1
|
Manjarrés-López DP, Vitale D, Callejas-Martos S, Usuriaga M, Picó Y, Pérez S, Montemurro N. An effective method for the simultaneous extraction of 173 contaminants of emerging concern in freshwater invasive species and its application. Anal Bioanal Chem 2023; 415:7085-7101. [PMID: 37776351 PMCID: PMC10684701 DOI: 10.1007/s00216-023-04974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
A robust and efficient extraction method was developed to detect a broad range of pollutants of emerging interest in three freshwater invasive species: American red crab (Prokambarus clarkii), Asian clam (Corbicula fluminea), and pumpkinseed fish (Lepomis gibbosus). One native species, "petxinot" clam (Anodonta cygnea), was also evaluated. Invasive species are often more resistant to contamination and could be used in biomonitoring studies to assess the effect of contaminants of emerging concern on aquatic ecosystems while preserving potentially threatened native species. So far, most extraction methods developed for this purpose have focused on analyzing fish and generally focus on a limited number of compounds, especially analyzing compounds from the same family. In this sense, we set out to optimize a method that would allow the simultaneous extraction of 87 PhACs, 11 flame retardants, 21 per- and poly-fluoroalkyl substances, and 54 pesticides. The optimized method is based on ultrasound-assisted solvent extraction. Two tests were performed during method development, one to choose the extraction solvent with the best recovery efficiencies and one to select the best clean-up. The analysis was performed by high-performance liquid chromatography coupled to high-resolution mass spectrometry. The method obtained recoveries between 40 and 120% and relative standard deviations of less than 25% for 85% of the analytes in the four validated matrices. Limits of quantification between 0.01 ng g-1 and 22 ng g-1 were obtained. Application of the method on real samples from the Albufera Natural Park of Valencia (Spain) confirmed the presence of contaminants of emerging concern in all samples, such as acetaminophen, hydrochlorothiazide, tramadol, PFOS, carbendazim, and fenthion. PFAS were the group of compounds with the highest mean concentrations. C. fluminea was the species with the highest detection frequency, and P. clarkii had the highest average concentrations, so its use is prioritized for biomonitoring studies.
Collapse
Affiliation(s)
- Diana P Manjarrés-López
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Dyana Vitale
- Desertification Research Centre (CIDE) (CSIC-UV-GV), University of Valencia, Road CV-315 Km 10.7, Moncada, 46113, Valencia, Spain
| | - Sandra Callejas-Martos
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Martí Usuriaga
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Yolanda Picó
- Desertification Research Centre (CIDE) (CSIC-UV-GV), University of Valencia, Road CV-315 Km 10.7, Moncada, 46113, Valencia, Spain
| | - Sandra Pérez
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Nicola Montemurro
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
2
|
Santos LMM, Nascimento MM, Borges SDS, Bomfim E, Macedo VDJ, Silva LA. Green photocatalytic remediation of Fenthion using composites with natural red clay and non-toxic metal oxides with visible light irradiation. ENVIRONMENTAL TECHNOLOGY 2023; 44:118-129. [PMID: 34344269 DOI: 10.1080/09593330.2021.1964611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
In the present work, composites with non-toxic metal oxides, such as TiO2 and ZnO, and a natural red clay (taua) reach in hematite were used in the photocatalytic degradation of Fenthion. The composite TiO2/Taua (0.5:1 wt. ratio) and pure TiO2 were prepared by sol-gel method while ZnO/Taua (0.5:1 wt. ratio) and pure ZnO were prepared by Pechini method. The materials were characterized by XRD, SEM, EDX, and DRS. The anatase phase was formed in both pure TiO2 and TiO2/Taua, while the hexagonal phase was formed in pure ZnO and ZnO/Taua. The bandgap energies for the two composites were narrowed compared to the respective pure oxides as consequence of the hematite (α-Fe2O3, Eg = 2.1 eV) in the red clay, reaching 2.1 eV for TiO2/Taua and 2.0 eV for ZnO/Taua, while the bandgap energies for pure TiO2 and ZnO were 3.2 and 3.0 eV, respectively. Fenthion was not degraded in the dark, but the concentration droped 20% after 180 min under visible light irradiation without photocatalyst and 60% after 210 min in the presence of the pure red clay. Both TiO2/Taua and ZnO/Taua composites were also photocatalytic active to degrade Fenthion (λ > 420 nm), with degradation of 78% (in 180 min) and 85% (in 210 min) respectively. In the optimized conditions (pH 2, 100 mg L-1 of H2O2 and 30 mg L-1 of Fenthion), the ZnO/Taua composite was the most efficient, reaching 89% degradation in up to 30 min, with Fenthion sulfoxide as the degradation product.
Collapse
Affiliation(s)
| | - Madson M Nascimento
- Instituto de Química, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, de Energia e Ambiente, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | - Elton Bomfim
- Instituto de Química, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | - Luciana Almeida Silva
- Instituto de Química, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, de Energia e Ambiente, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
3
|
Xing SY, Li ZH, Li P, You H. A Mini-review of the Toxicity of Pollutants to Fish Under Different Salinities. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:1001-1005. [PMID: 35486156 DOI: 10.1007/s00128-022-03528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
In recent years, with the development of the global economy, water pollution has increased. Pollutants migrate, accumulate, and diffuse in aquatic environments. Most of the pollutants eventually enter aquatic organisms. The accumulation of pollutants affects the development and reproduction of organisms, and many pollutants have teratogenic, carcinogenic, and/or mutagenic effects. Aquatic organisms in estuaries and coastal areas are under pressure due to both salinity and pollutants. Among them, salinity, as an environmental factor, may affect the behavior of pollutants in the aquatic environment, causing changes in their toxic effects on fishes. Salinity also directly affects the growth and development of fishes. Therefore, this paper focuses on metals and organic pollutants and discusses the toxic effects of pollutants on fish under different salinities. This research is of great significance to environmental protection and ecological risk assessment of aquatic environments.
Collapse
Affiliation(s)
- Shao-Ying Xing
- Marine College, Shandong University, 264209, Weihai, Shandong, P.R. China
| | - Zhi-Hua Li
- Marine College, Shandong University, 264209, Weihai, Shandong, P.R. China
| | - Ping Li
- Marine College, Shandong University, 264209, Weihai, Shandong, P.R. China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, P. R. China.
| |
Collapse
|
4
|
Fu J, Wang M, Chaudhry MT, Xue H, Zhang L, Huang Y, Liu C. Translation, ribosome biogenesis, and oxidative damage caused by chlorpyrifos exposure to common carp (Cyprinus carpio L.) liver: application of combined RNA-seq with sRNA-seq in risk evaluation of environmental toxicant chlorpyrifos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56117-56125. [PMID: 34050517 DOI: 10.1007/s11356-021-14491-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Pesticide chlorpyrifos (CPF) is a widespread environmental pollutant gaining attention as it is highly injurious to aquatic life. Although the toxicity of CPF is well characterized, but the mechanism of toxic response especially, the hepatotoxicity remained unclear. In this study, we performed integrated analysis, including micro-RNA (miRNA) and small RNA (sRNA) to analyze CPF exposure responding genes and enrichment pathways. A total of 23,742 expressed genes were detected and out of these expression levels of 1746 were changed significantly. Majority of them participated in protein biosynthesis, nucleotide binding, and oxidation-reduction activities. In extensive analysis of micro-RNA (miRNA) expression profiles by comparing CPF treated carp with control, we identified 214 novel miRNAs with CPM > 5 in at least one sample. The miRNAs have the same change in direction compared with overlapped mRNA pairs in upregulated genes, suggesting potential positive correlation. As a whole, we detected many differently expressed genes (DEGs) and miRNAs, which may be used as the biomarkers for the detection of CPF pollution in water and aquatic product safety. However, their functions are required to be deeply analyzed, especially more samples or time pointed data are needed to illustrate their concrete mechanism.
Collapse
Affiliation(s)
- Jing Fu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, No. 501 Zhongkai Road, Haizhu District, Guangzhou, China
| | - Minghui Wang
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Maria T Chaudhry
- Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Hongfei Xue
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Lichun Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences (JAAS), Jilin, 136100, China.
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Chunpeng Liu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, No. 501 Zhongkai Road, Haizhu District, Guangzhou, China.
| |
Collapse
|
5
|
Hutton SJ, St. Romain SJ, Pedersen EI, Siddiqui S, Chappell PE, White JW, Armbrust KL, Brander SM. Salinity Alters Toxicity of Commonly Used Pesticides in a Model Euryhaline Fish Species ( Menidia beryllina). TOXICS 2021; 9:toxics9050114. [PMID: 34065370 PMCID: PMC8161390 DOI: 10.3390/toxics9050114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Changing salinity in estuaries due to sea level rise and altered rainfall patterns, as a result of climate change, has the potential to influence the interactions of aquatic pollutants as well as to alter their toxicity. From a chemical property point of view, ionic concentration can increase the octanol–water partition coefficient and thus decrease the water solubility of a compound. Biologically, organism physiology and enzyme metabolism are also altered at different salinities with implications for drug metabolism and toxic effects. This highlights the need to understand the influence of salinity on pesticide toxicity when assessing risk to estuarine and marine fishes, particularly considering that climate change is predicted to alter salinity regimes globally and many risk assessments and regulatory decisions are made using freshwater studies. Therefore, we exposed the Inland Silverside (Menidia beryllina) at an early life stage to seven commonly used pesticides at two salinities relevant to estuarine waters (5 PSU and 15 PSU). Triadimefon was the only compound to show a statistically significant increase in toxicity at the 15 PSU LC50. However, all compounds showed a decrease in LC50 values at the higher salinity, and all but one showed a decrease in the LC10 value. Many organisms rely on estuaries as nurseries and increased toxicity at higher salinities may mean that organisms in critical life stages of development are at risk of experiencing adverse, toxic effects. The differences in toxicity demonstrated here have important implications for organisms living within estuarine and marine ecosystems in the Anthropocene as climate change alters estuarine salinity regimes globally.
Collapse
Affiliation(s)
- Sara J. Hutton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA;
| | - Scott J. St. Romain
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (S.J.S.R.); (K.L.A.)
| | - Emily I. Pedersen
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, USA; (E.I.P.); (S.S.); (J.W.W.)
| | - Samreen Siddiqui
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, USA; (E.I.P.); (S.S.); (J.W.W.)
| | - Patrick E. Chappell
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - J. Wilson White
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, USA; (E.I.P.); (S.S.); (J.W.W.)
| | - Kevin L. Armbrust
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (S.J.S.R.); (K.L.A.)
| | - Susanne M. Brander
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, USA; (E.I.P.); (S.S.); (J.W.W.)
- Correspondence:
| |
Collapse
|
6
|
Derby AP, Fuller NW, Huff Hartz KE, Segarra A, Connon RE, Brander SM, Lydy MJ. Trophic transfer, bioaccumulation and transcriptomic effects of permethrin in inland silversides, Menidia beryllina, under future climate scenarios. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116545. [PMID: 33578317 DOI: 10.1016/j.envpol.2021.116545] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Global climate change (GCC) significantly affects aquatic ecosystems. Continual use of pyrethroid insecticides results in contamination of these ecosystems and concurrent GCC raises the potential for synergistic effects. Resistance to pyrethroids has been documented in Hyalella azteca, a common epibenthic amphipod and model organism. Resistant H. azteca can bioconcentrate elevated amounts of pyrethroids and represent a threat to consumers via trophic transfer. In the present study, a predator of H. azteca, the inland silverside (Menidia beryllina), was used to examine the impacts of GCC on pyrethroid bioaccumulation via trophic transfer from resistant prey organisms. M. beryllina were fed 14C-permethrin dosed pyrethroid-resistant H. azteca for 14 days at three salinities (6, 13 and 20 practical salinity units (PSU)) and two temperatures (18 and 23 °C). Fish were analyzed for total body residues, percent parent compound and percent metabolites. Gene expression in liver and brain tissue were evaluated to assess whether dietary bioaccumulation of permethrin would impact detoxification processes, metabolism, and general stress responses. M. beryllina bioaccumulated significant amounts of permethrin across all treatments, ranging from 39 to 557 ng g-1 lipid. No statistically significant effect of temperature was found on total bioaccumulation. Salinity had a significant effect on total bioaccumulation, owing to greater bioaccumulation at 6 PSU compared to 13 and 20 PSU, which may be due to alterations to xenobiotic elimination. Permethrin bioaccumulation and the interaction with temperature and salinity elicited significant transcriptional responses in genes relating to detoxification, growth, development, and immune response. Given the increased prevalence of pesticide-resistant aquatic invertebrates, GCC-induced alterations to temperature and salinity, and the predicted increase in pesticide usage, these findings suggest trophic transfer may play an important role in pesticide bioaccumulation and effects in predatory fish.
Collapse
Affiliation(s)
- Andrew P Derby
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Neil W Fuller
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Amelie Segarra
- School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Richard E Connon
- School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Susanne M Brander
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR, 97365, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
7
|
Vilas-Boas JA, Arenas-Sánchez A, Vighi M, Romo S, Van den Brink PJ, Pedroso Dias RJ, Rico A. Multiple stressors in Mediterranean coastal wetland ecosystems: Influence of salinity and an insecticide on zooplankton communities under different temperature conditions. CHEMOSPHERE 2021; 269:129381. [PMID: 33383245 DOI: 10.1016/j.chemosphere.2020.129381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Temperature increase, salinity intrusion and pesticide pollution have been suggested to be among the main stressors affecting the biodiversity of coastal wetland ecosystems. Here we assessed the single and combined effects of these stressors on zooplankton communities collected from a Mediterranean coastal lagoon. An indoor microcosm experiment was designed with temperature variation (20 °C and 30 °C), salinity (no addition, 2.5 g/L NaCl) and the insecticide chlorpyrifos (no addition, 1 μg/L) as treatments. The impact of these stressors was evaluated on water quality variables and on the zooplankton comunity (structure, diversity, abundance and taxa responses) for 28 days. This study shows that temperature is the main driver for zooplankton community change, followed by salinity and chlorpyrifos. The three stressors contributed to a decrease on zooplankton diversity. The increase of temperature contributed to an increase of zooplankton abundance. Salinity generally affected Cladocera, which resulted in a Copepoda increase at 20 °C, and a reduction in the abundance of all major zooplankton groups at 30 °C. The insecticide chlorpyrifos affected primarily Cladocera, altough the magnitude and duration of the direct and indirect effects caused by the insecticide substantially differed between the two temperature scenarios. Chlorpyrifos and salinity resulted in antagonistic effects on sensitive taxa (Cladocera) at 20 °C and 30 °C. This study shows that temperature can influence the direct and indirect effects of salinity and pesticides on zooplankton communities in Mediterranean coastal wetlands, and highlights vulnerable taxa and ecological responses that are expected to dominate under future global change scenarios.
Collapse
Affiliation(s)
- Jéssica Andrade Vilas-Boas
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora 36036-900, Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-graduação Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Alba Arenas-Sánchez
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Marco Vighi
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Susana Romo
- Departamento de Ecología, Facultad de Biología, Universitat de València, E-46100, Burjasot, Valencia, Spain
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University & Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands
| | - Roberto Júnio Pedroso Dias
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora 36036-900, Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-graduação Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
8
|
Qiu J, Zhang T, Zhu F, Ouyang G. In vivo monitoring and exposure potency assessment of phase I metabolism of fenthion in vegetables. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123013. [PMID: 32526427 DOI: 10.1016/j.jhazmat.2020.123013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
In this study, the phase I metabolism of fenthion was monitored in three common vegetables in different chamber situations via an in vivo solid-phase microextraction method. The phase I metabolic pathways of fenthion were evaluated based on the in vivo monitoring results and their comparisons among the chamber situations. Enzyme catalysis was found to play a basic and dominant role, whereas light catalysis could promote subsequent transformations that were difficult for enzyme catalysis. Moreover, according to the concentrations of the metabolites and their toxicity, the total concentrations and total toxicity weighted concentrations were calculated to reveal actual residual levels. The relative total and weighted exposure potency values were calculated to account for the fact that only the parent pesticide was considered in the diet exposure risk assessment. In result, both total and weighted approaches indicated a much higher exposure risk. Present study uncovered the potential pesticide exposure risk associated with phase I metabolism and highlighted the toxicity weighted approach, both of which more realistically reflect the exposure risk than the parent compound concentration does. In general, this study may facilitate further illustrating the phase I metabolism of ubiquitous agricultural pesticides, and provide a more realistically understanding of their exposure risk.
Collapse
Affiliation(s)
- Junlang Qiu
- Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Tianlang Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fang Zhu
- Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
9
|
Hosseinzadeh M, Amiri BM, Poorbagher H, Perelló-Amorós M, Schlenk D. The effects of diazinon on the cell types and gene expression of the olfactory epithelium and whole-body hormone concentrations in the Persian sturgeon (Acipenser persicus). Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110809. [PMID: 32971289 DOI: 10.1016/j.cbpa.2020.110809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/07/2022]
Abstract
The olfactory function and imprinting of odorant information of the native stream play a critical role during the homing migration in fish. Pesticides may impair olfactory imprinting by altering olfaction and hormone functions. The present study aimed to determine how diazinon impacts olfactory epithelium morphology and cell composition, as well as hormone concentrations in Persian sturgeon (Acipenser persicus) during their lifetime in freshwater and, also during diazinon-free saltwater acclimation. Fingerlings were exposed to 0, 150, 300, and 450 μg·L-1 of diazinon in freshwater for 7 days and then were transferred to diazinon-free saltwater by gradually increasing salinity up to 12 ppt. After diazinon exposure, the number of olfactory receptor cells (ORCs) and goblet cells (GCs) decreased and increased, respectively, and the expression of G-protein αolf (GPαolf) and calmodulin-dependent kinase II delta (CAMKIId) was down-regulated and up-regulated, respectively. Transferring the fish to diazinon-free saltwater (8 and 12 ppt) raised the number of ORCs, supporting cells (SCs), GCs, and GPαolf expression, and down-regulated CAMKIId without any significant differences among treatments. Exposure to diazinon increased whole-body cortisol at the high concentration, while decreased whole-body thyroxin (T4) and triiodothyronine (T3) in a dose-dependent manner. Although whole-body T4 and T3 increased in all the treatments after saltwater acclimation (8 and 12 ppt), the level of these hormones was lower in fish that had been exposed to diazinon than in the control. These results showed that diazinon can disrupt olfactory epithelium morphology and cell composition as well as hormone concentrations, which in turn may affect the olfactory imprinting in Persian sturgeon fingerlings.
Collapse
Affiliation(s)
- Mahboubeh Hosseinzadeh
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, 31585-4314 Karaj, Iran
| | - Bagher Mojazi Amiri
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, 31585-4314 Karaj, Iran.
| | - Hadi Poorbagher
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, 31585-4314 Karaj, Iran
| | - Miquel Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
10
|
Katagi T. In vitro metabolism of pesticides and industrial chemicals in fish. JOURNAL OF PESTICIDE SCIENCE 2020; 45:1-15. [PMID: 32110158 PMCID: PMC7024743 DOI: 10.1584/jpestics.d19-074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Metabolism is one of the most important factors in controlling the toxicity and bioaccumulation of pesticides in fish. In vitro systems using subcellular fractions, cell lines, hepatocytes and tissues of a specific organ, each of which is characterized by usability, enzyme activity and chemical transport via membrane, have been applied to investigate the metabolic profiles of pesticides. Not only species and organs but also the fishkeeping conditions are known to greatly affect the in vitro metabolism of pesticides. A comparison of the metabolic profiles of pesticides and industrial chemicals taken under similar conditions has shown that in vitro systems using a subcellular S9 fraction and hepatocytes qualitatively reproduce many in vivo metabolic reactions. More investigation of these in vitro systems for pesticides is necessary to verify their applicability to the estimation of pesticide metabolism in fish.
Collapse
Affiliation(s)
- Toshiyuki Katagi
- Bioscience Research Laboratory, Sumitomo Chemical Co., Ltd., 3–1–98 Kasugadenaka, Konohana-ku, Osaka 554–8558, Japan
| |
Collapse
|
11
|
Tian X, Zhao S, Guo Z, Hu B, Wei Q, Tang Y, Su J. Molecular characterization, expression pattern and metabolic activity of flavin-dependent monooxygenases in Spodoptera exigua. INSECT MOLECULAR BIOLOGY 2018; 27:533-544. [PMID: 29749684 DOI: 10.1111/imb.12392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Enhanced detoxification is one of the important mechanisms for insecticide resistance. Most research in this field to date has focused on the role of cytochrome P450s. Our previous work revealed that flavin-dependent monooxygenases (FMOs) were involved in metabolic resistance of Spodoptera exigua. In the present study we investigated the molecular characteristics, expression patterns and oxidative activities of SeFMO on insecticides. Three FMO genes, which encode proteins with the typical FMO motifs, were cloned from S. exigua. The oxidative activities of eukaryotically expressed SeFMO enzymes were verified with the model substrate of FMO. Importantly, the SeFMOs had significantly higher oxidative activities on metaflumizone and lambda-cyhalothrin than on model substrates and other insecticides tested. The three SeFMOs were mainly expressed in the midgut, fat body and Malpighian tubules. The tissues responsible for xenobiotic metabolism and their expression characteristics were similar to those of P450s acting as detoxification genes. The study also revealed that the expression of SeFMOs could be induced by insecticide exposure, and that SeFMOs were over-expressed in a metaflumizone-resistant strain of S. exigua. These results suggest that SeFMOs are important insecticide detoxifying enzymes, and that over-expression of FMO genes may be one of the mechanisms for metabolic resistance in S. exigua.
Collapse
Affiliation(s)
- X Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - S Zhao
- Zoonbio Biotechnology Co., Ltd, Nanjing, China
| | - Z Guo
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - B Hu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Q Wei
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Y Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - J Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Franco ME, Sutherland GE, Lavado R. Xenobiotic metabolism in the fish hepatic cell lines Hepa-E1 and RTH-149, and the gill cell lines RTgill-W1 and G1B: Biomarkers of CYP450 activity and oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2018; 206-207:32-40. [PMID: 29496489 DOI: 10.1016/j.cbpc.2018.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 12/21/2022]
Abstract
The use of fish cell cultures has proven to be an effective tool in the study of environmental and aquatic toxicology. Valuable information can be obtained from comparisons between cell lines from different species and organs. In the present study, specific chemicals were used and biomarkers (e.g. 7-Ethoxyresorufin-O-deethylase (EROD) activity and reactive oxygen species (ROS)) were measured to assess the metabolic capabilities and cytotoxicity of the fish hepatic cell lines Hepa-E1 and RTH-149, and the fish gill cell lines RTgill-W1 and G1B. These cell lines were exposed to β-naphthoflavone (BNF) and benzo[a]pyrene (BaP), the pharmaceutical tamoxifen (TMX), and the organic peroxide tert-butylhydroperoxide (tBHP). Cytotoxicity in gill cell lines was significantly higher than in hepatic cells, with BNF and TMX being the most toxic compounds. CYP1-like associated activity, measured through EROD activity, was only detected in hepatic cells; Hepa-E1 cells showed the highest activity after exposure to both BNF and BaP. Significantly higher levels of CYP3A-like activity were also observed in Hepa-E1 cells exposed to TMX, while gill cell lines presented the lowest levels. Measurements of ROS and antioxidant enzymes indicated that peroxide levels were higher in gill cell lines in general. However, levels of superoxide were significantly higher in RTH-149 cells, where no distinctive increase of superoxide-related antioxidants was observed. The present study demonstrates the importance of selecting adequate cell lines in measuring specific metabolic parameters and provides strong evidence for the fish hepatocarcinoma Hepa-E1 cells to be an excellent alternative in assessing metabolism of xenobiotics, and in expanding the applicability of fish cell lines for in vitro studies.
Collapse
Affiliation(s)
- Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA
| | - Grace E Sutherland
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA.
| |
Collapse
|
13
|
Hajirezaee S, Mirvaghefi AR, Farahmand H, Agh N. Effects of diazinon on adaptation to sea-water by the endangered Persian sturgeon, Acipenser persicus, fingerlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:413-423. [PMID: 27513221 DOI: 10.1016/j.ecoenv.2016.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
To replenish the depleting populations of sturgeon fishes especially Persian sturgeon, Acipenser persicus in the Caspian Sea, millions of Persian sturgeon fingerlings are farmed through artificial propagation and released into the Iranian river estuaries annually. Fish osmoregulation is a vital physiological process that can be affected during the release. Many Iranian river estuaries are under the influence of pesticides originating from farming activities that may affect osmoregulation. In this study, Persian sturgeon fingerlings were exposed to sublethal concentrations (0, 0.18, 0.54, 0.9mgL(-)(1)) of diazinon for 96h (short-term trial) and 12 days (long-term trial) in fresh water (FW) and then fish were exposed in brackish water (BW) for 24h. After 96h and 12 days of exposure in FW, the lower levels of plasma triidothyronine (T3), thyroxine (T4), Na(+), Cl(-), K(+), gill Na(+)/K(+)- ATPase activity and number of chloride cells were observed in exposed fish (0.54 and 0.9mgL(-)(1) diazinon) compared to control group and 0.18mgL(-)(1) diazinon treatment. Also, higher levels of plasma cortisol (except 0.18mgL(-)(1) diazinon treatment in long-term trial) were observed in diazinon exposed fish compared to control group. However, gill Na(+)/K(+)-ATPase activity and the number of chloride cells were higher in fingerlings exposed to diazinon compared than control. When fish were exposed in BW for 24h, the following changes occurred: (a) in short-term trial: increases in cortisol and Cl(-) levels (0.54mgL(-)(1) diazinon ), Na(+) (0.9mgL(-)(1) diazinon ) and gill Na(+)/K(+)-ATPase activity (0.18mgL(-)(1) diazinon ). In control group, cortisol, T4, Na(+), gill Na(+)/K(+)-ATPase activity and the number of chloride cells increased significantly. (b) In long-term trial: increases in K(+) levels in fish exposed to 0.9mgL(-)(1) diazinon, Na+ in all diazinon concentrations and decreases in chloride cells number in fish exposed to 0.18mgL(-)(1) diazinon. In control group, significant increases were observed in cortisol, T3, Na(+) and chloride cells number. Finally, gill showed many histopathological damages during exposure in FW and BW. Our results suggest that the contamination of river estuaries with diazinon may alter the osmoregulation ability of released Persian sturgeon fingerlings, which could lead to a failure in their restocking program in the Caspian Sea.
Collapse
Affiliation(s)
- Saeed Hajirezaee
- Department of Fisheries and Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Ali Reza Mirvaghefi
- Department of Fisheries and Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Hamid Farahmand
- Department of Fisheries and Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Naser Agh
- Department of Aquaculture, Urmia Lake Research Institute, Urmia University, Urmia, Iran
| |
Collapse
|
14
|
Cole BJ, Brander SM, Jeffries KM, Hasenbein S, He G, Denison MS, Fangue NA, Connon RE. Changes in Menidia beryllina Gene Expression and In Vitro Hormone-Receptor Activation After Exposure to Estuarine Waters Near Treated Wastewater Outfalls. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 71:210-23. [PMID: 27155869 PMCID: PMC7938872 DOI: 10.1007/s00244-016-0282-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/25/2016] [Indexed: 05/14/2023]
Abstract
Fishes in estuarine waters are frequently exposed to treated wastewater effluent, among numerous other sources of contaminants, yet the impacts of these anthropogenic chemicals are not well understood in these dynamic and important waterways. Inland silversides (Menidia beryllina) at an early stage of development [12 days posthatch (dph)] were exposed to waters from two estuarine wastewater-treatment outfall locations in a tidal estuary, the Sacramento/San Joaquin Delta (California, USA) that had varied hydrology and input volumes. The genomic response caused by endocrine-disrupting compounds (EDCs) in these waters was determined using quantitative polymerase chain reaction on a suite of hormonally regulated genes. Relative androgenic and estrogenic activities of the waters were measured using CALUX reporter bioassays. The presence of bifenthrin, a pyrethroid pesticide and known EDC, as well as caffeine and the anti-inflammatory pharmaceutical ibuprofen, which were used as markers of wastewater effluent input, were determined using instrumental analysis. Detectable levels of bifenthrin (2.89 ng L(-1)) were found on one of the sampling dates, and caffeine was found on all sampling dates, in water from the Boynton Slough. Neither compound was detected at the Carquinez Strait site, which has a much smaller effluent discharge input volume relative to the receiving water body size compared with Boynton Slough. Water samples from both sites incubated in the CALUX cell line induced estrogenic and androgenic activity in almost all instances, though the estrogenicity was relatively higher than the androgenicity. Changes in the abundance of mRNA transcripts of endocrine-responsive genes and indicators of general chemical stress were observed after a 96-h exposure to waters from both locations. The relative levels of endocrine response, changes in gene transcript abundance, and contaminant concentrations were greater in water from the Boynton Slough site despite those effluents undergoing a more advanced treatment process. The availability of a widely geographically distributed estuarine model species (M. beryllina) now allows for improved assessment of treated effluent impacts across brackish, estuarine, and marine environments.
Collapse
Affiliation(s)
- Bryan J Cole
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Susanne M Brander
- Department of Biology & Marine Biology, University of North Carolina, Wilmington, 601 South College Road, Wilmington, NC, 28403, USA
| | - Ken M Jeffries
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Simone Hasenbein
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Guochun He
- Department of Environmental Toxicology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Nann A Fangue
- Wildlife, Fish & Conservation Biology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Richard E Connon
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
15
|
Maldonado A, Johnson A, Gochfeld D, Slattery M, Ostrander GK, Bingham JP, Schlenk D. Hard coral (Porites lobata) extracts and homarine on cytochrome P450 expression in Hawaiian butterflyfishes with different feeding strategies. Comp Biochem Physiol C Toxicol Pharmacol 2016; 179:57-63. [PMID: 26297807 DOI: 10.1016/j.cbpc.2015.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 12/27/2022]
Abstract
Dietary specialists tend to be less susceptible to the effects of chemical defenses produced by their prey compared to generalist predators that feed upon a broader range of prey species. While many researchers have investigated the ability of insects to detoxify dietary allelochemicals, little research has been conducted in marine ecosystems. We investigated metabolic detoxification pathways in three species of butterflyfishes: the hard coral specialist feeder, Chaetodon multicinctus, and two generalist feeders, Chaetodon auriga and Chaetodon kleinii. Each species was fed tissue homogenate of the hard coral Porites lobata or the feeding deterrent compound homarine (found in the coral extract), and the expression and catalytic activity of cytochrome P450 (CYP) 3A-like and CYP2-like enzymes were examined after one-week of treatment. The P. lobata homogenate significantly induced content and catalytic activity of CYP2-like and CYP3A-like forms, by 2-3 fold and by 3-9 fold, respectively, in C. multicinctus. Homarine caused a significant decrease of CYP2-like and CYP3A-like proteins at the high dose in C. kleinii and 60-80% mortality in that species. Homarine also induced CYP3A-like content by 3-fold and catalytic activity by 2-fold in C. auriga, while causing non-monotonic increases in CYP2-like and CYP3A-like catalytic activity in C. multicinctus. Our results indicate that dietary exposure to coral homogenates and the feeding deterrent constituent within these homogenates caused species-specific modulation of detoxification enzymes consistent with the prey selection strategies of generalist and specialist butterflyfishes.
Collapse
Affiliation(s)
- Aileen Maldonado
- Department of Environmental Science, University of California, Riverside, 2258 Geology, 900 University Ave., Riverside, CA 92521, USA.
| | - Amber Johnson
- Department of Environmental Science, University of California, Riverside, 2258 Geology, 900 University Ave., Riverside, CA 92521, USA
| | - Deborah Gochfeld
- National Center for Natural Products Research and Department of BioMolecular Science, University of Mississippi, P.O. Box 1848, University, MS 38677, USA
| | - Marc Slattery
- National Center for Natural Products Research and Department of BioMolecular Science, University of Mississippi, P.O. Box 1848, University, MS 38677, USA
| | - Gary K Ostrander
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-1330, USA
| | - Jon-Paul Bingham
- Department of Molecular Bioscience and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Ag. Science 218, Honolulu, HI 96822, USA
| | - Daniel Schlenk
- Department of Environmental Science, University of California, Riverside, 2258 Geology, 900 University Ave., Riverside, CA 92521, USA
| |
Collapse
|
16
|
Schnell S, Bawa-Allah K, Otitoloju A, Hogstrand C, Miller TH, Barron LP, Bury NR. Environmental monitoring of urban streams using a primary fish gill cell culture system (FIGCS). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:279-285. [PMID: 26093110 DOI: 10.1016/j.ecoenv.2015.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
The primary fish gill cell culture system (FIGCS) is an in vitro technique which has the potential to replace animals in whole effluent toxicity tests. In the current study FIGCS were transported into the field and exposed to filtered (0.2μm) river water for 24h from 4 sites, on 2 different sampling dates. Sites 1 and 2 are situated in an urban catchment (River Wandle, London, UK) with site 1 downstream of a sewage treatment work; site 3 is located in a suburban park (River Cray, Kent, UK), and site 4 is more rural (River Darent, Kent, UK). The change in transepithelial electrical resistance (TER), the expression of the metal responsive genes metallothionein A (mta) and B (mtb), cytochrome P450 1A1 (cyp1a1) and 3A27 (cyp3a27), involved in phase 1 metabolism, were assessed following exposure to sample water for 24h. TER was comparable between FIGCS exposed to 0.2μm filtered river water and those exposed to synthetic moderately soft water for 24h. During the first sampling time, there was an increase in mta, cyp1a1 and cyp3a27 gene expression in epithelium exposed to water from sites 1 and 2, and during the second sampling period an increase in cyp3a27 gene expression at sites 1 and 4. Urban river water is a complex mixture of contaminants (e.g., metals, pesticides, pharmaceuticals and polyaromatic hydrocarbons) and the increase in the expression of genes encoding mta, cyp1a1 and cyp3a27 in FIGCS is indicative of the presence of biologically active pollutants.
Collapse
Affiliation(s)
- Sabine Schnell
- Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Kafilat Bawa-Allah
- Ecotoxicology Laboratory, Department of Zoology, Faculty of Science, University of Lagos, Akoka, 101017 Lagos, Nigeria
| | - Adebayo Otitoloju
- Ecotoxicology Laboratory, Department of Zoology, Faculty of Science, University of Lagos, Akoka, 101017 Lagos, Nigeria
| | - Christer Hogstrand
- Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Thomas H Miller
- Analytical and Environmental Sciences Division, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Leon P Barron
- Analytical and Environmental Sciences Division, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Nic R Bury
- Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom.
| |
Collapse
|
17
|
Maryoung LA, Blunt B, Tierney KB, Schlenk D. Sublethal toxicity of chlorpyrifos to salmonid olfaction after hypersaline acclimation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:94-101. [PMID: 25697678 DOI: 10.1016/j.aquatox.2015.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/24/2015] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
Salmonid habitats can be impacted by several environmental factors, such as salinization, which can also affect salmonid tolerance to anthropogenic stressors, such as pesticides. Previous studies have shown that hypersaline acclimation enhances the acute toxicity of certain organophosphate and carbamate pesticides to euryhaline fish; however, sublethal impacts have been far less studied. The current study aims to determine how hypersaline acclimation and exposure to the organophosphate chlorpyrifos (CPF) impact salmonid olfaction. Combined acclimation and exposure to CPF was shown to impact rainbow trout olfaction at the molecular, physiological, and behavioral levels. Concurrent exposure to hypersalinity and 0.5μg/L CPF upregulated four genes (chloride intracellular channel 4, G protein zgc:101761, calcium calmodulin dependent protein kinase II delta, and adrenergic alpha 2C receptor) that inhibit olfactory signal transduction. At the physiological level, hypersalinity and chlorpyrifos caused a decrease in sensory response to the amino acid l-serine and the bile salt taurocholic acid. Combined acclimation and exposure also negatively impacted behavior and reduced the avoidance of a predator cue (l-serine). Thus, acclimation to hypersaline conditions and exposure to environmentally relevant concentrations of chlorpyrifos caused an inhibition of olfactory signal transduction leading to a decreased response to odorants and impairment of olfactory mediated behaviors.
Collapse
Affiliation(s)
- Lindley A Maryoung
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States.
| | - Brian Blunt
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Keith B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| |
Collapse
|
18
|
Xu J, Luo J, Ruan J, Zhu F, Luan T, Liu H, Jiang R, Ouyang G. In vivo tracing uptake and elimination of organic pesticides in fish muscle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8012-8020. [PMID: 24932803 DOI: 10.1021/es5009032] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bioconcentration factors (BCFs) measured in the laboratory are important for characterizing the bioaccumulative properties of chemicals entering the environment, especially the potential persistent organic pollutants (POPs), which can pose serious adverse effects on ecosystem and human health. Traditional lethal analysis methods are time-consuming and sacrifice too many experimental animals. In the present study, in vivo solid-phase microextraction (SPME) was introduced to trace the uptake and elimination processes of pesticides in living fish. BCFs and elimination kinetic coefficients of the pesticides were recorded therein. Moreover, the metabolism of fenthion was also traced with in vivo SPME. The method was time-efficient and laborsaving. Much fewer experimental animals were sacrificed during the tracing. In general, this study opened up an opportunity to measure BCFs cheaply in laboratories for the registering of emerging POPs and inspecting of suspected POPs, as well as demonstrated the potential application of in vivo SPME in the study of toxicokinetics of pollutants.
Collapse
Affiliation(s)
- Jianqiao Xu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou, 510275 Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Maryoung LA, Lavado R, Schlenk D. Impacts of hypersaline acclimation on the acute toxicity of the organophosphate chlorpyrifos to salmonids. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:284-290. [PMID: 24799192 DOI: 10.1016/j.aquatox.2014.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/09/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
Acclimation to hypersaline conditions enhances the acute toxicity of certain thioether organophosphate and carbamate pesticides in some species of euryhaline fish. As the organophosphate chlorpyrifos is commonly detected in salmonid waterways, the impacts of hypersaline conditions on its toxicity were examined. In contrast to other previously examined pesticides, time to death by chlorpyrifos was more rapid in freshwater than in hypersaline water (16ppth). The median lethal time (LT50) after 100μg/L chlorpyrifos exposure was 49h (95% CI: 31-78) and 120h (95% CI: 89-162) for rainbow trout (Oncorhynchus mykiss) in freshwater and those acclimated to hypersaline conditions, respectively. Previous studies with hypersaline acclimated fish indicated induction of xenobiotic metabolizing enzymes that may detoxify chlorpyrifos. In the current study, chlorpyrifos metabolism was unaltered in liver and gill microsomes of freshwater and hypersaline acclimated fish. Acetylcholinesterase inhibition in brain and bioavailability of chlorpyrifos from the aqueous exposure media were also unchanged. In contrast, mRNA expression of neurological targets: calcium calmodulin dependent protein kinase II delta, chloride intracellular channel 4, and G protein alpha i1 were upregulated in saltwater acclimated fish, consistent with diminished neuronal signaling which may protect animals from cholinergic overload associated with acetylcholinesterase inhibition. These results indicate targets other than acetylcholinesterase may contribute to the altered toxicity of chlorpyrifos in salmonids under hypersaline conditions.
Collapse
Affiliation(s)
- Lindley A Maryoung
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States.
| | - Ramon Lavado
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| |
Collapse
|
20
|
Bozcaarmutlu A, Turna S, Sapmaz C, Arinc E, Yenisoy-Karakaş S. Aldrin Epoxidation in Flathead Mullet (Mugil cephalus): Possible Involvement of CYP1A and CYP3A. J Biochem Mol Toxicol 2014; 28:271-80. [DOI: 10.1002/jbt.21563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 02/12/2014] [Accepted: 03/28/2014] [Indexed: 01/18/2023]
Affiliation(s)
| | - Sema Turna
- Department of Chemistry; Abant Izzet Baysal University; Bolu Turkey
| | - Canan Sapmaz
- Department of Chemistry; Abant Izzet Baysal University; Bolu Turkey
| | - Emel Arinc
- Department of Biological Sciences; Middle East Technical University; Ankara Turkey
| | | |
Collapse
|
21
|
Lavado R, Aparicio-Fabre R, Schlenk D. Effects of salinity acclimation on the expression and activity of Phase I enzymes (CYP450 and FMOs) in coho salmon (Oncorhynchus kisutch). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:267-278. [PMID: 23925894 PMCID: PMC3946875 DOI: 10.1007/s10695-013-9842-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
Phase I biotransformation enzymes are critically important in the disposition of xenobiotics within biota and are regulated by multiple environmental cues, particularly in anadromous fish species. Given the importance of these enzyme systems in xenobiotic/endogenous chemical bioactivation and detoxification, the current study was designed to better characterize the expression of Phase I biotransformation enzymes in coho salmon (Oncorhynchus kisutch) and the effects of salinity acclimation on those enzymes. Livers, gills, and olfactory tissues were collected from coho salmon (O. kisutch) after they had undergone acclimation from freshwater to various salinity regimes of seawater (8, 16 and 32 g/L). Using immunoblot techniques coupled with testosterone hydroxylase catalytic activities, 4 orthologs of cytochrome P450 (CYP1A, CYP2K1, CYP2M1, and CYP3A27) were measured in each tissue. Also, the expression of 2 transcripts of flavin-containing monooxygenases (FMO A and B) and associated activities were measured. With the exception of CYP1A, which was down-regulated in liver, protein expression of the other 3 enzymes was induced at higher salinity, with the greatest increase observed in CYP2M1 from olfactory tissues. In liver and gills, 6β- and 16β-hydroxylation of testosterone was also significantly increased after hypersaline acclimation. Similarly, FMO A was up-regulated in all 3 tissues in a salinity-dependent pattern, whereas FMO B mRNA was down-regulated. FMO-catalyzed benzydamine N-oxygenase and methyl p-tolyl sulfoxidation were significantly induced in liver and gills by hypersalinity, but was either unchanged or not detected in olfactory tissues. These data demonstrate that environmental conditions may significantly alter the toxicity of environmental chemicals in salmon during freshwater/saltwater acclimation.
Collapse
Affiliation(s)
- Ramon Lavado
- Department of Environmental Sciences, University of California, 2258 Geology Building, 900 University Ave, Riverside, CA, 92521, USA,
| | | | | |
Collapse
|
22
|
Riar N, Crago J, Jiang W, Maryoung LA, Gan J, Schlenk D. Effects of salinity acclimation on the endocrine disruption and acute toxicity of bifenthrin in freshwater and euryhaline strains of Oncorhynchus mykiss. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:2779-85. [PMID: 23983063 PMCID: PMC4104814 DOI: 10.1002/etc.2370] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/30/2013] [Accepted: 08/16/2013] [Indexed: 05/07/2023]
Abstract
The pyrethroid insecticide bifenthrin is frequently detected at ng/L concentrations in tributaries of the San Francisco Bay Delta. The estuary is also experiencing increasing salinity through climate change and water redirection. To evaluate the impacts of hypersaline conditions on bifenthrin toxicity in anadromous salmonids of the San Francisco Bay Delta (CA, USA), a 14-d laboratory exposure was performed using 2 strains of Oncorhynchus mykiss (rainbow trout and steelhead) acclimated to freshwater and to 8 g/L and 17 g/L salinity. The fish were then exposed to nominal concentrations of 0 µg/L, 0.1 µg/L, and 1.5 µg/L bifenthrin. Rainbow trout exhibited significant mortality following exposure to 1.5 µg/L (1.07 ± 0.35 µg/L measured) bifenthrin in freshwater. Elevated levels of Na⁺ /K⁺ adenosine triphosphatase α1A mRNA subunit expression was observed in the gill of rainbow trout acclimated to hypersaline conditions relative to freshwater animals. No significant difference was noted in Na⁺ /K⁺ adenosine triphosphatase subunit levels in brains of either strain in freshwater or hypersaline conditions. Likewise, significant differences were not observed in plasma vitellogenin or steroid hormone concentrations in either strain whether maintained in freshwater or saltwater. Saltwater acclimation significantly reduced nicotinamide adenine dinucleotide phosphate-catalyzed biotransformation of bifenthrin in liver microsomes of rainbow trout but not of steelhead. The present study showed that, relative to steelhead, rainbow trout have different responses to bifenthrin acute toxicity as well as different rates of hepatic bifenthrin biotransformation and regulation of Na⁺ /K⁺ adenosine triphosphatase subunits in gills. These data indicate that significant differences exist between the strains and that animal life history may have important effects on the susceptibility of each strain to environmental contaminants.
Collapse
|
23
|
Hooper MJ, Ankley GT, Cristol DA, Maryoung LA, Noyes PD, Pinkerton KE. Interactions between chemical and climate stressors: a role for mechanistic toxicology in assessing climate change risks. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:32-48. [PMID: 23136056 PMCID: PMC3601417 DOI: 10.1002/etc.2043] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 05/08/2012] [Accepted: 08/13/2012] [Indexed: 05/20/2023]
Abstract
Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemical-GCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemical-climate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments.
Collapse
Affiliation(s)
- Michael J Hooper
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Lavado R, Aparicio-Fabre R, Schlenk D. Effects of salinity acclimation on the pesticide-metabolizing enzyme flavin-containing monooxygenase (FMO) in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:9-15. [PMID: 22981832 PMCID: PMC3508337 DOI: 10.1016/j.cbpc.2012.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 08/30/2012] [Accepted: 08/30/2012] [Indexed: 10/27/2022]
Abstract
Thioether-containing pesticides are more toxic in certain anadromous and catadromous fish species that have undergone acclimation to hypersaline environments. Enhanced toxicity has been shown to be mediated through the bioactivation of these xenobiotics by one or more flavin-containing monooxygenases (FMOs), which are induced by hyperosmotic conditions. To better understand the number of FMO genes that may be regulated by hyperosmotic conditions, rainbow trout (Oncorhynchus mykiss) were maintained and acclimated to freshwater (<0.5 g/L salinity) and to 18 g/L salinity. The expression of 3 different FMO transcripts (A, B and C) and associated enzymatic activities methyl p-tolyl sulfoxidation (MTSO) and benzydamine N-oxigenation (BZNO) were measured in four tissues. In freshwater-acclimated organisms FMO catalytic activities were as follows: liver>kidney>gills=olfactory tissues; in hypersaline-acclimated animals activities were higher in liver>gills>olfactory tissues>kidney. Acclimation to 18 g/L caused a significant induction in the stereoselective formation of R-MTSO in gill. In olfactory tissues, stereoselective (100%) formation of S-MTSO was observed and was unaltered by acclimation to hypersaline water. When specific transcripts were evaluated, salinity-acclimation increased FMO A in liver (up to 2-fold) and kidney (up to 3-fold) but not in olfactory tissues and gills. FMO B mRNA was significantly down-regulated in all tissues, and FMO C was unchanged by hypersaline acclimation. FMO B and C failed to correlate with any FMO catalytic activity, but FMO A mRNA expression linearly correlated to both FMO catalytic activities (MTSO and BZNO) in liver (r(2)=0.92 and r(2)=0.88) and kidney microsomes (r(2)=0.93 and r(2)=90). FMO A only correlated with MTSO activity in gills (r(2)=0.93). These results indicate unique tissue specific expression of FMO genes in salmonids and are consistent with salinity-mediated enhancement of thioether-containing pesticide bioactivation by FMO which may occur in liver or kidney after salinity acclimation.
Collapse
Affiliation(s)
- Ramon Lavado
- Department of Environmental Sciences, University of California, Riverside, 92521, USA.
| | | | | |
Collapse
|
25
|
Andreu V, Picó Y. Determination of currently used pesticides in biota. Anal Bioanal Chem 2012; 404:2659-81. [PMID: 22918537 DOI: 10.1007/s00216-012-6331-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/16/2012] [Accepted: 08/03/2012] [Indexed: 01/06/2023]
Abstract
Although pesticides enable control of the quantity and quality of farm products and food, and help to limit diseases in humans transmitted by insects and rodents, they are regarded as among the most dangerous environmental contaminants because of their tendency to bioaccumulate, and their mobility and long-term effects on living organisms. In the past decade, more analytical methods for accurate identification and quantitative determination of traces of pesticides in biota have been developed to improve our understanding of their risk to ecosystems and humans. Because sample preparation is often the rate-determining step in analysis of pesticides in biological samples, this review first discusses extraction and clean-up procedures, after a brief introduction to the classes, and the methods used in the analysis of pesticides in biota. The analytical methods, especially chromatographic techniques and immunoassay-based methods, are reviewed in detail, and their corresponding advantages, limitations, applications, and prospects are also discussed. This review mainly covers reports published since 2008 on methods for analysis of currently used pesticides in biota.
Collapse
Affiliation(s)
- Vicente Andreu
- Centro de Investigaciones sobre Desertificación -CIDE, Moncada, Valencia, Spain
| | | |
Collapse
|
26
|
Schlenk D, Lavado R, Loyo-Rosales JE, Jones W, Maryoung L, Riar N, Werner I, Sedlak D. Reconstitution studies of pesticides and surfactants exploring the cause of estrogenic activity observed in surface waters of the San Francisco Bay Delta. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9106-11. [PMID: 22881714 DOI: 10.1021/es3016759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
To evaluate the potential role of endocrine disruption in the decline of pelagic fishes in the San Francisco Bay Delta of California, various surface water samples were collected, extracted, and found to elicit estrogenic activity in laboratory fish. Chemical analysis of the estrogenic samples indicated 2 pesticides (bifenthrin, diuron), 2 alkyphenols (AP), and mixtures of 2 types of alkyphenol polyethoxylates (APEOs). Evaluation of estrogenic activity was further characterized by in vitro bioassays using rainbow trout hepatocytes (Oncorhynchus mykiss) and in vivo studies with Japanese medaka (Oryzias latipes). In the in vitro bioassays, hepatocytes exposed to the pesticides alone or in combination with the AP/APEO mixtures at concentrations observed in surface waters failed to show estrogenic activity (induction of vitelloginin mRNA). In the in vivo bioassays, medaka exposed to individual pesticides or to AP/APEO alone did not have elevated VTG at ambient concentrations. However, when the pesticides were combined with AP/APEOs in the 7-day exposure a significant increase in VTG was observed. Exposure to a 5-fold higher concentration of the AP/APEO mixture alone also significantly induced VTG. In contrast to earlier studies with permethrin, biotransformation of bifenthrin to estrogenic metabolites was not observed in medaka liver microsomes and cytochrome P450 was not induced with AP/APEO treatment. These results showed that mixtures of pesticides with significantly different modes of action and AP/APEOs at environmentally relevant concentrations may be associated with estrogenic activity measured in water extracts and feral fish that have been shown to be in population decline in the San Francisco Bay Delta.
Collapse
Affiliation(s)
- Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lavado R, Shi D, Schlenk D. Effects of salinity on the toxicity and biotransformation of L-selenomethionine in Japanese medaka (Oryzias latipes) embryos: mechanisms of oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 108:18-22. [PMID: 22265608 DOI: 10.1016/j.aquatox.2011.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 07/02/2011] [Indexed: 05/31/2023]
Abstract
Previous studies in mammals have shown that organoselenium depletes the cellular antioxidant, glutathione (GSH) due to activation of organoselenides to organoselenoxides by flavin-containing monooxygenases (FMO). Since FMO tends to be induced in euryhaline fish exposed to hypersaline conditions, the developmental toxicity of salinity and organoselenium was examined in the euryhaline fish Japanese medaka (Oryzias latipes). FMO activity, GSH, and selenium concentrations in Japanese medaka embryos were measured following a 24-h exposure to 0.05 mM L-selenomethionine (SeMet) under different saline conditions: freshwater (<0.5 dS/m), 4.2, 6.7, and 16.8 dS/m. Concentrations of GSH and the hatch-out ratio of the SeMet-treated embryos decreased in a salinity dependent manner. While SeMet treatment led to accumulation within embryos, selenium concentrations were unaltered by salinity treatment. Compared to freshwater-exposed embryos, microsomes from embryos at 6.7 and 16.8 dS/m had enhanced oxidation of SeMet to the selenoxide (10- and 14.3-fold, respectively), which correlated with GSH depletion. The results show that increased SeMet oxidation by hypersaline conditions with subsequent GSH depletion may play an important role in the developmental toxicity of selenomethionine.
Collapse
Affiliation(s)
- Ramon Lavado
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
28
|
Pal S, Kokushi E, Koyama J, Uno S, Ghosh AR. Histopathological alterations in gill, liver and kidney of common carp exposed to chlorpyrifos. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2012; 47:180-195. [PMID: 22375590 DOI: 10.1080/03601234.2012.632285] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Histopathological alterations in gill, liver and kidney of common carp, Cyprinus carpio, intoxicated with sub-lethal concentrations of chlorpyrifos (O,O,-diethyl-O-3,5,6-trichloro-2-pyridyl phosphorothioate) pesticide (1 and 100 μg/L) for a period of 14 days were analyzed under light microscope. Gill exhibited hyperplasia and hypertrophy of gill epithelium, blood congestion, dilation of marginal channel, epithelial lifting, lamellar fusion, lamellar disorganization, lamellar aneurysm, rupture of the lamellar epithelium, rupture of pillar cells and necrosis. Alterations in hepatocytes were more pronounced, including nuclear and cellular hypertrophy, cellular atrophy, irregular contour of cells and nucleus, cytoplasmic vacuolation, cytoplasmic and nuclear degeneration, cellular rupture, pyknotic nucleus, necrosis and melanomacrophages aggregations. Histopathological lesions in kidney were cellular and nuclear hypertrophy, narrowing of tubular lumen, cytoplasmic vacuolation, hyaline droplet degeneration, nuclear degeneration, occlusion of tubular lumen, tubular regeneration, dilation of glomerular capillaries, degeneration of glomerulus and hemorrhage in Bowman's space. The most significant conclusion drawn from this study was that with the increased concentration and duration the toxicosis of chlorpyrifos would be enhanced as shown through the analysis of mean assessment value (MAV) and degree of tissue changes (DTC) also.
Collapse
Affiliation(s)
- Sandipan Pal
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, Shimoarata, Kagoshima City, Japan
| | | | | | | | | |
Collapse
|
29
|
Hernández-Moreno D, Pérez-López M, Soler F, Gravato C, Guilhermino L. Effects of carbofuran on the sea bass (Dicentrarchus labrax L.): study of biomarkers and behaviour alterations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1905-1912. [PMID: 21864905 DOI: 10.1016/j.ecoenv.2011.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/26/2011] [Accepted: 07/21/2011] [Indexed: 05/31/2023]
Abstract
The objective of this study was to investigate the acute effects of the pesticide carbofuran on the sea bass (Dicentrarchus labrax) using parameters at different levels of biological organisation (swimming behaviour and several biomarkers) and possible relationships between alterations found in different effect criteria. In a bioassay, sea bass juveniles were individually exposed to different doses of carbofuran (31, 63, 125 and 250 μg/L) for 96 h. At the end of the bioassay, the swimming performance and 11 biomarkers were determined. Biomarkers were: hepatosomatic index (HSI), lipid peroxidation (LPO), reduced glutathione and the activities of the enzymes ethoxyresorufin O-deethylase (EROD), glutathione S-transferases, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, brain acetylcholinesterase (AChE) and muscle cholinesterases (ChE). After 96 h of exposure, carbofuran induced a decrease of the swimming velocity and inhibition of EROD activity at all concentrations tested, and inhibition of muscle ChE and brain AChE activities at 250 μg/L. No relevant alterations in any of the other tested parameters were found. These results show that carbofuran induced adverse effects on fish by interfering with neurofunction, capability of detoxication and swimming velocity. In addition, positive and significant correlations between the swimming velocity and (i) brain AChE activity, (ii) muscle ChE activity and (iii) EROD activity suggest that the inhibition of these enzymes may somehow be related to the behavioural changes observed. Since these functions are determinant for the survival and performance of the fish in the wild, the findings of the present study suggest that adverse effects may occur in populations exposed to carbofuran if a sufficient number of animals is affected.
Collapse
Affiliation(s)
- David Hernández-Moreno
- Toxicology Area, Veterinary College, University of Extremadura. Av. Universidad s/n, 10071 Cáceres, Spain.
| | | | | | | | | |
Collapse
|
30
|
Schlenk D, Lavado R. Impacts of climate change on hypersaline conditions of estuaries and xenobiotic toxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:78-82. [PMID: 22099348 DOI: 10.1016/j.aquatox.2011.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 05/31/2023]
Abstract
Climate change has had significant impacts on the hydrologic cycle of the planet. Of particular concern are estuarine environments, such as San Francisco Bay (USA) which is fed by diminishing snow pack runoff leading to gradual increases in salinity. Salinity enhances the acute toxicity of several agricultural chemicals in anadromous fish through augmented biochemical activation catalyzed by enzymes that are induced during hypersaline acclimation. This review discusses the mechanisms of the enhanced toxicity, the enzymes involved and the regulation of the enzymes by hypersaline conditions. Given the rapid changes taking place in the world's waterways, environmental modification of toxicological pathways should be a significant focus of the research community as the toxicity of multiple xenobiotics may be enhanced.
Collapse
Affiliation(s)
- Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States.
| | | |
Collapse
|
31
|
Lavado R, Maryoung LA, Schlenk D. Hypersalinity acclimation increases the toxicity of the insecticide phorate in coho salmon (Oncorhynchus kisutch). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:4623-9. [PMID: 21488666 PMCID: PMC3627486 DOI: 10.1021/es200451j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Previous studies in euryhaline fish have shown that acclimation to hypersaline environments enhances the toxicity of thioether organophosphate and carbamate pesticides. To better understand the potential mechanism of enhanced toxicity, the effects of the organophosphate insecticide phorate were evaluated in coho salmon (Oncorhynchus kisutch) maintained in freshwater (<0.5 g/L salinity) and 32 g/L salinity. The observed 96-h LC50 in freshwater fish (67.34 ± 3.41 μg/L) was significantly reduced to 2.07 ± 0.16 μg/L in hypersaline-acclimated fish. Because organophosphates often require bioactivation to elicit toxicity through acetylcholinesterase (AChE) inhibition, the in vitro biotransformation of phorate was evaluated in coho salmon maintained in different salinities in liver, gills, and olfactory tissues. Phorate sulfoxide was the predominant metabolite in each tissue but rates of formation diminished in a salinity-dependent manner. In contrast, formation of phorate-oxon (gill; olfactory tissues), phorate sulfone (liver), and phorate-oxon sulfoxide (liver; olfactory tissues) was significantly enhanced in fish acclimated to higher salinities. From previous studies, it was expected that phorate and phorate sulfoxide would be less potent AChE inhibitors than phorate-oxon, with phorate-oxon sulfoxide being the most potent of the compounds tested. This trend was confirmed in this study. In summary, these results suggest that differential expression and/or catalytic activities of Phase I enzymes may be involved to enhance phorate oxidative metabolism and subsequent toxicity of phorate to coho salmon under hypersaline conditions. The outcome may be enhanced fish susceptibility to anticholineterase oxon sulfoxides.
Collapse
Affiliation(s)
- Ramon Lavado
- Department of Environmental Sciences, University of California, Riverside, California 92521, USA.
| | | | | |
Collapse
|
32
|
Durieux EDH, Farver TB, Fitzgerald PS, Eder KJ, Ostrach DJ. Natural factors to consider when using acetylcholinesterase activity as neurotoxicity biomarker in Young-Of-Year striped bass (Morone saxatilis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:21-9. [PMID: 20582624 PMCID: PMC3056140 DOI: 10.1007/s10695-010-9412-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 06/14/2010] [Indexed: 05/22/2023]
Abstract
Acetylcholinesterase (AChE) activity is one of the most common biomarkers of neurotoxicity used in aquatic organisms. However, compared to its extensive use as biomarker, the effects of natural factors on AChE activity remain unclear especially in estuarine fishes. The aim of this study was to evaluate the effects of natural factors on AChE activity of striped bass (Morone saxatilis) juveniles. Brain AChE activity was measured in YOY (Young-Of-Year) individuals collected monthly from August 2007 to January 2008 at 12 different sites in the San Francisco Estuary system. The spatio-temporal variability of AChE was analyzed relative to water temperature and salinity as well as fish size. AChE activity was highly positively correlated with water temperature and to a lesser extent negatively with fish size while no relationship was detected with salinity. Taking into account these natural factors when using AChE as a biomarker will help to determine and understand the effects of neurotoxic contaminants on fish in estuarine systems.
Collapse
Affiliation(s)
- Eric D H Durieux
- Pathobiology, Conservation & Population Biology Laboratory, John Muir Institute of the Environment, Center for Watershed Sciences, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
33
|
Lavado R, Schlenk D. Microsomal biotransformation of chlorpyrifos, parathion and fenthion in rainbow trout (Oncorhynchus mykiss) and coho salmon (Oncorhynchus kisutch): mechanistic insights into interspecific differences in toxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:57-63. [PMID: 20947181 PMCID: PMC3005852 DOI: 10.1016/j.aquatox.2010.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 08/30/2010] [Accepted: 09/04/2010] [Indexed: 05/14/2023]
Abstract
Rainbow trout often serve as a surrogate species evaluating xenobiotic toxicity in cold-water species including other salmonids of the same genus, which are listed as threatened or endangered. Biotransformation tends to show species-specific patterns that influence susceptibility to xenobiotic toxicity, particularly organophosphate insecticides (OPs). To evaluate the contribution of biotransformation in the mechanism of toxicity of three organophosphate (phosphorothionate) insecticides, (chlorpyrifos, parathion and fenthion), microsomal bioactivation and detoxification pathways were measured in gills, liver and olfactory tissues in juvenile rainbow trout (Oncorhynchus mykiss) and compared to juvenile coho salmon (Oncorhynchus kisutch). Consistent with species differences in acute toxicity, significantly higher chlorpyrifos bioactivation was found in liver microsomes of rainbow trout (up to 2-fold) when compared with coho salmon. Although bioactivation to the oxon was observed, the catalytic efficiency towards chlorpyrifos dearylation (detoxification) was significantly higher in liver for both species (1.82 and 0.79 for trout and salmon, respectively) when compared to desulfuration (bioactivation). Bioactivation of parathion to paraoxon was significantly higher (up to 2.2-fold) than detoxification to p-nitrophenol in all tissues of both species with rates of conversion in rainbow trout, again significantly higher than coho salmon. Production of fenoxon and fenthion sulfoxides from fenthion was detected only in liver and gills of both species with activities in rainbow trout significantly higher than coho salmon. NADPH-dependent cleavage of fenthion was observed in all tissues, and was the only activity detected in olfactory tissues. These results indicate rainbow trout are more sensitive than coho salmon to the acute toxicity of OP pesticides because trout have higher catalytic rates of oxon formation. Thus, rainbow trout may serve as a conservative surrogate species for the evaluation of OP pesticides in coho salmon.
Collapse
Affiliation(s)
- Ramon Lavado
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
34
|
Wojaczyńska E, Wojaczyński J. Enantioselective synthesis of sulfoxides: 2000-2009. Chem Rev 2010; 110:4303-56. [PMID: 20415478 DOI: 10.1021/cr900147h] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Elzbieta Wojaczyńska
- Department of Organic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeze Wyspiańskiego 27, 50 370 Wrocław, Poland.
| | | |
Collapse
|
35
|
Nillos MG, Chajkowski S, Rimoldi JM, Gan J, Lavado R, Schlenk D. Stereoselective Biotransformation of Permethrin to Estrogenic Metabolites in Fish. Chem Res Toxicol 2010; 23:1568-75. [DOI: 10.1021/tx100167x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mae Grace Nillos
- Department of Environmental Sciences, University of California, Riverside, California 92521, Department of Chemistry, University of the Philippines, Miag-ao, Iloilo 5023, Philippines, and Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, Mississippi 38677
| | - Sarah Chajkowski
- Department of Environmental Sciences, University of California, Riverside, California 92521, Department of Chemistry, University of the Philippines, Miag-ao, Iloilo 5023, Philippines, and Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, Mississippi 38677
| | - John M. Rimoldi
- Department of Environmental Sciences, University of California, Riverside, California 92521, Department of Chemistry, University of the Philippines, Miag-ao, Iloilo 5023, Philippines, and Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, Mississippi 38677
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, California 92521, Department of Chemistry, University of the Philippines, Miag-ao, Iloilo 5023, Philippines, and Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, Mississippi 38677
| | - Ramon Lavado
- Department of Environmental Sciences, University of California, Riverside, California 92521, Department of Chemistry, University of the Philippines, Miag-ao, Iloilo 5023, Philippines, and Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, Mississippi 38677
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, Department of Chemistry, University of the Philippines, Miag-ao, Iloilo 5023, Philippines, and Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, Mississippi 38677
| |
Collapse
|