1
|
Daher J. A Potential Link between Myeloperoxidase Modified LDL, Atherosclerosis and Depression. Int J Mol Sci 2024; 25:8805. [PMID: 39201490 PMCID: PMC11354346 DOI: 10.3390/ijms25168805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that involves modified low-density lipoproteins (LDL) which play a pivotal role in the initiation and progression of the disease. Myeloperoxidase oxidized LDL (Mox-LDL) is considered to be the most patho-physiologically relevant type of modified LDL and has been reported to be ubiquitously present in atheroma plaques of patients with atherosclerosis. Besides its involvement in the latter disease state, Mox-LDL has also been shown to be implicated in the pathogenesis of various illnesses including sleep disorders, which are in turn associated with heart disease and depression in many intricate ways. Meanwhile, we have recently shown that lox-1-mediated Mox-LDL signaling modulates neuroserpin activity in endothelial cells, which could have major implications that go beyond the pathophysiology of stroke and cerebrovascular disease (CD). Of note is that tissue plasminogen activator (tPA), which is the main target of neuroserpin in the brain, has a crucial function in the processing of brain-derived neurotrophic factor (BDNF) into its mature form. This factor is known to be involved in major depressive disorder (MDD) development and pathogenesis. Since tPA is more conventionally recognized as being involved in fibrinolytic mechanisms, and its effect on the BDNF system in the context of MDD is still not extensively studied, we speculate that any Mox-LDL-driven change in the activity of tPA in patients with atherosclerosis may lead to a decrease in the production of mature BDNF, resulting in impaired neural plasticity and depression. Deciphering the mechanisms of interaction between those factors could help in better understanding the potentially overlapping pathological mechanisms that regulate disease processes in CD and MDD, supporting the possibility of novel and common therapeutic opportunities for millions of patients worldwide.
Collapse
Affiliation(s)
- Jalil Daher
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, El-Koura P.O. Box 100, Lebanon
| |
Collapse
|
2
|
Chitranshi N, Rajput R, Godinez A, Pushpitha K, Mirzaei M, Basavarajappa D, Gupta V, Sharma S, You Y, Galliciotti G, Salekdeh GH, Baker MS, Graham SL, Gupta VK. Neuroserpin gene therapy inhibits retinal ganglion cell apoptosis and promotes functional preservation in glaucoma. Mol Ther 2023; 31:2056-2076. [PMID: 36905120 PMCID: PMC10362384 DOI: 10.1016/j.ymthe.2023.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Our research has proven that the inhibitory activity of the serine protease inhibitor neuroserpin (NS) is impaired because of its oxidation deactivation in glaucoma. Using genetic NS knockout (NS-/-) and NS overexpression (NS+/+ Tg) animal models and antibody-based neutralization approaches, we demonstrate that NS loss is detrimental to retinal structure and function. NS ablation was associated with perturbations in autophagy and microglial and synaptic markers, leading to significantly enhanced IBA1, PSD95, beclin-1, and LC3-II/LC3-I ratio and reduced phosphorylated neurofilament heavy chain (pNFH) levels. On the other hand, NS upregulation promoted retinal ganglion cell (RGC) survival in wild-type and NS-/- glaucomatous mice and increased pNFH expression. NS+/+Tg mice demonstrated decreased PSD95, beclin-1, LC3-II/LC3-I ratio, and IBA1 following glaucoma induction, highlighting its protective role. We generated a novel reactive site NS variant (M363R-NS) resistant to oxidative deactivation. Intravitreal administration of M363R-NS was observed to rescue the RGC degenerative phenotype in NS-/- mice. These findings demonstrate that NS dysfunction plays a key role in the glaucoma inner retinal degenerative phenotype and that modulating NS imparts significant protection to the retina. NS upregulation protected RGC function and restored biochemical networks associated with autophagy and microglial and synaptic function in glaucoma.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Rashi Rajput
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Angela Godinez
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Samridhi Sharma
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yuyi You
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ghasem H Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Mark S Baker
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Godinez A, Rajput R, Chitranshi N, Gupta V, Basavarajappa D, Sharma S, You Y, Pushpitha K, Dhiman K, Mirzaei M, Graham S, Gupta V. Neuroserpin, a crucial regulator for axogenesis, synaptic modelling and cell-cell interactions in the pathophysiology of neurological disease. Cell Mol Life Sci 2022; 79:172. [PMID: 35244780 PMCID: PMC8897380 DOI: 10.1007/s00018-022-04185-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/31/2023]
Abstract
Neuroserpin is an axonally secreted serpin that is involved in regulating plasminogen and its enzyme activators, such as tissue plasminogen activator (tPA). The protein has been increasingly shown to play key roles in neuronal development, plasticity, maturation and synaptic refinement. The proteinase inhibitor may function both independently and through tPA-dependent mechanisms. Herein, we discuss the recent evidence regarding the role of neuroserpin in healthy and diseased conditions and highlight the participation of the serpin in various cellular signalling pathways. Several polymorphisms and mutations have also been identified in the protein that may affect the serpin conformation, leading to polymer formation and its intracellular accumulation. The current understanding of the involvement of neuroserpin in Alzheimer's disease, cancer, glaucoma, stroke, neuropsychiatric disorders and familial encephalopathy with neuroserpin inclusion bodies (FENIB) is presented. To truly understand the detrimental consequences of neuroserpin dysfunction and the effective therapeutic targeting of this molecule in pathological conditions, a cross-disciplinary understanding of neuroserpin alterations and its cellular signaling networks is essential.
Collapse
Affiliation(s)
- Angela Godinez
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Rashi Rajput
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Samridhi Sharma
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Yuyi You
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Kunal Dhiman
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Stuart Graham
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
4
|
Fatima S, Ansari S, Bano S, Ahamad S, Ishqi HM, Tabish M, Gupta D, Rehman SU, Jairajpuri MA. Detection of truncated isoforms of human neuroserpin lacking the reactive center loop: Implications in noninhibitory role. IUBMB Life 2021; 73:941-952. [PMID: 33893722 DOI: 10.1002/iub.2475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022]
Abstract
Neuroserpin is a serine protease inhibitor expressed mainly in the brain and at low levels in other tissues like the kidney, testis, heart, and spinal cord. It is involved in the inhibition of tissue plasminogen activator (tPA), plasmin, and to a lesser extent, urokinase-type plasminogen (uPA). Neuroserpin has also been shown to plays noninhibitory roles in the regulation of N-cadherin-mediated cell adhesion. It is involved in neuroprotection from seizure and stroke through tPA-mediated inhibition and also through its other protease targets. Mutations in critical domains of neuroserpin lead to its polymerization and neuronal death. In this study, a novel truncated isoform of human neuroserpin was identified in the brain and liver, which was confirmed by reverse transcriptase-PCR and DNA sequencing using exon-specific primers. Structural characterization of novel isoform using MD simulations studies indicated that it lacks the reactive center loop (RCL) but largely maintains its secondary structure fold. The novel truncated variant was cloned, expressed, and purified. A comparative intrinsic fluorescence and 4,4'-bis-1-anilino naphthalene 8-sulfonate studies revealed a decrease in fluorescence emission intensity and a more exposed hydrophobic surface as compared to the reported isoform. However, the novel isoform has lost its ability for tPA inhibition and complex formation. The absence of RCL indicates a noninhibitory role for the truncated isoform, prompting a detailed search and identification of two smaller isoforms in the human brain. With indications of the noninhibitory role of neuroserpin, identifying novel isoforms that appear to be without the tPA recognition domain is significant.
Collapse
Affiliation(s)
- Sana Fatima
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Shoyab Ansari
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Shadabi Bano
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Shahzaib Ahamad
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Hassan Mubarak Ishqi
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India
- Department of Biochemistry, Faculty of Life Sciences, Aligarh M. University, Aligarh, Uttar Pradesh, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, Aligarh M. University, Aligarh, Uttar Pradesh, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sayeed Ur Rehman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
5
|
Visentin C, Musso L, Broggini L, Bonato F, Russo R, Moriconi C, Bolognesi M, Miranda E, Dallavalle S, Passarella D, Ricagno S. Embelin as Lead Compound for New Neuroserpin Polymerization Inhibitors. Life (Basel) 2020; 10:life10070111. [PMID: 32664592 PMCID: PMC7400170 DOI: 10.3390/life10070111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a severe and lethal neurodegenerative disease. Upon specific point mutations in the SERPINI1gene-coding for the human protein neuroserpin (NS) the resulting pathologic NS variants polymerize and accumulate within the endoplasmic reticulum of neurons in the central nervous system. To date, embelin (EMB) is the only known inhibitor of NS polymerization in vitro. This molecule is capable of preventing NS polymerization and dissolving preformed polymers. Here, we show that lowering EMB concentration results in increasing size of NS oligomers in vitro. Moreover, we observe that in cells expressing NS, the polymerization of G392E NS is reduced, but this effect is mediated by an increased proteasomal degradation rather than polymerization impairment. For these reasons we designed a systematic chemical evolution of the EMB scaffold aimed to improve its anti-polymerization properties. The effect of EMB analogs against NS polymerization was assessed in vitro. None of the EMB analogs displayed an anti-polymerization activity better than the one reported for EMB, indicating that the EMB–NS interaction surface is very specific and highly optimized. Thus, our results indicate that EMB is, to date, still the best candidate for developing a treatment against NS polymerization.
Collapse
Affiliation(s)
- Cristina Visentin
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (M.B.)
| | - Loana Musso
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, Via Celoria, 2, 20133 Milan, Italy; (L.M.); (S.D.)
| | - Luca Broggini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (M.B.)
| | - Francesca Bonato
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milan, Italy; (F.B.); (D.P.)
| | - Rosaria Russo
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Via Fratelli Cervi, 93, 20090 Segrate, Italy;
| | - Claudia Moriconi
- Dipartimento di Biologia e Biotecnologie ‘Charles Darwin’, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy; (C.M.); (E.M.)
| | - Martino Bolognesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (M.B.)
| | - Elena Miranda
- Dipartimento di Biologia e Biotecnologie ‘Charles Darwin’, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy; (C.M.); (E.M.)
- Istituto Pasteur—Cenci Bolognetti Foundation, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Sabrina Dallavalle
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, Via Celoria, 2, 20133 Milan, Italy; (L.M.); (S.D.)
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milan, Italy; (F.B.); (D.P.)
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (M.B.)
- Correspondence: ; Tel.: +39-02-5031-4914
| |
Collapse
|
6
|
Visentin C, Broggini L, Sala BM, Russo R, Barbiroli A, Santambrogio C, Nonnis S, Dubnovitsky A, Bolognesi M, Miranda E, Achour A, Ricagno S. Glycosylation Tunes Neuroserpin Physiological and Pathological Properties. Int J Mol Sci 2020; 21:E3235. [PMID: 32375228 PMCID: PMC7247563 DOI: 10.3390/ijms21093235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/03/2023] Open
Abstract
Neuroserpin (NS) is a member of the serine protease inhibitors superfamily. Specific point mutations are responsible for its accumulation in the endoplasmic reticulum of neurons that leads to a pathological condition named familial encephalopathy with neuroserpin inclusion bodies (FENIB). Wild-type NS presents two N-glycosylation chains and does not form polymers in vivo, while non-glycosylated NS causes aberrant polymer accumulation in cell models. To date, all in vitro studies have been conducted on bacterially expressed NS, de facto neglecting the role of glycosylation in the biochemical properties of NS. Here, we report the expression and purification of human glycosylated NS (gNS) using a novel eukaryotic expression system, LEXSY. Our results confirm the correct N-glycosylation of wild-type gNS. The fold and stability of gNS are not altered compared to bacterially expressed NS, as demonstrated by the circular dichroism and intrinsic tryptophan fluorescence assays. Intriguingly, gNS displays a remarkably reduced polymerisation propensity compared to non-glycosylated NS, in keeping with what was previously observed for wild-type NS in vivo and in cell models. Thus, our results support the relevance of gNS as a new in vitro tool to study the molecular bases of FENIB.
Collapse
Affiliation(s)
- Cristina Visentin
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (B.M.S.); (M.B.)
| | - Luca Broggini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (B.M.S.); (M.B.)
| | - Benedetta Maria Sala
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (B.M.S.); (M.B.)
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, SE-17176 Stockholm, Sweden;
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Rosaria Russo
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Via Fratelli Cervi, 93, 20090 Segrate, Italy;
| | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l′Ambiente, Università degli Studi di Milano, Via Celoria, 2, 20133 Milan, Italy;
| | - Carlo Santambrogio
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126 Milan, Italy;
| | - Simona Nonnis
- Departimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università, 6, 26900 Lodi, Italy;
| | - Anatoly Dubnovitsky
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Division of Rheumatology, Karolinska University Hospital, Solna, SE-17176 Stockholm, Sweden;
| | - Martino Bolognesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (B.M.S.); (M.B.)
| | - Elena Miranda
- Dipartimento di Biologia e Biotecnologie ‘Charles Darwin’, and Istituto Pasteur - Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, SE-17176 Stockholm, Sweden;
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (B.M.S.); (M.B.)
| |
Collapse
|
7
|
Çinar RK. Neuroserpin in Bipolar Disorder. Curr Top Med Chem 2020; 20:518-523. [PMID: 32003693 DOI: 10.2174/1568026620666200131125526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 09/20/2019] [Accepted: 11/30/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Neuroserpin is a serine protease inhibitor predominantly expressed in the nervous system functioning mainly in neuronal migration and axonal growth. Neuroprotective effects of neuroserpin were shown in animal models of stroke, brain, and spinal cord injury. Postmortem studies confirmed the involvement of neuroserpin in Alzheimer's disease. Since altered adult neurogenesis was postulated as an aetiological mechanism for bipolar disorder, the possible effect of neuroserpin gene expression in the disorder was evaluated. METHODS Neuroserpin mRNA expression levels were examined in the peripheral blood of bipolar disorder type I manic and euthymic patients and healthy controls using the polymerase chain reaction method. The sample comprised of 60 physically healthy, middle-aged men as participants who had no substance use disorder. RESULTS The gene expression levels of neuroserpin were found lower in the bipolar disorder patients than the healthy controls (p=0.000). The neuroserpin levels did not differ between mania and euthymia (both 96% down-regulated compared to the controls). CONCLUSION Since we detected differences between the patients and the controls, not the disease states, the dysregulation in the neuroserpin gene could be interpreted as a result of the disease itself.
Collapse
Affiliation(s)
- Rugül Köse Çinar
- Department of Psychiatry, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
8
|
Galas L, Bénard M, Lebon A, Komuro Y, Schapman D, Vaudry H, Vaudry D, Komuro H. Postnatal Migration of Cerebellar Interneurons. Brain Sci 2017; 7:brainsci7060062. [PMID: 28587295 PMCID: PMC5483635 DOI: 10.3390/brainsci7060062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/25/2017] [Accepted: 06/01/2017] [Indexed: 12/26/2022] Open
Abstract
Due to its continuing development after birth, the cerebellum represents a unique model for studying the postnatal orchestration of interneuron migration. The combination of fluorescent labeling and ex/in vivo imaging revealed a cellular highway network within cerebellar cortical layers (the external granular layer, the molecular layer, the Purkinje cell layer, and the internal granular layer). During the first two postnatal weeks, saltatory movements, transient stop phases, cell-cell interaction/contact, and degradation of the extracellular matrix mark out the route of cerebellar interneurons, notably granule cells and basket/stellate cells, to their final location. In addition, cortical-layer specific regulatory factors such as neuropeptides (pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin) or proteins (tissue-type plasminogen activator (tPA), insulin growth factor-1 (IGF-1)) have been shown to inhibit or stimulate the migratory process of interneurons. These factors show further complexity because somatostatin, PACAP, or tPA have opposite or no effect on interneuron migration depending on which layer or cell type they act upon. External factors originating from environmental conditions (light stimuli, pollutants), nutrients or drug of abuse (alcohol) also alter normal cell migration, leading to cerebellar disorders.
Collapse
Affiliation(s)
- Ludovic Galas
- Normandie University, UNIROUEN, INSERM, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - Magalie Bénard
- Normandie University, UNIROUEN, INSERM, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - Alexis Lebon
- Normandie University, UNIROUEN, INSERM, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - Yutaro Komuro
- Department of Neurophysiology, Donders Centre for Neuroscience, Radboud University, Nijmegen 6525 AJ, The Netherlands.
| | - Damien Schapman
- Normandie University, UNIROUEN, INSERM, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - Hubert Vaudry
- Normandie University, UNIROUEN, INSERM, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - David Vaudry
- Normandie University, UNIROUEN, INSERM, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - Hitoshi Komuro
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
9
|
Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front Cell Neurosci 2017; 11:78. [PMID: 28533743 PMCID: PMC5420571 DOI: 10.3389/fncel.2017.00078] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxia-ischaemia (HI) is the most common cause of death and disability in human neonates, and is often associated with persistent motor, sensory, and cognitive impairment. Improved intensive care technology has increased survival without preventing neurological disorder, increasing morbidity throughout the adult population. Early preventative or neuroprotective interventions have the potential to rescue brain development in neonates, yet only one therapeutic intervention is currently licensed for use in developed countries. Recent investigations of the transient cortical layer known as subplate, especially regarding subplate's secretory role, opens up a novel set of potential molecular modulators of neonatal HI injury. This review examines the biological mechanisms of human neonatal HI, discusses evidence for the relevance of subplate-secreted molecules to this condition, and evaluates available animal models. Neuroserpin, a neuronally released neuroprotective factor, is discussed as a case study for developing new potential pharmacological interventions for use post-ischaemic injury.
Collapse
Affiliation(s)
- Lancelot J. Millar
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Lei Shi
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou, China
| | | | - Zoltán Molnár
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
10
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
11
|
Bonaventura A, Montecucco F, Dallegri F. Update on the effects of treatment with recombinant tissue-type plasminogen activator (rt-PA) in acute ischemic stroke. Expert Opin Biol Ther 2016; 16:1323-1340. [PMID: 27548625 DOI: 10.1080/14712598.2016.1227779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Acute ischemic stroke (AIS) represents a major cause of death and disability all over the world. The recommended therapy aims at dissolving the clot to re-establish quickly the blood flow to the brain and reduce neuronal injury. Intravenous administration of recombinant tissue-type plasminogen activator (rt-PA) is clinically used with this goal. AREAS COVERED A description of beneficial and detrimental effects of rt-PA treatment is addressed. An overview of new therapies against AIS, such as new thrombolytics, sonolysis and sonothrombolysis, endovascular procedures, and association therapies is provided. Updates on the pathophysiological process leading to intracranial hemorrhage (ICH) is also discussed. EXPERT OPINION rt-PA treatment in AIS patients is beneficial to recovery outcomes. To weaken risks and improve benefits, it might be relevant to consider: i) a definitive identification of risk factors for symptomatic ICH; ii). a better organization of the health care system to reduce time-to-treatment and enhance discharge management. The pharmacological improvement of new thrombolytic drugs (such as tenecteplase and desmoteplase) targeting harmful and maximally exploiting beneficial effects might further reduce mortality and disability in AIS.
Collapse
Affiliation(s)
- Aldo Bonaventura
- a First Clinic of Internal Medicine, Department of Internal Medicine , University of Genoa School of Medicine , Genoa , Italy
- b IRCCS AOU San Martino - IST, Genoa , Genoa , Italy
| | - Fabrizio Montecucco
- a First Clinic of Internal Medicine, Department of Internal Medicine , University of Genoa School of Medicine , Genoa , Italy
- b IRCCS AOU San Martino - IST, Genoa , Genoa , Italy
- c Centre of Excellence for Biomedical Research (CEBR) , University of Genoa , Genoa , Italy
| | - Franco Dallegri
- a First Clinic of Internal Medicine, Department of Internal Medicine , University of Genoa School of Medicine , Genoa , Italy
- b IRCCS AOU San Martino - IST, Genoa , Genoa , Italy
| |
Collapse
|
12
|
Tissue Plasminogen Activator Expression Is Restricted to Subsets of Excitatory Pyramidal Glutamatergic Neurons. Mol Neurobiol 2015; 53:5000-12. [PMID: 26377106 DOI: 10.1007/s12035-015-9432-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022]
Abstract
Although the extracellular serine protease tissue plasminogen activator (tPA) is involved in pathophysiological processes such as learning and memory, anxiety, epilepsy, stroke, and Alzheimer's disease, information about its regional, cellular, and subcellular distribution in vivo is lacking. In the present study, we observed, in healthy mice and rats, the presence of tPA in endothelial cells, oligodendrocytes, mastocytes, and ependymocytes, but not in pericytes, microglial cells, and astrocytes. Moreover, blockage of the axo-dendritic transport unmasked tPA expression in neurons of cortical and hippocampal areas. Interestingly, combined electrophysiological recordings, single-cell reverse transcription polymerase chain reaction (RT-PCR), and immunohistological analyses revealed that the presence of tPA is restricted to subsets of excitatory pyramidal glutamatergic neurons. We further evidenced that tPA is stored in synaptobrevin-2-positive glutamatergic synaptic vesicles. Based on all these data, we propose the existence of tPA-ergic neurons in the mature brain.
Collapse
|
13
|
Gu RP, Fu LL, Jiang CH, Xu YF, Wang X, Yu J. Retina Is Protected by Neuroserpin from Ischemic/Reperfusion-Induced Injury Independent of Tissue-Type Plasminogen Activator. PLoS One 2015; 10:e0130440. [PMID: 26176694 PMCID: PMC4503687 DOI: 10.1371/journal.pone.0130440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/20/2015] [Indexed: 11/18/2022] Open
Abstract
The purpose of the present study was to investigate the potential neuroprotective effect of neuroserpin (NSP) on acute retinal ischemic/reperfusion-induced (IR) injury. An IR injury model was established by elevating intraocular pressure (IOP) for 60 minutes in wild type and tPA-deficient (tPA-/-) mice. Prior to IR injury, 1 μL of 20 μmol/L NSP or an equal volume of bovine serum albumin (BSA) was intravitreally administered. Retinal function was evaluated by electroretinograph (ERG) and the number of apoptotic neurons was determined via TUNEL labeling. Caspase-3, -8, -9,poly (ADP-ribose) polymerase (PARP)and their cleaved forms were subsequently analyzed. It was found that IR injury significantly damaged retinal function, inducing apoptosis in the retina, while NSP attenuated the loss of retinal function and significantly reduced the number of apoptotic neurons in both wild type and tPA-/- mice. The levels of cleaved caspase-3, cleaved PARP (the substrate of caspase-3) and caspase-9 (the modulator of the caspase-3), which had increased following IR injury, were significantly inhibited by NSP in both wild type and tPA-/- mice. NSP increased ischemic tolerance in the retina at least partially by inhibiting the intrinsic cell death signaling pathway of caspase-3. It was therefore concluded that the protective effect of neuroserpin maybe independent from its canonical interaction with a tissue-type plasminogen activator.
Collapse
Affiliation(s)
- R. P. Gu
- Department of Ophthalmology and Vision Sciences and Key Laboratory of Myopia of State Health Ministry, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - L. L. Fu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - C. H. Jiang
- Department of Ophthalmology and Vision Sciences and Key Laboratory of Myopia of State Health Ministry, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
- Department of Ophthalmology, No. 5 people’s Hospital of Shanghai, Shanghai, 200240, China
| | - Y. F. Xu
- Department of Ophthalmology and Vision Sciences and Key Laboratory of Myopia of State Health Ministry, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - X. Wang
- Department of Ophthalmology and Vision Sciences and Key Laboratory of Myopia of State Health Ministry, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - J. Yu
- Department of Ophthalmology and Vision Sciences and Key Laboratory of Myopia of State Health Ministry, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| |
Collapse
|
14
|
Caccia S, Ricagno S, Bolognesi M. Molecular bases of neuroserpin function and pathology. Biomol Concepts 2015; 1:117-30. [PMID: 25961991 DOI: 10.1515/bmc.2010.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Serpins build a large and evolutionary widespread protein superfamily, hosting members that are mainly Ser-protease inhibitors. Typically, serpins display a conserved core domain composed of three main β-sheets and 9-10 α-helices, for a total of approximately 350 amino acids. Neuroserpin (NS) is mostly expressed in neurons and in the central and peripheral nervous systems, where it targets tissue-type plasminogen activator. NS activity is relevant for axogenesis, synaptogenesis and synaptic plasticity. Five (single amino acid) NS mutations are associated with severe neurodegenerative disease in man, leading to early onset dementia, epilepsy and neuronal death. The functional aspects of NS protease inhibition are linked to the presence of a long exposed loop (reactive center loop, RCL) that acts as bait for the incoming partner protease. Large NS conformational changes, associated with the cleavage of the RCL, trap the protease in an acyl-enzyme complex. Contrary to other serpins, this complex has a half-life of approximately 10 min. Conformational flexibility is held to be at the bases of NS polymerization leading to Collins bodies intracellular deposition and neuronal damage in the pathological NS variants. Two main general mechanisms of serpin polymerization are currently discussed. Both models require the swapping of the RCL among neighboring serpin molecules. Specific differences in the size of swapped regions, as well as differences in the folding stage at which polymerization can occur, distinguish the two models. The results provided by recent crystallographic and biophysical studies allow rationalization of the functional and pathological roles played by NS based on the analysis of four three-dimensional structures.
Collapse
|
15
|
Ma J, Tong Y, Yu D, Mao M. Tissue plasminogen activator-independent roles of neuroserpin in the central nervous system. Neural Regen Res 2015; 7:146-51. [PMID: 25767491 PMCID: PMC4354132 DOI: 10.3969/j.issn.1673-5374.2012.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 11/19/2011] [Indexed: 11/18/2022] Open
Abstract
A number of studies have confirmed the existence of tissue-type plasminogen activator-independent roles of neuroserpin, a member of the serine protease inhibitor superfamily. In this review article, we aim to clarify this role. These unique roles of neuroserpin are involved in its neuroprotective effect during ischemic brain injury, its regulation of tumorigenesis, and the mediation of emotion and cognition through the inhibition of urokinase-type plasminogen activator and fibrinolysin, modification of Th cells, reducing plaque formation, promoting process growth and intracellular adhesion, and altering the expression of cadherin and nuclear factor kappa B.
Collapse
Affiliation(s)
- Jiao Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Laboratory of Early Developmental and Injuries, West China Institutes for Woman and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yu Tong
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Laboratory of Early Developmental and Injuries, West China Institutes for Woman and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Dan Yu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Laboratory of Early Developmental and Injuries, West China Institutes for Woman and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Meng Mao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Laboratory of Early Developmental and Injuries, West China Institutes for Woman and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
16
|
Endogenous plasminogen activators mediate progressive intracerebral hemorrhage after traumatic brain injury in mice. Blood 2015; 125:2558-67. [PMID: 25673638 DOI: 10.1182/blood-2014-08-588442] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/15/2015] [Indexed: 12/11/2022] Open
Abstract
Persistent intracerebral hemorrhage (ICH) is a major cause of death and disability after traumatic brain injury (TBI) for which no medical treatment is available. Delayed bleeding is often ascribed to consumptive coagulopathy initiated by exposed brain tissue factor. We examined an alternative hypothesis, namely, that marked release of tissue-type plasminogen activator (tPA) followed by delayed synthesis and release of urokinase plasminogen activator (uPA) from injured brain leads to posttraumatic bleeding by causing premature clot lysis. Using a murine model of severe TBI, we found that ICH is reduced in tPA(-/-) and uPA(-/-) mice but increased in PAI-1(-/-) mice compared with wild-type (WT) mice. tPA(-/-), but not uPA(-/-), mice developed a systemic coagulopathy post-TBI. Tranexamic acid inhibited ICH expansion in uPA(-/-)mice but not in tPA(-/-) mice. Catalytically inactive tPA-S(481)A inhibited plasminogen activation by tPA and uPA, attenuated ICH, lowered plasma d-dimers, lessened thrombocytopenia, and improved neurologic outcome in WT, tPA(-/-), and uPA(-/-) mice. ICH expansion was also inhibited by tPA-S(481)A in WT mice anticoagulated with warfarin. These data demonstrate that protracted endogenous fibrinolysis induced by TBI is primarily responsible for persistent ICH and post-TBI coagulopathy in this model and offer a novel approach to interrupt bleeding.
Collapse
|
17
|
Iulita MF, Cuello AC. Nerve growth factor metabolic dysfunction in Alzheimer's disease and Down syndrome. Trends Pharmacol Sci 2014; 35:338-48. [PMID: 24962069 DOI: 10.1016/j.tips.2014.04.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/16/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative condition and the most common type of amnestic dementia in the elderly. Individuals with Down syndrome (DS) are at increased risk of developing AD in adulthood as a result of chromosome 21 trisomy and triplication of the amyloid precursor protein (APP) gene. In both conditions, the central nervous system (CNS) basal forebrain cholinergic system progressively degenerates, and such changes contribute to the manifestation of cognitive decline and dementia. Given the strong dependency of these neurons on nerve growth factor (NGF), it was hypothesized that their atrophy was caused by NGF deficits. However, in AD, the synthesis of NGF is not affected at the transcript level and there is a marked increase in its precursor, proNGF. This apparent paradox remained elusive for many years. In this review, we discuss the recent evidence supporting a CNS deficit in the extracellular metabolism of NGF, both in AD and in DS brains. We describe the nature of this trophic disconnection and its implication for the atrophy of basal forebrain cholinergic neurons. We further discuss the potential of NGF pathway markers as diagnostic indicators of a CNS trophic disconnection.
Collapse
Affiliation(s)
- M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G1Y6, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G1Y6, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, H3G1Y6, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, H3G1Y6, Canada.
| |
Collapse
|
18
|
Therapeutic targeting of misfolding and conformational change in α1-antitrypsin deficiency. Future Med Chem 2014; 6:1047-65. [DOI: 10.4155/fmc.14.58] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Misfolding and conformational diseases are increasing in prominence and prevalence. Both misfolding and ‘postfolding’ conformational mechanisms can contribute to pathogenesis and can coexist. The different contexts of folding and native state behavior may have implications for the development of therapeutic strategies. α1-antitrypsin deficiency illustrates how these issues can be addressed with therapeutic approaches to rescue folding, ameliorate downstream consequences of aberrant polymerization and/or maintain physiological function. Small-molecule strategies have successfully targeted structural features of the native conformer. Recent developments include the capability to follow solution behavior of α1-antitrypsin in the context of disease mutations and interactions with drug-like compounds. Moreover, preclinical studies in cells and organisms support the potential of manipulating cellular response repertoires to process misfolded and polymer states.
Collapse
|
19
|
Raoult E, Bénard M, Komuro H, Lebon A, Vivien D, Fournier A, Vaudry H, Vaudry D, Galas L. Cortical-layer-specific effects of PACAP and tPA on interneuron migration during post-natal development of the cerebellum. J Neurochem 2014; 130:241-54. [DOI: 10.1111/jnc.12714] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Emilie Raoult
- Inserm; PRIMACEN; Cell Imaging Platform of Normandy; Mont-Saint-Aignan France
- University of Rouen; Institute for Research and Innovation in Biomedicine (IRIB); Rouen France
- Inserm, U982, DC2N; Mont-Saint-Aignan France
- International Associated laboratory Samuel de Champlain; Inserm-INRS; France
| | - Magalie Bénard
- Inserm; PRIMACEN; Cell Imaging Platform of Normandy; Mont-Saint-Aignan France
- University of Rouen; Institute for Research and Innovation in Biomedicine (IRIB); Rouen France
| | - Hitoshi Komuro
- Department of Neuroscience/NC30; Lerner Research Institute; The Cleveland Clinic Foundation; Cleveland Ohio USA
| | - Alexis Lebon
- Inserm; PRIMACEN; Cell Imaging Platform of Normandy; Mont-Saint-Aignan France
- University of Rouen; Institute for Research and Innovation in Biomedicine (IRIB); Rouen France
- Inserm, U982, DC2N; Mont-Saint-Aignan France
- International Associated laboratory Samuel de Champlain; Inserm-INRS; France
| | | | - Alain Fournier
- International Associated laboratory Samuel de Champlain; Inserm-INRS; France
- Institut National de la Recherche Scientifique - Institut Armand-Frappier; Université du Québec; Laval Canada
| | - Hubert Vaudry
- Inserm; PRIMACEN; Cell Imaging Platform of Normandy; Mont-Saint-Aignan France
- University of Rouen; Institute for Research and Innovation in Biomedicine (IRIB); Rouen France
- Inserm, U982, DC2N; Mont-Saint-Aignan France
- International Associated laboratory Samuel de Champlain; Inserm-INRS; France
| | - David Vaudry
- Inserm; PRIMACEN; Cell Imaging Platform of Normandy; Mont-Saint-Aignan France
- University of Rouen; Institute for Research and Innovation in Biomedicine (IRIB); Rouen France
- Inserm, U982, DC2N; Mont-Saint-Aignan France
- International Associated laboratory Samuel de Champlain; Inserm-INRS; France
| | - Ludovic Galas
- Inserm; PRIMACEN; Cell Imaging Platform of Normandy; Mont-Saint-Aignan France
- University of Rouen; Institute for Research and Innovation in Biomedicine (IRIB); Rouen France
| |
Collapse
|
20
|
Wong RY, Ramsey ME, Cummings ME. Localizing brain regions associated with female mate preference behavior in a swordtail. PLoS One 2012; 7:e50355. [PMID: 23209722 PMCID: PMC3510203 DOI: 10.1371/journal.pone.0050355] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 10/23/2012] [Indexed: 12/11/2022] Open
Abstract
Female mate choice behavior is a critical component of sexual selection, yet identifying the neural basis of this behavior is largely unresolved. Previous studies have implicated sensory processing and hypothalamic brain regions during female mate choice and there is a conserved network of brain regions (Social Behavior Network, SBN) that underlies sexual behaviors. However, we are only beginning to understand the role this network has in pre-copulatory female mate choice. Using in situ hybridization, we identify brain regions associated with mate preference in female Xiphophorus nigrensis, a swordtail species with a female choice mating system. We measure gene expression in 10 brain regions (linked to sexual behavior, reward, sensory integration or other processes) and find significant correlations between female preference behavior and gene expression in two telencephalic areas associated with reward, learning and multi-sensory processing (medial and lateral zones of the dorsal telencephalon) as well as an SBN region traditionally associated with sexual response (preoptic area). Network analysis shows that these brain regions may also be important in mate preference and that correlated patterns of neuroserpin expression between regions co-vary with differential compositions of the mate choice environment. Our results expand the emerging network for female preference from one that focused on sensory processing and midbrain sexual response centers to a more complex coordination involving forebrain areas that integrate primary sensory processing and reward.
Collapse
Affiliation(s)
- Ryan Y Wong
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America.
| | | | | |
Collapse
|
21
|
Sebag SC, Bastarache JA, Ware LB. Therapeutic modulation of coagulation and fibrinolysis in acute lung injury and the acute respiratory distress syndrome. Curr Pharm Biotechnol 2012; 12:1481-96. [PMID: 21401517 DOI: 10.2174/138920111798281171] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/21/2010] [Accepted: 10/21/2010] [Indexed: 01/01/2023]
Abstract
Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are characterized by excessive intraalveolar fibrin deposition, driven, at least in part by inflammation. The imbalance between activation of coagulation and inhibition of fibrinolysis in patients with ALI/ARDS favors fibrin formation and appears to occur both systemically and in the lung and airspace. Tissue factor (TF), a key mediator of the activation of coagulation in the lung, has been implicated in the pathogenesis of ALI/ARDS. As such, there have been numerous investigations modulating TF activity in a variety of experimental systems in order to develop new therapeutic strategies for ALI/ARDS. This review will summarize current understanding of the role of TF and other proteins of the coagulation cascade as well the fibrinolysis pathway in the development of ALI/ARDS with an emphasis on the pathways that are potential therapeutic targets. These include the TF inhibitor pathway, the protein C pathway, antithrombin, heparin, and modulation of fibrinolysis through plasminogen activator- 1 (PAI-1) or plasminogen activators (PA). Although experimental studies show promising results, clinical trials to date have proven unsuccessful in improving patient outcomes. Modulation of coagulation and fibrinolysis has complex effects on both hemostasis and inflammatory pathways and further studies are needed to develop new treatment strategies for patients with ALI/ARDS.
Collapse
Affiliation(s)
- Sara C Sebag
- Department of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, T1218 MCN, 1161 21st Avenue S. Nashville, TN 37232-2650, USA
| | | | | |
Collapse
|
22
|
Ramsey ME, Maginnis TL, Wong RY, Brock C, Cummings ME. Identifying context-specific gene profiles of social, reproductive, and mate preference behavior in a fish species with female mate choice. Front Neurosci 2012; 6:62. [PMID: 22557945 PMCID: PMC3340895 DOI: 10.3389/fnins.2012.00062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/09/2012] [Indexed: 12/24/2022] Open
Abstract
Sensory and social inputs interact with underlying gene suites to coordinate social behavior. Here we use a naturally complex system in sexual selection studies, the swordtail, to explore how genes associated with mate preference, receptivity, and social affiliation interact in the female brain under specific social conditions. We focused on 11 genes associated with mate preference in this species (neuroserpin, neuroligin-3, NMDA receptor, tPA, stathmin-2, β-1 adrenergic receptor) or with female sociosexual behaviors in other taxa (vasotocin, isotocin, brain aromatase, α-1 adrenergic receptor, tyrosine hydroxylase). We exposed females to four social conditions, including pairings of differing mate choice complexity (large males, large/small males, small males), and a social control (two females). Female mate preference differed significantly by context. Multiple discriminant analysis (MDA) of behaviors revealed a primary axis (explaining 50.2% between-group variance) highlighting differences between groups eliciting high preference behaviors (LL, LS) vs. other contexts, and a secondary axis capturing general measures distinguishing a non-favored group (SS) from other groups. Gene expression MDA revealed a major axis (68.4% between-group variance) that distinguished amongst differential male pairings and was driven by suites of “preference and receptivity genes”; whereas a second axis, distinguishing high affiliation groups (large males, females) from low (small males), was characterized by traditional affiliative-associated genes (isotocin, vasotocin). We found context-specific correlations between behavior and gene MDA, suggesting gene suites covary with behaviors in a socially relevant context. Distinct associations between “affiliative” and “preference” axes suggest mate preference may be mediated by distinct clusters from those of social affiliation. Our results highlight the need to incorporate natural complexity of mating systems into behavioral genomics.
Collapse
Affiliation(s)
- Mary E Ramsey
- Section of Integrative Biology, University of Texas Austin, TX, USA
| | | | | | | | | |
Collapse
|
23
|
Lukasiuk K, Pitkänen A. Molecular basis of acquired epileptogenesis. HANDBOOK OF CLINICAL NEUROLOGY 2012; 107:3-12. [DOI: 10.1016/b978-0-444-52898-8.00001-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Extracellular proteases in epilepsy. Epilepsy Res 2011; 96:191-206. [DOI: 10.1016/j.eplepsyres.2011.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/10/2011] [Accepted: 08/03/2011] [Indexed: 11/20/2022]
|
25
|
Almonte AG, Sweatt JD. Serine proteases, serine protease inhibitors, and protease-activated receptors: roles in synaptic function and behavior. Brain Res 2011; 1407:107-22. [PMID: 21782155 DOI: 10.1016/j.brainres.2011.06.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/03/2011] [Accepted: 06/16/2011] [Indexed: 12/11/2022]
Abstract
Serine proteases, serine protease inhibitors, and protease-activated receptors have been intensively investigated in the periphery and their roles in a wide range of processes-coagulation, inflammation, and digestion, for example-have been well characterized (see Coughlin, 2000; Macfarlane et al., 2001; Molinari et al., 2003; Wang et al., 2008; Di Cera, 2009 for reviews). A growing number of studies demonstrate that these protein systems are widely expressed in many cell types and regions in mammalian brains. Accumulating lines of evidence suggest that the brain has co-opted the activities of these interesting proteins to regulate various processes underlying synaptic activity and behavior. In this review, we discuss emerging roles for serine proteases in the regulation of mechanisms underlying synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Antoine G Almonte
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
26
|
Kwon KJ, Cho KS, Lee SH, Kim JN, Joo SH, Ryu JH, Ignarro LJ, Han SH, Young Shin C. Regulation of tissue plasminogen activator/plasminogen activator inhibitor-1 by hydrocortisone in rat primary astrocytes. J Neurosci Res 2011; 89:1059-69. [DOI: 10.1002/jnr.22619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/30/2010] [Accepted: 01/11/2011] [Indexed: 12/16/2022]
|
27
|
Ricagno S, Pezzullo M, Barbiroli A, Manno M, Levantino M, Santangelo MG, Bonomi F, Bolognesi M. Two latent and two hyperstable polymeric forms of human neuroserpin. Biophys J 2010; 99:3402-11. [PMID: 21081089 PMCID: PMC2980742 DOI: 10.1016/j.bpj.2010.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 02/02/2023] Open
Abstract
Human neuroserpin (hNS) is a serine protease inhibitor that belongs to the serpin superfamily and is expressed in nervous tissues. The serpin fold is generally characterized by a long exposed loop, termed the reactive center loop, that acts as bait for the target protease. Intramolecular insertion of the reactive center loop into the main serpin β-sheet leads to the serpin latent form. As with other known serpins, hNS pathological mutants have been shown to accumulate as polymers composed of quasi-native protein molecules. Although hNS polymerization has been intensely studied, a general agreement about serpin polymer organization is still lacking. Here we report a biophysical characterization of native hNS that is shown to undergo two distinct conformational transitions, at 55°C and 85°C, both leading to distinct latent and polymeric species. The latent and polymer hNS forms obtained at 45°C and 85°C differ in their chemical and thermal stabilities; furthermore, the hNS polymers also differ in size and morphology. Finally, the 85°C polymer shows a higher content of intermolecular β-sheet interactions than the 45°C polymer. Together, these results suggest a more complex conformational scenario than was previously envisioned, and, in a general context, may help reconcile the current contrasting views on serpin polymerization.
Collapse
Affiliation(s)
- Stefano Ricagno
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Centro Interdisciplinare Materiali e Interfacce Nanostrutturati, Università di Milano, Milan, Italy
- Dipartimento di Biochimica, Università di Pavia, Pavia, Italy
- Laboratori di Biotecnologie, Istituto Di Ricovero e Cura a Carattere Scientifico Fondazione Policlinico San Matteo, Pavia, Italy
| | - Margherita Pezzullo
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Centro Interdisciplinare Materiali e Interfacce Nanostrutturati, Università di Milano, Milan, Italy
| | - Alberto Barbiroli
- Sezione di Biochimica, Dipartimento di Scienze Molecolari Agroalimentari, Università di Milano, Milan, Italy
| | - Mauro Manno
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, CNR, Palermo, Italy
| | - Matteo Levantino
- Dipartimento di Scienze Fisiche ed Astronomiche, Università of Palermo, Palermo, Italy
| | | | - Francesco Bonomi
- Sezione di Biochimica, Dipartimento di Scienze Molecolari Agroalimentari, Università di Milano, Milan, Italy
| | - Martino Bolognesi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Centro Interdisciplinare Materiali e Interfacce Nanostrutturati, Università di Milano, Milan, Italy
| |
Collapse
|
28
|
Imamura Y, Morita S, Nakatani Y, Okada K, Ueshima S, Matsuo O, Miyata S. Tissue plasminogen activator and plasminogen are critical for osmotic homeostasis by regulating vasopressin secretion. J Neurosci Res 2010; 88:1995-2006. [PMID: 20175210 DOI: 10.1002/jnr.22370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Systemic osmotic homeostasis is regulated mainly by neuroendocrine system of arginine-vasopressin (AVP) in mammalians. In the present study, we demonstrated that the immunoreactivity of tissue plasminogen activator (tPA) was observed specifically at neurosecretory granules of AVP-positive magnocellular terminals and that of plasminogen was seen at astrocytes in the neurohypophysis (NH). Both tPA and plasminogen knockout (KO) mice revealed higher plasma osmolarity upon water deprivation, a chronic osmotic stimulation, as compared with their wild-type (WT) animals, indicating abnormal osmotic control in these KO mice. tPA KO mice but not plasminogen ones revealed lower ability in secreting AVP into the blood circulation upon an acute osmotic stimulation. Both tPA and plasminogen KO animals showed lower ability in secreting AVP into the blood circulation upon a chronic osmotic stimulation. The recombinant tPA was able to promote the release of AVP from isolated NH. Chronic osmotic stimulation decreased the laminin expression level of neurohypophysial microvessel in WT mice but not in plasminogen KO ones. We suggest that AVP secretion is critically regulated by tPA-dependent facilitation of AVP release from terminals and plasminogen-dependent increase of AVP permeability across microvessels possibly via laminin degradation.
Collapse
Affiliation(s)
- Yuhki Imamura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Paz-Filho G, Licinio J, Wong ML. Pathophysiological basis of cardiovascular disease and depression: a chicken-and-egg dilemma. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2010; 32:181-91. [PMID: 20658057 PMCID: PMC4259495 DOI: 10.1590/s1516-44462010000200015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 03/10/2010] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To describe the pathophysiological basis linking cardiovascular disease (CVD) and depression; to discuss the causal relationship between them, and to review the effects of antidepressant treatment on cardiovascular disease. METHOD A review of the literature based on the PubMed database. DISCUSSION Depression and cardiovascular disease are both highly prevalent. Several studies have shown that the two are closely related. They share common pathophysiological etiologies or co-morbidities, such as alterations in the hypothalamic-pituitary axis, cardiac rhythm disturbances, and hemorheologic, inflammatory and serotoninergic changes. Furthermore, antidepressant treatment is associated with worse cardiac outcomes (in case of tricyclics), which are not observed with selective serotonin reuptake inhibitors. CONCLUSION Although there is a strong association between depression and cardiovascular disease, it is still unclear whether depression is actually a causal factor for CVD, or is a mere consequence, or whether both conditions share a common pathophysiological etiology. Nevertheless, both conditions must be treated concomitantly. Drugs other than tricyclics must be used, when needed, to treat the underlying depression and not as mere prophylactic of cardiac outcomes.
Collapse
Affiliation(s)
- Gilberto Paz-Filho
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | |
Collapse
|
30
|
Xin H, Li Y, Shen LH, Liu X, Wang X, Zhang J, Pourabdollah-Nejad D S, Zhang C, Zhang L, Jiang H, Zhang ZG, Chopp M. Increasing tPA activity in astrocytes induced by multipotent mesenchymal stromal cells facilitate neurite outgrowth after stroke in the mouse. PLoS One 2010; 5:e9027. [PMID: 20140248 PMCID: PMC2815778 DOI: 10.1371/journal.pone.0009027] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 01/11/2010] [Indexed: 10/31/2022] Open
Abstract
We demonstrate that tissue plasminogen activator (tPA) and its inhibitors contribute to neurite outgrowth in the central nervous system (CNS) after treatment of stroke with multipotent mesenchymal stromal cells (MSCs). In vivo, administration of MSCs to mice subjected to middle cerebral artery occlusion (MCAo) significantly increased activation of tPA and downregulated PAI-1 levels in the ischemic boundary zone (IBZ) compared with control PBS treated mice, concurrently with increases of myelinated axons and synaptophysin. In vitro, MSCs significantly increased tPA levels and concomitantly reduced plasminogen activator inhibitor 1 (PAI-1) expression in astrocytes under normal and oxygen and glucose deprivation (OGD) conditions. ELISA analysis of conditioned medium revealed that MSCs stimulated astrocytes to secrete tPA. When primary cortical neurons were cultured in the conditioned medium from MSC co-cultured astrocytes, these neurons exhibited a significant increase in neurite outgrowth compared to conditioned medium from astrocytes alone. Blockage of tPA with a neutralizing antibody or knock-down of tPA with siRNA significantly attenuated the effect of the conditioned medium on neurite outgrowth. Addition of recombinant human tPA into cortical neuronal cultures also substantially enhanced neurite outgrowth. Collectively, these in vivo and in vitro data suggest that the MSC mediated increased activation of tPA in astrocytes promotes neurite outgrowth after stroke.
Collapse
Affiliation(s)
- Hongqi Xin
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Yi Li
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Li Hong Shen
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Xianshuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Xinli Wang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Jing Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America
| | | | - Chunling Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Hao Jiang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America
- Department of Physics, Oakland University, Rochester, Michigan, United States of America
- * E-mail:
| |
Collapse
|
31
|
Funktion des fibrinolytischen Systems im Nervensystem und intravasale Fibrinolyse. Hamostaseologie 2010. [DOI: 10.1007/978-3-642-01544-1_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
32
|
Mou X, Peterson CB, Prosser RA. Tissue-type plasminogen activator-plasmin-BDNF modulate glutamate-induced phase-shifts of the mouse suprachiasmatic circadian clockin vitro. Eur J Neurosci 2009; 30:1451-60. [DOI: 10.1111/j.1460-9568.2009.06946.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Micieli G, Marcheselli S, Tosi PA. Safety and efficacy of alteplase in the treatment of acute ischemic stroke. Vasc Health Risk Manag 2009; 5:397-409. [PMID: 19475777 PMCID: PMC2686258 DOI: 10.2147/vhrm.s4561] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
After publication of the results of the National Institute of Neurological Disorders and Stroke study, the application of intravenous thrombolysis for ischemic stroke was launched and has now been in use for more than 10 years. The approval of this drug represented only the first step of the therapeutic approach to this pathology. Despite proven efficacy, concerns remain regarding the safety of recombinant tissue-type plasminogen activator for acute ischemic stroke used in routine clinical practice. As a result, a small proportion of patients are currently treated with thrombolytic drugs. Several factors explain this situation: a limited therapeutic window, insufficient public knowledge of the warning signs for stroke, the small number of centers able to administer thrombolysis on a 24-hour basis and an excessive fear of hemorrhagic complications. The aim of this review is to explore the clinical efficacy of treatment with alteplase and consider the hemorrhagic risks.
Collapse
Affiliation(s)
- Giuseppe Micieli
- Neurology and Stroke Unit, IRCCS Istituto Clinico Humanitas, Rozzano, MI, Italy.
| | | | | |
Collapse
|
34
|
Legros H, Launay S, Roussel BD, Marcou-Labarre A, Calbo S, Catteau J, Leroux P, Boyer O, Ali C, Marret S, Vivien D, Laudenbach V. Newborn- and adult-derived brain microvascular endothelial cells show age-related differences in phenotype and glutamate-evoked protease release. J Cereb Blood Flow Metab 2009; 29:1146-58. [PMID: 19367295 DOI: 10.1038/jcbfm.2009.39] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Few data are available on the involvement of brain microvascular endothelial cells (BMECs) in excitotoxic neonatal brain lesions. Therefore, we developed an original approach for investigating mouse-derived BMECs in vitro. We hypothesized that newborn and adult BMEC cultures would show age-related differences in phenotype and sensitivity to glutamate. Expression of the monocarboxylate transporter, MCT1, was higher in neonatal than in adult BMECs, whereas expression of the glucose transporter, GLUT1, was higher in adult than in neonatal BMECs that overexpressed the N-methyl-D-aspartate receptor NR1 subunit (NMDAR1) compared with adult BMECs. The ability of neonatal and adult BMECs to be activated by glutamate was confirmed through intracellular calcium ([Ca2+]i) recording. The glutamate-induced [Ca2+]i increase was blocked by the selective NMDAR antagonist, MK-801. Significant glutamate-evoked concentration-dependent release of tissue-type plasminogen activator (t-PA) and matrix metalloproteinases (MMPs) activities was found in supernatants of neonatal, but not in adult BMECs. The glutamate-mediated release of t-PA, MMP-2, and MMP-9 proteolytic activities in neonatal BMECs was blocked by MK-801. Conceivably, this protease release from neonatal BMECs may participate in neonatal brain lesions.
Collapse
Affiliation(s)
- Hélène Legros
- EA 4309 Neovasc Microvascular Endothelium and Neonatal Brain Lesions, IHURBM, IFRMP 23, School of Medicine and Pharmacy, University of Rouen, Rouen, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hou SJ, Yen FC, Tsai SJ. Is dysfunction of the tissue plasminogen activator (tPA)-plasmin pathway a link between major depression and cardiovascular disease? Med Hypotheses 2009; 72:166-8. [DOI: 10.1016/j.mehy.2008.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 06/25/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
|
36
|
Abstract
Fibrinolysis is regulated by specific molecular interactions between its main components. Activation of plasminogen by tissue-type plasminogen activator (t-PA) is enhanced in the presence of fibrin or at the endothelial cell surface. Urokinase-type plasminogen activator (u-PA) binds to a specific cellular u-PA receptor (u-PAR), resulting in enhanced activation of cell-bound plasminogen. Inhibition of fibrinolysis occurs at the level of plasminogen activation or at the level of plasmin. Assembly of fibrinolytic components at the surface of fibrin results in fibrin degradation. Assembly at the surface of cells provides a mechanism for generation of localized cell-associated proteolytic activity. This review includes novel proteins such a thrombin-activatable fibrinolysis inhibitor (TAFI) and discusses new insights into molecular mechanisms obtained from the rapidly growing knowledge of crystal structures of proteins.
Collapse
Affiliation(s)
- D C Rijken
- Department of Hematology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | |
Collapse
|
37
|
Su EJ, Fredriksson L, Geyer M, Folestad E, Cale J, Andrae J, Gao Y, Pietras K, Mann K, Yepes M, Strickland DK, Betsholtz C, Eriksson U, Lawrence DA. Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med 2008; 14:731-7. [PMID: 18568034 PMCID: PMC2811427 DOI: 10.1038/nm1787] [Citation(s) in RCA: 355] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 05/23/2008] [Indexed: 11/09/2022]
Abstract
Thrombolytic treatment of ischemic stroke with tissue plasminogen activator (tPA) is markedly limited owing to concerns about hemorrhagic complications and the requirement that tPA be administered within 3 h of symptoms. Here we report that tPA activation of latent platelet-derived growth factor-CC (PDGF-CC) may explain these limitations. Intraventricular injection of tPA or active PDGF-CC, in the absence of ischemia, leads to significant increases in cerebrovascular permeability. In contrast, co-injection of neutralizing antibodies to PDGF-CC with tPA blocks this increased permeability, indicating that PDGF-CC is a downstream substrate of tPA within the neurovascular unit. These effects are mediated through activation of PDGF-alpha receptors (PDGFR-alpha) on perivascular astrocytes, and treatment of mice with the PDGFR-alpha antagonist imatinib after ischemic stroke reduces both cerebrovascular permeability and hemorrhagic complications associated with late administration of thrombolytic tPA. These data demonstrate that PDGF signaling regulates blood-brain barrier permeability and suggest potential new strategies for stroke treatment.
Collapse
Affiliation(s)
- Enming J Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor Michigan 48109-0644, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Adibhatla RM, Hatcher JF. Tissue plasminogen activator (tPA) and matrix metalloproteinases in the pathogenesis of stroke: therapeutic strategies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:243-53. [PMID: 18673209 PMCID: PMC2562687 DOI: 10.2174/187152708784936608] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Today there exists only one FDA-approved treatment for ischemic stroke; i.e., the serine protease tissue-type plasminogen activator (tPA). In the aftermath of the failed stroke clinical trials with the nitrone spin trap/radical scavenger, NXY-059, a number of articles raised the question: are we doing the right thing? Is the animal research truly translational in identifying new agents for stroke treatment? This review summarizes the current state of affairs with plasminogen activators in thrombolytic therapy. In addition to therapeutic value, potential side effects of tPA also exist that aggravate stroke injury and offset the benefits provided by reperfusion of the occluded artery. Thus, combinational options (ultrasound alone or with microspheres/nanobubbles, mechanical dissociation of clot, activated protein C (APC), plasminogen activator inhibitor-1 (PAI-1), neuroserpin and CDP-choline) that could offset tPA toxic side effects and improve efficacy are also discussed here. Desmoteplase, a plasminogen activator derived from the saliva of Desmodus rotundus vampire bat, antagonizes vascular tPA-induced neurotoxicity by competitively binding to low-density lipoprotein related-receptors (LPR) at the blood-brain barrier (BBB) interface, minimizing the tPA uptake into brain parenchyma. tPA can also activate matrix metalloproteinases (MMPs), a family of endopeptidases comprised of 24 mammalian enzymes that primarily catalyze the turnover and degradation of the extracellular matrix (ECM). MMPs have been implicated in BBB breakdown and neuronal injury in the early times after stroke, but also contribute to vascular remodeling, angiogenesis, neurogenesis and axonal regeneration during the later repair phase after stroke. tPA, directly or by activation of MMP-9, could have beneficial effects on recovery after stroke by promoting neurovascular repair through vascular endothelial growth factor (VEGF). However, any treatment regimen directed at MMPs must consider their pleiotropic nature and the likelihood of either beneficial or detrimental effects that might depend on the timing of the treatment in relation to the stage of brain injury.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | | |
Collapse
|
39
|
Lohman RJ, O'Brien TJ, Cocks TM. Protease-activated receptor-2 regulates trypsin expression in the brain and protects against seizures and epileptogenesis. Neurobiol Dis 2008; 30:84-93. [DOI: 10.1016/j.nbd.2007.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/14/2007] [Accepted: 12/16/2007] [Indexed: 12/27/2022] Open
|
40
|
|
41
|
Ishigami S, Sandkvist M, Tsui F, Moore E, Coleman T, Lawrence D. Identification of a novel targeting sequence for regulated secretion in the serine protease inhibitor neuroserpin. Biochem J 2007; 402:25-34. [PMID: 17040209 PMCID: PMC1783992 DOI: 10.1042/bj20061170] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/09/2006] [Accepted: 10/16/2006] [Indexed: 11/17/2022]
Abstract
Ns (neuroserpin) is a member of the serpin (serine protease inhibitor) gene family that is primarily expressed within the central nervous system. Its principal target protease is tPA (tissue plasminogen activator), which is thought to contribute to synaptic plasticity and to be secreted in a stimulus-dependent manner. In the present study, we demonstrate in primary neuronal cultures that Ns co-localizes in LDCVs (large dense core vesicles) with the regulated secretory protein chromogranin B. We also show that Ns secretion is regulated and can be specifically induced 4-fold by secretagogue treatment. A novel 13-amino-acid sorting signal located at the C-terminus of Ns is identified that is both necessary and sufficient to target Ns to the regulated secretion pathway. Its deletion renders Ns no longer responsive to secretagogue stimulation, whereas PAI-Ns [Ns (neuroserpin)-PAI-1 (plasminogen activator inhibitor-1) chimaera appending the last 13 residues of Ns sequence to the C-terminus of PAI-1] shifts PAI-1 secretion into a regulated secretory pathway.
Collapse
Key Words
- immunohistochemistry
- large dense-core vesicle
- neuron
- neuroserpin
- serpin
- tissue plasminogen activator (tpa)
- anp, atrial natriuretic peptide
- bip, immunoglobulin heavy-chain-binding protein
- ccd camera, charge-coupled device camera
- cns, central nervous system
- dapi, 4′,6-diamidino-2-phenylindole
- dmem, dulbecco's modified eagle's medium
- dpbs, dulbecco's pbs
- e15, embryonic day 15
- er, endoplasmic reticulum
- fbs, fetal bovine serum
- hrp, horseradish peroxidase
- hsp47, heat-shock protein 47
- ldcv, large dense core vesicle
- nbm, neurobasal medium
- nmda, n-methyl-d-aspartate
- ns, neuroserpin
- pai-1, plasminogen activator inhibitor-1
- pai-ns, ns–pai-1 chimaera appending the last 13 residues of ns sequence to the c-terminus of pai-1
- rrx, rhodamine red-x
- serpin, serine protease inhibitor
- tpa, tissue plasminogen activator
- wtns, wild-type ns
Collapse
Affiliation(s)
- Shoji Ishigami
- *Center for Vascular and Inflammatory Diseases, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, U.S.A
| | - Maria Sandkvist
- †Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - Foon Tsui
- ‡Department of Biochemistry, J.H. Holland Laboratory, American Red Cross, 15601 Crabbs Branch Way, Rockville, MD 20855, U.S.A
| | - Elizabeth Moore
- *Center for Vascular and Inflammatory Diseases, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, U.S.A
| | | | - Daniel A. Lawrence
- ∥Department of Internal Medicine, University of Michigan School of Medicine, 7301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, U.S.A
| |
Collapse
|
42
|
Chen PY, Chang WSW, Chou RH, Lai YK, Lin SC, Chi CY, Wu CW. Two non-homologous brain diseases-related genes, SERPINI1 and PDCD10, are tightly linked by an asymmetric bidirectional promoter in an evolutionarily conserved manner. BMC Mol Biol 2007; 8:2. [PMID: 17212813 PMCID: PMC1796892 DOI: 10.1186/1471-2199-8-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 01/09/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Despite of the fact that mammalian genomes are far more spacious than prokaryotic genomes, recent nucleotide sequencing data have revealed that many mammalian genes are arranged in a head-to-head orientation and separated by a small intergenic sequence. Extensive studies on some of these neighboring genes, in particular homologous gene pairs, have shown that these genes are often co-expressed in a symmetric manner and regulated by a shared promoter region. Here we report the identification of two non-homologous brain disease-related genes, with one coding for a serine protease inhibitor (SERPINI1) and the other for a programmed cell death-related gene (PDCD10), being tightly linked together by an asymmetric bidirectional promoter in an evolutionarily conserved fashion. This asymmetric bidirectional promoter, in cooperation with some cis-acting elements, is responsible for the co-regulation of the gene expression pattern as well as the tissue specificity of SERPINI1 and PDCD10. RESULTS While SERPINI1 is predominantly expressed in normal brain and down-regulated in brain tumors, PDCD10 is ubiquitously expressed in all normal tissues but its gene transcription becomes aberrant in different types of cancers. By measuring the luciferase activity in various cell lysates, their 851-bp intergenic sequence was shown to be capable of driving the reporter gene expression in either direction. A 175-bp fragment from nt 1 to 175 in the vicinity of PDCD10 was further determined to function as a minimal bidirectional promoter. A critical regulatory fragment, from nt 176-473 outside the minimal promoter in the intergenic region, was identified to contain a strong repressive element for SERPINI1 and an enhancer for PDCD10. These cis-acting elements may exist to help coordinate the expression and regulation of the two flanking genes. CONCLUSION For all non-homologous genes that have been described to be closely adjacent in the mammalian genomes, the intergenic region of the head-to-head PDCD10-SERPINI1 gene pair provides an interesting and informative example of a complex regulatory system that governs the expression of both genes not only through an asymmetric bidirectional promoter, but also through fine-tuned regulations with some cis-acting elements.
Collapse
Affiliation(s)
- Ping-Yen Chen
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
- Department of Life Sciences, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Wun-Shaing W Chang
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Ruey-Hwang Chou
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Yiu-Kay Lai
- Department of Life Sciences, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
- Department of Bioresources, Da-Yeh University, Changhua County 515, Taiwan, ROC
| | - Sheng-Chieh Lin
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Chia-Yi Chi
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Cheng-Wen Wu
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| |
Collapse
|
43
|
Ishii M, Koike C, Igarashi A, Yamanaka K, Pan H, Higashi Y, Kawaguchi H, Sugiyama M, Kamata N, Iwata T, Matsubara T, Nakamura K, Kurihara H, Tsuji K, Kato Y. Molecular markers distinguish bone marrow mesenchymal stem cells from fibroblasts. Biochem Biophys Res Commun 2005; 332:297-303. [PMID: 15896330 DOI: 10.1016/j.bbrc.2005.04.118] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 04/24/2005] [Indexed: 10/25/2022]
Abstract
To characterize mesenchymal stem cells (MSC), we compared gene expression profiles in human bone marrow MSC (11 lines) and human fibroblasts (4 lines) by RT-PCR and real time PCR. Messenger RNA levels of MHC-DR-alpha, MHC-DR-beta, MHC-DR-associated protein CD74, tissue factor pathway inhibitor-2, and neuroserpin were much higher in MSC than in fibroblasts, even in the presence of large interindividual variations. Those of adrenomedullin, apolipoprotein D, C-type lectin superfamily member-2, collagen type XV alpha1, CUG triplet repeat RNA-binding protein, matrix metalloproteinase-1, protein tyrosine kinase-7, and Sam68-like phosphotyrosine protein/T-STAR were lower in MSC than in fibroblasts. FACS analysis showed that cell surface expression of MHC-DR was also higher in MSC than in fibroblasts. MHC-DR expression decreased after osteogenic differentiation, whereas the expression of adrenomedullin-a potent stimulator of osteoblast activity-along with collagen XV alpha1 and apolipoprotein D increased after osteogenic differentiation. The marker genes identified in this study should be useful for characterization of MSC both in basic and clinical studies.
Collapse
Affiliation(s)
- Masakazu Ishii
- Department of Dental and Medical Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fredriksson L, Ehnman M, Fieber C, Eriksson U. Structural Requirements for Activation of Latent Platelet-derived Growth Factor CC by Tissue Plasminogen Activator. J Biol Chem 2005; 280:26856-62. [PMID: 15911618 DOI: 10.1074/jbc.m503388200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Platelet-derived growth factor C (PDGF-C) is one of four members in the PDGF family of growth factors, which are known mitogens and survival factors for cells of mesenchymal origin. PDGF-C has a unique two-domain structure consisting of an N-terminal CUB and a conserved C-terminal growth factor domain that are separated by a hinge region. PDGF-C is secreted as a latent dimeric factor (PDGF-CC), which undergoes extracellular removal of the CUB domains to become a PDGF receptor alpha agonist. Recently, the multidomain serine protease tissue plasminogen activator (tPA), a thrombolytic agent used for treatment of acute ischemic stroke, was shown to cleave and activate PDGF-CC. In this study we determine the molecular mechanism of tPA-mediated activation of PDGF-CC. Using various PDGF-CC and tPA mutants, we were able to demonstrate that both the CUB and the growth factor domains of PDGF-C, as well as the kringle-2 domain of tPA, are required for the interaction and cleavage to occur. We also show that Arg231 in PDGF-C is essential for tPA-mediated proteolysis and that the released "free" CUB domain of PDGF-C can act as a competitive inhibitor of the cleavage reaction. Furthermore, we studied how the PDGF-C/tPA axis is regulated in primary fibroblasts and found that PDGF-C expression is down-regulated by hypoxia but induced by transforming growth factor (TGF)-beta1 treatment. Elucidating the regulation and the mechanism of tPA-mediated activation of PDGF-CC will advance our knowledge of the physiological function of PDGF-CC and tPA and may provide new therapeutic opportunities for thrombolytic and cardiovascular therapies.
Collapse
Affiliation(s)
- Linda Fredriksson
- Ludwig Institute for Cancer Research, Stockholm Branch, Box 240, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
45
|
Stasinopoulos S, Tran H, Chen E, Sachchithananthan M, Nagamine Y, Medcalf RL. Regulation of protease and protease inhibitor gene expression: the role of the 3'-UTR and lessons from the plasminogen activating system. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 80:169-215. [PMID: 16164975 DOI: 10.1016/s0079-6603(05)80005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Stan Stasinopoulos
- Friedrich Miescher Institute, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|