1
|
Fadaei R, Bernstein AC, Jenkins AN, Pickens AG, Zarrow JE, Alli-Oluwafuyi AM, Tallman KA, Davies SS. N-Aldehyde-Modified Phosphatidylethanolamines generated by lipid peroxidation are robust substrates of N-Acyl Phosphatidylethanolamine Phospholipase D. J Lipid Res 2025:100831. [PMID: 40409473 DOI: 10.1016/j.jlr.2025.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 05/12/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025] Open
Abstract
N-acyl phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) hydrolyzes phosphatidylethanolamines (PE) where the headgroup nitrogen has been enzymatically modified with acyl chains of four carbons or longer (N-acyl-PEs or NAPEs). The nitrogen headgroup of PE can also be non-enzymatically modified by reactive lipid aldehydes, thus forming N-aldehyde modified-PEs (NALPEs). Some NALPEs such as N-carboxyacyl-PEs are linked to PE via amide bonds similar to NAPEs, but others are linked by imine, pyrrole, or lactam moieties. Whether NAPE-PLD can hydrolyze NALPEs was unknown. We therefore characterized the major NALPE species formed during lipid peroxidation of arachidonic acid and linoleic acid and generated various NALPEs for characterization of their sensitivity to NAPE-PLD hydrolysis by reacting synthesized aldehydes with PE. We found that NAPE-PLD could act on NALPEs of various lengths and linkage types including those derived from PE modified by malondialdehyde (N-MDA-PE), 4-hydroxynonenal (N-HNE-PE), 4-oxo-nonenal (N-ONE-PE), 9-keto-12-oxo-dodecenoic acid (N-KODA-PE), and 15-E2-isolevuglandin (N-IsoLG-PE). To assess the relative preference of NAPE-PLD for various NALPEs versus its canonical NAPE substrates, we generated a substrate mixture containing roughly equimolar concentrations of seven NALPEs as well as two NAPEs (N-palmitoyl-PE and N-linoleoyl-PE) and measured their rate of hydrolysis. Several NALPE species, including the N-HNE-PE pyrrole species, were hydrolyzed at a similar rate as N-linoleoyl-PE and many of the other NALPEs showed intermediate rates of hydrolysis. These results significantly expand the substrate repertoire of NAPE-PLD and suggest that it may play an important role in clearing products of lipid peroxidation in addition to its established role in the biosynthesis of N-acyl-ethanolamines.
Collapse
Affiliation(s)
- Reza Fadaei
- Department of Pharmacology, Vanderbilt University. Nashville, TN, USA, 37232
| | - Annie C Bernstein
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Allison G Pickens
- Department of Plant and Wildlife Sciences, Brigham Young University. Provo, UT, 84602
| | - Jonah E Zarrow
- Department of Pharmacology, Vanderbilt University. Nashville, TN, USA, 37232
| | | | - Keri A Tallman
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University. Nashville, TN, USA, 37232; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA, 37235.
| |
Collapse
|
2
|
Hegde RP, Demitri N, Héroux A, Olivo A, Bais G, Cianci M, Storici P, Dumitrescu DG, Varshney NK, Gopal B, Sarma DD, Vaccari L, Onesti S, Polentarutti M. Macromolecular crystallography at Elettra: current and future perspectives. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:757-765. [PMID: 40138213 PMCID: PMC12067329 DOI: 10.1107/s1600577525001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/05/2025] [Indexed: 03/29/2025]
Abstract
The Elettra synchrotron radiation facility, located in Trieste, Italy, is a third-generation storage ring, operating in top-up mode at both 2.0 and 2.4 GeV. The facility currently hosts one beamline fully dedicated to macromolecular crystallography, XRD2. XRD2 is based on a superconducting wiggler, and it has been open to users since 2018. On-site and remote access for data collection, as well as monitoring tools and automatic data analysis pipelines are available to its users. In addition, since 1994 Elettra has operated a general-purpose diffraction beamline, XRD1, offering the macromolecular community a wide spectrum extending to long wavelengths for phasing and ion identification. Ancillary facilities support the beamlines, providing sample preparation and a high-throughput crystallization platform for the user community. A new CryoEM facility is being established on campus and jointly operated by the Consiglio Nazionale della Ricerche - Istituto Officina dei Materiali (CNR-IOM) and Elettra, providing further opportunities to the Elettra user community. This review outlines the current capabilities and anticipated developments for macromolecular crystallography at Elettra to accompany the upcoming upgrade to Elettra 2.0, featuring a six-bend enhanced achromat lattice. The new source is expected to deliver a high-brilliance beam, enabling the macromolecular crystallography community to better address the emerging and future scientific challenges.
Collapse
Affiliation(s)
- Raghurama P. Hegde
- Elettra – Sincrotrone Trieste SCpASS 14 km 163,5 in AREA Science ParkBasovizza34149TriesteItaly
| | - Nicola Demitri
- Elettra – Sincrotrone Trieste SCpASS 14 km 163,5 in AREA Science ParkBasovizza34149TriesteItaly
| | - Annie Héroux
- Former Elettra – Sincrotrone Trieste SCpASS 14 km 163,5 in AREA Science ParkBasovizza34149TriesteItaly
| | - Alessandro Olivo
- Elettra – Sincrotrone Trieste SCpASS 14 km 163,5 in AREA Science ParkBasovizza34149TriesteItaly
| | - Giorgio Bais
- Elettra – Sincrotrone Trieste SCpASS 14 km 163,5 in AREA Science ParkBasovizza34149TriesteItaly
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche 10, 60131Ancona, Italy
| | - Paola Storici
- Elettra – Sincrotrone Trieste SCpASS 14 km 163,5 in AREA Science ParkBasovizza34149TriesteItaly
| | | | - Nishant Kumar Varshney
- IR Technology Services Pvt Ltd, EL-91, TTC Industrial Area, Electronic Zone, Mahape, Navi Mumbai, Maharashtra400710, India
| | - Balasubramanian Gopal
- Molecular Biophysics Unit, Division of Biological Sciences, Indian Institute of Science, Bengaluru560012, India
| | - D. D. Sarma
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru560012, India
| | - Lisa Vaccari
- Elettra – Sincrotrone Trieste SCpASS 14 km 163,5 in AREA Science ParkBasovizza34149TriesteItaly
| | - Silvia Onesti
- Elettra – Sincrotrone Trieste SCpASS 14 km 163,5 in AREA Science ParkBasovizza34149TriesteItaly
| | - Maurizio Polentarutti
- Elettra – Sincrotrone Trieste SCpASS 14 km 163,5 in AREA Science ParkBasovizza34149TriesteItaly
| |
Collapse
|
3
|
Chiarugi S, Margheriti F, De Lorenzi V, Martino E, Margheritis EG, Moscardini A, Marotta R, Chaves-Sanjuan A, Del Seppia C, Federighi G, Lapi D, Bandiera T, Rapposelli S, Scuri R, Bolognesi M, Garau G. NAPE-PLD is target of thiazide diuretics. Cell Chem Biol 2025; 32:449-462.e5. [PMID: 39999832 DOI: 10.1016/j.chembiol.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/01/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
Thiazide and thiazide-like diuretics are among the most efficacious and used drugs for the treatment of hypertension, edema, and major cardiovascular outcomes. Despite more then than six decades of clinical use, the molecular target and mechanism of action by which these drugs cure hypertension after long-term use have remained mysterious. Here we report the discovery and validation of a previously unknown renal and extrarenal target of these antihypertensives, the membrane-associated phospholipase N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD) of the endocannabinoid system. Structural and functional insights, together with preclinical studies in hypertensive rats, disclose the molecular and physiological basis by which thiazides cause acute diuresis and, at the same time, the distinctive chronic reduction of vascular resistance. Our results shed light on the mechanism of treatment of hypertension and will be useful for developing more efficacious medications for the management of vascular risk factors, as well as associated leukoencephalopathies and myelin disorders.
Collapse
Affiliation(s)
- Sara Chiarugi
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Piazza San Silvestro 12, 56127 Pisa, Italy; Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Francesco Margheriti
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Piazza San Silvestro 12, 56127 Pisa, Italy; Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Valentina De Lorenzi
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Elisa Martino
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Piazza San Silvestro 12, 56127 Pisa, Italy; Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | | | - Aldo Moscardini
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Roberto Marotta
- Electron Microscopy Facility, Istituto Italiano di Tecnologia (IIT) Via Morego 30, 16163 Genova, Italy
| | - Antonio Chaves-Sanjuan
- Department of BioSciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy
| | | | - Giuseppe Federighi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 31, 56126 Pisa, Italy
| | - Dominga Lapi
- Department of Biology, University of Pisa, Via Alessandro Volta 4, 56127 Pisa, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Rossana Scuri
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 31, 56126 Pisa, Italy
| | - Martino Bolognesi
- Department of BioSciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy
| | - Gianpiero Garau
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Piazza San Silvestro 12, 56127 Pisa, Italy; Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; Laboratori Aliveda, Viale Karol Wojtyla 19, 56042 Crespina Lorenzana, Pisa, Italy.
| |
Collapse
|
4
|
Kiaei N, Malik A, Idahosa SO, Lee KK, Endo-Umeda K, Makishima M, Kawamura A, Higuchi S. Python-derived 16α-Hydroxylated Bile Acid, Pythocholic Acid is a ligand for TGR5, not farnesoid X receptors and vitamin D receptors. Biochem Biophys Res Commun 2025; 751:151453. [PMID: 39923459 DOI: 10.1016/j.bbrc.2025.151453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Bile acids (BAs) are signaling molecules involved in energy expenditure, glucose homeostasis, and immune system regulation via activation of BA receptors, such as Takeda G-Protein-Coupled Receptor 5 (TGR5), Farnesoid X Receptor (FXR), and Vitamin D Receptor (VDR). The structure of BA, especially the hydroxyl group position, plays an important role in exerting its function. Previously, we reported that 16α-hydroxylated BA, also known as pythocholic acid (PCA), has beneficial effects on metabolic function and lipid metabolism in mammals. However, the molecular mechanism of PCA in mammals is yet to be explored because 16α-hydroxylated BA has not been seen in mammals. This study aims to investigate the binding interaction of PCA to human bile acid receptors, TGR5, FXR, and VDR, using a luciferase reporter assay. Luciferase reporter assay showed that PCA and tauro-conjugated-PCA (TPCA) activated TGR5, but did not activate FXR or VDR. Additionally, PCA and TPCA did not show an antagonistic effect on any of the BA receptors. TPCA treatment significantly decreased lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha (TNF-α) expression in mouse peritoneal macrophages, and inhibition of TGR5 by SBI-115 canceled the anti-inflammatory effect of TPCA. Our data suggests that PCA and TPCA are ligands for mammalian TGR5 receptors.
Collapse
Affiliation(s)
- Nicole Kiaei
- John L. Miller Great Neck North High School, Great Neck, NY, 11023, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Afsin Malik
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sydney O Idahosa
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Kevin K Lee
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Akira Kawamura
- Department of Chemistry, Hunter College of CUNY, New York, NY, 10065, USA
| | - Sei Higuchi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
5
|
Idahosa SO, Diarra R, Ranu HK, Nasiri RH, Higuchi S. Evidence and Mechanism of Bile Acid-Mediated Gut-Brain Axis in Anxiety and Depression. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:163-173. [PMID: 39566821 DOI: 10.1016/j.ajpath.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Bidirectional communication between the brain and gastrointestinal tract, called the gut-brain axis, is linked with our emotions. Intestinal lipids, hormones, and molecules, such as bile acids (BAs), impact our mood, motivation, and emotions via the gut-brain axis. BAs are synthesized from cholesterol in the liver and serve as a regulator of lipid metabolism and hormonal secretion in the intestine. Human studies have indicated that the alteration of plasma BA levels is associated with depression and anxiety. Several possible mechanisms, such as BA receptor-dependent and receptor-independent mechanisms, have been reported for emotional control. Animal studies have indicated that the deletion of BA receptors shows behavioral abnormalities. BAs regulate gut hormones, glucagon-like peptide-1 secretion, bioactive lipids, oleoylethanolamide, and the immune system function, which influences neural activities. Thus, BAs act as an emotional regulator. This review aims to summarize the following: clinical evidence of BA concentration linked to mental disorders, including depression and anxiety; and animal studies of BA-related signaling correlated with its neurobehavioral effect supporting its mechanism. We will also discuss future research required for further neurobehavioral treatment.
Collapse
Affiliation(s)
- Sydney O Idahosa
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Rokia Diarra
- Department of Biology, St. John's University, Queens, New York
| | - Hernoor K Ranu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Raidah H Nasiri
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Sei Higuchi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York.
| |
Collapse
|
6
|
Hanske A, Nazaré M, Grether U. Chemical Probes for Investigating the Endocannabinoid System. Curr Top Behav Neurosci 2025. [PMID: 39747798 DOI: 10.1007/7854_2024_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ9-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.1, anandamide (N-arachidonoylethanolamine (AEA)) 1.2, and various proteins, regulates vital processes such as sleep, appetite, and memory, and holds significant therapeutic potential, especially for neurological disorders. Small molecule-derived pharmacological tools, or chemical probes, target key components of the ECS and are crucial for target validation, mechanistic studies, pathway elucidation, phenotypic screening, and drug discovery. These probes selectively interact with specific proteins or pathways, enabling researchers to modulate target activity and observe biological effects. When they carry an additional reporter group, they are referred to as labeled chemical probes. Developed through medicinal chemistry, structural biology, and high-throughput screening, effective chemical probes must be selective, potent, and depending on their purpose meet additional criteria such as cell permeability and metabolic stability.This chapter describes high-quality labeled and unlabeled chemical probes targeting ECS constituents that have been successfully applied for various research purposes. CB1R and CB2R, class A G protein-coupled receptors, are activated by 2-AG 1.1, AEA 1.2, and THC 3.1, with numerous ligands developed for these receptors. Imaging techniques like single-photon emission computed tomography, positron emission tomography, and fluorescently labeled CB1R and CB2R probes have enhanced CB receptor studies. CB2R activation generally results in immunosuppressive effects, limiting tissue injury. AEA 1.2 is mainly degraded by fatty acid amide hydrolase (FAAH) or N-acylethanolamine acid amidase (NAAA) into ethanolamine and arachidonic acid (AA) 1.3. FAAH inhibitors increase endogenous fatty acid amides, providing analgesic effects without adverse effects. NAAA inhibitors reduce inflammation and pain in animal models. Diacylglycerol lipase (DAGL) is essential for 2-AG 1.1 biosynthesis, while monoacylglycerol lipase (MAGL) degrades 2-AG 1.1 into AA 1.3, thus regulating cannabinoid signaling. Multiple inhibitors targeting FAAH and MAGL have been generated, though NAAA and DAGL probe development lags behind. Similarly, advancements in inhibitors targeting endocannabinoid (eCB) cellular uptake or trafficking proteins like fatty acid-binding proteins have been slower. The endocannabinoidome (eCBome) includes the ECS and related molecules and receptors, offering therapeutic opportunities from non-THC cannabinoids and eCBome mediators. Ongoing research aims to refine chemical tools for ECS and eCBome study, addressing unmet medical needs in central nervous system disorders and beyond.
Collapse
Affiliation(s)
- Annaleah Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Uwe Grether
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
7
|
Fadaei R, Bernstein AC, Jenkins AN, Pickens AG, Zarrow JE, Alli-Oluwafuyi AM, Tallman KA, Davies SS. N-Aldehyde-Modified Phosphatidylethanolamines generated by lipid peroxidation are robust substrates of N-Acyl Phosphatidylethanolamine Phospholipase D. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621135. [PMID: 39554116 PMCID: PMC11565945 DOI: 10.1101/2024.10.30.621135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
N-acyl phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) hydrolyzes phosphatidylethanolamines (PE) where the headgroup nitrogen has been enzymatically modified with acyl chains of four carbons or longer (N-acyl-PEs or NAPEs). The nitrogen headgroup of PE can also be non-enzymatically modified by reactive lipid aldehydes, thus forming N-aldehyde modified-PEs (NALPEs). Some NALPEs such as N-carboxyacyl-PEs are linked to PE via amide bonds similar to NAPEs, but others are linked by imine, pyrrole, or lactam moieties. Whether NAPE-PLD can hydrolyze NALPEs was unknown. We therefore characterized the major NALPE species formed during lipid peroxidation of arachidonic acid and linoleic acid and generated various NALPEs for characterization of their sensitivity to NAPE-PLD hydrolysis by reacting synthesized aldehydes with PE. We found that NAPE-PLD could act on NALPEs of various lengths and linkage types including those derived from PE modified by malondialdehyde (N-MDA-PE), butane dialdehyde (N-BDA-PE), 4-hydroxynonenal (N-HNE-PE), 4-oxo-nonenal (N-ONE-PE), 9-keto-12-oxo-dodecenoic acid (N-KODA-PE), and 15-E2-isolevuglandin (N-IsoLG-PE). To assess the relative preference of NAPE-PLD for various NALPEs versus its canonical NAPE substrates, we generated a substrate mixture containing roughly equimolar concentrations of the seven NALPEs as well as two NAPEs (N-palmitoyl-PE and N-linoleoyl-PE) and measured their rate of hydrolysis. Several NALPE species, including the N-HNE-PE pyrrole species, were hydrolyzed at a similar rate as N-linoleoyl-PE and many of the other NALPEs showed intermediate rates of hydrolysis. These results significantly expand the substrate repertoire of NAPE-PLD and suggest that it may play an important role in clearing products of lipid peroxidation in addition to its established role in the biosynthesis of N-acyl-ethanolamines.
Collapse
Affiliation(s)
- Reza Fadaei
- Department of Pharmacology, Vanderbilt University. Nashville, TN, USA, 37232
| | | | - Andrew N. Jenkins
- Department of Cell Biology and Physiology, and Brigham Young University. Provo, UT, 84602
| | - Allison G. Pickens
- Department of Plant and Wildlife Sciences, Brigham Young University. Provo, UT, 84602
| | - Jonah E. Zarrow
- Department of Pharmacology, Vanderbilt University. Nashville, TN, USA, 37232
| | | | - Keri A. Tallman
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Sean S. Davies
- Department of Pharmacology, Vanderbilt University. Nashville, TN, USA, 37232
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA, 37235
| |
Collapse
|
8
|
Borgonetti V, Vozella V, Ware T, Cruz B, Bullard R, Cravatt BF, Galeotti N, Roberto M. Excessive alcohol intake produces persistent mechanical allodynia and dysregulates the endocannabinoid system in the lumbar dorsal root ganglia of genetically-selected Marchigian Sardinian alcohol-preferring rats. Pharmacol Res 2024; 209:107462. [PMID: 39396766 PMCID: PMC11834946 DOI: 10.1016/j.phrs.2024.107462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024]
Abstract
Epidemiological data indicate a strong association between alcohol use disorder (AUD) and neuropathic pain. Genetically-selected Marchigian Sardinian alcohol-preferring (msP) rats exhibit a high preference for alcohol compared with their background strain (Wistar rats), but their sensitivity to mechanical allodynia after chronic alcohol exposure is unknown. The present study compared the development of mechanical allodynia between "low, non-pathological drinker" Wistar rats and "high drinker" msP rats using the two-bottle choice (2BC) free-access procedure. Several studies reported the involvement of endocannabinoids (eCBs) in modulating mechanical allodynia, but there are no data on their role in alcohol-related allodynia. Thus, the present study assessed eCBs and their related lipid species in lumbar dorsal root ganglia (DRG) and correlated them with mechanical allodynia in our model. We found that male and female msP rats developed persistent mechanical allodynia during protracted abstinence from alcohol, presenting no sign of recovery, as opposed to Wistar rats. This effect directly correlated with their total alcohol intake. Notably, we found a correlation between lower lumbar DRG 2-arachidonoylglycerol (2-AG) levels and the development of higher mechanical allodynia during abstinence in msP rats of both sexes but not in Wistar rats. Moreover, alcohol-exposed and abstinent msP and Wistar females but not males exhibited significant alterations of thromboxane B2 and prostaglandin E2/prostaglandin D2 compared with naive rats. These findings demonstrate that DRG 2-AG metabolism is altered in msP rats during prolonged abstinence and represents a potentially interesting pharmacological target for the treatment of mechanical allodynia during alcohol abstinence.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Tim Ware
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Ryan Bullard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
9
|
Fotio Y, Mabou Tagne A, Squire E, Lee HL, Phillips CM, Chang K, Ahmed F, Greenberg AS, Villalta SA, Scarfone VM, Spadoni G, Mor M, Piomelli D. NAAA-regulated lipid signaling in monocytes controls the induction of hyperalgesic priming in mice. Nat Commun 2024; 15:1705. [PMID: 38402219 PMCID: PMC10894261 DOI: 10.1038/s41467-024-46139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/15/2024] [Indexed: 02/26/2024] Open
Abstract
Circulating monocytes participate in pain chronification but the molecular events that cause their deployment are unclear. Using a mouse model of hyperalgesic priming (HP), we show that monocytes enable progression to pain chronicity through a mechanism that requires transient activation of the hydrolase, N-acylethanolamine acid amidase (NAAA), and the consequent suppression of NAAA-regulated lipid signaling at peroxisome proliferator-activated receptor-α (PPAR-α). Inhibiting NAAA in the 72 hours following administration of a priming stimulus prevented HP. This effect was phenocopied by NAAA deletion and depended on PPAR-α recruitment. Mice lacking NAAA in CD11b+ cells - monocytes, macrophages, and neutrophils - were resistant to HP induction. Conversely, mice overexpressing NAAA or lacking PPAR-α in the same cells were constitutively primed. Depletion of monocytes, but not resident macrophages, generated mice that were refractory to HP. The results identify NAAA-regulated signaling in monocytes as a control node in the induction of HP and, potentially, the transition to pain chronicity.
Collapse
Affiliation(s)
- Yannick Fotio
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Erica Squire
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Hye-Lim Lee
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Connor M Phillips
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Kayla Chang
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | | | - S Armando Villalta
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Vanessa M Scarfone
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università di Urbino "Carlo Bo,", Urbino, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA.
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
10
|
Rathod SS, Agrawal YO, Nakhate KT, Meeran MFN, Ojha S, Goyal SN. Neuroinflammation in the Central Nervous System: Exploring the Evolving Influence of Endocannabinoid System. Biomedicines 2023; 11:2642. [PMID: 37893016 PMCID: PMC10604915 DOI: 10.3390/biomedicines11102642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Neuroinflammation is a complex biological process that typically originates as a protective response in the brain. This inflammatory process is triggered by the release of pro-inflammatory substances like cytokines, prostaglandins, and reactive oxygen and nitrogen species from stimulated endothelial and glial cells, including those with pro-inflammatory functions, in the outer regions. While neuronal inflammation is common in various central nervous system disorders, the specific inflammatory pathways linked with different immune-mediated cell types and the various factors influencing the blood-brain barrier significantly contribute to disease-specific characteristics. The endocannabinoid system consists of cannabinoid receptors, endogenous cannabinoids, and enzymes responsible for synthesizing and metabolizing endocannabinoids. The primary cannabinoid receptor is CB1, predominantly found in specific brain regions such as the brainstem, cerebellum, hippocampus, and cortex. The presence of CB2 receptors in certain brain components, like cultured cerebellar granular cells, Purkinje fibers, and microglia, as well as in the areas like the cerebral cortex, hippocampus, and cerebellum is also evidenced by immunoblotting assays, radioligand binding, and autoradiography studies. Both CB1 and CB2 cannabinoid receptors exhibit noteworthy physiological responses and possess diverse neuromodulatory capabilities. This review primarily aims to outline the distribution of CB1 and CB2 receptors across different brain regions and explore their potential roles in regulating neuroinflammatory processes.
Collapse
Affiliation(s)
- Sumit S. Rathod
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
- Department of Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | - Yogeeta O. Agrawal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
| | - Kartik T. Nakhate
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Abu Dhabi P.O. Box 15551, United Arab Emirates;
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Abu Dhabi P.O. Box 15551, United Arab Emirates;
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
| |
Collapse
|
11
|
Maccarrone M, Di Marzo V, Gertsch J, Grether U, Howlett AC, Hua T, Makriyannis A, Piomelli D, Ueda N, van der Stelt M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev 2023; 75:885-958. [PMID: 37164640 PMCID: PMC10441647 DOI: 10.1124/pharmrev.122.000600] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023] Open
Abstract
The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Vincenzo Di Marzo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Jürg Gertsch
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Uwe Grether
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Allyn C Howlett
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Tian Hua
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Alexandros Makriyannis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Daniele Piomelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Natsuo Ueda
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Mario van der Stelt
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| |
Collapse
|
12
|
Zarrow J, Alli-Oluwafuyi AM, Youwakim CM, Kim K, Jenkins AN, Suero IC, Jones MR, Mashhadi Z, Mackie K, Waterson AG, Doran AC, Sulikowski GA, Davies SS. Small Molecule Activation of NAPE-PLD Enhances Efferocytosis by Macrophages. ACS Chem Biol 2023; 18:1891-1904. [PMID: 37531659 PMCID: PMC10443532 DOI: 10.1021/acschembio.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
N-Acyl-phosphatidylethanolamine hydrolyzing phospholipase D (NAPE-PLD) is a zinc metallohydrolase that hydrolyzes N-acyl-phosphatidylethanolamines (NAPEs) to form N-acyl-ethanolamines (NAEs) and phosphatidic acid. Several lines of evidence suggest that reduced NAPE-PLD activity could contribute to cardiometabolic diseases. For instance, NAPEPLD expression is reduced in human coronary arteries with unstable atherosclerotic lesions, defective efferocytosis is implicated in the enlargement of necrotic cores of these lesions, and NAPE-PLD products such as palmitoylethanolamide and oleoylethanolamide have been shown to enhance efferocytosis. Thus, enzyme activation mediated by a small molecule may serve as a therapeutic treatment for cardiometabolic diseases. As a proof-of-concept study, we sought to identify small molecule activators of NAPE-PLD. High-throughput screening followed by hit validation and primary lead optimization studies identified a series of benzothiazole phenylsulfonyl-piperidine carboxamides that variably increased activity of both mouse and human NAPE-PLD. From this set of small molecules, two NAPE-PLD activators (VU534 and VU533) were shown to increase efferocytosis by bone-marrow derived macrophages isolated from wild-type mice, while efferocytosis was significantly reduced in Napepld-/- BMDM or after Nape-pld inhibition. Together, these studies demonstrate an essential role for NAPE-PLD in the regulation of efferocytosis and the potential value of NAPE-PLD activators as a strategy to treat cardiometabolic diseases.
Collapse
Affiliation(s)
- Jonah
E. Zarrow
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | | | - Cristina M. Youwakim
- Department
of Medicine, Division of Cardiology, Vanderbilt
University Medical Center. Nashville, Tennessee 37232, United States
| | - Kwangho Kim
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Andrew N. Jenkins
- Department
of Cell Biology and Physiology, Brigham
Young University. Provo, Utah 84602, United States
| | - Isabelle C. Suero
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Margaret R. Jones
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zahra Mashhadi
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ken Mackie
- Gill Center
and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Alex G. Waterson
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Amanda C. Doran
- Department
of Medicine, Division of Cardiology, Vanderbilt
University Medical Center. Nashville, Tennessee 37232, United States
| | - Gary A. Sulikowski
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Sean S. Davies
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| |
Collapse
|
13
|
Higuchi S, Wood C, Nasiri RH, Giddla LJ, Molina V, Diarra R, DiPatrizio NV, Kawamura A, Haeusler RA. The 16α-hydroxylated Bile Acid, Pythocholic Acid Decreases Food Intake and Increases Oleoylethanolamide in Male Mice. Endocrinology 2023; 164:bqad116. [PMID: 37490843 PMCID: PMC10407715 DOI: 10.1210/endocr/bqad116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Modulation of bile acid (BA) structure is a potential strategy for obesity and metabolic disease treatment. BAs act not only as signaling molecules involved in energy expenditure and glucose homeostasis, but also as regulators of food intake. The structure of BAs, particularly the position of the hydroxyl groups of BAs, impacts food intake partly by intestinal effects: (1) modulating the activity of N-acyl phosphatidylethanolamine phospholipase D, which produces the anorexigenic bioactive lipid oleoylethanolamide (OEA) or (2) regulating lipid absorption and the gastric emptying-satiation pathway. We hypothesized that 16α-hydroxylated BAs uniquely regulate food intake because of the long intermeal intervals in snake species in which these BAs are abundant. However, the effects of 16α-hydroxylated BAs in mammals are completely unknown because they are not naturally found in mammals. To test the effect of 16α-hydroxylated BAs on food intake, we isolated the 16α-hydroxylated BA pythocholic acid from ball pythons (Python regius). Pythocholic acid or deoxycholic acid (DCA) was given by oral gavage in mice. DCA is known to increase N-acyl phosphatidylethanolamine phospholipase D activity better than other mammalian BAs. We evaluated food intake, OEA levels, and gastric emptying in mice. We successfully isolated pythocholic acid from ball pythons for experimental use. Pythocholic acid treatment significantly decreased food intake in comparison to DCA treatment, and this was associated with increased jejunal OEA, but resulted in no change in gastric emptying or lipid absorption. The exogenous BA pythocholic acid is a novel regulator of food intake and the satiety signal for OEA in the mouse intestine.
Collapse
Affiliation(s)
- Sei Higuchi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Courtney Wood
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Raidah H Nasiri
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Leela J Giddla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Valentina Molina
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Rokia Diarra
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Akira Kawamura
- Department of Chemistry, Hunter College of CUNY, New York, NY 10065, USA
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
14
|
Krishnamurthy S, Maru P, Wang Y, Bitew MA, Mukhopadhyay D, Yamaryo-Botté Y, Paredes-Santos TC, Sangaré LO, Swale C, Botté CY, Saeij JPJ. CRISPR Screens Identify Toxoplasma Genes That Determine Parasite Fitness in Interferon Gamma-Stimulated Human Cells. mBio 2023; 14:e0006023. [PMID: 36916910 PMCID: PMC10128063 DOI: 10.1128/mbio.00060-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 03/16/2023] Open
Abstract
Toxoplasma virulence depends on its ability to evade or survive the toxoplasmacidal mechanisms induced by interferon gamma (IFNγ). While many Toxoplasma genes involved in the evasion of the murine IFNγ response have been identified, genes required to survive the human IFNγ response are largely unknown. In this study, we used a genome-wide loss-of-function screen to identify Toxoplasma genes important for parasite fitness in IFNγ-stimulated primary human fibroblasts. We generated gene knockouts for the top six hits from the screen and confirmed their importance for parasite growth in IFNγ-stimulated human fibroblasts. Of these six genes, three have homology to GRA32, localize to dense granules, and coimmunoprecipitate with each other and GRA32, suggesting they might form a complex. Deletion of individual members of this complex leads to early parasite egress in IFNγ-stimulated cells. Thus, prevention of early egress is an important Toxoplasma fitness determinant in IFNγ-stimulated human cells. IMPORTANCE Toxoplasma infection causes serious complications in immunocompromised individuals and in the developing fetus. During infection, certain immune cells release a protein called interferon gamma that activates cells to destroy the parasite or inhibit its growth. While most Toxoplasma parasites are cleared by this immune response, some can survive by blocking or evading the IFNγ-induced restrictive environment. Many Toxoplasma genes that determine parasite survival in IFNγ-activated murine cells are known but parasite genes conferring fitness in IFNγ-activated human cells are largely unknown. Using a Toxoplasma adapted genome-wide loss-of-function screen, we identified many Toxoplasma genes that determine parasite fitness in IFNγ-activated human cells. The gene products of four top hits play a role in preventing early parasite egress in IFNγ-stimulated human cells. Understanding how IFNγ-stimulated human cells inhibit Toxoplasma growth and how Toxoplasma counteracts this, could lead to the development of novel therapeutics.
Collapse
Affiliation(s)
- Shruthi Krishnamurthy
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Parag Maru
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Yifan Wang
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Mebratu A. Bitew
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Yoshiki Yamaryo-Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Batiment Jean Roget, Grenoble, France
| | - Tatiana C. Paredes-Santos
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Lamba O. Sangaré
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Christopher Swale
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Cyrille Y. Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Batiment Jean Roget, Grenoble, France
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
15
|
Lange T, Depmeier T, Strünker T, Lehr M. HPLC fluorescence assay for measuring the activity of NAPE-PLD and the action of inhibitors affecting this enzyme. J Pharm Biomed Anal 2023; 229:115354. [PMID: 37003086 DOI: 10.1016/j.jpba.2023.115354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
N-Acyl phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) is the major enzyme for the biosynthesis of the endocannabinoid anandamide. The role of NAPE-PLD in various physiological and pathophysiological conditions is currently under investigation. For example, the enzyme might be involved in the control of neuronal activity, embryonic development and pregnancy, and prostate cancer. We synthesized a novel NAPE-PLD substrate with a fluorogenic pyrene substituent at the N-acyl residue as tool compound for studying this enzyme. As shown by HPLC with fluorescence detection, in rat brain microsomes the substrate was transformed into the expected pyrene-labeled N-acylethanolamine (NAE), but minor amounts of three by-products could also be detected. In the presence of pan-serine hydrolase and secretory phospholipase A2 inhibitors, the generation of these compounds, whose identity was verified using reference substances, was abolished. Based on these results, a method for determining the activity of NAPE-PLD was developed, validated, and applied to evaluate the action of known inhibitors of this enzyme. With human sperm, it was shown that the fluorescent substrate can also be used to study NAPE metabolism in intact cells.
Collapse
Affiliation(s)
- Thomas Lange
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149 Münster, Germany
| | - Tim Depmeier
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149 Münster, Germany
| | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Domagkstrasse 11, 48149 Münster, Germany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149 Münster, Germany.
| |
Collapse
|
16
|
Abstract
N-Acylphosphatidylethanolamine phospholipase D (NAPE-PLD) is regarded as the principal enzyme that generates N-acylethanolamines (NAEs), a family of signaling lipids that includes the endocannabinoid anandamide. To investigate the biological function and biosynthesis of NAEs, we sought to develop potent NAPE-PLD inhibitors. To this aim, we utilized a high-throughput screening-compatible NAPE-PLD activity assay, which uses the fluorescence-quenched substrate PED6. This assay conveniently uses membrane fractions of NAPE-PLD overexpressing HEK293T cell lysates, thus avoiding the need for protein purification. Here, we give a detailed description of the NAPE-PLD PED6 fluorescence activity assay, which has increased throughput compared to previous radioactivity- or mass-spectrometry-based assays.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, RA, Leiden, The Netherlands.
| | - Wouter P F Driever
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, RA, Leiden, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, RA, Leiden, The Netherlands
| |
Collapse
|
17
|
Atz K, Guba W, Grether U, Schneider G. Machine Learning and Computational Chemistry for the Endocannabinoid System. Methods Mol Biol 2023; 2576:477-493. [PMID: 36152211 DOI: 10.1007/978-1-0716-2728-0_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Computational methods in medicinal chemistry facilitate drug discovery and design. In particular, machine learning methodologies have recently gained increasing attention. This chapter provides a structured overview of the current state of computational chemistry and its applications for the interrogation of the endocannabinoid system (ECS), highlighting methods in structure-based drug design, virtual screening, ligand-based quantitative structure-activity relationship (QSAR) modeling, and de novo molecular design. We emphasize emerging methods in machine learning and anticipate a forecast of future opportunities of computational medicinal chemistry for the ECS.
Collapse
Affiliation(s)
- Kenneth Atz
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | - Wolfgang Guba
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | - Gisbert Schneider
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
- ETH Singapore SEC Ltd, Singapore, Singapore
| |
Collapse
|
18
|
Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res 2023; 89:101194. [PMID: 36150527 DOI: 10.1016/j.plipres.2022.101194] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| |
Collapse
|
19
|
Martino E, Chiarugi S, Margheriti F, Garau G. Mapping, Structure and Modulation of PPI. Front Chem 2021; 9:718405. [PMID: 34692637 PMCID: PMC8529325 DOI: 10.3389/fchem.2021.718405] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Because of the key relevance of protein–protein interactions (PPI) in diseases, the modulation of protein-protein complexes is of relevant clinical significance. The successful design of binding compounds modulating PPI requires a detailed knowledge of the involved protein-protein system at molecular level, and investigation of the structural motifs that drive the association of the proteins at the recognition interface. These elements represent hot spots of the protein binding free energy, define the complex lifetime and possible modulation strategies. Here, we review the advanced technologies used to map the PPI involved in human diseases, to investigate the structure-function features of protein complexes, and to discover effective ligands that modulate the PPI for therapeutic intervention.
Collapse
Affiliation(s)
- Elisa Martino
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy
| | - Sara Chiarugi
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy.,BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Pisa, Italy
| | | | - Gianpiero Garau
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Pisa, Italy
| |
Collapse
|
20
|
Abstract
The endocannabinoids are lipid-derived messengers that play a diversity of regulatory roles in mammalian physiology. Dysfunctions in their activity have been implicated in various disease conditions, attracting attention to the endocannabinoid system as a possible source of therapeutic drugs. This signaling complex has three components: the endogenous ligands, anandamide and 2-arachidonoyl-sn-glycerol (2-AG); a set of enzymes and transporters that generate, eliminate, or modify such ligands; and selective cell surface receptors that mediate their biological actions. We provide an overview of endocannabinoid formation, deactivation, and biotransformation and outline the properties and therapeutic potential of pharmacological agents that interfere with those processes. We describe small-molecule inhibitors that target endocannabinoid-producing enzymes, carrier proteins that transport the endocannabinoids into cells, and intracellular endocannabinoid-metabolizing enzymes. We briefly discuss selected agents that simultaneously interfere with components of the endocannabinoid system and with other functionally related signaling pathways. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA; .,Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA;
| |
Collapse
|
21
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
22
|
Ghidini A, Scalvini L, Palese F, Lodola A, Mor M, Piomelli D. Different roles for the acyl chain and the amine leaving group in the substrate selectivity of N-Acylethanolamine acid amidase. J Enzyme Inhib Med Chem 2021; 36:1411-1423. [PMID: 34256657 PMCID: PMC8279155 DOI: 10.1080/14756366.2021.1912035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
N-acylethanolamine acid amidase (NAAA) is an N-terminal nucleophile (Ntn) hydrolase that catalyses the intracellular deactivation of the endogenous analgesic and anti-inflammatory agent palmitoylethanolamide (PEA). NAAA inhibitors counteract this process and exert marked therapeutic effects in animal models of pain, inflammation and neurodegeneration. While it is known that NAAA preferentially hydrolyses saturated fatty acid ethanolamides (FAEs), a detailed profile of the relationship between catalytic efficiency and fatty acid-chain length is still lacking. In this report, we combined enzymatic and molecular modelling approaches to determine the effects of acyl chain and polar head modifications on substrate recognition and hydrolysis by NAAA. The results show that, in both saturated and monounsaturated FAEs, the catalytic efficiency is strictly dependent upon fatty acyl chain length, whereas there is a wider tolerance for modifications of the polar heads. This relationship reflects the relative stability of enzyme-substrate complexes in molecular dynamics simulations.
Collapse
Affiliation(s)
- Andrea Ghidini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Francesca Palese
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA.,Department of Biological Chemistry and Molecular Biology, University of California, Irvine, CA, USA
| |
Collapse
|
23
|
Abstract
In this review, the state of the art for compounds affecting the endocannabinoid (eCB) system is described with a focus on the treatment of pain. Amongst directly acting CB receptor ligands, clinical experience with ∆9 -tetrahydracannabinol and medical cannabis in chronic non-cancer pain indicates that there are differences between the benefits perceived by patients and the at best modest effect seen in meta-analyses of randomized controlled trials. The reason for this difference is not known but may involve differences in the type of patients that are recruited, the study conditions that are chosen and the degree to which biases such as reporting bias are operative. Other directly acting CB receptor ligands such as biased agonists and allosteric receptor modulators have not yet reached the clinic. Amongst indirectly acting compounds targeting the enzymes responsible for the synthesis and catabolism of the eCBs anandamide and 2-arachidonoylglycerol, fatty acid amide hydrolase (FAAH) inhibitors have been investigated clinically but were per se not useful for the treatment of pain, although they may be useful for the treatment of post-traumatic stress disorder and cannabis use disorder. Dual-acting compounds targeting this enzyme and other targets such as cyclooxygenase-2 or transient potential vanilloid receptor 1 may be a way forward for the treatment of pain.
Collapse
Affiliation(s)
- C J Fowler
- From the, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Kim DG, Lee KY, Lee SJ, Cheon SH, Choi Y, Lee HH, Ahn HC, Lee BJ. Structural and functional studies of SAV1707 from Staphylococcus aureus elucidate its distinct metal-dependent activity and a crucial residue for catalysis. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:587-598. [PMID: 33950015 DOI: 10.1107/s2059798321001923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/17/2021] [Indexed: 11/10/2022]
Abstract
The metallo-β-lactamase fold is the most abundant metal-binding domain found in two major kingdoms: bacteria and archaea. Despite the rapid growth in genomic information, most of these enzymes, which may play critical roles in cellular metabolism, remain uncharacterized in terms of structure and function. In this study, X-ray crystal structures of SAV1707, a hypothetical metalloenzyme from Staphylococcus aureus, and its complex with cAMP are reported at high resolutions of 2.05 and 1.55 Å, respectively, with a detailed atomic description. Through a functional study, it was verified that SAV1707 has Ni2+-dependent phosphodiesterase activity and Mn2+-dependent endonuclease activity, revealing a different metal selectivity depending on the reaction. In addition, the crystal structure of cAMP-bound SAV1707 shows a unique snapshot of cAMP that reveals the binding mode of the intermediate, and a key residue Phe511 that forms π-π interactions with cAMP was verified as contributing to substrate recognition by functional studies of its mutant. Overall, these findings characterized the relationship between the structure and function of SAV1707 and may provide further understanding of metalloenzymes possessing the metallo-β-lactamase fold.
Collapse
Affiliation(s)
- Dong Gyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyu Yeon Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Jae Lee
- PAL-XFEL, Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seung Ho Cheon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuri Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee Chul Ahn
- Department of Pharmacy, Dongguk University-Seoul, Dongguk-ro 32, Ilsandong-gu, Goyang, Geonggi-do 10326, Republic of Korea
| | - Bong Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
25
|
The rise and fall of anandamide: processes that control synthesis, degradation, and storage. Mol Cell Biochem 2021; 476:2753-2775. [PMID: 33713246 DOI: 10.1007/s11010-021-04121-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Anandamide is an endocannabinoid derived from arachidonic acid-containing membrane lipids and has numerous biological functions. Its effects are primarily mediated by the cannabinoid receptors CB1 and CB2, and the vanilloid TRPV1 receptor. Anandamide is known to be involved in sleeping and eating patterns as well as pleasure enhancement and pain relief. This manuscript provides a review of anandamide synthesis, degradation, and storage and hence the homeostasis of the anandamide signaling system.
Collapse
|
26
|
Kurtz R, Anderman MF, Shepard BD. GPCRs get fatty: the role of G protein-coupled receptor signaling in the development and progression of nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 2021; 320:G304-G318. [PMID: 33205999 PMCID: PMC8202238 DOI: 10.1152/ajpgi.00275.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by the abnormal deposition of lipids within the liver not due to alcohol consumption, is a growing epidemic affecting over 30% of the United States population. Both simple fatty liver and its more severe counterpart, nonalcoholic steatohepatitis, represent one of the most common forms of liver disease. Recently, several G protein-coupled receptors have emerged as targets for therapeutic intervention for these disorders. These include those with known hepatic function as well as those involved in global metabolic regulation. In this review, we highlight these emerging therapeutic targets, focusing on several common themes including their activation by microbial metabolites, stimulatory effect on insulin and incretin secretion, and contribution to glucose tolerance. The overlap in ligands, localization, and downstream effects of activation indicate the interdependent nature of these receptors and highlight the importance of this signaling family in the development and prevention of NAFLD.
Collapse
Affiliation(s)
- Ryan Kurtz
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Meghan F. Anderman
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Blythe D. Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia
| |
Collapse
|
27
|
Perez-Garcia P, Kobus S, Gertzen CGW, Hoeppner A, Holzscheck N, Strunk CH, Huber H, Jaeger KE, Gohlke H, Kovacic F, Smits SHJ, Streit WR, Chow J. A promiscuous ancestral enzyme´s structure unveils protein variable regions of the highly diverse metallo-β-lactamase family. Commun Biol 2021; 4:132. [PMID: 33514861 PMCID: PMC7846560 DOI: 10.1038/s42003-021-01671-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/06/2021] [Indexed: 01/30/2023] Open
Abstract
The metallo-β-lactamase fold is an ancient protein structure present in numerous enzyme families responsible for diverse biological processes. The crystal structure of the hyperthermostable crenarchaeal enzyme Igni18 from Ignicoccus hospitalis was solved at 2.3 Å and could resemble a possible first archetype of a multifunctional metallo-β-lactamase. Ancestral enzymes at the evolutionary origin are believed to be promiscuous all-rounders. Consistently, Igni18´s activity can be cofactor-dependently directed from β-lactamase to lactonase, lipase, phosphodiesterase, phosphotriesterase or phospholipase. Its core-domain is highly conserved within metallo-β-lactamases from Bacteria, Archaea and Eukarya and gives insights into evolution and function of enzymes from this superfamily. Structural alignments with diverse metallo-β-lactamase-fold-containing enzymes allowed the identification of Protein Variable Regions accounting for modulation of activity, specificity and oligomerization patterns. Docking of different substrates within the active sites revealed the basis for the crucial cofactor dependency of this enzyme superfamily.
Collapse
Affiliation(s)
- Pablo Perez-Garcia
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany
| | - Stefanie Kobus
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Christoph G W Gertzen
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Astrid Hoeppner
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Nicholas Holzscheck
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany
| | - Christoph Heinrich Strunk
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, 52426, Jülich, Germany
| | - Harald Huber
- Institute for Microbiology and Archaeal Center, Regensburg University, 93035, Regensburg, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, 52426, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, 52426, Jülich, Germany
| | - Sander H J Smits
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany
| | - Jennifer Chow
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany.
| |
Collapse
|
28
|
Mock ED, Kotsogianni I, Driever WPF, Fonseca CS, Vooijs JM, den Dulk H, van Boeckel CAA, van der Stelt M. Structure-Activity Relationship Studies of Pyrimidine-4-Carboxamides as Inhibitors of N-Acylphosphatidylethanolamine Phospholipase D. J Med Chem 2020; 64:481-515. [PMID: 33382264 PMCID: PMC7816197 DOI: 10.1021/acs.jmedchem.0c01441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
N-Acylphosphatidylethanolamine phospholipase D
(NAPE-PLD) is regarded as the main enzyme responsible for the biosynthesis
of N-acylethanolamines (NAEs), a family of bioactive
lipid mediators. Previously, we reported N-(cyclopropylmethyl)-6-((S)-3-hydroxypyrrolidin-1-yl)-2-((S)-3-phenylpiperidin-1-yl)pyrimidine-4-carboxamide
(1, LEI-401) as the first potent and selective
NAPE-PLD inhibitor that decreased NAEs in the brains of freely moving
mice and modulated emotional behavior [MockNat Chem. Biol., 2020, 16, 667−67532393901]. Here, we describe the structure–activity
relationship (SAR) of a library of pyrimidine-4-carboxamides as inhibitors
of NAPE-PLD that led to the identification of LEI-401. A high-throughput screening hit was modified at three different
substituents to optimize its potency and lipophilicity. Conformational
restriction of an N-methylphenethylamine group by
replacement with an (S)-3-phenylpiperidine increased
the inhibitory potency 3-fold. Exchange of a morpholine substituent
for an (S)-3-hydroxypyrrolidine reduced the lipophilicity
and further increased activity by 10-fold, affording LEI-401 as a nanomolar potent inhibitor with drug-like properties. LEI-401 is a suitable pharmacological tool compound to investigate
NAPE-PLD function in vitro and in vivo.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, 2300 RA Leiden, Netherlands
| | - Ioli Kotsogianni
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, 2300 RA Leiden, Netherlands
| | - Wouter P F Driever
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, 2300 RA Leiden, Netherlands
| | - Carmen S Fonseca
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, 2300 RA Leiden, Netherlands
| | - Jelle M Vooijs
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, 2300 RA Leiden, Netherlands
| | - Hans den Dulk
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, 2300 RA Leiden, Netherlands
| | - Constant A A van Boeckel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, 2300 RA Leiden, Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, 2300 RA Leiden, Netherlands
| |
Collapse
|
29
|
Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients 2020; 12:nu12113476. [PMID: 33198317 PMCID: PMC7696073 DOI: 10.3390/nu12113476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm plays a chief role in the adaptation of all bodily processes to internal and environmental changes on the daily basis. Next to light/dark phases, feeding patterns constitute the most essential element entraining daily oscillations, and therefore, timely and appropriate restrictive diets have a great capacity to restore the circadian rhythm. One of the restrictive nutritional approaches, caloric restriction (CR) achieves stunning results in extending health span and life span via coordinated changes in multiple biological functions from the molecular, cellular, to the whole-body levels. The main molecular pathways affected by CR include mTOR, insulin signaling, AMPK, and sirtuins. Members of the family of nuclear receptors, the three peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ take part in the modulation of these pathways. In this non-systematic review, we describe the molecular interconnection between circadian rhythm, CR-associated pathways, and PPARs. Further, we identify a link between circadian rhythm and the outcomes of CR on the whole-body level including oxidative stress, inflammation, and aging. Since PPARs contribute to many changes triggered by CR, we discuss the potential involvement of PPARs in bridging CR and circadian rhythm.
Collapse
|
30
|
Jackson MI, Waldy C, Jewell DE. Dietary resistant starch preserved through mild extrusion of grain alters fecal microbiome metabolism of dietary macronutrients while increasing immunoglobulin A in the cat. PLoS One 2020; 15:e0241037. [PMID: 33141838 PMCID: PMC7608938 DOI: 10.1371/journal.pone.0241037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Dietary digestion-resistant starch (RS) provides health benefits to the host via gut microbiome-mediated metabolism. The degree to which cats manifest beneficial changes in response to RS intake was examined. Healthy cats (N = 36) were fed identically formulated foods processed under high (n = 17) or low (n = 19) shear extrusion conditions (low and high RS levels [LRS and HRS], respectively). Fecal samples collected after 3 and 6 weeks' feeding were assayed for stool firmness score, short-chain fatty acids, ammonia, and changes to the global metabolome and microbiome; fecal immunoglobulin A (IgA) was analyzed at week 6. Few differences were seen in proximate analyses of the foods; stool firmness scores did not differ. In cats consuming HRS food, concentrations of fecal butyrate and the straight chain:branched chain fatty acid ratio were significantly greater in feces at both weeks 3 and 6, while fecal ammonia was reduced at week 6 relative to feces from LRS-fed cats. Fecal IgA concentrations were significantly higher at week 6 with HRS food. RS consumption altered 47% of the fecal metabolome; RS-derived sugars and metabolites associated with greater gut health, including indoles and polyamines, increased in the cats consuming HRS food relative to those fed the LS food, while endocannabinoid N-acylethanolamines decreased. Consumption of HRS food increased concentrations of the ketone body 3-hydroxybutyrate in feces and elevated concentrations of reduced members of NADH-coupled redox congeners and NADH precursors. At the microbiome genus-level, 21% of operational taxonomic units were significantly different between food types; many involved taxa with known saccharolytic or proteolytic proclivities. Microbiome taxa richness and Shannon and Simpson alpha diversity were significantly higher in the HRS group at both weeks. These data show that feline consumption of grain-derived RS produces potentially beneficial shifts in microbiota-mediated metabolism and increases IgA production.
Collapse
Affiliation(s)
- Matthew I. Jackson
- Pet Nutrition Center, Hill's Pet Nutrition, Inc., Topeka, KS, United States of America
| | - Christopher Waldy
- Pet Nutrition Center, Hill's Pet Nutrition, Inc., Topeka, KS, United States of America
| | - Dennis E. Jewell
- Pet Nutrition Center, Hill's Pet Nutrition, Inc., Topeka, KS, United States of America
| |
Collapse
|
31
|
Macocinschi D, Filip D, Ciubotaru BI, Dumitriu RP, Varganici CD, Zaltariov MF. Blends of sodium deoxycholate-based poly(ester ether)urethane ionomer and hydroxypropylcellulose with mucosal adhesiveness. Int J Biol Macromol 2020; 162:1262-1275. [PMID: 32585272 DOI: 10.1016/j.ijbiomac.2020.06.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/26/2020] [Accepted: 06/19/2020] [Indexed: 11/26/2022]
Abstract
New mucoadhesive blends of sodium deoxycholate-based poly(ester ether)urethane ionomer (PU) and hydroxypropyl cellulose (HPC) are prepared. The presence of the intermolecular interactions between the polymeric components has been investigated by FTIR spectroscopy indicating their miscibility in the solid phase. DSC studies also revealed a single glass transition of the blends, which is indicative of miscibility of PU and HPC in the amorphous phase. The amount of HPC in the blends influences strongly the physicochemical and mucoadhesion/bioadhesion properties. It was found that the value of area attributed to ordered hydrogen bonding (FTIR), the onset temperature values of thermal degradation in N2 flow (TG/DTG), the values of the sorption capacity (Dynamic Vapor Sorption-DVS), the values of the apparent viscosity (rheological measurements) and mucoadhesion/bioadhesion properties increased by increasing the HPC content in the blends. Complex viscosity revealed shear thinning behavior for all the studied solutions evidencing the contributive role of polymer viscoelasticity on mucoadhesion. It was found that both G' and G" increase with an increase in angular frequency and G">G' which is characteristic for liquid-like (sol state) behavior for all blended solutions and this behavior is helpful in the adhesion with mucosa surface. Mucoadhesion of PU/HPC blends was assessed in the stomach mucosa at pH 2.6 and 37 °C. Bioadhesion test was performed at pH 7.4 and 37 °C and revealed a stronger interaction of PU/HPC blends with cellulose membrane than with stomach mucosa. The similar nature of the HPC and cellulose membrane determines additional adhesion forces and implicity high adhesion properties. The HPC component increases the hydrophilicity of the blends as DVS analysis revealed, but also leads to hydrolytic degradation. FTIR spectroscopy analysis was used to evaluate the hydrolytic stability in acid (pH 2.6) and slightly alkaline (pH 7.4) PBS media and a mechanism of degradation has been proposed.
Collapse
Affiliation(s)
- Doina Macocinschi
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | - Daniela Filip
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | - Bianca-Iulia Ciubotaru
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | | | | | - Mirela-Fernanda Zaltariov
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania.
| |
Collapse
|
32
|
Palese F, Pontis S, Realini N, Piomelli D. NAPE-specific phospholipase D regulates LRRK2 association with neuronal membranes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 90:217-238. [PMID: 33706934 DOI: 10.1016/bs.apha.2020.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N-acylphosphatidylethanolamines (NAPEs) are glycerophospholipid precursors for bioactive lipid amides and potential regulators of membrane function. They are hydrolyzed by NAPE-specific phospholipase D (NAPE-PLD) and have been implicated in neurodegenerative disorders such as Parkinson's disease. Here, we used siRNA-mediated silencing of NAPE-PLD in human SH-SY5Y cells and NAPE-PLD-/- mice to determine whether NAPEs influence the membrane association of LRRK2, a multifunctional protein kinase that is frequently mutated in persons with sporadic Parkinson's disease. NAPE-PLD deletion caused a significant accumulation of non-metabolized NAPEs, which was accompanied by a shift of LRRK2 from membrane to cytosol and a reduction in total LRRK2 content. Conversely, exposure of intact SH-SY5Y cells to bacterial PLD lowered NAPE levels and enhanced LRRK2 association with membranes. The results suggest that NAPE-PLD activity may contribute to the control of LRRK2 localization by regulating membrane NAPE levels.
Collapse
Affiliation(s)
- Francesca Palese
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy; Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, CA, United States
| | - Silvia Pontis
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Natalia Realini
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, CA, United States.
| |
Collapse
|
33
|
Higuchi S, Ahmad TR, Argueta DA, Perez PA, Zhao C, Schwartz GJ, DiPatrizio NV, Haeusler RA. Bile acid composition regulates GPR119-dependent intestinal lipid sensing and food intake regulation in mice. Gut 2020; 69:1620-1628. [PMID: 32111630 PMCID: PMC7423635 DOI: 10.1136/gutjnl-2019-319693] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Lipid mediators in the GI tract regulate satiation and satiety. Bile acids (BAs) regulate the absorption and metabolism of dietary lipid in the intestine, but their effects on lipid-regulated satiation and satiety are completely unknown. Investigating this is challenging because introducing excessive BAs or eliminating BAs strongly impacts GI functions. We used a mouse model (Cyp8b1-/- mice) with normal total BA levels, but alterations in the composition of the BA pool that impact multiple aspects of intestinal lipid metabolism. We tested two hypotheses: BAs affect food intake by (1) regulating production of the bioactive lipid oleoylethanolamide (OEA), which enhances satiety; or (2) regulating the quantity and localisation of hydrolysed fat in small intestine, which controls gastric emptying and satiation. DESIGN We evaluated OEA levels, gastric emptying and food intake in wild-type and Cyp8b1-/- mice. We assessed the role of the fat receptor GPR119 in these effects using Gpr119-/- mice. RESULTS Cyp8b1-/- mice on a chow diet showed mild hypophagia. Jejunal OEA production was blunted in Cyp8b1-/- mice, thus these data do not support a role for this pathway in the hypophagia of Cyp8b1-/- mice. On the other hand, Cyp8b1 deficiency decreased gastric emptying, and this was dependent on dietary fat. GPR119 deficiency normalised the gastric emptying, gut hormone levels, food intake and body weight of Cyp8b1-/- mice. CONCLUSION BAs regulate gastric emptying and satiation by determining fat-dependent GPR119 activity in distal intestine.
Collapse
Affiliation(s)
- Sei Higuchi
- Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Tiara R Ahmad
- Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Pedro A Perez
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Chen Zhao
- Institute of Human Nutrition, Columbia University, New York, New York, USA
| | - Gary J Schwartz
- Departments of Medicine and Neuroscience, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Rebecca A Haeusler
- Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Studies have identified several effects of bile acids (BAs) in glucose homeostasis, energy expenditure, and body weight control, through receptor-dependent and independent mechanisms. BAs are produced from cholesterol and characterized by their structures, which result from enzymes in the liver and the gut microbiota. The aim of this review is to characterize the effects of BA structure and composition on diabetes. RECENT FINDINGS The hydroxyl groups of BAs interact with binding pockets of receptors and enzymes that affect glucose homeostasis. Human and animal studies show that BA composition is associated with insulin resistance and food intake regulation. The hydroxylation of BAs and BA composition contributes to glucose regulation. Modulation of BA composition has the potential to improve glucose metabolism.
Collapse
Affiliation(s)
- Sei Higuchi
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Russ Berrie Pavilion, Room 315, 1150 St. Nicholas Ave., New York, NY, 10032, USA.
| |
Collapse
|
35
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
36
|
N-Acylethanolamine Acid Amidase contributes to disease progression in a mouse model of multiple sclerosis. Pharmacol Res 2020; 160:105064. [PMID: 32634582 DOI: 10.1016/j.phrs.2020.105064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022]
Abstract
N-Acylethanolamine acid amidase (NAAA) deactivates the endogenous peroxisome proliferator-activated receptor-α (PPAR-α) agonist palmitoylethanolamide (PEA). NAAA-regulated PEA signaling participates in the control of peripheral inflammation, but evidence suggests also a role in the modulation of neuroinflammatory pathologies such as multiple sclerosis (MS). Here we show that disease progression in the mouse experimental autoimmune encephalomyelitis (EAE) model of MS is accompanied by induction of NAAA expression in spinal cord, which in presymptomatic animals is confined to motor neurons and oligodendrocytes but, as EAE progresses, extends to microglia/macrophages and other cell types. As previously reported for NAAA inhibition, genetic NAAA deletion delayed disease onset and attenuated symptom intensity in female EAE mice, suggesting that accrued NAAA expression may contribute to pathology. To further delineate the role of NAAA in EAE, we generated a mouse line that selectively overexpresses the enzyme in macrophages, microglia and other monocyte-derived cells. Non-stimulated alveolar macrophages from these NaaaCD11b+ mice contain higher-than-normal levels of inducible nitric oxide synthase and display an activated morphology. Furthermore, intranasal lipopolysaccharide injections cause greater alveolar leukocyte accumulation in NaaaCD11b+ than in control mice. NaaaCD11b+ mice also display a more aggressive clinical response to EAE induction, compared to their wild-type littermates. The results identify NAAA as a critical control step in EAE pathogenesis, and point to this enzyme as a possible target for the treatment of MS.
Collapse
|
37
|
Mock ED, Mustafa M, Gunduz-Cinar O, Cinar R, Petrie GN, Kantae V, Di X, Ogasawara D, Varga ZV, Paloczi J, Miliano C, Donvito G, van Esbroeck ACM, van der Gracht AMF, Kotsogianni I, Park JK, Martella A, van der Wel T, Soethoudt M, Jiang M, Wendel TJ, Janssen APA, Bakker AT, Donovan CM, Castillo LI, Florea BI, Wat J, van den Hurk H, Wittwer M, Grether U, Holmes A, van Boeckel CAA, Hankemeier T, Cravatt BF, Buczynski MW, Hill MN, Pacher P, Lichtman AH, van der Stelt M. Discovery of a NAPE-PLD inhibitor that modulates emotional behavior in mice. Nat Chem Biol 2020; 16:667-675. [PMID: 32393901 PMCID: PMC7468568 DOI: 10.1038/s41589-020-0528-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
N-acylethanolamines (NAEs), which include the endocannabinoid anandamide, represent an important family of signaling lipids in the brain. The lack of chemical probes that modulate NAE biosynthesis in living systems hamper the understanding of the biological role of these lipids. Using a high-throughput screen, chemical proteomics and targeted lipidomics, we report here the discovery and characterization of LEI-401 as a CNS-active N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor. LEI-401 reduced NAE levels in neuroblastoma cells and in the brain of freely moving mice, but not in NAPE-PLD KO cells and mice, respectively. LEI-401 activated the hypothalamus-pituitary-adrenal axis and impaired fear extinction, thereby emulating the effect of a cannabinoid CB1 receptor antagonist, which could be reversed by a fatty acid amide hydrolase inhibitor. Our findings highlight the distinctive role of NAPE-PLD in NAE biosynthesis in the brain and suggest the presence of an endogenous NAE tone controlling emotional behavior.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Mohammed Mustafa
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), National Institute of Health (NIH), Bethesda, MD, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, NIAAA, NIH, Bethesda, MD, USA
| | - Gavin N Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Vasudev Kantae
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Xinyu Di
- Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Daisuke Ogasawara
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Zoltan V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIAAA, NIH, Bethesda, MD, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIAAA, NIH, Bethesda, MD, USA
| | - Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Giulia Donvito
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Annelot C M van Esbroeck
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Anouk M F van der Gracht
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Ioli Kotsogianni
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Joshua K Park
- Laboratory of Physiologic Studies, NIAAA, NIH, Bethesda, MD, USA
| | - Andrea Martella
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Oncode Institute, Leiden, the Netherlands
| | - Marjolein Soethoudt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Ming Jiang
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Oncode Institute, Leiden, the Netherlands
| | - Tiemen J Wendel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Antonius P A Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Oncode Institute, Leiden, the Netherlands
| | - Alexander T Bakker
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Colleen M Donovan
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), National Institute of Health (NIH), Bethesda, MD, USA
| | - Laura I Castillo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), National Institute of Health (NIH), Bethesda, MD, USA
| | - Bogdan I Florea
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Jesse Wat
- Pivot Park Screening Centre B.V., Oss, the Netherlands
| | | | - Matthias Wittwer
- Roche Innovation Center Basel, F. Hoffman-La Roche Ltd, Basel, Switzerland
| | - Uwe Grether
- Roche Innovation Center Basel, F. Hoffman-La Roche Ltd, Basel, Switzerland
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), National Institute of Health (NIH), Bethesda, MD, USA
| | - Constant A A van Boeckel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Pivot Park Screening Centre B.V., Oss, the Netherlands
| | - Thomas Hankemeier
- Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthew W Buczynski
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIAAA, NIH, Bethesda, MD, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
- Oncode Institute, Leiden, the Netherlands.
| |
Collapse
|
38
|
Lefort C, Roumain M, Van Hul M, Rastelli M, Manco R, Leclercq I, Delzenne NM, Marzo VD, Flamand N, Luquet S, Silvestri C, Muccioli GG, Cani PD. Hepatic NAPE-PLD Is a Key Regulator of Liver Lipid Metabolism. Cells 2020; 9:E1247. [PMID: 32443626 PMCID: PMC7291298 DOI: 10.3390/cells9051247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022] Open
Abstract
Diverse metabolic disorders have been associated with an alteration of N-acylethanolamine (NAE) levels. These bioactive lipids are synthesized mainly by N-acylphosphatidylethanolamine-selective phospholipase D (NAPE-PLD) and influence host metabolism. We have previously discovered that NAPE-PLD in the intestine and adipose tissue is connected to the pathophysiology of obesity. However, the physiological function of NAPE-PLD in the liver remains to be deciphered. To study the role of liver NAPE-PLD on metabolism, we generated a new mouse model of inducible Napepld hepatocyte-specific deletion (Napepld∆Hep mice). In this study, we report that Napepld∆Hep mice develop a high-fat diet-like phenotype, characterized by an increased fat mass gain, hepatic steatosis and we show that Napepld∆Hep mice are more sensitive to liver inflammation. We also demonstrate that the role of liver NAPE-PLD goes beyond the mere synthesis of NAEs, since the deletion of NAPE-PLD is associated with a marked modification of various bioactive lipids involved in host homeostasis such as oxysterols and bile acids. Collectively these data suggest that NAPE-PLD in hepatocytes is a key regulator of liver bioactive lipid synthesis and a dysregulation of this enzyme leads to metabolic complications. Therefore, deepening our understanding of the regulation of NAPE-PLD could be crucial to tackle obesity and related comorbidities.
Collapse
Affiliation(s)
- Charlotte Lefort
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Bruxelles, Belgium; (C.L.); (M.V.H.); (M.R.); (N.M.D.)
| | - Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, 1200 Bruxelles, Belgium; (M.R.); (G.G.M.)
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Bruxelles, Belgium; (C.L.); (M.V.H.); (M.R.); (N.M.D.)
| | - Marialetizia Rastelli
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Bruxelles, Belgium; (C.L.); (M.V.H.); (M.R.); (N.M.D.)
| | - Rita Manco
- Laboratory of Hepato-Gastroenterology, UCLouvain, Université catholique de Louvain, 1200 Bruxelles, Belgium; (R.M.); (I.L.)
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, UCLouvain, Université catholique de Louvain, 1200 Bruxelles, Belgium; (R.M.); (I.L.)
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Bruxelles, Belgium; (C.L.); (M.V.H.); (M.R.); (N.M.D.)
| | - Vincenzo Di Marzo
- Quebec Heart and Lung Institute Research Centre, Université Laval, Quebec City, QC G1V 0A6, Canada; (V.D.M.); (N.F.); (C.S.)
- Centre NUTRISS, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC G1V 0A6, Canada
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Napoli, Italy
| | - Nicolas Flamand
- Quebec Heart and Lung Institute Research Centre, Université Laval, Quebec City, QC G1V 0A6, Canada; (V.D.M.); (N.F.); (C.S.)
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France;
| | - Cristoforo Silvestri
- Quebec Heart and Lung Institute Research Centre, Université Laval, Quebec City, QC G1V 0A6, Canada; (V.D.M.); (N.F.); (C.S.)
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, 1200 Bruxelles, Belgium; (M.R.); (G.G.M.)
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Bruxelles, Belgium; (C.L.); (M.V.H.); (M.R.); (N.M.D.)
| |
Collapse
|
39
|
Mucke HA. Patent highlights December 2019-January 2020. Pharm Pat Anal 2020; 9:67-74. [PMID: 32539539 DOI: 10.4155/ppa-2020-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/02/2020] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
40
|
Fotio Y, Palese F, Guaman Tipan P, Ahmed F, Piomelli D. Inhibition of fatty acid amide hydrolase in the CNS prevents and reverses morphine tolerance in male and female mice. Br J Pharmacol 2020; 177:3024-3035. [PMID: 32077093 DOI: 10.1111/bph.15031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Fatty acid amide hydrolase (FAAH) is an intracellular serine amidase that terminates the signalling of various lipid messengers involved in pain regulation, including anandamide and palmitoylethanolamide. Here, we investigated the effects of pharmacological or genetic FAAH removal on tolerance to the anti-nociceptive effects of morphine. EXPERIMENTAL APPROACH We induced tolerance in male and female mice by administering twice-daily morphine for 7 days while monitoring nociceptive thresholds by the tail immersion test. The globally active FAAH inhibitor URB597 (1 and 3 mg·kg-1 , i.p.) or the peripherally restricted FAAH inhibitor URB937 (3 mg·kg-1 , i.p.) were administered daily 30 min prior to morphine, alone or in combination with the cannabinoid CB1 receptor antagonist AM251 (3 mg·kg-1 , i.p.), the CB2 receptor antagonist AM630 (3 mg·kg-1 , i.p.), or the PPAR-α antagonist GW6471 (4 mg·kg-1 , i.p.). Spinal levels of FAAH-regulated lipids were quantified by LC/MS-MS. Gene transcription was assessed by RT-qPCR. KEY RESULTS URB597 prevented and reversed morphine tolerance in both male and female mice. This effect was mimicked by genetic FAAH deletion, but not by URB937. Treatment with AM630 suppressed, whereas treatment with AM251 or GW6471, attenuated the effects of URB597. Anandamide mobilization was enhanced in the spinal cord of morphine-tolerant mice. mRNA levels of the anandamide-producing enzyme N-acyl-phosphatidylethanolamine PLD (NAPE-PLD) and the palmitoylethanolamide receptor PPAR-α, but not those for CB2 , CB1 receptors or FAAH, were elevated in spinal cord CONCLUSION AND IMPLICATIONS: FAAH-regulated lipid signalling in the CNS modulated opiate tolerance, suggesting FAAH as a potential target for opiate-sparing medications.
Collapse
Affiliation(s)
- Yannick Fotio
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Francesca Palese
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Pablo Guaman Tipan
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California.,Center for the Study of Cannabis, University of California, Irvine, Irvine, California
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California.,Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California.,Center for the Study of Cannabis, University of California, Irvine, Irvine, California
| |
Collapse
|
41
|
Piomelli D, Scalvini L, Fotio Y, Lodola A, Spadoni G, Tarzia G, Mor M. N-Acylethanolamine Acid Amidase (NAAA): Structure, Function, and Inhibition. J Med Chem 2020; 63:7475-7490. [PMID: 32191459 DOI: 10.1021/acs.jmedchem.0c00191] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
N-Acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase primarily found in the endosomal-lysosomal compartment of innate and adaptive immune cells. NAAA catalyzes the hydrolytic deactivation of palmitoylethanolamide (PEA), a lipid-derived peroxisome proliferator-activated receptor-α (PPAR-α) agonist that exerts profound anti-inflammatory effects in animal models. Emerging evidence points to NAAA-regulated PEA signaling at PPAR-α as a critical control point for the induction and the resolution of inflammation and to NAAA itself as a target for anti-inflammatory medicines. The present Perspective discusses three key aspects of this hypothesis: the role of NAAA in controlling the signaling activity of PEA; the structural bases for NAAA function and inhibition by covalent and noncovalent agents; and finally, the potential value of NAAA-targeting drugs in the treatment of human inflammatory disorders.
Collapse
Affiliation(s)
- Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States.,Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States.,Department of Biological Chemistry and Molecular Biology, University of California, Irvine, California 92697-4625, United States
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Giorgio Tarzia
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| |
Collapse
|
42
|
Maccarrone M. Missing Pieces to the Endocannabinoid Puzzle. Trends Mol Med 2019; 26:263-272. [PMID: 31822395 DOI: 10.1016/j.molmed.2019.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022]
Abstract
The most bioactive ingredient of cannabis (Cannabis sativa or indica) extracts, Δ9-tetrahydrocannabinol (THC), was identified in the 1960s as one of more than 110 phytocannabinoids. It activates receptors of chemically different endogenous ligands (endocannabinoids) that, unlike THC, are metabolized by several enzymes of the endocannabinoid system. Here, the complexity of the plant-derived and endogenous cannabinoids (eCBs) is discussed, to better appreciate the challenge of: (i) dissecting their mutual interactions; (ii) understanding their impact on human pathophysiology; and (iii) exploiting them for human disease. To this aim, missing pieces to the eCB puzzle must be urgently found, by solving the 3D structures of key components, and interrogating noncanonical modes of regulation and trafficking of these lipid signals.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; European Center for Brain Research, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy.
| |
Collapse
|
43
|
Ahmad TR, Haeusler RA. Bile acids in glucose metabolism and insulin signalling - mechanisms and research needs. Nat Rev Endocrinol 2019; 15:701-712. [PMID: 31616073 PMCID: PMC6918475 DOI: 10.1038/s41574-019-0266-7] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Of all the novel glucoregulatory molecules discovered in the past 20 years, bile acids (BAs) are notable for the fact that they were hiding in plain sight. BAs were well known for their requirement in dietary lipid absorption and biliary cholesterol secretion, due to their micelle-forming properties. However, it was not until 1999 that BAs were discovered to be endogenous ligands for the nuclear receptor FXR. Since that time, BAs have been shown to act through multiple receptors (PXR, VDR, TGR5 and S1PR2), as well as to have receptor-independent mechanisms (membrane dynamics, allosteric modulation of N-acyl phosphatidylethanolamine phospholipase D). We now also have an appreciation of the range of physiological, pathophysiological and therapeutic conditions in which endogenous BAs are altered, raising the possibility that BAs contribute to the effects of these conditions on glycaemia. In this Review, we highlight the mechanisms by which BAs regulate glucose homeostasis and the settings in which endogenous BAs are altered, and provide suggestions for future research.
Collapse
Affiliation(s)
- Tiara R Ahmad
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
44
|
Palese F, Pontis S, Realini N, Piomelli D. A protective role for N-acylphosphatidylethanolamine phospholipase D in 6-OHDA-induced neurodegeneration. Sci Rep 2019; 9:15927. [PMID: 31685899 PMCID: PMC6828692 DOI: 10.1038/s41598-019-51799-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) catalyzes the cleavage of membrane NAPEs into bioactive fatty-acid ethanolamides (FAEs). Along with this precursor role, NAPEs might also serve autonomous signaling functions. Here, we report that injections of 6-hydroxydopamine (6-OHDA) into the mouse striatum cause a local increase in NAPE and FAE levels, which precedes neuronal cell death. NAPE, but not FAE, accumulation is enhanced in mice lacking NAPE-PLD, which display a substantial reduction in 6-OHDA-induced neurotoxicity, as shown by increased survival of substantia nigra dopamine neurons, integrity of striatal dopaminergic fibers, and striatal dopamine metabolite content. Reduced damage is accompanied by attenuation of the motor response evoked by apomorphine. Furthermore, NAPE-PLD silencing protects cathecolamine-producing SH-SY5Y cells from 6-OHDA-induced reactive oxygen species formation, caspase-3 activation and death. Mechanistic studies in mice suggest the existence of multiple molecular contributors to the neuroprotective effects of NAPE-PLD deletion, including suppression of Rac1 activity and attenuated transcription of several genes (Cadps, Casp9, Egln1, Kcnj6, Spen, and Uchl1) implicated in dopamine neuron survival and/or Parkinson's disease. The findings point to a previously unrecognized role for NAPE-PLD in the regulation of dopamine neuron function, which may be linked to the control of NAPE homeostasis in membranes.
Collapse
Affiliation(s)
- Francesca Palese
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
- Departments of Anatomy and Neurobiology and Biological Chemistry, University of California, Irvine, CA, 92697-4625, USA
| | - Silvia Pontis
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Natalia Realini
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology and Biological Chemistry, University of California, Irvine, CA, 92697-4625, USA.
| |
Collapse
|
45
|
Tvedt THA, Skaarud KJ, Tjønnfjord GE, Gedde-Dahl T, Iversen PO, Bruserud Ø. The Systemic Metabolic Profile Early after Allogeneic Stem Cell Transplantation: Effects of Adequate Energy Support Administered through Enteral Feeding Tube. Biol Blood Marrow Transplant 2019; 26:380-391. [PMID: 31622769 DOI: 10.1016/j.bbmt.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/08/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022]
Abstract
Patients undergoing allogeneic stem cell transplantation usually require nutritional support. There is no consensus on whether enteral support through tube feeding should be preferred. A recent randomized study could not detect any difference between enteral and parenteral feeding with regard to post-transplant outcomes, whereas 2 retrospective studies described an association between enteral feeding and a favorable post-transplant outcome. We compared pre- and post-transplant plasma metabolomic profiles for 10 patients receiving mainly enteral nutritional support and 10 patients receiving mainly parenteral support. Samples were collected before conditioning and 3 weeks post-transplant; 824 metabolites were analyzed using mass spectrometry. The pretransplant metabolite profiles showed a significant overlap between the 2 groups. Post-transplant samples for both patient groups showed an increase of secondary bile acids and endocannabinoids, whereas reduced levels were seen for food preservatives, plasmalogens, and retinol metabolites. The main post-transplant differences between the groups were decreased levels of fatty acids and markers of mitochondrial activation in the control group, indicating that these patients had insufficient energy intake. A significant effect was also seen for heme/bilirubin metabolism for the parenteral support. To conclude, allotransplant recipients showed altered metabolic profiles early after transplantation; this was mainly due to the conditioning/transplantation/reconstitution, whereas the type of nutritional support had minor effects.
Collapse
Affiliation(s)
- Tor Henrik Anderson Tvedt
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway; Section for Hematology, Institute of Clinical Science, University of Bergen, Bergen, Norway.
| | - Kristin J Skaarud
- Department of Hematology, University of Oslo, Oslo; Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Geir Erland Tjønnfjord
- Department of Hematology, University of Oslo, Oslo; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tobias Gedde-Dahl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Per Ole Iversen
- Department of Hematology, University of Oslo, Oslo; Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway; Division of Human Nutrition, Stellenbosch University, Tygerberg, South Africa
| | - Øystein Bruserud
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway; Section for Hematology, Institute of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
46
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
47
|
Ravacci GR, Ishida R, Torrinhas RS, Sala P, Machado NM, Fonseca DC, André Baptista Canuto G, Pinto E, Nascimento V, Franco Maggi Tavares M, Sakai P, Faintuch J, Santo MA, Moura EGH, Neto RA, Logullo AF, Waitzberg DL. Potential premalignant status of gastric portion excluded after Roux en-Y gastric bypass in obese women: A pilot study. Sci Rep 2019; 9:5582. [PMID: 30944407 PMCID: PMC6447527 DOI: 10.1038/s41598-019-42082-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
We evaluated whether the excluded stomach (ES) after Roux-en-Y gastric bypass (RYGB) can represent a premalignant environment. Twenty obese women were prospectively submitted to double-balloon enteroscopy (DBE) with gastric juice and biopsy collection, before and 3 months after RYGB. We then evaluated morphological and molecular changes by combining endoscopic and histopathological analyses with an integrated untargeted metabolomics and transcriptomics multiplatform. Preoperatively, 16 women already presented with gastric histopathological alterations and an increased pH (≥4.0). These gastric abnormalities worsened after RYGB. A 90-fold increase in the concentration of bile acids was found in ES fluid, which also contained other metabolites commonly found in the intestinal environment, urine, and faeces. In addition, 135 genes were differentially expressed in ES tissue. Combined analysis of metabolic and gene expression data suggested that RYGB promoted activation of biological processes involved in local inflammation, bacteria overgrowth, and cell proliferation sustained by genes involved in carcinogenesis. Accumulated fluid in the ES appears to behave as a potential premalignant environment due to worsening inflammation and changing gene expression patterns that are favorable to the development of cancer. Considering that ES may remain for the rest of the patient’s life, long-term ES monitoring is therefore recommended for patients undergoing RYGB.
Collapse
Affiliation(s)
- Graziela Rosa Ravacci
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Robson Ishida
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Raquel Suzana Torrinhas
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Priscila Sala
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Natasha Mendonça Machado
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Danielle Cristina Fonseca
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Gisele André Baptista Canuto
- Departamento de Quimica Analitica, Instituto de Quimica, Universidade Federal da Bahia, Salvador, BA, Brazil.,Departamento de Quimica Fundamental, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ernani Pinto
- Faculdade de Ciências Farmacêuticas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Paulo Sakai
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Joel Faintuch
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marco Aurelio Santo
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | | | - Dan Linetzky Waitzberg
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
48
|
Zeng H, Umar S, Rust B, Lazarova D, Bordonaro M. Secondary Bile Acids and Short Chain Fatty Acids in the Colon: A Focus on Colonic Microbiome, Cell Proliferation, Inflammation, and Cancer. Int J Mol Sci 2019; 20:ijms20051214. [PMID: 30862015 PMCID: PMC6429521 DOI: 10.3390/ijms20051214] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Secondary bile acids (BAs) and short chain fatty acids (SCFAs), two major types of bacterial metabolites in the colon, cause opposing effects on colonic inflammation at chronically high physiological levels. Primary BAs play critical roles in cholesterol metabolism, lipid digestion, and host–microbe interaction. Although BAs are reabsorbed via enterohepatic circulation, primary BAs serve as substrates for bacterial biotransformation to secondary BAs in the colon. High-fat diets increase secondary BAs, such as deoxycholic acid (DCA) and lithocholic acid (LCA), which are risk factors for colonic inflammation and cancer. In contrast, increased dietary fiber intake is associated with anti-inflammatory and anticancer effects. These effects may be due to the increased production of the SCFAs acetate, propionate, and butyrate during dietary fiber fermentation in the colon. Elucidation of the molecular events by which secondary BAs and SCFAs regulate colonic cell proliferation and inflammation will lead to a better understanding of the anticancer potential of dietary fiber in the context of high-fat diet-related colon cancer. This article reviews the current knowledge concerning the effects of secondary BAs and SCFAs on the proliferation of colon epithelial cells, inflammation, cancer, and the associated microbiome.
Collapse
Affiliation(s)
- Huawei Zeng
- U. S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA.
| | - Shahid Umar
- Department of Surgery and University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| | - Bret Rust
- U. S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA.
| | - Darina Lazarova
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA.
| | - Michael Bordonaro
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA.
| |
Collapse
|
49
|
Borges PT, Romão CV, Saraiva LM, Gonçalves VL, Carrondo MA, Teixeira M, Frazão C. Analysis of a new flavodiiron core structural arrangement in Flv1-ΔFlR protein from Synechocystis sp. PCC6803. J Struct Biol 2019; 205:91-102. [DOI: 10.1016/j.jsb.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/24/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
|
50
|
Allen KN, Entova S, Ray LC, Imperiali B. Monotopic Membrane Proteins Join the Fold. Trends Biochem Sci 2019; 44:7-20. [PMID: 30337134 PMCID: PMC6309722 DOI: 10.1016/j.tibs.2018.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Monotopic membrane proteins, classified by topology, are proteins that embed into a single face of the membrane. These proteins are generally underrepresented in the Protein Data Bank (PDB), but the past decade of research has revealed new examples that allow the description of generalizable features. This Opinion article summarizes shared characteristics including oligomerization states, modes of membrane association, mechanisms of interaction with hydrophobic or amphiphilic substrates, and homology to soluble folds. We also discuss how associations of monotopic enzymes in pathways can be used to promote substrate specificity and product composition. These examples highlight the challenges in structure determination specific to this class of proteins, but also the promise of new understanding from future study of these proteins that reside at the interface.
Collapse
Affiliation(s)
- Karen N Allen
- Department of Chemistry, Boston University, Boston, MA 02215, USA; Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Sonya Entova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leah C Ray
- Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|