1
|
Ahmed SI, Carbone S. Energy restriction or improvements in diet quality: identifying the best pathway for a longer and healthier life. Minerva Cardiol Angiol 2025; 73:315-330. [PMID: 37310156 PMCID: PMC10716369 DOI: 10.23736/s2724-5683.23.06298-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Obesity is a major risk factor for chronic non-communicable diseases (NCDs) and it has increased to epidemic proportions. Unhealthy diet represents a modifiable risk factor for both obesity and NCDs, however, there is no universal dietary intervention to improve obesity-related NCDs and particularly to reduce the risk for major adverse cardiovascular events. Energy restriction (ER) and diet quality changes, with and without ER, have been widely investigated in preclinical and clinical studies, however, the potential underlying mechanisms driving the benefits of those dietary interventions remain largely unclear. ER affects multiple metabolic, physiological, genetic, and cellular adaptation pathways associated with prolonged lifespan, particularly in preclinical models, while these benefits remain to be established in humans. Moreover, the sustainability of ER and its implementation across the different diseases remains challenging. On the other hand, diet quality with improvements, with or without ER, has been associated with more favorable long-term metabolic and cardiovascular outcomes. This narrative review will describe the role of ER and/or diet quality improvements on the risk for NCDs. It will also discuss the potential mechanisms of action underlying the potential beneficial effects of those dietary approaches.
Collapse
Affiliation(s)
- Syed I Ahmed
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Salvatore Carbone
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, USA -
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
2
|
Zhang R, Kanki K. Glycolytic inhibition by resveratrol facilitates chondrocyte survival under glucose-deprived conditions and improves the viability of 3D-cultured cartilage tissue. J Biosci Bioeng 2025:S1389-1723(25)00106-9. [PMID: 40413115 DOI: 10.1016/j.jbiosc.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/28/2025] [Accepted: 05/01/2025] [Indexed: 05/27/2025]
Abstract
Decreased cell viability resulting from severe nutrient deprivation is a major obstacle in three-dimensional (3D) tissue construction. Therefore, technical improvements that prevent cell death in the core region of cell aggregates are desired for the development of large, thick tissues. We focused on the anti-glycolytic effects of resveratrol (RSV), a polyphenol known as a caloric restriction mimetic, and investigated its cytoprotective effects under glucose-deprived conditions in two-dimensional (2D) and 3D-cell culture systems using rat chondrocytes. In 2D culture, the low-glucose (LG, 0.5 mg/mL) condition caused time- and dose-dependent cell death in chondrocytes, whereas co-treatment with 50 μM RSV significantly restored cell viability under glucose deprivation. In RSV-treated cells, the expression levels of glycolytic genes (GLUT1, PKM, and LDHA) and glucose uptake were significantly downregulated, and phospho-AMPK levels were upregulated, indicating energy stress. RSV treatment restored the expression of extracellular matrix genes (COL1A1 and COL2A1), which were downregulated under the LG condition, and augmented the pro-chondrogenic effect of TGF-β1 and ascorbic acid. In a 3D-culture model, spheroids constructed with RSV-pretreated chondrocytes had a more viable core region than dimethyl-sulfoxide-treated control spheroids. TGF-β-induced cartilage maturation led these spheroids to develop larger and more viable tissues than control spheroids. These results suggested that glycolytic inhibition by RSV decreased chondrocyte glucose usage, thereby preventing cell death caused by glucose deprivation. Our findings provide useful information for improving cell viability under hyponutrition conditions and can be applied to 3D tissue construction.
Collapse
Affiliation(s)
- Rui Zhang
- Graduate School of Science and Engineering, Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Keita Kanki
- Graduate School of Science and Engineering, Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.
| |
Collapse
|
3
|
Liu S, Yang X, Zheng S, Chen C, Qi L, Xu X, Zhang D. Research progress on the use of traditional Chinese medicine to treat diseases by regulating ferroptosis. Genes Dis 2025; 12:101451. [PMID: 40070365 PMCID: PMC11894312 DOI: 10.1016/j.gendis.2024.101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/28/2024] [Accepted: 08/25/2024] [Indexed: 03/14/2025] Open
Abstract
Ferroptosis is an emerging form of programmed cell death triggered by iron-dependent lipid peroxidation. It is distinguished from other forms of cell death by its unique morphological changes and characteristic fine-tuned regulatory gene network. Since its pivotal involvement in the pathogenesis and therapeutic interventions of various diseases, such as malignant tumors, cardiovascular and cerebrovascular diseases, and traumatic disorders, has been well-established, ferroptosis has garnered significant attention in contemporary physiological and pathological research. For the advantage of alleviating the clinical symptoms and improving life quality, traditional Chinese medicine (TCM) holds a significant position in the treatment of these ailments. Moreover, increasing studies revealed that TCM compounds and monomers showed evident therapeutic efficacy by regulating ferroptosis via signaling pathways that tightly regulate redox reactions, iron ion homeostasis, lipid peroxidation, and glutathione metabolism. In this paper, we summarized the current knowledge of TCM compounds and monomers in regulating ferroptosis, aiming to provide a comprehensive review of disease management by TCM decoction, Chinese patent medicine, and natural products deriving from TCM through ferroptosis modulation. The formulation composition, chemical structure, and possible targets or mechanisms presented here offer valuable insights into the advancement of TCM exploration.
Collapse
Affiliation(s)
- Shuai Liu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Xianzhen Yang
- Urinary Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Sanxia Zheng
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Changjing Chen
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Lei Qi
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Xiangdong Xu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Denglu Zhang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| |
Collapse
|
4
|
Ding F, Yu Y, Zhang Y, Wei S, Han JH, Li Z, Jiang HB, Ryu D, Park W, Ha KT, Geng L. Harnessing nutrients and natural products for sustainable drug development against aging. Front Pharmacol 2025; 16:1579266. [PMID: 40356992 PMCID: PMC12066681 DOI: 10.3389/fphar.2025.1579266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
Developing treatments for age-related diseases requires cost-effective and efficient approaches. Nutrients and natural metabolites offer safer alternatives to synthetic drugs. Aging increases the need for solutions that protect health and repair cells. Recent studies show that nutrients and natural products reduce oxidative stress, regulate metabolism, and influence longevity-related genes. This review focuses on vitamins, minerals, antioxidants, and natural products that improve healthspan and combat aging. It also discusses challenges such as standardization, clinical validation, and regulatory approval. Finally, emerging trends, such as personalized nutrition and advanced delivery systems, highlight the potential of these metabolites for addressing aging.
Collapse
Affiliation(s)
- Fuan Ding
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ying Yu
- Department of Surgery, Changchun University of Chinese Medicine, Changchun, China
| | - Yan Zhang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jung Ho Han
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Zhuo Li
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hong-Bo Jiang
- Department of Dermatology, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
- Research Institute for Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
- Research Institute for Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Li Geng
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
van Rooij JRA, van den Berg M, Vasilkovska T, Van Audekerke J, Kosten L, Bertoglio D, Adhikari MH, Verhoye M. Short-term caloric restriction or resveratrol supplementation alters large-scale brain network connectivity in male and female rats. Front Nutr 2025; 12:1440373. [PMID: 39963669 PMCID: PMC11830597 DOI: 10.3389/fnut.2025.1440373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Dietary interventions such as caloric restriction (CR) exert positive effects on brain health. Unfortunately, poor compliance hinders the success of this approach. A proposed alternative is resveratrol (Rsv), a CR-mimetic known to promote brain health. Direct comparison between the effects of Rsv and CR on brain health is lacking, with limited knowledge on their sex-specific effects. Therefore, we aimed to compare and unravel the sex-specific impact of these dietary interventions on spontaneous brain activity. Methods Here, we used resting-state fMRI to investigate functional connectivity (FC) changes in five prominent resting-state brain networks (RSNs) in healthy 4 month old male and female F344 rats supplemented to either 40% CR or daily Rsv supplementation (10 mg/kg, oral) for the duration of 1 month. Results Our results demonstrated a decreased body weight (BW) in CR rats, as well as an increase in body weight in male Rsv supplemented rats, compared to female Rsv supplemented rats, whereas this difference between sexes was not observed in the control or CR groups. Furthermore, we found that both CR or Rsv supplementation induce a female-specific decrease of FC between the subcortical network and hippocampal network, and between the subcortical network and lateral cortical network. Moreover, Rsv supplementation lowered FC within the hippocampal network and between the hippocampal and the default mode like network, the lateral cortical network and the sensory network-an effect not observed for the CR rats. Discussion Our findings reveal that both CR and Rsv induce a similar female-specific decrease of FC in RSNs associated with memory and emotion, all the while CR and Rsv induce dissimilar changes in body weight and other within- and between-RSN FC measures. Altogether, this study provides insight into the effects and comparability of short-term CR and Rsv supplementation on brain connectivity within- and between-RSNs in both male and female F344 rats, providing a FC reference for future research of dietary effects.
Collapse
Affiliation(s)
- Judith R. A. van Rooij
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Monica van den Berg
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Tamara Vasilkovska
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Johan Van Audekerke
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Lauren Kosten
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Daniele Bertoglio
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mohit H. Adhikari
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Sikur N, Böröczky C, Paszternák A, Gyöngyössy R, Szökő É, Varga K, Tábi T. Resveratrol and Its Derivatives Diminish Lipid Accumulation in Adipocytes In Vitro-Mechanism of Action and Structure-Activity Relationship. Nutrients 2024; 16:3869. [PMID: 39599655 PMCID: PMC11597095 DOI: 10.3390/nu16223869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Expansion of white adipose tissue causes systemic inflammation and increased risk of metabolic diseases due to its endocrine function. Resveratrol was suggested to be able to prevent obesity-related disorders by mimicking caloric restriction; however, its structure-activity relationships and molecular targets are still unknown. We aimed to compare the effects of resveratrol and its analogues on adipocyte metabolism and lipid accumulation in vitro. METHODS Mouse embryonic fibroblasts were differentiated to adipocytes in the absence or presence of resveratrol or its derivatives (oxyresveratrol, monomethylated resveratrol, or trimethylated resveratrol). Intracellular lipid content was assessed by Oil Red O staining. Glucose uptake and its response to insulin were estimated by 2-NBDG, and mitochondrial activity was assayed via resazurin reduction. Involvement of potential molecular pathways was investigated by concurrent treatment with their inhibitors. RESULTS Although lipid accumulation was significantly reduced by all analogues without altering protein content, oxyresveratrol was the most potent (IC50 = 4.2 μM), while the lowest potency was observed with trimethylated resveratrol (IC50 = 27.4 μM). Increased insulin-stimulated glucose uptake was restored by each analogue with comparable efficiency. The enhanced mitochondrial activity was normalized by resveratrol and its methylated derivatives, while oxyresveratrol had a minor impact on it. Among the examined pathways, inhibition of SIRT1, PGC-1α, and JNK diminished the lipid-reducing effect of the compounds. Autophagy appeared to play a key role in the effect of all compounds but oxyresveratrol. CONCLUSIONS Resveratrol and its analogues can mimic caloric restriction with complex mechanisms, including activation of SIRT1, PGC-1α, and JNK, making them possible drug candidates to treat obesity-related diseases.
Collapse
Affiliation(s)
- Noémi Sikur
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad Tér, H-1089 Budapest, Hungary (A.P.); (É.S.); (K.V.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői Út, H-1085 Budapest, Hungary
| | - Csenge Böröczky
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad Tér, H-1089 Budapest, Hungary (A.P.); (É.S.); (K.V.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői Út, H-1085 Budapest, Hungary
| | - Alexandra Paszternák
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad Tér, H-1089 Budapest, Hungary (A.P.); (É.S.); (K.V.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői Út, H-1085 Budapest, Hungary
| | - Ramá Gyöngyössy
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad Tér, H-1089 Budapest, Hungary (A.P.); (É.S.); (K.V.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői Út, H-1085 Budapest, Hungary
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad Tér, H-1089 Budapest, Hungary (A.P.); (É.S.); (K.V.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői Út, H-1085 Budapest, Hungary
| | - Kamilla Varga
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad Tér, H-1089 Budapest, Hungary (A.P.); (É.S.); (K.V.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői Út, H-1085 Budapest, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad Tér, H-1089 Budapest, Hungary (A.P.); (É.S.); (K.V.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői Út, H-1085 Budapest, Hungary
| |
Collapse
|
7
|
Yin X, Guo Z, Song C. AMPK, a key molecule regulating aging-related myocardial ischemia-reperfusion injury. Mol Biol Rep 2024; 51:257. [PMID: 38302614 DOI: 10.1007/s11033-023-09050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/10/2023] [Indexed: 02/03/2024]
Abstract
Aging leads to the threat of more diseases to the biological anatomical structure and the decline of disease resistance, increasing the incidence and mortality of myocardial ischemia-reperfusion injury (MI/RI). Moreover, MI/RI promotes damage to an aging heart. Notably, 5'-adenosine monophosphate-activated protein kinase (AMPK) regulates cellular energy metabolism, stress response, and protein metabolism, participates in aging-related signaling pathways, and plays an essential role in ischemia-reperfusion (I/R) injury diseases. This study aims to introduce the aging theory, summarize the interaction between aging and MI/RI, and describe the crosstalk of AMPK in aging and MI/RI. We show how AMPK can offer protective effects against age-related stressors, lifestyle factors such as alcohol consumption and smoking, and hypertension. We also review some of the clinical prospects for the development of interventions that harness the effect of AMPK to treat MI/RI and other age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaorui Yin
- Department of Cardiology, Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130041, China
| | - Ziyuan Guo
- Department of Cardiology, Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130041, China
| | - Chunli Song
- Department of Cardiology, Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
8
|
Feng J, Zhang Y. The potential benefits of polyphenols for corneal diseases. Biomed Pharmacother 2023; 169:115862. [PMID: 37979379 DOI: 10.1016/j.biopha.2023.115862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023] Open
Abstract
The cornea functions as the primary barrier of the ocular surface, regulating temperature and humidity while providing protection against oxidative stress, harmful stimuli and pathogenic microorganisms. Corneal diseases can affect the biomechanical and optical properties of the eye, resulting in visual impairment or even blindness. Due to their diverse origins and potent biological activities, plant secondary metabolites known as polyphenols offer potential advantages for treating corneal diseases owing to their anti-inflammatory, antioxidant, and antibacterial properties. Various polyphenols and their derivatives have demonstrated diverse mechanisms of action in vitro and in vivo, exhibiting efficacy against a range of corneal diseases including repair of tissue damage, treatment of keratitis, inhibition of neovascularization, alleviation of dry eye syndrome, among others. Therefore, this article presents a concise overview of corneal and related diseases, along with an update on the research progress of natural polyphenols in safeguarding corneal health. A more comprehensive understanding of natural polyphenols provides a novel perspective for secure treatment of corneal diseases.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
9
|
Lopez-Ortiz C, Gracia-Rodriguez C, Belcher S, Flores-Iga G, Das A, Nimmakayala P, Balagurusamy N, Reddy UK. Drosophila melanogaster as a Translational Model System to Explore the Impact of Phytochemicals on Human Health. Int J Mol Sci 2023; 24:13365. [PMID: 37686177 PMCID: PMC10487418 DOI: 10.3390/ijms241713365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Fruits, vegetables, and spices are natural sources of bioactive phytochemicals, such as polyphenols, carotenoids, flavonoids, curcuminoids, terpenoids, and capsaicinoids, possessing multiple health benefits and relatively low toxicity. These compounds found in the diet play a central role in organism development and fitness. Given the complexity of the whole-body response to dietary changes, invertebrate model organisms can be valuable tools to examine the interplay between genes, signaling pathways, and metabolism. Drosophila melanogaster, an invertebrate model with its extensively studied genome, has more than 70% gene homology to humans and has been used as a model system in biological studies for a long time. The notable advantages of Drosophila as a model system, such as their low maintenance cost, high reproductive rate, short generation time and lifespan, and the high similarity of metabolic pathways between Drosophila and mammals, have encouraged the use of Drosophila in the context of screening and evaluating the impact of phytochemicals present in the diet. Here, we review the benefits of Drosophila as a model system for use in the study of phytochemical ingestion and describe the previously reported effects of phytochemical consumption in Drosophila.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| | - Celeste Gracia-Rodriguez
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico;
| | - Samantha Belcher
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| | - Gerardo Flores-Iga
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico;
| | - Amartya Das
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico;
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| |
Collapse
|
10
|
Saad B. A Review of the Anti-Obesity Effects of Wild Edible Plants in the Mediterranean Diet and Their Active Compounds: From Traditional Uses to Action Mechanisms and Therapeutic Targets. Int J Mol Sci 2023; 24:12641. [PMID: 37628822 PMCID: PMC10454857 DOI: 10.3390/ijms241612641] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Obesity is a long-term condition resulting from a continuous imbalance between the amount of energy consumed and expended. It is associated with premature mortality and contributes to a large portion of the global chronic disease burden, including diabesity, cardiovascular disease, hypertension, and some cancers. While lifestyle changes and dietary adjustments are the primary ways to manage obesity, they may not always be sufficient for long-term weight loss. In these cases, medication may be necessary. However, the options for drugs are limited due to their potential side effects. As a result, there is a need to identify safe and effective alternative treatments. Recently, dietary compounds, plants, and bioactive phytochemicals have been considered as promising sources for discovering new pharmacological agents to treat obesity and its related complications. These natural products can function independently or synergistically with other plants to augment their effects at various levels of the body. They can modulate appetite, lipase activity, thermogenesis and fat synthesis and degradation, satiation, adipogenesis, and adipocyte apoptosis. Additionally, targeting adipocyte growth and differentiation with diverse medicinal plants/diet is a significant strategy for devising new anti-obesity drugs that can intervene in preadipocytes, maturing preadipocytes, and mature adipocytes. Clinical trials have shown that the wild edible plants in the Mediterranean diet can reduce the risk of obesity and its related diseases. This review examines the effectiveness of the common components of the Mediterranean diet in managing obesity and its associated health issues. We conducted a comprehensive literature review using PubMed, Science Direct, Google Scholar, and Medline Plus to gather data on the therapeutic effects of the Mediterranean diet and phytochemicals in treating obesity and its associated diseases.
Collapse
Affiliation(s)
- Bashar Saad
- Qasemi Research Center, Al-Qasemi Academic College, P.O. Box 124, Baqa al-Gharbiyye 3010000, Israel;
- Department of Biochemistry, Faculty of Medicine, The Arab American University, Jenin P.O. Box 240, Palestine;
| |
Collapse
|
11
|
Toniolo L, Concato M, Giacomello E. Resveratrol, a Multitasking Molecule That Improves Skeletal Muscle Health. Nutrients 2023; 15:3413. [PMID: 37571349 PMCID: PMC10421121 DOI: 10.3390/nu15153413] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Resveratrol is a natural polyphenol utilized in Chinese traditional medicine and thought to be one of the determinants of the "French Paradox". More recently, some groups evidenced its properties as a calorie-restriction mimetic, suggesting that its action passes through the modulation of skeletal muscle metabolism. Accordingly, the number of studies reporting the beneficial effects of resveratrol on skeletal muscle form and function, in both experimental models and humans, is steadily increasing. Although studies on animal models confer to resveratrol a good potential to ameliorate skeletal muscle structure, function and performance, clinical trials still do not provide clear-cut information. Here, we first summarize the effects of resveratrol on the distinct components of the skeletal muscle, such as myofibers, the neuromuscular junction, tendons, connective sheaths and the capillary bed. Second, we review clinical trials focused on the analysis of skeletal muscle parameters. We suggest that the heterogeneity in the response to resveratrol in humans could depend on sample characteristics, treatment modalities and parameters analyzed; as well, this heterogeneity could possibly reside in the complexity of skeletal muscle physiology. A systematic programming of treatment protocols and analyses could be helpful to obtain consistent results in clinical trials involving resveratrol administration.
Collapse
Affiliation(s)
- Luana Toniolo
- Laboratory of Muscle Biophysics, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Monica Concato
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | - Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| |
Collapse
|
12
|
Xia C, Wang G, Chen L, Geng H, Yao J, Bai Z, Deng L. Trans-gnetin H isolated from the seeds of Paeonia species induces autophagy via inhibiting mTORC1 signalling through AMPK activation. Cell Prolif 2023; 56:e13360. [PMID: 36377675 PMCID: PMC9977667 DOI: 10.1111/cpr.13360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Paeonia is a well-known species of ornamental plants, traditional Chinese medicines, and emerging oilseed crops. Apart from nutritional unsaturated fatty acids, the seeds of peonies are rich in stilbenes characterized by their wide-ranging health-promoting properties. Although the typical stilbene resveratrol has been widely reported for its multiple bioactivities, it remains uncertain whether the trimer of resveratrol trans-gnetin H has properties that regulate cancer cell viability, let alone the underlying mechanism. Autophagy regulated by trans-gnetin H was detected by western blotting, immunofluorescence, and quantitative real-time PCR. The effects of trans-gnetin H on apoptosis and proliferation were examined by flow cytometry, colony formation and Cell Counting Kit-8 assays. Trans-gnetin H significantly inhibits cancer cell viability through autophagy by suppressing the phosphorylation of TFEB and promoting its nuclear transport. Mechanistically, trans-gnetin H inhibits the activation and lysosome translocation of mTORC1 by inhibiting the activation of AMPK, indicating that AMPK is a checkpoint for mTORC1 inactivation induced by trans-gnetin H. Moreover, the binding of TSC2 to Rheb was markedly increased in response to trans-gnetin H stimulation. Similarly, trans-gnetin H inhibited the interaction between Raptor and RagC in an AMPK-dependent manner. More importantly, trans-gnetin H-mediated autophagy highly depends on the AMPK-mTORC1 axis. We propose a regulatory mechanism by which trans-gnetin H inhibits the activation of the mTORC1 pathway to control cell autophagy.
Collapse
Affiliation(s)
- Chao Xia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guoyan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huijun Geng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhangzhen Bai
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Constantino-Jonapa LA, Espinoza-Palacios Y, Escalona-Montaño AR, Hernández-Ruiz P, Amezcua-Guerra LM, Amedei A, Aguirre-García MM. Contribution of Trimethylamine N-Oxide (TMAO) to Chronic Inflammatory and Degenerative Diseases. Biomedicines 2023; 11:431. [PMID: 36830968 PMCID: PMC9952918 DOI: 10.3390/biomedicines11020431] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is a metabolite produced by the gut microbiota and has been mainly associated with an increased incidence of cardiovascular diseases (CVDs) in humans. There are factors that affect one's TMAO level, such as diet, drugs, age, and hormones, among others. Gut dysbiosis in the host has been studied recently as a new approach to understanding chronic inflammatory and degenerative diseases, including cardiovascular diseases, metabolic diseases, and Alzheimer's disease. These disease types as well as COVID-19 are known to modulate host immunity. Diabetic and obese patients have been observed to have an increase in their level of TMAO, which has a direct correlation with CVDs. This metabolite is attributed to enhancing the inflammatory pathways through cholesterol and bile acid dysregulation, promoting foam cell formation. Additionally, TMAO activates the transcription factor NF-κB, which, in turn, triggers cytokine production. The result can be an exaggerated inflammatory response capable of inducing endoplasmic reticulum stress, which is responsible for various diseases. Due to the deleterious effects that this metabolite causes in its host, it is important to search for new therapeutic agents that allow a reduction in the TMAO levels of patients and that, thus, allow patients to be able to avoid a severe cardiovascular event. The present review discussed the synthesis of TMAO and its contribution to the pathogenesis of various inflammatory diseases.
Collapse
Affiliation(s)
- Luis A. Constantino-Jonapa
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Yoshua Espinoza-Palacios
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Alma R. Escalona-Montaño
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Paulina Hernández-Ruiz
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Luis M. Amezcua-Guerra
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| | - María M. Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| |
Collapse
|
14
|
The Role of the Gut Microbiome and Trimethylamine Oxide in Atherosclerosis and Age-Related Disease. Int J Mol Sci 2023; 24:ijms24032399. [PMID: 36768722 PMCID: PMC9917289 DOI: 10.3390/ijms24032399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The gut microbiome plays a major role in human health, and gut microbial imbalance or dysbiosis is associated with disease development. Modulation in the gut microbiome can be used to treat or prevent different diseases. Gut dysbiosis increases with aging, and it has been associated with the impairment of gut barrier function leading to the leakage of harmful metabolites such as trimethylamine (TMA). TMA is a gut metabolite resulting from dietary amines that originate from animal-based foods. TMA enters the portal circulation and is oxidized by the hepatic enzyme into trimethylamine oxide (TMAO). Increased TMAO levels have been reported in elderly people. High TMAO levels are linked to peripheral artery disease (PAD), endothelial senescence, and vascular aging. Emerging evidence showed the beneficial role of probiotics and prebiotics in the management of several atherogenic risk factors through the remodeling of the gut microbiota, thus leading to a reduction in TMAO levels and atherosclerotic lesions. Despite the promising outcomes in different studies, the definite mechanisms of gut dysbiosis and microbiota-derived TMAO involved in atherosclerosis remain not fully understood. More studies are still required to focus on the molecular mechanisms and precise treatments targeting gut microbiota and leading to atheroprotective effects.
Collapse
|
15
|
Chen X, Zhang J, Yin N, Wele P, Li F, Dave S, Lin J, Xiao H, Wu X. Resveratrol in disease prevention and health promotion: A role of the gut microbiome. Crit Rev Food Sci Nutr 2023; 64:5878-5895. [PMID: 36591813 DOI: 10.1080/10408398.2022.2159921] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Resveratrol is a bioactive polyphenolic compound mainly present in grapes and red wine. It is known to exert beneficial effects in various experimental settings, such as antioxidant, anti-inflammatory, anti-proliferative, and immunoregulatory. Accumulating evidence suggests these health benefits might be, at least partially, attributed to resveratrol's role in protecting the intestinal barrier, regulating the gut microbiome, and inhibiting intestinal inflammation. The purpose of this review is to examine the bioactivities of resveratrol in disease prevention and health promotion from the standpoint of regulating the gut microbiome. The article aims to provide additional insight into the potential applications of resveratrol in the food and nutraceutical industry.
Collapse
Affiliation(s)
- Xuexiang Chen
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Jing Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Ni Yin
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Prachi Wele
- Department of Biology, Miami University, Oxford, Ohio, USA
| | - Fang Li
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Soham Dave
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio, USA
| | - Juanying Lin
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio, USA
| |
Collapse
|
16
|
El-Sheikh MM, Abdel-Naby DH, El-Hazek RM, El-Ghazaly MA. Regulation of radiation-induced liver damage by modulation of SIRT-1 activity: In vivo rat model. Cell Biochem Funct 2023; 41:67-77. [PMID: 36259113 DOI: 10.1002/cbf.3762] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 01/11/2023]
Abstract
Silent information regulator 1 (SIRT-1), a nicotinamide adenine dinucleotide-dependent deacetylase, was found to regulate cell apoptosis, inflammation, and oxidative stress response in living organisms. Therefore, the role of SIRT-1 in regulating forkhead box O/poly ADP-ribose polymerase-1 (FOXO-1/PARP-1) signaling could provide the necessary validation for developing new pharmacological targets for the promotion or inhibition of SIRT-1 activity toward radiation sensitivity. In the present study, the SIRT-1 signaling pathway is being investigated to study the possible modulatory effect of resveratrol (RSV, SIRT-1 activator) versus nicotinamide (NAM, SIRT-1 inhibitor) in case of liver damage induced by whole-body gamma irradiation. Rats were exposed to 6 Gy gamma radiation after being pretreated with either RSV (10 mg/kg/day) or NAM (100 mg/kg/day) for 5 days, and subsequent examining hepatic morphological changes and apoptotic markers were assessed. The expression of SIRT-1, FOXO-1, and cleaved PARP-1 in the liver was analyzed. RSV improved radiation-induced apoptosis, mitochondrial dysfunction, and inflammation signified by low expression of caspase-3, lactate dehydrogenase, complex-I activity, myeloperoxidase, and total nitric oxide content. RSV increased the expression of SIRT-1, whereas cleaved PARP-1 and FOXO-1 were suppressed. These protective effects were suppressed by inhibition of SIRT-1 activity using NAM. These findings suggest that RSV can attenuate radiation-induced hepatic injury by reducing apoptosis and inflammation via SIRT-1 activity modulation.
Collapse
Affiliation(s)
- Marwa M El-Sheikh
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Doaa H Abdel-Naby
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Rania M El-Hazek
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Mona A El-Ghazaly
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| |
Collapse
|
17
|
Lugnier C. The Complexity and Multiplicity of the Specific cAMP Phosphodiesterase Family: PDE4, Open New Adapted Therapeutic Approaches. Int J Mol Sci 2022; 23:10616. [PMID: 36142518 PMCID: PMC9502408 DOI: 10.3390/ijms231810616] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Cyclic nucleotides (cAMP, cGMP) play a major role in normal and pathologic signaling. Beyond receptors, cyclic nucleotide phosphodiesterases; (PDEs) rapidly convert the cyclic nucleotide in its respective 5'-nucleotide to control intracellular cAMP and/or cGMP levels to maintain a normal physiological state. However, in many pathologies, dysregulations of various PDEs (PDE1-PDE11) contribute mainly to organs and tissue failures related to uncontrolled phosphorylation cascade. Among these, PDE4 represents the greatest family, since it is constituted by 4 genes with multiple variants differently distributed at tissue, cellular and subcellular levels, allowing different fine-tuned regulations. Since the 1980s, pharmaceutical companies have developed PDE4 inhibitors (PDE4-I) to overcome cardiovascular diseases. Since, they have encountered many undesired problems, (emesis), they focused their research on other PDEs. Today, increases in the knowledge of complex PDE4 regulations in various tissues and pathologies, and the evolution in drug design, resulted in a renewal of PDE4-I development. The present review describes the recent PDE4-I development targeting cardiovascular diseases, obesity, diabetes, ulcerative colitis, and Crohn's disease, malignancies, fatty liver disease, osteoporosis, depression, as well as COVID-19. Today, the direct therapeutic approach of PDE4 is extended by developing allosteric inhibitors and protein/protein interactions allowing to act on the PDE interactome.
Collapse
Affiliation(s)
- Claire Lugnier
- Section de Structures Biologiques, Pharmacologie et Enzymologie, CNRS/Unistra, CRBS, UR 3072, CEDEX, 67084 Strasbourg, France
| |
Collapse
|
18
|
Abstract
Aging, an ever-present process, is a part of every living organism's life cycle. Gerontology, the study of the biological, social, psychological aspects of aging, is a field that has been around since the 1930s, when the human inquiry into aging began to emerge. Aging can be characterized by the external changes, wrinkles, graying of the hair, among other changes, and lesser-seen but still important changes, presbycusis, arteriosclerosis, osteoporosis, cognitive decline, sarcopenia, and more. There is a strong drive to uncover as much as we can about the process of aging and the ways to delay its progression.
Collapse
Affiliation(s)
- Caroline Casey
- University of Central Florida College of Medicine, Orlando, FL, USA
| | - Michael Seidman
- Advent Health (Celebration and South Campuses); University of Central Florida; University of South Florida; AdventHealth Medical Group-Otolaryngology-Head & Neck Surgery, 410 Celebration Place, Suite 305, Celebration, FL 34747, USA.
| |
Collapse
|
19
|
Li H, Chen X, Chen D, Yu B, He J, Zheng P, Luo Y, Yan H, Chen H, Huang Z. Ellagic Acid Alters Muscle Fiber-Type Composition and Promotes Mitochondrial Biogenesis through the AMPK Signaling Pathway in Healthy Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9779-9789. [PMID: 35916165 DOI: 10.1021/acs.jafc.2c04108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ellagic acid (EA), because of its remarkable health-promoting ability, has aroused widespread interest in the fields of nutrition and medicine. However, no reports showed that EA regulates mitochondrial biogenesis as well as muscle fiber-type composition in pigs. Our study found that dietary 75 and 150 mg/kg EA obviously augmented the slow myosin heavy chain (MyHC) protein level, the number of slow-twitch muscle fibers, and the activity of malate dehydrogenase (MDH) in the longissimus thoracis (LT) muscle of growing-finishing pigs. In contrast, dietary 75 and 150 mg/kg EA decreased the fast MyHC level, the number of fast-twitch muscle fibers, and the activity of lactate dehydrogenase (LDH) in the LT muscle. In addition, our further study found that dietary 75 and 150 mg/kg EA promoted the mitochondrial DNA (mtDNA) content, the mRNA expressions of ATP synthase (ATP5G), mtDNA transcription factor A (TFAM), AMP-activated protein kinase α1 (AMPKα1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and sirtuin 1 (Sirt1), and the level of phospho-LKB1 (P-LKB1), phospho-AMPK (P-AMPK), Sirt1, and PGC-1α in the LT muscle. In vitro, 5, 10, and 20 μmol/L EA treatment upregulated the level of slow MyHC, but only 10 μmol/L EA treatment decreased fast MyHC protein expression in porcine skeletal muscle satellite cells (PSCs). In addition, our data again found that 10 μmol/L EA treatment promoted the mtDNA content, the mRNA levels of ATP5G, mitochondrial transcription factor b1 (TFB1M), citrate synthase (Cs), AMPKα1, PGC-1α, and Sirt1, and the protein expressions of P-AMPK, P-LKB1, PGC-1α, and Sirt1 in PSCs. What is more, inhibition of the AMPK signaling pathway by AMPKα1 siRNA significantly eliminated the improvement of EA on muscle fiber-type composition as well as the mtDNA content in PSCs. In conclusion, EA altered muscle fiber-type composition and promoted mitochondrial biogenesis through the AMPK signaling pathway.
Collapse
Affiliation(s)
- Huawei Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| |
Collapse
|
20
|
Wang L, Zhu T, Feng D, Li R, Zhang C. Polyphenols from Chinese Herbal Medicine: Molecular Mechanisms and Therapeutic Targets in Pulmonary Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1063-1094. [PMID: 35475972 DOI: 10.1142/s0192415x22500434] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pulmonary fibrosis (PF) is a highly confounding and fatal pathological process with finite treatment options. Multiple factors such as oxidative and immune/inflammation involve key pathological processes in chronic lung disease, and their intimate interactions mediate chronic lung damage, denudation of the alveolar epithelium, hyperproliferation of type II alveolar epithelial cells (AECIIs), proliferation and differentiation of fibroblasts, and the permeability of microvessels. We reviewed the classic mechanism of PF and highlighted a few emerging mechanisms for studying complex networks in lung disease pathology. Polyphenols, as a multi-target drug, has excellent potential in the treatment of pulmonary fibrosis. We then reviewed recent advances in discovering phenolic compounds from fruits, tea, and medical herbs with the bioactivities of simultaneously regulating multiple factors (e.g., oxidative stress, inflammation, autophagy, apoptosis, pyroptosis) for minimizing pulmonary fibrosis injury. These compounds include resveratrol, curcumin, salvianolic acid B, epigallocatechin-3-gallate, gallic acid, corilagin. Each phenolic compound can exert its anti-PF effect through various mechanisms, and the signaling pathways involved in different phenolic compounds are not the same. This review summarized the available evidence on phenolic compounds' effectiveness in pulmonary diseases and explored the molecular mechanisms and therapeutic targets of phenolic compounds from Chinese herbal medicine with the properties of inhibition of ongoing fibrogenesis and resolution of existing fibrosis.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ting Zhu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao 266071, P. R. China
| | - Deqin Feng
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Renshi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chaofeng Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
21
|
Liu YH, Jiang YH, Li CC, Chen XM, Huang LG, Zhang M, Ruan B, Wang XC. Involvement of the SIRT1/PGC-1α Signaling Pathway in Noise-Induced Hidden Hearing Loss. Front Physiol 2022; 13:798395. [PMID: 35620603 PMCID: PMC9127058 DOI: 10.3389/fphys.2022.798395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/18/2022] [Indexed: 12/06/2022] Open
Abstract
Objective: To establish an animal model of noise-induced hidden hearing loss (NIHHL), evaluate the dynamic changes in cochlear ribbon synapses and cochlear hair cell morphology, and observe the involvement of the SIRT1/PGC-1α signaling pathway in NIHHL.Methods: Male guinea pigs were randomly divided into three groups: control group, noise exposure group, and resveratrol treatment group. Each group was divided into five subgroups: the control group and 1 day, 1 week, 2 weeks, and 1 month post noise exposure groups. The experimental groups received noise stimulation at 105 dB SPL for 2 h. Hearing levels were examined by auditory brainstem response (ABR). Ribbon synapses were evaluated by inner ear basilar membrane preparation and immunofluorescence. The cochlear morphology was observed using scanning electron microscopy. Western blotting analysis and immunofluorescence was performed to assess the change of SIRT1/PGC-1α signaling. Levels of superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), ATP and SIRT1 activity were measured using commercial testing kits.Results: In the noise exposure group, hearing threshold exhibited a temporary threshold shift (TTS), and amplitude of ABR wave I decreased irreversibly. Ribbon synapse density decreased after noise exposure, and the stereocilia were chaotic and then returned to normal. The expression and activity of SIRT1 and PGC-1α protein was lower than that in the control group. SOD, CAT and ATP were also influenced by noise exposure and were lower than those in the control group, but MDA showed no statistical differences compared with the control group. After resveratrol treatment, SIRT1 expression and activity showed a significant increase after noise exposure, compared with the noise exposure group. In parallel, the PGC-1α and antioxidant proteins were also significantly altered after noise exposure, compared with the noise exposure group. The damage to the ribbon synapses and the stereocilia were attenuated by resveratrol as well. More importantly, the auditory function, especially ABR wave I amplitudes, was also promoted in the resveratrol treatment group.Conclusion: The SIRT1/PGC-1α signaling pathway and oxidative stress are involved in the pathogenesis of NIHHL and could be potential therapeutical targets in the future.
Collapse
Affiliation(s)
- Yu-Hui Liu
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an, China
- Department of Avation Medicine, Xi-Jing Hospital, Air Force Military Medical University, Xi’an, China
| | - Yi-Hong Jiang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an, China
- Department of Avation Medicine, Xi-Jing Hospital, Air Force Military Medical University, Xi’an, China
| | - Cong-Cong Li
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an, China
- Department of Avation Medicine, Xi-Jing Hospital, Air Force Military Medical University, Xi’an, China
| | - Xue-Min Chen
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otolaryngology-Head and Neck Surgery, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Li-Gui Huang
- The 908th Hospital of Joint Logistics Support Force of PLA, Nanchang, China
| | - Min Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an, China
- Department of Avation Medicine, Xi-Jing Hospital, Air Force Military Medical University, Xi’an, China
- *Correspondence: Xiao-Cheng Wang, ; Bai Ruan, ; Min Zhang,
| | - Bai Ruan
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an, China
- Department of Avation Medicine, Xi-Jing Hospital, Air Force Military Medical University, Xi’an, China
- *Correspondence: Xiao-Cheng Wang, ; Bai Ruan, ; Min Zhang,
| | - Xiao-Cheng Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an, China
- Department of Avation Medicine, Xi-Jing Hospital, Air Force Military Medical University, Xi’an, China
- *Correspondence: Xiao-Cheng Wang, ; Bai Ruan, ; Min Zhang,
| |
Collapse
|
22
|
Chatam O, Chapnik N, Froy O. Resveratrol Induces the Fasting State and Alters Circadian Metabolism in Hepatocytes. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:128-134. [PMID: 35178649 DOI: 10.1007/s11130-022-00954-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Resveratrol is a nutritional substance that has both metabolic and circadian effects. While some studies indicate a correlation between resveratrol and reduced gluconeogenesis, others propose the opposite. Our aim was to study the metabolic effect of resveratrol around the circadian clock in order to determine more accurately the hepatic signaling pathways involved. AML-12 hepatocytes were treated with resveratrol and clock and metabolic markers were measured around the clock. Resveratrol-treated AML-12 hepatocytes showed reduced ratio of the following key metabolic factors: phosphorylated PP2A to total PP2A (pPP2A/PP2A), pAKT/AKT, pFOXO1/FOXO1 and pAMPK/AMPK, indicating inhibition of AKT and AMPK, but activation of PP2A and FOXO1. In addition, the levels of phosphorylated mTOR were low after resveratrol treatment. The levels of the key gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) were significantly higher after resveratrol treatment. In accordance with the reduced mTOR activity, the ratio of pBMAL1/BMAL1, the clock transcription factor, also decreased. Bmal1 mRNA oscillated robustly in AML-12 hepatocytes, but resveratrol treatment led to a phase advance and a decrease in its amplitude, similarly to the effect on Srebp1c and Pgc1α mRNA. After resveratrol treatment, daily mRNA levels of Bmal1, Sirt1 and Srebp1c were significantly higher. Resveratrol changes the circadian expression of metabolic and clock genes activating the fasting state and inducing the PP2A-FOXO1-PEPCK pathway.
Collapse
Affiliation(s)
- Opal Chatam
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
23
|
Serna A, Marhuenda J, Arcusa R, Pérez-Piñero S, Sánchez-Macarro M, García-Muñoz AM, Victoria-Montesinos D, Cánovas F, López-Román FJ. Effectiveness of a polyphenolic extract (Lippia citriodora and Hibiscus sabdariffa) on appetite regulation in overweight and obese grade I population: an 8-week randomized, double-blind, cross-over, placebo-controlled trial. Eur J Nutr 2022; 61:825-841. [PMID: 34591168 PMCID: PMC8854308 DOI: 10.1007/s00394-021-02678-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/11/2021] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Polyphenols have shown capacity to improve appetite sensation, leading to enhanced control of body weight. However, despite being related with hunger-related hormones, metabolic and mechanism are not well known. METHODS The effectiveness of a nutraceutical composed of extract to Lippia citriodora and Hibiscus sabdarrifa (Lc-Hs) for controlling satiety and hunger was analyzed in a cross-over, placebo-controlled (Pla) clinical intervention. The study was divided in two 60-day periods separated by 30-day length wash-out period. At the end of each period, overweight and obese subjects (n = 33; age = 33.76 ± 12.23; BMI = 28.20 kg/m2 ± 2.47; fat mass 30.65 ± 8.39%; both sexes were proposed to eat an ad-libitum meal. Meanwhile, appetite sensation was determined by visual analog scales at different times. Moreover, blood extraction was performed to determine biochemical parameters (lipid and glucidic profile and safety parameters) and to evaluate hunger-related hormones (insulin, leptin, ghrelin, adiponectin, GLP-1 and peptide YY). RESULTS A decrease in appetite sensation was observed in Lc-Hs treatment, showing higher satiety quotient (Pla = 3.36 ± 2.33%mm/kcal; Lc-Hs = 5.53 ± 2.91%mm/kcal; p < 0.0001). Area under the curve was higher in Pla compared to Lc-Hs during the test, from baseline to minute 240 (240 (Pla 9136.65 ± 2261.46% x min-1; Lc-Hs 8279.73 ± 2745.71% x min-1; p < 0.014). Energy consumption was lower for subjects treated with Lc-Hs (774.44 ± 247.77 kcal) compared to those treated with Pla (849.52 ± 246.54 kcal) (p < 0.004). Leptin values varied from baseline (Pla 12.36 ± 1.98 ng/mL; Lc-Hs 13.13 ± 1.99 ng/mL) to the end of the study (Pla 12.60 ± 2.02 ng/mL; Lc-Hs 12.06 ± 2.05 ng/mL; p < 0.047). GLP-1 values varied (p < 0.001) in Lc-Hs treatment from baseline (4.34 ± 0.49 ng/mL) to the end of the study (3.23 ± 0.52 ng/mL). CONCLUSION The supplementation with the Lc-Hs extract decreases appetite sensation in overweight and obese population, reducing calorie intake after an ad-libitum meal. Due to variation on hunger-related hormones and the relationship between satiety feeling, it would be interesting to develop future research focused on the variation of the hormones themselves.
Collapse
Affiliation(s)
- Ana Serna
- Faculty of Health Sciences, San Antonio Catholic University of Murcia (UCAM), 30107, Murcia, Spain
| | - Javier Marhuenda
- Faculty of Health Sciences, San Antonio Catholic University of Murcia (UCAM), 30107, Murcia, Spain.
| | - Raúl Arcusa
- Faculty of Health Sciences, San Antonio Catholic University of Murcia (UCAM), 30107, Murcia, Spain
| | - Silvia Pérez-Piñero
- Faculty of Health Sciences, San Antonio Catholic University of Murcia (UCAM), 30107, Murcia, Spain
| | | | - Ana María García-Muñoz
- Faculty of Health Sciences, San Antonio Catholic University of Murcia (UCAM), 30107, Murcia, Spain
| | | | - Fernando Cánovas
- Faculty of Health Sciences, San Antonio Catholic University of Murcia (UCAM), 30107, Murcia, Spain
| | - F Javier López-Román
- Faculty of Health Sciences, San Antonio Catholic University of Murcia (UCAM), 30107, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
24
|
Nellaiappan K, Preeti K, Khatri DK, Singh SB. Diabetic Complications: An Update on Pathobiology and Therapeutic Strategies. Curr Diabetes Rev 2022; 18:e030821192146. [PMID: 33745424 DOI: 10.2174/1573399817666210309104203] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
Despite the advent of novel therapies which manage and control diabetes well, the increased risk of morbidity and mortality in diabetic subjects is associated with the devastating secondary complications it produces. Long-standing diabetes majorly drives cellular and molecular alterations, which eventually damage both small and large blood vessels. The complications are prevalent both in type I and type II diabetic subjects. The microvascular complications include diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, while the macrovascular complications include diabetic heart disease and stroke. The current therapeutic strategy alleviates the complications to some extent but does not cure or prevent them. Also, the recent clinical trial outcomes in this field are disappointing. Success in the drug discovery of diabetic complications may be achieved by a better understanding of the underlying pathophysiology and by recognising the crucial factors contributing to the development and progression of the disease. In this review, we discuss the well-studied cellular mechanisms leading to the development and progression of diabetic complications. In addition, we also highlight the various therapeutic paradigms currently in clinical practice.
Collapse
Affiliation(s)
- Karthika Nellaiappan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| |
Collapse
|
25
|
Siervo M, Shannon OM, Llewellyn DJ, Stephan BC, Fontana L. Mediterranean diet and cognitive function: From methodology to mechanisms of action. Free Radic Biol Med 2021; 176:105-117. [PMID: 34562607 DOI: 10.1016/j.freeradbiomed.2021.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The traditional Mediterranean diet (MedDiet), rich in minimally processed plant foods and fish, has been widely recognized to be one of the healthiest diets. Data from multiple randomized clinical trials have demonstrated its powerful effect against oxidative stress, inflammation and the development and progression of cardiovascular disease, type 2 diabetes, and other metabolic conditions that play a crucial role in the pathogenesis of neurodegenerative diseases. The protecting effects of the MedDiet against cognitive decline have been investigated in several observational and experimental studies. Data from observational studies suggest that the MedDiet may represent an effective dietary strategy for the early prevention of dementia, although these findings require further substantiation in clinical trials which have so far produced inconclusive results. Moreover, as we discuss in this review, accumulating data emphasizes the importance of: 1) maintaining an optimal nutritional and metabolic status for the promotion of healthy cognitive aging, and 2) implementing cognition-sparing dietary and lifestyle interventions during early time-sensitive windows before the pathological cascades turn into an irreversible state. In summary, components of the MedDiet pattern, such as essential fatty acids, polyphenols and vitamins, have been associated with reduced oxidative stress and the current evidence from observational studies seems to assign to the MedDiet a beneficial role in promoting brain health; however, results from clinical trials have been inconsistent. While we advocate for longitudinal analyses and for larger and longer clinical trials to be conducted, we assert our interim support to the use of the MedDiet as a protective dietary intervention for cognitive function based on its proven cardiovascular and metabolic benefits.
Collapse
Affiliation(s)
- Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK.
| | - Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK; Alan Turing Institute, London, UK
| | - Blossom Cm Stephan
- Institute of Mental Health, The University of Nottingham Medical School, Nottingham, UK
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Department of Clinical and Experimental Sciences, Brescia University School of Medicine, Brescia, Italy
| |
Collapse
|
26
|
Zhang LX, Li CX, Kakar MU, Khan MS, Wu PF, Amir RM, Dai DF, Naveed M, Li QY, Saeed M, Shen JQ, Rajput SA, Li JH. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother 2021; 143:112164. [PMID: 34649335 DOI: 10.1016/j.biopha.2021.112164] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (RV) is a well-known polyphenolic compound in various plants, including grape, peanut, and berry fruits, which is quite famous for its association with several health benefits such as anti-obesity, cardioprotective neuroprotective, antitumor, antidiabetic, antioxidants, anti-age effects, and glucose metabolism. Significantly, promising therapeutic properties have been reported in various cancer, neurodegeneration, and atherosclerosis and are regulated by several synergistic pathways that control oxidative stress, cell death, and inflammation. Similarly, RV possesses a strong anti-adipogenic effect by inhibiting fat accumulation processes and activating oxidative and lipolytic pathways, exhibiting their cardioprotective effects by inhibiting platelet aggregation. The RV also shows significant antibacterial effects against various food-borne pathogens (Listeria, Campylobacter, Staphylococcus aureus, and E. coli) by inhibiting an electron transport chain (ETC) and F0F1-ATPase, which decreases the production of cellular energy that leads to the spread of pathogens. After collecting and analyzing scientific literature, it may be concluded that RV is well tolerated and favorably affects cardiovascular, neurological, and diabetic disorders. As such, it is possible that RV can be considered the best nutritional additive and a complementary drug, especially a therapeutic candidate. Therefore, this review would increase knowledge about the blend of RV as well as inspire researchers around the world to consider RV as a pharmaceutical drug to combat future health crises against various inhumane diseases. In the future, this article will be aware of discoveries about the potential of this promising natural compound as the best nutraceuticals and therapeutic drugs in medicine.
Collapse
Affiliation(s)
- Li-Xue Zhang
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Chang-Xing Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal 90150, Balochistan, Pakistan
| | - Muhammad Sajjad Khan
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan.
| | - Pei-Feng Wu
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Rai Muhammad Amir
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Dong-Fang Dai
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qin-Yuan Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Saeed
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Ji-Qiang Shen
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China.
| |
Collapse
|
27
|
Zehfus LR, Gillespie ZE, Almendáriz-Palacios C, Low NH, Eskiw CH. Haskap Berry Phenolic Subclasses Differentially Impact Cellular Stress Sensing in Primary and Immortalized Dermal Fibroblasts. Cells 2021; 10:cells10102643. [PMID: 34685623 PMCID: PMC8534008 DOI: 10.3390/cells10102643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
It is generally accepted that dietary phenolics from fruits are of significant importance to human health. Unfortunately, there is minimal published data on how differences in phenolic structure(s) impact biological pathways at cellular and molecular levels. We observed that haskap berry extracts isolated with ethanol:formic acid:water or phenolic subclass fractions separated using different concentrations of ethanol (40% and 100%) impacted cell growth in a positive manner. All fractions and extracts significantly increased population doubling times. All extracts and fractions reduced intracellular free radicals; however, there were differences in these effects, indicating different abilities to scavenge free radicals. The extracts and fractions also exhibited differing impacts on transcripts encoding the antioxidant enzymes (CAT, SOD1, GPX1, GSS and HMOX1) and the phosphorylation state of nuclear factor-κB (NF-κB). We further observed that extracts and fractions containing different phenolic structures had divergent impacts on the mammalian target of rapamycin (mTOR) and sirtuin 1 (SIRT1). siRNA-mediated knockdown of SIRT1 transcripts demonstrated that this enzyme is key to eliciting haskap phenolic(s) impact on cells. We postulate that phenolic synergism is of significant importance when evaluating their dietary impact.
Collapse
Affiliation(s)
- Lily R. Zehfus
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (L.R.Z.); (C.A.-P.); (N.H.L.)
| | - Zoe E. Gillespie
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| | - Carla Almendáriz-Palacios
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (L.R.Z.); (C.A.-P.); (N.H.L.)
| | - Nicholas H. Low
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (L.R.Z.); (C.A.-P.); (N.H.L.)
| | - Christopher H. Eskiw
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (L.R.Z.); (C.A.-P.); (N.H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
- Correspondence: ; Tel.: +306-966-2454
| |
Collapse
|
28
|
Loss of Sirt6 in adipocytes impairs the ability of adipose tissue to adapt to intermittent fasting. Exp Mol Med 2021; 53:1298-1306. [PMID: 34493807 PMCID: PMC8492715 DOI: 10.1038/s12276-021-00664-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 11/08/2022] Open
Abstract
Intermittent fasting (IF) is gaining popularity for its effectiveness in improving overall health, including its effectiveness in achieving weight loss and euglycemia. The molecular mechanisms of IF, however, are not well understood. This study investigated the relationship between adipocyte sirtuin 6 (Sirt6) and the metabolic benefits of IF. Adipocyte-specific Sirt6-knockout (aS6KO) mice and wild-type littermates were fed a high-fat diet (HFD) ad libitum for four weeks and then subjected to 12 weeks on a 2:1 IF regimen consisting of two days of feeding followed by one day of fasting. Compared with wild-type mice, aS6KO mice subjected to HFD + IF exhibited a diminished response, as reflected by their glucose and insulin intolerance, reduced energy expenditure and adipose tissue browning, and increased inflammation of white adipose tissue. Sirt6 deficiency in hepatocytes or in myeloid cells did not impair adaptation to IF. Finally, the results indicated that the impaired adipose tissue browning and reduced expression of UCP1 in aS6KO mice were accompanied by downregulation of p38 MAPK/ATF2 signaling. Our findings indicate that Sirt6 in adipocytes is critical to obtaining the improved glucose metabolism and metabolic profiles conferred by IF and that maintaining high levels of Sirt6 in adipocytes may mimic the health benefits of IF.
Collapse
|
29
|
Campos J, Silva NA, Salgado AJ. Nutritional interventions for spinal cord injury: preclinical efficacy and molecular mechanisms. Nutr Rev 2021; 80:1206-1221. [PMID: 34472615 DOI: 10.1093/nutrit/nuab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition that leads to motor, sensory, and autonomic impairments. Its intrinsic pathophysiological complexity has hindered the establishment of effective treatments for decades. Nutritional interventions (NIs) for SCI have been proposed as a route to circumvent some of the problems associated with this condition. Results obtained in animal models point to a more holistic effect, rather than to specific modulation, of several relevant SCI pathophysiological processes. Indeed, published data have shown NI improves energetic imbalance, oxidative damage, and inflammation, which are promoters of improved proteostasis and neurotrophic signaling, leading ultimately to neuroprotection and neuroplasticity. This review focuses on the most well-documented Nis. The mechanistic implications and their translational potential for SCI are discussed.
Collapse
Affiliation(s)
- Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
30
|
Lu PH, Yu MC, Wei MJ, Kuo KL. The Therapeutic Strategies for Uremic Toxins Control in Chronic Kidney Disease. Toxins (Basel) 2021; 13:573. [PMID: 34437444 PMCID: PMC8402511 DOI: 10.3390/toxins13080573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Uremic toxins (UTs) are mainly produced by protein metabolized by the intestinal microbiota and converted in the liver or by mitochondria or other enzymes. The accumulation of UTs can damage the intestinal barrier integrity and cause vascular damage and progressive kidney damage. Together, these factors lead to metabolic imbalances, which in turn increase oxidative stress and inflammation and then produce uremia that affects many organs and causes diseases including renal fibrosis, vascular disease, and renal osteodystrophy. This article is based on the theory of the intestinal-renal axis, from bench to bedside, and it discusses nonextracorporeal therapies for UTs, which are classified into three categories: medication, diet and supplement therapy, and complementary and alternative medicine (CAM) and other therapies. The effects of medications such as AST-120 and meclofenamate are described. Diet and supplement therapies include plant-based diet, very low-protein diet, probiotics, prebiotics, synbiotics, and nutraceuticals. The research status of Chinese herbal medicine is discussed for CAM and other therapies. This review can provide some treatment recommendations for the reduction of UTs in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Ping-Hsun Lu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan; (P.-H.L.); (M.-C.Y.); (M.-J.W.)
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97048, Taiwan
| | - Min-Chien Yu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan; (P.-H.L.); (M.-C.Y.); (M.-J.W.)
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97048, Taiwan
| | - Meng-Jiun Wei
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan; (P.-H.L.); (M.-C.Y.); (M.-J.W.)
| | - Ko-Lin Kuo
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 97048, Taiwan
| |
Collapse
|
31
|
Bioactive natural products against experimental autoimmune encephalomyelitis: A pharmacokinetics review. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Maldonado M, Chen J, Lujun Y, Duan H, Raja MA, Qu T, Huang T, Gu J, Zhong Y. The consequences of a high-calorie diet background before calorie restriction on skeletal muscles in a mouse model. Aging (Albany NY) 2021; 13:16834-16858. [PMID: 34166224 PMCID: PMC8266348 DOI: 10.18632/aging.203237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/31/2021] [Indexed: 02/05/2023]
Abstract
The beneficial effects of calorie restriction (CR) are numerous. However, there is no scientific evidence about how a high-calorie diet (HCD) background influences the mechanisms underlying CR on skeletal muscles in an experimental mouse model. Herein we present empirical evidence showing significant interactions between HCD (4 months) and CR (3 months). Pectoralis major and quadriceps femoris vastus medialis, in the experimental and control groups, displayed metabolic and physiologic heterogeneity and remarkable plasticity, according to the dietary interventions. HCD-CR not only altered genetic activation patterns of satellite SC markers but also boosted the expression of myogenic regulatory factors and key activators of mitochondrial biogenesis, which in turn were also associated with metabolic fiber transition. Our data prompt us to theorize that the effects of CR may vary according to the physiologic, metabolic, and genetic peculiarities of the skeletal muscle described here and that INTM/IM lipid infiltration and tissue-specific fuel-energy status (demand/supply) both hold dependent-interacting roles with other key anti-aging mechanisms triggered by CR. Systematic integration of an HCD with CR appears to bring potential benefits for skeletal muscle function and energy metabolism. However, at this stage of our research, an optimal balance between the two dietary conditions, where anti-aging effects can be accomplished, is under intensive investigation in combination with other tissues and organs at different levels of organization within the organ system.
Collapse
Affiliation(s)
- Martin Maldonado
- Chengdu Jinxin Institute of Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Jianying Chen
- Chengdu Jinxin Institute of Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Yang Lujun
- Translational Medical Center, Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
| | - Huiqin Duan
- Chengdu Jinxin Institute of Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Mazhar Ali Raja
- Chengdu Jinxin Institute of Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Ting Qu
- Chengdu Jinxin Institute of Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Tianhua Huang
- Chengdu Jinxin Institute of Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Jiang Gu
- Chengdu Jinxin Institute of Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Ying Zhong
- Chengdu Jinxin Institute of Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| |
Collapse
|
33
|
Endothelial Progenitor Cells Dysfunctions and Cardiometabolic Disorders: From Mechanisms to Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22136667. [PMID: 34206404 PMCID: PMC8267891 DOI: 10.3390/ijms22136667] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of several disorders, such as hypertension, central obesity, dyslipidemia, hyperglycemia, insulin resistance and non-alcoholic fatty liver disease. Despite health policies based on the promotion of physical exercise, the reduction of calorie intake and the consumption of healthy food, there is still a global rise in the incidence and prevalence of MetS in the world. This phenomenon can partly be explained by the fact that adverse events in the perinatal period can increase the susceptibility to develop cardiometabolic diseases in adulthood. Individuals born after intrauterine growth restriction (IUGR) are particularly at risk of developing cardiovascular diseases (CVD) and metabolic disorders later in life. It has been shown that alterations in the structural and functional integrity of the endothelium can lead to the development of cardiometabolic diseases. The endothelial progenitor cells (EPCs) are circulating components of the endothelium playing a major role in vascular homeostasis. An association has been found between the maintenance of endothelial structure and function by EPCs and their ability to differentiate and repair damaged endothelial tissue. In this narrative review, we explore the alterations of EPCs observed in individuals with cardiometabolic disorders, describe some mechanisms related to such dysfunction and propose some therapeutical approaches to reverse the EPCs dysfunction.
Collapse
|
34
|
Unexpected beta-amyloid production by middle doses of resveratrol through stabilization of APP protein and AMPK-mediated inhibition of trypsin-like proteasome activity in a cell model of Alzheimer's disease. Food Chem Toxicol 2021; 152:112185. [PMID: 33845068 DOI: 10.1016/j.fct.2021.112185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/25/2022]
Abstract
Resveratrol is a drug candidate used for Alzheimer's disease (AD) and shows beneficial effects in various toxicity and production models, although recent clinical trial data did not show satisfactory results. Here we demonstrated the potential side effects of resveratrol in AD. We demonstrated resveratrol concentration- and time-dependent Aβ production using Aβ secreted cellular model and analyzed resveratrol-related molecular signaling. In Swedish mutant of APP (APPsw) stably expressing cells, treatment with a middle dose of resveratrol for 24 h unexpectedly increased Aβ production, but higher concentrations or shorter treatment durations did not. Resveratrol-mediated Aβ production was caused by an increase in APP protein levels associated with proteasome-dependent regulation of APP stability. Inhibition of AMPK, cAMP production, and epac1 attenuated Aβ production and APP increase by resveratrol, which blocked the inhibition of trypsin-like proteasomal activity. In addition, high-dose resveratrol decreased Aβ secretion and β-secretase activity at any treatment duration. Our data suggest that an appropriate dose of resveratrol can paradoxically increase Aβ production via stabilization of APP protein in an AMPK-proteasome signaling-dependent manner, which provides mechanistic insights into prior unsatisfactory clinical outcomes and the future clinical use of resveratrol.
Collapse
|
35
|
Food, Nutrition, Physical Activity and Microbiota: Which Impact on Lung Cancer? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052399. [PMID: 33804536 PMCID: PMC7967729 DOI: 10.3390/ijerph18052399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Lung cancer still represents the leading cause of cancer-related death, globally. Likewise, malnutrition and inactivity represent a major risk for loss of functional pulmonary capacities influencing overall lung cancer severity. Therefore, the adhesion to an appropriate health lifestyle is crucial in the management of lung cancer patients despite the subtype of cancer. This review aims to summarize the available knowledge about dietary approaches as well as physical activity as the major factors that decrease the risk towards lung cancer, and improve the response to therapies. We discuss the most significant dietary schemes positively associated to body composition and prognosis of lung cancer and the main molecular processes regulated by specific diet schemes, functional foods and physical activity, i.e., inflammation and oxidative stress. Finally, we report evidence demonstrating that dysbiosis of lung and/or gut microbiome, as well as their interconnection (the gut–lung axis), are strictly related to dietary patterns and regular physical activity playing a key role in lung cancer formation and progression, opening to the avenue of modulating the microbiome as coadjuvant therapy. Altogether, the evidence reported in this review highlights the necessity to consider non-pharmacological interventions (nutrition and physical activity) as effective adjunctive strategies in the management of lung cancer.
Collapse
|
36
|
Curcumin induces mitochondrial biogenesis by increasing cyclic AMP levels via phosphodiesterase 4A inhibition in skeletal muscle. Br J Nutr 2021; 126:1642-1650. [PMID: 33551001 DOI: 10.1017/s0007114521000490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Previous research has suggested that curcumin potentially induces mitochondrial biogenesis in skeletal muscle via increasing cyclic AMP (cAMP) levels. However, the regulatory mechanisms for this phenomenon remain unknown. The purpose of the present study was to clarify the mechanism by which curcumin activates cAMP-related signalling pathways that upregulate mitochondrial biogenesis and respiration in skeletal muscle. METHODS The effect of curcumin treatment (i.p., 100 mg/kg-BW/d for 28 d) on mitochondrial biogenesis was determined in rats. The effects of curcumin and exercise (swimming for 2 h/d for 3 d) on the cAMP signalling pathway were determined in the absence and presence of phosphodiesterase (PDE) or protein kinase A (PKA) inhibitors. Mitochondrial respiration, citrate synthase (CS) activity, cAMP content and protein expression of cAMP/PKA signalling molecules were analysed. RESULTS Curcumin administration increased cytochrome c oxidase subunit (COX-IV) protein expression, and CS and complex I activity, consistent with the induction of mitochondrial biogenesis by curcumin. Mitochondrial respiration was not altered by curcumin treatment. Curcumin and PDE inhibition tended to increase cAMP levels with or without exercise. In addition, exercise increased the phosphorylation of phosphodiesterase 4A (PDE4A), whereas curcumin treatment strongly inhibited PDE4A phosphorylation regardless of exercise. Furthermore, curcumin promoted AMP-activated protein kinase (AMPK) phosphorylation and PPAR gamma coactivator (PGC-1α) deacetylation. Inhibition of PKA abolished the phosphorylation of AMPK. CONCLUSION The present results suggest that curcumin increases cAMP levels via inhibition of PDE4A phosphorylation, which induces mitochondrial biogenesis through a cAMP/PKA/AMPK signalling pathway. Our data also suggest the possibility that curcumin utilises a regulatory mechanism for mitochondrial biogenesis that is distinct from the exercise-induced mechanism in skeletal muscle.
Collapse
|
37
|
Brockmueller A, Sameri S, Liskova A, Zhai K, Varghese E, Samuel SM, Büsselberg D, Kubatka P, Shakibaei M. Resveratrol's Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism. Cancers (Basel) 2021; 13:cancers13020188. [PMID: 33430318 PMCID: PMC7825813 DOI: 10.3390/cancers13020188] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The prevention and treatment of cancer is an ongoing medical challenge. In the context of personalized medicine, the well-studied polyphenol resveratrol could complement classical tumor therapy. It may affect key processes such as inflammation, angiogenesis, proliferation, metastasis, glucose metabolism, and apoptosis in various cancers because resveratrol acts as a multi-targeting agent by modulating multiple signal transduction pathways. This review article focuses on resveratrol’s ability to modify tumor glucose metabolism and its associated therapeutic capacity. Resveratrol reduces glucose uptake and glycolysis by affecting Glut1, PFK1, HIF-1α, ROS, PDH, and the CamKKB/AMPK pathway. It also inhibits cell growth, invasion, and proliferation by targeting NF-kB, Sirt1, Sirt3, LDH, PI-3K, mTOR, PKM2, R5P, G6PD, TKT, talin, and PGAM. In addition, resveratrol induces apoptosis by targeting integrin, p53, LDH, and FAK. In conclusion, resveratrol has many potentials to intervene in tumor processes if bioavailability can be increased and this natural compound can be used selectively. Abstract Tumor cells develop several metabolic reprogramming strategies, such as increased glucose uptake and utilization via aerobic glycolysis and fermentation of glucose to lactate; these lead to a low pH environment in which the cancer cells thrive and evade apoptosis. These characteristics of tumor cells are known as the Warburg effect. Adaptive metabolic alterations in cancer cells can be attributed to mutations in key metabolic enzymes and transcription factors. The features of the Warburg phenotype may serve as promising markers for the early detection and treatment of tumors. Besides, the glycolytic process of tumors is reversible and could represent a therapeutic target. So-called mono-target therapies are often unsafe and ineffective, and have a high prevalence of recurrence. Their success is hindered by the ability of tumor cells to simultaneously develop multiple chemoresistance pathways. Therefore, agents that modify several cellular targets, such as energy restriction to target tumor cells specifically, have therapeutic potential. Resveratrol, a natural active polyphenol found in grapes and red wine and used in many traditional medicines, is known for its ability to target multiple components of signaling pathways in tumors, leading to the suppression of cell proliferation, activation of apoptosis, and regression in tumor growth. Here, we describe current knowledge on the various mechanisms by which resveratrol modulates glucose metabolism, its potential as an imitator of caloric restriction, and its therapeutic capacity in tumors.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
| | - Saba Sameri
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, 6517838678 Hamadan, Iran;
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
- Correspondence: ; Tel.: +49-892-1807-2624; Fax: +49-892-1807-2625
| |
Collapse
|
38
|
Still Living Better through Chemistry: An Update on Caloric Restriction and Caloric Restriction Mimetics as Tools to Promote Health and Lifespan. Int J Mol Sci 2020; 21:ijms21239220. [PMID: 33287232 PMCID: PMC7729921 DOI: 10.3390/ijms21239220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR), the reduction of caloric intake without inducing malnutrition, is the most reproducible method of extending health and lifespan across numerous organisms, including humans. However, with nearly one-third of the world’s population overweight, it is obvious that caloric restriction approaches are difficult for individuals to achieve. Therefore, identifying compounds that mimic CR is desirable to promote longer, healthier lifespans without the rigors of restricting diet. Many compounds, such as rapamycin (and its derivatives), metformin, or other naturally occurring products in our diets (nutraceuticals), induce CR-like states in laboratory models. An alternative to CR is the removal of specific elements (such as individual amino acids) from the diet. Despite our increasing knowledge of the multitude of CR approaches and CR mimetics, the extent to which these strategies overlap mechanistically remains unclear. Here we provide an update of CR and CR mimetic research, summarizing mechanisms by which these strategies influence genome function required to treat age-related pathologies and identify the molecular fountain of youth.
Collapse
|
39
|
Sygitowicz G, Sitkiewicz D. Sirtuins and their role as physiological modulators
of metabolism. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.5247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The sirtuins are a family of highly evolutionary conserved NAD+-dependent deacetylases
(SIRT1, 2, 3, 5). Certain human sirtuins (SIRT4, 6) have, in addition, an ADP-ribosyltransferase
activity. SIRT1 and SIRT2 are located in the nucleus and cytoplasm; SIRT3 exists predominantly
in mitochondria, and SIRT6 is located in the nucleus. The mammalian sirtuins have emerged
as key metabolic sensors that directly link environmental nutrient signals to metabolic homeostasis.
SIRT1 is involved in the regulation of gluconeogenesis and fatty acid oxidation, as
well as inhibiting lipogenesis and inflammation in the liver. In addition, they contribute to
the mobilization of fat in white adipose tissue, sense nutrient availability in the hypothalamus;
regulate insulin secretion in the pancreas; as well as modulating the expression of genes
responsible for the activity of the circadian clock in metabolic tissues. Sirtuins are implicated
in a variety of cellular functions ranging from gene silencing, through the control of the cell
cycle, to energy homeostasis. Caloric restriction, supported by polyphenols, including resveratrol,
which is the SIRT1 activator, plays a special role in maintaining energy homeostasis.
On a whole body level, the wide range of cellular activities of the sirtuins suggests that they
could constitute a therapeutic target to combat obesity and related metabolic diseases. In
addition, this work presents the current state of knowledge in the field of sirtuin activity in
relation to nutritional status and lifespan.
Collapse
Affiliation(s)
- Grażyna Sygitowicz
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Warsaw
| | - Dariusz Sitkiewicz
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Warsaw
| |
Collapse
|
40
|
Teixeira CSS, Cerqueira NMFSA, Gomes P, Sousa SF. A Molecular Perspective on Sirtuin Activity. Int J Mol Sci 2020; 21:ijms21228609. [PMID: 33203121 PMCID: PMC7696986 DOI: 10.3390/ijms21228609] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
The protein acetylation of either the α-amino groups of amino-terminal residues or of internal lysine or cysteine residues is one of the major posttranslational protein modifications that occur in the cell with repercussions at the protein as well as at the metabolome level. The lysine acetylation status is determined by the opposing activities of lysine acetyltransferases (KATs) and lysine deacetylases (KDACs), which add and remove acetyl groups from proteins, respectively. A special group of KDACs, named sirtuins, that require NAD+ as a substrate have received particular attention in recent years. They play critical roles in metabolism, and their abnormal activity has been implicated in several diseases. Conversely, the modulation of their activity has been associated with protection from age-related cardiovascular and metabolic diseases and with increased longevity. The benefits of either activating or inhibiting these enzymes have turned sirtuins into attractive therapeutic targets, and considerable effort has been directed toward developing specific sirtuin modulators. This review summarizes the protein acylation/deacylation processes with a special focus on the current developments in the sirtuin research field.
Collapse
Affiliation(s)
- Carla S. S. Teixeira
- UCIBIO/REQUIMTE, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.S.T.); (N.M.F.S.A.C.)
| | - Nuno M. F. S. A. Cerqueira
- UCIBIO/REQUIMTE, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.S.T.); (N.M.F.S.A.C.)
| | - Pedro Gomes
- Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Center for Health Technology and Services Research (CINTESIS), University of Porto, R. Dr. Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.S.T.); (N.M.F.S.A.C.)
- Correspondence: ; Tel.: +351-22-551-3600
| |
Collapse
|
41
|
Rajendiran E, Ramadass B, Ramprasath V. Understanding connections and roles of gut microbiome in cardiovascular diseases. Can J Microbiol 2020; 67:101-111. [PMID: 33079568 DOI: 10.1139/cjm-2020-0043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbiome encompasses trillions of residing microbes, mainly bacteria, which play a crucial role in maintaining the physiological and metabolic health of the host. The gut microbiome has been associated with several diseases, including cardiovascular disease (CVD). A growing body of evidence suggests that an altered gut environment and gut-microbiome-derived metabolites are associated with CVD events. The gut microbiome communicates with host physiology through different mechanisms, including trimethylamine N-oxide generation, primary and secondary bile acid metabolism pathways, and short-chain fatty acids production. The main focus of this review is to understand the association of the gut microbiome with CVD and its implications on the interactions between the gut microbiome and the host. Manipulation of the gut microbiome through specific dietary intervention is a simple approach to identifying novel targets for therapy or better dietary recommendations, and new preventive measures for screening biomarkers to reduce CVD risk in humans.
Collapse
Affiliation(s)
- Ethendhar Rajendiran
- Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada
| | - Balamurugan Ramadass
- Center of Excellence for Clinical Microbiome Research, Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Vanu Ramprasath
- Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada
| |
Collapse
|
42
|
Yin B, Liu RR, Meng YJ, Zhai HL, Li SS, Muhire J. Study of the controversial resveratrol that interact with the endogenous glutathione thiyl radical in cancer cells. Free Radic Res 2020; 54:687-693. [PMID: 32972269 DOI: 10.1080/10715762.2020.1828582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Found in various natural food products, many in vitro evidence indicated that resveratrol (RES) has been linked to neuroprotective and cardioprotective effects and prevent cancer development. However, human clinical trials have been conducted with varying results, making the usage of RES controversial. In this paper, we demonstrated that the drug RES could be conjugated with the high levels of endogenous GS• in cancer cells. 5,5-Dimethyl-1-Pyrroline-N-Oxide (DMPO) was employed to capture the GS•. The molecular mechanism of the reaction between RES and GS• was further studied by UV-Vis spectrometry, mass spectrometry and Density Functional Theory (DFT) calculations. Besides, the formation of the adduct GS-RES in cancer cell was obtained when RES was added during incubation. Further study indicated that over 77.6% of the RES was consumed in cancer cells. This study suggested that endogenous GS• may be one of the important factors to cause the depletion of anti-tumour drugs during chemotherapy, which should be paid special attention in clinical therapeutics and drug development.
Collapse
Affiliation(s)
- Bo Yin
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, PR China
| | - Rui Rui Liu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, PR China
| | - Ya Jie Meng
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, PR China
| | - Hong Lin Zhai
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, PR China
| | - Sha Sha Li
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, PR China
| | - Jules Muhire
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
43
|
Naito K, Kanki K. Glycolytic inhibition by resveratrol prevents myoblast cell death caused by glucose deprivation and hypoxia; a possible application to the three-dimensional tissue construction. J Biosci Bioeng 2020; 131:90-97. [PMID: 32950383 DOI: 10.1016/j.jbiosc.2020.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/30/2020] [Accepted: 08/22/2020] [Indexed: 11/28/2022]
Abstract
Decreased cell viability resulting from a severe condition of nutrients deprivation and hypoxia has been the major obstacle in three-dimensional (3D) tissue construction. Therefore, technical improvement which prevents cell death caused by starvation and low oxygen is desired for the development of large, thick tissues. We focused on the anti-glycolytic effect of resveratrol (RSV), a naturally-occurring polyphenol known as a caloric restriction mimetic, and investigated its cytoprotective effect in two-dimensional (2D) and 3D-cell culture using H9c2 rat myoblast cells. Glucose deprivation by culturing with low glucose media caused time- and dose-dependent cell death in H9c2 cells. In contrast, RSV treatment at 100 μM significantly increased the cell viability by preventing cell death. RSV showed anti-glycolytic effect associated with a down-regulation of glycolytic genes (GLUT1, PKM2) and glucose uptake activity, and increased the activation of AMP-activated protein kinase (AMPK), an essential cellular energy sensor activated in the condition of energy deprivation. RSV treatment markedly improved the viability of myoblast cells cultured in a hypoxic, low glucose condition and attenuated the up-regulation of glycolytic genes by hypoxic response. In 3D-cultured model, spheroids constructed with RSV-treated cells showed improved cell viability and intact histological appearance compared with control. These results suggest that glycolytic inhibition by RSV decreases the glucose usage of myoblast cells, therefore, prevents cell death caused by nutrient deprivation and hypoxic condition. Our finding provides useful information to improve cell viability in a condition that nutrients and oxygen are low in supply, and be a possible application to the 3D-tissue construction.
Collapse
Affiliation(s)
- Kyoko Naito
- Department of Biomedical Engineering, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.
| | - Keita Kanki
- Department of Biomedical Engineering, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.
| |
Collapse
|
44
|
Butcher NJ, Burow R, Minchin RF. Modulation of Human Arylamine N-Acetyltransferase 1 Activity by Lysine Acetylation: Role of p300/CREB-Binding Protein and Sirtuins 1 and 2. Mol Pharmacol 2020; 98:88-95. [PMID: 32487734 DOI: 10.1124/mol.119.119008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic-metabolizing enzyme that also has a role in cancer cell growth and metabolism. Recently, it was reported that NAT1 undergoes lysine acetylation, an important post-translational modification that can regulate protein function. In the current study, we use site-directed mutagenesis to identify K100 and K188 as major sites of lysine acetylation in the NAT1 protein. Acetylation of ectopically expressed NAT1 in HeLa cells was decreased by C646, an inhibitor of the protein acetyltransferases p300/CREB-binding protein (CBP). Recombinant p300 directly acetylated NAT1 in vitro. Acetylation of NAT1 was enhanced by the sirtuin (SIRT) inhibitor nicotinamide but not by the histone deacetylase inhibitor trichostatin A. Cotransfection of cells with NAT1 and either SIRT 1 or 2, but not SIRT3, significantly decreased NAT1 acetylation. NAT1 activity was evaluated in cells after nicotinamide treatment to enhance acetylation or cotransfection with SIRT1 to inhibit acetylation. The results indicated that NAT1 acetylation impaired its enzyme kinetics, suggesting decreased acetyl coenzyme A binding. In addition, acetylation attenuated the allosteric effects of ATP on NAT1. Taken together, this study shows that NAT1 is acetylated by p300/CBP in situ and is deacetylated by the sirtuins SIRT1 and 2. It is hypothesized that post-translational modification of NAT1 by acetylation at K100 and K188 may modulate NAT1 effects in cells. SIGNIFICANCE STATEMENT: There is growing evidence that arylamine N-acetyltransferase 1 has an important cellular role in addition to xenobiotic metabolism. Here, we show that NAT1 is acetylated at K100 and K188 and that changes in protein acetylation equilibrium can modulate its activity in cells.
Collapse
Affiliation(s)
- Neville J Butcher
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Rachel Burow
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
45
|
Almendáriz-Palacios C, Gillespie ZE, Janzen M, Martinez V, Bridger JM, Harkness TAA, Mousseau DD, Eskiw CH. The Nuclear Lamina: Protein Accumulation and Disease. Biomedicines 2020; 8:E188. [PMID: 32630170 PMCID: PMC7400325 DOI: 10.3390/biomedicines8070188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular health is reliant on proteostasis-the maintenance of protein levels regulated through multiple pathways modulating protein synthesis, degradation and clearance. Loss of proteostasis results in serious disease and is associated with aging. One proteinaceous structure underlying the nuclear envelope-the nuclear lamina-coordinates essential processes including DNA repair, genome organization and epigenetic and transcriptional regulation. Loss of proteostasis within the nuclear lamina results in the accumulation of proteins, disrupting these essential functions, either via direct interactions of protein aggregates within the lamina or by altering systems that maintain lamina structure. Here we discuss the links between proteostasis and disease of the nuclear lamina, as well as how manipulating specific proteostatic pathways involved in protein clearance could improve cellular health and prevent/reverse disease.
Collapse
Affiliation(s)
- Carla Almendáriz-Palacios
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
| | - Zoe E. Gillespie
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Matthew Janzen
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Valeria Martinez
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
| | - Joanna M. Bridger
- Centre for Genome Engineering and Maintenance, College of Health, Life and Medical Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK;
| | - Troy A. A. Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Darrell D. Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK S7N 5A5, Canada;
| | - Christopher H. Eskiw
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| |
Collapse
|
46
|
Davinelli S, De Stefani D, De Vivo I, Scapagnini G. Polyphenols as Caloric Restriction Mimetics Regulating Mitochondrial Biogenesis and Mitophagy. Trends Endocrinol Metab 2020; 31:536-550. [PMID: 32521237 DOI: 10.1016/j.tem.2020.02.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
Abstract
The tight coordination between mitochondrial biogenesis and mitophagy can be dysregulated during aging, critically influencing whole-body metabolism, health, and lifespan. To date, caloric restriction (CR) appears to be the most effective intervention strategy to improve mitochondrial turnover in aging organisms. The development of pharmacological mimetics of CR has gained attention as an attractive and potentially feasible approach to mimic the CR phenotype. Polyphenols, ubiquitously present in fruits and vegetables, have emerged as well-tolerated CR mimetics that target mitochondrial turnover. Here, we discuss the molecular mechanisms that orchestrate mitochondrial biogenesis and mitophagy, and we summarize the current knowledge of how CR promotes mitochondrial maintenance and to what extent different polyphenols may mimic CR and coordinate mitochondrial biogenesis and clearance.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Campobasso, Italy. @hsph.harvard.edu
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Campobasso, Italy
| |
Collapse
|
47
|
Prabhakar PK, Singh K, Kabra D, Gupta J. Natural SIRT1 modifiers as promising therapeutic agents for improving diabetic wound healing. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153252. [PMID: 32505916 DOI: 10.1016/j.phymed.2020.153252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/14/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The occurrence of chronic wounds, account for significant suffering of diabetic people, together with increasing healthcare burden. The chronic wounds associated with diabetes do not undergo the normal healing process rather stagnate into chronic proinflammatory phase as well as declined fibroblast function and impaired cell migration. HYPOTHESIS SIRT1, which is the most studied isoform of the sirtuin family in mammals, has now emerged as a crucial target for improving diabetic wound healing. It is an NAD+ dependent deacetylase, originally characterized to deacetylate histone proteins leading to heterochromatin formation and gene silencing. It is now known to regulate a number of cellular processes like cell proliferation, division, senescence, apoptosis, DNA repair, and metabolism. METHODOLOGY The retrieval of potentially relevant studies was done by systematically searching of three databases (Google Scholar, Web of science and PubMed) in December 2019. The keywords used as search terms were related to SIRT1 and wound healing. The systematic search retrieved 649 papers that were potentially relevant and after selection procedure, 73 studies were included this review and discussed below. RESULTS Many SIRT1 activating compounds (SACs) were found protective and improve diabetic wound healing through regulation of inflammation, cell migration, oxidative stress response and formation of granulation tissue at the wound site. CONCLUSIONS However, contradictory reports describe the opposing role of SACs on the regulation of cell migration and cancer incidence. SACs are therefore subjected to intense research for understanding the mechanisms responsible for controlling cell migration and therefore possess prospective to enter the clinical arena in the foreseeable future.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, Lovely Professional University Punjab, India 144411
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Dhiraj Kabra
- Biological Research Pharmacology Department, Sun Pharma Advanced Research Company Limited, Vadodara, Gujarat, India, 390010
| | - Jeena Gupta
- Department of Biochemistry, Lovely Professional University Punjab, India 144411.
| |
Collapse
|
48
|
Stefania DS, Clodoveo ML, Cariello M, D'Amato G, Franchini C, Faienza MF, Corbo F. Polyphenols and obesity prevention: critical insights on molecular regulation, bioavailability and dose in preclinical and clinical settings. Crit Rev Food Sci Nutr 2020; 61:1804-1826. [PMID: 32436425 DOI: 10.1080/10408398.2020.1765736] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity represents one of the most important public health challenges of the 21st century and is characterized by a multifactorial etiology in which environmental, behavioral, metabolic, and genetic factors work together. Despite the rapid increase in prevalence of obesity in the last decades, especially in children, it remains a preventable disease. To battle obesity a multisector approach promoting healthier lifestyle in terms of physical activity and nutrition is needed. Specifically, biologically active dietary compounds, as polyphenols, are able to modulate the expression of genes involved in the development and progression of obesity and its comorbidities as demonstrated by multiple studies using different obesity models. However, human studies focusing on the transcriptomic modulation by polyphenols in obese patients are still limited and do not often recapitulate the results obtained in preclinical setting likely due to the underestimation of some variables such as bioavailability, dose and form (native vs. metabolized) of polyphenols used. The aim of this review is to summarize the state-of-art of nutrigenomic in vitro, in vivo and ex vivo studies as well as clinical trials based on dietary polyphenols to fight obesity. We also critical discuss the variables to be considered to fill the gap between preclinical and clinical settings.
Collapse
Affiliation(s)
- De Santis Stefania
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - M L Clodoveo
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - M Cariello
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - G D'Amato
- Neonatal Intensive Care Unit, Di Venere Hospital, Bari, Italy
| | - C Franchini
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - M F Faienza
- Pediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - F Corbo
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
49
|
Taherian M, Norenberg MD, Panickar KS, Shamaladevi N, Ahmad A, Rahman P, Jayakumar AR. Additive Effect of Resveratrol on Astrocyte Swelling Post-exposure to Ammonia, Ischemia and Trauma In Vitro. Neurochem Res 2020; 45:1156-1167. [PMID: 32166573 DOI: 10.1007/s11064-020-02997-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/12/2019] [Accepted: 02/22/2020] [Indexed: 12/16/2022]
Abstract
Swelling of astrocytes represents a major component of the brain edema associated with many neurological conditions, including acute hepatic encephalopathy (AHE), traumatic brain injury (TBI) and ischemia. It has previously been reported that exposure of cultured astrocytes to ammonia (a factor strongly implicated in the pathogenesis of AHE), oxygen/glucose deprivation, or to direct mechanical trauma results in an increase in cell swelling. Since dietary polyphenols have been shown to exert a protective effect against cell injury, we examined whether resveratrol (RSV, 3,5,4'-trihydroxy-trans-stilbene, a stilbenoid phenol), has a protective effect on astrocyte swelling following its exposure to ammonia, oxygen-glucose deprivation (OGD), or trauma in vitro. Ammonia increased astrocyte swelling, and pre- or post-treatment of astrocytes with 10 and 25 µM RSV displayed an additive effect, while 5 µM did not prevent the effect of ammonia. However, pre-treatment of astrocytes with 25 µM RSV slightly, but significantly, reduced the trauma-induced astrocyte swelling at earlier time points (3 h), while post-treatment had no significant effect on the trauma-induced cell swelling at the 3 h time point. Instead, pre- or post-treatment of astrocytes with 25 µM RSV had an additive effect on trauma-induced astrocyte swelling. Further, pre- or post-treatment of astrocytes with 5 or 10 µM RSV had no significant effect on trauma-induced astrocyte swelling. When 5 or 10 µM RSV were added prior to, or during the process of OGD, as well as post-OGD, it caused a slight, but not statistically significant decline in cell swelling. However, when 25 µM RSV was added during the process of OGD, as well as after the cells were returned to normal condition (90 min period), such treatment showed an additive effect on the OGD-induced astrocyte swelling. Noteworthy, a higher concentration of RSV (25 µM) exhibited an additive effect on levels of phosphorylated forms of ERK1/2, and p38MAPK, as well as an increased activity of the Na+-K+-Cl- co-transporter-1 (NKCC1), factors known to induce astrocytes swelling, when the cells were treated with ammonia or after trauma or ischemia. Further, inhibition of ERK1/2, and p38MAPK diminished the RSV-induced exacerbation of cell swelling post-ammonia, trauma and OGD treatment. These findings strongly suggest that treatment of cultured astrocytes with RSV enhanced the ammonia, ischemia and trauma-induced cell swelling, likely through the exacerbation of intercellular signaling kinases and ion transporters. Accordingly, caution should be exercised when using RSV for the treatment of these neurological conditions, especially when brain edema is also suspected.
Collapse
Affiliation(s)
- Mehran Taherian
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | - Michael D Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, FL, USA
- Department of Biochemistry & Molecular Biology, University of Miami School of Medicine, Miami, FL, USA
- Department of Neurology and Neurological Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Kiran S Panickar
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | | | - Anis Ahmad
- Department of Radiation Oncology, Sylvester Cancer Center, University of Miami School of Medicine, Miami, FL, USA
| | - Purbasha Rahman
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL, 33125, USA
- Department of Microbiology and Immunology, University of Miami, Coral Cables, Miami, FL, USA
| | - Arumugam R Jayakumar
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL, 33125, USA.
- South Florida VA Foundation for Research and Education Inc, Veterans Affairs Medical Center, Miami, FL, 33125, USA.
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, 1201 NW 16th St, Res-151, Room 314, Miami, FL, USA.
| |
Collapse
|
50
|
Effect of a Resveratrol/Quercetin Mixture on the Reversion of Hypertension Induced by a Short-Term Exposure to High Sucrose Levels Near Weaning and a Long-Term Exposure That Leads to Metabolic Syndrome in Rats. Int J Mol Sci 2020; 21:ijms21062231. [PMID: 32210194 PMCID: PMC7139609 DOI: 10.3390/ijms21062231] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 02/07/2023] Open
Abstract
Hypertension is an important global public health problem. Excess sucrose during a short period near weaning (short sucrose period, SSP; sucrose during rat postnatal days 12 to 28) increases the risk of developing hypertension during adulthood and sucrose ingestion for 6 months after weaning also results in metabolic syndrome (MS) accompanied by hypertension. The aim of this study was to test if the mechanisms that lead to hypertension induced by SSP and MS are similarly modified by a resveratrol/quercetin mixture (RSV/QSC) that targets epigenetic cues. We studied the reversion of hypertension by an RSV/QSC mixture administered for 1 month (from month 6 to month 7 of age) in these two models, since it is effective against some signs of MS. RSV/QSC might determine Sirtuin 1 (SIRT1) and Sirtuin 3 (SIRT3) expression that modulates the expression of endothelial nitric oxide synthase (eNOS), which synthesizes nitric oxide (NO), and of superoxide dismutases (SOD1 and 2), which are antioxidant enzymes that have an impact on the NO levels. Short- (SSP) and long-term (MS) exposure to sucrose induced hypertension and RSV/QSC reversed it. It increased the insulin sensitivity, which may determine the eNOS expression. eNOS expression was decreased in aortas from SSP and MS rats and RSV/QSC only elevated its levels in aortas from MS rats. SIRT1 was also only increased in the MS aortas. Hypertension was accompanied by a decrease in total non-enzymatic antioxidant defenses in SSP and MS aortas, which improved with the RSV/QSC treatment. SOD1 expression was not modified by the sucrose treatments, but SOD2 expression was decreased in SSP and MS aortas. The RSV/QSC treatment increased SOD1 expression in MS aortas. SIRT3 was not modified by the sucrose or RSV/QSC treatments. In conclusion, SSP and MS lead to hypertension, but MS leads to more possible epigenetically- regulated mechanisms related to high blood pressure that could be targeted by the RSV/QSC mixture. Therefore, treatment has better effects on hypertension produced by MS.
Collapse
|