brain immune cells, support neurons by producing several established neurotrophic molecules including glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Modern analytical techniques have identified numerous phenotypic states of microglia, each associated with the secretion of a diverse set of substances, which likely include not only canonical neurotrophic factors but also other less-studied molecules that can interact with neurons and provide trophic support. In this review, we consider the following eight such candidate cytokines: oncostatin M (OSM), leukemia inhibitory factor (LIF), activin A, colony-stimulating factor (CSF)-1, interleukin (IL)-34, growth/differentiation factor (GDF)-15, fibroblast growth factor (FGF)-2, and insulin-like growth factor (IGF)-2. The available literature provides sufficient evidence demonstrating murine cells produce these cytokines and that they exhibit neurotrophic activity in at least one neuronal model. Several distinct types of neurotrophic activity are identified that only partially overlap among the cytokines considered, reflecting either their distinct intrinsic properties or lack of comprehensive studies covering the full spectrum of neurotrophic effects. The scarcity of human-specific studies is another significant knowledge gap revealed by this review. Further studies on these potential microglia-derived neurotrophic factors are warranted since they may be used as targeted treatments for diverse neurological disorders.
Collapse
Affiliation(s)
- Kennedy R Wiens
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Naved Wasti
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Omar Orlando Ulloa
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
9
|
Shi S, Chen Y, Chu X, Shi P, Wang B, Cai Q, He D, Zhang N, Qin X, Wei W, Zhao Y, Jia Y, Zhang F, Wen Y. Evaluating the associations between intelligence quotient and multi-tissue proteome from the brain, CSF and plasma. Brain Commun 2024; 6:fcae207. [PMID: 38961868 PMCID: PMC11220507 DOI: 10.1093/braincomms/fcae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/16/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024] Open
Abstract
Intelligence quotient is a vital index to evaluate the ability of an individual to think rationally, learn from experience and deal with the environment effectively. However, limited efforts have been paid to explore the potential associations of intelligence quotient traits with the tissue proteins from the brain, CSF and plasma. The information of protein quantitative trait loci was collected from a recently released genome-wide association study conducted on quantification data of proteins from the tissues including the brain, CSF and plasma. Using the individual-level genotypic data from the UK Biobank cohort, we calculated the polygenic risk scores for each protein based on the protein quantitative trait locus data sets above. Then, Pearson correlation analysis was applied to evaluate the relationships between intelligence quotient traits (including 120 330 subjects for 'fluid intelligence score' and 38 949 subjects for 'maximum digits remembered correctly') and polygenic risk scores of each protein in the brain (17 protein polygenic risk scores), CSF (116 protein polygenic risk scores) and plasma (59 protein polygenic risk scores). The Bonferroni corrected P-value threshold was P < 1.30 × 10-4 (0.05/384). Finally, Mendelian randomization analysis was conducted to test the causal relationships between 'fluid intelligence score' and pre-specific proteins from correlation analysis results. Pearson correlation analysis identified significant association signals between the protein of macrophage-stimulating protein and fluid intelligence in brain and CSF tissues (P brain = 1.21 × 10-8, P CSF = 1.10 × 10-7), as well as between B-cell lymphoma 6 protein and fluid intelligence in CSF (P CSF = 1.23 × 10-4). Other proteins showed close-to-significant associations with the trait of 'fluid intelligence score', such as plasma protease C1 inhibitor (P CSF = 4.19 × 10-4, P plasma = 6.97 × 10-4), and with the trait of 'maximum digits remembered correctly', such as tenascin (P plasma = 3.42 × 10-4). Additionally, Mendelian randomization analysis results suggested that macrophage-stimulating protein (Mendelian randomization-Egger: β = 0.54, P = 1.64 × 10-61 in the brain; β = 0.09, P = 1.60 × 10-12 in CSF) had causal effects on fluid intelligence score. We observed functional relevance of specific tissue proteins to intelligence quotient and identified several candidate proteins, such as macrophage-stimulating protein. This study provided a novel insight to the relationship between tissue proteins and intelligence quotient traits.
Collapse
Affiliation(s)
- Sirong Shi
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Yujing Chen
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Xiaoge Chu
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Panxing Shi
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Bingyi Wang
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Qingqing Cai
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Dan He
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Na Zhang
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Xiaoyue Qin
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Wenming Wei
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Yijing Zhao
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Yumeng Jia
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Feng Zhang
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Yan Wen
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| |
Collapse
|
10
|
Kapanadze T, Gamrekelashvili J, Sablotny S, Schroth FN, Xu Y, Chen R, Rong S, Shushakova N, Gueler F, Haller H, Limbourg FP. Validation of CSF-1 receptor (CD115) staining for analysis of murine monocytes by flow cytometry. J Leukoc Biol 2024; 115:573-582. [PMID: 38038378 DOI: 10.1093/jleuko/qiad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
CD115, the receptor for colony stimulating factor 1, is essential for survival and differentiation of monocytes and macrophages and is therefore frequently used to define monocyte subsets and their progenitors in immunological assays. However, CD115 surface expression and detection by flow cytometry is greatly influenced by cell isolation and processing methods, organ source, and disease context. In a systematic analysis of murine monocytes, we define experimental conditions that preserve or limit CD115 surface expression and staining by flow cytometry. We also find that, independent of conditions, CD115 surface levels are consistently lower in Ly6Clo monocytes than in Ly6Chi monocytes, with the exception of Ly6Clo monocytes in the bone marrow. Furthermore, in contrast to IL-34, the presence of colony stimulating factor 1 impairs CD115 antibody staining in a dose-dependent manner, which, in a model of ischemic kidney injury with elevated levels of colony stimulating factor 1, influenced quantification of kidney monocytes. Thus, staining and experimental conditions affect quantitative and qualitative analysis of monocytes and may influence experimental conclusions.
Collapse
Affiliation(s)
- Tamar Kapanadze
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Stefan Sablotny
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Frauline Nicole Schroth
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Yuangao Xu
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Rongjun Chen
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Nelli Shushakova
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
- Phenos GmbH, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Florian P Limbourg
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| |
Collapse
|
11
|
Cersosimo F, Lonardi S, Ulivieri C, Martini P, Morrione A, Vermi W, Giordano A, Giurisato E. CSF-1R in Cancer: More than a Myeloid Cell Receptor. Cancers (Basel) 2024; 16:282. [PMID: 38254773 PMCID: PMC10814415 DOI: 10.3390/cancers16020282] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Colony-stimulating factor 1 receptor (CFS-1R) is a myeloid receptor with a crucial role in monocyte survival and differentiation. Its overexpression is associated with aggressive tumors characterized by an immunosuppressive microenvironment and poor prognosis. CSF-1R ligands, IL-34 and M-CSF, are produced by many cells in the tumor microenvironment (TME), suggesting a key role for the receptor in the crosstalk between tumor, immune and stromal cells in the TME. Recently, CSF-1R expression was reported in the cell membrane of the cancer cells of different solid tumors, capturing the interest of various research groups interested in investigating the role of this receptor in non-myeloid cells. This review summarizes the current data available on the expression and activity of CSF-1R in different tumor types. Notably, CSF-1R+ cancer cells have been shown to produce CSF-1R ligands, indicating that CSF-1R signaling is positively regulated in an autocrine manner in cancer cells. Recent research demonstrated that CSF-1R signaling enhances cell transformation by supporting tumor cell proliferation, invasion, stemness and drug resistance. In addition, this review covers recent therapeutic strategies, including monoclonal antibodies and small-molecule inhibitors, targeting the CSF-1R and designed to block the pro-oncogenic role of CSF-1R in cancer cells.
Collapse
Affiliation(s)
- Francesca Cersosimo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (P.M.); (W.V.)
| | - Cristina Ulivieri
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (P.M.); (W.V.)
| | - Andrea Morrione
- Center for Biotechnology, Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (P.M.); (W.V.)
| | - Antonio Giordano
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy;
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
12
|
Weyer MP, Strehle J, Schäfer MKE, Tegeder I. Repurposing of pexidartinib for microglia depletion and renewal. Pharmacol Ther 2024; 253:108565. [PMID: 38052308 DOI: 10.1016/j.pharmthera.2023.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Pexidartinib (PLX3397) is a small molecule receptor tyrosine kinase inhibitor of colony stimulating factor 1 receptor (CSF1R) with moderate selectivity over other members of the platelet derived growth factor receptor family. It is approved for treatment of tenosynovial giant cell tumors (TGCT). CSF1R is highly expressed by microglia, which are macrophages of the central nervous system (CNS) that defend the CNS against injury and pathogens and contribute to synapse development and plasticity. Challenged by pathogens, apoptotic cells, debris, or inflammatory molecules they adopt a responsive state to propagate the inflammation and eventually return to a homeostatic state. The phenotypic switch may fail, and disease-associated microglia contribute to the pathophysiology in neurodegenerative or neuropsychiatric diseases or long-lasting detrimental brain inflammation after brain, spinal cord or nerve injury or ischemia/hemorrhage. Microglia also contribute to the growth permissive tumor microenvironment of glioblastoma (GBM). In rodents, continuous treatment for 1-2 weeks via pexidartinib food pellets leads to a depletion of microglia and subsequent repopulation from the remaining fraction, which is aided by peripheral monocytes that search empty niches for engraftment. The putative therapeutic benefit of such microglia depletion or forced renewal has been assessed in almost any rodent model of CNS disease or injury or GBM with heterogeneous outcomes, but a tendency of partial beneficial effects. So far, microglia monitoring e.g. via positron emission imaging is not standard of care for patients receiving Pexidartinib (e.g. for TGCT), so that the depletion and repopulation efficiency in humans is still largely unknown. Considering the virtuous functions of microglia, continuous depletion is likely no therapeutic option but short-lasting transient partial depletion to stimulate microglia renewal or replace microglia in genetic disease in combination with e.g. stem cell transplantation or as part of a multimodal concept in treatment of glioblastoma appears feasible. The present review provides an overview of the preclinical evidence pro and contra microglia depletion as a therapeutic approach.
Collapse
Affiliation(s)
- Marc-Philipp Weyer
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany
| | - Jenny Strehle
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany.
| |
Collapse
|
13
|
Shang J, Xu Y, Pu S, Sun X, Gao X. Role of IL-34 and its receptors in inflammatory diseases. Cytokine 2023; 171:156348. [PMID: 37683444 DOI: 10.1016/j.cyto.2023.156348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
In recent years, IL-34 has been widely discussed as a novel cytokine. IL-34 is a pro-inflammatory cytokine binding four distinct receptors, namely CSF-1R, syndecan-1, PTP-ζ and TREM2. Previous studies have shown that IL-34 and its receptors play important roles in the development and progression of various inflammatory diseases. Therefore, IL-34 has the potential to be a biomarker and therapeutic target for inflammatory diseases. However, further study is still needed to identify the specific mechanism through which IL-34 contributes to illness. In this article, we review the recent advances in the biological roles of IL-34 and its receptors as well as their roles in the development and therapeutic application of inflammatory diseases.
Collapse
Affiliation(s)
- Jiameng Shang
- The First Affiliated Hospital of Harbin Medical University, People's Republic of China
| | - Yuxin Xu
- The First Affiliated Hospital of Harbin Medical University, People's Republic of China
| | - Shengdan Pu
- The First Affiliated Hospital of Harbin Medical University, People's Republic of China
| | - Xiaotong Sun
- The First Affiliated Hospital of Harbin Medical University, People's Republic of China
| | - Xinyuan Gao
- The First Affiliated Hospital of Harbin Medical University, People's Republic of China.
| |
Collapse
|
14
|
Knights AJ, Farrell EC, Ellis OM, Song MJ, Appleton CT, Maerz T. Synovial macrophage diversity and activation of M-CSF signaling in post-traumatic osteoarthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.559514. [PMID: 37873464 PMCID: PMC10592932 DOI: 10.1101/2023.10.03.559514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Objective Synovium is home to immune and stromal cell types that orchestrate inflammation following a joint injury; in particular, macrophages are central protagonists in this process. We sought to define the cellular and temporal dynamics of the synovial immune niche in a mouse model of post-traumatic osteoarthritis (PTOA), and to identify stromal-immune crosstalk mechanisms that coordinate macrophage function and phenotype. Design We induced PTOA in mice using a non-invasive tibial compression model of anterior cruciate ligament rupture (ACLR). Single cell RNA-seq and flow cytometry were used to assess immune cell populations in healthy (Sham) and injured (7d and 28d post-ACLR) synovium. Characterization of synovial macrophage polarization states was performed, alongside computational modeling of macrophage differentiation, as well as implicated transcriptional regulators and stromal-immune communication axes. Results Immune cell types are broadly represented in healthy synovium, but experience drastic expansion and speciation in PTOA, most notably in the macrophage portion. We identified several polarization states of macrophages in synovium following joint injury, underpinned by distinct transcriptomic signatures, and regulated in part by stromal-derived macrophage colony-stimulating factor signaling. The transcription factors Pu.1, Cebpα, Cebpβ, and Jun were predicted to control differentiation of systemically derived monocytes into pro-inflammatory synovial macrophages. Conclusions We defined different synovial macrophage subpopulations present in healthy and injured mouse synovium. Nuanced characterization of the distinct functions, origins, and disease kinetics of macrophage subtypes in PTOA will be critical for targeting these highly versatile cells for therapeutic purposes.
Collapse
Affiliation(s)
| | - Easton C. Farrell
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Olivia M. Ellis
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michelle J. Song
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - C. Thomas Appleton
- Department of Physiology and Pharmacology, Western University, London ON, Canada
- Bone and Joint Institute, Western University, London, ON, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine – Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Ho A, Ngala B, Yamada C, Garcia C, Duarte C, Akkaoui J, Ciolac D, Nusbaum A, Kochen W, Efremova D, Groppa S, Nathanson L, Bissel S, Oblak A, Kacena MA, Movila A. IL-34 exacerbates pathogenic features of Alzheimer's disease and calvaria osteolysis in triple transgenic (3x-Tg) female mice. Biomed Pharmacother 2023; 166:115435. [PMID: 37666180 DOI: 10.1016/j.biopha.2023.115435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023] Open
Abstract
Hallmark features of Alzheimer's disease (AD) include elevated accumulation of aggregated Aβ40 and Aβ42 peptides, hyperphosphorylated Tau (p-Tau), and neuroinflammation. Emerging evidence indicated that interleukin-34 (IL-34) contributes to AD and inflammatory osteolysis via the colony-stimulating factor-1 receptor (CSF-1r). In addition, CSF-1r is also activated by macrophage colony-stimulating factor-1 (M-CSF). While the role of M-CSF in bone physiology and pathology is well addressed, it remains controversial whether IL-34-mediated signaling promotes osteolysis, neurodegeneration, and neuroinflammation in relation to AD. In this study, we injected 3x-Tg mice with mouse recombinant IL-34 protein over the calvaria bone every other day for 42 days. Then, behavioral changes, brain pathology, and calvaria osteolysis were evaluated using various behavioral maze and histological assays. We demonstrated that IL-34 administration dramatically elevated AD-like anxiety and memory loss, pathogenic amyloidogenesis, p-Tau, and RAGE expression in female 3x-Tg mice. Furthermore, IL-34 delivery promoted calvaria inflammatory osteolysis compared to the control group. In addition, we also compared the effects of IL-34 and M-CSF on macrophages, microglia, and RANKL-mediated osteoclastogenesis in relation to AD pathology in vitro. We observed that IL-34-exposed SIM-A9 microglia and 3x-Tg bone marrow-derived macrophages released significantly elevated amounts of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6, compared to M-CSF treatment in vitro. Furthermore, IL-34, but not M-CSF, elevated RANKL-primed osteoclastogenesis in the presence of Aβ40 and Aβ42 peptides in bone marrow derived macrophages isolated from female 3x-Tg mice. Collectively, our data indicated that IL-34 elevates AD-like features, including behavioral changes and neuroinflammation, as well as osteoclastogenesis in female 3x-Tg mice.
Collapse
Affiliation(s)
- Anny Ho
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
| | - Bidii Ngala
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chiaki Yamada
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher Garcia
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carolina Duarte
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
| | - Juliet Akkaoui
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Dumitru Ciolac
- Laboratory of Neurobiology and Medical Genetics, "Nicolae Testemițanu" State University of Medicine and Pharmacology, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Amilia Nusbaum
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William Kochen
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Daniela Efremova
- Laboratory of Neurobiology and Medical Genetics, "Nicolae Testemițanu" State University of Medicine and Pharmacology, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Stanislav Groppa
- Laboratory of Neurobiology and Medical Genetics, "Nicolae Testemițanu" State University of Medicine and Pharmacology, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Stephanie Bissel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Melissa A Kacena
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexandru Movila
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA; Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA.
| |
Collapse
|
16
|
Alzoubi O, Meyer A, Gonzalez TP, Burgos AC, Sweiss N, Zomorrodi RK, Shahrara S. Significance of IL-34 and SDC-1 in the pathogenesis of RA cells and preclinical models. Clin Immunol 2023; 251:109635. [PMID: 37150238 PMCID: PMC10985830 DOI: 10.1016/j.clim.2023.109635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/22/2023] [Accepted: 03/18/2023] [Indexed: 05/09/2023]
Abstract
IL-34 shares a common receptor with M-CSF, while it can bind to other distinct receptors including protein-tyrosine phosphatase zeta (PTPζ), and syndecan1 (SDC-1). In physiological conditions, IL-34 has a critical role in the maintenance and development of Langerhans and microglial cells in part through PTPζ ligation. Conversely, in autoimmune diseases such as rheumatoid arthritis (RA), SDC-1-induced phosphorylation of M-CSFR was responsible for the pathological effect of IL-34 in patient cells and/or preclinical models. Intriguingly, enrichment of IL-34 is strongly linked to rheumatoid factor (RF), disease activity score (DAS)28, erythrocyte sedimentation rate (ESR), c-reactive protein (CRP), and radiographic progression. In parallel, IL-34-induced naïve cell reprogramming into glycolytic RA CD14+CD86+GLUT1+ macrophage was dysregulated via M-CSFR or SDC-1 antibody therapy. Moreover, the inflammatory and erosive imprints of IL-34 arthritic mice were mitigated by glucose uptake inhibition and SDC-1, or RAG deficiency through nullifying macrophage metabolic rewiring and their ability to advance Th1/Th17 cell polarization. Consistently, IL-34-/- and SDC-1-/- mice could effectively impair CIA joint inflammation, osteoclast formation, and neovascularization by restraining monocyte infiltration as well as suppressing the inflammatory macrophage and T effector cell reconfiguration via metabolic deactivation. In conclusion, targeting IL-34/SDC-1 signaling, or its interconnected metabolites can uniquely intercept the crosstalk between glycolytic RA myeloid and lymphoid cells and their ability to trigger arthritis.
Collapse
Affiliation(s)
- Osama Alzoubi
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA
| | - Anja Meyer
- Jesse Brown VA Medical Center, Chicago, IL, USA; Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA
| | - Tanya Pulido Gonzalez
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA
| | - Adel C Burgos
- Jesse Brown VA Medical Center, Chicago, IL, USA; Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA; Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA.
| |
Collapse
|
17
|
Trzeciak AJ, Rojas WS, Liu ZL, Krebs AS, Wang Z, Saavedra PHV, Miranda IC, Lipshutz A, Xie J, Huang CL, Overholtzer M, Glickman MS, Parkhurst CN, Vierbuchen T, Lucas CD, Perry JSA. WNK1 enforces macrophage lineage fidelity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538482. [PMID: 37383948 PMCID: PMC10299535 DOI: 10.1101/2023.04.26.538482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The appropriate development of macrophages, the body's professional phagocyte, is essential for organismal development, especially in mammals. This dependence is exemplified by the observation that loss-of-function mutations in colony stimulating factor 1 receptor (CSF1R) results in multiple tissue abnormalities owing to an absence of macrophages. Despite this importance, little is known about the molecular and cell biological regulation of macrophage development. Here, we report the surprising finding that the chloride-sensing kinase With-no-lysine 1 (WNK1) is required for development of tissue-resident macrophages (TRMs). Myeloid-specific deletion of Wnk1 resulted in a dramatic loss of TRMs, disrupted organ development, systemic neutrophilia, and mortality between 3 and 4 weeks of age. Strikingly, we found that myeloid progenitors or precursors lacking WNK1 not only failed to differentiate into macrophages, but instead differentiated into neutrophils. Mechanistically, the cognate CSF1R cytokine macrophage-colony stimulating factor (M-CSF) stimulates macropinocytosis by both mouse and human myeloid progenitors and precursor cells. Macropinocytosis, in turn, induces chloride flux and WNK1 phosphorylation. Importantly, blocking macropinocytosis, perturbing chloride flux during macropinocytosis, and inhibiting WNK1 chloride-sensing activity each skewed myeloid progenitor differentiation from macrophages into neutrophils. Thus, we have elucidated a role for WNK1 during macropinocytosis and discovered a novel function of macropinocytosis in myeloid progenitors and precursor cells to ensure macrophage lineage fidelity. Highlights Myeloid-specific WNK1 loss causes failed macrophage development and premature deathM-CSF-stimulated myeloid progenitors and precursors become neutrophils instead of macrophagesM-CSF induces macropinocytosis by myeloid progenitors, which depends on WNK1Macropinocytosis enforces macrophage lineage commitment.
Collapse
|
18
|
Zou Y, Kamada N, Seong SY, Seo SU. CD115 - monocytic myeloid-derived suppressor cells are precursors of OLFM4 high polymorphonuclear myeloid-derived suppressor cells. Commun Biol 2023; 6:272. [PMID: 36922564 PMCID: PMC10017706 DOI: 10.1038/s42003-023-04650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) consist of monocytic (M-) MDSCs and polymorphonuclear (PMN-) MDSCs that contribute to an immunosuppressive environment in tumor-bearing hosts. However, research on the phenotypic and functional heterogeneity of MDSCs in tumor-bearing hosts and across different disease stage is limited. Here we subdivide M-MDSCs based on CD115 expression and report that CD115- M-MDSCs are functionally distinct from CD115+ M-MDSCs. CD115- M-MDSCs increased in bone marrow and blood as tumors progressed. Transcriptome analysis revealed that CD115- M-MDSCs expressed higher levels of neutrophil-related genes. Moreover, isolated CD115- M-MDSCs had higher potential to be differentiated into PMN-MDSCs compared with CD115+ M-MDSCs. Of note, CD115- M-MDSCs were able to differentiate into both olfactomedin 4 (OLFM4)hi and OLFM4lo PMN-MDSCs, whereas CD115+ M-MDSCs differentiated into a smaller proportion of OLFM4lo PMN-MDSCs. In vivo, M-MDSC to PMN-MDSC differentiation occurred most frequently in bone marrow while M-MDSCs preferentially differentiated into tumor-associated macrophages in the tumor mass. Our study reveals the presence of previously unrecognized subtypes of CD115- M-MDSCs in tumor-bearing hosts and demonstrates their cellular plasticity during tumorigenesis.
Collapse
Affiliation(s)
- Yunyun Zou
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Seung-Yong Seong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea.
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Monteleone G, Franzè E, Maresca C, Colella M, Pacifico T, Stolfi C. Targeted Therapy of Interleukin-34 as a Promising Approach to Overcome Cancer Therapy Resistance. Cancers (Basel) 2023; 15:cancers15030971. [PMID: 36765929 PMCID: PMC9913481 DOI: 10.3390/cancers15030971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Chemotherapy and immunotherapy have markedly improved the management of several malignancies. However, not all cancer patients respond primarily to such therapies, and others can become resistant during treatment. Thus, identification of the factors/mechanisms underlying cancer resistance to such treatments could help develop novel effective therapeutic compounds. Tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs) are major components of the suppressive tumor microenvironment and are critical drivers of immunosuppression, creating a tumor-promoting and drug-resistant niche. In this regard, therapeutic strategies to tackle immunosuppressive cells are an interesting option to increase anti-tumor immune responses and overcome the occurrence of drug resistance. Accumulating evidence indicates that interleukin-34 (IL-34), a cytokine produced by cancer cells, and/or TAMs act as a linker between induction of a tumor-associated immunosuppressive microenvironment and drug resistance. In this article, we review the current data supporting the role of IL-34 in the differentiation/function of immune suppressive cells and, hence, in the mechanisms leading to therapeutic resistance in various cancers.
Collapse
Affiliation(s)
- Giovanni Monteleone
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-06-20903702; Fax: +39-06-72596158
| | - Eleonora Franzè
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Claudia Maresca
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Marco Colella
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Teresa Pacifico
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
20
|
Alshaebi F, Safi M, Algabri YA, Al-Azab M, Aldanakh A, Alradhi M, Reem A, Zhang C. Interleukin-34 and immune checkpoint inhibitors: Unified weapons against cancer. Front Oncol 2023; 13:1099696. [PMID: 36798830 PMCID: PMC9927403 DOI: 10.3389/fonc.2023.1099696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Interleukin-34 (IL-34) is a cytokine that is involved in the regulation of immune cells, including macrophages, in the tumor microenvironment (TME). Macrophages are a type of immune cell that can be found in large numbers within the TME and have been shown to have a role in the suppression of immune responses in cancer. This mmune suppression can contribute to cancer development and tumors' ability to evade the immune system. Immune checkpoint inhibitors (ICIs) are a type of cancer treatment that target proteins on immune cells that act as "checkpoints," regulating the activity of the immune system. Examples of these proteins include programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). ICIs work by blocking the activity of these proteins, allowing the immune system to mount a stronger response against cancer cells. The combination of IL-34 inhibition with ICIs has been proposed as a potential treatment option for cancer due to the role of IL-34 in the TME and its potential involvement in resistance to ICIs. Inhibiting the activity of IL-34 or targeting its signaling pathways may help to overcome resistance to ICIs and improve the effectiveness of these therapies. This review summarizes the current state of knowledge concerning the involvement of IL-34-mediated regulation of TME and the promotion of ICI resistance. Besides, this work may shed light on whether targeting IL-34 might be exploited as a potential treatment option for cancer patients in the future. However, further research is needed to fully understand the mechanisms underlying the role of IL-34 in TME and to determine the safety and efficacy of this approach in cancer patients.
Collapse
Affiliation(s)
- Fadhl Alshaebi
- Department of Respiratory, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, China
| | - Mohammed Safi
- Department of Respiratory, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, China,*Correspondence: Mohammed Safi, ; Caiqing Zhang,
| | - Yousif A. Algabri
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Mahmoud Al-Azab
- Department of Immunology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Abdullah Aldanakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mohammed Alradhi
- Department of Urology, The Affiliated Hospital of Qingdao Binhai University, Qingdao, Shandong, China
| | - Alariqi Reem
- Faculty of Medicine and Health Sciences, Amran University, Amran, Yemen
| | - Caiqing Zhang
- Department of Respiratory, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, China,*Correspondence: Mohammed Safi, ; Caiqing Zhang,
| |
Collapse
|
21
|
Wen J, Wang S, Guo R, Liu D. CSF1R inhibitors are emerging immunotherapeutic drugs for cancer treatment. Eur J Med Chem 2023; 245:114884. [PMID: 36335744 DOI: 10.1016/j.ejmech.2022.114884] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022]
|
22
|
Xiang C, Li H, Tang W. Targeting CSF-1R represents an effective strategy in modulating inflammatory diseases. Pharmacol Res 2023; 187:106566. [PMID: 36423789 DOI: 10.1016/j.phrs.2022.106566] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Colony-stimulating factor-1 receptor (CSF-1R), also known as FMS kinase, is a type I single transmembrane protein mainly expressed in myeloid cells, such as monocytes, macrophages, glial cells, and osteoclasts. The endogenous ligands, colony-stimulating factor-1 (CSF-1) and Interleukin-34 (IL-34), activate CSF-1R and downstream signaling pathways including PI3K-AKT, JAK-STATs, and MAPKs, and modulate the proliferation, differentiation, migration, and activation of target immune cells. Over the past decades, the promising therapeutic potential of CSF-1R signaling inhibition has been widely studied for decreasing immune suppression and escape in tumors, owing to depletion and reprogramming of tumor-associated macrophages. In addition, the excessive activation of CSF-1R in inflammatory diseases is consecutively uncovered in recent years, which may result in inflammation in bone, kidney, lung, liver and central nervous system. Agents against CSF-1R signaling have been increasingly investigated in preclinical or clinical studies for inflammatory diseases treatment. However, the pathological mechanism of CSF-1R in inflammation is indistinct and whether CSF-1R signaling can be identified as biomarkers remains controversial. With the background information aforementioned, this review focus on the dialectical roles of CSF-1R and its ligands in regulating innate immune cells and highlights various therapeutic implications of blocking CSF-1R signaling in inflammatory diseases.
Collapse
Affiliation(s)
- Caigui Xiang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Si Y, Zhang J, Bao S, Wise SG, Wang Y, Zhang Y, Tang Y. IL-32 and IL-34 in hepatocellular carcinoma. Front Med (Lausanne) 2022; 9:1051113. [PMID: 36438052 PMCID: PMC9691773 DOI: 10.3389/fmed.2022.1051113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/31/2022] [Indexed: 05/09/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a major challenge to clinicians due to its unacceptably high mortality and morbidity. The etiology of HCC is multi-faceted, including viral infection, alcoholism and non-alcoholic fatty liver disease. Dysregulated host immunity contributes to tumorigenesis among these susceptible individuals with pre-existing condition(s). IL-32 and IL-34 are key cytokines driving the development of chronic inflammatory conditions such as rheumatoid arthritis, systemic lupus erythematosus, as well as chronic liver diseases. IL-32 and IL-34 play an important role augmenting the development of HCC, due to their direct influence over host inflammation, however, new roles for these cytokines in HCC are emerging. Here we comprehensively review the latest research for IL-32 and IL-34 in HCC, identifying a subset of potential therapeutic targets for use in precision medicine.
Collapse
Affiliation(s)
- Yang Si
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiwei Zhang
- Department of Cardiothoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Preparatory Stage), Shanghai, China
| | - Shisan Bao
- Department of Cardiothoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Preparatory Stage), Shanghai, China
| | - Steven G. Wise
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yuli Wang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanfang Zhang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhong Tang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Elchaninov A, Vishnyakova P, Menyailo E, Sukhikh G, Fatkhudinov T. An Eye on Kupffer Cells: Development, Phenotype and the Macrophage Niche. Int J Mol Sci 2022; 23:9868. [PMID: 36077265 PMCID: PMC9456487 DOI: 10.3390/ijms23179868] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are key participants in the maintenance of tissue homeostasis under normal and pathological conditions, and implement a rich diversity of functions. The largest population of resident tissue macrophages is found in the liver. Hepatic macrophages, termed Kupffer cells, are involved in the regulation of multiple liver functionalities. Specific differentiation profiles and functional activities of tissue macrophages have been attributed to the shaping role of the so-called tissue niche microenvironments. The fundamental macrophage niche concept was lately shaken by a flood of new data, leading to a revision and substantial update of the concept, which constitutes the main focus of this review. The macrophage community discusses contemporary evidence on the developmental origins of resident macrophages, notably Kupffer cells and the issues of heterogeneity of the hepatic macrophage populations, as well as the roles of proliferation, cell death and migration processes in the maintenance of macrophage populations of the liver. Special consideration is given to interactions of Kupffer cells with other local cell lineages, including Ito cells, sinusoidal endothelium and hepatocytes, which participate in the maintenance of their phenotypical and functional identity.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Histology Department, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Egor Menyailo
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Timur Fatkhudinov
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| |
Collapse
|
25
|
Monteleone G, Franzè E, Troncone E, Maresca C, Marafini I. Interleukin-34 Mediates Cross-Talk Between Stromal Cells and Immune Cells in the Gut. Front Immunol 2022; 13:873332. [PMID: 35529879 PMCID: PMC9073079 DOI: 10.3389/fimmu.2022.873332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Initially known as a cytokine produced by and regulating the function of monocytes and macrophages, interleukin-34 (IL-34) can be synthesized by many cell types and interacts with receptors expressed by multiple immune and non-immune cells. IL-34 is constitutively expressed in the healthy human small intestine and colon and its production is markedly increased in damaged gut of patients with Crohn's disease and patients with ulcerative colitis, the main forms of chronic inflammatory bowel diseases (IBD) in human beings. Circumstantial evidence suggests that, in these pathologies, IL-34 plays a crucial role in mediating cross-talk between immune cells and stromal cells, thereby promoting activation of signalling pathways, which amplify the ongoing mucosal inflammation as well as production of fibrogenic molecules. In this article, we summarize the available data supporting the multiple effects of IL-34 in human IBD with particular attention to the role of the cytokine in immune and stromal cell interactions.
Collapse
Affiliation(s)
- Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- *Gastroenterology Unit, Policlinico Tor Vergata, Rome, Italy
| | - Eleonora Franzè
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Edoardo Troncone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- *Gastroenterology Unit, Policlinico Tor Vergata, Rome, Italy
| | - Claudia Maresca
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- *Gastroenterology Unit, Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
26
|
Liu K, Ding Y, Wang Y, Zhao Q, Yan L, Xie J, Liu Y, Xie Q, Cai W, Bao S, Wang H. Combination of IL-34 and AFP improves the diagnostic value during the development of HBV related hepatocellular carcinoma. Clin Exp Med 2022; 23:397-409. [DOI: 10.1007/s10238-022-00810-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022]
Abstract
AbstractIL-34 involves in host immunity regulated carcinogenesis. Alpha-fetoprotein (AFP) is related to the development of HCC. We explored if combination of IL-34 and APF could improve the diagnostic value in HBV related hepatocellular carcinoma (HBV-HCC). Serum was obtained from HBV patients or healthy control. Liver tissue was obtained from liver biopsy in CHB, HBV related cirrhosis patients or curative resection in HBV-HCC patients. Serum IL-34 and MCSF, or intrahepatic IL-34, MCSF and CD68+ tumor associate macrophages (TAMs) were determined using ELISA or immunohistochemistry. Serum IL-34 was 1.7, 1.3 or 2.3-fold higher in HBV-HCC than that of CHB, HBV related cirrhosis or healthy control, which was inhibited following trans-hepatic arterial chemoembolization (TACE) in HBV-HCC patients. Intra-hepatic IL-34 was higher in HBV-HCC than that of the other three groups. Intra-hepatic IL-34 was associated with high HBV-DNA, HBeAg−, poor differentiation and small tumor size of HBV-HCC patients. Intra-hepatic TAMs in HBV-HCC were increased 1.7 or 1.3-fold, compared to that from CHB or HBV-cirrhosis patients. Intra-hepatic TAMs were associated with high HBV-DNA, high tumor differentiation, small tumor size, abnormal AFP and more tumor number. AFP plus serum IL-34, showed the highest AUC (0.837) with sensitivity (0.632) and highest specificity (0.931), suggesting that AFP plus IL-34 enhances the reliability for prediction of the development of HBV-HCC among CHB patients. Circulating and intra-hepatic IL-34 was upregulated gradually in HBV disease progression from CHB, cirrhosis and HCC. IL-34 may be used as a diagnostic biomarker and potential therapeutic target for the management of HBV-HCC.
Collapse
|
27
|
Colony-stimulating factor 1 receptor signaling in the central nervous system and the potential of its pharmacological inhibitors to halt the progression of neurological disorders. Inflammopharmacology 2022; 30:821-842. [PMID: 35290551 DOI: 10.1007/s10787-022-00958-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Colony Stimulating Factor-1 (CSF-1)/Colony Stimulating Factor-1 Receptor (CSF-1R) signaling axis plays an essential role in the development, maintenance, and proliferation of macrophage lineage cells. Within the central nervous system, CSF-1R signaling primarily maintains microglial homeostasis. Microglia, being the resident macrophage and first responder to any neurological insults, plays critical importance in overall health of the human brain. Aberrant and sustained activation of microglia along with continued proliferation and release of neurotoxic proinflammatory cytokines have been reported in various neurological and neurodegenerative diseases. Therefore, halting the neuroinflammatory pathway via targeting microglial proliferation, which depends on CSF-1R signaling, has emerged as a potential therapeutic target for neurological disorders. However, apart from regulating the microglial function, recently it has been discovered that CSF-1R has much broader role in central nervous system. These findings limit the therapeutic utility of CSF-1R inhibitors but also highlight the need for a complete understanding of CSF-1R function within the central nervous system. Moreover, it has been found that selective inhibitors of CSF-1R may be more efficient in avoiding non-specific targeting and associated side effects. Short-term depletion of microglial population in diseased conditions have also been found to be beneficial; however, the dose and therapeutic window for optimum effects may need to be standardized further.This review summarizes the present understanding of CSF-1R function within the central nervous system. We discuss the CSF-1R signaling in the context of microglia function, crosstalk between microglia and astroglia, and regulation of neuronal cell function. We also discuss a few of the neurological disorders with a focus on the utility of CSF-1R inhibitors as potential therapeutic strategy for halting the progression of neurological diseases.
Collapse
|
28
|
Liu M, Yang X, Zeng C, Zhao H, Li J, Hou Z, Wen H. Transcriptional Signatures of Immune, Neural, and Endocrine Functions in the Brain and Kidney of Rainbow Trout (Oncorhynchus mykiss) in Response to Aeromonas salmonicida Infection. Int J Mol Sci 2022; 23:ijms23031340. [PMID: 35163263 PMCID: PMC8835788 DOI: 10.3390/ijms23031340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) serves as one of the most important commercial fish with an annual production of around 800,000 tonnes. However, infectious diseases, such as furunculosis caused by Aeromonas salmonicida infection, results in great economic loss in trout culture. The brain and kidney are two important organs associated with “sickness behaviors” and immunomodulation in response to disease. Therefore, we worked with 60 trout and investigated transcriptional responses and enrichment pathways between healthy and infected trout. We observed that furunculosis resulted in the activation of toll-like receptors with neuroinflammation and neural dysfunction in the brain, which might cause the “sickness behaviors” of infected trout including anorexia and lethargy. We also showed the salmonid-specific whole genome duplication contributed to duplicated colony stimulating factor 1 (csf-1) paralogs, which play an important role in modulating brain immunomodulation. Enrichment analyses of kidneys showed up-regulated immunomodulation and down-regulated neural functions, suggesting an immune-neural interaction between the brain and kidney. Moreover, the kidney endocrine network was activated in response to A. salmonicida infection, further convincing the communications between endocrine and immune systems in regulating internal homeostasis. Our study provided a foundation for pathophysiological responses of the brain and kidney in response to furunculosis and potentially offered a reference for generating disease-resistant trout strains.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhishuai Hou
- Correspondence: (Z.H.); (H.W.); Tel.: +86-133-4524-7715 (Z.H.); +86-532-8203-1825 (H.W.)
| | - Haishen Wen
- Correspondence: (Z.H.); (H.W.); Tel.: +86-133-4524-7715 (Z.H.); +86-532-8203-1825 (H.W.)
| |
Collapse
|
29
|
Pons V, Rivest S. Targeting Systemic Innate Immune Cells as a Therapeutic Avenue for Alzheimer Disease. Pharmacol Rev 2022; 74:1-17. [PMID: 34987086 DOI: 10.1124/pharmrev.121.000400] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is the first progressive neurodegenerative disease worldwide, and the disease is characterized by an accumulation of amyloid in the brain and neurovasculature that triggers cognitive decline and neuroinflammation. The innate immune system has a preponderant role in AD. The last decade, scientists focused their efforts on therapies aiming to modulate innate immunity. The latter is of great interest, since they participate to the inflammation and phagocytose the amyloid in the brain and blood vessels. We and others have developed pharmacological approaches to stimulate these cells using various ligands. These include toll-like receptor 4, macrophage colony stimulating factor, and more recently nucleotide-binding oligomerization domain-containing 2 receptors. This review will discuss the great potential to take advantage of the innate immune system to fight naturally against amyloid β accumulation and prevent its detrimental consequence on brain functions and its vascular system. SIGNIFICANCE STATEMENT: The focus on amyloid β removal from the perivascular space rather than targeting CNS plaque formation and clearance represents a new direction with a great potential. Small molecules able to act at the level of peripheral immunity would constitute a novel approach for tackling aberrant central nervous system biology, one of which we believe would have the potential of generating a lot of interest.
Collapse
Affiliation(s)
- Vincent Pons
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| |
Collapse
|
30
|
Otsuka R, Wada H, Seino KI. IL-34, the rationale of its expression in physiological and pathological condition. Semin Immunol 2021; 54:101517. [PMID: 34774392 DOI: 10.1016/j.smim.2021.101517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
IL-34 is a cytokine that shares one of its receptors with CSF-1. It has long been thought that CSF-1 receptor (CSF-1R) receives signals only from CSF-1, but the identification of IL-34 reversed this stereotype. Regardless of low structural homology, IL-34 and CSF-1 emanate similar downstream signaling through binding to CSF-1R and provoke similar but different physiological events afterward. In addition to CSF-1R, protein-tyrosine phosphatase (PTP)-ζ and Syndecan-1 were also identified as IL-34 receptors and shown to be at play. Although IL-34 expression is limited to particular tissues in physiological conditions, previous studies have revealed that it is upregulated in several diseases. In cancer, IL-34 is produced by several types of tumor cells and contributes to therapy resistance and disease progression. A recent study has demonstrated that tumor cell-derived IL-34 abrogates immunotherapy efficacy through myeloid cell remodeling. On the other hand, IL-34 expression is downregulated in some brain and dermal disorders. Despite accumulating insights, our understanding of IL-34 may not be even close to its nature. This review aims to comprehensively describe the physiological and pathological roles of IL-34 based on its similarity and differences to CSF-1 and discuss the rationale for its disease-dependent expression pattern.
Collapse
Affiliation(s)
- Ryo Otsuka
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan
| | - Haruka Wada
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan
| | - Ken-Ichiro Seino
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan.
| |
Collapse
|
31
|
Franzè E, Marafini I, Troncone E, Salvatori S, Monteleone G. Interleukin-34 promotes tumorigenic signals for colon cancer cells. Cell Death Discov 2021; 7:245. [PMID: 34535634 PMCID: PMC8448832 DOI: 10.1038/s41420-021-00636-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 12/15/2022] Open
Abstract
Colorectal carcinoma (CRC) is one of the most common forms of malignancy in the Western world. Accumulating evidence indicates that colon carcinogenesis is tightly controlled by tumour-associated immune cells and stromal cells, which can either stimulate or suppress CRC cell growth and survival, mainly via the production of cytokines. Interleukin-34 (IL-34), a cytokine known to regulate mainly monocyte/macrophage survival and function, is highly produced within the CRC microenvironment by several cell types, including cancer cells, tumour-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs), and regulates the pro-tumoural functions of such cells. In this article, we summarize the available data supporting the multiple effects of IL-34 in human CRC.
Collapse
Affiliation(s)
- Eleonora Franzè
- Department of Systems Medicine, University of Rome "TOR VERGATA", Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of Rome "TOR VERGATA", Rome, Italy
| | - Edoardo Troncone
- Department of Systems Medicine, University of Rome "TOR VERGATA", Rome, Italy
| | - Silvia Salvatori
- Department of Systems Medicine, University of Rome "TOR VERGATA", Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "TOR VERGATA", Rome, Italy.
| |
Collapse
|
32
|
Romero-Molina C, Navarro V, Jimenez S, Muñoz-Castro C, Sanchez-Mico MV, Gutierrez A, Vitorica J, Vizuete M. Should We Open Fire on Microglia? Depletion Models as Tools to Elucidate Microglial Role in Health and Alzheimer's Disease. Int J Mol Sci 2021; 22:9734. [PMID: 34575898 PMCID: PMC8471219 DOI: 10.3390/ijms22189734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022] Open
Abstract
Microglia play a critical role in both homeostasis and disease, displaying a wide variety in terms of density, functional markers and transcriptomic profiles along the different brain regions as well as under injury or pathological conditions, such as Alzheimer's disease (AD). The generation of reliable models to study into a dysfunctional microglia context could provide new knowledge towards the contribution of these cells in AD. In this work, we included an overview of different microglial depletion approaches. We also reported unpublished data from our genetic microglial depletion model, Cx3cr1CreER/Csf1rflx/flx, in which we temporally controlled microglia depletion by either intraperitoneal (acute model) or oral (chronic model) tamoxifen administration. Our results reported a clear microglial repopulation, then pointing out that our model would mimic a context of microglial replacement instead of microglial dysfunction. Next, we evaluated the origin and pattern of microglial repopulation. Additionally, we also reviewed previous works assessing the effects of microglial depletion in the progression of Aβ and Tau pathologies, where controversial data are found, probably due to the heterogeneous and time-varying microglial phenotypes observed in AD. Despite that, microglial depletion represents a promising tool to assess microglial role in AD and design therapeutic strategies.
Collapse
Affiliation(s)
- Carmen Romero-Molina
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Victoria Navarro
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Sebastian Jimenez
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Clara Muñoz-Castro
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Maria V. Sanchez-Mico
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Antonia Gutierrez
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga (IBIMA), Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain
| | - Javier Vitorica
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Marisa Vizuete
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| |
Collapse
|
33
|
Irfan M, Evonuk KS, DeSilva TM. Microglia phagocytose oligodendrocyte progenitor cells and synapses during early postnatal development: implications for white versus gray matter maturation. FEBS J 2021; 289:2110-2127. [PMID: 34496137 DOI: 10.1111/febs.16190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/21/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022]
Abstract
Emerging roles for microglia in modifying normal brain development continue to provide new perspectives on the functions of this resident immune cell in the brain. While the molecular underpinnings driving microglia's position in regulating developmental programs remain largely an unchartered territory, innate immune signaling lies at the forefront. At least three innate immune receptors expressed on microglia-fractalkine, complement, and triggering receptor expressed on microglia (TREM2)-modulate developmental synaptic pruning to refine brain circuitry. Our laboratory recently published that microglia with a unique amoeboid morphology invade the corpus callosum and engulf oligodendrocyte progenitor cells (OPCs) during early postnatal development before myelination in a fractalkine receptor (CX3CR1)-dependent manner to modulate ensheathment of axons. Amoeboid microglia are observed in the corpus callosum but not cerebral cortex, and lose their amoeboid shape at the commencement of myelination assuming a resting phenotype. Furthermore, OPCs contacted or engulfed by microglia do not express markers of cell death suggesting a novel homeostatic mechanism facilitating an appropriate OPC:axon ratio for proper myelin ensheathment. The unique morphology of microglia and the restricted window for phagocytic engulfment of OPCs suggest a critical period for OPC engulfment important for action potential propagation during development when activity-dependent mechanisms regulate synaptic pruning. In this review, we summarize the role of activity-dependent mechanisms in sculpting brain circuitry, how myelin ensheathment influences action potential propagation, the spatial and temporal relationship of microglia-dependent elimination of OPCs and synapses, and implications for the synergistic role of microglial phagocytosis in shaping the architecture for neuronal function.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Kirsten S Evonuk
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tara M DeSilva
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
34
|
Smith NC, Umasuthan N, Kumar S, Woldemariam NT, Andreassen R, Christian SL, Rise ML. Transcriptome Profiling of Atlantic Salmon Adherent Head Kidney Leukocytes Reveals That Macrophages Are Selectively Enriched During Culture. Front Immunol 2021; 12:709910. [PMID: 34484211 PMCID: PMC8415484 DOI: 10.3389/fimmu.2021.709910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/05/2021] [Indexed: 01/23/2023] Open
Abstract
The Atlantic salmon (Salmo salar) is an economically important fish, both in aquaculture and in the wild. In vertebrates, macrophages are some of the first cell types to respond to pathogen infection and disease. While macrophage biology has been characterized in mammals, less is known in fish. Our previous work identified changes in the morphology, phagocytic ability, and miRNA profile of Atlantic salmon adherent head kidney leukocytes (HKLs) from predominantly “monocyte-like” at Day 1 of in vitro culture to predominantly “macrophage-like” at Day 5 of culture. Therefore, to further characterize these two cell populations, we examined the mRNA transcriptome profile in Day 1 and Day 5 HKLs using a 44K oligonucleotide microarray. Large changes in the transcriptome were revealed, including changes in the expression of macrophage and immune-related transcripts (e.g. csf1r, arg1, tnfa, mx2), lipid-related transcripts (e.g. fasn, dhcr7, fabp6), and transcription factors involved in macrophage differentiation and function (e.g. klf2, klf9, irf7, irf8, stat1). The in silico target prediction analysis of differentially expressed genes (DEGs) using miRNAs known to change expression in Day 5 HKLs, followed by gene pathway enrichment analysis, supported that these miRNAs may be involved in macrophage maturation by targeting specific DEGs. Elucidating how immune cells, such as macrophages, develop and function is a key step in understanding the Atlantic salmon immune system. Overall, the results indicate that, without the addition of exogenous factors, the adherent HKL cell population differentiates in vitro to become macrophage-like.
Collapse
Affiliation(s)
- Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Nardos T Woldemariam
- Department of Life Sciences and Health, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Rune Andreassen
- Department of Life Sciences and Health, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
35
|
Chhetri G. Emerging roles of IL-34 in neurodegenerative and neurological infectious disease. Int J Neurosci 2021; 133:660-671. [PMID: 34347576 DOI: 10.1080/00207454.2021.1963962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurological infections are often devastating in their clinical presentation. Although significant advances have made in neuroimaging techniques and molecular tools for diagnosis, as well as in anti-infective therapy, these diseases always difficult to diagnose and treat. Neuroparasitic infections and virus infections lead to neurological infections. In the nervous system, various cytokines and chemokines act as neuroinflammatory agents, neuromodulators, regulate neurodevelopment, and synaptic transmission. Among the most important cytokines, interleukins (ILs) are a large group of immunomodulatory proteins that elicit a wide variety of responses in cells and tissues. These ILs are involved in pro and anti-inflammatory effects, systemic inflammation, immune system modulation and play crucial roles in fighting cancer, infectious disease, and neurological disorders. Interleukin-34 (IL-34) identified by screening a comprehensive human protein library containing ∼3400 secreted and extracellular domain proteins in a human monocyte viability assay. Recent evidence has disclosed the crucial roles of IL-34 in the proliferation and differentiation of mononuclear phagocyte lineage cells, osteoclastogenesis, and inflammation. Additionally, IL-34 plays an important role in development, homeostasis, and disease. Dysregulation in IL-34 function can lead to various inflammatory and infectious diseases (e.g. Inflammatory bowel disease, liver fibrosis, Systemic Lupus erythematosus, rheumatoid arthritis), neurological disorders (e.g. Alzheimer disease) and neurological infectious disease (e.g. West Nile virus disease). In this review, we explore the biological role of IL-34 in addition to various impairments caused by dysregulation in IL-34 and discuss their potential links that may lead to important therapeutic and/or preventive strategies for these disorders.
Collapse
Affiliation(s)
- Gaurav Chhetri
- School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai, P.R. China
| |
Collapse
|
36
|
Wang J, Li D, Pan Y, Li J, Jiang Q, Liu D, Hou Y. Interleukin-34 accelerates intrauterine adhesions progress related to CX3CR1 + monocytes/macrophages. Eur J Immunol 2021; 51:2501-2512. [PMID: 34138470 DOI: 10.1002/eji.202149174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/04/2021] [Indexed: 01/14/2023]
Abstract
Intrauterine adhesions (IUA) are characterized by endometrial fibrosis and impose a great challenge for female reproduction. IL-34 is profoundly involved in various fibrotic diseases through regulating the survival, proliferation, and differentiation of monocytes/macrophages. However, it remains unclear how IL-34 regulates monocytes/macrophages in context of IUA. Here, we showed that the expression level of IL-34 and the amount of CX3CR1+ monocytes/macrophages were significantly increased in endometrial tissues of IUA patients. IL-34 promoted the differentiation of monocytes/macrophages, which express CX3CR1 via CSF-1R/P13K/Akt pathway in vitro. Moreover, IL-34-induced CX3CR1+ monocytes/macrophages promoted the differentiation of endometrial stromal cells into myofibroblasts. Of note, IL-34 caused endometrial fibrosis and increased the amount of CX3CR1+ monocytes/macrophages in endometrial tissues in vivo. IL-34 modulated endometrial fibrosis by regulating monocytes/macrophages since the elimination of endometrial monocytes/macrophages significantly suppressed the profibrotic function of IL-34. Finally, blocking of IL-34 in the LPS-IUA model resulted in the improvement of endometrial fibrosis and decreased number of CX3CR1+ monocytes/macrophages. Our studies uncover the novel mechanism of interaction between IL-34-induced CX3CR1+ monocytes/macrophages and endometrial stromal cells in endometrial fibrosis pathogenesis, and highlight IL-34 as a critical target for treating IUA.
Collapse
Affiliation(s)
- Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jingman Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Qi Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
37
|
The Participation of Microglia in Neurogenesis: A Review. Brain Sci 2021; 11:brainsci11050658. [PMID: 34070012 PMCID: PMC8157831 DOI: 10.3390/brainsci11050658] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 01/17/2023] Open
Abstract
Adult neurogenesis was one of the most important discoveries of the last century, helping us to better understand brain function. Researchers recently discovered that microglia play an important role in this process. However, various questions remain concerning where, at what stage, and what types of microglia participate. In this review, we demonstrate that certain pools of microglia are determinant cells in different phases of the generation of new neurons. This sheds light on how cells cooperate in order to fine tune brain organization. It also provides us with a better understanding of distinct neuronal pathologies.
Collapse
|
38
|
Chenouard V, Remy S, Tesson L, Ménoret S, Ouisse LH, Cherifi Y, Anegon I. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Front Genet 2021; 12:615491. [PMID: 33959146 PMCID: PMC8093876 DOI: 10.3389/fgene.2021.615491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The rat has been extensively used as a small animal model. Many genetically engineered rat models have emerged in the last two decades, and the advent of gene-specific nucleases has accelerated their generation in recent years. This review covers the techniques and advances used to generate genetically engineered rat lines and their application to the development of rat models more broadly, such as conditional knockouts and reporter gene strains. In addition, genome-editing techniques that remain to be explored in the rat are discussed. The review also focuses more particularly on two areas in which extensive work has been done: human genetic diseases and immune system analysis. Models are thoroughly described in these two areas and highlight the competitive advantages of rat models over available corresponding mouse versions. The objective of this review is to provide a comprehensive description of the advantages and potential of rat models for addressing specific scientific questions and to characterize the best genome-engineering tools for developing new projects.
Collapse
Affiliation(s)
- Vanessa Chenouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- genOway, Lyon, France
| | - Séverine Remy
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Laurent Tesson
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Séverine Ménoret
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | | | - Ignacio Anegon
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| |
Collapse
|
39
|
Sletta KY, Castells O, Gjertsen BT. Colony Stimulating Factor 1 Receptor in Acute Myeloid Leukemia. Front Oncol 2021; 11:654817. [PMID: 33842370 PMCID: PMC8027480 DOI: 10.3389/fonc.2021.654817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive heterogeneous blood cancer derived from hematopoietic stem cells. Tumor-stromal interactions in AML are of importance for disease development and therapy resistance, and bone marrow stroma seem like an attractive therapeutic target. Of particular interest is colony stimulating factor 1 receptor (CSF1R, M-CSFR, c-FMS, CD115) and its role in regulating plasticity of tumor-associated macrophages. We discuss first the potential of CSF1R-targeted therapy as an attractive concept with regards to the tumor microenvironment in the bone marrow niche. A second therapy approach, supported by preclinical research, also suggests that CSF1R-targeted therapy may increase the beneficial effect of conventional and novel therapeutics. Experimental evidence positioning inhibitors of CSF1R as treatment should, together with data from preclinical and early phase clinical trials, facilitate translation and clinical development of CSF1R-targeted therapy for AML.
Collapse
Affiliation(s)
- Kristine Yttersian Sletta
- CCBIO, Centre for Cancer Biomarkers, Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
| | - Oriol Castells
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Bjørn Tore Gjertsen
- CCBIO, Centre for Cancer Biomarkers, Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
40
|
Nakajima S, Mimura K, Saito K, Thar Min AK, Endo E, Yamada L, Kase K, Yamauchi N, Matsumoto T, Nakano H, Kanke Y, Okayama H, Saito M, Neupane P, Saze Z, Watanabe Y, Hanayama H, Hayase S, Kaneta A, Momma T, Ohki S, Ohira H, Kono K. Neoadjuvant Chemotherapy Induces IL34 Signaling and Promotes Chemoresistance via Tumor-Associated Macrophage Polarization in Esophageal Squamous Cell Carcinoma. Mol Cancer Res 2021; 19:1085-1095. [PMID: 33674443 DOI: 10.1158/1541-7786.mcr-20-0917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/26/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment (TME) plays a key role in the efficacy of neoadjuvant chemotherapy (NAC) in solid tumors including esophageal squamous cell carcinoma (ESCC). However, the TME profile of ESCC treated with NAC is not fully understood. In this study, we investigated the effect of NAC on the TME especially tumor-associated macrophages (TAM), the important immunosuppressive components of the TME, in ESCC. We quantified the expression of CD163, a crucial marker of TAM, in pretherapeutic biopsy and surgically resected ESCC specimens from patients who received NAC (n = 33) or did not receive NAC (n = 12). We found that NAC dramatically increased the expression of CD163 on TAMs in ESCC. Colony-stimulating factor 1 (CSF-1) and IL34 are crucial cytokines that recruit monocytes into tumor sites and differentiate them into TAMs. Interestingly, NAC significantly upregulated the expression of IL34 but not CSF-1 on tumor cells, and the frequencies of CD163+ TAMs were significantly correlated with IL34 expression in ESCC after NAC. The expression of IL34 in NAC-nonresponsive patients was significantly higher than that in NAC-responsive patients, and patients with IL34-high ESCC exhibited worse prognosis as compared with patients with IL34-low ESCC. We also demonstrated that 5-fluorouracil (5-FU)/cisplatin preferentially increased mRNA expression of IL34 on human ESCC cell lines. Human peripheral blood monocytes co-cultured with ESCC cells treated with 5-FU/cisplatin increased the expression of CD163, which was attenuated by the treatment with CSF-1R inhibitors. These data suggest that IL34 expression by NAC shifts the TME toward CD163+ TAM-rich immunosuppressive and chemo-insensitive microenvironment in ESCC. IMPLICATIONS: The blockade of IL34 signaling may offer a novel therapeutic strategy against chemoresistance in ESCC by inhibiting M2-TAM polarization.
Collapse
Affiliation(s)
- Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.,Department of Medical Electrophysiology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.,Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Aung Kyi Thar Min
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Eisei Endo
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Leo Yamada
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Koji Kase
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoto Yamauchi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takuro Matsumoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroshi Nakano
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yasuyuki Kanke
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Prajwal Neupane
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yohei Watanabe
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroyuki Hanayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Suguru Hayase
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Akinao Kaneta
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shinji Ohki
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.
| |
Collapse
|
41
|
Gu H, Wang B, He J, Hu Y. Macrophage colony stimulating factor (MCSF) of Japanese flounder (Paralichthys olivaceus): Immunoregulatory property, anti-infectious function, and interaction with MCSF receptor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103920. [PMID: 33189746 DOI: 10.1016/j.dci.2020.103920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Macrophage colony-stimulating factor (MCSF) is an essential growth factor to control the proliferation, differentiation and survival of the macrophage lineage in vertebrates. Sequences of MCSF have been identified in multiple teleost species, however, the functional investigations of MCSF were documented in only a few species. In this study, we examined the biological activity and the immunomodulatory property of a MCSF homologue, PoMCSF, from Japanese flounder (Paralichthys olivaceus). Structural analysis showed that PoMCSF possesses conserved structural characteristics of MCSF proteins, including a signal peptide, a CSF-1 domain, and a transmembrane region closed to the C-terminal. Under normal physiological condition, PoMCSF expression distributes in all the examined tissues, the highest three tissues are blood, muscle, and head kidney. When infected by extracellular and intracellular bacterial pathogens and viral pathogen, the PoMCSF expression patterns vary with different types of microbial pathogens infection and different immune tissues. In vitro experiment showed recombinant PoMCSF promoted the activity of macrophage. In vivo experiment indicated that PoMCSF overexpression boosted the defensive ability of flounder against Edwardsiella piscicida, a severe fish pathogen that infects multiple species of economically important fish, and regulated the expression of multiple immune-related genes. To explore the relationship between PoMCSF and its receptor PoMCSFR, anti-PoMCSFR antibody was prepared and PoMCSFR knockdown was conducted. The neutralization assay showed that when PoMCSFR was neutralized by its antibody, the role of PoMCSF on host defense against E. piscicida was weakened. Knockdown of PoMCSFR impaired the phagocytic capacity of macrophages. Collectively, these findings suggest that PoMCSF plays a crucial role in the immune defense system of Japanese flounder and the effect of PoMCSF is dependent on PoMCSFR. This study provides new insights into the biological activity of MCSF and the relationship between MCSF and MCSFR in teleost.
Collapse
Affiliation(s)
- Hanjie Gu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China
| | - Bo Wang
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China
| | - Jiaojiao He
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
42
|
Freuchet A, Salama A, Remy S, Guillonneau C, Anegon I. IL-34 and CSF-1, deciphering similarities and differences at steady state and in diseases. J Leukoc Biol 2021; 110:771-796. [PMID: 33600012 DOI: 10.1002/jlb.3ru1120-773r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Although IL-34 and CSF-1 share actions as key mediators of monocytes/macrophages survival and differentiation, they also display differences that should be identified to better define their respective roles in health and diseases. IL-34 displays low sequence homology with CSF-1 but has a similar general structure and they both bind to a common receptor CSF-1R, although binding and subsequent intracellular signaling shows differences. CSF-1R expression has been until now mainly described at a steady state in monocytes/macrophages and myeloid dendritic cells, as well as in some cancers. IL-34 has also 2 other receptors, protein-tyrosine phosphatase zeta (PTPζ) and CD138 (Syndecan-1), expressed in some epithelium, cells of the central nervous system (CNS), as well as in numerous cancers. While most, if not all, of CSF-1 actions are mediated through monocyte/macrophages, IL-34 has also other potential actions through PTPζ and CD138. Additionally, IL-34 and CSF-1 are produced by different cells in different tissues. This review describes and discusses similarities and differences between IL-34 and CSF-1 at steady state and in pathological situations and identifies possible ways to target IL-34, CSF-1, and its receptors.
Collapse
Affiliation(s)
- Antoine Freuchet
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Apolline Salama
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Séverine Remy
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
43
|
Delaney C, Farrell M, Doherty CP, Brennan K, O’Keeffe E, Greene C, Byrne K, Kelly E, Birmingham N, Hickey P, Cronin S, Savvides SN, Doyle SL, Campbell M. Attenuated CSF-1R signalling drives cerebrovascular pathology. EMBO Mol Med 2021; 13:e12889. [PMID: 33350588 PMCID: PMC7863388 DOI: 10.15252/emmm.202012889] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
Cerebrovascular pathologies occur in up to 80% of cases of Alzheimer's disease; however, the underlying mechanisms that lead to perivascular pathology and accompanying blood-brain barrier (BBB) disruption are still not fully understood. We have identified previously unreported mutations in colony stimulating factor-1 receptor (CSF-1R) in an ultra-rare autosomal dominant condition termed adult-onset leucoencephalopathy with axonal spheroids and pigmented glia (ALSP). Cerebrovascular pathologies such as cerebral amyloid angiopathy (CAA) and perivascular p-Tau were some of the primary neuropathological features of this condition. We have identified two families with different dominant acting alleles with variants located in the kinase region of the CSF-1R gene, which confer a lack of kinase activity and signalling. The protein product of this gene acts as the receptor for 2 cognate ligands, namely colony stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). Here, we show that depletion in CSF-1R signalling induces BBB disruption and decreases the phagocytic capacity of peripheral macrophages but not microglia. CSF-1R signalling appears to be critical for macrophage and microglial activation, and macrophage localisation to amyloid appears reduced following the induction of Csf-1r heterozygosity in macrophages. Finally, we show that endothelial/microglial crosstalk and concomitant attenuation of CSF-1R signalling causes re-modelling of BBB-associated tight junctions and suggest that regulating BBB integrity and systemic macrophage recruitment to the brain may be therapeutically relevant in ALSP and other Alzheimer's-like dementias.
Collapse
Affiliation(s)
- Conor Delaney
- Smurfit Institute of GeneticsTrinity College DublinDublin 2Ireland
| | - Michael Farrell
- Department of NeuropathologyBeaumont HospitalDublin 9Ireland
| | - Colin P Doherty
- Department of NeurologyHealth Care CentreSt James's HospitalDublin 8Ireland
- Academic Unit of NeurologyBiomedical Sciences InstituteTrinity College DublinDublin 2Ireland
- FutureNeuro SFI Research CentreRoyal College of Surgeons in IrelandDublinIreland
| | - Kiva Brennan
- Trinity College Institute of NeuroscienceTrinity College Dublin 2Dublin 2Ireland
| | - Eoin O’Keeffe
- Smurfit Institute of GeneticsTrinity College DublinDublin 2Ireland
| | - Chris Greene
- Smurfit Institute of GeneticsTrinity College DublinDublin 2Ireland
| | - Kieva Byrne
- Smurfit Institute of GeneticsTrinity College DublinDublin 2Ireland
| | - Eoin Kelly
- Department of NeurologyHealth Care CentreSt James's HospitalDublin 8Ireland
| | | | | | - Simon Cronin
- Department of MedicineUniversity College CorkCorkIreland
| | - Savvas N Savvides
- Unit for Structural BiologyDepartment of Biochemistry and MicrobiologyGhent UniversityGhentBelgium
- VIB‐UGent Center for Inflammation ResearchGhentBelgium
| | - Sarah L Doyle
- Trinity College Institute of NeuroscienceTrinity College Dublin 2Dublin 2Ireland
| | - Matthew Campbell
- Smurfit Institute of GeneticsTrinity College DublinDublin 2Ireland
- FutureNeuro SFI Research CentreRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
44
|
Muñoz-Garcia J, Cochonneau D, Télétchéa S, Moranton E, Lanoe D, Brion R, Lézot F, Heymann MF, Heymann D. The twin cytokines interleukin-34 and CSF-1: masterful conductors of macrophage homeostasis. Theranostics 2021; 11:1568-1593. [PMID: 33408768 PMCID: PMC7778581 DOI: 10.7150/thno.50683] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
Macrophages are specialized cells that control tissue homeostasis. They include non-resident and tissue-resident macrophage populations which are characterized by the expression of particular cell surface markers and the secretion of molecules with a wide range of biological functions. The differentiation and polarization of macrophages relies on specific growth factors and their receptors. Macrophage-colony stimulating factor (CSF-1) and interleukine-34 (IL-34), also known as "twin" cytokines, are part of this regluatory landscape. CSF-1 and IL-34 share a common receptor, the macrophage-colony stimulating factor receptor (CSF-1R), which is activated in a similar way by both factors and turns on identical signaling pathways. However, there is some discrete differential activation leading to specific activities. In this review, we disscuss recent progress in understanding of the role of the twin cytokines in macrophage differentiation, from their interaction with CSF-1R and the activation of signaling pathways, to their implication in macrophage polarization of non-resident and tissue-resident macrophages. A special focus on IL-34, its involvement in pathophsyiological contexts, and its potential as a theranostic target for macrophage therapy will be proposed.
Collapse
Affiliation(s)
- Javier Muñoz-Garcia
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
- SATT Ouest Valorisation, Nantes, France
| | - Denis Cochonneau
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | | | - Emilie Moranton
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | - Didier Lanoe
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | - Régis Brion
- Université de Nantes, INSERM, U1238, Nantes, France
| | | | | | - Dominique Heymann
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
45
|
Sreejit G, Fleetwood AJ, Murphy AJ, Nagareddy PR. Origins and diversity of macrophages in health and disease. Clin Transl Immunology 2020; 9:e1222. [PMID: 33363732 PMCID: PMC7750014 DOI: 10.1002/cti2.1222] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the first immune cells in the developing embryo and have a central role in organ development, homeostasis, immunity and repair. Over the last century, our understanding of these cells has evolved from being thought of as simple phagocytic cells to master regulators involved in governing a myriad of cellular processes. A better appreciation of macrophage biology has been matched with a clearer understanding of their diverse origins and the flexibility of their metabolic and transcriptional machinery. The understanding of the classical mononuclear phagocyte system in its original form has now been expanded to include the embryonic origin of tissue-resident macrophages. A better knowledge of the intrinsic similarities and differences between macrophages of embryonic or monocyte origin has highlighted the importance of ontogeny in macrophage dysfunction in disease. In this review, we provide an update on origin and classification of tissue macrophages, the mechanisms of macrophage specialisation and their role in health and disease. The importance of the macrophage niche in providing trophic factors and a specialised environment for macrophage differentiation and specialisation is also discussed.
Collapse
Affiliation(s)
- Gopalkrishna Sreejit
- Division of Cardiac SurgeryDepartment of SurgeryThe Ohio State University Wexner Medical CenterColumbusOHUSA
| | - Andrew J Fleetwood
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Andrew J Murphy
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Prabhakara R Nagareddy
- Division of Cardiac SurgeryDepartment of SurgeryThe Ohio State University Wexner Medical CenterColumbusOHUSA
| |
Collapse
|
46
|
Kozak S, Bloch Y, De Munck S, Mikula A, Bento I, Savvides SN, Meijers R. Homogeneously N-glycosylated proteins derived from the GlycoDelete HEK293 cell line enable diffraction-quality crystallogenesis. Acta Crystallogr D Struct Biol 2020; 76:1244-1255. [PMID: 33263330 PMCID: PMC7709199 DOI: 10.1107/s2059798320013753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Structural studies of glycoproteins and their complexes provide critical insights into their roles in normal physiology and disease. Most glycoproteins contain N-linked glycosylation, a key post-translation modification that critically affects protein folding and stability and the binding kinetics underlying protein interactions. However, N-linked glycosylation is often an impediment to yielding homogeneous protein preparations for structure determination by X-ray crystallography or other methods. In particular, obtaining diffraction-quality crystals of such proteins and their complexes often requires modification of both the type of glycosylation patterns and their extent. Here, we demonstrate the benefits of producing target glycoproteins in the GlycoDelete human embryonic kidney 293 cell line that has been engineered to produce N-glycans as short glycan stumps comprising N-acetylglucosamine, galactose and sialic acid. Protein fragments of human Down syndrome cell-adhesion molecule and colony-stimulating factor 1 receptor were obtained from the GlycoDelete cell line for crystallization. The ensuing reduction in the extent and complexity of N-glycosylation in both protein molecules compared with alternative glycoengineering approaches enabled their productive deployment in structural studies by X-ray crystallography. Furthermore, a third successful implementation of the GlycoDelete technology focusing on murine IL-12B is shown to lead to N-glycosylation featuring an immature glycan in diffraction-quality crystals. It is proposed that the GlycoDelete cell line could serve as a valuable go-to option for the production of homogeneous glycoproteins and their complexes for structural studies by X-ray crystallography and cryo-electron microscopy.
Collapse
Affiliation(s)
- Sandra Kozak
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Yehudi Bloch
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Steven De Munck
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Aleksandra Mikula
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Isabel Bento
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Savvas N. Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
- Institute for Protein Innovation, 4 Blackfan Circle, Boston, MA 02115, USA
| |
Collapse
|
47
|
Lelios I, Cansever D, Utz SG, Mildenberger W, Stifter SA, Greter M. Emerging roles of IL-34 in health and disease. J Exp Med 2020; 217:133604. [PMID: 31940023 PMCID: PMC7062519 DOI: 10.1084/jem.20190290] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/11/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Macrophages are part of the innate immune system and are present in every organ of the body. They fulfill critical roles in tissue homeostasis and development and are involved in various pathologies. An essential factor for the development, homeostasis, and function of mononuclear phagocytes is the colony stimulating factor-1 receptor (CSF-1R), which has two known ligands: CSF-1 and interleukin-34 (IL-34). While CSF-1 has been extensively studied, the biology and functions of IL-34 are only now beginning to be uncovered. In this review, we discuss recent advances of IL-34 biology in health and disease with a specific focus on mononuclear phagocytes.
Collapse
Affiliation(s)
- Iva Lelios
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Dilay Cansever
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian G Utz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Wiebke Mildenberger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian A Stifter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Recent insights of the role and signalling pathways of interleukin-34 in liver diseases. Int Immunopharmacol 2020; 89:107023. [PMID: 33129098 DOI: 10.1016/j.intimp.2020.107023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/27/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
Liver disease is a global health problem and is a primary cause of mortality and morbidity worldwide. Specifically, it accounts for approximately two million deaths per year worldwide. The common causes of mortality are the complications of liver cirrhosis, viral hepatitis and hepatocellular carcinoma (HCC). The mechanism of immune response and infiltration of cellular immunity is essential for promoting hepatic inflammatory, especially when the liver is abundant with lymphocytes and phagocytic cells. The injured and immunity cells secret different types of interleukins (cytokines), which can directly or indirectly amplify or inhibit liver inflammation. Many types of cells can produce interleukin-34 (IL-34) that induces the release of multiple inflammatory factors in patients via interaction with various cytokines. This phenomenon leads to the enlargement of the inflammatory response to liver diseases and induces liver fibrosis. This review highlights the proposed roles of IL-34 in liver diseases and discusses the recent findings of IL-34 that support its emerging role in HCC. Specifically, the facilitating effects of these new insights on the rational development of IL-34 for targeted therapies in the future are explored.
Collapse
|
49
|
Obst J, Simon E, Martin-Estebane M, Pipi E, Barkwill LM, Gonzalez-Rivera I, Buchanan F, Prescott AR, Faust D, Fox S, Brownlees J, Taylor D, Perry VH, Nuthall H, Atkinson PJ, Karran E, Routledge C, Gomez-Nicola D. Inhibition of IL-34 Unveils Tissue-Selectivity and Is Sufficient to Reduce Microglial Proliferation in a Model of Chronic Neurodegeneration. Front Immunol 2020; 11:579000. [PMID: 33162994 PMCID: PMC7580706 DOI: 10.3389/fimmu.2020.579000] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/27/2020] [Indexed: 01/15/2023] Open
Abstract
The proliferation and activation of microglia, the resident macrophages in the brain, is a hallmark of many neurodegenerative diseases such as Alzheimer's disease (AD) and prion disease. Colony stimulating factor 1 receptor (CSF1R) is critically involved in regulating microglial proliferation, and CSF1R blocking strategies have been recently used to modulate microglia in neurodegenerative diseases. However, CSF1R is broadly expressed by many cell types and the impact of its inhibition on the innate immune system is still unclear. CSF1R can be activated by two independent ligands, CSF-1 and interleukin 34 (IL-34). Recently, it has been reported that microglia development and maintenance depend on IL-34 signaling. In this study, we evaluate the inhibition of IL-34 as a novel strategy to reduce microglial proliferation in the ME7 model of prion disease. Selective inhibition of IL-34 showed no effects on peripheral macrophage populations in healthy mice, avoiding the side effects observed after CSF1R inhibition on the systemic compartment. However, we observed a reduction in microglial proliferation after IL-34 inhibition in prion-diseased mice, indicating that microglia could be more specifically targeted by reducing IL-34. Overall, our results highlight the challenges of targeting the CSF1R/IL34 axis in the systemic and central compartments, important for framing any therapeutic effort to tackle microglia/macrophage numbers during brain disease.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/toxicity
- Antibodies, Neutralizing/pharmacology
- Antibodies, Neutralizing/toxicity
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Disease Models, Animal
- Genes, fms
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Interleukins/antagonists & inhibitors
- Interleukins/metabolism
- Mice, Inbred C57BL
- Mice, Transgenic
- Microglia/drug effects
- Microglia/metabolism
- Microglia/pathology
- Nerve Degeneration
- Prion Diseases/drug therapy
- Prion Diseases/metabolism
- Prion Diseases/pathology
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Juliane Obst
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Emilie Simon
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Maria Martin-Estebane
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Elena Pipi
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Liana M. Barkwill
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Ivette Gonzalez-Rivera
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Fergus Buchanan
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Dorte Faust
- Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Stevenage, United Kingdom
| | - Simon Fox
- Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Stevenage, United Kingdom
| | - Janet Brownlees
- Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Stevenage, United Kingdom
| | - Debra Taylor
- Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Stevenage, United Kingdom
| | - V. Hugh Perry
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Hugh Nuthall
- Eli Lilly Research Centre, Surrey, United Kingdom
| | - Peter J. Atkinson
- Eisai Limited, European Knowledge Centre, Hertfordshire, United Kingdom
| | - Eric Karran
- Abbvie, Foundational Neuroscience Centre, Cambridge, MA, United States
| | | | - Diego Gomez-Nicola
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
50
|
Franzè E, Dinallo V, Laudisi F, Di Grazia A, Di Fusco D, Colantoni A, Ortenzi A, Giuffrida P, Di Carlo S, Sica GS, Di Sabatino A, Monteleone G. Interleukin-34 Stimulates Gut Fibroblasts to Produce Collagen Synthesis. J Crohns Colitis 2020; 14:1436-1445. [PMID: 32271873 DOI: 10.1093/ecco-jcc/jjaa073] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM The mechanisms underlying the formation of intestinal fibrostrictures [FS] in Crohn's disease [CD] are not fully understood, but activation of fibroblasts and excessive collagen deposition are supposed to contribute to the development of FS. Here we investigated whether interleukin-34 [IL-34], a cytokine that is over-produced in CD, regulates collagen production by gut fibroblasts. METHODS IL-34 and its receptor macrophage colony-stimulating factor receptor 1 [M-CSFR-1] were evaluated in inflammatory [I], FS CD, and control [CTR] ileal mucosal samples by real-time polymerase chain reaction [RT-PCR], western blotting, and immunohistochemistry. IL-34 and M-CSFR-1 expression was evaluated in normal and FS CD fibroblasts. Control fibroblasts were stimulated with IL-34 in the presence or absence of a MAP kinase p38 inhibitor, and FS CD fibroblasts were cultured with a specific IL-34 antisense oligonucleotide, and collagen production was evaluated by RT-PCR, western blotting, and Sircol assay. The effect of IL-34 on the wound healing capacity of fibroblasts was evaluated by scratch test. RESULTS We showed enhanced M-CSFR-1 and IL-34 RNA and protein expression in FS CD mucosal samples as compared with ICD and CTR samples. Immunohistochemical analysis showed that stromal cells were positive for M-CSFR-1 and IL-34. Enhanced M-CSFR-1 and IL-34 RNA and protein expression was seen in FS CD fibroblasts as compared with CTR. Stimulation of control fibroblasts with IL-34 enhanced COL1A1 and COL3A1 expression and secretion of collagen through a p38 MAP kinase-dependent mechanism, and wound healing. IL-34 knockdown in FS CD fibroblasts was associated with reduced collagen production and wound repair. CONCLUSIONS Data indicate a prominent role of IL-34 in the control of intestinal fibrogenesis.
Collapse
Affiliation(s)
- Eleonora Franzè
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Vincenzo Dinallo
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Antonio Di Grazia
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Paolo Giuffrida
- Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Sara Di Carlo
- Department of Surgery, University 'TOR VERGATA' of Rome, Rome, Italy
| | - Giuseppe S Sica
- Department of Surgery, University 'TOR VERGATA' of Rome, Rome, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| |
Collapse
|