1
|
Sun L, Cui ZG, Feng Q, Muhammad JS, Jin YJ, Zhao S, Zhou L, Wu CAI. Fenvalerate exposure induces AKT/AMPK-dependent alterations in glucose metabolism in hepatoma cells. Front Pharmacol 2025; 16:1540567. [PMID: 40070568 PMCID: PMC11893604 DOI: 10.3389/fphar.2025.1540567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
Background Fenvalerate (Fen) is a synthetic pyrethroid insecticide significantly associated with an increased risk of type 2 diabetes. Tumor cells exhibit a shift in glucose metabolism, known as the Warburg effect. Accordingly, we aimed to elucidate whether Fen interferes with insulin signaling and affects hepatoma cell metabolism. Methods The cells were subjected to Fen to assess glucose uptake, acidification, oxygen consumption, and ATP production. ROS generation, mitochondrial membrane potentials, and protein expression were evaluated by flow cytometry, immunofluorescence microscopy, and western blot analyses. Results Our results demonstrated that Fen promotes glucose uptake, lactate production, and ATP generation in various cancer cells. Moreover, Fen enhanced insulin receptor phosphorylation and upregulated p-AKT/p-AMPK expression. Fen enhanced insulin receptor sensitivity and endocytosis via reactive oxygen species generation rather than the PP2B pathway. Additionally, the antioxidants N-acetyl-L-cysteine and ascorbic acid reversed the Fen-induced increase in glycolysis. Finally, chronic Fen exposure protected hepatoma cells against metformin-induced cell death via the AKT/AMPK pathway. Conclusion These findings raise concerns regarding the safety of Fen and its potential role in altering cancer cell metabolism, affecting insulin signaling and treating drug resistance, thereby necessitating further research.
Collapse
Affiliation(s)
- Lu Sun
- Department of Pediatric Cardiology, Heart Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui, Japan
| | - Qianwen Feng
- Biocytogen Phaceuticals, Daxing Bio-Medicine Industry Park, Beijing, China
| | - Jibran Sualeh Muhammad
- Department of Biomedical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Yu-Jie Jin
- Department of General Practice, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Songji Zhao
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Lingqi Zhou
- Department of Pediatric Cardiology, Heart Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Cheng-AI Wu
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
2
|
Chen F, Zhao Y, Dai Y, Sun N, Gao X, Yin J, Zhou Z, Wu KJ. Chick Early Amniotic Fluid Alleviates Dextran-Sulfate-Sodium-Induced Colitis in Mice via T-Cell Receptor Pathway. Antioxidants (Basel) 2025; 14:51. [PMID: 39857385 PMCID: PMC11762673 DOI: 10.3390/antiox14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/25/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic immune disease that is difficult to cure. We recently found that chick early amniotic fluid (ceAF) has notable anti-inflammatory and antioxidative properties, through its active components. This study demonstrates the potential of ceAF as a protective agent against UC. UPLC-MS mass spectrometry identified key components of ceAF, including various fatty acids and nucleosides. In vitro, ceAF improved viability in DSS-induced Caco-2 cells, reduced pro-inflammatory cytokines IL-1β and TNF-α, and increased the anti-inflammatory cytokine IL-10. It also upregulated the tight junction proteins ZO-1 and occludin. In DSS-induced UC mice, ceAF treatment alleviated weight loss, colon shortening, and disease activity, while improving histopathology, crypt depth, and colonic fibrosis. Mechanistically, ceAF's anti-inflammatory effects are mediated by inhibiting the overactivation of TCR signaling through the LCK/ZAP70/LAT pathway. Our findings suggest that ceAF could be a valuable nutritional intervention for UC, potentially enhancing existing functional foods aimed at managing this condition.
Collapse
Affiliation(s)
- Fan Chen
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi 214151, China; (F.C.); (X.G.); (J.Y.)
- Wuxi School of Medicine, Jiangnan University, Wuxi 214082, China; (Y.Z.); (Y.D.); (N.S.)
| | - Yining Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214082, China; (Y.Z.); (Y.D.); (N.S.)
| | - Yanfa Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214082, China; (Y.Z.); (Y.D.); (N.S.)
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi 214082, China; (Y.Z.); (Y.D.); (N.S.)
| | - Xuezheng Gao
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi 214151, China; (F.C.); (X.G.); (J.Y.)
| | - Jiajun Yin
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi 214151, China; (F.C.); (X.G.); (J.Y.)
| | - Zhenhe Zhou
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi 214151, China; (F.C.); (X.G.); (J.Y.)
| | - Ke-jia Wu
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi 214151, China; (F.C.); (X.G.); (J.Y.)
- Wuxi School of Medicine, Jiangnan University, Wuxi 214082, China; (Y.Z.); (Y.D.); (N.S.)
| |
Collapse
|
3
|
Spagnolo P, Tweddell D, Cela E, Daley M, Clarson C, Rupar CA, Stranges S, Bravo M, Cepinskas G, Fraser DD. Metabolomic signature of pediatric diabetic ketoacidosis: key metabolites, pathways, and panels linked to clinical variables. Mol Med 2024; 30:250. [PMID: 39707182 DOI: 10.1186/s10020-024-01046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Diabetic ketoacidosis (DKA) is a serious complication of type 1 diabetes (T1D), arising from relative insulin deficiency and leading to hyperglycemia, ketonemia, and metabolic acidosis. Early detection and treatment are essential to prevent severe outcomes. This pediatric case-control study utilized plasma metabolomics to explore metabolic alterations associated with DKA and to identify predictive metabolite patterns. METHODS We examined 34 T1D participants, including 17 patients admitted with severe DKA and 17 age- and sex-matched individuals in insulin-controlled states. A total of 215 plasma metabolites were analyzed using proton nuclear magnetic resonance and direct-injection liquid chromatography/mass spectrometry. Multivariate statistical methods, machine learning techniques, and bioinformatics were employed for data analysis. RESULTS After adjusting for multiple comparisons, 65 metabolites were found to differ significantly between the groups (28 increased and 37 decreased). Metabolomics profiling demonstrated 100% accuracy in differentiating severe DKA from insulin-controlled states. Random forest analysis indicated that classification accuracy was primarily influenced by changes in ketone bodies, acylcarnitines, and phosphatidylcholines. Additionally, groups of metabolites (ranging in number from 8 to 18) correlated with key clinical and biochemical variables, including pH, bicarbonate, glucose, HbA1c, and Glasgow Coma Scale scores. CONCLUSIONS These findings underscore significant metabolic disturbances in severe DKA and their associations with critical clinical indicators. Future investigations should explore if metabolic alterations in severe DKA can identify patients at increased risk of complications and/or guide future therapeutic interventions.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128, Rome, Italy
| | - David Tweddell
- Computer Science, Western University, London, ON, N6A 3K7, Canada
| | - Enis Cela
- Physiology & Pharmacology, Western University, London, ON, N6A 3K7, Canada
| | - Mark Daley
- Computer Science, Western University, London, ON, N6A 3K7, Canada
- Epidemiology and Biostatistics, Western University, London, ON, N6G 2M1, Canada
| | - Cheril Clarson
- Pediatrics, Western University, London, ON, N6A 3K7, Canada
| | - C Anthony Rupar
- Pediatrics, Western University, London, ON, N6A 3K7, Canada
- Biochemistry, Western University, London, ON, N6A 3K7, Canada
| | - Saverio Stranges
- Epidemiology and Biostatistics, Western University, London, ON, N6G 2M1, Canada
- Family Medicine, Western University, London, ON, N6G 2M1, Canada
- Clinical Medicine and Surgery, University of Naples Federico II, Naples, 80131, Italy
- Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Michael Bravo
- Emergency Department, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Gediminas Cepinskas
- Medical Biophysics, Western University, London, ON, N6A 3K7, Canada
- Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada
- London Health Sciences Centre Research Institute, London, ON, N6C 2R5, Canada
| | - Douglas D Fraser
- Physiology & Pharmacology, Western University, London, ON, N6A 3K7, Canada.
- Pediatrics, Western University, London, ON, N6A 3K7, Canada.
- London Health Sciences Centre Research Institute, London, ON, N6C 2R5, Canada.
- Clinical Neurological Sciences, Western University, London, ON, N6A 3K7, Canada.
- Child Health Research Institute, London, ON, N6C 4V3, Canada.
- A5-132, Victoria Research Laboratories, London Health Sciences Centre, Victoria Campus, 800 Commissioners Road E, London, ON, N6A 5W9, Canada.
| |
Collapse
|
4
|
Gilglioni EH, Li A, St-Pierre-Wijckmans W, Shen TK, Pérez-Chávez I, Hovhannisyan G, Lisjak M, Negueruela J, Vandenbempt V, Bauzá-Martinez J, Herranz JM, Ezeriņa D, Demine S, Feng Z, Vignane T, Otero Sanchez L, Lambertucci F, Prašnická A, Devière J, Hay DC, Encinar JA, Singh SP, Messens J, Filipovic MR, Sharpe HJ, Trépo E, Wu W, Gurzov EN. PTPRK regulates glycolysis and de novo lipogenesis to promote hepatocyte metabolic reprogramming in obesity. Nat Commun 2024; 15:9522. [PMID: 39496584 PMCID: PMC11535053 DOI: 10.1038/s41467-024-53733-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Fat accumulation, de novo lipogenesis, and glycolysis are key drivers of hepatocyte reprogramming and the consequent metabolic dysfunction-associated steatotic liver disease (MASLD). Here we report that obesity leads to dysregulated expression of hepatic protein-tyrosine phosphatases (PTPs). PTPRK was found to be increased in steatotic hepatocytes in both humans and mice, and correlates positively with PPARγ-induced lipogenic signaling. High-fat-fed PTPRK knockout male and female mice have lower weight gain and reduced hepatic fat accumulation. Phosphoproteomic analysis in primary hepatocytes and hepatic metabolomics identified fructose-1,6-bisphosphatase 1 and glycolysis as PTPRK targets in metabolic reprogramming. Mechanistically, PTPRK-induced glycolysis enhances PPARγ and lipogenesis in hepatocytes. Silencing PTPRK in liver cancer cell lines reduces colony-forming capacity and high-fat-fed PTPRK knockout mice exposed to a hepatic carcinogen develop smaller tumours. Our study defines the role of PTPRK in the regulation of hepatic glycolysis, lipid metabolism, and tumour development in obesity.
Collapse
Affiliation(s)
- Eduardo H Gilglioni
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, B-1070, Brussels, Belgium
| | - Ao Li
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, B-1070, Brussels, Belgium
| | | | - Tzu-Keng Shen
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, B-1070, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Israel Pérez-Chávez
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, B-1070, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Garnik Hovhannisyan
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, B-1070, Brussels, Belgium
| | - Michela Lisjak
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, B-1070, Brussels, Belgium
| | - Javier Negueruela
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, B-1070, Brussels, Belgium
| | - Valerie Vandenbempt
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, B-1070, Brussels, Belgium
| | - Julia Bauzá-Martinez
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, 3584 CH, Utrecht, The Netherlands
| | - Jose M Herranz
- Hepatology Program, CIMA, University of Navarra, 31009, Pamplona, Spain
| | - Daria Ezeriņa
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Stéphane Demine
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, B-1070, Brussels, Belgium
| | - Zheng Feng
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, B-1070, Brussels, Belgium
| | - Thibaut Vignane
- Leibniz Institute for Analytical Sciences, ISAS e.V., 44139, Dortmund, Germany
| | - Lukas Otero Sanchez
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles, B-1070, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université libre de Bruxelles, B-1070, Brussels, Belgium
| | - Flavia Lambertucci
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, B-1070, Brussels, Belgium
| | - Alena Prašnická
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, B-1070, Brussels, Belgium
| | - Jacques Devière
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles, B-1070, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université libre de Bruxelles, B-1070, Brussels, Belgium
| | - David C Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Jose A Encinar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDIBE), 03202, Elche, Spain
| | - Sumeet Pal Singh
- IRIBHM, Université libre de Bruxelles, B-1070, Brussels, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Milos R Filipovic
- Leibniz Institute for Analytical Sciences, ISAS e.V., 44139, Dortmund, Germany
| | - Hayley J Sharpe
- Signalling Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Eric Trépo
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles, B-1070, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université libre de Bruxelles, B-1070, Brussels, Belgium
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, 3584 CH, Utrecht, The Netherlands
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
- Department of Pharmacy & Pharmaceutical Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, B-1070, Brussels, Belgium.
- WELBIO Department, WEL Research Institute, B-1300, Wavre, Belgium.
| |
Collapse
|
5
|
Ji X, Cheng J, Su J, Wen R, Zhang Q, Liu G, Peng Y, Mao J. PTPN7 mediates macrophage-polarization and determines immunotherapy in gliomas: A single-cell sequencing analysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:4562-4580. [PMID: 38581214 DOI: 10.1002/tox.24259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Protein tyrosine phosphatase non-receptor type 7 (PTPN7) is a signaling molecule that regulates a multitude of cellular processes, spanning cell proliferation, cellular differentiation, the mitotic cycle, and oncogenic metamorphosis. However, the characteristic of PTPN7 in the glioma microenvironment has yet to be elucidated. METHODS The prognostic value, genomic features, immune characteristics, chemotherapy prediction, and immunotherapy prediction of PTPN7 were systematically explored at the bulk sequencing level. The cell evolution trajectory, cell communication pattern, and cell metabolic activity related to PTPN7 were systematically explored at the single-cell sequencing level. HMC3 and M0 cells were cocultured with U251 and T98G cells, and flow cytometry was carried out to investigate the polarization of HMC3 and M0. Transwell assay and CCK-8 assay were performed to explore the migration and proliferation activity of U251 and T98G. RESULTS The expression level of PTPN7 is significantly elevated in glioma and indicates malignant features. PTPN7 expression predicts worse prognosis of glioma patients. PTPN7 is associated with genome alteration and immune infiltration. Besides, PTPN7 plays a crucial role in modulating metabolic and immunogenic processes, particularly by influencing the activity of microglia and macrophages through multiple signaling pathways involved in cellular communication. Specifically, PTPN7 actively mediates inflammation-resolving-polarization of macrophages and microglia and protects glioma from immune attack. PTPN7 could also predict the response of immunotherapy. CONCLUSIONS PTPN7 is critically involved in inflammation-resolving-polarization mediated by macrophage and microglia and promotes the immune escape of glioma cells.
Collapse
Affiliation(s)
- Xiang Ji
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jingsong Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jing Su
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rong Wen
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qi Zhang
- Department of Neurosurgery, Tongnan Hospital of TCM, Chongqing, China
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinning Mao
- Health Management Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Negueruela J, Vandenbempt V, Talamantes S, Ribeiro-Costa F, Nunes M, Dias A, Bansal M, Gurzov EN. Protocol for CRISPR-Cas12a genome editing of protein tyrosine phosphatases in human pluripotent stem cells and functional β-like cell generation. STAR Protoc 2024; 5:103297. [PMID: 39243376 PMCID: PMC11409021 DOI: 10.1016/j.xpro.2024.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024] Open
Abstract
Gene editing of human pluripotent stem cells is a promising approach for developing targeted gene therapies for metabolic diseases. Here, we present a protocol for generating a CRISPR-Cas12a gene knockout of protein tyrosine phosphatases in human embryonic stem cells. We describe steps for differentiating the edited clones into pancreatic islet-like spheroids rich in β-like cells. We then detail procedures for implanting these spheroids under the murine kidney capsule for in vivo maturation.
Collapse
Affiliation(s)
- Javier Negueruela
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium.
| | - Valerie Vandenbempt
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium
| | - Stephanie Talamantes
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium
| | - Francisco Ribeiro-Costa
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium
| | - Mariana Nunes
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium
| | - André Dias
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium
| | - Mayank Bansal
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium.
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium.
| |
Collapse
|
7
|
Dobson GP, Morris JL, Letson HL. Pathophysiology of Severe Burn Injuries: New Therapeutic Opportunities From a Systems Perspective. J Burn Care Res 2024; 45:1041-1050. [PMID: 38517382 PMCID: PMC11303127 DOI: 10.1093/jbcr/irae049] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 03/23/2024]
Abstract
Severe burn injury elicits a profound stress response with the potential for high morbidity and mortality. If polytrauma is present, patient outcomes appear to be worse. Sex-based comparisons indicate females have worse outcomes than males. There are few effective drug therapies to treat burn shock and secondary injury progression. The lack of effective drugs appears to arise from the current treat-as-you-go approach rather than a more integrated systems approach. In this review, we present a brief history of burns research and discuss its pathophysiology from a systems' perspective. The severe burn injury phenotype appears to develop from a rapid and relentless barrage of damage-associated molecular patterns, pathogen-associated molecular patterns, and neural afferent signals, which leads to a state of hyperinflammation, immune dysfunction, coagulopathy, hypermetabolism, and intense pain. We propose that if the central nervous system control of cardiovascular function and endothelial-glycocalyx-mitochondrial coupling can be restored early, these secondary injury processes may be minimized. The therapeutic goal is to switch the injury phenotype to a healing phenotype by reducing fluid leak and maintaining tissue O2 perfusion. Currently, no systems-based therapies exist to treat severe burns. We have been developing a small-volume fluid therapy comprising adenosine, lidocaine, and magnesium (ALM) to treat hemorrhagic shock, traumatic brain injury, and sepsis. Our early studies indicate that the ALM therapy holds some promise in supporting cardiovascular and pulmonary functions following severe burns. Future research will investigate the ability of ALM therapy to treat severe burns with polytrauma and sex disparities, and potential translation to humans.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Jodie L Morris
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Hayley L Letson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
8
|
Wang A, Zhang Y, Lv X, Liang G. Therapeutic potential of targeting protein tyrosine phosphatases in liver diseases. Acta Pharm Sin B 2024; 14:3295-3311. [PMID: 39220870 PMCID: PMC11365412 DOI: 10.1016/j.apsb.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.
Collapse
Affiliation(s)
- Ao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Yi Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinting Lv
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
9
|
Peng Q, Liu X, Li W, Jing H, Li J, Gao X, Luo Q, Breeze CE, Pan S, Zheng Q, Li G, Qian J, Yuan L, Yuan N, You C, Du S, Zheng Y, Yuan Z, Tan J, Jia P, Wang J, Zhang G, Lu X, Shi L, Guo S, Liu Y, Ni T, Wen B, Zeng C, Jin L, Teschendorff AE, Liu F, Wang S. Analysis of blood methylation quantitative trait loci in East Asians reveals ancestry-specific impacts on complex traits. Nat Genet 2024; 56:846-860. [PMID: 38641644 DOI: 10.1038/s41588-023-01494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/02/2023] [Indexed: 04/21/2024]
Abstract
Methylation quantitative trait loci (mQTLs) are essential for understanding the role of DNA methylation changes in genetic predisposition, yet they have not been fully characterized in East Asians (EAs). Here we identified mQTLs in whole blood from 3,523 Chinese individuals and replicated them in additional 1,858 Chinese individuals from two cohorts. Over 9% of mQTLs displayed specificity to EAs, facilitating the fine-mapping of EA-specific genetic associations, as shown for variants associated with height. Trans-mQTL hotspots revealed biological pathways contributing to EA-specific genetic associations, including an ERG-mediated 233 trans-mCpG network, implicated in hematopoietic cell differentiation, which likely reflects binding efficiency modulation of the ERG protein complex. More than 90% of mQTLs were shared between different blood cell lineages, with a smaller fraction of lineage-specific mQTLs displaying preferential hypomethylation in the respective lineages. Our study provides new insights into the mQTL landscape across genetic ancestries and their downstream effects on cellular processes and diseases/traits.
Collapse
Affiliation(s)
- Qianqian Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinxuan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenran Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Han Jing
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiarui Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xingjian Gao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Qi Luo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Siyu Pan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Qiwen Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Guochao Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Jiaqiang Qian
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liyun Yuan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Na Yuan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Chenglong You
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Siyuan Du
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Ziyu Yuan
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, China
| | - Jingze Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
| | - Guoqing Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, China
| | - Xianping Lu
- Shenzhen Chipscreen Biosciences Co. Ltd., Shenzhen, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Bo Wen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Changqing Zeng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, Kingdom of Saudi Arabia.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
10
|
Gone GB, Go G, Nam G, Jeong W, Kim H, Lee S, Chung SJ. Exploring the Anti-Diabetic Potential of Quercetagitrin through Dual Inhibition of PTPN6 and PTPN9. Nutrients 2024; 16:647. [PMID: 38474775 DOI: 10.3390/nu16050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Protein tyrosine phosphatases (PTPs) are pivotal contributors to the development of type 2 diabetes (T2DM). Hence, directing interventions towards PTPs emerges as a valuable therapeutic approach for managing type 2 diabetes. In particular, PTPN6 and PTPN9 are targets for anti-diabetic effects. Through high-throughput drug screening, quercetagitrin (QG) was recognized as a dual-target inhibitor of PTPN6 and PTPN9. We observed that QG suppressed the catalytic activity of PTPN6 (IC50 = 1 μM) and PTPN9 (IC50 = 1.7 μM) in vitro and enhanced glucose uptake by mature C2C12 myoblasts. Additionally, QG increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and insulin-dependent phosphorylation of Akt in mature C2C12 myoblasts. It further promoted the phosphorylation of Akt in the presence of palmitic acid, suggesting the attenuation of insulin resistance. In summary, our results indicate QG's role as a potent inhibitor targeting both PTPN6 and PTPN9, showcasing its potential as a promising treatment avenue for T2DM.
Collapse
Affiliation(s)
- Geetanjali B Gone
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Geonhui Go
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gibeom Nam
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Woojoo Jeong
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyemin Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soah Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang J Chung
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
11
|
Opryshko V, Prokhach A, Akimov O, Riabushko M, Kostenko H, Kostenko V, Mishchenko A, Solovyova N, Kostenko V. Desmodium styracifolium: Botanical and ethnopharmacological insights, phytochemical investigations, and prospects in pharmacology and pharmacotherapy. Heliyon 2024; 10:e25058. [PMID: 38317880 PMCID: PMC10838797 DOI: 10.1016/j.heliyon.2024.e25058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
The purpose of this inquiry is to provide a conprehensive summary and analysis of the literature concerning the pharmacological properties of components that can be extracted from Desmodium styracifolium, a preparation in Chinese medicine. This study also aims to explore their potential application in elaborating medicinal products for the effective prevention and treatment of such conditions as urolithiasis, cholelithiasis, type 2 diabetes mellitus, metabolic syndrome, pro-oxidant and inflammatory processes, etc. Several experimental studies confirmed the potential of D. styracifolium to influence mineral metabolism, to decrease the concentration of constituents involved in the formation of urinary calculi, and to reduce mineral encrustation in the urinary tract, as well as to alleviate the damage caused by crystal structures. This beneficial impact is achieved through a combination of antioxidant and anti-inflammatory actions, along with urine alkalinization. The cholelitholytic, choleretic, and hepatoprotective effects of D. styracifolium plants have been confirmed, primarily ascribed to the activation of the hepatic Xα receptor and the bile acid receptor, farnesoid X receptor, by the flavonoid shaftoside. Special attention is focused on the potential therapeutic applications of flavonoids derived from D. styracifolium for diseases associated with the development of chronic inflammation and systemic response, emphasizing the ability of flavonoids to exert antioxidant and anti-inflammatory effects by acting directly and through the modulation of transcription factors. It is concluded that new strategies for the prevention and treatment of urolithiasis, cholelithiasis, type 2 diabetes mellitus, metabolic syndrome, acute and chronic inflammatory processes may rely on the promising development of dosage forms of D. styracifolium with their subsequent preclinical and clinical trials.
Collapse
Affiliation(s)
- Valentyna Opryshko
- Dnipro State Medical University, Department of General and Clinical Pharmacy, Dnipro, Ukraine
| | - Anna Prokhach
- Dnipro State Medical University, Department of Oncology and Medical Radiology, Dnipro, Ukraine
| | - Oleh Akimov
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Mykola Riabushko
- Poltava State Medical University, Department of Pharmacology, Clinical Pharmacology and Pharmacy, Poltava, Ukraine
| | - Heorhii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Viktoriia Kostenko
- Poltava State Medical University, Department of Foreign Languages with Latin and Medical Terminology, Poltava, Ukraine
| | - Artur Mishchenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Natalia Solovyova
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Vitalii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| |
Collapse
|
12
|
Crean RM, Corbella M, Calixto AR, Hengge AC, Kamerlin SCL. Sequence - dynamics - function relationships in protein tyrosine phosphatases. QRB DISCOVERY 2024; 5:e4. [PMID: 38689874 PMCID: PMC11058592 DOI: 10.1017/qrd.2024.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 05/02/2024] Open
Abstract
Protein tyrosine phosphatases (PTPs) are crucial regulators of cellular signaling. Their activity is regulated by the motion of a conserved loop, the WPD-loop, from a catalytically inactive open to a catalytically active closed conformation. WPD-loop motion optimally positions a catalytically critical residue into the active site, and is directly linked to the turnover number of these enzymes. Crystal structures of chimeric PTPs constructed by grafting parts of the WPD-loop sequence of PTP1B onto the scaffold of YopH showed WPD-loops in a wide-open conformation never previously observed in either parent enzyme. This wide-open conformation has, however, been observed upon binding of small molecule inhibitors to other PTPs, suggesting the potential of targeting it for drug discovery efforts. Here, we have performed simulations of both enzymes and show that there are negligible energetic differences in the chemical step of catalysis, but significant differences in the dynamical properties of the WPD-loop. Detailed interaction network analysis provides insight into the molecular basis for this population shift to a wide-open conformation. Taken together, our study provides insight into the links between loop dynamics and chemistry in these YopH variants specifically, and how WPD-loop dynamic can be engineered through modification of the internal protein interaction network.
Collapse
Affiliation(s)
- Rory M. Crean
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
| | - Marina Corbella
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Ana R. Calixto
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Alvan C. Hengge
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Shina C. L. Kamerlin
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
13
|
Howard JN, Bosque A. IL-15 and N-803 for HIV Cure Approaches. Viruses 2023; 15:1912. [PMID: 37766318 PMCID: PMC10537516 DOI: 10.3390/v15091912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In spite of the advances in antiretroviral therapy to treat HIV infection, the presence of a latent reservoir of HIV-infected cells represents the largest barrier towards finding a cure. Among the different strategies being pursued to eliminate or reduce this latent reservoir, the γc-cytokine IL-15 or its superagonist N-803 are currently under clinical investigation, either alone or with other interventions. They have been shown to reactivate latent HIV and enhance immune effector function, both of which are potentially required for effective reduction of latent reservoirs. In here, we present a comprehensive literature review of the different in vitro, ex vivo, and in vivo studies conducted to date that are aimed at targeting HIV reservoirs using IL-15 and N-803.
Collapse
Affiliation(s)
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037, USA;
| |
Collapse
|
14
|
Xie L, Qi H, Tian W, Bu S, Wu Z, Wang H. High-expressed PTPN1 promotes tumor proliferation signature in human hepatocellular carcinoma. Heliyon 2023; 9:e19895. [PMID: 37810052 PMCID: PMC10559287 DOI: 10.1016/j.heliyon.2023.e19895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly prevalent malignant tumor that is associated with substantial morbidity and mortality rates. Despite the progress made in diagnostic technology, the survival rate of HCC patients remains unsatisfactory due to the complex nature and extensive metastasis of the disease. Consequently, the discovery of new molecular targets is of great practical significance for the diagnosis and treatment of HCC. Protein tyrosine phosphatases (PTPs) play a crucial role in cell signal transduction by catalyzing the dephosphorylation of tyrosine residues in proteins. The present study has revealed that the upregulation of protein tyrosine phosphatase non-receptor type 1 (PTPN1) is a characteristic feature of HCC and is associated with a poor prognosis. Additionally, our investigation into the functional roles of PTPN1-regulated genes in HCC has demonstrated that alterations in PTPN1 expression disrupt normal cell cycle progression metabolism. Additionally, the capacity for proliferation and migration of HCC cells was notably diminished subsequent to PTPN1 silencing, resulting in the prevention of cell entry into the S phase from the G1 phase. Our investigation indicates that PTPN1 may facilitate the onset and progression of HCC by disrupting the cell cycle, thereby presenting a promising molecular target for the diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Liping Xie
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, 100039, Beijing, China
| | - Huimin Qi
- School of Basic Medicine, Weifang Medical University, 261053, Weifang, China
| | - Wenxiu Tian
- School of Basic Medicine, Weifang Medical University, 261053, Weifang, China
| | - Siyuan Bu
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Zhenan Wu
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, 100039, Beijing, China
| | - Hongmei Wang
- School of Medicine, Southeast University, 210009, Nanjing, China
| |
Collapse
|
15
|
Tang XE, Cheng YQ, Tang CK. Protein tyrosine phosphatase non-receptor type 2 as the therapeutic target of atherosclerotic diseases: past, present and future. Front Pharmacol 2023; 14:1219690. [PMID: 37670950 PMCID: PMC10475599 DOI: 10.3389/fphar.2023.1219690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
Tyrosine-protein phosphatase non-receptor type 2(PTPN2), an important member of the protein tyrosine phosphatase family, can regulate various signaling pathways and biological processes by dephosphorylating receptor protein tyrosine kinases. Accumulating evidence has demonstrated that PTPN2 is involved in the occurrence and development of atherosclerotic cardiovascular disease. Recently, it has been reported that PTPN2 exerts an anti-atherosclerotic effect by regulating vascular endothelial injury, monocyte proliferation and migration, macrophage polarization, T cell polarization, autophagy, pyroptosis, and insulin resistance. In this review, we summarize the latest findings on the role of PTPN2 in the pathogenesis of atherosclerosis to provide a rationale for better future research and therapeutic interventions.
Collapse
Affiliation(s)
- Xiao-Er Tang
- Department of Pathophysiology, Shaoyang University, Shaoyang, Hunan, China
| | - Ya-Qiong Cheng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| |
Collapse
|
16
|
Corbella M, Pinto GP, Kamerlin SCL. Loop dynamics and the evolution of enzyme activity. Nat Rev Chem 2023; 7:536-547. [PMID: 37225920 DOI: 10.1038/s41570-023-00495-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 05/26/2023]
Abstract
In the early 2000s, Tawfik presented his 'New View' on enzyme evolution, highlighting the role of conformational plasticity in expanding the functional diversity of limited repertoires of sequences. This view is gaining increasing traction with increasing evidence of the importance of conformational dynamics in both natural and laboratory evolution of enzymes. The past years have seen several elegant examples of harnessing conformational (particularly loop) dynamics to successfully manipulate protein function. This Review revisits flexible loops as critical participants in regulating enzyme activity. We showcase several systems of particular interest: triosephosphate isomerase barrel proteins, protein tyrosine phosphatases and β-lactamases, while briefly discussing other systems in which loop dynamics are important for selectivity and turnover. We then discuss the implications for engineering, presenting examples of successful loop manipulation in either improving catalytic efficiency, or changing selectivity completely. Overall, it is becoming clearer that mimicking nature by manipulating the conformational dynamics of key protein loops is a powerful method of tailoring enzyme activity, without needing to target active-site residues.
Collapse
Affiliation(s)
- Marina Corbella
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Gaspar P Pinto
- Department of Chemistry, Uppsala University, Uppsala, Sweden
- Cortex Discovery GmbH, Regensburg, Germany
| | - Shina C L Kamerlin
- Department of Chemistry, Uppsala University, Uppsala, Sweden.
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
17
|
Greco M, Mirabelli M, Salatino A, Accattato F, Aiello V, Brunetti FS, Chiefari E, Pullano SA, Fiorillo AS, Foti DP, Brunetti A. From Euglycemia to Recent Onset of Type 2 Diabetes Mellitus: A Proof-of-Concept Study on Circulating microRNA Profiling Reveals Distinct, and Early microRNA Signatures. Diagnostics (Basel) 2023; 13:2443. [PMID: 37510186 PMCID: PMC10377827 DOI: 10.3390/diagnostics13142443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Background and aim-Alterations in circulating microRNA (miRNA) expression patterns are thought to be involved in the early stages of prediabetes, as well as in the progression to overt type 2 diabetes mellitus (T2D) and its vascular complications. However, most research findings are conflicting, in part due to differences in miRNA extraction and normalization methods, and in part due to differences in the study populations and their selection. This cross-sectional study seeks to find new potentially useful biomarkers to predict and/or diagnose T2D by investigating the differential expression patterns of circulating miRNAs in the serum of patients with impaired fasting glucose (IFG) and new-onset T2D, with respect to euglycemic controls, using a high-throughput 384-well array and real-time PCR. Methods-Thirty subjects, aged 45-65 years, classified into three matched groups (of 10 participants each) according to their glycometabolic status, namely (1) healthy euglycemic controls, (2) patients with IFG and (3) patients with new-onset, uncomplicated T2D (<2 years since diagnosis) were enrolled. Circulating miRNAs were extracted from blood serum and profiled through real-time PCR on a commercial 384 well-array, containing spotted forward primers for 372 miRNAs. Data analysis was performed by using the online data analysis software GeneGlobe and normalized by the global Ct mean method. Results-Of the 372 analyzed miRNAs, 33 showed a considerably different expression in IFG and new-onset T2D compared to healthy euglycemic controls, with 2 of them down-regulated and 31 up-regulated. Stringent analysis conditions, using a differential fold regulation threshold ≥ 10, revealed that nine miRNAs (hsa-miR-3610, hsa-miR-3200-5p, hsa-miR-4651, hsa-miR-3135b, hsa-miR-1281, hsa-miR-4301, hsa-miR-195-5p, hsa-miR-523-5p and hsa-let-7a-5p) showed a specific increase in new-onset T2D patients compared to IFG patients, suggesting their possible role as early biomarkers of progression from prediabetes to T2D. Moreover, by conventional fold regulation thresholds of ±2, hsa-miR-146a-5p was down-regulated and miR-1225-3p up-regulated in new-onset T2D patients only. Whereas hsa-miR-146a-5p has a well-known role in glucose metabolism, insulin resistance and T2D complications, no association between hsa-miR-1225-3p and T2D has been previously reported. Bioinformatic and computational analysis predict a role of hsa-miR-1225-3p in the pathogenesis of T2D through the interaction with MAP3K1 and HMGA1. Conclusions-The outcomes of this study could aid in the identification and characterization of circulating miRNAs as potential novel biomarkers for the early diagnosis of T2D and may serve as a proof-of-concept for future mechanistic investigations.
Collapse
Affiliation(s)
- Marta Greco
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Mirabelli
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Alessandro Salatino
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Accattato
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Aiello
- Department of Precision Medicine, Vanvitelli University, 80133 Naples, Italy
| | - Francesco S Brunetti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Salvatore A Pullano
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Antonino S Fiorillo
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Daniela P Foti
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
18
|
Bajia D, Derwich K. An In Silico Study Investigating Camptothecin-Analog Interaction with Human Protein Tyrosine Phosphatase, SHP2 (PTPN11). Pharmaceuticals (Basel) 2023; 16:926. [PMID: 37513838 PMCID: PMC10386118 DOI: 10.3390/ph16070926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The human PTPN11 gene encodes for the src tyrosine phosphatase protein (SHP2) is now gaining much attention in many disorders, particularly its oncogenic involvement in many types of cancer. Efforts in developing molecules targeting SHP2 with high efficacy are the future of drug discovery and chemotherapy. However, the interaction of a new camptothecin analog with the catalytic domain of SHP2 protein remains unknown. Therefore, this study aims to provide in silico rationale for the recognition and binding of FL118 and irinotecan with the catalytic domain of human protein tyrosine phosphatase-SHP2 (PTPc-SH2-SHP2, chain A). The docking interaction of the human SHP2 protein's catalytic domain as well as Y279C and R465G mutants with FL118 and irinotecan ligands were calculated and analyzed using the Autodock 4.2 programme, setting the docking grid to target the protein's active site. The camptothecin analog FL118 had the best lowest negative affinity energies with PTPc-SHP2 wildtype and SHP2-Y279C mutant model (-7.54 Kcal/mol and -6.94 Kcal/mol, respectively). Moreover, the protein-ligand complexes revealed several hydrogen bond interactions reflecting the degree of stability that each structure possesses, with the FL118-SHP2-wildtype forming the most stable complex among the structures. In addition, the FL118-SHP2 wildtype complex was validated for RMSD, RMSF, hydrogen bonds, and salt bridges. This revealed that the complex generated became stable over time. This in silico rationale identifies the novel FL118 camptothecin analog as a potent selective inhibitor of PTPc-SH2 domain of SHP2 protein, paving way for further in vitro investigations into the interactions and binding activity of analogs with SHP2 for potential therapeutic applications in PTPN11-associated disorders.
Collapse
Affiliation(s)
- Donald Bajia
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
| |
Collapse
|
19
|
De George DJ, Ge T, Krishnamurthy B, Kay TWH, Thomas HE. Inflammation versus regulation: how interferon-gamma contributes to type 1 diabetes pathogenesis. Front Cell Dev Biol 2023; 11:1205590. [PMID: 37293126 PMCID: PMC10244651 DOI: 10.3389/fcell.2023.1205590] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease with onset from early childhood. The insulin-producing pancreatic beta cells are destroyed by CD8+ cytotoxic T cells. The disease is challenging to study mechanistically in humans because it is not possible to biopsy the pancreatic islets and the disease is most active prior to the time of clinical diagnosis. The NOD mouse model, with many similarities to, but also some significant differences from human diabetes, provides an opportunity, in a single in-bred genotype, to explore pathogenic mechanisms in molecular detail. The pleiotropic cytokine IFN-γ is believed to contribute to pathogenesis of type 1 diabetes. Evidence of IFN-γ signaling in the islets, including activation of the JAK-STAT pathway and upregulation of MHC class I, are hallmarks of the disease. IFN-γ has a proinflammatory role that is important for homing of autoreactive T cells into islets and direct recognition of beta cells by CD8+ T cells. We recently showed that IFN-γ also controls proliferation of autoreactive T cells. Therefore, inhibition of IFN-γ does not prevent type 1 diabetes and is unlikely to be a good therapeutic target. In this manuscript we review the contrasting roles of IFN-γ in driving inflammation and regulating the number of antigen specific CD8+ T cells in type 1 diabetes. We also discuss the potential to use JAK inhibitors as therapy for type 1 diabetes, to inhibit both cytokine-mediated inflammation and proliferation of T cells.
Collapse
Affiliation(s)
- David J. De George
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Tingting Ge
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Balasubramaniam Krishnamurthy
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Thomas W. H. Kay
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E. Thomas
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
20
|
Brickel S, Demkiv AO, Crean RM, Pinto GP, Kamerlin SCL. Q-RepEx: A Python pipeline to increase the sampling of empirical valence bond simulations. J Mol Graph Model 2023; 119:108402. [PMID: 36610324 DOI: 10.1016/j.jmgm.2022.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
The exploration of chemical systems occurs on complex energy landscapes. Comprehensively sampling rugged energy landscapes with many local minima is a common problem for molecular dynamics simulations. These multiple local minima trap the dynamic system, preventing efficient sampling. This is a particular challenge for large biochemical systems with many degrees of freedom. Replica exchange molecular dynamics (REMD) is an approach that accelerates the exploration of the conformational space of a system, and thus can be used to enhance the sampling of complex biomolecular processes. In parallel, the empirical valence bond (EVB) approach is a powerful approach for modeling chemical reactivity in biomolecular systems. Here, we present an open-source Python-based tool that interfaces with the Q simulation package, and increases the sampling efficiency of the EVB free energy perturbation/umbrella sampling approach by means of REMD. This approach, Q-RepEx, both decreases the computational cost of the associated REMD-EVB simulations, and opens the door to more efficient studies of biochemical reactivity in systems with significant conformational fluctuations along the chemical reaction coordinate.
Collapse
Affiliation(s)
- Sebastian Brickel
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Andrey O Demkiv
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Rory M Crean
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Gaspar P Pinto
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Shina Caroline Lynn Kamerlin
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden; School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
21
|
Burroughs A, Aravind L. New biochemistry in the Rhodanese-phosphatase superfamily: emerging roles in diverse metabolic processes, nucleic acid modifications, and biological conflicts. NAR Genom Bioinform 2023; 5:lqad029. [PMID: 36968430 PMCID: PMC10034599 DOI: 10.1093/nargab/lqad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
The protein-tyrosine/dual-specificity phosphatases and rhodanese domains constitute a sprawling superfamily of Rossmannoid domains that use a conserved active site with a cysteine to catalyze a range of phosphate-transfer, thiotransfer, selenotransfer and redox activities. While these enzymes have been extensively studied in the context of protein/lipid head group dephosphorylation and various thiotransfer reactions, their overall diversity and catalytic potential remain poorly understood. Using comparative genomics and sequence/structure analysis, we comprehensively investigate and develop a natural classification for this superfamily. As a result, we identified several novel clades, both those which retain the catalytic cysteine and those where a distinct active site has emerged in the same location (e.g. diphthine synthase-like methylases and RNA 2' OH ribosyl phosphate transferases). We also present evidence that the superfamily has a wider range of catalytic capabilities than previously known, including a set of parallel activities operating on various sugar/sugar alcohol groups in the context of NAD+-derivatives and RNA termini, and potential phosphate transfer activities involving sugars and nucleotides. We show that such activities are particularly expanded in the RapZ-C-DUF488-DUF4326 clade, defined here for the first time. Some enzymes from this clade are predicted to catalyze novel DNA-end processing activities as part of nucleic-acid-modifying systems that are likely to function in biological conflicts between viruses and their hosts.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
22
|
Gupta MK, Gouda G, Sultana S, Punekar SM, Vadde R, Ravikiran T. Structure-related relationship: Plant-derived antidiabetic compounds. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2023:241-295. [DOI: 10.1016/b978-0-323-91294-5.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
23
|
Behl T, Gupta A, Sehgal A, Albarrati A, Albratty M, Meraya AM, Najmi A, Bhatia S, Bungau S. Exploring protein tyrosine phosphatases (PTP) and PTP-1B inhibitors in management of diabetes mellitus. Biomed Pharmacother 2022; 153:113405. [DOI: 10.1016/j.biopha.2022.113405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/02/2022] Open
|
24
|
Goh XT, Fong SK, Chai HC, Kee BP, Chua KH. The first association study of Protein Tyrosine Phosphatase, Non-Receptor Type 2 (PTPN2) gene polymorphisms in Malaysian patients with Crohn's disease. Gene 2022; 836:146661. [PMID: 35680018 DOI: 10.1016/j.gene.2022.146661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 04/21/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
Abstract
Crohn's disease (CD) is one of the sub-entities of Inflammatory Bowel Disease which causes chronic inflammation in the gastrointestinal tract. The development of CD has shown to have a strong genetic association. Therefore, the present study aimed to investigate the association between genetic polymorphisms in a susceptible locus of CD, the protein tyrosine phosphatase, non-receptor type 2 (PTPN2) gene and the development of CD in Malaysian patients. A total of 137 CD patients and 274 matched healthy controls were recruited in the present study. Genomic DNA was extracted from the venous blood of participants and five targeted single nucleotide polymorphisms (SNPs) in the PTPN2 gene were genotyped using polymerase chain reaction. Associations between the SNPs and CD were determined using Fisher's exact test and odds ratio. Findings showed that all five selected SNPs were not significantly associated with the development of CD in Malaysian patients, which was in contrast to studies among the European populations. Malaysian Chinese with rs487273 heterozygous G/T genotype was found to have a lower occurrence of CD (P-value = 0.0253; OR = 0.4396). Patients with rs2542152 homozygous T genotype were associated with stricturing behaviour (P-value = 0.0302, OR = 2.9944). The rs16939895 A/G genotype was associated with inflammation at the ileum site (P-value = 0.0387, OR = 2.2105)while homozygous G genotype was associated with colonic CD (P-value = 0.0164, OR = 2.3917). Functional studies of these SNPs are needed to evaluate their potential use as a biomarker for disease phenotypes among Asian patients.
Collapse
Affiliation(s)
- Xiang Ting Goh
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Suh Kuan Fong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Hwa Chia Chai
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Boon Pin Kee
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
25
|
Sintov E, Nikolskiy I, Barrera V, Hyoje-Ryu Kenty J, Atkin AS, Gerace D, Ho Sui SJ, Boulanger K, Melton DA. Whole-genome CRISPR screening identifies genetic manipulations to reduce immune rejection of stem cell-derived islets. Stem Cell Reports 2022; 17:1976-1990. [PMID: 36055241 PMCID: PMC9481918 DOI: 10.1016/j.stemcr.2022.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/11/2022] Open
Abstract
Human embryonic stem cells (hESCs) provide opportunities for cell replacement therapy of insulin-dependent diabetes. Therapeutic quantities of human stem cell-derived islets (SC-islets) can be produced by directed differentiation. However, preventing allo-rejection and recurring autoimmunity, without the use of encapsulation or systemic immunosuppressants, remains a challenge. An attractive approach is to transplant SC-islets, genetically modified to reduce the impact of immune rejection. To determine the underlying forces that drive immunogenicity of SC-islets in inflammatory environments, we performed single-cell RNA sequencing (scRNA-seq) and whole-genome CRISPR screen of SC-islets under immune interaction with allogeneic peripheral blood mononuclear cells (PBMCs). Data analysis points to “alarmed” populations of SC-islets that upregulate genes in the interferon (IFN) pathway. The CRISPR screen in vivo confirms that targeting IFNγ-induced mediators has beneficial effects on SC-islet survival under immune attack. Manipulating the IFN response by depleting chemokine ligand 10 (CXCL10) in SC-islet grafts confers improved survival against allo-rejection compared with wild-type grafts in humanized mice. These results offer insights into the nature of immune destruction of SC-islets during allogeneic responses and provide targets for gene editing. IFN pathway induction sets the fate of SC-islets under allogeneic immune challenge “Alarm” genes drive immunogenicity of SC-islets Genetically modified SC-islets were generated and evaluated for hypo-immunogenicity CXCL10 depletion can reduce immune activation and SC-islet graft rejection
Collapse
Affiliation(s)
- Elad Sintov
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| | - Igor Nikolskiy
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Victor Barrera
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jennifer Hyoje-Ryu Kenty
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Alexander S Atkin
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Dario Gerace
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Shannan J Ho Sui
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kyle Boulanger
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
26
|
Tang X, Qi C, Zhou H, Liu Y. Critical roles of PTPN family members regulated by non-coding RNAs in tumorigenesis and immunotherapy. Front Oncol 2022; 12:972906. [PMID: 35957898 PMCID: PMC9360549 DOI: 10.3389/fonc.2022.972906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Since tyrosine phosphorylation is reversible and dynamic in vivo, the phosphorylation state of proteins is controlled by the opposing roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatase (PTPs), both of which perform critical roles in signal transduction. Of these, intracellular non-receptor PTPs (PTPNs), which belong to the largest class I cysteine PTP family, are essential for the regulation of a variety of biological processes, including but not limited to hematopoiesis, inflammatory response, immune system, and glucose homeostasis. Additionally, a substantial amount of PTPNs have been identified to hold crucial roles in tumorigenesis, progression, metastasis, and drug resistance, and inhibitors of PTPNs have promising applications due to striking efficacy in antitumor therapy. Hence, the aim of this review is to summarize the role played by PTPNs, including PTPN1/PTP1B, PTPN2/TC-PTP, PTPN3/PTP-H1, PTPN4/PTPMEG, PTPN6/SHP-1, PTPN9/PTPMEG2, PTPN11/SHP-2, PTPN12/PTP-PEST, PTPN13/PTPL1, PTPN14/PEZ, PTPN18/PTP-HSCF, PTPN22/LYP, and PTPN23/HD-PTP, in human cancer and immunotherapy and to comprehensively describe the molecular pathways in which they are implicated. Given the specific roles of PTPNs, identifying potential regulators of PTPNs is significant for understanding the mechanisms of antitumor therapy. Consequently, this work also provides a review on the role of non-coding RNAs (ncRNAs) in regulating PTPNs in tumorigenesis and progression, which may help us to find effective therapeutic agents for tumor therapy.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Clinical Laboratory Diagnostics, Binzhou Medical University, Binzhou, China
| | - Chumei Qi
- Department of Clinical Laboratory, Dazhou Women and Children’s Hospital, Dazhou, China
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| |
Collapse
|
27
|
Elvira B, Vandenbempt V, Bauzá-Martinez J, Crutzen R, Negueruela J, Ibrahim H, Winder ML, Brahma MK, Vekeriotaite B, Martens PJ, Singh SP, Rossello F, Lybaert P, Otonkoski T, Gysemans C, Wu W, Gurzov EN. PTPN2 Regulates the Interferon Signaling and Endoplasmic Reticulum Stress Response in Pancreatic β-Cells in Autoimmune Diabetes. Diabetes 2022; 71:653-668. [PMID: 35044456 DOI: 10.2337/db21-0443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of β-cells in the pancreas. Protein tyrosine phosphatases (PTPs) are candidate genes for T1D and play a key role in autoimmune disease development and β-cell dysfunction. Here, we assessed the global protein and individual PTP profiles in the pancreas from nonobese mice with early-onset diabetes (NOD) mice treated with an anti-CD3 monoclonal antibody and interleukin-1 receptor antagonist. The treatment reversed hyperglycemia, and we observed enhanced expression of PTPN2, a PTP family member and T1D candidate gene, and endoplasmic reticulum (ER) chaperones in the pancreatic islets. To address the functional role of PTPN2 in β-cells, we generated PTPN2-deficient human stem cell-derived β-like and EndoC-βH1 cells. Mechanistically, we demonstrated that PTPN2 inactivation in β-cells exacerbates type I and type II interferon signaling networks and the potential progression toward autoimmunity. Moreover, we established the capacity of PTPN2 to positively modulate the Ca2+-dependent unfolded protein response and ER stress outcome in β-cells. Adenovirus-induced overexpression of PTPN2 partially protected from ER stress-induced β-cell death. Our results postulate PTPN2 as a key protective factor in β-cells during inflammation and ER stress in autoimmune diabetes.
Collapse
Affiliation(s)
- Bernat Elvira
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Valerie Vandenbempt
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Julia Bauzá-Martinez
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Centre, Utrecht, the Netherlands
| | - Raphaël Crutzen
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Javier Negueruela
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matthew L Winder
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Manoja K Brahma
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Beata Vekeriotaite
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Pieter-Jan Martens
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, Campus Gasthuisberg O&N 1, KU Leuven, Leuven, Belgium
| | | | - Fernando Rossello
- University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Lybaert
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, Campus Gasthuisberg O&N 1, KU Leuven, Leuven, Belgium
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Centre, Utrecht, the Netherlands
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
28
|
Identification of Potential Biomarkers of Type 2 Diabetes Mellitus-Related Immune Infiltration Using Weighted Gene Coexpression Network Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9920744. [PMID: 35187175 PMCID: PMC8849810 DOI: 10.1155/2022/9920744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 12/03/2022]
Abstract
Background Type 2 diabetes mellitus (T2DM) is characterized by chronic low-grade inflammation, showing an increasing trend. The infiltration of immune cells into adipose tissue has been shown to be an important pathogenic cause of T2DM. The purpose of this study is to use the relevant database to identify some abnormally expressed or dysfunctional genes related to diabetes from the perspective of immune infiltration. Methods Weighted gene coexpression network analysis (WGCNA) was employed to systematically identify the coexpressed gene modules and hub genes associated with T2DM development based on a microarray dataset (GSE23561) from the Gene Expression Omnibus (GEO) database. The key genes in modules highly related to clinical features were calculated and screened by using R software, and their participation in T2DM was determined by gene enrichment analysis. The mRNA levels of CSF1R, H2AFV, LCK, and TLR9 in pre-T2DM mice and normal wild-type mice were detected by WGCNA screening and real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Results We constructed 14 coexpressed gene modules, and the brown module was shown to be significantly related to T2DM. Through verification of the protein-protein interaction (PPI) network, four upregulated hub genes, CSF1R, H2AFV, LCK, and TLR9, were screened from the brown module and successfully distinguishedT2DM patients from healthy people. These hub genes may be used as biomarkers and important indicators for patient diagnosis. Enrichment analysis showed that these hub genes were highly associated with IL-6-related inflammatory metabolism, immune regulation, and immune cell infiltration. Finally, we verified the hub genes CSF1R, LCK, and TLR9 in a T2DM animal model and found that their mRNA levels were significantly higher in animals with T2DM than in control group mice (NC). Conclusions In summary, our results suggest that these hub genes (CSF1R, LCK, and TLR9) can serve as biomarkers and immunotherapeutic targets for T2DM.
Collapse
|
29
|
Chen PJ, Zhang YT. Protein Tyrosine Phosphatase 1B (PTP1B): Insights into Its New Implications in Tumorigenesis. Curr Cancer Drug Targets 2022; 22:181-194. [PMID: 35088671 DOI: 10.2174/1568009622666220128113400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022]
Abstract
In vivo, tyrosine phosphorylation is a reversible and dynamic process governed by the opposing activities of protein tyrosine kinases and phosphatases. Defective or inappropriate operation of these proteins leads to aberrant tyrosine phosphorylation, which contributes to the development of many human diseases, including cancers. PTP1B, a non-transmembrane phosphatase, is generally considered a negative regulator of the metabolic signaling pathways and a promising drug target for type Ⅱ diabetes and obesity. Recently, PTP1B is also attracting considerable interest due to its important function and therapeutic potential in other diseases. An increasing number of studies have indicated that PTP1B plays a vital role in the initiation and progression of cancers and could be a target for new cancer therapies. Following recent advances in the aspects mentioned above, this review is focused on the major functions of PTP1B in different types of cancer and the underlying mechanisms behind these functions, as well as the potential pharmacological effects of PTP1B inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Pei-Jie Chen
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230012, China
| | - Yun-Tian Zhang
- Hefei Visionnox Technology Co., Lid, Hefei 230012, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
30
|
Tsumagari K, Niinae T, Otaka A, Ishihama Y. Peptide probes containing a non-hydrolyzable phosphotyrosine-mimetic residue for enrichment of protein tyrosine phosphatases. Proteomics 2021; 22:e2100144. [PMID: 34714599 DOI: 10.1002/pmic.202100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/07/2022]
Abstract
We developed peptide probes containing a non-hydrolyzable phosphotyrosine mimetic, 4-[difluoro(phosphono)methyl]-L-phenylalanine (F2 Pmp) for enrichment of protein tyrosine phosphatases (PTPs). We found that different F2 Pmp probes can enrich different PTPs, depending on the probe sequence. Furthermore, proteins containing a Src homology 2 (SH2) domain were enriched together. Importantly, probes containing phosphotyrosine instead of F2 Pmp failed to enrich PTPs due to dephosphorylation during the pulldown step. This enrichment approach using peptides containing F2 Pmp could be a generic tool for tyrosine phosphatome analysis without the use of antibodies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kazuya Tsumagari
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.,Center for Integrated Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Tomoya Niinae
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.,Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| |
Collapse
|
31
|
Pineda-Cortel MRB, Bunag JAA, Mamerto TP, Abulencia MFB. Differential gene expression and network-based analyses of the placental transcriptome reveal distinct potential biomarkers for gestationaldiabetes mellitus. Diabetes Res Clin Pract 2021; 180:109046. [PMID: 34530062 DOI: 10.1016/j.diabres.2021.109046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
AIMS Gestational diabetes mellitus (GDM) is a common complication during pregnancy affecting the mother and fetus. With the problems encountered with the oral glucose tolerance test (OGTT), we aim to identify potential early biomarkers of GDM. METHODS A cross-sectional study was conducted among 80 pregnant women. Blood samples were collected every trimester, and total RNA was isolated. After quality control and library preparation, next-generation sequencing was performed. Differential expression analysis was done. Enriched Gene Ontology: Biological Processes (GO: BP) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified. Gene co-expression networks were constructed. Protein-protein Interaction (PPI) networks were then built from modules significantly correlated with Hemoglobin A1c. Genes with the highest degree of interaction were identified as hub genes. RESULTS IGKV2D-28 and PTPRG were consistently differentially expressed among the three comparisons. Top enriched GO: BP terms and KEGG pathways are linked to immune responses. Orange (r = 0.59, p = 0.02) and purple modules (r = 0.41, p = 0.02) of the GDM cohorts in the first and second trimesters, respectively, significantly correlated with Hemoglobin A1c. HDAC8 of the orange module and MPO and CRISP3 of the purple module were identified as hub genes. CONCLUSIONS In this study, potential biomarkers of GDM were identified, namely, IGKV2D-28, PTPRG, HDAC8, MPO, and CRISP3.
Collapse
Affiliation(s)
- Maria Ruth B Pineda-Cortel
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines; The Graduate School, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines; Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines.
| | - Jose Angelo A Bunag
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines
| | - Therriz P Mamerto
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines; Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines
| | - Miguel Francisco B Abulencia
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines
| |
Collapse
|
32
|
Brahma MK, Gilglioni EH, Zhou L, Trépo E, Chen P, Gurzov EN. Oxidative stress in obesity-associated hepatocellular carcinoma: sources, signaling and therapeutic challenges. Oncogene 2021; 40:5155-5167. [PMID: 34290399 PMCID: PMC9277657 DOI: 10.1038/s41388-021-01950-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
Obesity affects more than 650 million individuals worldwide and is a well-established risk factor for the development of hepatocellular carcinoma (HCC). Oxidative stress can be considered as a bona fide tumor promoter, contributing to the initiation and progression of liver cancer. Indeed, one of the key events involved in HCC progression is excessive levels of reactive oxygen species (ROS) resulting from the fatty acid influx and chronic inflammation. This review provides insights into the different intracellular sources of obesity-induced ROS and molecular mechanisms responsible for hepatic tumorigenesis. In addition, we highlight recent findings pointing to the role of the dysregulated activity of BCL-2 proteins and protein tyrosine phosphatases (PTPs) in the generation of hepatic oxidative stress and ROS-mediated dysfunctional signaling, respectively. Finally, we discuss the potential and challenges of novel nanotechnology strategies to prevent ROS formation in obesity-associated HCC.
Collapse
Affiliation(s)
- Manoja K Brahma
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Eduardo H Gilglioni
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Lang Zhou
- Materials Research and Education Center, Auburn University, Auburn, AL, 36849, United States
| | - Eric Trépo
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, C.U.B. Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université libre de Bruxelles, Brussels, Belgium
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, AL, 36849, United States
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
33
|
Elkamhawy A, Ali EMH, Lee K. New horizons in drug discovery of lymphocyte-specific protein tyrosine kinase (Lck) inhibitors: a decade review (2011-2021) focussing on structure-activity relationship (SAR) and docking insights. J Enzyme Inhib Med Chem 2021; 36:1574-1602. [PMID: 34233563 PMCID: PMC8274522 DOI: 10.1080/14756366.2021.1937143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (Lck), a non-receptor Src family kinase, has a vital role in various cellular processes such as cell cycle control, cell adhesion, motility, proliferation, and differentiation. Lck is reported as a key factor regulating the functions of T-cell including the initiation of TCR signalling, T-cell development, in addition to T-cell homeostasis. Alteration in expression and activity of Lck results in numerous disorders such as cancer, asthma, diabetes, rheumatoid arthritis, atherosclerosis, and neuronal diseases. Accordingly, Lck has emerged as a novel target against different diseases. Herein, we amass the research efforts in literature and pharmaceutical patents during the last decade to develop new Lck inhibitors. Additionally, structure-activity relationship studies (SAR) and docking models of these new inhibitors within the active site of Lck were demonstrated offering deep insights into their different binding modes in a step towards the identification of more potent, selective, and safe Lck inhibitors.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eslam M H Ali
- Center for Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Republic of Korea.,University of Science & Technology (UST), Daejeon, Republic of Korea.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
34
|
Wang YN, Liu S, Jia T, Feng Y, Xu X, Zhang D. T Cell Protein Tyrosine Phosphatase in Glucose Metabolism. Front Cell Dev Biol 2021; 9:682947. [PMID: 34268308 PMCID: PMC8276021 DOI: 10.3389/fcell.2021.682947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
T cell protein tyrosine phosphatase (TCPTP), a vital regulator in glucose metabolism, inflammatory responses, and tumor processes, is increasingly considered a promising target for disease treatments and illness control. This review discusses the structure, substrates and main biological functions of TCPTP, as well as its regulatory effect in glucose metabolism, as an attempt to be referenced for formulating treatment strategies of metabolic disorders. Given the complicated regulation functions in different tissues and organs of TCPTP, the development of drugs inhibiting TCPTP with a higher specificity and a better biocompatibility is recognized as a promising therapeutic strategy for diabetes or obesity. Besides, treatments targeting TCPTP in a specific tissue or organ are suggested to be considerably promising.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shiyue Liu
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tingting Jia
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yao Feng
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
35
|
Nian Q, Zeng J, He L, Chen Y, Zhang Z, Rodrigues-Lima F, Zhao L, Feng X, Shi J. A small molecule inhibitor targeting SHP2 mutations for the lung carcinoma. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Geng K, Ma X, Jiang Z, Huang W, Gao C, Pu Y, Luo L, Xu Y, Xu Y. Innate Immunity in Diabetic Wound Healing: Focus on the Mastermind Hidden in Chronic Inflammatory. Front Pharmacol 2021; 12:653940. [PMID: 33967796 PMCID: PMC8097165 DOI: 10.3389/fphar.2021.653940] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
A growing body of evidence suggests that the interaction between immune and metabolic responses is essential for maintaining tissue and organ homeostasis. These interacting disorders contribute to the development of chronic diseases associated with immune-aging such as diabetes, obesity, atherosclerosis, and nonalcoholic fatty liver disease. In Diabetic wound (DW), innate immune cells respond to the Pathogen-associated molecular patterns (PAMAs) and/or Damage-associated molecular patterns (DAMPs), changes from resting to an active phenotype, and play an important role in the triggering and maintenance of inflammation. Furthermore, the abnormal activation of innate immune pathways secondary to immune-aging also plays a key role in DW healing. Here, we review studies of innate immune cellular molecular events that identify metabolic disorders in the local microenvironment of DW and provide a historical perspective. At the same time, we describe some of the recent progress, such as TLR receptor-mediated intracellular signaling pathways that lead to the activation of NF-κB and the production of various pro-inflammatory mediators, NLRP3 inflammatory via pyroptosis, induction of IL-1β and IL-18, cGAS-STING responds to mitochondrial injury and endoplasmic reticulum stress, links sensing of metabolic stress to activation of pro-inflammatory cascades. Besides, JAK-STAT is also involved in DW healing by mediating the action of various innate immune effectors. Finally, we discuss the great potential of targeting these innate immune pathways and reprogramming innate immune cell phenotypes in DW therapy.
Collapse
Affiliation(s)
- Kang Geng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China.,Department of Plastic and Burn Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,National Key Clinical Construction Specialty, Luzhou, China
| | - Xiumei Ma
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Zongzhe Jiang
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Chenlin Gao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Yueli Pu
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Lifang Luo
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China
| | - Yong Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
37
|
Type I interferons as key players in pancreatic β-cell dysfunction in type 1 diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:1-80. [PMID: 33832648 DOI: 10.1016/bs.ircmb.2021.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet inflammation (insulitis) and specific pancreatic β-cell destruction by an immune attack. Although the precise underlying mechanisms leading to the autoimmune assault remain poorly understood, it is well accepted that insulitis takes place in the context of a conflicting dialogue between pancreatic β-cells and the immune cells. Moreover, both host genetic background (i.e., candidate genes) and environmental factors (e.g., viral infections) contribute to this inadequate dialogue. Accumulating evidence indicates that type I interferons (IFNs), cytokines that are crucial for both innate and adaptive immune responses, act as key links between environmental and genetic risk factors in the development of T1D. This chapter summarizes some relevant pathways involved in β-cell dysfunction and death, and briefly reviews how enteroviral infections and genetic susceptibility can impact insulitis. Moreover, we present the current evidence showing that, in β-cells, type I IFN signaling pathway activation leads to several outcomes, such as long-lasting major histocompatibility complex (MHC) class I hyperexpression, endoplasmic reticulum (ER) stress, epigenetic changes, and induction of posttranscriptional as well as posttranslational modifications. MHC class I overexpression, when combined with ER stress and posttranscriptional/posttranslational modifications, might lead to sustained neoantigen presentation to immune system and β-cell apoptosis. This knowledge supports the concept that type I IFNs are implicated in the early stages of T1D pathogenesis. Finally, we highlight the promising therapeutic avenues for T1D treatment directed at type I IFN signaling pathway.
Collapse
|
38
|
Crean RM, Biler M, van der Kamp MW, Hengge AC, Kamerlin SCL. Loop Dynamics and Enzyme Catalysis in Protein Tyrosine Phosphatases. J Am Chem Soc 2021; 143:3830-3845. [PMID: 33661624 PMCID: PMC8031367 DOI: 10.1021/jacs.0c11806] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 12/16/2022]
Abstract
Protein tyrosine phosphatases (PTPs) play an important role in cellular signaling and have been implicated in human cancers, diabetes, and obesity. Despite shared catalytic mechanisms and transition states for the chemical steps of catalysis, catalytic rates within the PTP family vary over several orders of magnitude. These rate differences have been implied to arise from differing conformational dynamics of the closure of a protein loop, the WPD-loop, which carries a catalytically critical residue. The present work reports computational studies of the human protein tyrosine phosphatase 1B (PTP1B) and YopH from Yersinia pestis, for which NMR has demonstrated a link between their respective rates of WPD-loop motion and catalysis rates, which differ by an order of magnitude. We have performed detailed structural analysis, both conventional and enhanced sampling simulations of their loop dynamics, as well as empirical valence bond simulations of the chemical step of catalysis. These analyses revealed the key residues and structural features responsible for these differences, as well as the residues and pathways that facilitate allosteric communication in these enzymes. Curiously, our wild-type YopH simulations also identify a catalytically incompetent hyper-open conformation of its WPD-loop, sampled as a rare event, previously only experimentally observed in YopH-based chimeras. The effect of differences within the WPD-loop and its neighboring loops on the modulation of loop dynamics, as revealed in this work, may provide a facile means for the family of PTP enzymes to respond to environmental changes and regulate their catalytic activities.
Collapse
Affiliation(s)
- Rory M. Crean
- Science
for Life Laboratory, Department of Chemistry − BMC, Uppsala University, Box 576, S-751 23 Uppsala, Sweden
| | - Michal Biler
- Science
for Life Laboratory, Department of Chemistry − BMC, Uppsala University, Box 576, S-751 23 Uppsala, Sweden
| | - Marc W. van der Kamp
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol BS8 1TD, United Kingdom
| | - Alvan C. Hengge
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322-0300, United States
| | - Shina C. L. Kamerlin
- Science
for Life Laboratory, Department of Chemistry − BMC, Uppsala University, Box 576, S-751 23 Uppsala, Sweden
| |
Collapse
|
39
|
Yoon SY, Yu JS, Hwang JY, So HM, Seo SO, Kim JK, Jang TS, Chung SJ, Kim KH. Phloridzin Acts as an Inhibitor of Protein-Tyrosine Phosphatase MEG2 Relevant to Insulin Resistance. Molecules 2021; 26:molecules26061612. [PMID: 33799458 PMCID: PMC7998658 DOI: 10.3390/molecules26061612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 11/16/2022] Open
Abstract
Inhibition of the megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2, also named PTPN9) activity has been shown to be a potential therapeutic strategy for the treatment of type 2 diabetes. Previously, we reported that PTP-MEG2 knockdown enhances adenosine monophosphate activated protein kinase (AMPK) phosphorylation, suggesting that PTP-MEG2 may be a potential antidiabetic target. In this study, we found that phloridzin, isolated from Ulmus davidiana var. japonica, inhibits the catalytic activity of PTP-MEG2 (half-inhibitory concentration, IC50 = 32 ± 1.06 μM) in vitro, indicating that it could be a potential antidiabetic drug candidate. Importantly, phloridzin stimulated glucose uptake by differentiated 3T3-L1 adipocytes and C2C12 muscle cells compared to that by the control cells. Moreover, phloridzin led to the enhanced phosphorylation of AMPK and Akt relevant to increased insulin sensitivity. Importantly, phloridzin attenuated palmitate-induced insulin resistance in C2C12 muscle cells. We also found that phloridzin did not accelerate adipocyte differentiation, suggesting that phloridzin improves insulin sensitivity without significant lipid accumulation. Taken together, our results demonstrate that phloridzin, an inhibitor of PTP-MEG2, stimulates glucose uptake through the activation of both AMPK and Akt signaling pathways. These results strongly suggest that phloridzin could be used as a potential therapeutic candidate for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Sun-Young Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
- Department of Cosmetic Science, Kwangju Women’s University, Gwangju 62396, Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
| | - Ji Young Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
| | - Hae Min So
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
| | - Seung Oh Seo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Tae Su Jang
- Department of Medicine, Dankook University, Cheonan, Chungnam 31116, Korea;
| | - Sang J. Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
- Correspondence: (S.J.C.); (K.H.K.); Tel.: +82-31-290-7703 (S.J.C.); +82-31-290-7700 (K.H.K.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.-Y.Y.); (J.S.Y.); (J.Y.H.); (H.M.S.); (S.O.S.)
- Correspondence: (S.J.C.); (K.H.K.); Tel.: +82-31-290-7703 (S.J.C.); +82-31-290-7700 (K.H.K.)
| |
Collapse
|
40
|
Lee YH, Yoon SY, Baek J, Kim SJ, Yu JS, Kang H, Kang KS, Chung SJ, Kim KH. Metabolite Profile of Cucurbitane-Type Triterpenoids of Bitter Melon (Fruit of Momordica charantia) and Their Inhibitory Activity against Protein Tyrosine Phosphatases Relevant to Insulin Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1816-1830. [PMID: 33406828 DOI: 10.1021/acs.jafc.0c06085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Qualitative analysis of cucurbitane-type triterpenoids of bitter melon (fruit of Momordica charantia L.) using ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry revealed 27 promising cucurbitane-type triterpenoids, and LC/MS-guided chemical analysis of M. charantia fruit extract led to the isolation and structural characterization of 22 cucurbitane-type triterpenoids (1-22), including 8 new cucurbitane-type triterpenoidal saponins, yeojoosides A-H (1-8). The structures of the new compounds (1-8) were elucidated by spectroscopic methods, including 1D and 2D NMR and high-resolution electrospray ionization mass spectrometry. Their absolute configurations were assigned by quantum chemical electronic circular dichroism calculations, chemical reactions, and DP4+ analysis using gauge-including atomic orbital NMR chemical shift calculations. All isolated compounds (1-22) were examined for inhibitory activity against protein tyrosine phosphatases relevant to insulin resistance. Nine compounds (7, 8, 9, 11, 14, 15, 19, 20, and 21) showed selective inhibitory effects of over 70% against PTPN2. The present results suggested that these compounds would be potential antidiabetic agents.
Collapse
Affiliation(s)
- Yong Hoon Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sun-Young Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Cosmetic Science, Kwangju Women's University, Gwangju 62396, Korea
| | - Jiyun Baek
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sung Jin Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Heesun Kang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
41
|
Gurzov EN, Ke PC, Ahlgren U, Garcia Ribeiro RS, Gotthardt M. Novel Strategies to Protect and Visualize Pancreatic β Cells in Diabetes. Trends Endocrinol Metab 2020; 31:905-917. [PMID: 33160815 DOI: 10.1016/j.tem.2020.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
A common feature in the pathophysiology of different types of diabetes is the reduction of β cell mass and/or impairment of β cell function. Diagnosis and treatment of type 1 and type 2 diabetes is currently hampered by a lack of reliable techniques to restore β cell survival, to improve insulin secretion, and to quantify β cell mass in patients. Current new approaches may allow us to precisely and specifically visualize β cells in vivo and provide viable therapeutic strategies to preserve, recover, and regenerate β cells. In this review, we discuss recent protective approaches for β cells and the advantages and limitations of current imaging probes in the field.
Collapse
Affiliation(s)
- Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels 1070, Belgium.
| | - Pu Chun Ke
- Zhongshan Hospital, Fudan University, Xuhui District, Shanghai 200032, China; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Umeå S-90187, Sweden
| | - Rita S Garcia Ribeiro
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels 1070, Belgium
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
42
|
Hsu CY, Lin GM, Chang ST. Hypoglycemic activity of extracts of Chamaecyparis obtusa var. formosana leaf in rats with hyperglycemia induced by high-fat diets and streptozotocin. J Tradit Complement Med 2020; 10:389-395. [PMID: 32695656 PMCID: PMC7365784 DOI: 10.1016/j.jtcme.2019.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 11/26/2022] Open
Abstract
Chamaecyparis obtusa var. formosana is a species indigenous to Taiwan and has been used as a medicinal plant. It has been claimed that the hot water extracts of C. obtusa var. formosana leaves (CoLE) with flavonoids and proanthocyanidins have anti-oxidant and anti-hyperglycemic activities in vitro. This study further examines the anti-hyperglycemic activity of CoLE and its possible mechanisms in hyperglycemic rats. Hyperglycemia of rats was induced by streptozotocin (STZ) and high-fat diets (HFD). Hyperglycemic rats treated orally with 30 and 150 mg/kg CoLE were classified into LCO and HCO groups, respectively. After three-month treatment, both LCO and HCO groups showed improved glucose metabolism in oral glucose tolerance and postprandial blood glucose tests. Decrease in HOMA-IR, leptin and adiponectin levels of the HCO group revealed amelioration of insulin and leptin resistance. Obesity and accumulation of visceral fats induced by STZ and HFD could be alleviated in both HCO and LCO groups. These anti-diabetic effects might be contributed by inhibition of intestinal digested enzymes and protein tyrosine phosphatases (PTPases). Although other studies are necessary, these findings suggest that CoLE could be potentially used as a health complement for treating diabetes without significant toxicity.
Collapse
Affiliation(s)
- Chia-Yun Hsu
- School of Forestry and Resource Conservation, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Gong-Min Lin
- School of Forestry and Resource Conservation, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Shang-Tzen Chang
- School of Forestry and Resource Conservation, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| |
Collapse
|
43
|
Damián-Medina K, Salinas-Moreno Y, Milenkovic D, Figueroa-Yáñez L, Marino-Marmolejo E, Higuera-Ciapara I, Vallejo-Cardona A, Lugo-Cervantes E. In silico analysis of antidiabetic potential of phenolic compounds from blue corn ( Zea mays L.) and black bean ( Phaseolus vulgaris L.). Heliyon 2020; 6:e03632. [PMID: 32258479 PMCID: PMC7110303 DOI: 10.1016/j.heliyon.2020.e03632] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/20/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022] Open
Abstract
The growing interest in bioactive compounds, especially in polyphenols, is due to their abundance in the human diet and potentially positive effects on health. The consumption of polyphenols has been shown to possess anti-diabetic properties by preventing insulin resistance or insulin secretion through different signaling pathways, this effect is associated with their capacity to exert genomic modulations. Several studies have suggested that polyphenols could also bind to cellular proteins and modulate their activity, however, the mechanisms of action underlying their beneficial effects are complex and are not fully understood. The aim of this work was to characterize phenolic compounds present in blue corn and black bean extracts as well as identify their potential interactions with target proteins involved in diabetes pathogenesis using in silico approach. Total polyphenols content of both blue corn and black beans was identified using UPLC-ESI/qTOF/MS and quantified by colorimetric assays. In this work we identified twenty-eight phenolic compounds in the extracts, mainly anthocyanins, flavonols, hydroxycinamic acids, dihydroxybenzoic acids, flavones, isoflavones, and flavanols. Interactome of these compounds with thirteen target proteins involved in type 2 diabetes mellitus was performed in-silico. In total, 312 bioactive compounds/protein interaction analyses were acquired. Molecular docking results highlighted that nine of the top ten interactions correspond to anthocyanins, cyanidin 3-glucoside with 11β-HS, GFAT, PPARG; delphinidin 3-glucoside with 11β-HS, GFAT, PTP and RTKs; and petunidin 3-glucoside with 11β-HS and PTP. These proteins are involved in mechanisms regulating functions such as inflammation, insulin resistance, oxidative stress, glucose and lipid metabolism. In conclusion, this work provides a prediction of the potential molecular mechanism of black bean and blue corn polyphenols, specifically anthocyanins and could constitute new pathways by which compounds exert their antidiabetic benefits.
Collapse
Affiliation(s)
- K. Damián-Medina
- Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Food Technology Unit, 45019 Jalisco, Mexico
| | - Y. Salinas-Moreno
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Tepatitlán 47600, Jalisco, Mexico
| | - D. Milenkovic
- Department of Internal Medicine, UC Davis School of Medicine, University of California, Davis, USA
- Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont–Ferrand, France
| | - L. Figueroa-Yáñez
- Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Food Technology Unit, 45019 Jalisco, Mexico
| | - E. Marino-Marmolejo
- Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Food Technology Unit, 45019 Jalisco, Mexico
| | - I. Higuera-Ciapara
- Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Food Technology Unit, 45019 Jalisco, Mexico
| | - A. Vallejo-Cardona
- Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Food Technology Unit, 45019 Jalisco, Mexico
| | - E. Lugo-Cervantes
- Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Food Technology Unit, 45019 Jalisco, Mexico
| |
Collapse
|
44
|
Damián-Medina K, Salinas-Moreno Y, Milenkovic D, Figueroa-Yáñez L, Marino-Marmolejo E, Higuera-Ciapara I, Vallejo-Cardona A, Lugo-Cervantes E. In silico analysis of antidiabetic potential of phenolic compounds from blue corn (Zea mays L.) and black bean (Phaseolus vulgaris L.). Heliyon 2020; 6:e03632. [DOI: https:/doi.org/10.1016/j.heliyon.2020.e03632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
|
45
|
Romero C, Lambert LJ, Sheffler DJ, De Backer LJS, Raveendra-Panickar D, Celeridad M, Grotegut S, Rodiles S, Holleran J, Sergienko E, Pasquale EB, Cosford NDP, Tautz L. A cellular target engagement assay for the characterization of SHP2 (PTPN11) phosphatase inhibitors. J Biol Chem 2020; 295:2601-2613. [PMID: 31953320 DOI: 10.1074/jbc.ra119.010838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
The nonreceptor protein-tyrosine phosphatase (PTP) SHP2 is encoded by the proto-oncogene PTPN11 and is a ubiquitously expressed key regulator of cell signaling, acting on a number of cellular processes and components, including the Ras/Raf/Erk, PI3K/Akt, and JAK/STAT pathways and immune checkpoint receptors. Aberrant SHP2 activity has been implicated in all phases of tumor initiation, progression, and metastasis. Gain-of-function PTPN11 mutations drive oncogenesis in several leukemias and cause developmental disorders with increased risk of malignancy such as Noonan syndrome. Until recently, small molecule-based targeting of SHP2 was hampered by the failure of orthosteric active-site inhibitors to achieve selectivity and potency within a useful therapeutic window. However, new SHP2 allosteric inhibitors with excellent potency and selectivity have sparked renewed interest in the selective targeting of SHP2 and other PTP family members. Crucially, drug discovery campaigns focusing on SHP2 would greatly benefit from the ability to validate the cellular target engagement of candidate inhibitors. Here, we report a cellular thermal shift assay that reliably detects target engagement of SHP2 inhibitors. Using this assay, based on the DiscoverX InCell Pulse enzyme complementation technology, we characterized the binding of several SHP2 allosteric inhibitors in intact cells. Moreover, we demonstrate the robustness and reliability of a 384-well miniaturized version of the assay for the screening of SHP2 inhibitors targeting either WT SHP2 or its oncogenic E76K variant. Finally, we provide an example of the assay's ability to identify and characterize novel compounds with specific cellular potency for either WT or mutant SHP2.
Collapse
Affiliation(s)
- Celeste Romero
- Cancer Metabolism & Signaling Networks Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Lester J Lambert
- Cancer Metabolism & Signaling Networks Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Douglas J Sheffler
- Cancer Metabolism & Signaling Networks Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Laurent J S De Backer
- Cancer Metabolism & Signaling Networks Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Dhanya Raveendra-Panickar
- Cancer Metabolism & Signaling Networks Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Maria Celeridad
- Cancer Metabolism & Signaling Networks Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Stefan Grotegut
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Socorro Rodiles
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - John Holleran
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Eduard Sergienko
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Elena B Pasquale
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Nicholas D P Cosford
- Cancer Metabolism & Signaling Networks Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Lutz Tautz
- Cancer Metabolism & Signaling Networks Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037.
| |
Collapse
|
46
|
Kumar A, Rana D, Rana R, Bhatia R. Protein Tyrosine Phosphatase (PTP1B): A promising Drug Target Against Life-threatening Ailments. Curr Mol Pharmacol 2020; 13:17-30. [DOI: 10.2174/1874467212666190724150723] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/26/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
Abstract
Background:Protein tyrosine phosphatases are enzymes which help in the signal transduction in diabetes, obesity, cancer, liver diseases and neurodegenerative diseases. PTP1B is the main member of this enzyme from the protein extract of human placenta. In phosphate inhibitors development, significant progress has been made over the last 10 years. In early-stage clinical trials, few compounds have reached whereas in the later stage trials or registration, yet none have progressed. Many researchers investigate different ways to improve the pharmacological properties of PTP1B inhibitors.Objective:In the present review, authors have summarized various aspects related to the involvement of PTP1B in various types of signal transduction mechanisms and its prominent role in various diseases like cancer, liver diseases and diabetes mellitus.Conclusion:There are still certain challenges for the selection of PTP1B as a drug target. Therefore, continuous future efforts are required to explore this target for the development of PTP inhibitors to treat the prevailing diseases associated with it.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga-142001, India
| | - Divya Rana
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga-142001, India
| | - Rajat Rana
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga-142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga-142001, India
| |
Collapse
|
47
|
Hermann BP, Cheng K, Singh A, Roa-De La Cruz L, Mutoji KN, Chen IC, Gildersleeve H, Lehle JD, Mayo M, Westernströer B, Law NC, Oatley MJ, Velte EK, Niedenberger BA, Fritze D, Silber S, Geyer CB, Oatley JM, McCarrey JR. The Mammalian Spermatogenesis Single-Cell Transcriptome, from Spermatogonial Stem Cells to Spermatids. Cell Rep 2019; 25:1650-1667.e8. [PMID: 30404016 PMCID: PMC6384825 DOI: 10.1016/j.celrep.2018.10.026] [Citation(s) in RCA: 396] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 08/15/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
Spermatogenesis is a complex and dynamic cellular differentiation process critical to male reproduction and sustained by spermatogonial stem cells (SSCs). Although patterns of gene expression have been described for aggregates of certain spermatogenic cell types, the full continuum of gene expression patterns underlying ongoing spermatogenesis in steady state was previously unclear. Here, we catalog single-cell transcriptomes for >62,000 individual spermatogenic cells from immature (postnatal day 6) and adult male mice and adult men. This allowed us to resolve SSC and progenitor spermatogonia, elucidate the full range of gene expression changes during male meiosis and spermiogenesis, and derive unique gene expression signatures for multiple mouse and human spermatogenic cell types and/or subtypes. These transcriptome datasets provide an information-rich resource for studies of SSCs, male meiosis, testicular cancer, male infertility, or contraceptive development, as well as a gene expression roadmap to be emulated in efforts to achieve spermatogenesis in vitro.
Collapse
Affiliation(s)
- Brian P Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Genomics Core, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Keren Cheng
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Anukriti Singh
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Lorena Roa-De La Cruz
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Kazadi N Mutoji
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - I-Chung Chen
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Heidi Gildersleeve
- Genomics Core, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jake D Lehle
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Max Mayo
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Birgit Westernströer
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Nathan C Law
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| | - Melissa J Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| | - Ellen K Velte
- Department of Anatomy & Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Bryan A Niedenberger
- Department of Anatomy & Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Danielle Fritze
- The UT Transplant Center, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Sherman Silber
- The Infertility Center of St. Louis, Chesterfield, MO 63017, USA
| | - Christopher B Geyer
- Department of Anatomy & Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
48
|
Short-term treatment with high dose liraglutide improves lipid and lipoprotein profile and changes hormonal mediators of lipid metabolism in obese patients with no overt type 2 diabetes mellitus: a randomized, placebo-controlled, cross-over, double-blind clinical trial. Cardiovasc Diabetol 2019; 18:141. [PMID: 31672146 PMCID: PMC6823961 DOI: 10.1186/s12933-019-0945-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Long-term treatment with up to 1.8 mg liraglutide improves cardiovascular and all-cause mortality in patients with type 2 diabetes at high risk for cardiovascular disease (CVD) and is currently under investigation in subjects without diabetes. Aim of our study was to investigate whether high dose (3 mg) short-term (5 weeks) treatment with liraglutide in obese patients with no overt type 2 diabetes affects metabolites, lipid and lipoprotein profile and components of activin-follistatin axis in cardiovascular beneficial or detrimental way. RESEARCH DESIGN AND METHODS Twenty obese patients participated in a randomized, placebo-controlled, cross-over, double-blind study and were administrated liraglutide 3 mg or placebo for 5 weeks. Metabolites, fatty acids, lipid-lipoprotein profile and concentrations of activins and follistatins (250 parameters) were assessed in serum at start and completion of each treatment. RESULTS Concentrations of important cardiovascular markers such as total, free and remnant cholesterol were reduced with liraglutide before and after adjusting for weight loss. Similarly, reductions in number of small and medium size LDL particles and in their total lipid concentration were observed with liraglutide and partially weight-loss related. Tyrosine levels were reduced and behenic acid levels were increased whereas only minor changes were observed in HDL, VLDL and IDL. Concentrations of activin AB and follistatin were significantly reduced in liraglutide-treated group. CONCLUSIONS Treatment of obese patients without overt type 2 diabetes with high dose of liraglutide for a short period of time induces changes in lipid-lipoprotein and hormonal profile that are suggestive of lower risk of atherosclerosis and CVD. Trial registration ClinicalTrials.gov Identifier: NCT02944500. Study ID Number 2015P000327. Registered November 2016.
Collapse
|
49
|
Wu J, Sun Y, Zhou H, Ma Y, Wang R. Design, synthesis, biological evaluation and molecular dynamics simulation studies of (R)-5-methylthiazolidin-4-One derivatives as megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2) inhibitors for the treatment of type 2 diabetes. J Biomol Struct Dyn 2019; 38:3156-3165. [PMID: 31402760 DOI: 10.1080/07391102.2019.1654410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PTP-MEG2 plays a significant role in insulin production and is able to enhance insulin signaling and improve insulin sensitivity. So, PTP-MEG2 inhibitors are closely associated with type 2 diabetes therapy. A series of novel (R)-5-methylthiazolidin-4-one derivatives were designed and synthesized, and their PTP-MEG2 inhibitory activities (IC50) were determined. Among the desired compounds, 1h shares the highest inhibitory activity (IC50 = 1.34 μM) against PTP-MEG2. Additionally, various post-dynamic analyses confirmed that when compound 1h bound to the PTP-MEG2, the protein conformations became unstable and the function of the pTyr recognition loop (Asn331-Cys338) would be disturbed. And thus, the ideal conformations needed for the catalytic activity was difficult to be maintained. In brief, these might be how the compound 1h worked. Furthermore, we also found that the key residues Arg332 would play a critical role in disturbing the residue interactions. AbbreviationsDCCMdynamic cross-correlation mappingDMFN,N-dimethylformamideDSSPdefinition of secondary structure of proteinsFOXOforkhead transcription factorsMDmolecular dynamicsPCAprincipal component analysisPDBprotein data bankPTKsprotein tyrosine kinasesPTPsprotein tyrosine phosphatasesPTP-MEG2megakaryocyte protein tyrosine phosphatase 2RINresidue interaction networkRINGResidue Interaction Network GeneratorRMSDroot means square deviationRMSFroot mean square fluctuationCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jingwei Wu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yingzhan Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Hui Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Runling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
50
|
Yoon SY, Kang HJ, Ahn D, Hwang JY, Kwon SJ, Chung SJ. Identification of chebulinic acid as a dual targeting inhibitor of protein tyrosine phosphatases relevant to insulin resistance. Bioorg Chem 2019; 90:103087. [PMID: 31284101 DOI: 10.1016/j.bioorg.2019.103087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 01/16/2023]
Abstract
Natural products as antidiabetic agents have been shown to stimulate insulin signaling via the inhibition of the protein tyrosine phosphatases relevant to insulin resistance. Previously, we have identified PTPN9 and DUSP9 as potential antidiabetic targets and a multi-targeting natural product thereof. In this study, knockdown of PTPN11 increased AMPK phosphorylation in differentiated C2C12 muscle cells by 3.8 fold, indicating that PTPN11 could be an antidiabetic target. Screening of a library of 658 natural products against PTPN9, DUSP9, or PTPN11 identified chebulinic acid (CA) as a strong allosteric inhibitor with a slow cooperative binding to PTPN9 (IC50 = 34 nM) and PTPN11 (IC50 = 37 nM), suggesting that it would be a potential antidiabetic candidate. Furthermore, CA stimulated glucose uptake and resulted in increased AMP-activated protein kinase (AMPK) phosphorylation. Taken together, we demonstrated that CA increased glucose uptake as a dual inhibitor of PTPN9 and PTPN11 through activation of the AMPK signaling pathway. These results strongly suggest that CA could be used as a potential therapeutic candidate for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Sun-Young Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyo Jin Kang
- Department of Chemistry, Dongguk University, Seoul 100-715, Republic of Korea
| | - Dohee Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Young Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Se Jeong Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|