1
|
Lu A, Sikes KJ, Guo P, Huard M, Green S, Santangelo K, Singer J, Groesbeck A, Tashman S, Narkar VA, Huard J. Muscle-specific ERRγ activation mitigates muscle atrophy after ACL injury. FASEB J 2025; 39:e70409. [PMID: 39964243 DOI: 10.1096/fj.202402021r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/20/2024] [Accepted: 02/10/2025] [Indexed: 05/10/2025]
Abstract
Anterior cruciate ligament (ACL) injury adversely affects skeletal muscle, leading to muscle atrophy and weakness, significantly impacting clinical outcomes. This study aimed to determine if estrogen-related receptor gamma (ERRγ) overexpression in skeletal muscle could mitigate muscle atrophy after ACL injury. An animal model with selective overexpression of ERRγ in skeletal muscle (ERR-gamma transgenic mice, TG) and WT control mice were used for this study. All the mice received a mechanical ACL rupture and were euthanized at 4- and 8-week post-injury. Muscle histology, atrophy, and function were evaluated and compared between the TG and WT mice. Muscle-specific ERRγ activation in TG mice demonstrated a reduction in muscle fiber atrophy, which consequently ameliorated muscle function loss post-ACL rupture. Less fibrogenic cellular expansion and muscle fibrosis were observed after ACL injury in TG mice compared to WT mice. Both male and female TG mice can maintain their muscle function 4 weeks after ACL rupture with the muscle function of female TG mice declining 8 weeks post-injury. In vivo results revealed that ERRγ activation decreased fibrogenic factors, P65, and myostatin expression, prevented the functional loss of muscle progenitor cells (MPCs), and increased CD31 and VEGF expression. These results suggest that overexpression ERRγ in skeletal muscle has a beneficial effect in preventing muscle atrophy and fibrosis after ACL rupture. This study's results will help to develop a novel rehabilitation approach that can significantly improve outcomes after ACL injury.
Collapse
Affiliation(s)
- Aiping Lu
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Katie J Sikes
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Ping Guo
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Matthieu Huard
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Shelbi Green
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Kelly Santangelo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Jacob Singer
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Ashley Groesbeck
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Scott Tashman
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Vihang A Narkar
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Johnny Huard
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| |
Collapse
|
2
|
Cheng Y, Lin S, Cao Z, Yu R, Fan Y, Chen J. The role of chronic low-grade inflammation in the development of sarcopenia: Advances in molecular mechanisms. Int Immunopharmacol 2025; 147:114056. [PMID: 39799736 DOI: 10.1016/j.intimp.2025.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
With the exacerbation of global population aging, sarcopenia has become an increasingly recognized public health issue. Sarcopenia, characterized by a progressive decline in skeletal muscle mass, strength, and function, significantly impacts the quality of life in the elderly. Herein, we explore the role of chroniclow-gradeinflammation in the development of sarcopenia and its underlying molecular mechanisms, including chronic inflammation-associated signaling pathways, immunosenescence, obesity and lipid infiltration, gut microbiota dysbiosis and intestinal barrier disruption, and the decline of satellite cells. The interplay and interaction of these molecular mechanisms provide new perspectives on the complexity of the pathogenesis of sarcopenia and offer a theoretical foundation for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Ying Cheng
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Shangjin Lin
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Ziyi Cao
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Runzhi Yu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Yongqian Fan
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China.
| | - Jie Chen
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China.
| |
Collapse
|
3
|
Runyan CE, Luo L, Welch LC, Lu Z, Chen F, Schleck MJ, Nafikova RA, Grant RA, Aillon RP, Senkow KJ, Bunyan EG, Plodzeen WT, Abdala-Valencia H, Weiss C, Dada LA, Thorp EB, Sznajder JI, Chandel NS, Misharin AV, Budinger GRS. Tissue-resident skeletal muscle macrophages promote recovery from viral pneumonia-induced sarcopenia in normal aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.631996. [PMID: 39868236 PMCID: PMC11760773 DOI: 10.1101/2025.01.09.631996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Sarcopenia, which diminishes lifespan and healthspan in the elderly, is commonly exacerbated by viral pneumonia, including influenza and COVID-19. In a study of influenza A pneumonia in mice, young mice fully recovered from sarcopenia, while older mice did not. We identified a population of tissue-resident skeletal muscle macrophages that form a spatial niche with satellite cells and myofibers in young mice but are lost with age. Mice with a gain-of-function mutation in the Mertk receptor maintained this macrophage-myofiber interaction during aging and fully recovered from influenza-induced sarcopenia. In contrast, deletion of Mertk in macrophages or loss of Cx3cr1 disrupted this niche, preventing muscle regeneration. Heterochronic parabiosis did not restore the niche in old mice. These findings suggest that age-related loss of Mertk in muscle tissue-resident macrophages disrupts the cellular signaling necessary for muscle regeneration after viral pneumonia, offering a potential target to mitigate sarcopenia in aging.
Collapse
Affiliation(s)
- Constance E Runyan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Lucy Luo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Lynn C Welch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Ziyan Lu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Fei Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Maxwell J Schleck
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Radmila A Nafikova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Rogan A Grant
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Raul Piseaux Aillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Karolina J Senkow
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Elsie G Bunyan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - William T Plodzeen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Craig Weiss
- Department of Neuroscience, Northwestern University Feinberg School of Medicine. Chicago, IL, USA
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| |
Collapse
|
4
|
Wu J, Tang J, Huang D, Wang Y, Zhou E, Ru Q, Xu G, Chen L, Wu Y. Effects and mechanisms of APP and its cleavage product Aβ in the comorbidity of sarcopenia and Alzheimer's disease. Front Aging Neurosci 2024; 16:1482947. [PMID: 39654807 PMCID: PMC11625754 DOI: 10.3389/fnagi.2024.1482947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Sarcopenia and AD are both classic degenerative diseases, and there is growing epidemiological evidence of their comorbidity with aging; however, the mechanisms underlying the biology of their commonality have not yet been thoroughly investigated. APP is a membrane protein that is expressed in tissues and is expressed not only in the nervous system but also in the NMJ and muscle. Deposition of its proteolytic cleavage product, Aβ, has been described as a central component of AD pathogenesis. Recent studies have shown that excessive accumulation and aberrant expression of APP in muscle lead to pathological muscle lesions, but the pathogenic mechanism by which APP and its proteolytic cleavage products act in skeletal muscle is less well understood. By summarizing and analyzing the literature concerning the role, pathogenicity and pathological mechanisms of APP and its cleavage products in the nervous system and muscles, we aimed to explore the intrinsic pathological mechanisms of myocerebral comorbidities and to provide new perspectives and theoretical foundations for the prevention and treatment of AD and sarcopenia comorbidities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
5
|
Grinstein M, Tsai SL, Montoro D, Freedman BR, Dingwall HL, Villaseñor S, Zou K, Sade-Feldman M, Tanaka MJ, Mooney DJ, Capellini TD, Rajagopal J, Galloway JL. A latent Axin2 +/Scx + progenitor pool is the central organizer of tendon healing. NPJ Regen Med 2024; 9:30. [PMID: 39420021 PMCID: PMC11487078 DOI: 10.1038/s41536-024-00370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
A tendon's ordered extracellular matrix (ECM) is essential for transmitting force but is also highly prone to injury. How tendon cells embedded within and surrounding this dense ECM orchestrate healing is not well understood. Here, we identify a specialized quiescent Scx+/Axin2+ population in mouse and human tendons that initiates healing and is a major functional contributor to repair. Axin2+ cells express stem cell markers, expand in vitro, and have multilineage differentiation potential. Following tendon injury, Axin2+-descendants infiltrate the injury site, proliferate, and differentiate into tenocytes. Transplantation assays of Axin2-labeled cells into injured tendons reveal their dual capacity to significantly proliferate and differentiate yet retain their Axin2+ identity. Specific loss of Wnt secretion in Axin2+ or Scx+ cells disrupts their ability to respond to injury, severely compromising healing. Our work highlights an unusual paradigm, wherein specialized Axin2+/Scx+ cells rely on self-regulation to maintain their identity as key organizers of tissue healing.
Collapse
Affiliation(s)
- Mor Grinstein
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Stephanie L Tsai
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Daniel Montoro
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Heather L Dingwall
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Steffany Villaseñor
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ken Zou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Moshe Sade-Feldman
- The Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Miho J Tanaka
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
6
|
Koung Ngeun S, Shimizu M, Kaneda M. Injection of Adipose-Derived Mesenchymal Stem/Stromal Cells Suppresses Muscle Atrophy Markers and Adipogenic Markers in a Rat Fatty Muscle Degeneration Model. Curr Issues Mol Biol 2024; 46:7877-7894. [PMID: 39194684 DOI: 10.3390/cimb46080467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Fatty muscle degeneration and muscle atrophy have not been successfully treated due to their irreversible pathology. This study evaluated the efficacy of rat adipose-derived mesenchymal stem/stromal cells (ADP MSCs) in treating fatty muscle degeneration (FD). A total of 36 rats were divided into three groups: the control (C) group (n = 12); FD model group, generated by sciatic nerve crushing (n = 12); and the group receiving ADP MSC treatment for FD (FD+MSCs) (n = 12). In Group FD+MSCs, ADP MSCs were injected locally into the gastrocnemius muscle one week after the FD model was created (Day 8). On Day 22 (n = 18) and Day 43 (n = 18), muscle morphology, histopathology, and molecular analyses (inflammation, muscle atrophy, adipocytes, and muscle differentiation markers) were performed. In Group FD+MSCs, the formation of immature myofibers was observed on Day 22, and mitigation of fatty degeneration and muscle atrophy progression was evident on Day 43. Gene expression of muscle atrophy markers (FBXO32, TRIM63, and FOXO1) and adipogenic markers (ADIPOQ, PPARG, FABP4, and PDGFRA) was lower in Group FD+MSCs than Group FD on Day 43. ADP MSCs induce anti-inflammatory effects, inhibit fat accumulation, and promote muscle regeneration, highlighting their potential as promising therapy for FD and atrophy.
Collapse
Affiliation(s)
- Sai Koung Ngeun
- Department of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu 183-8509, Tokyo, Japan
| | - Miki Shimizu
- Department of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu 183-8509, Tokyo, Japan
| | - Masahiro Kaneda
- Department of Veterinary Anatomy, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu 183-8509, Tokyo, Japan
| |
Collapse
|
7
|
Cockrell C, Vodovotz Y, Zamora R, An G. The Wound Environment Agent-based Model (WEABM): a digital twin platform for characterization and complex therapeutic discovery for volumetric muscle loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.595972. [PMID: 38895374 PMCID: PMC11185759 DOI: 10.1101/2024.06.04.595972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Volumetric Muscle Loss (VML) injuries are characterized by significant loss of muscle mass, usually due to trauma or surgical resection, often with a residual open wound in clinical settings and subsequent loss of limb function due to the replacement of the lost muscle mass with non-functional scar. Being able to regrow functional muscle in VML injuries is a complex control problem that needs to override robust, evolutionarily conserved healing processes aimed at rapidly closing the defect in lieu of restoration of function. We propose that discovering and implementing this complex control can be accomplished by the development of a Medical Digital Twin of VML. Digital Twins (DTs) are the subject of a recent report from the National Academies of Science, Engineering and Medicine (NASEM), which provides guidance as to the definition, capabilities and research challenges associated with the development and implementation of DTs. Specifically, DTs are defined as dynamic computational models that can be personalized to an individual real world "twin" and are connected to that twin via an ongoing data link. DTs can be used to provide control on the real-world twin that is, by the ongoing data connection, adaptive. We have developed an anatomic scale cell-level agent-based model of VML termed the Wound Environment Agent Based Model (WEABM) that can serve as the computational specification for a DT of VML. Simulations of the WEABM provided fundamental insights into the biology of VML, and we used the WEABM in our previously developed pipeline for simulation-based Deep Reinforcement Learning (DRL) to train an artificial intelligence (AI) to implement a robust generalizable control policy aimed at increasing the healing of VML with functional muscle. The insights into VML obtained include: 1) a competition between fibrosis and myogenesis due to spatial constraints on available edges of intact myofibrils to initiate the myoblast differentiation process, 2) the need to biologically "close" the wound from atmospheric/environmental exposure, which represents an ongoing inflammatory stimulus that promotes fibrosis and 3) that selective, multimodal and adaptive local mediator-level control can shift the trajectory of healing away from a highly evolutionarily beneficial imperative to close the wound via fibrosis. Control discovery with the WEABM identified the following design principles: 1) multimodal adaptive tissue-level mediator control to mitigate pro-inflammation as well as the pro-fibrotic aspects of compensatory anti-inflammation, 2) tissue-level mediator manipulation to promote myogenesis, 3) the use of an engineered extracellular matrix (ECM) to functionally close the wound and 4) the administration of an anti-fibrotic agent focused on the collagen-producing function of fibroblasts and myofibroblasts. The WEABM-trained DRL AI integrates these control modalities and provides design specifications for a potential device that can implement the required wound sensing and intervention delivery capabilities needed. The proposed cyber-physical system integrates the control AI with a physical sense-and-actuate device that meets the tenets of DTs put forth in the NASEM report and can serve as an example schema for the future development of Medical DTs.
Collapse
Affiliation(s)
- Chase Cockrell
- Department of Surgery, University of Vermont Larner College of Medicine
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh
- McGowan Institute of Regenerative Medicine, University of Pittsburgh
| | | | - Gary An
- Department of Surgery, University of Vermont Larner College of Medicine
| |
Collapse
|
8
|
Dreher SI, Grubba P, von Toerne C, Moruzzi A, Maurer J, Goj T, Birkenfeld AL, Peter A, Loskill P, Hauck SM, Weigert C. IGF1 promotes human myotube differentiation toward a mature metabolic and contractile phenotype. Am J Physiol Cell Physiol 2024; 326:C1462-C1481. [PMID: 38690930 PMCID: PMC11371365 DOI: 10.1152/ajpcell.00654.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 05/03/2024]
Abstract
Skeletal muscle mediates the beneficial effects of exercise, thereby improving insulin sensitivity and reducing the risk for type 2 diabetes. Current human skeletal muscle models in vitro are incapable of fully recapitulating its physiological functions especially muscle contractility. By supplementation of insulin-like growth factor 1 (IGF1), a growth factor secreted by myofibers in vivo, we aimed to overcome these limitations. We monitored the differentiation process starting from primary human CD56-positive myoblasts in the presence/absence of IGF1 in serum-free medium in daily collected samples for 10 days. IGF1-supported differentiation formed thicker multinucleated myotubes showing physiological contraction upon electrical pulse stimulation (EPS) following day 6. Myotubes without IGF1 were almost incapable of contraction. IGF1 treatment shifted the proteome toward skeletal muscle-specific proteins that contribute to myofibril and sarcomere assembly, striated muscle contraction, and ATP production. Elevated PPARGC1A, MYH7, and reduced MYH1/2 suggest a more oxidative phenotype further demonstrated by higher abundance of proteins of the respiratory chain and elevated mitochondrial respiration. IGF1-treatment also upregulated glucose transporter (GLUT)4 and increased insulin-dependent glucose uptake compared with myotubes differentiated without IGF1. To conclude, addition of IGF1 to serum-free medium significantly improves the differentiation of human myotubes that showed enhanced myofibril formation, response to electrical pulse stimulation, oxidative respiratory capacity, and glucose metabolism overcoming limitations of previous standards. This novel protocol enables investigation of muscular exercise on a molecular level.NEW & NOTEWORTHY Human skeletal muscle models are highly valuable to study how exercise prevents type 2 diabetes without invasive biopsies. Current models did not fully recapitulate the function of skeletal muscle especially during exercise. By supplementing insulin-like growth factor 1 (IGF1), the authors developed a functional human skeletal muscle model characterized by inducible contractility and increased oxidative and insulin-sensitive metabolism. The novel protocol overcomes the limitations of previous standards and enables investigation of exercise on a molecular level.
Collapse
Affiliation(s)
- Simon I Dreher
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Paul Grubba
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Christine von Toerne
- Metabolomics and Proteomics Core Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alessia Moruzzi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jennifer Maurer
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Goj
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München, University of Tübingen, Tübingen, Germany
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Peter
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München, University of Tübingen, Tübingen, Germany
| | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cora Weigert
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München, University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Ishido M. Cyclin D3 Colocalizes with Myogenin and p21 in Skeletal Muscle Satellite Cells during Early-Stage Functional Overload. Acta Histochem Cytochem 2023; 56:111-119. [PMID: 38318102 PMCID: PMC10838632 DOI: 10.1267/ahc.23-00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/09/2023] [Indexed: 02/07/2024] Open
Abstract
Myogenic cell differentiation is modulated by multiple regulatory factors, such as myogenin, p21, and cyclin D3 during myogenesis in vitro. It is also recognized that myogenin and p21 play important roles in regulating muscle satellite cell (SC) differentiation during overload-induced muscle hypertrophy in vivo. However, the expression patterns and functional role of cyclin D3 in the progress of muscle hypertrophy remain unclear. Thus, the present study investigated cyclin D3 expression in skeletal muscles during early-stage functional overload. Plantaris muscles were exposed to functional overload due to ablation of the gastrocnemius and soleus muscles. As a result, cyclin D3 expression was detected in the nuclei of SCs but not in myonuclei on day 1 after surgery. Cyclin D3 expression, after functional overload, gradually increased, reaching a maximum on day 7 along with myogenin expression. Moreover, in response to the functional overload, cyclin D3 was expressed simultaneously with myogenin and p21 in SC nuclei. Therefore, the present study suggests that cyclin D3 with myogenin and p21 may interactively regulate SC differentiation during early-stage functional overload.
Collapse
Affiliation(s)
- Minenori Ishido
- Section for Health-related Physical Education, Division of Human Sciences, Faculty of Engineering, Osaka Institute of Technology, Osaka 535–8585, Japan
| |
Collapse
|
10
|
Sharma G, Banerjee R, Srivastava S. Molecular Mechanisms and the Interplay of Important Chronic Obstructive Pulmonary Disease Biomarkers Reveals Novel Therapeutic Targets. ACS OMEGA 2023; 8:46376-46389. [PMID: 38107961 PMCID: PMC10719921 DOI: 10.1021/acsomega.3c07480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a progressive, age-dependent, and unmet chronic inflammatory disease of the peripheral airways, leading to difficulty in exhalation. Several biomarkers have been tested in general towards the resolution for a long time, but no apparent success was achieved. Ongoing therapies of COPD have only symptomatic relief but no cure. Reactive oxygen species (ROS) are highly reactive species which include oxygen radicals and nonradical derivatives, and are the prominent players in COPD. They are produced as natural byproducts of cellular metabolism, but their levels can vary due to exposure to indoor air pollution, occupational pollution, and environmental pollutants such as cigarette smoke. In COPD, the lungs are continuously exposed to high levels of ROS thus leading to oxidative stress. ROS can cause damage to cells, proteins, lipids, and DNA which further contributes to the chronic inflammation in COPD and exacerbates the disease condition. Excessive ROS production can overwhelm cellular antioxidant systems and act as signaling molecules that regulate cellular processes, including antioxidant defense mechanisms involving glutathione and sirtuins which further leads to cellular apoptosis, cellular senescence, inflammation, and sarcopenia. In this review paper, we focused on COPD from different perspectives including potential markers and different cellular processes such as apoptosis, cellular senescence, inflammation, sirtuins, and sarcopenia, and tried to connect the dots between them so that novel therapeutic strategies to evaluate and target the possible underlying mechanisms in COPD could be explored.
Collapse
Affiliation(s)
- Gautam Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | | | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
11
|
Yang Y, Wu J, Liu W, Zhao Y, Chen H. The Function and Regulation Mechanism of Non-Coding RNAs in Muscle Development. Int J Mol Sci 2023; 24:14534. [PMID: 37833983 PMCID: PMC10572267 DOI: 10.3390/ijms241914534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023] Open
Abstract
Animal skeletal muscle growth is regulated by a complex molecular network including some non-coding RNAs (ncRNAs). In this paper, we review the non-coding RNAs related to the growth and development of common animal skeletal muscles, aiming to provide a reference for the in-depth study of the role of ncRNAs in the development of animal skeletal muscles, and to provide new ideas for the improvement of animal production performance.
Collapse
Affiliation(s)
- Yaling Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| | - Jian Wu
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Academy of Agricultural Sciences of Jilin Province, Changchun 136100, China;
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| | - Yumin Zhao
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Academy of Agricultural Sciences of Jilin Province, Changchun 136100, China;
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| |
Collapse
|
12
|
Zhang S, Yang F, Huang Y, He L, Li Y, Wan YCE, Ding Y, Chan KM, Xie T, Sun H, Wang H. ATF3 induction prevents precocious activation of skeletal muscle stem cell by regulating H2B expression. Nat Commun 2023; 14:4978. [PMID: 37591871 PMCID: PMC10435463 DOI: 10.1038/s41467-023-40465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
Skeletal muscle stem cells (also called satellite cells, SCs) are important for maintaining muscle tissue homeostasis and damage-induced regeneration. However, it remains poorly understood how SCs enter cell cycle to become activated upon injury. Here we report that AP-1 family member ATF3 (Activating Transcription Factor 3) prevents SC premature activation. Atf3 is rapidly and transiently induced in SCs upon activation. Short-term deletion of Atf3 in SCs accelerates acute injury-induced regeneration, however, its long-term deletion exhausts the SC pool and thus impairs muscle regeneration. The Atf3 loss also provokes SC activation during voluntary exercise and enhances the activation during endurance exercise. Mechanistically, ATF3 directly activates the transcription of Histone 2B genes, whose reduction accelerates nucleosome displacement and gene transcription required for SC activation. Finally, the ATF3-dependent H2B expression also prevents genome instability and replicative senescence in SCs. Therefore, this study has revealed a previously unknown mechanism for preserving the SC population by actively suppressing precocious activation, in which ATF3 is a key regulator.
Collapse
Affiliation(s)
- Suyang Zhang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, China
| | - Feng Yang
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yile Huang
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangqiang He
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuying Li
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi Ching Esther Wan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518172, China
| | - Yingzhe Ding
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518172, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, China.
| |
Collapse
|
13
|
Duran P, Sesillo FB, Cook M, Burnett L, Menefee SA, Do E, French S, Zazueta-Damian G, Dzieciatkowska M, Saviola AJ, Shah MM, Sanvictores C, Osborn KG, Hansen KC, Shtrahman M, Christman KL, Alperin M. Proregenerative extracellular matrix hydrogel mitigates pathological alterations of pelvic skeletal muscles after birth injury. Sci Transl Med 2023; 15:eabj3138. [PMID: 37531414 PMCID: PMC10460616 DOI: 10.1126/scitranslmed.abj3138] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
Pelvic floor disorders, including pelvic organ prolapse and urinary and fecal incontinence, affect millions of women globally and represent a major public health concern. Pelvic floor muscle (PFM) dysfunction has been identified as one of the leading risk factors for the development of these morbid conditions. Childbirth, specifically vaginal delivery, has been recognized as the most important potentially modifiable risk factor for PFM injury; however, the precise mechanisms of PFM dysfunction after parturition remain elusive. In this study, we demonstrated that PFMs exhibit atrophy and fibrosis in parous women with symptomatic pelvic organ prolapse. These pathological alterations were recapitulated in a preclinical rat model of simulated birth injury (SBI). The transcriptional signature of PFMs after injury demonstrated an impairment in muscle anabolism, persistent expression of genes that promote extracellular matrix (ECM) deposition, and a sustained inflammatory response. We also evaluated the administration of acellular injectable skeletal muscle ECM hydrogel for the prevention of these pathological alterations. Treatment of PFMs with the ECM hydrogel either at the time of birth injury or 4 weeks after injury mitigated PFM atrophy and fibrosis. By evaluating gene expression, we demonstrated that these changes are mainly driven by the hydrogel-induced enhancement of endogenous myogenesis, ECM remodeling, and modulation of the immune response. This work furthers our understanding of PFM birth injury and demonstrates proof of concept for future investigations of proregenerative biomaterial approaches for the treatment of injured pelvic soft tissues.
Collapse
Affiliation(s)
- Pamela Duran
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Francesca Boscolo Sesillo
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Mark Cook
- Department of Integrative, Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lindsey Burnett
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Shawn A. Menefee
- Department of Obstetrics and Gynecology, Division of Female Pelvic Medicine and Reconstructive Surgery, Kaiser Permanente, San Diego, CA 92110, USA
| | - Emmy Do
- Department of Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Saya French
- Department of Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Gisselle Zazueta-Damian
- Department of Obstetrics and Gynecology, Division of Female Pelvic Medicine and Reconstructive Surgery, Kaiser Permanente, San Diego, CA 92110, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Manali M. Shah
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Clyde Sanvictores
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Kent G. Osborn
- Center for Veterinary Sciences and Comparative Medicine, Division of Comparative Pathology and Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Matthew Shtrahman
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Karen L. Christman
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Marianna Alperin
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Cao H, Du T, Li C, Wu L, Liu J, Guo Y, Li X, Yang G, Jin J, Shi X. MicroRNA-668-3p inhibits myoblast proliferation and differentiation by targeting Appl1. BMC Genomics 2023; 24:415. [PMID: 37488537 PMCID: PMC10364376 DOI: 10.1186/s12864-023-09431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Skeletal muscle is the largest tissue in the body, and it affects motion, metabolism and homeostasis. Skeletal muscle development comprises myoblast proliferation, fusion and differentiation to form myotubes, which subsequently form mature muscle fibres. This process is strictly regulated by a series of molecular networks. Increasing evidence has shown that noncoding RNAs, especially microRNAs (miRNAs), play vital roles in regulating skeletal muscle growth. Here, we showed that miR-668-3p is highly expressed in skeletal muscle. METHODS Proliferating and differentiated C2C12 cells were transfected with miR-668-3p mimics and/or inhibitor, and the mRNA and protein levels of its target gene were evaluated by RT‒qPCR and Western blotting analysis. The targeting of Appl1 by miR-668-3p was confirmed by dual luciferase assay. The interdependence of miR-668-3p and Appl1 was verified by cotransfection of C2C12 cells. RESULTS Our data reveal that miR-668-3p can inhibit myoblast proliferation and myogenic differentiation. Phosphotyrosine interacting with PH domain and leucine zipper 1 (Appl1) is a target gene of miR-668-3p, and it can promote myoblast proliferation and differentiation by activating the p38 MAPK pathway. Furthermore, the inhibitory effect of miR-668-3p on myoblast cell proliferation and myogenic differentiation could be rescued by Appl1. CONCLUSION Our results indicate a new mechanism by which the miR-668-3p/Appl1/p38 MAPK pathway regulates skeletal muscle development.
Collapse
Affiliation(s)
- Haigang Cao
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianning Du
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Microbial Research Institute of Liaoning Province, Chaoyang, Liaoning, China
| | - Chenchen Li
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingling Wu
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jieming Liu
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Guo
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Li
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xin'e Shi
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
15
|
Pang KT, Loo LSW, Chia S, Ong FYT, Yu H, Walsh I. Insight into muscle stem cell regeneration and mechanobiology. Stem Cell Res Ther 2023; 14:129. [PMID: 37173707 PMCID: PMC10176686 DOI: 10.1186/s13287-023-03363-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Stem cells possess the unique ability to differentiate into specialized cell types. These specialized cell types can be used for regenerative medicine purposes such as cell therapy. Myosatellite cells, also known as skeletal muscle stem cells (MuSCs), play important roles in the growth, repair, and regeneration of skeletal muscle tissues. However, despite its therapeutic potential, the successful differentiation, proliferation, and expansion processes of MuSCs remain a significant challenge due to a variety of factors. For example, the growth and differentiation of MuSCs can be greatly influenced by actively replicating the MuSCs microenvironment (known as the niche) using mechanical forces. However, the molecular role of mechanobiology in MuSC growth, proliferation, and differentiation for regenerative medicine is still poorly understood. In this present review, we comprehensively summarize, compare, and critically analyze how different mechanical cues shape stem cell growth, proliferation, differentiation, and their potential role in disease development (Fig. 1). The insights developed from the mechanobiology of stem cells will also contribute to how these applications can be used for regenerative purposes using MuSCs.
Collapse
Affiliation(s)
- Kuin Tian Pang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technology University, 62 Nanyang Drive, N1.2-B3, Singapore, 637459, Singapore.
| | - Larry Sai Weng Loo
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sean Chia
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Francesca Yi Teng Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hanry Yu
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- CAMP, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Interdisplinary Science and Engineering Program, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
16
|
Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Understanding the relationship between cancer associated cachexia and hypoxia-inducible factor-1. Biomed Pharmacother 2023; 163:114802. [PMID: 37146421 DOI: 10.1016/j.biopha.2023.114802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
Cancer-associated cachexia (CAC) is a multifactorial disorder characterized by an unrestricted loss of body weight as a result of muscle and adipose tissue atrophy. Cachexia is influenced by several factors, including decreased metabolic activity and food intake, an imbalance between energy uptake and expenditure, excessive catabolism, and inflammation. Cachexia is highly associated with all types of cancers responsible for more than half of cancer-related mortalities worldwide. In healthy individuals, adipose tissue significantly regulates energy balance and glucose homeostasis. However, in metastatic cancer patients, CAC occurs mainly because of an imbalance between muscle protein synthesis and degradation which are organized by certain extracellular ligands and associated signaling pathways. Under hypoxic conditions, hypoxia-inducible factor-1 (HIF-1α) accumulated and translocated to the nucleus and activate numerous genes involved in cell survival, invasion, angiogenesis, metastasis, metabolic reprogramming, and cancer stemness. On the other hand, the ubiquitination proteasome pathway is inhibited during low O2 levels which promote muscle wasting in cancer patients. Therefore, understanding the mechanism of the HIF-1 pathway and its metabolic adaptation to biomolecules is important for developing a novel therapeutic method for cancer and cachexia therapy. Even though many HIF inhibitors are already in a clinical trial, their mechanism of action remains unknown. With this background, this review summarizes the basic concepts of cachexia, the role of inflammatory cytokines, pathways connected with cachexia with special reference to the HIF-1 pathway and its regulation, metabolic changes, and inhibitors of HIFs.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea; University of Science & Technology (UST), KIOM campus, Korean Convergence Medicine Major, Daejeon 34054, Republic of Korea.
| |
Collapse
|
17
|
Atmakuru PS, Dhawan J. The cilium-centrosome axis in coupling cell cycle exit and cell fate. J Cell Sci 2023; 136:308872. [PMID: 37144419 DOI: 10.1242/jcs.260454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The centrosome is an evolutionarily conserved, ancient organelle whose role in cell division was first described over a century ago. The structure and function of the centrosome as a microtubule-organizing center, and of its extracellular extension - the primary cilium - as a sensory antenna, have since been extensively studied, but the role of the cilium-centrosome axis in cell fate is still emerging. In this Opinion piece, we view cellular quiescence and tissue homeostasis from the vantage point of the cilium-centrosome axis. We focus on a less explored role in the choice between distinct forms of mitotic arrest - reversible quiescence and terminal differentiation, which play distinct roles in tissue homeostasis. We outline evidence implicating the centrosome-basal body switch in stem cell function, including how the cilium-centrosome complex regulates reversible versus irreversible arrest in adult skeletal muscle progenitors. We then highlight exciting new findings in other quiescent cell types that suggest signal-dependent coupling of nuclear and cytoplasmic events to the centrosome-basal body switch. Finally, we propose a framework for involvement of this axis in mitotically inactive cells and identify future avenues for understanding how the cilium-centrosome axis impacts central decisions in tissue homeostasis.
Collapse
Affiliation(s)
- Priti S Atmakuru
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Li H, Chen X, Zuo Z, Wang J, Guo Y. Identification and Characterization of Peptides from Bovine Collagen Hydrolysates that Promote Myogenic Cell Proliferation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4876-4889. [PMID: 36917229 DOI: 10.1021/acs.jafc.2c08929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, bovine collagen hydrolysate was purified via a series of chromatograms, and the peptides with the highest activity for promoting myoblast proliferation were identified by LC-MS-MS. It was demonstrated that the peptide GDAGPPGPAGPAGPPGPIG (hydroxylation) could promote C2C12 proliferation (+18.5% ± 0.04, P < 0.05). The certain peptide was capable of regulating the myogenic cell cycle and inhibiting myogenic cell apoptosis. By combining molecular docking, quantitative real-time PCR, and metabonomics, we suggested that the peptide GDAGPPGPAGPAGPPGPIG (hydroxylation) might bind to FGFR1 and affect the expression of genes downstream of FGFR1 and influence protein synthesis to promote myoblast proliferation. The above results showed that the peptides isolated in this study have the potential to alleviate sarcopenia in the elderly.
Collapse
Affiliation(s)
- Hanfeng Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Xin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Zhijie Zuo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| |
Collapse
|
19
|
Lahmann I, Birchmeier C. Visualizing MyoD Oscillations in Muscle Stem Cells. Methods Mol Biol 2023; 2640:259-276. [PMID: 36995601 DOI: 10.1007/978-1-0716-3036-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The bHLH transcription factor MyoD is a master regulator of myogenic differentiation, and its sustained expression in fibroblasts suffices to differentiate them into muscle cells. MyoD expression oscillates in activated muscle stem cells of developing, postnatal and adult muscle under various conditions: when the stem cells are dispersed in culture, when they remain associated with single muscle fibers, or when they reside in muscle biopsies. The oscillatory period is around 3 h and thus much shorter than the cell cycle or circadian rhythm. Unstable MyoD oscillations and long periods of sustained MyoD expression are observed when stem cells undergo myogenic differentiation. The oscillatory expression of MyoD is driven by the oscillatory expression of the bHLH transcription factor Hes1 that periodically represses MyoD. Ablation of the Hes1 oscillator interferes with stable MyoD oscillations and leads to prolonged periods of sustained MyoD expression. This interferes with the maintenance of activated muscle stem cells and impairs muscle growth and repair. Thus, oscillations of MyoD and Hes1 control the balance between the proliferation and differentiation of muscle stem cells. Here, we describe time-lapse imaging methods using luciferase reporters, which can monitor dynamic MyoD gene expression in myogenic cells.
Collapse
Affiliation(s)
- Ines Lahmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Developmental Biology/Signal Transduction Group, Berlin, Germany
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Birchmeier
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Developmental Biology/Signal Transduction Group, Berlin, Germany.
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
20
|
Inflammaging: Implications in Sarcopenia. Int J Mol Sci 2022; 23:ijms232315039. [PMID: 36499366 PMCID: PMC9740553 DOI: 10.3390/ijms232315039] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
In a world in which life expectancy is increasing, understanding and promoting healthy aging becomes a contemporary demand. In the elderly, a sterile, chronic and low-grade systemic inflammation known as "inflammaging" is linked with many age-associated diseases. Considering sarcopenia as a loss of strength and mass of skeletal muscle related to aging, correlations between these two terms have been proposed. Better knowledge of the immune system players in skeletal muscle would help to elucidate their implications in sarcopenia. Characterizing the activators of damage sensors and the downstream effectors explains the inference with skeletal muscle performance. Sarcopenia has also been linked to chronic diseases such as diabetes, metabolic syndrome and obesity. Implications of inflammatory signals from these diseases negatively affect skeletal muscle. Autophagic mechanisms are closely related with the inflammasome, as autophagy eliminates stress signaling sent by damage organelles, but also acts with an immunomodulatory function affecting immune cells and cytokine release. The use of melatonin, an antioxidant, ROS scavenger and immune and autophagy modulator, or senotherapeutic compounds targeting senescent cells could represent strategies to counteract inflammation. This review aims to present the many factors regulating skeletal muscle inflammaging and their major implications in order to understand the molecular mechanisms involved in sarcopenia.
Collapse
|
21
|
Yamakawa D, Tsuboi J, Kasahara K, Matsuda C, Nishimura Y, Kodama T, Katayama N, Watanabe M, Inagaki M. Cilia-Mediated Insulin/Akt and ST2/JNK Signaling Pathways Regulate the Recovery of Muscle Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2202632. [PMID: 36373718 PMCID: PMC9811445 DOI: 10.1002/advs.202202632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/20/2022] [Indexed: 06/04/2023]
Abstract
Following injury, skeletal muscle regenerates but fatty tissue accumulation is seen in aged muscle or muscular dystrophies. Fibro/adipogenic progenitors (FAPs) are key players in these events; however, the effect of primary cilia on FAPs remains unclear. Here, it is reported that genetic ablation of trichoplein (TCHP), a ciliary regulator, induces ciliary elongation on FAPs after injury, which promotes muscle regeneration while inhibiting adipogenesis. The defective adipogenic differentiation of FAPs is attributed to dysfunction of cilia-dependent lipid raft dynamics, which is critical for insulin/Akt signaling. It is also found that interleukin (IL) 13 is substantially produced by intramuscular FAPs, which are upregulated by ciliary elongation and contribute to regeneration. Mechanistically, upon injury, long cilia excessively activate the IL33/ST2/JNK axis to enhance IL13 production, facilitating myoblast proliferation and M2 macrophage polarization. The results indicate that FAPs organize the regenerative responses to skeletal muscle injury via cilia-mediated insulin/Akt and ST2/JNK signaling pathways.
Collapse
Affiliation(s)
- Daishi Yamakawa
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Junya Tsuboi
- Department of Gastroenterology and HepatologyMie University Graduate School of MedicineTsuMie514‐8507Japan
- Department of Hematology and OncologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Kousuke Kasahara
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Chise Matsuda
- Department of Oncogenic PathologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Yuhei Nishimura
- Department of Integrative PharmacologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Tatsuya Kodama
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Naoyuki Katayama
- Department of Hematology and OncologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Masatoshi Watanabe
- Department of Oncogenic PathologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Masaki Inagaki
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| |
Collapse
|
22
|
Lyu P, Jiang H. RNA-Sequencing Reveals Upregulation and a Beneficial Role of Autophagy in Myoblast Differentiation and Fusion. Cells 2022; 11:cells11223549. [PMID: 36428978 PMCID: PMC9688917 DOI: 10.3390/cells11223549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Myoblast differentiation is a complex process whereby the mononuclear muscle precursor cells myoblasts express skeletal-muscle-specific genes and fuse with each other to form multinucleated myotubes. The objective of this study was to identify potentially novel mechanisms that mediate myoblast differentiation. We first compared transcriptomes in C2C12 myoblasts before and 6 days after induction of myogenic differentiation by RNA-seq. This analysis identified 11,046 differentially expressed genes, of which 5615 and 5431 genes were upregulated and downregulated, respectively, from before differentiation to differentiation. Functional enrichment analyses revealed that the upregulated genes were associated with skeletal muscle contraction, autophagy, and sarcomeres while the downregulated genes were associated with ribonucleoprotein complex biogenesis, mRNA processing, ribosomes, and other biological processes or cellular components. Western blot analyses showed an increased conversion of LC3-I to LC3-II protein during myoblast differentiation, further demonstrating the upregulation of autophagy during myoblast differentiation. Blocking the autophagic flux in C2C12 cells with chloroquine inhibited the expression of skeletal-muscle-specific genes and the formation of myotubes, confirming a positive role for autophagy in myoblast differentiation and fusion.
Collapse
|
23
|
Lee J, Park J, Choe H, Shim K. Insect peptide CopA3 promotes proliferation and PAX7 and MYOD expression in porcine muscle satellite cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:1132-1143. [PMID: 36812017 PMCID: PMC9890342 DOI: 10.5187/jast.2022.e81] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
Insects are a valuable natural source that can produce a variety of bioactive compounds due to their increasing species diversity. CopA3 is an antimicrobial peptide derived from Copris tripartitus (i.e., the dung beetle). It is known to increase the proliferation of colonic epithelial and neuronal stem cells by regulating cell cycle. This research hypothesized that CopA3 can promote the proliferation of porcine muscle satellite cells (MSCs). The effects of CopA3 on porcine MSCs, which are important for muscle growth and regeneration, remain unclear. Here, we investigated the effects of CopA3 on porcine MSCs. According to viability results, we designed four groups: control (without CopA3) and three treatment groups (treated with 5,10, and 25 μg/mL of CopA3). At a CopA3 concentration of 5 μg/mL and 10 μg/mL, the proliferation of MSCs increased more than that observed in the control group. Furthermore, compared to that in the control, CopA3 treatment increased the S phase but decreased the G0/G1 phase ratio. Additionally, early and late apoptotic cells were found to be decreased in the 5 μg/mL group. The expressions of the myogenesis-related transcription factor PAX7 and MYOD proteins were significantly upregulated in the 5 μg/mL and 10 μg/mL groups, whereas the MYOG protein remained undetected in all group. This study suggested that CopA3 promotes muscle cell proliferation by regulating the cell cycle of MSCs and can regulate the activity of MSCs by increasing the expressions of PAX7 and MYOD.
Collapse
Affiliation(s)
- Jeongeun Lee
- Department of Agricultural Convergence
Technology, Jeonbuk National University, Jeonju 54896,
Korea
| | - Jinryoung Park
- Department of Stem Cell and Regenerative
Biotechnology, Konkuk University, Seoul 06591, Korea,3D Tissue Culture Research Center, Konkuk
University, Seoul 06591, Korea
| | - Hosung Choe
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
| | - Kwanseob Shim
- Department of Agricultural Convergence
Technology, Jeonbuk National University, Jeonju 54896,
Korea,Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea,Corresponding author: Kwanseob Shim,
Department of Agricultural Convergence Technology, Jeonbuk National University,
Jeonju 54896, Korea. Tel: +82-63-270-2609, E-mail:
| |
Collapse
|
24
|
Dykstra PB, Rando TA, Smolke CD. Modulating myoblast differentiation with RNA-based controllers. PLoS One 2022; 17:e0275298. [PMID: 36166456 PMCID: PMC9514614 DOI: 10.1371/journal.pone.0275298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023] Open
Abstract
Tunable genetic controllers play a critical role in the engineering of biological systems that respond to environmental and cellular signals. RNA devices, a class of engineered RNA-based controllers, enable tunable gene expression control of target genes in response to molecular effectors. RNA devices have been demonstrated in a number of systems showing proof-of-concept of applying ligand-responsive control over therapeutic activities, including regulation of cell fate decisions such as T cell proliferation and apoptosis. Here, we describe the application of a theophylline-responsive RNA device in a muscle progenitor cell system to control myogenic differentiation. Ribozyme-based RNA switches responsive to theophylline control fluorescent reporter expression in C2C12 myoblasts in a ligand dependent manner. HRAS and JAK1, both anti-differentiation proteins, were incorporated into RNA devices. Finally, we demonstrate that the regulation of HRAS expression via theophylline-responsive RNA devices results in the modulation of myoblast differentiation in a theophylline-dependent manner. Our work highlights the potential for RNA devices to exert drug-responsive, tunable control over cell fate decisions with applications in stem cell therapy and basic stem cell biology research.
Collapse
Affiliation(s)
- Peter B. Dykstra
- Department of Bioengineering, Stanford University, Stanford, CA, United States of America
| | - Thomas A. Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Christina D. Smolke
- Department of Bioengineering, Stanford University, Stanford, CA, United States of America
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
| |
Collapse
|
25
|
Lu A, Tseng C, Guo P, Gao Z, Whitney KE, Kolonin MG, Huard J. The role of the aging microenvironment on the fate of PDGFRβ lineage cells in skeletal muscle repair. Stem Cell Res Ther 2022; 13:405. [PMID: 35932084 PMCID: PMC9356493 DOI: 10.1186/s13287-022-03072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
Background During aging, perturbation of muscle progenitor cell (MPC) constituents leads to progressive loss of muscle mass and accumulation of adipose and fibrotic tissue. Mesenchymal stem cells (MSCs) give rise to adipocytes and fibroblasts that accumulate in injured and pathological skeletal muscle through constitutive activation of platelet-derived growth factor receptors (PDGFRs). Although the role of the PDGFRα has been widely explored, there is a paucity of evidence demonstrating the role of PDGFRβ in aged skeletal muscle. Methods In this study, we investigated the role of PDGFRβ lineage cells in skeletal muscle during aging by using Cre/loxP lineage tracing technology. The PDGFR-Cre mice were crossed with global double-fluorescent Cre reporter mice (mTmG) that indelibly marks PDGFRβ lineage cells. Those cells were analyzed and compared at different ages in the skeletal muscle of the mice. Results Our results demonstrated that PDGFRβ lineage cells isolated from the muscles of young mice are MPC-like cells that exhibited satellite cell morphology, expressed Pax7, and undergo myogenic differentiation producing myosin heavy chain expressing myotubes. Conversely, the PDGFRβ lineage cells isolated from muscles of old mice displayed MSC morphology with a reduced myogenic differentiation potential while expressing adipogenic and fibrotic differentiation markers. PDGFRβ lineage cells also gave rise to newly regenerated muscle fibers in young mice after muscle injury, but their muscle regenerative process is reduced in old mice. Conclusions Our data suggest that PDGFRβ lineage cells function as MPCs in young mice, while the same PDGFRβ lineage cells from old mice undergo a fate switch participating in adipose and fibrotic tissue infiltration in aged muscle. The inhibition of fate-switching in PDGFRβ lineage cells may represent a potential approach to prevent fibrosis and fatty infiltration in skeletal muscle during the aging process.
Collapse
Affiliation(s)
- Aiping Lu
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, 181 West Meadow Drive, Suite 1000, Vail, CO, 81657, USA.
| | - Chieh Tseng
- M.D. Anderson Cancer Center, The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Ping Guo
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, 181 West Meadow Drive, Suite 1000, Vail, CO, 81657, USA
| | - Zhanguo Gao
- Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Kaitlyn E Whitney
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, 181 West Meadow Drive, Suite 1000, Vail, CO, 81657, USA
| | - Mikhail G Kolonin
- Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Johnny Huard
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, 181 West Meadow Drive, Suite 1000, Vail, CO, 81657, USA.
| |
Collapse
|
26
|
Yu B, Liu J, Zhang J, Mu T, Feng X, Ma R, Gu Y. Regulatory role of RNA N6-methyladenosine modifications during skeletal muscle development. Front Cell Dev Biol 2022; 10:929183. [PMID: 35990615 PMCID: PMC9389409 DOI: 10.3389/fcell.2022.929183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/28/2022] [Indexed: 01/07/2023] Open
Abstract
Functional cells in embryonic myogenesis and postnatal muscle development undergo multiple stages of proliferation and differentiation, which are strict procedural regulation processes. N6-methyladenosine (m6A) is the most abundant RNA modification that regulates gene expression in specific cell types in eukaryotes and regulates various biological activities, such as RNA processing and metabolism. Recent studies have shown that m6A modification-mediated transcriptional and post-transcriptional regulation plays an essential role in myogenesis. This review outlines embryonic and postnatal myogenic differentiation and summarizes the important roles played by functional cells in each developmental period. Furthermore, the key roles of m6A modifications and their regulators in myogenesis were highlighted, and the synergistic regulation of m6A modifications with myogenic transcription factors was emphasized to characterize the cascade of transcriptional and post-transcriptional regulation during myogenesis. This review also discusses the crosstalk between m6A modifications and non-coding RNAs, proposing a novel mechanism for post-transcriptional regulation during skeletal muscle development. In summary, the transcriptional and post-transcriptional regulatory mechanisms mediated by m6A and their regulators may help develop new strategies to maintain muscle homeostasis, which are expected to become targets for animal muscle-specific trait breeding and treatment of muscle metabolic diseases.
Collapse
|
27
|
Dungan CM, Figueiredo VC, Wen Y, VonLehmden GL, Zdunek CJ, Thomas NT, Mobley CB, Murach KA, Brightwell CR, Long DE, Fry CS, Kern PA, McCarthy JJ, Peterson CA. Senolytic treatment rescues blunted muscle hypertrophy in old mice. GeroScience 2022; 44:1925-1940. [PMID: 35325353 PMCID: PMC9616988 DOI: 10.1007/s11357-022-00542-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/06/2022] [Indexed: 01/07/2023] Open
Abstract
With aging, skeletal muscle plasticity is attenuated in response to exercise. Here, we report that senescent cells, identified using senescence-associated β-galactosidase (SA β-Gal) activity and p21 immunohistochemistry, are very infrequent in resting muscle, but emerge approximately 2 weeks after a bout of resistance exercise in humans. We hypothesized that these cells contribute to blunted hypertrophic potential in old age. Using synergist ablation-induced mechanical overload (MOV) of the plantaris muscle to model resistance training in adult (5-6-month) and old (23-24-month) male C57BL/6 J mice, we found increased senescent cells in both age groups during hypertrophy. Consistent with the human data, there were negligible senescent cells in plantaris muscle from adult and old sham controls, but old mice had significantly more senescent cells 7 and 14 days following MOV relative to young. Old mice had blunted whole-muscle hypertrophy when compared to adult mice, along with smaller muscle fibers, specifically glycolytic type 2x + 2b fibers. To ablate senescent cells using a hit-and-run approach, old mice were treated with vehicle or a senolytic cocktail consisting of 5 mg/kg dasatinib and 50 mg/kg quercetin (D + Q) on days 7 and 10 during 14 days of MOV; control mice underwent sham surgery with or without senolytic treatment. Old mice given D + Q had larger muscles and muscle fibers after 14 days of MOV, fewer senescent cells when compared to vehicle-treated old mice, and changes in the expression of genes (i.e., Igf1, Ddit4, Mmp14) that are associated with hypertrophic growth. Our data collectively show that senescent cells emerge in human and mouse skeletal muscle following a hypertrophic stimulus and that D + Q improves muscle growth in old mice.
Collapse
Affiliation(s)
- Cory M Dungan
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA.
- College of Health Sciences, University of Kentucky, 900 S. Limestone, CTW 445, Lexington, KY, 40536, USA.
| | | | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | | | | | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - C Brooks Mobley
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Kevin A Murach
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Douglas E Long
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Philip A Kern
- Department of Internal Medicine, Division of Endocrinology, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
28
|
The Regenerative Effects of c-Met Agonistic Antibodies in Vocal Fold Atrophy. Int J Mol Sci 2022; 23:ijms23147818. [PMID: 35887165 PMCID: PMC9318927 DOI: 10.3390/ijms23147818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Atrophy of the vocal folds and the accompanying glottic insufficiency affect the quality of life. Although growth factors have been used to treat muscle atrophy, their effectiveness is limited by their short half-life. Methods: In total, 15 rabbits and 24 rats were used for the study. The right recurrent laryngeal nerves of all animals were transected. One month following nerve transection, PBS (PBS group), rHGF (HGF group), or a c-Met agonistic antibody (c-Met group) was injected into the paralyzed vocal folds. The larynges of the rabbits were harvested from each group for histologic examination and subjected to PCR analysis. Results: Cross-sectional areas (CSAs) of thyroarytenoid muscles were evaluated. The c-Met group had increased CSAs compared to the PBS and HGF groups, but there were no significant differences compared to normal controls. The expression levels of myogenesis-related genes were evaluated three weeks after the injection. The expression levels of myosin heavy chain IIa were significantly increased in the PBS group, while the expression levels of MyoD were increased in the c-Met group. Conclusions: The c-Met agonistic antibody showed promise for promoting muscle regeneration in a vocal fold palsy model.
Collapse
|
29
|
Rostami S, Salehizadeh R, Shamloo S, Fayazmilani R. The Effect of Voluntary Physical Activity in an Enriched Environment and Combined Exercise Training on the Satellite Cell Pool in Developing Rats. Front Physiol 2022; 13:899234. [PMID: 35694391 PMCID: PMC9174454 DOI: 10.3389/fphys.2022.899234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Aim: Postnatal skeletal muscle growth is strongly associated with a satellite cell pool. Early adolescence might be a crucial period when different exercise training interventions have specific consequence on satellite cells. Pax7 and MyoD have been suggested as the leading indicators of satellite cell activation. Methods: In this study, pre-adolescent male rats (n = 18) were either subjected to an enriched environment that facilitated physical activities or combined training or control for three weeks. The flexor hallucis longus muscle was removed for biochemical and histochemical analysis. Results: Findings demonstrated that exercise trained rats displayed high levels of serum IGF-1 (p <0.05). There was an increase in Pax7 (p <0.05) and MyoD (p <0.001) mRNA expression. A significant increase in the mean fiber area (p <0.01), satellite cell (p <0.001), and myonuclear numbers (p <0.01) were also observed in both intervention groups. Importantly, enriched rats showed lower corticosterone levels (p <0.05) compared to training ones. Regarding performance, trained and enriched rats had significant improvement in forelimb grip strength (p <0.01) and load-carrying capacity (p <0.05). Conclusion: Type of physical exercise is an essential part in changing satellite cells pool. Different and frequent physical activities in an enriched environment can be effective for muscle development.
Collapse
|
30
|
McKee CM, Chapski DJ, Wehling-Henricks M, Rosa-Garrido M, Kuro-O M, Vondriska TM, Tidball JG. The anti-aging protein Klotho affects early postnatal myogenesis by downregulating Jmjd3 and the canonical Wnt pathway. FASEB J 2022; 36:e22192. [PMID: 35174906 PMCID: PMC9007106 DOI: 10.1096/fj.202101298r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/15/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
Modulating the number of muscle stems cells, called satellite cells, during early postnatal development produces long-term effects on muscle growth. We tested the hypothesis that high expression levels of the anti-aging protein Klotho in early postnatal myogenesis increase satellite cell numbers by influencing the epigenetic regulation of genes that regulate myogenesis. Our findings show that elevated klotho expression caused a transient increase in satellite cell numbers and slowed muscle fiber growth, followed by a period of accelerated muscle growth that leads to larger fibers. Klotho also transcriptionally downregulated the H3K27 demethylase Jmjd3, leading to increased H3K27 methylation and decreased expression of genes in the canonical Wnt pathway, which was associated with a delay in muscle differentiation. In addition, Klotho stimulation and Jmjd3 downregulation produced similar but not additive reductions in the expression of Wnt4, Wnt9a, and Wnt10a in myogenic cells, indicating that inhibition occurred through a common pathway. Together, our results identify a novel pathway through which Klotho influences myogenesis by reducing the expression of Jmjd3, leading to reductions in the expression of Wnt genes and inhibition of canonical Wnt signaling.
Collapse
Affiliation(s)
- Cynthia M McKee
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California, USA
| | - Douglas J Chapski
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Manuel Rosa-Garrido
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, USA
| | - Makoto Kuro-O
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Thomas M Vondriska
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Departments of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - James G Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California, USA.,Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| |
Collapse
|
31
|
Anderson JE. Key concepts in muscle regeneration: muscle "cellular ecology" integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 2022; 122:273-300. [PMID: 34928395 PMCID: PMC8685813 DOI: 10.1007/s00421-021-04865-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022]
Abstract
This review identifies some key concepts of muscle regeneration, viewed from perspectives of classical and modern research. Early insights noted the pattern and sequence of regeneration across species was similar, regardless of the type of injury, and differed from epimorphic limb regeneration. While potential benefits of exercise for tissue repair was debated, regeneration was not presumed to deliver functional restoration, especially after ischemia-reperfusion injury; muscle could develop fibrosis and ectopic bone and fat. Standard protocols and tools were identified as necessary for tracking injury and outcomes. Current concepts vastly extend early insights. Myogenic regeneration occurs within the environment of muscle tissue. Intercellular cross-talk generates an interactive system of cellular networks that with the extracellular matrix and local, regional, and systemic influences, forms the larger gestalt of the satellite cell niche. Regenerative potential and adaptive plasticity are overlain by epigenetically regionalized responsiveness and contributions by myogenic, endothelial, and fibroadipogenic progenitors and inflammatory and metabolic processes. Muscle architecture is a living portrait of functional regulatory hierarchies, while cellular dynamics, physical activity, and muscle-tendon-bone biomechanics arbitrate regeneration. The scope of ongoing research-from molecules and exosomes to morphology and physiology-reveals compelling new concepts in muscle regeneration that will guide future discoveries for use in application to fitness, rehabilitation, and disease prevention and treatment.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
32
|
Gudagudi KB, d'Entrèves NP, Ollewagen T, Myburgh KH. Total mRNA and primary human myoblasts' in vitro cell cycle progression distinguishes between clones. Biochimie 2022; 196:161-170. [PMID: 35114349 DOI: 10.1016/j.biochi.2022.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
Satellite cells are generally quiescent in vivo. Once activated, progression through the cell cycle begins. Immortalised myoblasts from a single cell line are fairly homogenous in culture, but primary human myoblasts (PHMs) demonstrate heterogeneity. This phenomenon is poorly understood however may impact on PHM expansion. This study aimed to evaluate cell cycle transition from growth to synthesis phases of the cell cycle (G1 to S phase) and total mRNA relevant to this transition in PHM clones derived from 2 donor biopsies. Proportions of cells transitioning from G1 to S phase were evaluated at 2-hourly intervals for 24 h (n = 3 for each) and total mRNA quantified. Both PHM clones revealed an exponential transition from G1 to S phase over time, with a significantly slower rate for PHMs from S9.1 compared to S6.3, which had a higher proportion of PHMs in S phase for most time-points (p < 0.05). After 24 h the proportion of PHMs in S phase was ∼13% (S6.3) compared to ∼22% (S9.1). Gene transcription increased as cells progressed from G1 to S phase. Although total RNA increased with similar linearity in both clones, S6.3 PHMs had consistently (10 out of 12 time points) significantly higher concentrations. Validating the 2-hourly assessment over 24 h, a 4-hourly assessment from 8 to 32 h revealed similar differences but included the beginning of a plateau. This study demonstrates that PHMs from different donors differ in both cell cycle progression and overall transcriptome revealing new aspects in the heterogeneity of isolated satellite cells in vitro.
Collapse
Affiliation(s)
- Kirankumar B Gudagudi
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa.
| | - Niccolò Passerin d'Entrèves
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa.
| | - Tracey Ollewagen
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa.
| | - Kathryn H Myburgh
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
33
|
Arjona M, Goshayeshi A, Rodriguez-Mateo C, Brett JO, Both P, Ishak H, Rando TA. Tubastatin A maintains adult skeletal muscle stem cells in a quiescent state ex vivo and improves their engraftment ability in vivo. Stem Cell Reports 2022; 17:82-95. [PMID: 35021050 PMCID: PMC8758944 DOI: 10.1016/j.stemcr.2021.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/11/2023] Open
Abstract
Adult skeletal muscle stem cells (MuSCs) are important for muscle regeneration and constitute a potential source of cell therapy. However, upon isolation, MuSCs rapidly exit quiescence and lose transplantation potency. Maintenance of the quiescent state in vitro preserves MuSC transplantation efficiency and provides an opportunity to study the biology of quiescence. Here we show that Tubastatin A (TubA), an Hdac6 inhibitor, prevents primary cilium resorption, maintains quiescence, and enhances MuSC survival ex vivo. Phenotypic characterization and transcriptomic analysis of TubA-treated cells revealed that TubA maintains most of the biological features and molecular signatures of quiescence. Furthermore, TubA-treated MuSCs showed improved engraftment ability upon transplantation. TubA also induced a return to quiescence and improved engraftment of cycling MuSCs, revealing a potentially expanded application for MuSC therapeutics. Altogether, these studies demonstrate the ability of TubA to maintain MuSC quiescence ex vivo and to enhance the therapeutic potential of MuSCs and their progeny.
Collapse
Affiliation(s)
- Marina Arjona
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Armon Goshayeshi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Cristina Rodriguez-Mateo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Jamie O Brett
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Stem Cell Biology and Regenerative Medicine Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Pieter Both
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Stem Cell Biology and Regenerative Medicine Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Heather Ishak
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
34
|
Genome-wide identification of enhancers and transcription factors regulating the myogenic differentiation of bovine satellite cells. BMC Genomics 2021; 22:901. [PMID: 34915843 PMCID: PMC8675486 DOI: 10.1186/s12864-021-08224-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Satellite cells are the myogenic precursor cells in adult skeletal muscle. The objective of this study was to identify enhancers and transcription factors that regulate gene expression during the differentiation of bovine satellite cells into myotubes. RESULTS Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) was performed to identify genomic regions where lysine 27 of H3 histone is acetylated (H3K27ac), i.e., active enhancers, from bovine satellite cells before and during differentiation into myotubes. A total of 19,027 and 47,669 H3K27ac-marked enhancers were consistently identified from two biological replicates of before- and during-differentiation bovine satellite cells, respectively. Of these enhancers, 5882 were specific to before-differentiation, 35,723 to during-differentiation, and 13,199 common to before- and during-differentiation bovine satellite cells. Whereas most of the before- or during-differentiation-specific H3K27ac-marked enhancers were located distally to the transcription start site, the enhancers common to before- and during-differentiation were located both distally and proximally to the transcription start site. The three sets of H3K27ac-marked enhancers were associated with functionally different genes and enriched with different transcription factor binding sites. Specifically, many of the H3K27ac-marked enhancers specific to during-differentiation bovine satellite cells were associated with genes involved in muscle structure and development, and were enriched with binding sites for the MyoD, AP-1, KLF, TEAD, and MEF2 families of transcription factors. A positive role was validated for Fos and FosB, two AP-1 family transcription factors, in the differentiation of bovine satellite cells into myotubes by siRNA-mediated knockdown. CONCLUSIONS Tens of thousands of H3K27ac-marked active enhancers have been identified from bovine satellite cells before or during differentiation. These enhancers contain binding sites not only for transcription factors whose role in satellite cell differentiation is well known but also for transcription factors whose role in satellite cell differentiation is unknown. These enhancers and transcription factors are valuable resources for understanding the complex mechanism that mediates gene expression during satellite cell differentiation. Because satellite cell differentiation is a key step in skeletal muscle growth, the enhancers, the transcription factors, and their target genes identified in this study are also valuable resources for identifying and interpreting skeletal muscle trait-associated DNA variants in cattle.
Collapse
|
35
|
Inflammatory Mediation of Heat Stress-Induced Growth Deficits in Livestock and Its Potential Role as a Target for Nutritional Interventions: A Review. Animals (Basel) 2021; 11:ani11123539. [PMID: 34944316 PMCID: PMC8698153 DOI: 10.3390/ani11123539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Heat stress is a persistent challenge for livestock producers. Molecular changes throughout the body that result from sustained heat stress slow muscle growth and thus are detrimental to carcass yield and value. Feedlot animals are at particularly high risk for heat stress because their confinement limits their ability to pursue shade and other natural cooling behaviors. Changes in infrastructure to reduce the impact of heat stress are often cost-prohibitive, but recent studies have revealed that anti-inflammatory therapies may help to improve growth deficits in heat-stressed animals. This review describes the conditions that cause heat stress and explains the role of inflammation in muscle growth impairment. Additionally, it discusses the potential for several natural anti-inflammatory dietary additives to improve muscle growth outcomes in heat-stressed livestock. Abstract Heat stress is detrimental to well-being and growth performance in livestock, and systemic inflammation arising during chronic heat stress contributes to these poor outcomes. Sustained exposure of muscle and other tissues to inflammation can impair the cellular processes that facilitate muscle growth and intramuscular fat deposition, thus reducing carcass quality and yield. Climate change is expected to produce more frequent extreme heat events, increasing the potential impact of heat stress on sustainable livestock production. Feedlot animals are at particularly high risk for heat stress, as confinement limits their ability to seek cooling from the shade, water, or breeze. Economically practical options to circumvent heat stress in feedlot animals are limited, but understanding the mechanistic role of inflammation in heat stress outcomes may provide the basis for treatment strategies to improve well-being and performance. Feedlot animals receive formulated diets daily, which provides an opportunity to administer oral nutraceuticals and other bioactive products to mitigate heat stress-induced inflammation. In this review, we examine the complex associations between heat stress, systemic inflammation, and dysregulated muscle growth in meat animals. We also present evidence for potential nutraceutical and dietary moderators of inflammation and how they might improve the unique pathophysiology of heat stress.
Collapse
|
36
|
Minari ALA, Thomatieli-Santos RV. From skeletal muscle damage and regeneration to the hypertrophy induced by exercise: What is the role of different macrophages subsets? Am J Physiol Regul Integr Comp Physiol 2021; 322:R41-R54. [PMID: 34786967 DOI: 10.1152/ajpregu.00038.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages are one of the top players when considering immune cells involved with tissue homeostasis. Recently, increasing evidence has demonstrated that these macrophages could also present two major subsets during tissue healing; proliferative macrophages (M1-like), which are responsible for increasing myogenic cell proliferation, and restorative macrophages (M2-like), which are accountable for the end of the mature muscle myogenesis. The participation and characterization of these macrophage subsets is critical during myogenesis, not only to understand the inflammatory role of macrophages during muscle recovery but also to create supportive strategies that can improve mass muscle maintenance. Indeed, most of our knowledge about macrophage subsets comes from skeletal muscle damage protocols, and we still do not know how these subsets can contribute to skeletal muscle adaptation. This narrative review aims to collect and discuss studies demonstrating the involvement of different macrophage subsets during the skeletal muscle damage/regeneration process, showcasing an essential role of these macrophage subsets during muscle adaptation induced by acute and chronic exercise programs.
Collapse
Affiliation(s)
- André Luis Araujo Minari
- Universidade estadual Paulista, Campus Presidente Prudente, Brazil.,Universidade Federal de São Paulo, Psicobiologia, Brazil
| | - Ronaldo V Thomatieli-Santos
- Universidade Federal de São Paulo, Campus Baixada Santista, Brazil.,Universidade Federal de São Paulo, Psicobiologia, Brazil
| |
Collapse
|
37
|
Lyu P, Qi Y, Tu ZJ, Jiang H. Single-cell RNA Sequencing Reveals Heterogeneity of Cultured Bovine Satellite Cells. Front Genet 2021; 12:742077. [PMID: 34777469 PMCID: PMC8580861 DOI: 10.3389/fgene.2021.742077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle from meat-producing livestock such as cattle is a major source of food for humans. To improve skeletal muscle growth efficiency or quality in cattle, it is necessary to understand the genetic and physiological mechanisms that govern skeletal muscle composition, development, and growth. Satellite cells are the myogenic progenitor cells in postnatal skeletal muscle. In this study we analyzed the composition of bovine satellite cells with single-cell RNA sequencing (scRNA-seq). We isolated satellite cells from a 2-week-old male calf, cultured them in growth medium for a week, and performed scRNA-seq using the 10x Genomics platform. Deep sequencing of two scRNA-seq libraries constructed from cultured bovine satellite cells yielded 860 million reads. Cell calling analyses revealed that these reads were sequenced from 19,096 individual cells. Clustering analyses indicated that these reads represented 15 cell clusters that differed in gene expression profile. Based on the enriched expression of markers of satellite cells (PAX7 and PAX3), markers of myoblasts (MYOD1, MYF5), and markers of differentiated myoblasts or myocytes (MYOG), three clusters were determined to be satellite cells, two clusters myoblasts, and two clusters myocytes. Gene ontology and trajectory inference analyses indicated that cells in these myogenic clusters differed in proliferation rate and differentiation stage. Two of the remaining clusters were enriched with PDGFRA, a marker of fibro-adipogenic (FAP) cells, the progenitor cells for intramuscular fat, and are therefore considered to be FAP cells. Gene ontology analyses indicated active lipogenesis in one of these two clusters. The identity of the remaining six clusters could not be defined. Overall, the results of this study support the hypothesis that bovine satellite cells are composed of subpopulations that differ in transcriptional and myogenic state. The results of this study also support the hypothesis that intramuscular fat in cattle originates from fibro-adipogenic cells.
Collapse
Affiliation(s)
- Pengcheng Lyu
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Yumin Qi
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | - Zhijian J Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
38
|
McCastlain K, Howell CR, Welsh CE, Wang Z, Wilson CL, Mulder HL, Easton J, Mertens AC, Zhang J, Yasui Y, Hudson MM, Robison LL, Kundu M, Ness KK. The Association of Mitochondrial Copy Number With Sarcopenia in Adult Survivors of Childhood Cancer. J Natl Cancer Inst 2021; 113:1570-1580. [PMID: 33871611 PMCID: PMC8562958 DOI: 10.1093/jnci/djab084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Adult childhood cancer survivors are at risk for frailty, including low muscle mass and weakness (sarcopenia). Using peripheral blood mitochondrial DNA copy number (mtDNAcn) as a proxy for functional mitochondria, this study describes cross-sectional associations between mtDNAcn and sarcopenia among survivors. METHODS Among 1762 adult childhood cancer survivors (51.6% male; median age = 29.4 years, interquartile range [IQR] = 23.3-36.8), with a median of 20.6 years from diagnosis (IQR = 15.2-28.2), mtDNAcn estimates were derived from whole-genome sequencing. A subset was validated by quantitative polymerase chain reaction and evaluated cross-sectionally using multivariable logistic regression for their association with sarcopenia, defined by race-, age-, and sex-specific low lean muscle mass or weak grip strength. All statistical tests were 2-sided. RESULTS The prevalence of sarcopenia was 27.0%, higher among female than male survivors (31.5% vs 22.9%; P < .001) and associated with age at diagnosis; 51.7% of survivors with sarcopenia were diagnosed ages 4-13 years (P = .01). Sarcopenia was most prevalent (39.0%) among central nervous system tumor survivors. Cranial radiation (odds ratio [OR] = 1.84, 95% confidence interval [CI] = 1.32 to 2.59) and alkylating agents (OR = 1.34, 95% CI = 1.04 to 1.72) increased, whereas glucocorticoids decreased odds (OR = 0.72, 95% CI = 0.56 to 0.93) of sarcopenia. mtDNAcn decreased with age (β = -0.81, P = .002) and was higher among female survivors (β = 9.23, P = .01) and among survivors with a C allele at mt.204 (β = -17.9, P = .02). In adjusted models, every standard deviation decrease in mtDNAcn increased the odds of sarcopenia 20% (OR = 1.20, 95% CI = 1.07 to 1.34). CONCLUSIONS A growing body of evidence supports peripheral blood mtDNAcn as a biomarker for adverse health outcomes; however, this study is the first to report an association between mtDNAcn and sarcopenia among childhood cancer survivors.
Collapse
Affiliation(s)
- Kelly McCastlain
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Carrie R Howell
- Department of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Catherine E Welsh
- Department of Mathematics & Computer Science, Rhodes College, Memphis, TN, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Carmen L Wilson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ann C Mertens
- Aflac Cancer & Blood Disorders Center at Children’s Healthcare of Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Melissa M Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
39
|
Recent advances in nucleotide analogue-based techniques for tracking dividing stem cells: An overview. J Biol Chem 2021; 297:101345. [PMID: 34717955 PMCID: PMC8592869 DOI: 10.1016/j.jbc.2021.101345] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023] Open
Abstract
Detection of thymidine analogues after their incorporation into replicating DNA represents a powerful tool for the study of cellular DNA synthesis, progression through the cell cycle, cell proliferation kinetics, chronology of cell division, and cell fate determination. Recent advances in the concurrent detection of multiple such analogues offer new avenues for the investigation of unknown features of these vital cellular processes. Combined with quantitative analysis, temporal discrimination of multiple labels enables elucidation of various aspects of stem cell life cycle in situ, such as division modes, differentiation, maintenance, and elimination. Data obtained from such experiments are critically important for creating descriptive models of tissue histogenesis and renewal in embryonic development and adult life. Despite the wide use of thymidine analogues in stem cell research, there are a number of caveats to consider for obtaining valid and reliable labeling results when marking replicating DNA with nucleotide analogues. Therefore, in this review, we describe critical points regarding dosage, delivery, and detection of nucleotide analogues in the context of single and multiple labeling, outline labeling schemes based on pulse-chase, cumulative and multilabel marking of replicating DNA for revealing stem cell proliferative behaviors, and determining cell cycle parameters, and discuss preconditions and pitfalls in conducting such experiments. The information presented in our review is important for rational design of experiments on tracking dividing stem cells by marking replicating DNA with thymidine analogues.
Collapse
|
40
|
Lu A, Guo P, Pan H, Tseng C, Sinha KM, Yang F, Scibetta A, Cui Y, Huard M, Zhong L, Ravuri S, Huard J. Enhancement of myogenic potential of muscle progenitor cells and muscle healing during pregnancy. FASEB J 2021; 35:e21378. [PMID: 33565161 DOI: 10.1096/fj.202001914r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 11/11/2022]
Abstract
The decline of muscle regenerative potential with age has been attributed to a diminished responsiveness of muscle progenitor cells (MPCs). Heterochronic parabiosis has been used as a model to study the effects of aging on stem cells and their niches. These studies have demonstrated that, by exposing old mice to a young systemic environment, aged progenitor cells can be rejuvenated. One interesting idea is that pregnancy represents a unique biological model of a naturally shared circulatory system between developing and mature organisms. To test this hypothesis, we evaluated the muscle regeneration potential of pregnant mice using a cardiotoxin (CTX) injury mouse model. Our results indicate that the pregnant mice demonstrate accelerated muscle healing compared to nonpregnant control mice following muscle injury based on improved muscle histology, superior muscle regeneration, and a reduction in inflammation and necrosis. Additionally, we found that MPCs isolated from pregnant mice display a significant improvement of myogenic differentiation capacity in vitro and muscle regeneration in vivo when compared to the MPCs from nonpregnant mice. Furthermore, MPCs from nonpregnant mice display enhanced myogenic capacity when cultured in the presence of serum obtained from pregnant mice. Our proteomics data from these studies provides potential therapeutic targets to enhance the myogenic potential of progenitor cells and muscle repair.
Collapse
Affiliation(s)
- Aiping Lu
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Ping Guo
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Haiying Pan
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chieh Tseng
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Krishna M Sinha
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fan Yang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alex Scibetta
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Yan Cui
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Ling Zhong
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Johnny Huard
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
41
|
Roy N, Sundar S, Pillai M, Patell-Socha F, Ganesh S, Aloysius A, Rumman M, Gala H, Hughes SM, Zammit PS, Dhawan J. mRNP granule proteins Fmrp and Dcp1a differentially regulate mRNP complexes to contribute to control of muscle stem cell quiescence and activation. Skelet Muscle 2021; 11:18. [PMID: 34238354 PMCID: PMC8265057 DOI: 10.1186/s13395-021-00270-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/28/2021] [Indexed: 01/28/2023] Open
Abstract
Background During skeletal muscle regeneration, satellite stem cells use distinct pathways to repair damaged myofibers or to self-renew by returning to quiescence. Cellular/mitotic quiescence employs mechanisms that promote a poised or primed state, including altered RNA turnover and translational repression. Here, we investigate the role of mRNP granule proteins Fragile X Mental Retardation Protein (Fmrp) and Decapping protein 1a (Dcp1a) in muscle stem cell quiescence and differentiation. Methods Using isolated single muscle fibers from adult mice, we established differential enrichment of mRNP granule proteins including Fmrp and Dcp1a in muscle stem cells vs. myofibers. We investigated muscle tissue homeostasis in adult Fmr1-/- mice, analyzing myofiber cross-sectional area in vivo and satellite cell proliferation ex vivo. We explored the molecular mechanisms of Dcp1a and Fmrp function in quiescence, proliferation and differentiation in a C2C12 culture model. Here, we used polysome profiling, imaging and RNA/protein expression analysis to establish the abundance and assembly status of mRNP granule proteins in different cellular states, and the phenotype of knockdown cells. Results Quiescent muscle satellite cells are enriched for puncta containing the translational repressor Fmrp, but not the mRNA decay factor Dcp1a. MuSC isolated from Fmr1-/- mice exhibit defective proliferation, and mature myofibers show reduced cross-sectional area, suggesting a role for Fmrp in muscle homeostasis. Expression and organization of Fmrp and Dcp1a varies during primary MuSC activation on myofibers, with Fmrp puncta prominent in quiescence, but Dcp1a puncta appearing during activation/proliferation. This reciprocal expression of Fmrp and Dcp1a puncta is recapitulated in a C2C12 culture model of quiescence and activation: consistent with its role as a translational repressor, Fmrp is enriched in non-translating mRNP complexes abundant in quiescent myoblasts; Dcp1a puncta are lost in quiescence, suggesting stabilized and repressed transcripts. The function of each protein differs during proliferation; whereas Fmrp knockdown led to decreased proliferation and lower cyclin expression, Dcp1a knockdown led to increased cell proliferation and higher cyclin expression. However, knockdown of either Fmrp or Dcp1a led to compromised differentiation. We also observed cross-regulation of decay versus storage mRNP granules; knockdown of Fmrp enhances accumulation of Dcp1a puncta, whereas knockdown of Dcp1a leads to increased Fmrp in puncta. Conclusions Taken together, our results provide evidence that the balance of mRNA turnover versus utilization is specific for distinct cellular states. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-021-00270-9.
Collapse
Affiliation(s)
- Nainita Roy
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Swetha Sundar
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Malini Pillai
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Farah Patell-Socha
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Sravya Ganesh
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Ajoy Aloysius
- National Center for Biological Sciences, Bangalore, India
| | - Mohammed Rumman
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Hardik Gala
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.,Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Simon M Hughes
- King's College London, Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, London, UK
| | - Peter S Zammit
- King's College London, Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, London, UK
| | - Jyotsna Dhawan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India. .,Centre for Cellular and Molecular Biology, Hyderabad, India.
| |
Collapse
|
42
|
Zhu Q, Liang F, Cai S, Luo X, Duo T, Liang Z, He Z, Chen Y, Mo D. KDM4A regulates myogenesis by demethylating H3K9me3 of myogenic regulatory factors. Cell Death Dis 2021; 12:514. [PMID: 34011940 PMCID: PMC8134519 DOI: 10.1038/s41419-021-03799-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022]
Abstract
Histone lysine demethylase 4A (KDM4A) plays a crucial role in regulating cell proliferation, cell differentiation, development and tumorigenesis. However, little is known about the function of KDM4A in muscle development and regeneration. Here, we found that the conditional ablation of KDM4A in skeletal muscle caused impairment of embryonic and postnatal muscle formation. The loss of KDM4A in satellite cells led to defective muscle regeneration and blocked the proliferation and differentiation of satellite cells. Myogenic differentiation and myotube formation in KDM4A-deficient myoblasts were inhibited. Chromatin immunoprecipitation assay revealed that KDM4A promoted myogenesis by removing the histone methylation mark H3K9me3 at MyoD, MyoG and Myf5 locus. Furthermore, inactivation of KDM4A in myoblasts suppressed myoblast differentiation and accelerated H3K9me3 level. Knockdown of KDM4A in vitro reduced myoblast proliferation through enhancing the expression of the cyclin-dependent kinase inhibitor P21 and decreasing the expression of cell cycle regulator Cyclin D1. Together, our findings identify KDM4A as an important regulator for skeletal muscle development and regeneration, orchestrating myogenic cell proliferation and differentiation.
Collapse
Affiliation(s)
- Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Feng Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Xiaorong Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Tianqi Duo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Ziyun Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China.
| |
Collapse
|
43
|
Beneficial Role of Exercise in the Modulation of mdx Muscle Plastic Remodeling and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10040558. [PMID: 33916762 PMCID: PMC8066278 DOI: 10.3390/antiox10040558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive lethal disorder caused by the lack of dystrophin, which determines myofibers mechanical instability, oxidative stress, inflammation, and susceptibility to contraction-induced injuries. Unfortunately, at present, there is no efficient therapy for DMD. Beyond several promising gene- and stem cells-based strategies under investigation, physical activity may represent a valid noninvasive therapeutic approach to slow down the progression of the pathology. However, ethical issues, the limited number of studies in humans and the lack of consistency of the investigated training interventions generate loss of consensus regarding their efficacy, leaving exercise prescription still questionable. By an accurate analysis of data about the effects of different protocol of exercise on muscles of mdx mice, the most widely-used pre-clinical model for DMD research, we found that low intensity exercise, especially in the form of low speed treadmill running, likely represents the most suitable exercise modality associated to beneficial effects on mdx muscle. This protocol of training reduces muscle oxidative stress, inflammation, and fibrosis process, and enhances muscle functionality, muscle regeneration, and hypertrophy. These conclusions can guide the design of appropriate studies on human, thereby providing new insights to translational therapeutic application of exercise to DMD patients.
Collapse
|
44
|
Ratnayake D, Nguyen PD, Rossello FJ, Wimmer VC, Tan JL, Galvis LA, Julier Z, Wood AJ, Boudier T, Isiaku AI, Berger S, Oorschot V, Sonntag C, Rogers KL, Marcelle C, Lieschke GJ, Martino MM, Bakkers J, Currie PD. Macrophages provide a transient muscle stem cell niche via NAMPT secretion. Nature 2021; 591:281-287. [PMID: 33568815 DOI: 10.1038/s41586-021-03199-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
Skeletal muscle regenerates through the activation of resident stem cells. Termed satellite cells, these normally quiescent cells are induced to proliferate by wound-derived signals1. Identifying the source and nature of these cues has been hampered by an inability to visualize the complex cell interactions that occur within the wound. Here we use muscle injury models in zebrafish to systematically capture the interactions between satellite cells and the innate immune system after injury, in real time, throughout the repair process. This analysis revealed that a specific subset of macrophages 'dwell' within the injury, establishing a transient but obligate niche for stem cell proliferation. Single-cell profiling identified proliferative signals that are secreted by dwelling macrophages, which include the cytokine nicotinamide phosphoribosyltransferase (Nampt, which is also known as visfatin or PBEF in humans). Nampt secretion from the macrophage niche is required for muscle regeneration, acting through the C-C motif chemokine receptor type 5 (Ccr5), which is expressed on muscle stem cells. This analysis shows that in addition to their ability to modulate the immune response, specific macrophage populations also provide a transient stem-cell-activating niche, directly supplying proliferation-inducing cues that govern the repair process that is mediated by muscle stem cells. This study demonstrates that macrophage-derived niche signals for muscle stem cells, such as NAMPT, can be applied as new therapeutic modalities for skeletal muscle injury and disease.
Collapse
Affiliation(s)
- Dhanushika Ratnayake
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Phong D Nguyen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fernando J Rossello
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,University of Melbourne Centre for Cancer Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Verena C Wimmer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jean L Tan
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Laura A Galvis
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,Institut NeuroMyoGène (INMG), University Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Ziad Julier
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Alasdair J Wood
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Thomas Boudier
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdulsalam I Isiaku
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Silke Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Viola Oorschot
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Melbourne, Victoria, Australia.,European Molecular Biology Laboratory, Electron Microscopy Core Facility, Heidelberg, Germany
| | - Carmen Sonntag
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Kelly L Rogers
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,Institut NeuroMyoGène (INMG), University Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Mikaël M Martino
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Jeroen Bakkers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia. .,EMBL Australia, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
45
|
Yang BA, Westerhof TM, Sabin K, Merajver SD, Aguilar CA. Engineered Tools to Study Intercellular Communication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002825. [PMID: 33552865 PMCID: PMC7856891 DOI: 10.1002/advs.202002825] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/10/2020] [Indexed: 05/08/2023]
Abstract
All multicellular organisms rely on intercellular communication networks to coordinate physiological functions. As members of a dynamic social network, each cell receives, processes, and redistributes biological information to define and maintain tissue homeostasis. Uncovering the molecular programs underlying these processes is critical for prevention of disease and aging and development of therapeutics. The study of intercellular communication requires techniques that reduce the scale and complexity of in vivo biological networks while resolving the molecular heterogeneity in "omic" layers that contribute to cell state and function. Recent advances in microengineering and high-throughput genomics offer unprecedented spatiotemporal control over cellular interactions and the ability to study intercellular communication in a high-throughput and mechanistic manner. Herein, this review discusses how salient engineered approaches and sequencing techniques can be applied to understand collective cell behavior and tissue functions.
Collapse
Affiliation(s)
- Benjamin A. Yang
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
| | - Trisha M. Westerhof
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
- Department of Internal MedicineDivision of Hematology/Oncology and Rogel Cancer Center1500 East Medical Center Drive, Rogel Cancer CenterAnn ArborMI7314USA
| | - Kaitlyn Sabin
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
| | - Sofia D. Merajver
- Department of Internal MedicineDivision of Hematology/Oncology and Rogel Cancer Center1500 East Medical Center Drive, Rogel Cancer CenterAnn ArborMI7314USA
| | - Carlos A. Aguilar
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
- Program in Cellular and Molecular Biology2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
| |
Collapse
|
46
|
Langridge B, Griffin M, Butler PE. Regenerative medicine for skeletal muscle loss: a review of current tissue engineering approaches. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:15. [PMID: 33475855 PMCID: PMC7819922 DOI: 10.1007/s10856-020-06476-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/18/2020] [Indexed: 05/05/2023]
Abstract
Skeletal muscle is capable of regeneration following minor damage, more significant volumetric muscle loss (VML) however results in permanent functional impairment. Current multimodal treatment methodologies yield variable functional recovery, with reconstructive surgical approaches restricted by limited donor tissue and significant donor morbidity. Tissue-engineered skeletal muscle constructs promise the potential to revolutionise the treatment of VML through the regeneration of functional skeletal muscle. Herein, we review the current status of tissue engineering approaches to VML; firstly the design of biocompatible tissue scaffolds, including recent developments with electroconductive materials. Secondly, we review the progenitor cell populations used to seed scaffolds and their relative merits. Thirdly we review in vitro methods of scaffold functional maturation including the use of three-dimensional bioprinting and bioreactors. Finally, we discuss the technical, regulatory and ethical barriers to clinical translation of this technology. Despite significant advances in areas, such as electroactive scaffolds and three-dimensional bioprinting, along with several promising in vivo studies, there remain multiple technical hurdles before translation into clinically impactful therapies can be achieved. Novel strategies for graft vascularisation, and in vitro functional maturation will be of particular importance in order to develop tissue-engineered constructs capable of significant clinical impact.
Collapse
Affiliation(s)
- Benjamin Langridge
- Department of Plastic & Reconstructive Surgery, Royal Free Hospital, London, UK.
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK.
- Division of Surgery & Interventional Science, University College London, London, UK.
| | - Michelle Griffin
- Department of Plastic & Reconstructive Surgery, Royal Free Hospital, London, UK
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK
- Division of Surgery & Interventional Science, University College London, London, UK
| | - Peter E Butler
- Department of Plastic & Reconstructive Surgery, Royal Free Hospital, London, UK
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK
- Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
47
|
Mal’tsev DI, Podgornyi OV. Molecular and Cellular Mechanisms Regulating Quiescence and Division of Hippocampal Stem Cells. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420040054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Manickam R, Duszka K, Wahli W. PPARs and Microbiota in Skeletal Muscle Health and Wasting. Int J Mol Sci 2020; 21:ijms21218056. [PMID: 33137899 PMCID: PMC7662636 DOI: 10.3390/ijms21218056] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle is a major metabolic organ that uses mostly glucose and lipids for energy production and has the capacity to remodel itself in response to exercise and fasting. Skeletal muscle wasting occurs in many diseases and during aging. Muscle wasting is often accompanied by chronic low-grade inflammation associated to inter- and intra-muscular fat deposition. During aging, muscle wasting is advanced due to increased movement disorders, as a result of restricted physical exercise, frailty, and the pain associated with arthritis. Muscle atrophy is characterized by increased protein degradation, where the ubiquitin-proteasomal and autophagy-lysosomal pathways, atrogenes, and growth factor signaling all play an important role. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family of transcription factors, which are activated by fatty acids and their derivatives. PPARs regulate genes that are involved in development, metabolism, inflammation, and many cellular processes in different organs. PPARs are also expressed in muscle and exert pleiotropic specialized responses upon activation by their ligands. There are three PPAR isotypes, viz., PPARα, -β/δ, and -γ. The expression of PPARα is high in tissues with effective fatty acid catabolism, including skeletal muscle. PPARβ/δ is expressed more ubiquitously and is the predominant isotype in skeletal muscle. It is involved in energy metabolism, mitochondrial biogenesis, and fiber-type switching. The expression of PPARγ is high in adipocytes, but it is also implicated in lipid deposition in muscle and other organs. Collectively, all three PPAR isotypes have a major impact on muscle homeostasis either directly or indirectly. Furthermore, reciprocal interactions have been found between PPARs and the gut microbiota along the gut–muscle axis in both health and disease. Herein, we review functions of PPARs in skeletal muscle and their interaction with the gut microbiota in the context of muscle wasting.
Collapse
Affiliation(s)
- Ravikumar Manickam
- Department of Pharmaceutical Sciences, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA;
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria;
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
- Toxalim, INRAE, Chemin de Tournefeuille 180, F-31027 Toulouse, France
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Correspondence:
| |
Collapse
|
49
|
Puangthong C, Sukhong P, Saengnual P, Srikuea R, Chanda M. A single bout of high-intensity exercise modulates the expression of vitamin D receptor and vitamin D-metabolising enzymes in horse skeletal muscle. Equine Vet J 2020; 53:796-805. [PMID: 32902017 DOI: 10.1111/evj.13346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/23/2020] [Accepted: 08/27/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND The expressions of vitamin D receptor (VDR) and vitamin D-metabolising enzymes (CYP27B1 and CYP24A1) in skeletal muscle have been reported. However, the regulation of this vitamin D system in horse skeletal muscle after high-intensity exercise has not yet been elucidated. OBJECTIVES To investigate the effect of high-intensity exercise on the expression of vitamin D system-related proteins in horse skeletal muscle and its associations with skeletal muscle stem cell (SMSC) activity and serum 25(OH)D level. STUDY DESIGN Longitudinal study. METHODS Six healthy ponies (5 geldings, 1 mare; age 6.3 ± 2.2 years) were studied. Serum and muscle samples were taken from the jugular vein and gluteus medius respectively. Samples were collected at pre-exercise, post-exercise, 1 and 3 weeks after a single bout of high-intensity exercise. Protein expression levels of VDR, CYP27B1, CYP24A1, OxPhos and Pax7 (SMSC marker) were determined using immunohistochemical analysis. Oxidative capacity and intramuscular glycogen content were evaluated using histochemical analysis. Blood biochemistry was analysed for lactate concentration and creatine kinase (CK), and 25(OH)D activity. RESULTS High-intensity exercise significantly upregulated Pax7 and VDR protein expression, which correlated with significantly increased blood lactate and serum CK levels immediately post-exercise. Serum 25(OH)D2 level correlated with CYP27B1 protein expression in skeletal muscle, and it reduced significantly immediately post-exercise and at 1 and 3 weeks post-exercise. However, CYP24A1 protein expression was unchanged throughout study periods. MAIN LIMITATION The healthy ponies could not represent a fit population of racehorses and eventers. CONCLUSIONS The rapid increase in Pax7 and VDR protein expression along with serum CK level after high-intensity exercise demonstrated an association between SMSC activity and activation of the vitamin D system in response to muscle injury in horses. Moreover, a decrease in CYP27B1 protein expression, correlated with a reduction in serum 25(OH)D2 , may indicate a compromised vitamin D metabolism after high-intensity exercise.
Collapse
Affiliation(s)
- Chanikarn Puangthong
- Veterinary Clinical Studies Program, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Patskit Sukhong
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Pattrawut Saengnual
- Pathological unit, Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Metha Chanda
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand.,Center of Veterinary Research and Academic Service, Faculty of Veterinary Medicine, Kasetsart University Bang Khen Campus, Bangkok, Thailand
| |
Collapse
|
50
|
Damaged Myofiber-Derived Metabolic Enzymes Act as Activators of Muscle Satellite Cells. Stem Cell Reports 2020; 15:926-940. [PMID: 32888505 PMCID: PMC7561495 DOI: 10.1016/j.stemcr.2020.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Muscle satellite cells are normally quiescent but are rapidly activated following muscle damage. Here, we investigated whether damaged myofibers influence the activation of satellite cells. Our findings revealed that satellite cells are directly activated by damaged-myofiber-derived factors (DMDFs). DMDFs induced satellite cells to enter the cell cycle; however, the cells stayed at the G1 phase and did not undergo S phase, and these cells were reversible to the quiescent-like state. Proteome analysis identified metabolic enzymes, including GAPDH, as DMDFs, whose recombinant proteins stimulated the activation of satellite cells. Satellite cells pre-exposed to the DMDFs demonstrated accelerated proliferation ex vivo. Treatment with recombinant GAPDH prior to muscle injury promoted expansion of the satellite cell population in vivo. Thus, our results indicate that DMDFs are not only a set of biomarkers for muscle damage, but also act as moonlighting proteins involved in satellite cell activation at the initial step of muscle regeneration.
Collapse
|