1
|
Araszkiewicz AF, Jańczak K, Wójcik P, Białecki B, Kubiak S, Szczechowski M, Januszkiewicz-Lewandowska D. MTHFR Gene Polymorphisms: A Single Gene with Wide-Ranging Clinical Implications-A Review. Genes (Basel) 2025; 16:441. [PMID: 40282401 PMCID: PMC12027316 DOI: 10.3390/genes16040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
The enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR) catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a process essential for the methylation of homocysteine to methionine. Polymorphisms in the MTHFR gene can reduce enzyme activity, disrupting the folate cycle and leading to hyperhomocysteinemia. The two most common polymorphisms associated with this gene are 667C>T (rs1801133) and 1298A>C (rs1801131). Background: This review provides a comprehensive summary of the current knowledge regarding MTHFR polymorphisms, with a particular focus on their potential impact on disease susceptibility. We hope this review will serve as a valuable resource for understanding the significance of MTHFR polymorphisms and their complex relationships with various diseases. Methods: For this review, we prioritized recent evidence, focusing on reviews and meta-analyses published between 2015 and 2025, sourced from PubMed and Google Scholar. Results: We explore the connection between these polymorphisms and a broad spectrum of medical conditions, including cardiovascular diseases and oxidative stress pathology; neurological and psychiatric disorders, such as Autism Spectrum Disorder, Alzheimer's disease, Schizophrenia, and Major Depressive Disorder; fertility, pregnancy, and neonatal complications, including recurrent pregnancy loss, pre-eclampsia, preterm birth, low birth weight, and neural tube defects; metabolic disorders, such as diabetes mellitus, inflammatory bowel disease, and non-alcoholic fatty liver disease; and oncological conditions, including breast, prostate, and ovarian cancers; as well as leukemia, and autoimmune diseases, particularly rheumatoid arthritis. Conclusions: While some diseases have a well-established association with MTHFR polymorphisms, others require further investigation. Our analysis highlights the crucial role of environmental factors, such as ethnic background and dietary folate intake, in influencing study outcomes.
Collapse
Affiliation(s)
- Antoni F. Araszkiewicz
- Faculty of Medicine, Poznan University of Medical Sciences, ul. Fredry 10, 61-701 Poznan, Poland; (A.F.A.); (K.J.); (P.W.); (B.B.); (S.K.); (M.S.)
| | - Krzysztof Jańczak
- Faculty of Medicine, Poznan University of Medical Sciences, ul. Fredry 10, 61-701 Poznan, Poland; (A.F.A.); (K.J.); (P.W.); (B.B.); (S.K.); (M.S.)
| | - Paweł Wójcik
- Faculty of Medicine, Poznan University of Medical Sciences, ul. Fredry 10, 61-701 Poznan, Poland; (A.F.A.); (K.J.); (P.W.); (B.B.); (S.K.); (M.S.)
| | - Bartłomiej Białecki
- Faculty of Medicine, Poznan University of Medical Sciences, ul. Fredry 10, 61-701 Poznan, Poland; (A.F.A.); (K.J.); (P.W.); (B.B.); (S.K.); (M.S.)
| | - Szymon Kubiak
- Faculty of Medicine, Poznan University of Medical Sciences, ul. Fredry 10, 61-701 Poznan, Poland; (A.F.A.); (K.J.); (P.W.); (B.B.); (S.K.); (M.S.)
| | - Michał Szczechowski
- Faculty of Medicine, Poznan University of Medical Sciences, ul. Fredry 10, 61-701 Poznan, Poland; (A.F.A.); (K.J.); (P.W.); (B.B.); (S.K.); (M.S.)
| | - Danuta Januszkiewicz-Lewandowska
- Clinic of Oncology, Hematology and Pediatric Transplantology, Poznan University of Medical Sciences, ul. Fredry 10, 61-701 Poznan, Poland
| |
Collapse
|
2
|
Safavi K, Abedpoor N, Hajibabaie F, Kaviani E. Mitigating Diabetic Cardiomyopathy: The Synergistic Potential of Sea Buckthorn and Metformin Explored via Bioinformatics and Chemoinformatics. BIOLOGY 2025; 14:361. [PMID: 40282226 PMCID: PMC12024933 DOI: 10.3390/biology14040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Diabetic cardiomyopathy (DCM), a critical complication of type 2 diabetes mellitus (T2DM), is marked by metabolic dysfunction, oxidative stress, and chronic inflammation, ultimately progressing to heart failure. This study investigated the synergistic therapeutic potential of Hippophae rhamnoides L. (sea buckthorn, SBU) extract and metformin in a mouse model of T2DM-induced DCM. T2DM was induced using a 45% high-fat-AGEs-enriched diet, followed by treatment with SBU, metformin, or their combination. Treatment effects were monitored through bioinformatic analysis, chemoinformatic prediction, behavioral testing, biochemical assays, histopathological evaluations and gene expression profiles. Based on bioinformatic analysis, we identified key hub genes involved in the diabetic cardiomyopathy including SERPINE1, NRG1, MYH11, PTH, NR4A2, NRF2, PGC1α, GPX4, ATF1, ASCL2, NOX1, NLRP3, CCK8, COX2, CCL2, PTGS2, EGFR, and oncostatin, which are pivotal in modulating the ferroptosis pathway. Furthermore, the expression of long non-coding RNAs (lncRNAs) NEAT1 and MALAT1, critical regulators of inflammation and cell death, was effectively downregulated, correlating with decreased levels of the pro-inflammatory marker oncostatin. The combined therapy significantly improved glucose regulation, reduced systemic inflammation and protected the heart from oxidative damage. Histopathological analysis revealed notable reductions in cardiac necrosis and fibrosis. Particularly, the combination therapy of SBU and metformin demonstrated a synergistic effect, surpassing the benefits of individual treatments in preventing cardiac damage. These findings highlight the potential of integrating SBU with metformin as a novel therapeutic strategy for managing DCM by targeting both metabolic and ferroptosis-related pathways. This dual intervention opens promising avenues for future clinical applications in diabetic heart disease management, offering a comprehensive approach to mitigating the progression of DCM.
Collapse
Affiliation(s)
- Kamran Safavi
- Department of Plant Biotechnology, Medicinal Plants Research Centre, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 8155139998, Iran
| | - Navid Abedpoor
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 8155139998, Iran
| | - Fatemeh Hajibabaie
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord 8813733395, Iran;
| | - Elina Kaviani
- Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan 8184917354, Iran;
| |
Collapse
|
3
|
Mora T, Rodríguez-Sánchez B. Diabetes diagnosis based on glucose control levels and time until diagnosis: a regression discontinuity approach to assess the effect on direct healthcare costs. HEALTH ECONOMICS REVIEW 2025; 15:26. [PMID: 40126579 PMCID: PMC11931748 DOI: 10.1186/s13561-025-00613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
We estimate the difference in direct healthcare costs of individuals diagnosed with diabetes depending on their glucose level, considering different timespans and subgroups. Using data from administrative registers of 285,450 individuals in Catalonia from 2013 to 2017, we used a fuzzy regression discontinuity design to estimate the causal effect of being diagnosed with diabetes at a given timespan (based on an average glucose value equal to or above 6.5%, the treated group) vs. not (having an average glucose level below the threshold, the control group) on healthcare costs across different timespans (6, 9, 12, 15, 18, 21, and 24 months after the first laboratory test) and distances, in days, between the laboratory test and the doctor's diagnosis. When average glucose level was the only independent parameter and the time until diagnosis was 30 days or less, at the cut-off value (6.5%) healthcare costs were between €3,887 and €5,789 lower for the treated group compared to the control group. Smaller differences were reported as the delay in diagnosis increased, even when additionally controlling for sociodemographic characteristics and health status. Our results highlight the importance of prompt diagnosis and might open the debate about the usefulness of the 6.5% reference value in the blood glucose level as the main diagnostic tool in diabetes.
Collapse
Affiliation(s)
- Toni Mora
- Research Institute for Evaluation and Public Policies (IRAPP), Universitat Internacional de Catalunya (UIC), Carrer de la Immaculada, 22, Barcelona, 08017, Spain
| | - Beatriz Rodríguez-Sánchez
- Applied Economics, Public Economics and Political Economy, Faculty of Law, Universidad Complutense de Madrid, Plaza Menéndez Pelayo, 4, Madrid, 28040, Spain.
| |
Collapse
|
4
|
Li S, Zhou Y, Kong D, Miao Y, Guan N, Gao G, Jin J, Ye H. A visually-induced optogenetically-engineered system enables autonomous glucose homeostasis in mice. J Control Release 2025; 378:27-37. [PMID: 39645086 DOI: 10.1016/j.jconrel.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
With the global population increasing and the demographic shifting toward an aging society, the number of patients diagnosed with conditions such as peripheral neuropathies resulting from diabetes is expected to rise significantly. This growing health burden has emphasized the need for innovative solutions, such as brain-computer interfaces. brain-computer interfaces, a multidisciplinary field that integrates neuroscience, engineering, and computer science, enable direct communication between the human brain and external devices. In this study, we developed an autonomous diabetes therapeutic system that employs visually-induced electroencephalography devices to capture and decode event-related potentials using machine learning techniques. We present the visually-induced optogenetically-engineered system for therapeutic expression regulation (VISITER), which generates diverse output commands to control illumination durations. This system regulates insulin expression through optogenetically-engineered cells, achieving blood glucose homeostasis in mice. Our results demonstrate that VISITER effectively and precisely modulates therapeutic protein expression in mammalian cells, facilitating the rapid restoration of blood glucose homeostasis in diabetic mice. These findings underscore the potential for diabetic patients to manage insulin levels autonomously by focusing on target images, paving the way for a more self-directed approach to blood glucose control.
Collapse
Affiliation(s)
- Shurui Li
- School of Mathematics, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhou
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Wuhu Hospital, Health Science Center, East China Normal University, Anhui 241001, China
| | - Deqiang Kong
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yangyang Miao
- School of Electrical Engineering and Automation, Nantong University, Jiangsu 226019, China
| | - Ningzi Guan
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ganglong Gao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Jing Jin
- School of Mathematics, East China University of Science and Technology, Shanghai 200237, China; Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Wuhu Hospital, Health Science Center, East China Normal University, Anhui 241001, China.
| |
Collapse
|
5
|
Wang Y, Hu X, Cheng L, Guo X, Cai M, Liu S, Zhang Y. Pre-diabetes virtual health management community (VHMC) intervention and group interaction management model in China: a randomised clinical trial protocol. BMJ Open 2024; 14:e086268. [PMID: 39725431 PMCID: PMC11683932 DOI: 10.1136/bmjopen-2024-086268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 11/17/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION Individuals with pre-diabetes are at high risk for developing type 2 diabetes mellitus (T2DM), which makes them prone to serious complications such as stroke, kidney failure, blindness and lower-limb amputation. Pre-diabetes can be reversed, and lifestyle modification is considered the best intervention method for diabetes prevention. However, it is difficult for individuals with pre-diabetes to maintain a long-term modified healthy lifestyle owing to psychological burnout in daily management over time due to poor adherence. We developed a novel virtual health management community (VHMC) model based on group interaction management. We present the protocol for the VHMC model applied to the pre-diabetic population-a randomised controlled trial (RCT). METHODS AND ANALYSIS This study will be conducted to determine the effectiveness of the pre-diabetes VHMC-group interaction management model on improving long-term lifestyle intervention adherence to reduce the incidence of T2DM in China. We will conduct a prospective, multicentre, single-blinded, two-arm, RCT, and a total of 706 patients will be recruited. Those randomly assigned to the intervention group will receive group interaction management based on the VHMC platform. Measures of incidence of T2DM, diabetes outcomes, lifestyle modification and psychosocial outcomes will be assessed at baseline, 3, 6, 12, 24 and 36 months. If the VHMC-group interaction management model shows efficacy in improving the self-management of pre-diabetes or metabolic control, similar interventions may be applied to other chronic conditions. The cost-utility analysis of this model may indicate that this platform could be a potentially cost-effective and efficient way to integrate the VHMC platform into the health management of patients with pre-diabetes. ETHICS AND DISSEMINATION The Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University approved this study (No. RG2023-262-02). The results of this study will be disseminated through conference presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER ChiCTR2400081268. Study start: 1 July 2024, completion: 1 December 2026.
Collapse
Affiliation(s)
- Yifan Wang
- Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiling Hu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Nursing Department, The Third Affiliated Hospital of Sun Yat-sen University Zhaoqing Hospital, Guangzhou, China
| | - Li Cheng
- School of Nursing, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaodi Guo
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengyin Cai
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuhong Liu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yao Zhang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University Zhaoqing Hospital, Guangzhou, China
| |
Collapse
|
6
|
Schwartz SS, Herman ME, Tun MTH, Barone E, Butterfield DA. The double life of glucose metabolism: brain health, glycemic homeostasis, and your patients with type 2 diabetes. BMC Med 2024; 22:582. [PMID: 39696300 DOI: 10.1186/s12916-024-03763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
The maintenance of cognitive function is essential for quality of life and health outcomes in later years. Cognitive impairment, however, remains an undervalued long-term complication of type 2 diabetes by patients and providers alike. The burden of sustained hyperglycemia includes not only cognitive deficits but also the onset and progression of dementia-related conditions, including Alzheimer's disease (AD). Recent research has shown that the brain maintains an independent glucose "microsystem"-evolved to ensure the availability of fuel for brain neurons without interruption by transient hypoglycemia. When this milieu is perturbed, brain hyperglycemia, brain glucotoxicity, and brain insulin resistance can ensue and interfere with insulin signaling, a key pathway to cognitive function and neuronal integrity. This newly understood brain homeostatic system operates semi-autonomously from the systemic glucoregulatory apparatus. Large-scale clinical studies have shown that systemic dysglycemia is also strongly associated with poorer cognitive outcomes, which can be mitigated through appropriate clinical management of plasma glucose levels. Moreover, these studies demonstrated that glucose-lowering agents are not equally effective at preventing cognitive dysfunction. Glucagon-like peptide-1 (GLP-1) receptor analogs and sodium glucose cotransporter 2 inhibitors (SGLT2is) appear to afford the greatest protection; metformin and dipeptidyl peptidase 4 inhibitors (DPP-4is) also significantly improved cognitive outcomes. Sulfonylureas (SUs) and exogenous insulin, on the other hand, do not provide the same protection and may actually worsen cognitive outcomes. In the creation of a treatment plan, comorbid cognitive conditions should be considered. These efficacious treatments create a new gold standard of managing hyperglycemia-one which is consistent with the "complication-centric prescribing" mandates issued in type 2 diabetes treatment guidelines. The increasing longevity enjoyed by our populace places the onus on clinical care to play the "long game" in using targeted treatments for glucose control in patients with, or at risk for, cognitive decline to maintain cognitive wellness later in life. This article reviews critical emerging data for scientists and trialists and translates new enhancements in patient care for practitioners.
Collapse
Affiliation(s)
- Stanley S Schwartz
- University of Pennsylvania School of Medicine, 771 County Line Road, Villanova, PA, 19085, USA
| | - Mary E Herman
- Social Alchemy: Building Physician Competency Across the Globe, 5 Ave Sur #36, Antigua, Sacatepéquez, Guatemala.
| | - May Thet Hmu Tun
- Maimonides Medical Center, 4802 10th Ave, Brooklyn, NY, 11219, USA
| | - Eugenio Barone
- Sapienza University of Rome, Via Degli Equi 42, Scala A, Int. 5, 00185, Rome, Italy
| | - D Allan Butterfield
- Sanders-Brown Center On Aging, Department of Chemistry, University of Kentucky, 249 Chemistry-Physics Building, Lexington, KY, 40506-0055, USA
| |
Collapse
|
7
|
Ng CYJ, Zhong L, Ng HS, Goh KS, Zhao Y. Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective. Nutrients 2024; 16:3935. [PMID: 39599721 PMCID: PMC11597546 DOI: 10.3390/nu16223935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder characterized by insulin resistance and inadequate insulin production. Given the increased frequency of T2DM and the health issues it can cause, there is an increasing need to develop alternative T2DM management strategies. One such approach is Chinese Medicine (CM), a complementary therapy widely used in T2DM treatment. Given the emphasis on gut microbiota in current research, studying CM in the treatment of T2DM via gut microbiota modulation could be beneficial. Scope and approach: The use of various CM methods for managing T2DM via gut microbiota modulation is highlighted in this review. Following an introduction of the gut microbiota and its role in T2DM pathogenesis, we will review the potential interactions between gut microbiota and T2DM. Thereafter, we will review various CM treatment modalities that modulate gut microbiota and provide perspectives for future research. Key findings and discussion: In T2DM, Akkermansia, Bifidobacterium, and Firmicutes are examples of gut microbiota commonly imbalanced. Studies have shown that CM therapies can modulate gut microbiota, leading to beneficial effects such as reduced inflammation, improved metabolism, and improved immunity. Among these treatment modalities, Chinese Herbal Medicine and acupuncture are the most well-studied, and several in vivo studies have demonstrated their potential in managing T2DM by modulating gut microbiota. However, the underlying biomolecular mechanisms of actions are not well elucidated, which is a key area for future research. Future studies could also investigate alternate CM therapies such as moxibustion and CM exercises and conduct large-scale clinical trials to validate their effectiveness in treatment.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Linda Zhong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Han Seong Ng
- Singapore General Hospital, Outram Rd., Singapore 169608, Singapore
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
| | - Kia Seng Goh
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
- Singapore College of Traditional Chinese Medicine, 640 Lor 4 Toa Payoh, Singapore 319522, Singapore
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
| |
Collapse
|
8
|
Katsa ME, Gil APR, Makri EM, Papadogiannis S, Ioannidis A, Kalliostra M, Ketselidi K, Diamantakos P, Melliou E, Magiatis P, Nomikos T. Effect of oleocanthal-rich olive oil on postprandial oxidative stress markers of patients with type 2 diabetes mellitus. Food Nutr Res 2024; 68:10882. [PMID: 39691690 PMCID: PMC11650448 DOI: 10.29219/fnr.v68.10882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 12/19/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is characterized by postprandial dysmetabolism, which has been linked to post-meal redox disturbances. Oleocanthal (OO), one of the most potent bioactive phenols of extra virgin olive oil, has shown redox modulating properties in vitro. However, its acute, in vivo antioxidant properties have never been studied before. Objective The aim of this study was to investigate the kinetics of five redox markers (Thiobarbituric acid-reactive substances [TBARS] and glutathione peroxidase activity in serum-GPx3 and erythrocytes (GPx1), protein carbonyls in serum) after the consumption different meals. Design Five different isocaloric meals comprised of white bread and butter (BU) or butter plus ibuprofen (BU-IBU) or olive oil poor in OO or olive oils containing 250 and 500 mg/Kg of oleocanthal (OO250 and OO500, respectively). We hypothesized that OO-rich olive oil will reduce postprandial oxidative stress in T2DM patients compared to other lipid sources. This study involved 10 patients with T2DM and had a cross-over design. Results The comparison of incremental Area Under Curves (iAUCs) has shown that OO-rich olive oils were able to alleviate the increments of thiobarbituric acid-reactive substances (TBARS) and GPx3 and induce a higher red blood cells (RBCs) GPx1 activity compared to OO (P < 0.05). The effect was dose and redox marker depended. Correlation analysis in the pooled sample demonstrated a positive association between postprandial ex vivo platelet sensitivity to ADP and iAUC TBARS. In conclusion, our study has shown that OO-rich olive oils can favorably modulate lipid peroxidation and RBC GPx activity in T2DM patients when consumed as part of a carbohydrate meal. Discussion This study demonstrates for the first time that, apart from its anti-inflammatory and antiplatelet properties, OO can also exert acute antioxidant effects. Conclusion This finding emphasizes the health benefits of extra virgin olive oil, particularly those with a high OO content, for T2DM patients.
Collapse
Affiliation(s)
- Maria Efthymia Katsa
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| | - Andrea Paola Rojas Gil
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Evangelia-Mantelena Makri
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| | - Spyridon Papadogiannis
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Anastasios Ioannidis
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Marianna Kalliostra
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| | - Kleopatra Ketselidi
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| | - Panagiotis Diamantakos
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Ka-podistrian University of Athens, Athens, Greece
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Ka-podistrian University of Athens, Athens, Greece
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Ka-podistrian University of Athens, Athens, Greece
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| |
Collapse
|
9
|
Alghamdi FA, Alshegifi HA, Alhuthayli RS, Helal T, Huwait TA, Alharbi T, Akbar AF, Alshehri W, AlSheikh SM. Bridging the Gap Between Diabetes and Cardiovascular Disease: A Comparative Review of Different Glucagon-Like Peptide-1 (GLP-1) Agonists: Efficacy, Safety, and Patient Outcomes. Cureus 2024; 16:e74345. [PMID: 39720384 PMCID: PMC11668125 DOI: 10.7759/cureus.74345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 12/26/2024] Open
Abstract
Diabetes mellitus, particularly Type 2 diabetes (T2DM) remains a significant concern globally with an increase in prevalence reported in recent years. If diabetes is not managed properly, it can lead to several complications including an increased risk of cardiovascular disease (CVD). Cardiovascular complications such as coronary heart disease, peripheral artery disease, and stroke are common among individuals with diabetes. Therefore, the timely management of diabetes becomes very important. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have emerged as a promising class of medications that offer benefits beyond glycemic control. Among various benefits, GLP-1 RAs can promote pancreatic β-cell proliferation and reduce their apoptosis. They also exert central effects on appetite and energy balance. Furthermore, the weight-lowering potential of GLP-1 RAs has also been documented in literature which can provide indirect benefit to CVD prevention. Long-term GLP-1 RAs generally have superior efficacy over short-term GLP-1 RAs in terms of controlling overnight and fasting plasma glucose levels. However, short-acting GLP-1 RAs, such as exenatide and lixisenatide, maintain their influence on gastric emptying during prolonged use. Adverse events, particularly, gastrointestinal adverse events, remain a concern with GLP-1 RA use. These symptoms usually appear at the start of treatment but fade as the body adjusts to the medication. GLP-1 RAs have shown beneficial effects on cardiovascular health, including a reduction in the incidence of major adverse cardiovascular events. In conclusion, GLP-1 RAs provide multifaceted benefits in T2DM as they not only maintain glycemic control but also decrease cardiovascular risk.
Collapse
Affiliation(s)
- Feras A Alghamdi
- Family Medicine, King Fahad Military Medical Complex, Jeddah, SAU
| | | | | | - Turki Helal
- Family Medicine, King Abdulaziz Medical City Jeddah, Jeddah, SAU
| | - Turki A Huwait
- Family Medicine, King Abdulaziz Medical City Jeddah, Jeddah, SAU
| | - Turki Alharbi
- Family Medicine, King Abdulaziz Medical City Jeddah, Jeddah, SAU
| | | | - Wejdan Alshehri
- Medicine, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
- Family Medicine, King Abdulaziz Medical City Jeddah, Jeddah, SAU
| | | |
Collapse
|
10
|
Chen Y, Meng Z, Li Y, Liu S, Hu P, Luo E. Advanced glycation end products and reactive oxygen species: uncovering the potential role of ferroptosis in diabetic complications. Mol Med 2024; 30:141. [PMID: 39251935 PMCID: PMC11385660 DOI: 10.1186/s10020-024-00905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Advanced glycation end products (AGEs) are a diverse range of compounds that are formed when free amino groups of proteins, lipids, and nucleic acids are carbonylated by reactive carbonyl species or glycosylated by reducing sugars. Hyperglycemia in patients with diabetes can cause an overabundance of AGEs. Excess AGEs are generally acknowledged as major contributing factors to the development of diabetic complications because of their ability to break down the extracellular matrix directly and initiate intracellular signaling pathways by binding to the receptor for advanced glycation end products (RAGE). Inflammation and oxidative stress are the two most well-defined pathophysiological states induced by the AGE-RAGE interaction. In addition to oxidative stress, AGEs can also inhibit antioxidative systems and disturb iron homeostasis, all of which may induce ferroptosis. Ferroptosis is a newly identified contributor to diabetic complications. This review outlines the formation of AGEs in individuals with diabetes, explores the oxidative damage resulting from downstream reactions of the AGE-RAGE axis, and proposes a novel connection between AGEs and the ferroptosis pathway. This study introduces the concept of a vicious cycle involving AGEs, oxidative stress, and ferroptosis in the development of diabetic complications.
Collapse
Affiliation(s)
- Yanchi Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zihan Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Pei Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Schwartz SS, Corkey BE, R Gavin J, DeFronzo RA, Herman ME. Advances and counterpoints in type 2 diabetes. What is ready for translation into real-world practice, ahead of the guidelines. BMC Med 2024; 22:356. [PMID: 39227924 PMCID: PMC11373437 DOI: 10.1186/s12916-024-03518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/08/2024] [Indexed: 09/05/2024] Open
Abstract
This review seeks to address major gaps and delays between our rapidly evolving body of knowledge on type 2 diabetes and its translation into real-world practice. Through updated and improved best practices informed by recent evidence and described herein, we stand to better attain A1c targets, help preserve beta cell integrity and moderate glycemic variability, minimize treatment-emergent hypoglycemia, circumvent prescribing to "treatment failure," and prevent long-term complications. The first topic addressed in this review concerns updates in the 2023 and 2024 diabetes treatment guidelines for which further elaboration can help facilitate integration into routine care. The second concerns advances in diabetes research that have not yet found their way into guidelines, though they are endorsed by strong evidence and are ready for real-world use in appropriate patients. The final theme addresses lingering misconceptions about the underpinnings of type 2 diabetes-fundamental fallacies that continue to be asserted in the textbooks and continuing medical education upon which physicians build their approaches. A corrected and up-to-date understanding of the disease state is essential for practitioners to both conceptually and translationally manage initial onset through late-stage type 2 diabetes.
Collapse
Affiliation(s)
- Stanley S Schwartz
- Main Line Health, Wynnewood, PA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara E Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - James R Gavin
- Emory University School of Medicine, Atlanta, GA, USA
| | - Ralph A DeFronzo
- Department of Medicine, Diabetes Division, University of Texas Health Science Center, South Texas. Veterans Health Care System and Texas Diabetes Institute, 701 S. Zarzamoro, San Antonio, TX, 78207, USA
| | - Mary E Herman
- Social Alchemy: Building Physician Competency Across the Globe, 5 Ave Sur #36, Antigua, Sacatepéquez, Guatemala.
| |
Collapse
|
12
|
Radhakrishnan O, Goyal K, Vatkar V, Gandhi S, Agrawal T. A Study of the Prevalence of Diabetic Retinopathy in Patients With Ischemic Heart Disease and Diabetes Mellitus. Cureus 2024; 16:e65005. [PMID: 39161485 PMCID: PMC11333090 DOI: 10.7759/cureus.65005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/21/2024] Open
Abstract
Background Diabetes mellitus is one of the most important and common chronic diseases worldwide and is expected to increase in prevalence. Diabetic retinopathy (DR) is one of the most prevalent microvascular sequelae of diabetes mellitus (DM), and ischemic heart disease is a macrovascular sequela. This study was conducted to find out the relation between the degree of DR and ischemic heart disease severity in Indian patients. Materials and methods This cross-sectional, descriptive, hospital-based study was conducted in the ophthalmology department at Dr. D. Y. Patil Medical Hospital, Pune, Maharashtra, India, from September 2022 to June 2024. A total of 200 eyes from 100 patients who were diagnosed with cases of ischemic heart disease and diabetes mellitus were included in the study. Patients with corneal pathology like endothelial dystrophies, corneal degenerations, corneal scars, or trauma preventing good visualization of the posterior segment were excluded from the study. Patients with active uveitis, patients with a history of undergoing any previous vitreoretinal surgery or laser procedures, non-compliant patients, patients not willing to undergo the procedure, or those not consenting to the study were also excluded. Written informed consent was obtained from each patient. Data was entered in Microsoft Excel and statistical analysis was done using IBM Corp. Released 2019. IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY: IBM Corp. As the continuous variables showed a skewed distribution, we used the Mann-Whitney test and the Kruskal-Wallis test to test the significance of the difference between continuous and categorical variables. A chi-square test was employed to check the association between categorical variables. Significance was assumed at an alpha error of 5%. Results The prevalence of diabetic retinopathy was found to be 95%. The mean age of patients with DR and patients with no diabetic retinopathy was 58.38 and 59.40 years, respectively, with the majority of the patients being in the age group of 60-69 years (46%). The majority of the patients were males (65%), while 35% were females. There was a significant association between the severity of diabetic retinopathy and the higher HbA1c levels, the use of insulin as a treatment modality, and the higher blood sugar levels in our study population. It was observed that the patients in our study with an ejection fraction of <40% had significantly higher severity of diabetic retinopathy in the form of PDR and high-risk PDR. The severity of the DR was directly correlated with the severity of IHD in our study, with most of the IHD patients with a 40-60% ejection fraction having moderate NPDR and patients with a >60% ejection fraction having mild or moderate NPDR. Conclusion The prevalence of diabetic retinopathy among the IHD patients with diabetes was 95% in our study, with moderate NPDR being the most common stage of DR seen among the patients. It was observed that more severe stages of diabetic retinopathy were seen in patients who were on treatment with insulin than in patients who were on treatment with OHA. Severe stages of diabetic retinopathy were associated with higher blood sugar levels (BSL) and higher glycated hemoglobin levels. In the present study, it was observed that a lower ejection fraction (<40%), which is a marker of reduced cardiac function, was associated with more severe stages of diabetic retinopathy.
Collapse
Affiliation(s)
- Ozukhil Radhakrishnan
- Ophthalmology, Cornea, Glaucoma, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Khushboo Goyal
- Ophthalmology, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Vishakha Vatkar
- Ophthalmology, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Shreya Gandhi
- Ophthalmology, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Tushar Agrawal
- Ophthalmology, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| |
Collapse
|
13
|
Schwartz SS, Herman ME. Gluco-regulation & type 2 diabetes: entrenched misconceptions updated to new governing principles for gold standard management. Front Endocrinol (Lausanne) 2024; 15:1394805. [PMID: 38933821 PMCID: PMC11199379 DOI: 10.3389/fendo.2024.1394805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Our understanding of type 2 diabetes (T2D) has evolved dramatically. Advances have upended entrenched dogmas pertaining to the onset and progression of T2D, beliefs that have prevailed from the early era of diabetes research-and continue to populate our medical textbooks and continuing medical education materials. This review article highlights key insights that lend new governing principles for gold standard management of T2D. From the historical context upon which old beliefs arose to new findings, this article outlines evidence and perspectives on beta cell function, the underlying defects in glucoregulation, the remediable nature of T2D, and, the rationale supporting the shift to complication-centric prescribing. Practical approaches translate this rectified understanding of T2D into strategies that fill gaps in current management practices of prediabetes through late type 2 diabetes.
Collapse
Affiliation(s)
- Stanley S. Schwartz
- Main Line Health, Wynnewood, PA, and University of Pennsylvania, Philadelphia, PA, United States
| | - Mary E. Herman
- Social Alchemy: Building Physician Competency Across the Globe, Sacatepéquez, Guatemala
| |
Collapse
|
14
|
Yunir E, Adesta FEA, Rizka A, Tarigan TJE. Correlation between initial serum 25-hydroxyvitamin D and granulation growth in diabetic foot ulcers. J Wound Care 2024; 33:clii-clix. [PMID: 38850545 DOI: 10.12968/jowc.2021.0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
OBJECTIVE To determine the correlation between initial serum 25-hydroxyvitamin D (25(OH)D) levels with granulation growth in diabetic foot ulcers (DFUs) after 21 days of treatment. METHOD This cohort study involved patients with type 2 diabetes who had a DFU treated at hospital. Blood samples were taken from patients on admission. The chemiluminescent immunoassay technique was used to measure 25(OH)D levels. Granulation tissue growth was analysed by comparing the photographs from the initial treatment to day 21 of treatment. RESULTS The median value of 25(OH)D levels at initial treatment was 8 ng/ml. The result showed no correlation between 25(OH)D levels and the granulation growth in DFUs (p=0.86). CONCLUSION The initial serum 25(OH)D level was not correlated with the growth of granulation tissue in DFUs.
Collapse
Affiliation(s)
- Em Yunir
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Fajar Englando Alan Adesta
- Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Aulia Rizka
- Division of Geriatric, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Tri Juli Edi Tarigan
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
15
|
Nica AE, Rusu E, Dobjanschi C, Rusu F, Sivu C, Parlițeanu OA, Radulian G. The Relationship between the Ewing Test, Sudoscan Cardiovascular Autonomic Neuropathy Score and Cardiovascular Risk Score Calculated with SCORE2-Diabetes. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:828. [PMID: 38793011 PMCID: PMC11122986 DOI: 10.3390/medicina60050828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: Cardiac autonomic neuropathy (CAN) is a severe complication of diabetes mellitus (DM) strongly linked to a nearly five-fold higher risk of cardiovascular mortality. Patients with Type 2 Diabetes Mellitus (T2DM) are a significant cohort in which these assessments have particular relevance to the increased cardiovascular risk inherent in the condition. Materials and Methods: This study aimed to explore the subtle correlation between the Ewing test, Sudoscan-cardiovascular autonomic neuropathy score, and cardiovascular risk calculated using SCORE 2 Diabetes in individuals with T2DM. The methodology involved detailed assessments including Sudoscan tests to evaluate sudomotor function and various cardiovascular reflex tests (CART). The cohort consisted of 211 patients diagnosed with T2DM with overweight or obesity without established ASCVD, aged between 40 to 69 years. Results: The prevalence of CAN in our group was 67.2%. In the study group, according SCORE2-Diabetes, four patients (1.9%) were classified with moderate cardiovascular risk, thirty-five (16.6%) with high risk, and one hundred seventy-two (81.5%) with very high cardiovascular risk. Conclusions: On multiple linear regression, the SCORE2-Diabetes algorithm remained significantly associated with Sudoscan CAN-score and Sudoscan Nephro-score and Ewing test score. Testing for the diagnosis of CAN in very high-risk patients should be performed because approximately 70% of them associate CAN. Increased cardiovascular risk is associated with sudomotor damage and that Sudoscan is an effective and non-invasive measure of identifying such risk.
Collapse
Affiliation(s)
- Andra-Elena Nica
- Diabetes Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-E.N.); (C.D.); (C.S.); (G.R.)
- “Nicolae Malaxa” Clinica Hospital, 022441 Bucharest, Romania
| | - Emilia Rusu
- Diabetes Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-E.N.); (C.D.); (C.S.); (G.R.)
- “Nicolae Malaxa” Clinica Hospital, 022441 Bucharest, Romania
| | - Carmen Dobjanschi
- Diabetes Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-E.N.); (C.D.); (C.S.); (G.R.)
- “Nicolae Malaxa” Clinica Hospital, 022441 Bucharest, Romania
| | - Florin Rusu
- “Doctor Carol Davila” Central Military University Emergency Hospital, 010825 Bucharest, Romania;
| | - Claudia Sivu
- Diabetes Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-E.N.); (C.D.); (C.S.); (G.R.)
| | | | - Gabriela Radulian
- Diabetes Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-E.N.); (C.D.); (C.S.); (G.R.)
| |
Collapse
|
16
|
Li J, Liu J, Shi W, Guo J. Role and molecular mechanism of Salvia miltiorrhiza associated with chemical compounds in the treatment of diabetes mellitus and its complications: A review. Medicine (Baltimore) 2024; 103:e37844. [PMID: 38640337 PMCID: PMC11029945 DOI: 10.1097/md.0000000000037844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 04/21/2024] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent diseases worldwide, greatly impacting patients' quality of life. This article reviews the progress in Salvia miltiorrhiza, an ancient Chinese plant, for the treatment of DM and its associated complications. Extensive studies have been conducted on the chemical composition and pharmacological effects of S miltiorrhiza, including its anti-inflammatory and antioxidant activities. It has demonstrated potential in preventing and treating diabetes and its consequences by improving peripheral nerve function and increasing retinal thickness in diabetic individuals. Moreover, S miltiorrhiza has shown effectiveness when used in conjunction with angiotensin-converting enzyme inhibitors, angiotensin receptor blockers (ARBs), and statins. The safety and tolerability of S miltiorrhiza have also been thoroughly investigated. Despite the established benefits of managing DM and its complications, further research is needed to determine appropriate usage, dosage, long-term health benefits, and safety.
Collapse
Affiliation(s)
- Jiajie Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Jinxing Liu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Weibing Shi
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Jinchen Guo
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| |
Collapse
|
17
|
He Q, Xu S, He F, Wu Z, Wu F, Zhou R, Zhou B, Li F, Yang X. Combined Proteomic and Phosphoproteomic Characterization of the Molecular Regulators and Functional Modules During Pancreatic Progenitor Cell Development. J Proteome Res 2024; 23:40-51. [PMID: 37993262 DOI: 10.1021/acs.jproteome.3c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Differentiated multipotent pancreatic progenitors have major advantages for both modeling pancreas development and preventing or treating diabetes. Despite significant advancements in inducing the differentiation of human pluripotent stem cells into insulin-producing cells, the complete mechanism governing proliferation and differentiation remains poorly understood. This study used large-scale mass spectrometry to characterize molecular processes at various stages of human embryonic stem cell (hESC) differentiation toward pancreatic progenitors. hESCs were induced into pancreatic progenitor cells in a five-stage differentiation protocol. A high-performance liquid chromatography-mass spectrometry platform was used to undertake comprehensive proteome and phosphoproteome profiling of cells at different stages. A series of bioinformatic explorations, including coregulated modules, gene regulatory networks, and phosphosite enrichment analysis, were then conducted. A total of 27,077 unique phosphorylated sites and 8122 proteins were detected, including several cyclin-dependent kinases at the initial stage of cell differentiation. Furthermore, we discovered that ERK1, a member of the MAPK cascade, contributed to proliferation at an early stage. Finally, Western blotting confirmed that the phosphosites from SIRT1 and CHEK1 could inhibit the corresponding substrate abundance in the late stage. Thus, this study extends our understanding of the molecular mechanism during pancreatic cell development.
Collapse
Affiliation(s)
- Qian He
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College of Jinan University), Shenzhen 518055, China
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shaohang Xu
- Deepxomics Co., Ltd., Shenzhen 518000, China
| | - Fei He
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College of Jinan University), Shenzhen 518055, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zubiao Wu
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College of Jinan University), Shenzhen 518055, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fujian Wu
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College of Jinan University), Shenzhen 518055, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruo Zhou
- Deepxomics Co., Ltd., Shenzhen 518000, China
| | - Baojin Zhou
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Furong Li
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College of Jinan University), Shenzhen 518055, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaofei Yang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College of Jinan University), Shenzhen 518055, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
18
|
Bahramzadeh A, Bolandnazar K, Meshkani R. Resveratrol as a potential protective compound against skeletal muscle insulin resistance. Heliyon 2023; 9:e21305. [PMID: 38027557 PMCID: PMC10660041 DOI: 10.1016/j.heliyon.2023.e21305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
The increasing prevalence of type 2 diabetes has become a major global problem. Insulin resistance has a central role in pathophysiology of type 2 diabetes. Skeletal muscle is responsible for the disposal of most of the glucose under conditions of insulin stimulation, and insulin resistance in skeletal muscle causes dysregulation of glucose homeostasis in the whole body. Despite the current pharmaceutical and non-pharmacological treatment strategies to combat diabetes, there is still a need for new therapeutic agents due to the limitations of the therapeutic agents. Meanwhile, plant polyphenols have attracted the attention of researchers for their use in the treatment of diabetes and have gained popularity. Resveratrol, a stilbenoid polyphenol, exists in various plant sources, and a growing body of evidence suggests its beneficial properties, including antidiabetic activities. The present review aimed to provide a summary of the role of resveratrol in insulin resistance in skeletal muscle and its related mechanisms. To achieve the objectives, by searching the PubMed, Scopus and Web of Science databases, we have summarized the results of all cell culture, animal, and human studies that have investigated the effects of resveratrol in different models on insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Arash Bahramzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Bolandnazar
- Department of Biological Sciences and Technology, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Wu Y, Zhang Z, Wu S, Chen Z, Pu Y. Estimating residual undifferentiated cells in human chemically induced pluripotent stem cell derived islets using lncRNA as biomarkers. Sci Rep 2023; 13:16435. [PMID: 37777562 PMCID: PMC10542758 DOI: 10.1038/s41598-023-43798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) can generate insulin-producing beta cells for diabetes treatment, but residual undifferentiated cells may cause tumors. We developed a highly sensitive assay to detect these cells in islet cells derived from human chemically induced pluripotent stem cells (hCiPSCs), which are transgene-free and safer. We used RNA-seq data to find protein-coding and non-coding RNAs that were only expressed in hCiPSCs, not in islet cells. We confirmed these biomarkers by RT-qPCR and ddPCR. We chose long non-coding RNA (lncRNA) markers, which performed better than protein-coding RNA markers. We found that LNCPRESS2, LINC00678 and LOC105370482 could detect 1, 1 and 3 hCiPSCs in 106 islet cells by ddPCR, respectively. We tested our method on several hCiPSC lines, which could quantify 0.0001% undifferentiated cell in 106 islet cells by targeting hCiPSCs-specific lncRNA transcripts, ensuring the safety and quality of hCiPSC-derived islet cells for clinical use.
Collapse
Affiliation(s)
- Yandan Wu
- Hangzhou Reprogenix Bioscience Co., Ltd, Hangzhou, 310023, China
| | - Zhenzhen Zhang
- Hangzhou Reprogenix Bioscience Co., Ltd, Hangzhou, 310023, China
| | - Shuangshuang Wu
- Hangzhou Reprogenix Bioscience Co., Ltd, Hangzhou, 310023, China
| | - Zhaolong Chen
- Hangzhou Reprogenix Bioscience Co., Ltd, Hangzhou, 310023, China
| | - Yue Pu
- Hangzhou Reprogenix Bioscience Co., Ltd, Hangzhou, 310023, China.
| |
Collapse
|
20
|
Zhao M, Xie Y, Gao W, Li C, Ye Q, Li Y. Diabetes mellitus promotes susceptibility to periodontitis-novel insight into the molecular mechanisms. Front Endocrinol (Lausanne) 2023; 14:1192625. [PMID: 37664859 PMCID: PMC10469003 DOI: 10.3389/fendo.2023.1192625] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Diabetes mellitus is a main risk factor for periodontitis, but until now, the underlying molecular mechanisms remain unclear. Diabetes can increase the pathogenicity of the periodontal microbiota and the inflammatory/host immune response of the periodontium. Hyperglycemia induces reactive oxygen species (ROS) production and enhances oxidative stress (OS), exacerbating periodontal tissue destruction. Furthermore, the alveolar bone resorption damage and the epigenetic changes in periodontal tissue induced by diabetes may also contribute to periodontitis. We will review the latest clinical data on the evidence of diabetes promoting the susceptibility of periodontitis from epidemiological, molecular mechanistic, and potential therapeutic targets and discuss the possible molecular mechanistic targets, focusing in particular on novel data on inflammatory/host immune response and OS. Understanding the intertwined pathogenesis of diabetes mellitus and periodontitis can explain the cross-interference between endocrine metabolic and inflammatory diseases better, provide a theoretical basis for new systemic holistic treatment, and promote interprofessional collaboration between endocrine physicians and dentists.
Collapse
Affiliation(s)
- Mingcan Zhao
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yuandong Xie
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Wenjia Gao
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Chunwang Li
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Qiang Ye
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yi Li
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
21
|
Afarid M, Bahari H, Sanie-Jahromi F. In Vitro Evaluation of Apoptosis, Inflammation, Angiogenesis, and Neuroprotection Gene Expression in Retinal Pigmented Epithelial Cell Treated with Interferon α-2b. J Interferon Cytokine Res 2023. [PMID: 37289822 DOI: 10.1089/jir.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Angiogenesis, retinal neuropathy, and inflammation are the main molecular features of diabetic retinopathy (DR) and should be taken into consideration for potential treatment approaches. Retinal pigmented epithelial (RPE) cells play a major role in DR progression. This study evaluated the in vitro effect of interferon (IFN) α-2b on the expression of genes involved in apoptosis, inflammation, neuroprotection, and angiogenesis in RPE cells. RPE cells were cocultured with IFN α-2b at 2 doses (500 and 1,000 IU) and treatment periods (24 and 48 h). The quantitative relative expression of genes (BCL-2, BAX, BDNF, VEGF, and IL-1b) was evaluated in the treated versus control cells through real-time polymerase chain reaction (PCR). The result of this study demonstrated that IFN treatment at 1,000 IU (48 h) led to significant upregulation of BCL-2, BAX, BDNF, and IL-1b; however, the BCL-2/BAX ratio was not statistically altered from 1:1, in any of the treatment patterns. We also showed that VEGF expression was downregulated in RPE cells treated with 500 IU for 24 h. It can be concluded that IFN α-2b was safe (BCL-2/BAX ∼1:1) and enhanced neuroprotection at 1,000 IU (48 h); however-at the same time-IFN α-2b induced inflammation in RPE cells. Moreover, the antiangiogenic effect of IFN α-2b was solely observed in RPE cells treated with 500 IU (24 h). It seems that IFN α-2b in lower doses and short duration exerts antiangiogenic effects and in higher doses and longer duration has neuroprotective and inflammatory effects. Hence, appropriate concentration and duration of treatment, according to the type and stage of the disease, should be considered to achieve success in IFN therapy.
Collapse
Affiliation(s)
- Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Bahari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Almogy M, Moses O, Schiffmann N, Weinberg E, Nemcovsky CE, Weinreb M. Addition of Resolvins D1 or E1 to Collagen Membranes Mitigates Their Resorption in Diabetic Rats. J Funct Biomater 2023; 14:jfb14050283. [PMID: 37233393 DOI: 10.3390/jfb14050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Uncontrolled diabetes is characterized by aberrant inflammatory reactions and increased collagenolysis. We have reported that it accelerates the degradation of implanted collagen membranes (CM), thus compromising their function in regenerative procedures. In recent years, a group of physiological anti-inflammatory agents called specialized pro-resolving lipid mediators (SPMs) have been tested as a treatment for various inflammatory conditions, either systemically or locally, via medical devices. Yet, no study has tested their effect on the fate of the biodegradable material itself. Here, we measured the in vitro release over time of 100 or 800 ng resolvin D1 (RvD1) incorporated into CM discs. In vivo, diabetes was induced in rats with streptozotocin, while buffer-injected (normoglycemic) rats served as controls. Resolvins (100 or 800 ng of RvD1 or RvE1) were added to biotin-labeled CM discs, which were implanted sub-periosteally over the calvaria of rats. Membrane thickness, density, and uniformity were determined by quantitative histology after 3 weeks. In vitro, significant amounts of RvD1 were released over 1-8 days, depending on the amount loaded. In vivo, CMs from diabetic animals were thinner, more porous, and more variable in thickness and density. The addition of RvD1 or RvE1 improved their regularity, increased their density, and reduced their invasion by the host tissue significantly. We conclude that addition of resolvins to biodegradable medical devices can protect them from excessive degradation in systemic conditions characterized by high degree of collagenolysis.
Collapse
Affiliation(s)
- Michal Almogy
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Ofer Moses
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Nathan Schiffmann
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Evgeny Weinberg
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Carlos E Nemcovsky
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Miron Weinreb
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| |
Collapse
|
23
|
Legaard GE, Lyngbæk MPP, Almdal TP, Karstoft K, Bennetsen SL, Feineis CS, Nielsen NS, Durrer CG, Liebetrau B, Nystrup U, Østergaard M, Thomsen K, Trinh B, Solomon TPJ, Van Hall G, Brønd JC, Holst JJ, Hartmann B, Christensen R, Pedersen BK, Ried-Larsen M. Effects of different doses of exercise and diet-induced weight loss on beta-cell function in type 2 diabetes (DOSE-EX): a randomized clinical trial. Nat Metab 2023; 5:880-895. [PMID: 37127822 PMCID: PMC10229430 DOI: 10.1038/s42255-023-00799-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Diet-induced weight loss is associated with improved beta-cell function in people with type 2 diabetes (T2D) with remaining secretory capacity. It is unknown if adding exercise to diet-induced weight loss improves beta-cell function and if exercise volume is important for improving beta-cell function in this context. Here, we carried out a four-armed randomized trial with a total of 82 persons (35% females, mean age (s.d.) of 58.2 years (9.8)) with newly diagnosed T2D (<7 years). Participants were randomly allocated to standard care (n = 20), calorie restriction (25% energy reduction; n = 21), calorie restriction and exercise three times per week (n = 20), or calorie restriction and exercise six times per week (n = 21) for 16 weeks. The primary outcome was beta-cell function as indicated by the late-phase disposition index (insulin secretion multiplied by insulin sensitivity) at steady-state hyperglycemia during a hyperglycemic clamp. Secondary outcomes included glucose-stimulated insulin secretion and sensitivity as well as the disposition, insulin sensitivity, and secretion indices derived from a liquid mixed meal tolerance test. We show that the late-phase disposition index during the clamp increases more in all three intervention groups than in standard care (diet control group, 58%; 95% confidence interval (CI), 16 to 116; moderate exercise dose group, 105%; 95% CI, 49 to 182; high exercise dose group, 137%; 95% CI, 73 to 225) and follows a linear dose-response relationship (P > 0.001 for trend). We report three serious adverse events (two in the control group and one in the diet control group), as well as adverse events in two participants in the diet control group, and five participants each in the moderate and high exercise dose groups. Overall, adding an exercise intervention to diet-induced weight loss improves glucose-stimulated beta-cell function in people with newly diagnosed T2D in an exercise dose-dependent manner (NCT03769883).
Collapse
Affiliation(s)
- Grit E Legaard
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Mark P P Lyngbæk
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Thomas P Almdal
- Department of Endocrinology PE, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Karstoft
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Camilla S Feineis
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Nina S Nielsen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Cody G Durrer
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | | | - Ulrikke Nystrup
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Martin Østergaard
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Katja Thomsen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Beckey Trinh
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | | | - Gerrit Van Hall
- Biomedical Sciences, Faculty of Health & Medical Science, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Clinical Biochemistry, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jan Christian Brønd
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences and the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Robin Christensen
- Section for Biostatistics and Evidence-Based Research, the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bente K Pedersen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Mathias Ried-Larsen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark.
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
24
|
Liu Z, Feng Y, Zhao H, Hu J, Chen Y, Liu D, Wang H, Zhu X, Yang H, Shen Z, Xia X, Ye J, Liu Y. Pharmacokinetics and tissue distribution of Ramulus Mori (Sangzhi) alkaloids in rats and its effects on liver enzyme activity. Front Pharmacol 2023; 14:1136772. [PMID: 36873997 PMCID: PMC9981942 DOI: 10.3389/fphar.2023.1136772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Ramulus Mori (Sangzhi) alkaloids (SZ-A) derived from twigs of mulberry (Morus alba L., genus Morus in the Moraceae family) was approved by the National Medical Products Administration in 2020 for the treatment of type 2 diabetes mellitus. In addition to excellent hypoglycemic effect, increasing evidence has confirmed that SZ-A exerts multiple pharmacological effects, such as protecting pancreatic ß-cell function, stimulating adiponectin expression, and alleviating hepatic steatosis. Importantly, a specific distribution of SZ-A in target tissues following oral absorption into the blood is essential for the induction of multiple pharmacological effects. However, there is a lack of studies thoroughly exploring the pharmacokinetic profiles and tissue distribution of SZ-A following oral absorption into the blood, particularly dose-linear pharmacokinetics and target tissue distribution associated with glycolipid metabolic diseases. In the present study, we systematically investigated the pharmacokinetics and tissue distribution of SZ-A and its metabolites in human and rat liver microsomes, and rat plasma, as well as its effects on the activity of hepatic cytochrome P450 enzymes (CYP450s). The results revealed that SZ-A was rapidly absorbed into the blood, exhibited linear pharmacokinetic characteristics in the dose range of 25-200 mg/kg, and was broadly distributed in glycolipid metabolism-related tissues. The highest SZ-A concentrations were observed in the kidney, liver, and aortic vessels, followed by the brown and subcutaneous adipose tissues, and the heart, spleen, lung, muscle, pancreas, and brain. Except for the trace oxidation products produced by fagomine, other phase I or phase II metabolites were not detected. SZ-A had no inhibitory or activating effects on major CYP450s. Conclusively, SZ-A is rapidly and widely distributed in target tissues, with good metabolic stability and a low risk of triggering drug-drug interactions. This study provides a framework for deciphering the material basis of the multiple pharmacological functions of SZ-A, its rational clinical use, and the expansion of its indications.
Collapse
Affiliation(s)
- Zhihua Liu
- Beijing Wehand-Bio Pharmaceutical Co, Ltd., Beijing, China
| | - Yu Feng
- Beijing Wehand-Bio Pharmaceutical Co, Ltd., Beijing, China
| | - Hang Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanmin Chen
- Beijing Wehand-Bio Pharmaceutical Co, Ltd., Beijing, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongdong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiangyang Zhu
- Beijing Wehand-Bio Pharmaceutical Co, Ltd., Beijing, China
| | - Hongzhen Yang
- Beijing Wehand-Bio Pharmaceutical Co, Ltd., Beijing, China
| | - Zhufang Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Qiu HY, Ji RJ, Zhang Y. Current advances of CRISPR-Cas technology in cell therapy. CELL INSIGHT 2022; 1:100067. [PMID: 37193354 PMCID: PMC10120314 DOI: 10.1016/j.cellin.2022.100067] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 05/18/2023]
Abstract
CRISPR-Cas is a versatile genome editing technology that has been broadly applied in both basic research and translation medicine. Ever since its discovery, the bacterial derived endonucleases have been engineered to a collection of robust genome-editing tools for introducing frameshift mutations or base conversions at site-specific loci. Since the initiation of first-in-human trial in 2016, CRISPR-Cas has been tested in 57 cell therapy trials, 38 of which focusing on engineered CAR-T cells and TCR-T cells for cancer malignancies, 15 trials of engineered hematopoietic stem cells treating hemoglobinopathies, leukemia and AIDS, and 4 trials of engineered iPSCs for diabetes and cancer. Here, we aim to review the recent breakthroughs of CRISPR technology and highlight their applications in cell therapy.
Collapse
Affiliation(s)
- Hou-Yuan Qiu
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Rui-Jin Ji
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ying Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
26
|
Guidelines for cellular and animal models of insulin resistance in type 2 diabetes. EFOOD 2022. [DOI: 10.1002/efd2.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
27
|
Song QX, Sun Y, Deng K, Mei JY, Chermansky CJ, Damaser MS. Potential role of oxidative stress in the pathogenesis of diabetic bladder dysfunction. Nat Rev Urol 2022; 19:581-596. [PMID: 35974244 DOI: 10.1038/s41585-022-00621-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
Diabetes mellitus is a chronic metabolic disease, posing a considerable threat to global public health. Treating systemic comorbidities has been one of the greatest clinical challenges in the management of diabetes. Diabetic bladder dysfunction, characterized by detrusor overactivity during the early stage of the disease and detrusor underactivity during the late stage, is a common urological complication of diabetes. Oxidative stress is thought to trigger hyperglycaemia-dependent tissue damage in multiple organs; thus, a growing body of literature has suggested a possible link between functional changes in urothelium, muscle and the corresponding innervations. Improved understanding of the mechanisms of oxidative stress could lead to the development of novel therapeutics to restore the redox equilibrium and scavenge excessive free radicals to normalize bladder function in patients with diabetes.
Collapse
Affiliation(s)
- Qi-Xiang Song
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Sun
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kangli Deng
- Department of Urology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Yi Mei
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | | | - Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. .,Glickman Urology and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
28
|
Legaard GE, Feineis CS, Johansen MY, Hansen KB, Vaag AA, Larsen EL, Poulsen HE, Almdal TP, Karstoft K, Pedersen BK, Ried-Larsen M. Effects of an exercise-based lifestyle intervention on systemic markers of oxidative stress and advanced glycation endproducts in persons with type 2 diabetes: Secondary analysis of a randomised clinical trial. Free Radic Biol Med 2022; 188:328-336. [PMID: 35764194 DOI: 10.1016/j.freeradbiomed.2022.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS This secondary analysis aimed to investigate the effects of a 12 months intensive exercise-based lifestyle intervention on systemic markers of oxidative stress in persons with type 2 diabetes. We hypothesized lifestyle intervention to be superior to standard care in decreasing levels of oxidative stress. METHODS The study was based on the single-centre, assessor-blinded, randomised, controlled U-turn trial (ClinicalTrial.gov NCT02417012). Persons with type 2 diabetes ˂ 10 years, ˂ 3 glucose lowering medications, no use of insulin, BMI 25-40 kg/m2 and no severe diabetic complications were included. Participants were randomised (2:1) to either intensive exercise-based lifestyle intervention and standard (n = 64) or standard care alone (n = 34). Standard care included individual education in diabetes management, advice on a healthy lifestyle and regulation of medication by a blinded endocrinologist. The lifestyle intervention included five to six aerobic exercise sessions per week, combined with resistance training two to three times per week and an adjunct dietary intervention aiming at reduction of ∼500 kcal/day (month 0-4). The diet was isocaloric from months 5-12. The primary outcome of this secondary analysis was change in oxidative stress measured by 8-oxo-7,8-dihydroguanosine (8-oxoGuo) and secondarily in 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), as markers of RNA and DNA oxidation, respectively, from baseline to 12-months follow-up. RESULTS A total of 77 participants, 21 participants receiving standard care and 56 participants receiving the lifestyle intervention, were included in the analysis. Mean age at baseline was 54.1 years (SD 9.1), 41% were women and mean duration of type 2 diabetes was 5.0 years (SD 2.8). From baseline to follow-up the lifestyle group experienced a 7% decrease in 8-oxoGuo (-0.15 nmol/mmol creatinine [95% CI -0.27, -0.03]), whereas standard care conversely was associated with a 8.5% increase in 8-oxoGuo (0.19 nmol/mmol creatinine [95% CI 0.00, 0.40]). The between group difference in 8-oxoGuo was -0.35 nmol/mmol creatinine [95% CI -0.58, -0.12,], p = 0.003. No between group difference was observed in 8-oxodG. CONCLUSION/INTERPRETATION A 12 months intensive exercise-based lifestyle intervention was associated with a decrease in RNA, but not DNA, oxidation in persons with type 2 diabetes.
Collapse
Affiliation(s)
- Grit E Legaard
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| | - Camilla S Feineis
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mette Y Johansen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Allan A Vaag
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Emil L Larsen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| | - Henrik E Poulsen
- Department of Cardiology, Copenhagen University Hospital - North Zealand, Hillerød, Denmark; Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thomas P Almdal
- Department of Endocrinology PE, Rigshospitalet, University of Copenhagen, Denmark; Department of Immunology & Microbiology, University of Copenhagen, Denmark
| | - Kristian Karstoft
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Bente K Pedersen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mathias Ried-Larsen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
29
|
Elsharkawy M, Elrazzaz M, Sharafeldeen A, Alhalabi M, Khalifa F, Soliman A, Elnakib A, Mahmoud A, Ghazal M, El-Daydamony E, Atwan A, Sandhu HS, El-Baz A. The Role of Different Retinal Imaging Modalities in Predicting Progression of Diabetic Retinopathy: A Survey. SENSORS (BASEL, SWITZERLAND) 2022; 22:3490. [PMID: 35591182 PMCID: PMC9101725 DOI: 10.3390/s22093490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Diabetic retinopathy (DR) is a devastating condition caused by progressive changes in the retinal microvasculature. It is a leading cause of retinal blindness in people with diabetes. Long periods of uncontrolled blood sugar levels result in endothelial damage, leading to macular edema, altered retinal permeability, retinal ischemia, and neovascularization. In order to facilitate rapid screening and diagnosing, as well as grading of DR, different retinal modalities are utilized. Typically, a computer-aided diagnostic system (CAD) uses retinal images to aid the ophthalmologists in the diagnosis process. These CAD systems use a combination of machine learning (ML) models (e.g., deep learning (DL) approaches) to speed up the diagnosis and grading of DR. In this way, this survey provides a comprehensive overview of different imaging modalities used with ML/DL approaches in the DR diagnosis process. The four imaging modalities that we focused on are fluorescein angiography, fundus photographs, optical coherence tomography (OCT), and OCT angiography (OCTA). In addition, we discuss limitations of the literature that utilizes such modalities for DR diagnosis. In addition, we introduce research gaps and provide suggested solutions for the researchers to resolve. Lastly, we provide a thorough discussion about the challenges and future directions of the current state-of-the-art DL/ML approaches. We also elaborate on how integrating different imaging modalities with the clinical information and demographic data will lead to promising results for the scientists when diagnosing and grading DR. As a result of this article's comparative analysis and discussion, it remains necessary to use DL methods over existing ML models to detect DR in multiple modalities.
Collapse
Affiliation(s)
- Mohamed Elsharkawy
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (M.E.); (M.E.); (A.S.); (F.K.); (A.S.); (A.E.); (A.M.); (H.S.S.)
| | - Mostafa Elrazzaz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (M.E.); (M.E.); (A.S.); (F.K.); (A.S.); (A.E.); (A.M.); (H.S.S.)
| | - Ahmed Sharafeldeen
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (M.E.); (M.E.); (A.S.); (F.K.); (A.S.); (A.E.); (A.M.); (H.S.S.)
| | - Marah Alhalabi
- Electrical, Computer and Biomedical Engineering Department, College of Engineering, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (M.G.); (M.A.)
| | - Fahmi Khalifa
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (M.E.); (M.E.); (A.S.); (F.K.); (A.S.); (A.E.); (A.M.); (H.S.S.)
| | - Ahmed Soliman
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (M.E.); (M.E.); (A.S.); (F.K.); (A.S.); (A.E.); (A.M.); (H.S.S.)
| | - Ahmed Elnakib
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (M.E.); (M.E.); (A.S.); (F.K.); (A.S.); (A.E.); (A.M.); (H.S.S.)
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (M.E.); (M.E.); (A.S.); (F.K.); (A.S.); (A.E.); (A.M.); (H.S.S.)
| | - Mohammed Ghazal
- Electrical, Computer and Biomedical Engineering Department, College of Engineering, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (M.G.); (M.A.)
| | - Eman El-Daydamony
- Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt; (E.E.-D.); (A.A.)
| | - Ahmed Atwan
- Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt; (E.E.-D.); (A.A.)
| | - Harpal Singh Sandhu
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (M.E.); (M.E.); (A.S.); (F.K.); (A.S.); (A.E.); (A.M.); (H.S.S.)
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (M.E.); (M.E.); (A.S.); (F.K.); (A.S.); (A.E.); (A.M.); (H.S.S.)
| |
Collapse
|
30
|
Merabet N, Lucassen PJ, Crielaard L, Stronks K, Quax R, Sloot PMA, la Fleur SE, Nicolaou M. How exposure to chronic stress contributes to the development of type 2 diabetes: A complexity science approach. Front Neuroendocrinol 2022; 65:100972. [PMID: 34929260 DOI: 10.1016/j.yfrne.2021.100972] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/24/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022]
Abstract
Chronic stress contributes to the onset of type 2 diabetes (T2D), yet the underlying etiological mechanisms are not fully understood. Responses to stress are influenced by earlier experiences, sex, emotions and cognition, and involve a complex network of neurotransmitters and hormones, that affect multiple biological systems. In addition, the systems activated by stress can be altered by behavioral, metabolic and environmental factors. The impact of stress on metabolic health can thus be considered an emergent process, involving different types of interactions between multiple variables, that are driven by non-linear dynamics at different spatiotemporal scales. To obtain a more comprehensive picture of the links between chronic stress and T2D, we followed a complexity science approach to build a causal loop diagram (CLD) connecting the various mediators and processes involved in stress responses relevant for T2D pathogenesis. This CLD could help develop novel computational models and formulate new hypotheses regarding disease etiology.
Collapse
Affiliation(s)
- Nadège Merabet
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Paul J Lucassen
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Loes Crielaard
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Karien Stronks
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Rick Quax
- Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Computational Science Lab, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Peter M A Sloot
- Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Computational Science Lab, University of Amsterdam, Amsterdam 1098 XH, the Netherlands; National Centre of Cognitive Research, ITMO University, St. Petersburg, Russian Federation
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism & Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, the Netherlands.
| | - Mary Nicolaou
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands.
| |
Collapse
|
31
|
Li X, Zhu J, Zhong Y, Liu C, Yao M, Sun Y, Yao W, Ni X, Zhou F, Yao J, Jiang Q. Targeting long noncoding RNA-AQP4-AS1 for the treatment of retinal neurovascular dysfunction in diabetes mellitus. EBioMedicine 2022; 77:103857. [PMID: 35172268 PMCID: PMC8850682 DOI: 10.1016/j.ebiom.2022.103857] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
Background Diabetic retinopathy (DR) is a leading cause of blindness in the working-age population, which is characterized by retinal neurodegeneration and vascular dysfunction. Long non-coding RNAs (LncRNAs) have emerged as critical regulators in several biological processes and disease progression. Here we investigated the role of lncRNA AQP4-AS1 in retinal neurovascular dysfunction induced by diabetes. Methods Quantitative RT-PCR was used to detect the AQP4-AS1 expression pattern upon diabetes mellitus-related stresses. Visual electrophysiology examination, TUNEL staining, Evans blue staining, retinal trypsin digestion and immunofluorescent staining were conducted to detect the role of AQP4-AS1 in retinal neurovascular dysfunction in vivo. MTT assays, TUNEL staining, PI/Calcein-AM staining, EdU incorporation assay transwell assay and tube formation were conducted to detect the role of AQP4-AS1 in retinal cells function in vitro. qRT-PCR, western blot and in vivo studies were conducted to reveal the mechanism of AQP4-AS1-mediated retinal neurovascular dysfunction. Findings AQP4-AS1 was significantly increased in the clinical samples of diabetic retinopathy patients, high glucose-treated Müller cells, and diabetic retinas of a murine model. AQP4-AS1 silencing in vivo alleviated retinal neurodegeneration and vascular dysfunction as shown by improved retinal capillary degeneration, decreased reactive gliosis, and reduced RGC loss. AQP4-AS1 directly regulated Müller cell function and indirectly affected endothelial cell and RGC function in vitro. Mechanistically, AQP4-AS1 regulated retinal neurovascular dysfunction through affecting AQP4 levels. Interpretation This study reveals AQP4-AS1 is involved in retinal neurovascular dysfunction and expected to become a promising target for the treatment of neurovascular dysfunction in DR. Funding This work was generously supported by the grants from the National Natural Science Foundation of China (Grant No. 81800858, 82070983, 81870679 and 81970823), grants from the Medical Science and Technology Development Project Fund of Nanjing (Grant No ZKX17053 and YKK19158), grants from Innovation Team Project Fund of Jiangsu Province (No. CXTDB2017010), and the Science and Technology Development Plan Project Fund of Nanjing (Grant No 201716007, 201805007 and 201803058).
Collapse
Affiliation(s)
- Xiumiao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Junya Zhu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yuling Zhong
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chang Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Mudi Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yanan Sun
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Wen Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xisen Ni
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Fen Zhou
- Eye Hospital and School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
32
|
Lee-Ødegård S, Olsen T, Norheim F, Drevon CA, Birkeland KI. Potential Mechanisms for How Long-Term Physical Activity May Reduce Insulin Resistance. Metabolites 2022; 12:metabo12030208. [PMID: 35323652 PMCID: PMC8950317 DOI: 10.3390/metabo12030208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Insulin became available for the treatment of patients with diabetes 100 years ago, and soon thereafter it became evident that the biological response to its actions differed markedly between individuals. This prompted extensive research into insulin action and resistance (IR), resulting in the universally agreed fact that IR is a core finding in patients with type 2 diabetes mellitus (T2DM). T2DM is the most prevalent form of diabetes, reaching epidemic proportions worldwide. Physical activity (PA) has the potential of improving IR and is, therefore, a cornerstone in the prevention and treatment of T2DM. Whereas most research has focused on the acute effects of PA, less is known about the effects of long-term PA on IR. Here, we describe a model of potential mechanisms behind reduced IR after long-term PA to guide further mechanistic investigations and to tailor PA interventions in the therapy of T2DM. The development of such interventions requires knowledge of normal glucose metabolism, and we briefly summarize an integrated physiological perspective on IR. We then describe the effects of long-term PA on signaling molecules involved in cellular responses to insulin, tissue-specific functions, and whole-body IR.
Collapse
Affiliation(s)
- Sindre Lee-Ødegård
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
| | - Christian Andre Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
- Vitas Ltd. Analytical Services, Oslo Science Park, 0349 Oslo, Norway
| | - Kåre Inge Birkeland
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
- Correspondence:
| |
Collapse
|
33
|
Coke LA, Deedwania PC, Hinnen D, Magwire M, Miller NH. GLP-1 receptor agonists and cardiovascular outcomes in patients with type 2 diabetes: Clinical evidence and best practice. J Am Assoc Nurse Pract 2022; 34:418-440. [PMID: 35120085 DOI: 10.1097/jxx.0000000000000661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT Cardiovascular disease (CVD) is a major cause of death and disability among people with type 2 diabetes (T2D), presenting a significant impact on longevity, patient quality of life, and health care costs. In the United States, attainment of recommended glycemic targets is low and T2D-related cardiovascular complications remain a significant burden. Many glucose-lowering treatment options are available, but glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 (SGLT-2) inhibitors are recommended in recent guidelines as the preferred add-on therapy to metformin to improve glycemic control. This is particularly the case for patients with T2D and established atherosclerotic CVD, at high risk of atherosclerotic CVD, and/or with chronic kidney disease. Recommendations were based on GLP-1RA and SGLT-2 inhibitor cardiovascular outcomes trials (CVOTs), which consistently showed that these agents pose no additional cardiovascular risk compared with placebo. Three GLP-1RAs (liraglutide, dulaglutide, and subcutaneous semaglutide) demonstrated significantly lower major adverse cardiovascular events versus placebo and are now approved for this indication. However, to realize improvement in outcomes in the clinical setting, organized, systematic, and coordinated approaches to patient management are also needed. For example, nurse-led diabetes self-management education and support programs have been shown to be effective. This article explores T2D management with emphasis on cardiovascular risk and CVOTs performed to date and reviews the clinical experience with GLP-1RAs for managing hyperglycemia and their impact on cardiovascular risk. In addition, practical guidance is given for key health care providers involved in the care of patients with T2D with cardiovascular risk outside of diabetes clinics/endocrinology centers.
Collapse
Affiliation(s)
- Lola A Coke
- Kirkhof College of Nursing, Grand Valley State University, Allendale, Michigan
| | | | - Debbie Hinnen
- University of Colorado Health, Diabetes Clinic, Colorado Springs, Colorado
| | | | | |
Collapse
|
34
|
Yu G, Zhang M, Gao L, Zhou Y, Qiao L, Yin J, Wang Y, Zhou J, Ye H. Far-red light-activated human islet-like designer cells enable sustained fine-tuned secretion of insulin for glucose control. Mol Ther 2022; 30:341-354. [PMID: 34530162 PMCID: PMC8753431 DOI: 10.1016/j.ymthe.2021.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023] Open
Abstract
Diabetes affects almost half a billion people, and all individuals with type 1 diabetes (T1D) and a large portion of individuals with type 2 diabetes rely on self-administration of the peptide hormone insulin to achieve glucose control. However, this treatment modality has cumbersome storage and equipment requirements and is susceptible to fatal user error. Here, reasoning that a cell-based therapy could be coupled to an external induction circuit for blood glucose control, as a proof of concept we developed far-red light (FRL)-activated human islet-like designer (FAID) cells and demonstrated how FAID cell implants achieved safe and sustained glucose control in diabetic model mice. Specifically, by introducing a FRL-triggered optogenetic device into human mesenchymal stem cells (hMSCs), which we encapsulated in poly-(l-lysine)-alginate and implanted subcutaneously under the dorsum of T1D model mice, we achieved FRL illumination-inducible secretion of insulin that yielded improvements in glucose tolerance and sustained blood glucose control over traditional insulin glargine treatment. Moreover, the FAID cell implants attenuated both oxidative stress and development of multiple diabetes-related complications in kidneys. This optogenetics-controlled "living cell factory" platform could be harnessed to develop multiple synthetic designer therapeutic cells to achieve long-term yet precisely controllable drug delivery.
Collapse
Affiliation(s)
- Guiling Yu
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Mingliang Zhang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Ling Gao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Yang Zhou
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Longliang Qiao
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jianli Yin
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yiwen Wang
- Electron Microscopy Center, School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| |
Collapse
|
35
|
Schwartz SS, Rachfal AW, Corkey BE. The time is now for new, lower diabetes diagnostic thresholds. Trends Endocrinol Metab 2022; 33:4-7. [PMID: 34776305 DOI: 10.1016/j.tem.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/03/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Current thresholds for diagnosing diabetes are outdated and do not represent advancements in disease understanding or ability to impact course. Today, evidence supports intervening earlier along the disease continuum to mitigate transition to frank disease and delay/reduce adverse clinical outcomes. We believe it is time for lower diabetes diagnostic criteria.
Collapse
Affiliation(s)
- Stanley S Schwartz
- Stanley Schwartz MD, LLC, Main Line Health System, Wynnewood, PA, USA; Emeritus Professor, University of Pennsylvania, Perlman School of Medicine, Philadelphia, PA, USA.
| | | | - Barbara E Corkey
- Emeritus Professor, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
36
|
Vitamin D Deficiency Is Inversely Associated with Homeostatic Model Assessment of Insulin Resistance. Nutrients 2021; 13:nu13124358. [PMID: 34959910 PMCID: PMC8705502 DOI: 10.3390/nu13124358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/08/2023] Open
Abstract
The study was conducted to comprehensively assess the association of the concentration of vitamin D in the blood and insulin resistance in non-diabetic subjects. The objective was to pool the results from all observational studies from the beginning of 1980 to August 2021. PubMed, Medline and Embase were systematically searched for the observational studies. Filters were used for more focused results. A total of 2248 articles were found after raw search which were narrowed down to 32 articles by the systematic selection of related articles. Homeostatic Model Assessment of Insulin Resistance (HOMAIR) was used as the measure of insulin resistance and correlation coefficient was used as a measure of the relationship between vitamin D levels and the insulin resistance. Risk of bias tables and summary plots were built using Revman software version 5.3 while Comprehensive meta-analysis version 3 was used for the construction of forest plot. The results showed an inverse association between the status of vitamin D and insulin resistance (r = -0.217; 95% CI = -0.161 to -0.272; p = 0.000). A supplement of vitamin D can help reduce the risk of insulin resistance; however further studies, like randomized controlled trials are needed to confirm the results.
Collapse
|
37
|
Rafiq S, Jeppesen PB. Insulin Resistance Is Inversely Associated with the Status of Vitamin D in Both Diabetic and Non-Diabetic Populations. Nutrients 2021; 13:1742. [PMID: 34063822 PMCID: PMC8224049 DOI: 10.3390/nu13061742] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Vitamin D has been implicated in the regulation of glucose metabolism and insulin resistance. We designed this study to provide evidence that insulin resistance is dependent on the concentration of vitamin D in the body. Forty observational studies of both type 2 diabetes mellitus patients and healthy subjects were included in this meta-analysis. Related articles were searched from Embase, PubMed, and Medline through January 2021. Filters for search were used to obtain more focused results. We used Comprehensive Meta-Analysis Version 3 for the construction of forest plots. RevMan software version 5.3 was used to build the risk of bias tables and summary plots. The observational studies included in this systematic review and meta-analysis showed an inverse relationship of insulin resistance with the status of vitamin D both in non-diabetic (r = -0.188; 95% CI = -0.141 to -0.234; p = 0.000) and diabetic (r = -0.255; 95% CI = -0.392 to -0.107, p = 0.001) populations. From the meta-analysis we concluded that hypovitaminosis D is related to increased levels of insulin resistance in both type 2 diabetes patients and the healthy population all over the world.
Collapse
Affiliation(s)
- Shamaila Rafiq
- Department of Clinical Medicine, Aarhus University, Aarhus N, 8200 Aarhus, Denmark;
| | | |
Collapse
|
38
|
Wang D, Hou J, Wan J, Yang Y, Liu S, Li X, Li W, Dai X, Zhou P, Liu W, Wang P. Dietary chlorogenic acid ameliorates oxidative stress and improves endothelial function in diabetic mice via Nrf2 activation. J Int Med Res 2021; 49:300060520985363. [PMID: 33472479 PMCID: PMC7829538 DOI: 10.1177/0300060520985363] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Chlorogenic acid (CGA) is an antioxidant dietary factor. We investigated the effects of CGA on endothelial cell dysfunction in diabetic mice and the mechanistic role of nuclear factor erythroid-related factor 2 (Nrf2) in the antioxidant effect of CGA. METHODS Diabetic (db/db) mice were fed normal chow or chow containing 0.02% CGA for 12 weeks. Human umbilical vein endothelial cells (HUVECs) and mouse aortas were treated with normal or high glucose. RESULTS CGA treatment induced upregulation of Nrf2 in HUVECs in a dose-dependent manner. CGA pretreatment prevented reactive oxygen species generation and preserved nitric oxide bioavailability in HUVECs and aortas from wild-type but not Nrf2-/- mice. CGA improved endothelium-dependent relaxation in high glucose-treated aortas from wild-type and db/db mice, but not Nrf2-/- mice. Dietary CGA improved endothelium-dependent relaxation in db/db mice. CONCLUSIONS CGA ameliorates endothelial dysfunction in diabetic mice through activation of the Nrf2 anti-oxidative pathway.
Collapse
Affiliation(s)
- Dan Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China.,Key Laboratory of Aging and Vascular Homeostasis, Sichuan Higher Education Institute, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China
| | - Jixin Hou
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China.,Key Laboratory of Aging and Vascular Homeostasis, Sichuan Higher Education Institute, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China
| | - Jindong Wan
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China.,Key Laboratory of Aging and Vascular Homeostasis, Sichuan Higher Education Institute, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yi Yang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China.,Key Laboratory of Aging and Vascular Homeostasis, Sichuan Higher Education Institute, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China
| | - Sen Liu
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China.,Key Laboratory of Aging and Vascular Homeostasis, Sichuan Higher Education Institute, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiaoqing Li
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
| | - Wenzhang Li
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China.,Key Laboratory of Aging and Vascular Homeostasis, Sichuan Higher Education Institute, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiaozhen Dai
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Peng Zhou
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China.,Key Laboratory of Aging and Vascular Homeostasis, Sichuan Higher Education Institute, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China
| | - Weihua Liu
- Department of Scientific Research, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China
| | - Peijian Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China.,Key Laboratory of Aging and Vascular Homeostasis, Sichuan Higher Education Institute, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
39
|
Abstract
Improved stem cell-derived pancreatic islet (SC-islet) differentiation protocols robustly generate insulin-secreting β cells from patient induced pluripotent stem cells (iPSCs). These advances are enabling in vitro disease modeling studies and the development of an autologous diabetes cell replacement therapy. SC-islet technology elucidates key features of human pancreas development and diabetes disease progression through the generation of pancreatic progenitors, endocrine progenitors, and β cells derived from diabetic and nondiabetic iPSCs. Combining disease modeling with gene editing and next-generation sequencing reveals the impact of diabetes-causing mutations and diabetic phenotypes on multiple islet cell types. In addition, the supply of SC-islets, containing β and other islet cell types, is unlimited, presenting an opportunity for personalized medicine and overcoming several disadvantages posed by donor islets. This review highlights relevant studies involving iPSC-β cells and progenitors, encompassing new conclusions involving cells from patients with diabetes and the therapeutic potential of iPSC-β cells. Improved differentiation protocols generate pancreatic islet from patient stem cells Diabetic stem cell-derived islet studies identified key markers for cell function Gene editing aims to address unmet needs for stem cell therapy field Stem cell-derived islets are a promising source for diabetes stem cell therapy
Collapse
|
40
|
Lyngbaek MPP, Legaard GE, Bennetsen SL, Feineis CS, Rasmussen V, Moegelberg N, Brinkløv CF, Nielsen AB, Kofoed KS, Lauridsen CA, Ewertsen C, Poulsen HE, Christensen R, Van Hall G, Karstoft K, Solomon TPJ, Ellingsgaard H, Almdal TP, Pedersen BK, Ried-Larsen M. The effects of different doses of exercise on pancreatic β-cell function in patients with newly diagnosed type 2 diabetes: study protocol for and rationale behind the "DOSE-EX" multi-arm parallel-group randomised clinical trial. Trials 2021; 22:244. [PMID: 33794975 PMCID: PMC8017660 DOI: 10.1186/s13063-021-05207-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/18/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Lifestyle intervention, i.e. diet and physical activity, forms the basis for care of type 2 diabetes (T2D). The current physical activity recommendation for T2D is aerobic training for 150 min/week of moderate to vigorous intensity, supplemented with resistance training 2-3 days/week, with no more than two consecutive days without physical activity. The rationale for the recommendations is based on studies showing a reduction in glycated haemoglobin (HbA1c). This reduction is supposed to be caused by increased insulin sensitivity in muscle and adipose tissue, whereas knowledge about effects on abnormalities in the liver and pancreas are scarce, with the majority of evidence stemming from in vitro and animal studies. The aim of this study is to investigate the role of the volume of exercise training as an adjunct to dietary therapy in order to improve the pancreatic β-cell function in T2D patients less than 7 years from diagnosis. The objective of this protocol for the DOSE-EX trial is to describe the scientific rationale in detail and to provide explicit information about study procedures and planned analyses. METHODS/DESIGN In a parallel-group, 4-arm assessor-blinded randomised clinical trial, 80 patients with T2D will be randomly allocated (1:1:1:1, stratified by sex) to 16 weeks in either of the following groups: (1) no intervention (CON), (2) dietary intervention (DCON), (3) dietary intervention and supervised moderate volume exercise (MED), or (4) dietary intervention and supervised high volume exercise (HED). Enrolment was initiated December 15th, 2018, and will continue until N = 80 or December 1st, 2021. Primary outcome is pancreatic beta-cell function assessed as change in late-phase disposition index (DI) from baseline to follow-up assessed by hyperglycaemic clamp. Secondary outcomes include measures of cardiometabolic risk factors and the effect on subsequent complications related to T2D. The study was approved by The Scientific Ethical Committee at the Capital Region of Denmark (H-18038298). TRIAL REGISTRATION The Effects of Different Doses of Exercise on Pancreatic β-cell Function in Patients With Newly Diagnosed Type 2 Diabetes (DOSE-EX), NCT03769883, registered 10 December 2018 https://clinicaltrials.gov/ct2/show/NCT03769883 ). Any modification to the protocol, study design, and changes in written participant information will be approved by The Scientific Ethical Committee at the Capital Region of Denmark before effectuation. DISCUSSION The data from this study will add knowledge to which volume of exercise training in combination with a dietary intervention is needed to improve β-cell function in T2D. Secondarily, our results will elucidate mechanisms of physical activity mitigating the development of micro- and macrovascular complications correlated with T2D.
Collapse
Affiliation(s)
- Mark P. P. Lyngbaek
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Grit E. Legaard
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sebastian L. Bennetsen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Camilla S. Feineis
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Villads Rasmussen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Nana Moegelberg
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Cecilie F. Brinkløv
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anette B. Nielsen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Katja S. Kofoed
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Carsten A. Lauridsen
- Department of Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Bachelor’s Degree Programme in Radiography, Copenhagen University College, Copenhagen, Denmark
| | - Caroline Ewertsen
- Department of Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Henrik E. Poulsen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Robin Christensen
- Musculoskeletal Statistics Unit, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Research, Research Unit of Rheumatology, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Gerrit Van Hall
- Biomedical Sciences, Faculty of Health & Medical Science, University of Copenhagen & Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Kristian Karstoft
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Helga Ellingsgaard
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Thomas P. Almdal
- Department of Endocrinology PE, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bente K. Pedersen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Ried-Larsen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
41
|
Stanescu AMA, Simionescu AA, Florea M, Diaconu CC. Is Metformin a Possible Beneficial Treatment for Psoriasis? A Scoping Review. J Pers Med 2021; 11:251. [PMID: 33808460 PMCID: PMC8065978 DOI: 10.3390/jpm11040251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a chronic inflammatory condition with genetic, immunological, and metabolic etiology. The link between psoriasis and diabetes mellitus has been shown in genetic predisposition, environmental influences, inflammatory pathways, and insulin resistance, resulting in end-organ damage in both conditions. Because comorbidities often accompany psoriasis, the therapeutic management of the disease must also take into consideration the comorbidities. Given that metformin's therapeutic role in psoriasis is not yet fully elucidated, we raised the question of whether metformin is a viable alternative for the treatment of psoriasis. We conducted this scoping review by searching for evidence in PubMed, Cochrane, and Scopus databases, and we used an extension for scoping reviews (PRISMA-ScR). Current evidence suggests that metformin is safe to use in psoriasis. Studies have shown an excellent therapeutic response to metformin in patients with psoriasis and comorbidities such as diabetes, metabolic syndrome, and obesity. There is no clear evidence supporting metformin monotherapy in patients with psoriasis without comorbidities. There is a need to further evaluate metformin in larger clinical trials, as a therapy in psoriasis.
Collapse
Affiliation(s)
| | - Anca Angela Simionescu
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mira Florea
- Community Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Camelia Cristina Diaconu
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
42
|
Gong Q, Wang H, Yu P, Qian T, Xu X. Protective or Harmful: The Dual Roles of Autophagy in Diabetic Retinopathy. Front Med (Lausanne) 2021; 8:644121. [PMID: 33842506 PMCID: PMC8026897 DOI: 10.3389/fmed.2021.644121] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/26/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a self-degradative pathway involving intracellular substance degradation and recycling. Recently, this process has attracted a great deal of attention for its fundamental effect on physiological processes in cells, tissues, and the maintenance of organismal homeostasis. Dysregulation of autophagy occurs in some diseases, including immune disease, cancer, and neurodegenerative conditions. Diabetic retinopathy (DR), as a serious microvascular complication of diabetes, is the main cause of visual loss in working-age adults worldwide. The pathogenic mechanisms of DR are thought to be associated with accumulation of oxidative stress, retinal cell apoptosis, inflammatory response, endoplasmic reticulum (ER) stress, and nutrient starvation. These factors are closely related to the regulation of autophagy under pathological conditions. Increasing evidence has demonstrated the potential role of autophagy in the progression of DR through different pathways. However, to date this role is not understood, and whether the altered level of autophagy flux protects DR, or instead aggravates the progression, needs to be explored. In this review, we explore the alterations and functions of autophagy in different retinal cells and tissues under DR conditions, and explain the mechanisms involved in DR progression. We aim to provide a basis on which DR associated stress-modulated autophagy may be understood, and to suggest novel targets for future therapeutic intervention in DR.
Collapse
Affiliation(s)
- Qiaoyun Gong
- Shanghai Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital, Shanghai, China
| | - Haiyan Wang
- Shanghai Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital, Shanghai, China
| | - Ping Yu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianwei Qian
- Shanghai Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital, Shanghai, China
| | - Xun Xu
- Shanghai Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital, Shanghai, China
| |
Collapse
|
43
|
Rachfal AW, Grant SFA, Schwartz SS. The Diabetes Syndrome - A Collection of Conditions with Common, Interrelated Pathophysiologic Mechanisms. Int J Gen Med 2021; 14:923-936. [PMID: 33776471 PMCID: PMC7987256 DOI: 10.2147/ijgm.s305156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/08/2021] [Indexed: 11/23/2022] Open
Abstract
The four basic pathophysiologic mechanisms which damage the β-cell within diabetes (ie, genetic and epigenetic changes, inflammation, an abnormal environment, and insulin resistance [IR]) also contribute to cell and tissue damage and elevate the risk of developing all typical diabetes-related complications. Genetic susceptibility to damage from abnormal external and internal environmental factors has been described including inflammation and IR. All these mechanisms can promote epigenetic changes, and in total, these pathophysiologic mechanisms interact and react with each other to cause damage to cells and tissues ultimately leading to disease. Importantly, these pathophysiologic mechanisms also serve to link other common conditions including cancer, dementia, psoriasis, atherosclerotic cardiovascular disease (ASCVD), nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). The "Diabetes Syndrome", an overarching group of interrelated conditions linked by these overlapping mechanisms, can be viewed as a conceptual framework that can facilitate understanding of the inter-relationships of superficially disparate conditions. Recognizing the association of the conditions within the Diabetes Syndrome due to common pathophysiologies has the potential to provide both benefit to the patient (eg, prevention, early detection, precision medicine) and to the advancement of medicine (eg, driving education, research, and dynamic decision-based medical practice).
Collapse
Affiliation(s)
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania, Perlman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perlman School of Medicine, Philadelphia, PA, USA
| | - Stanley S Schwartz
- Stanley Schwartz MD, LLC, Main Line Health System, Wynnewood, PA, USA
- University of Pennsylvania, Perlman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
44
|
Azarcon CP, Artiaga JCM. Comparison of Pain Scores Among Patients Undergoing Conventional and Novel Panretinal Photocoagulation for Diabetic Retinopathy: A Systematic Review. Clin Ophthalmol 2021; 15:953-971. [PMID: 33688163 PMCID: PMC7936685 DOI: 10.2147/opth.s294227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To summarize key findings from a systematic review focusing on pain as an adverse outcome of panretinal photocoagulation (PRP) among patients with diabetic retinopathy. DESIGN Systematic review. METHODS We systematically searched articles in major databases from July to September 2020. Studies that compared pain outcomes of PRP among diabetic patients who underwent conventional single-spot laser (SSL), conventional multi-spot laser (MSL), and/or novel navigated laser (NNL) were included. The Cochrane RoB 2 tool and ROBINS-I tool were used to evaluate the risk of bias of the included randomized controlled trials (RCTs) and controlled clinical trials (CCTs), respectively. RESULTS We included 13 RCTs and 4 CCTs. Thirteen studies were included for Comparison 1 (Conventional SSL versus Conventional MSL), 3 studies were included for Comparison 2 (NNL versus Conventional MSL), and 3 studies were included for Comparison 3 (NNL versus Conventional SSL). A total of 783 patients and 1961 eyes were included in this review. The review showed that NNL yielded the lowest pain scores, followed by conventional MSL, then by conventional SSL. CONCLUSION This review summarizes findings of multiple studies that reported pain as an adverse outcome of PRP among patients with advanced diabetic retinopathy. Data from RCTs with mostly some concerns for bias (RoB 2 tool) and CCTs with mostly moderate risk of bias (ROBINS-I tool) show benefit of using MSL over SSL, and NNL over conventional systems for PRP in diabetic retinopathy, considering pain as the primary outcome.
Collapse
Affiliation(s)
- Corrina P Azarcon
- Department of Ophthalmology and Visual Sciences, Philippine General Hospital, University of the Philippines – Manila, Manila, Philippines
| | - Jose Carlo M Artiaga
- International Eye Institute, St. Luke’s Medical Center Global City, Taguig City, Philippines
- Department of Ophthalmology, Ospital ng Muntinlupa, Muntinlupa City, Philippines
| |
Collapse
|
45
|
Tok K, Moulahoum H, Kocadag Kocazorbaz E, Zihnioglu F. Bioactive peptides with multiple activities extracted from Barley (
Hordeum vulgare
L.) grain protein hydrolysates: Biochemical analysis and computational identification. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kerem Tok
- Department of Biochemistry Ege University Bornova‐Izmir Turkey
| | | | | | - Figen Zihnioglu
- Department of Biochemistry Ege University Bornova‐Izmir Turkey
| |
Collapse
|
46
|
Abramczyk R, Queller JN, Rachfal AW, Schwartz SS. Diabetes and Psoriasis: Different Sides of the Same Prism. Diabetes Metab Syndr Obes 2020; 13:3571-3577. [PMID: 33116708 PMCID: PMC7548229 DOI: 10.2147/dmso.s273147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes and psoriasis are prevalent conditions with a spectrum of serious adverse outcomes. Both diseases are common comorbidities for each other, and diabetes is considered as a risk factor for psoriasis and vice versa. However, it is our contention that these diseases are not merely comorbidities of each other but rather share common underlying pathophysiologies (ie, genes and epigenetic changes, inflammation, abnormal environment, and insulin resistance) that drive disease. As such, they can be viewed as facets of the same prism. Genes can cause or permit susceptibility to damage from abnormal external and internal environmental factors, inflammation, and insulin resistance which can also drive epigenetic changes. These co-existing mechanisms act in a vicious cycle over time to potentiate cell and tissue damage to ultimately drive disease. Viewing diabetes and psoriasis through the same prism suggests potential for therapies that could be used to treat both conditions. Although additional controlled trials and research are warranted, we believe that our understanding of the overlapping pathophysiologies continues to grow, so too will our therapeutic options.
Collapse
Affiliation(s)
| | | | | | - Stanley S Schwartz
- Stanley Schwartz, LLC, Main Line Health System, Ardmore, PA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Porphyromonas gingivalis lipopolysaccharide and glycated serum albumin increase the production of several pro-inflammatory molecules in human gingival fibroblasts via NFκB. Arch Oral Biol 2020; 116:104766. [DOI: 10.1016/j.archoralbio.2020.104766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022]
|
48
|
Hall C, Yu H, Choi E. Insulin receptor endocytosis in the pathophysiology of insulin resistance. Exp Mol Med 2020; 52:911-920. [PMID: 32576931 PMCID: PMC7338473 DOI: 10.1038/s12276-020-0456-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Insulin signaling controls cell growth and metabolic homeostasis. Dysregulation of this pathway causes metabolic diseases such as diabetes. Insulin signaling pathways have been extensively studied. Upon insulin binding, the insulin receptor (IR) triggers downstream signaling cascades. The active IR is then internalized by clathrin-mediated endocytosis. Despite decades of studies, the mechanism and regulation of clathrin-mediated endocytosis of IR remain incompletely understood. Recent studies have revealed feedback regulation of IR endocytosis through Src homology phosphatase 2 (SHP2) and the mitogen-activated protein kinase (MAPK) pathway. Here we review the molecular mechanism of IR endocytosis and its impact on the pathophysiology of insulin resistance, and discuss the potential of SHP2 as a therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Catherine Hall
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Hongtao Yu
- Laboratory of Cell Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA.
| | - Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
49
|
Effect of Dipeptidyl-Peptidase 4 Inhibitors on Circulating Oxidative Stress Biomarkers in Patients with Type 2 Diabetes Mellitus. Antioxidants (Basel) 2020; 9:antiox9030233. [PMID: 32168854 PMCID: PMC7139569 DOI: 10.3390/antiox9030233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Pre-clinical studies suggested potential cardiovascular benefits of dipeptidyl peptidase-4 inhibitors (DPP4i), however, clinical trials showed neither beneficial nor detrimental effects in patients with type 2 diabetes mellitus (T2DM). We examined the effects of DPP4i on several circulating oxidative stress markers in a cohort of 32 T2DM patients (21 males and 11 post-menopausal females), who were already on routine antidiabetic treatment. Propensity score matching was used to adjust demographic and clinical characteristics between patients who received and who did not receive DPP4i. Whole-blood reactive oxygen species (ROS), plasma advanced glycation end products (AGEs), advanced oxidation protein products (AOPP), carbonyl residues, as well as ferric reducing ability of plasma (FRAP) and leukocyte DNA oxidative damage (Fpg sites), were evaluated. With the exception of Fpg sites, that showed a borderline increase in DPP4i users compared to non-users (p = 0.0507), none of the biomarkers measured was affected by DPP4i treatment. An inverse correlation between estimated glomerular filtration rate and AGEs (p < 0.0001) and Fpg sites (p < 0.05) was also observed. This study does not show any major effect of DPP4i on oxidative stress, assessed by several circulating biomarkers of oxidative damage, in propensity score-matched cohorts of T2DM patients.
Collapse
|
50
|
Zoabi H, Nemcovsky CE, Bender O, Moses O, Weinreb M. Accelerated degradation of collagen membranes in type 1 diabetic rats is associated with increased expression and production of several inflammatory molecules. J Periodontol 2020; 91:1348-1356. [PMID: 32056217 DOI: 10.1002/jper.19-0503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/19/2019] [Accepted: 01/19/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Membrane durability is critical for regenerative procedures. We reported previously that type 1-like diabetes in rats accelerates the degradation of collagen membranes and we tested here whether this is associated with increased local production of inflammatory molecules as part of a diabetes-induced chronic inflammation around and within the membranes. METHODS Collagen membrane discs were implanted under the scalp in diabetic (streptozotocin-induced) and control rats, which were sacrificed after 2 or 3 weeks. Total RNA and proteins were isolated from the membrane and its surrounding tissues and the expression and production of six inflammatory molecules (interleukin-6 [IL-6], tumor necrosis factor alpha [TNFα], matrix metalloproteinase [MMP]-9, macrophage migration inhibitory factor [MIF], MIP-1α, and MIP-2α) was measured using real-time PCR and western blotting, respectively. Minimal histological analysis of the membranes was conducted to conform to previous studies. RESULTS Hyperglycemia resulted in reduced membrane thickness (by 10% to 25%) and increased mononuclear infiltrate inside the membrane. mRNA and protein levels of IL-6, TNFα, and MMP-9 were elevated in diabetic rats both 2 and 3 weeks post-surgery. The levels (both mRNA and protein) of MIF were increased at 2 weeks post-surgery and those of MIP-1α and MIP-2α at 3 weeks. There was a very good match in the temporal changes of all examined genes between the mRNA and protein levels. CONCLUSIONS Elevated local production of inflammatory cytokines and MMPs, together with apparent mononuclear infiltrate and increased collagenolysis confirm that hyperglycemia leads to a chronic inflammation in and around the implanted collagen membranes, which reduces membrane longevity.
Collapse
Affiliation(s)
- Hasan Zoabi
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Carlos E Nemcovsky
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Omer Bender
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ofer Moses
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Miron Weinreb
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|