1
|
Hechen W, Yanqiao X, Longchan L, Weiman Z, Lihua G, Aizhen X, Zhengtao W, Li Y. Development of a microarray microfluidic chip mass spectrometry platform based on UV curable 3D hepatocellular sphere bio-ink for rapid screening inhibitors of advanced glycosylation end products from natural compounds. Biosens Bioelectron 2025; 284:117499. [PMID: 40344698 DOI: 10.1016/j.bios.2025.117499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/09/2025] [Accepted: 04/19/2025] [Indexed: 05/11/2025]
Abstract
Advanced glycation end products (AGEs) are the unwanted by-products of excessive sugar intake, and their generation and accumulation promote aging and disease occurrence. However, the lack of robust biology model and platform for fast evaluating AGE generation and accumulation under intervention of drugs hampers AGEs-targeted therapeutic development. This work described a novel biological high AGEs recombinant extracellular matrix 3D human hepatocellular spheres model was built, under the same cell numbers, this 3D hepatocellular spheres expressed more AGEs over an order of magnitude than monolayer culture cells. Combined with UV curable gelatin methacryloyl (GelMA), biological 3D human hepatocellular sphere were made into a extruded type bio-ink with high AGEs, simply encapsulated in a hepatic lobule shaped micro array polymethyl methacrylate (PMMA) microfluidic chip successfully. Due to this biomimetic fluid microreactor environment, our biological microfluidic chip enables effectively determine the inhibition capacity of compounds on endogenous AGE accumulation with a high sensitivity and in a short time, total determination workflow less than 2.5 h, it takes 1/200 of the time required by mainstream methods. The evaluation results showed that alisol B 23-monoacetate and chlorogenic acid were potential natural AGEs inhibitors. Moreover, the integration of high AGEs bio-ink and microfluidic chip provides a promising tool for AGE-related drug discovery and liver disease research.
Collapse
Affiliation(s)
- Wang Hechen
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicine, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Xie Yanqiao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicine, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Liu Longchan
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicine, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhao Weiman
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicine, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Gu Lihua
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicine, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Xiong Aizhen
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicine, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Wang Zhengtao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicine, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Yang Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicine, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
2
|
Yao C, Wang H, Han J, Yang K, Lin T, Jin J, Zhu C, Liu H. Zn-Based Multi-Active Framework Nanoparticles TSA-CAN-Zn Inhibit Skin Glycation via Dual Blockade of HMGB1/RAGE and AGEs/RAGE Pathways. Adv Healthc Mater 2025:e2500664. [PMID: 40370206 DOI: 10.1002/adhm.202500664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/24/2025] [Indexed: 05/16/2025]
Abstract
Receptor for advanced glycation end products (RAGE) plays an important role in skin glycation damage. High-mobility group 1B protein (HMGB1) and advanced glycation end products (AGEs) are key RAGE ligands. Simultaneous inhibition of HMGB1/RAGE and AGEs/RAGE pathways maybe an effective strategy to alleviate glycation induced skin damage. In this work, Theasinensin A (TSA) is identified as the active molecule inhibiting HMGB1-RAGE interaction through molecular docking. To simultaneously suppress HMGB1/RAGE and AGEs/RAGE pathways, Zn-based multi-active framework nanoparticles TSA-CAN-Zn are designed, which contain TSA and the active molecule L-carnosine (CAN) that inhibits AGEs production. In vitro studies demonstrated that TSA-CAN-Zn have radical scavenging activity and AGEs formation inhibition activity. TSA-CAN-Zn can not only inhibit ROS accumulation, cell apoptosis, and inflammatory factors production induced by glycation in HaCaT cells but also enhanced the lysosomal degradation of AGEs. TSA-CAN-Zn also mitigated the damage caused by glycation in mouse skin glycation model. Single-cell RNA sequencing results revealed the impact of TSA-CAN-Zn on different cell types of skin tissue, especially the basal cells of the epidermal layer and inflammation-related macrophages. And pathway analysis revealed that TSA-CAN-Zn mainly influences the downstream pathways of RAGE. Collectively, TSA-CAN-Zn is a promising therapeutic candidate for ameliorating glycation-induced skin damage.
Collapse
Affiliation(s)
- Cheng Yao
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
- Shanghai Cheermore Aesthetic Clinic, Shanghai, China
| | - Heqi Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Kai Yang
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Tingting Lin
- Medical plastic and cosmetic center, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jing Jin
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
- Shanghai Cheermore Aesthetic Clinic, Shanghai, China
| | - Caibin Zhu
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Lei SS, Wang YY, Huang XW, Wang XP, Gao M, Li B. Epimedium brevicornum Maxim alleviates diabetes osteoporosis by regulating AGE-RAGE signaling pathway. Mol Med 2025; 31:101. [PMID: 40089686 PMCID: PMC11910004 DOI: 10.1186/s10020-025-01152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
OBJECTIVES Epimedium brevicornum Maxim (EP) has a history of utilization in Chinese traditional medicine for the treatment of bone diseases. However, the precise mechanism by which EP extract (EPE) operates in Diabetes osteoporosis (DOP) remains ambiguous. The study was aimed to explore the effects and underlying mechanisms of EPE on DOP, with particular emphasis on the AGE-RAGE pathway. METHODS The DOP model was induced through a combination of a high-sugar and high-fat diet along with streptozotocin injection. Following treatment with EPE, blood glucose levels, body weight, and serum biomarkers were measured. The trabecular microstructure of the femur was analyzed using micro-CT tomography and H&E staining. Bioinformatics techniques, including network pharmacology and molecular docking, were utilized to identify key targets of EP for DOP. The predicted targets and pathways were further validated through RT-PCR, TSA analysis ELISA, and western blotting (WB), respectively. RESULTS The findings from animal experiments indicate that EPE has a positive impact on weight and blood glucose levels, particularly in reversing the decrease and disordered arrangement of bone trabeculae. Bioinformatics analysis reveals the involvement of the AGE-RAGE pathways in the treatment of DOP with EPE. Subsequent animal validation experiments demonstrate that EPE can regulate key proteins AGE-RAGE pathway, resulting in reducing the inflammatory factors and apoptosis, including advanced Glycation End-products (RGEs), receptor for Advanced Glycation End-products (RAGE), Interleukin-6 (IL-6), Interleukin-1β (IL-1β), Nuclear Factor Kappa B (NF-κB), BCL2-Associated X protein (Bax), B-cell lymphoma 2(Bcl2), and etc. CONCLUSION: This study provides clear evidence that EPE mitigates DOP through enhancement of the AGE-RAGE pathways, offering innovative insights and approaches for clinical utilization.
Collapse
Affiliation(s)
- Shan Shan Lei
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, P.R. China
| | - Yu Yan Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiao Wen Huang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, P.R. China
| | - Xu Ping Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, P.R. China
| | - Ming Gao
- First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China.
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
4
|
Ambekar AS, Naredi N, Malakar D, Vashum Y, Misra P, Kulkarni M. Early and advanced glycation end product analysis from women with PCOS on metformin. Reprod Biol 2025; 25:100993. [PMID: 39813874 DOI: 10.1016/j.repbio.2024.100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 08/13/2024] [Accepted: 12/28/2024] [Indexed: 01/18/2025]
Abstract
In this cross-sectional study, we have analyzed advanced glycation end products (AGEs) in the plasma and follicular fluid of women with polycystic ovary syndrome (PCOS) taking metformin during in vitro fertilization (IVF) and control women undergoing IVF. Glucose, fructose, fructosamine, carboxymethyl lysine/ arginine (CML/R) proteins, and pentosidine were measured in the plasma and paired follicular fluid. Glycated proteins were characterized by mass spectrometry. Fasting serum glucose and fructosamine were comparable; however, follicular fluid glucose and fructosamine were higher in the PCOS group, and other AGEs remained unaltered. Fructose was lower in both serum and follicular fluid from the PCOS group. A positive correlation between some of these AGEs and sugars estimated was observed. Glucose and fructosamine in the follicular fluid correlated with the antral follicle count. The number of glycated peptides identified in the PCOS group by mass spectrometry was more. Glycated K75, K402 amino acid residues of albumin were detected in the PCOS group only. Additionally, some proteins involved in steroidogenesis and oocyte maturation as well as transporters, and extracellular matrix proteins, were found to be glycated in the PCOS group, which may affect their function. Elevated glucose and fructosamine in the follicular fluid of the PCOS group may contribute to abnormal folliculogenesis. The glycation of albumin should be validated in more samples to be considered as a marker for PCOS diagnosis.
Collapse
Affiliation(s)
- Aditi S Ambekar
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India
| | - Nikita Naredi
- Assisted Reproductive Technology (ART) Center, Command Hospital Southern Command (CHSC), Pune, Maharashtra 411040, India
| | - Dipankar Malakar
- SCIEX, A DHR Holding India Pvt. Ltd., Bengaluru, Karnataka 562149, India
| | - Y Vashum
- Department of Biochemistry, Armed Forces Medical College, Pune, Maharashtra 411040, India
| | - Pratibha Misra
- Department of Biochemistry, Armed Forces Medical College, Pune, Maharashtra 411040, India
| | - Mahesh Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India.
| |
Collapse
|
5
|
Csiha S, Hernyák M, Molnár Á, Lőrincz H, Katkó M, Paragh G, Bodor M, Harangi M, Sztanek F, Berta E. Alpha-Lipoic Acid Treatment Reduces the Levels of Advanced End Glycation Products in Type 2 Diabetes Patients with Neuropathy. Biomedicines 2025; 13:438. [PMID: 40002851 PMCID: PMC11852413 DOI: 10.3390/biomedicines13020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Type 2 diabetes mellitus (T2DM) and its macro- and microvascular complications are major health concerns with multiple factors, like advanced end glycation products (AGEs), in the background. AGEs induce long-lasting functional modification of the proteins and collagen in the vascular wall and nerve tissue. We investigated the effect of alpha-lipoic acid (ALA) treatment on AGEs, soluble AGE receptor (sRAGE), the AGE/sRAGE ratio, and the parameters of endothelial dysfunction and their correlations. Methods: In our 6-month intervention study, 54 T2DM patients with neuropathy treated according to the actual therapeutic guidelines with unchanged oral antidiabetic drugs were included and treated by daily oral administration of 600 mg ALA. A total of 24 gender and age-matched T2DM patients without neuropathy served as controls. Results: In our work, we first demonstrated the attenuating effect of alpha lipoic acid therapy on AGEs in humans (11.89 (9.44-12.88) to 10.95 (9.81-12.82) AU/μg (p = 0.017)). sRAGE levels or the AGEs/sRAGE ratio were not affected by ALA treatment or by the presence of neuropathy. We found a correlation between the changes of AGEs and the improvement of current perception threshold and progranulin levels, and an inverse correlation with the change of asymmetric dimethylarginine. Conclusions: According to our results, ALA decreases AGEs, which may contribute to the clinically well-known beneficial effect in diabetic neuropathy and improvement of endothelial function.
Collapse
Affiliation(s)
- Sára Csiha
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Marcell Hernyák
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ágnes Molnár
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Hajnalka Lőrincz
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Mónika Katkó
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - György Paragh
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Miklós Bodor
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
| | - Mariann Harangi
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ferenc Sztanek
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Eszter Berta
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
6
|
Gąsecka A, Siniarski A, Duchnowski P, Stępień K, Błażejowska E, Gajewska M, Karaban K, Porębska K, Reda A, Rogula S, Rolek B, Słupik D, Gozdowska R, Kleibert M, Zajkowska D, Grąt M, Grabowski M, Filipiak KJ, van der Pol E, Nieuwland R. Leukocyte Extracellular Vesicles Predict Progression of Systolic Dysfunction in Heart Failure with Mildly Reduced Ejection Fraction (LYCHEE) - A Prospective, Multicentre Cohort Study. J Cardiovasc Transl Res 2025; 18:17-27. [PMID: 39316271 PMCID: PMC11885366 DOI: 10.1007/s12265-024-10561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Risk stratification in heart failure with mildly-reduced ejection fraction (HFmrEF) remains challenging. We evaluated the predictive value of advanced glycation end products (AGEs) and plasma concentrations of extracellular vesicles (EVs) for the systolic and diastolic dysfunction progression in HFmrEF patients. Skin AGE accumulation was measured using AGE Reader. Plasma EV concentrations were measured using flow cytometry. Among 74 patients enrolled, 13 (18%) had systolic dysfunction progression and 5 (7%) had diastolic dysfunction progression during 6.5 months follow-up. Leukocyte EVs concentrations were higher in patients with systolic dysfunction progression (p = 0.002) and predicted the progression with 75.0% sensitivity and 58.3% specificity, independent of other clinical variables (OR 4.72, 95% CI 0.99-22.31). Skin AGE levels and concentrations of other EV subtypes were not associated with systolic or diastolic dysfunction progression. Increased leukocyte EVs concentrations are associated with 4.7-fold higher odds of systolic dysfunction progression in HFmrEF patients.
Collapse
Affiliation(s)
- Aleksandra Gąsecka
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
- Laboratory of Experimental Clinical Chemistry & Amsterdam Vesicle Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Aleksander Siniarski
- Department of Coronary Artery Disease and Heart Failure, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- St. John Paul II Hospital in Krakow, Krakow, Poland
| | - Piotr Duchnowski
- Ambulatory Care Unit, Cardinal Wyszynski National Institute of Cardiology, Warsaw, Poland
| | - Konrad Stępień
- Department of Coronary Artery Disease and Heart Failure, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- St. John Paul II Hospital in Krakow, Krakow, Poland
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Ewelina Błażejowska
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
- Laboratory of Experimental Clinical Chemistry & Amsterdam Vesicle Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Magdalena Gajewska
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland.
| | - Kacper Karaban
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Kinga Porębska
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Aleksandra Reda
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Sylwester Rogula
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Bartosz Rolek
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Dorota Słupik
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Roksana Gozdowska
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Marcin Kleibert
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Dominika Zajkowska
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Michał Grąt
- Department of General, Gastroenterological and Oncological Surgery, Medical Universityof Warsaw, Warsaw, Poland
| | - Marcin Grabowski
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Krzysztof J Filipiak
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
- Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy, Warsaw, Poland
| | - Edwin van der Pol
- Laboratory of Experimental Clinical Chemistry & Amsterdam Vesicle Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry & Amsterdam Vesicle Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Oliveira JS, da Silva JA, de Freitas BVM, Alfenas RCG, Bressan J. A Mediterranean diet improves glycation markers in healthy people and in those with chronic diseases: a systematic review of clinical trials. Nutr Rev 2025; 83:e317-e331. [PMID: 38719207 DOI: 10.1093/nutrit/nuae045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
CONTEXT Consumption of the Mediterranean diet (MedDiet) has beneficial effects on cardiometabolic health and aging. OBJECTIVE This systematic review aimed to critically investigate the effect of the MedDiet on glycation markers in healthy or overweight individuals with type 2 diabetes or cardiovascular disease. DATA SOURCES MEDLINE, EMBASE, Web of Science, and the Cochrane Library were searched, using the terms "Mediterranean diet" AND "glycation end products, advanced". DATA EXTRACTION Three randomized and 3 nonrandomized clinical trials, containing data on 2935 adult and elderly individuals with normal weight or overweight, were included. All extracted data were compiled, compared, and critically analyzed. DATA ANALYSIS The authors of most of the studies demonstrated a reduction in serum concentrations of advanced glycation end products (AGEs), such as εN-carboxymethyllysine and methylglyoxal, and in skin autofluorescence levels after at least 4 weeks of adherence to the MedDiet. The MedDiet also led to positive effects on gene expression of receptors for AGEs, as RAGE and AGER1, and an enzyme involved in detoxification (glyoxalase I). There is no evidence that short-term adherence affects glycation markers. CONCLUSIONS Glycation markers improved in response to the MedDiet. The possible mechanisms involved may be related to the low AGE and refined sugars content of the diet, as well as its high monounsaturated fatty acid, phenolic compound, and dietary fiber contents. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021284006.
Collapse
Affiliation(s)
- Julia S Oliveira
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jessica A da Silva
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Brenda V M de Freitas
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Rita C G Alfenas
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Josefina Bressan
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
8
|
Pan Y, Li Y, Zhou X, Luo J, Ding Q, Pan R, Tian X. Extracellular Matrix-Mimicking Hydrogel with Angiogenic and Immunomodulatory Properties Accelerates Healing of Diabetic Wounds by Promoting Autophagy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4608-4625. [PMID: 39800939 DOI: 10.1021/acsami.4c18945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The management of diabetic wounds faces significant challenges due to the excessive activation of reactive oxygen species (ROS), dysregulation of the inflammatory response, and impaired angiogenesis. A substantial body of evidence suggests that the aforementioned diverse factors contributing to the delayed healing of diabetic wounds may be associated with impaired autophagy. Impaired autophagy leads to endothelial and fibroblast dysfunction and impedes macrophage phenotypic transformation. This disruption hinders angiogenesis and extracellular matrix deposition, ultimately culminating in delayed wound healing. Therefore, biomaterials possessing autophagy regulatory functions hold significant potential for clinical applications in enhancing the healing of diabetic wounds. A hybrid multifunctional hydrogel (GelMa@SIS-Qu) has been developed, comprising methacrylamide gelatin (GelMa), a small intestine submucosal acellular matrix (SIS), and quercetin nanoparticles, which demonstrates the capability to promote autophagy. The promotion of autophagy not only reduces ROS levels in endothelial cells and enhances their antioxidant activity but also mitigates ROS-induced endothelial cell dysfunction and apoptosis, thereby promoting angiogenesis. Furthermore, the promotion of autophagy facilitates the phenotypic transformation of macrophages from the M1 phenotype to the M2 phenotype. This study investigates the distinctive mechanisms of the GelMa@SIS-Qu hydrogel and proposes a promising therapeutic strategy for treating diabetes-related wounds.
Collapse
Affiliation(s)
- Yujie Pan
- School of Clinical Medicine, Guizhou Medical University, Guiyang 561113, Guizhou, China
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yangyang Li
- School of Basic Medicine, Guizhou Medical University, Guiyang 561113, Guizhou, China
- Beijing Jishuitan Hospital Guizhou Hospital, Guiyang 550014, Guizhou, China
| | - Xin Zhou
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jin Luo
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Qiuyue Ding
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang 550000, Guizhou, China
| | - Runsang Pan
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang 550000, Guizhou, China
| | - Xiaobin Tian
- School of Clinical Medicine, Guizhou Medical University, Guiyang 561113, Guizhou, China
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| |
Collapse
|
9
|
Wang B, Jiang T, Qi Y, Luo S, Xia Y, Lang B, Zhang B, Zheng S. AGE-RAGE Axis and Cardiovascular Diseases: Pathophysiologic Mechanisms and Prospects for Clinical Applications. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07639-0. [PMID: 39499399 DOI: 10.1007/s10557-024-07639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/07/2024]
Abstract
Advanced glycation end products (AGE), a diverse array of molecules generated through non-enzymatic glycosylation, in conjunction with the receptor of advanced glycation end products (RAGE), play a crucial role in the pathogenesis of diabetes and its associated complications. Recent studies have revealed that the AGE-RAGE axis potentially accelerated the progression of cardiovascular diseases, including heart failure, atherosclerosis, myocarditis, pulmonary hypertension, hypertension, arrhythmia, and other related conditions. The AGE-RAGE axis is intricately involved in the initiation and progression of cardiovascular diseases, independently of its engagement in diabetes. The mechanisms include oxidative stress, inflammation, alterations in autophagy flux, and mitochondrial dysfunction. Conversely, inhibition of AGE production, disruption of the binding between RAGE and its ligands, or silencing of RAGE expression could effectively impair the function of AGE-RAGE axis, thereby delaying or ameliorating the aforementioned diseases. AGE and the soluble receptor for advanced glycation end products (sRAGE) have the potential to be novel predictors of cardiovascular diseases. In this review, we provide an in-depth overview towards the biosynthetic pathway of AGE and elucidate the pathophysiological implications in various cardiovascular diseases. Furthermore, we delve into the profound role of RAGE in cardiovascular diseases, offering novel insights for further exploration of the AGE-RAGE axis and potential strategies for the prevention and management of cardiovascular disorders.
Collapse
Affiliation(s)
- Bijian Wang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Taidou Jiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Yaoyu Qi
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Sha Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Ying Xia
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Binyan Lang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Bolan Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Shuzhan Zheng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
10
|
Erim B, Binici Hİ. Advanced glycation end products: understanding their health risks and effective prevention strategies. NUTRIRE 2024; 49:54. [DOI: 10.1186/s41110-024-00298-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 01/03/2025]
|
11
|
Wang Y, Li S, Zhang T, Wang J, Zhang X, Li M, Gao Y, Zhang M, Chen H. Effects of myricetin and its derivatives on nonenzymatic glycation: A mechanism study based on proteomic modification and fluorescence spectroscopy analysis. Food Chem 2024; 455:139880. [PMID: 38852282 DOI: 10.1016/j.foodchem.2024.139880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Myricetin and its derivatives, myricitrin and dihydromyricetin, are flavonoids widely presented in foods and phytomedicine that possess tremendous health potential. In this study, we compared the antiglycation activity of myricetin and its derivatives, then investigated the underlying mechanism using proteomic modification and fluorescence spectroscopy analysis. All three compounds exhibited thorough inhibition on nonenzymatic glycation process, with the inhibitory effects on AGEs reaching 85% at 40 μmol/L. They effectively protected bovine serum albumin (BSA) structure by inhibiting protein oxidation, preventing the conversion from α-helix to β-sheet, and reducing amyloid-like cross-β structure formation. Among the three compounds, myricetin showed a predominant antiglycation activity. Proteomic analysis identified the early glycated sites that were protected by myricetin, including lysine K235, 256, 336, 421, 420, 489, etc. Additionally, fluorescence spectroscopy revealed spontaneous interactions between BSA and myricetin. Overall, myricetin holds promise as an antiglycation agent in both the food and drug industries.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Yan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
12
|
Kirlioglu Balcioglu SS, Kurt Sabitay I, Uysal A, Yildirim Servi E, Yaman M, Mizrak OF, Ozturk N, Isiksacan N, Guclu O. Evaluation of changes in carbonyl stress markers with treatment in male patients with bipolar disorder manic episode: A controlled study. J Affect Disord 2024; 362:1-8. [PMID: 38944288 DOI: 10.1016/j.jad.2024.06.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/26/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Carbonyl stress, a metabolic state characterized by elevated production of reactive carbonyl compounds (RCCs), is closely related to oxidative stress and has been implicated in various diseases. This study aims to investigate carbonyl stress parameters in drug-free bipolar disorder (BD) patients compared to healthy controls, explore their relationship with clinical features, and assess the effect of treatment on these parameters. METHODS Patients with a primary diagnosis of a manic episode of BD and healthy controls were recruited. Exclusion criteria included intellectual disability, presence of neurological diseases, chronic medical conditions such as diabetes mellitus and metabolic syndrome, and clinical signs of inflammation. Levels of serum carbonyl stress parameters were determined using high-performance liquid chromatography. RESULTS Levels of glyoxal (GO) and methylglyoxal (MGO) did not differ between pre- and post-treatment patients, but malondialdehyde (MDA) levels decreased significantly post-treatment. Pre-treatment MGO and MDA levels were higher in patients compared to controls, and these differences persisted post-treatment. After adjusting for BMI and waist circumference, only MDA levels remained significantly higher in patients compared to controls. LIMITATIONS The study's limitations include the exclusion of female patients, which precluded any assessment of potential gender differences, and the lack of analysis of the effect of specific mood stabilizers or antipsychotic drugs. CONCLUSIONS This study is the first to focus on carbonyl stress markers in BD, specifically GO, MGO, and MDA. MDA levels remained significantly higher in patients, suggesting a potential role in BD pathophysiology. MGO levels were influenced by metabolic parameters, indicating a potential link to neurotoxicity in BD. Further research with larger cohorts is needed to better understand the role of RCCs in BD and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Simge Seren Kirlioglu Balcioglu
- Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkiye; Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkiye.
| | - Imren Kurt Sabitay
- Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkiye
| | - Aybegum Uysal
- Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkiye
| | - Esra Yildirim Servi
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkiye
| | - Mustafa Yaman
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkiye
| | - Omer Faruk Mizrak
- Sabri Ulker Food and Nutrition Center, Istanbul Sabahattin Zaim University, Istanbul, Turkiye
| | | | - Nilgun Isiksacan
- Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkiye; Department of Biochemistry, Dr Sadi Konuk Training and Research Hospital, Istanbul, Turkiye
| | - Oya Guclu
- Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkiye
| |
Collapse
|
13
|
Chen Y, Meng Z, Li Y, Liu S, Hu P, Luo E. Advanced glycation end products and reactive oxygen species: uncovering the potential role of ferroptosis in diabetic complications. Mol Med 2024; 30:141. [PMID: 39251935 PMCID: PMC11385660 DOI: 10.1186/s10020-024-00905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Advanced glycation end products (AGEs) are a diverse range of compounds that are formed when free amino groups of proteins, lipids, and nucleic acids are carbonylated by reactive carbonyl species or glycosylated by reducing sugars. Hyperglycemia in patients with diabetes can cause an overabundance of AGEs. Excess AGEs are generally acknowledged as major contributing factors to the development of diabetic complications because of their ability to break down the extracellular matrix directly and initiate intracellular signaling pathways by binding to the receptor for advanced glycation end products (RAGE). Inflammation and oxidative stress are the two most well-defined pathophysiological states induced by the AGE-RAGE interaction. In addition to oxidative stress, AGEs can also inhibit antioxidative systems and disturb iron homeostasis, all of which may induce ferroptosis. Ferroptosis is a newly identified contributor to diabetic complications. This review outlines the formation of AGEs in individuals with diabetes, explores the oxidative damage resulting from downstream reactions of the AGE-RAGE axis, and proposes a novel connection between AGEs and the ferroptosis pathway. This study introduces the concept of a vicious cycle involving AGEs, oxidative stress, and ferroptosis in the development of diabetic complications.
Collapse
Affiliation(s)
- Yanchi Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zihan Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Pei Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
14
|
Nameni G, Jazayeri S, Fatahi S, Jamshidi S, Zaroudi M. Soluble receptor of advanced glycation end product as a biomarker in neurocognitive and neuropsychiatric disorders: A meta-analysis of controlled studies. Eur J Clin Invest 2024; 54:e14232. [PMID: 38700073 DOI: 10.1111/eci.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND & OBJECTIVES Currently, there is a significant focus on the decrease of soluble receptor of advanced glycation end products (sRAGE) in neurocognitive and neuropsychiatric disorders. sRAGE plays a decoy role against the inflammatory response of advanced glycation end products (AGE), which has led to increased interest in its role in these disorders. This meta-analysis aimed to investigate the significant differences in sRAGE levels between neurocognitive and neuropsychiatric disorders compared to control groups. METHOD A systematic review was conducted using the PUBMED, Scopus and Embase databases up to October 2023. Two reviewers assessed agreement for selecting papers based on titles and abstracts, with kappa used to measure agreement and finally publications were scanned according to controlled studies. Effect sizes were calculated as weighted mean differences (WMD) and pooled using a random effects model. Heterogeneity was assessed using I2, followed by subgroup analysis and meta-regression tests. Quality assessment was performed using the Newcastle-Ottawa Quality Assessment Scale. RESULTS In total, 16 studies were included in the present meta-analysis. Subjects with neurocognitive (n = 1444) and neuropsychiatric (n = 444) disorders had lower sRAGE levels in case-control (WMD: -0.21, 95% CI: -0.33, -0.10; p <.001) and cross-sectional (WMD: -0.29, 95% CI = -0.44, -0.13, p <.001) studies with high heterogeneity and no publication bias. In subgroup analysis, subjects with cognitive impairment (WMD: -0.87, 95% CI: -1.61, -0.13, p =.000), and age >50 years (WMD: -0.39, 95% CI: -0.74, -0.05, p =.000), had lower sRAGE levels in case-control studies. Also, dementia patients (WMD: -0.41, 95% CI: -0.72, -0.10, p =.014) with age >50 years (WMD: -0.33, 95% CI: -0.54, -0.13, p = 0.000) and in Asian countries (WMD: -0.28, 95% CI: -0.42, -0.13, p =.141) had lower sRAGE levels in cross-sectional studies. CONCLUSION This meta-analysis revealed a significant reduction in sRAGE in neurocognitive and neuropsychiatric disorders particularly in Asians and moderate age.
Collapse
Affiliation(s)
- Ghazaleh Nameni
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Jazayeri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Somaye Fatahi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Jamshidi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Marsa Zaroudi
- Student Research Committee, Department of Nutrition, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Khalid M, Adem A. The dynamic roles of advanced glycation end products. VITAMINS AND HORMONES 2024; 125:1-29. [PMID: 38997161 DOI: 10.1016/bs.vh.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are a heterogeneous group of potentially harmful molecules that can form as a result of a non-enzymatic reaction between reducing sugars and proteins, lipids, or nucleic acids. The total body pool of AGEs reflects endogenously produced AGEs as well as exogeneous AGEs that come from sources such as diet and the environment. Engagement of AGEs with their cellular receptor, the receptor for advanced glycation end products (RAGE), which is expressed on the surface of various cell types, converts a brief pulse of cellular activation to sustained cellular dysfunction and tissue destruction. The AGEs/RAGE interaction triggers a cascade of intracellular signaling pathways such as mitogen-activated protein kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinases, transforming growth factor beta, c-Jun N-terminal kinases (JNK), and nuclear factor kappa B, which leads to the production of pro-inflammatory cytokines, chemokines, adhesion molecules, and oxidative stress. All these events contribute to the progression of several chronic diseases. This chapter will provide a comprehensive understanding of the dynamic roles of AGEs in health and disease which is crucial to develop interventions that prevent and mitigate the deleterious effects of AGEs accumulation.
Collapse
Affiliation(s)
- Mariyam Khalid
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
16
|
Chen Z, Lin B, Yao X, Weng J, Liu J, He Q, Song K, Zhou C, Zuo Z, Huang X, Liu Z, Huang Q, Xu Q, Guo X. Endothelial β-catenin upregulation and Y142 phosphorylation drive diabetic angiogenesis via upregulating KDR/HDAC9. Cell Commun Signal 2024; 22:182. [PMID: 38491522 PMCID: PMC10941375 DOI: 10.1186/s12964-024-01566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Diabetic angiogenesis is closely associated with disabilities and death caused by diabetic microvascular complications. Advanced glycation end products (AGEs) are abnormally accumulated in diabetic patients and are a key pathogenic factor for diabetic angiogenesis. The present study focuses on understanding the mechanisms underlying diabetic angiogenesis and identifying therapeutic targets based on these mechanisms. METHODS In this study, AGE-induced angiogenesis serves as a model to investigate the mechanisms underlying diabetic angiogensis. Mouse aortic rings, matrigel plugs, and HUVECs or 293T cells were employed as research objects to explore this pathological process by using transcriptomics, gene promoter reporter assays, virtual screening and so on. RESULTS Here, we found that AGEs activated Wnt/β-catenin signaling pathway and enhanced the β-catenin protein level by affecting the expression of β-catenin degradation-related genes, such as FZDs (Frizzled receptors), LRPs (LDL Receptor Related Proteins), and AXIN1. AGEs could also mediate β-catenin Y142 phosphorylation through VEGFR1 isoform5. These dual effects of AGEs elevated the nuclear translocation of β-catenin and sequentially induced the expression of KDR (Kinase Insert Domain Receptor) and HDAC9 (Histone Deacetylase 9) by POU5F1 and NANOG, respectively, thus mediating angiogenesis. Finally, through virtual screening, Bioymifi, an inhibitor that blocks VEGFR1 isoform5-β-catenin complex interaction and alleviates AGE-induced angiogenesis, was identified. CONCLUSION Collectively, this study offers insight into the pathophysiological functions of β-catenin in diabetic angiogenesis.
Collapse
Affiliation(s)
- Zhenfeng Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingqi Lin
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaodan Yao
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jie Weng
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jinlian Liu
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qi He
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ke Song
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chuyu Zhou
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zirui Zuo
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoxia Huang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuanhua Liu
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiaobing Huang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiulin Xu
- Department of Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaohua Guo
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- National Experimental Education Demonstration Center for Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
17
|
Zhang C, Gu L, Xie H, Liu Y, Huang P, Zhang J, Luo D, Zhang J. Glucose transport, transporters and metabolism in diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166995. [PMID: 38142757 DOI: 10.1016/j.bbadis.2023.166995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Diabetic retinopathy (DR) is the most common reason for blindness in working-age individuals globally. Prolonged high blood glucose is a main causative factor for DR development, and glucose transport is prerequisite for the disturbances in DR caused by hyperglycemia. Glucose transport is mediated by its transporters, including the facilitated transporters (glucose transporter, GLUTs), the "active" glucose transporters (sodium-dependent glucose transporters, SGLTs), and the SLC50 family of uniporters (sugars will eventually be exported transporters, SWEETs). Glucose transport across the blood-retinal barrier (BRB) is crucial for nourishing the neuronal retina in the context of retinal physiology. This physiological process primarily relies on GLUTs and SGLTs, which mediate the glucose transportation across both the cell membrane of retinal capillary endothelial cells and the retinal pigment epithelium (RPE). Under diabetic conditions, increased accumulation of extracellular glucose enhances the retinal cellular glucose uptake and metabolism via both glycolysis and glycolytic side branches, which activates several biochemical pathways, including the protein kinase C (PKC), advanced glycation end-products (AGEs), polyol pathway and hexosamine biosynthetic pathway (HBP). These activated biochemical pathways further increase the production of reactive oxygen species (ROS), leading to oxidative stress and activation of Poly (ADP-ribose) polymerase (PARP). The activated PARP further affects all the cellular components in the retina, and finally resulting in microangiopathy, neurodegeneration and low-to-moderate grade inflammation in DR. This review aims to discuss the changes of glucose transport, glucose transporters, as well as its metabolism in DR, which influences the retinal neurovascular unit (NVU) and implies the possible therapeutic strategies for treating DR.
Collapse
Affiliation(s)
- Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Limin Gu
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, China.
| | - Hai Xie
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Yan Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Peirong Huang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| |
Collapse
|
18
|
Wu Z, Liu C, Yin S, Ma J, Sun R, Cao G, Lu Y, Liu J, Su L, Song R, Wang Y. P75NTR regulates autophagy through the YAP-mTOR pathway to increase the proliferation of interfollicular epidermal cells and promote wound healing in diabetic mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167012. [PMID: 38176461 DOI: 10.1016/j.bbadis.2023.167012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Wound healing is delayed in diabetic patients. Increased autophagy and dysfunction of interfollicular epidermal (IFE) cells are closely associated with delayed healing of diabetic wounds. Autophagy plays an important role in all stages of wound healing, but its role in diabetic wound healing and the underlying molecular mechanisms are not clear. Here, we found that diabetic mice had delayed wound healing and increased autophagy in wounds compared with normal mice and that chloroquine, an inhibitor of autophagy, decreased the level of autophagy, improved the function of IFE cells, and accelerated wound healing in diabetic mice. Treatment of IFE cells with advanced glycosylation end products (AGEs) resulted in increased microtubule-associated protein chain (LC3) expression and decreased prostacyclin-62 (P62) expression, indicating increased autophagy in AGE-treated IFE cells. Moreover, P75NTR reduced autophagy in IFE cells in the presence of AGEs and significantly increased the proliferation of IFE cells. In addition, P75NTR participated in regulating autophagy in IFE cells and in wounds in diabetic mice through the YAP-mTOR signalling pathway, which increased the functional activity of the cells and the healing rate of wounds in diabetic mice. Thus, our study suggests that P75NTR protects IFE cells against AGEs by affecting autophagy and accelerating wound healing in diabetic mice, providing a basis for understanding the role of autophagy in diabetic wound healing.
Collapse
Affiliation(s)
- Zhenjie Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China
| | - Chunyan Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China
| | - Siyuan Yin
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China
| | - Jiaxu Ma
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
| | - Rui Sun
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guoqi Cao
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yongpan Lu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Jian Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China
| | - Linqi Su
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China
| | - Ru Song
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China.
| | - Yibing Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China; Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China.
| |
Collapse
|
19
|
Portillo JAC, Pfaff A, Vos S, Weng M, Nagaraj RH, Subauste CS. Advanced Glycation End Products Upregulate CD40 in Human Retinal Endothelial and Müller Cells: Relevance to Diabetic Retinopathy. Cells 2024; 13:429. [PMID: 38474393 PMCID: PMC10930611 DOI: 10.3390/cells13050429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
CD40 induces pro-inflammatory responses in endothelial and Müller cells and is required for the development of diabetic retinopathy (DR). CD40 is upregulated in these cells in patients with DR. CD40 upregulation is a central feature of CD40-driven inflammatory disorders. What drives CD40 upregulation in the diabetic retina remains unknown. We examined the role of advanced glycation end products (AGEs) in CD40 upregulation in endothelial cells and Müller cells. Human endothelial cells and Müller cells were incubated with unmodified or methylglyoxal (MGO)-modified fibronectin. CD40 expression was assessed by flow cytometry. The expression of ICAM-1 and CCL2 was examined by flow cytometry or ELISA after stimulation with CD154 (CD40 ligand). The expression of carboxymethyl lysine (CML), fibronectin, and laminin as well as CD40 in endothelial and Müller cells from patients with DR was examined by confocal microscopy. Fibronectin modified by MGO upregulated CD40 in endothelial and Müller cells. CD40 upregulation was functionally relevant. MGO-modified fibronectin enhanced CD154-driven upregulation of ICAM-1 and CCL2 in endothelial and Müller cells. Increased CD40 expression in endothelial and Müller cells from patients with DR was associated with increased CML expression in fibronectin and laminin. These findings identify AGEs as inducers of CD40 upregulation in endothelial and Müller cells and enhancers of CD40-dependent pro-inflammatory responses. CD40 upregulation in these cells is associated with higher CML expression in fibronectin and laminin in patients with DR. This study revealed that CD40 and AGEs, two important drivers of DR, are interconnected.
Collapse
Affiliation(s)
- Jose-Andres C. Portillo
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (J.-A.C.P.); (A.P.); (S.V.); (M.W.)
| | - Amelia Pfaff
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (J.-A.C.P.); (A.P.); (S.V.); (M.W.)
| | - Sarah Vos
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (J.-A.C.P.); (A.P.); (S.V.); (M.W.)
| | - Matthew Weng
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (J.-A.C.P.); (A.P.); (S.V.); (M.W.)
| | - Ram H. Nagaraj
- Department of Ophthalmology, University of Colorado, Aurora, CO 80045, USA;
| | - Carlos S. Subauste
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (J.-A.C.P.); (A.P.); (S.V.); (M.W.)
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Yan Y, Hemmler D, Schmitt-Kopplin P. Discovery of Glycation Products: Unraveling the Unknown Glycation Space Using a Mass Spectral Library from In Vitro Model Systems. Anal Chem 2024; 96:3569-3577. [PMID: 38346319 PMCID: PMC10902809 DOI: 10.1021/acs.analchem.3c05540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The nonenzymatic reaction between amino acids (AAs) and reducing sugars, also known as the Maillard reaction, is the primary source of free glycation products (GPs) in vivo and in vitro. The limited number of MS/MS records for GPs in public libraries hinders the annotation and investigation of nonenzymatic glycation. To address this issue, we present a mass spectral library containing the experimental MS/MS spectra of diverse GPs from model systems. Based on the conceptional reaction processes and structural characteristics of products, we classified GPs into common GPs (CGPs) and modified AAs (MAAs). A workflow for annotating GPs was established based on the structural and fragmentation patterns of each GP type. The final spectral library contains 157 CGPs, 499 MAAs, and 2426 GP spectra with synthetic model system information, retention time, precursor m/z, MS/MS, and annotations. As a proof-of-concept, we demonstrated the use of the library for screening GPs in unidentified spectra of human plasma and urine. The AAs with the C6H10O5 modification, fructosylation from Amadori rearrangement, were the most found GPs. With the help of the model system, we confirmed the existence of C6H10O5-modified Valine in human plasma by matching both retention time, MS1, and MS/MS without reference standards. In summary, our GP library can serve as an online resource to quickly screen possible GPs in an untargeted metabolomics workflow, furthermore with the model system as a practical synthesis method to confirm their identity.
Collapse
Affiliation(s)
- Yingfei Yan
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Daniel Hemmler
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising 85354, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
21
|
Pedreanez A, Robalino J, Tene D, Salazar P. Advanced glycation end products of dietary origin and their association with inflammation in diabetes - A minireview. Endocr Regul 2024; 58:57-67. [PMID: 38563294 DOI: 10.2478/enr-2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Advanced glycation end products (AGEs) are a diverse group of compounds that are formed as a result of the non-enzymatic reaction between a reducing sugar such as glucose and the free NH2 groups of an amino acid in a protein or other biomolecule. The chemical reaction, by which these products are generated, is known as the Maillard reaction and occurs as a part of the body's normal metabolism. Such a reaction is enhanced during diabetes due to hyperglycemia, but it can also occur during the preparation, processing, and preservation of certain foods. Therefore, AGEs can also be obtained from the diet (d-AGE) and contribute to an increase of the total serum pool of these compounds. They have been implicated in a wide variety of pathological processes, mainly because of their ability to induce inflammatory responses and oxidative stress increase. They are extensively accumulated as a part of the normal aging, especially in tissues rich in long half-life proteins, which can compromise the physiology of these tissues. d-AGEs are abundant in diets rich in processed fats and sugars. This review is addressed to the current knowledge on these products and their impact on the immunomodulation of various mechanisms that may contribute to exacerbation of the diabetes pathophysiology.
Collapse
Affiliation(s)
- Adriana Pedreanez
- Catedra de Inmunologia, Escuela de Bioanalisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | | | - Diego Tene
- Universidad Nacional del Chimborazo, Facultad de Ciencias de la Salud, Riobamba, Ecuador
| | - Patricio Salazar
- Departamento de Nutricion Clinica, Hospital General Santo Domingo, Ecuador
| |
Collapse
|
22
|
Zhao Y, Zhao Y, Xu B, Liu H, Chang Q. Microenvironmental dynamics of diabetic wounds and insights for hydrogel-based therapeutics. J Tissue Eng 2024; 15:20417314241253290. [PMID: 38818510 PMCID: PMC11138198 DOI: 10.1177/20417314241253290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
The rising prevalence of diabetes has underscored concerns surrounding diabetic wounds and their potential to induce disability. The intricate healing mechanisms of diabetic wounds are multifaceted, influenced by ambient microenvironment, including prolonged hyperglycemia, severe infection, inflammation, elevated levels of reactive oxygen species (ROS), ischemia, impaired vascularization, and altered wound physicochemical properties. In recent years, hydrogels have emerged as promising candidates for diabetic wound treatment owing to their exceptional biocompatibility and resemblance to the extracellular matrix (ECM) through a three-dimensional (3D) porous network. This review will first summarize the microenvironment alterations occurring in the diabetic wounds, aiming to provide a comprehensive understanding of its pathogenesis, then a comprehensive classification of recently developed hydrogels will be presented, encompassing properties such as hypoglycemic effects, anti-inflammatory capabilities, antibacterial attributes, ROS scavenging abilities, promotion of angiogenesis, pH responsiveness, and more. The primary objective is to offer a valuable reference for repairing diabetic wounds based on their unique microenvironment. Moreover, this paper outlines potential avenues for future advancements in hydrogel dressings to facilitate and expedite the healing process of diabetic wounds.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Burn and Plastic surgery, Jinan University Affiliated Shunde Hospital, Jinan University, Foshan, China
| | - Yulan Zhao
- Department of Nephropathy Rheumatology, Guizhou Medical University Affiliated Zhijin Hospital, Zhijin, China
| | - Bing Xu
- Department of Burn and Plastic surgery, Jinan University Affiliated Shunde Hospital, Jinan University, Foshan, China
| | - Hongwei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Qiang Chang
- Department of Plastic and Reconstruction Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Portha B, Liu J. Les AGE (produits terminaux de glycation) : attention danger. Origine, effets toxiques et stratégies thérapeutiques. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2023; 58:376-388. [DOI: 10.1016/j.cnd.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Cai Z, Li Y, Bai L, Xu J, Liu Z, Zhang T, Gao S, Lin Y. Tetrahedral Framework Nucleic Acids Based Small Interfering RNA Targeting Receptor for Advanced Glycation End Products for Diabetic Complications Treatment. ACS NANO 2023; 17:22668-22683. [PMID: 37751401 DOI: 10.1021/acsnano.3c06999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Complications arising from diabetes can threaten multiple organs. Advanced glycation end products (AGEs) play a significant role in inducing these complications. Highly processed diets and hyperglycemia facilitate the accumulation of AGEs in the body. Interaction between AGEs and their main receptor (RAGE) initiates the transmission of intracellular inflammatory and cell death signals, which ultimately lead to complications. To counter AGEs-induced damage, we developed an siRNA-binding tetrahedral framework nucleic acids (TDN) system, termed Tsi, which combines the potent cell membrane penetrability and serum stability of TDN with the gene-targeting specificity of siRNA-RAGE. Tsi effectively and persistently downregulates the expression of RAGE, thereby suppressing inflammation by blocking the NF-κB pathway as well as exhibiting antioxidant functions. Furthermore, Tsi regulates the pyroptosis state of macrophages via the NLRP3/caspase-1 axis, which inhibits the spread of cell death signals and maintains homeostasis. This is of great significance for the synergistic treatment strategy for systemic complications in patients with refractory hyperglycemia. In summary, this study describes a nanomedicine that targets the RAGE and suppresses AGE-induced inflammation. This nucleic acid drug holds long-lasting efficacy and is independent of lowering hyperglycemia, which provides a strategy for the treatment of diabetic complications and age-related diseases.
Collapse
Affiliation(s)
- Zhengwen Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yong Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Long Bai
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jiangshan Xu
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
25
|
Michailidou F. Engineering of Therapeutic and Detoxifying Enzymes. Angew Chem Int Ed Engl 2023; 62:e202308814. [PMID: 37433049 DOI: 10.1002/anie.202308814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Therapeutic enzymes present excellent opportunities for the treatment of human disease, modulation of metabolic pathways and system detoxification. However, current use of enzyme therapy in the clinic is limited as naturally occurring enzymes are seldom optimal for such applications and require substantial improvement by protein engineering. Engineering strategies such as design and directed evolution that have been successfully implemented for industrial biocatalysis can significantly advance the field of therapeutic enzymes, leading to biocatalysts with new-to-nature therapeutic activities, high selectivity, and suitability for medical applications. This minireview highlights case studies of how state-of-the-art and emerging methods in protein engineering are explored for the generation of therapeutic enzymes and discusses gaps and future opportunities in the field of enzyme therapy.
Collapse
Affiliation(s)
- Freideriki Michailidou
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| |
Collapse
|
26
|
Peker T, Boyraz B. The Relationship between Resistant Hypertension and Advanced Glycation End-Product Levels Measured Using the Skin Autofluorescence Method: A Case-Control Study. J Clin Med 2023; 12:6606. [PMID: 37892744 PMCID: PMC10607128 DOI: 10.3390/jcm12206606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Resistant hypertension is hypertension that cannot be controlled despite the use of three antihypertensive drugs, one of which is a diuretic. Resistant hypertension often coexists with advanced age, obesity, smoking, and diabetes. Advanced glycation end products (AGEs) are substances that are generated as a result of the glycation of proteins, lipids, and nucleic acids due to conditions such as hyperlipidemia, oxidative stress, and hyperglycemia. There are studies showing the relationships between AGE levels and aortic stiffness, hypertension, and microvascular and macrovascular complications in diabetes. In our study, we examined the relationship between resistant hypertension and AGE levels. Our study was planned as a case-control study, and 88 patients with resistant hypertension were included in the focus group, while 88 patients with controlled hypertension were included in the control group. The AGE levels of the patients were measured using the skin autofluorescence method. AGE levels were found to be significantly higher in patients with resistant hypertension than those recorded in the control group. A significant increase in AGE levels was also observed in patients with resistant hypertension and without diabetes compared with the control group. The levels of AGEs, which can be measured cheaply, noninvasively, and quickly with the skin autofluorescence method, may provide benefits in identifying these patients with resistant hypertension.
Collapse
Affiliation(s)
- Tezcan Peker
- Cardiology Department, Medicalpark Hospital, Mudanya University, Bursa 16200, Turkey
| | - Bedrettin Boyraz
- Cardiology Department, Medicalpark Hospital, Mudanya University, Bursa 16200, Turkey
| |
Collapse
|
27
|
Bansal S, Burman A, Tripathi AK. Advanced glycation end products: Key mediator and therapeutic target of cardiovascular complications in diabetes. World J Diabetes 2023; 14:1146-1162. [PMID: 37664478 PMCID: PMC10473940 DOI: 10.4239/wjd.v14.i8.1146] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/21/2023] [Accepted: 05/22/2023] [Indexed: 08/11/2023] Open
Abstract
The incidence of type 2 diabetes mellitus is growing in epidemic proportions and has become one of the most critical public health concerns. Cardiovascular complications associated with diabetes are the leading cause of morbidity and mortality. The cardiovascular diseases that accompany diabetes include angina, myocardial infarction, stroke, peripheral artery disease, and congestive heart failure. Among the various risk factors generated secondary to hyperglycemic situations, advanced glycation end products (AGEs) are one of the important targets for future diagnosis and prevention of diabetes. In the last decade, AGEs have drawn a lot of attention due to their involvement in diabetic patho-physiology. AGEs can be derived exogenously and endogenously through various pathways. These are a non-homogeneous, chemically diverse group of compounds formed non-enzymatically by condensation between carbonyl groups of reducing sugars and free amino groups of protein, lipids, and nucleic acid. AGEs mediate their pathological effects at the cellular and extracellular levels by multiple pathways. At the cellular level, they activate signaling cascades via the receptor for AGEs and initiate a complex series of intracellular signaling resulting in reactive oxygen species generation, inflammation, cellular proliferation, and fibrosis that may possibly exacerbate the damaging effects on cardiac functions in diabetics. AGEs also cause covalent modifications and cross-linking of serum and extracellular matrix proteins; altering their structure, stability, and functions. Early diagnosis of diabetes may prevent its progression to complications and decrease its associated comorbidities. In the present review, we recapitulate the role of AGEs as a crucial mediator of hyperglycemia-mediated detrimental effects in diabetes-associated complications. Furthermore, this review presents an overview of future perspectives for new therapeutic interventions to ameliorate cardiovascular complications in diabetes.
Collapse
Affiliation(s)
- Savita Bansal
- Department of Biochemistry, Institute of Home Sciences, University of Delhi, New Delhi 110016, India
| | - Archana Burman
- Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi 110016, India
| | - Asok Kumar Tripathi
- Department of Biochemistry, University College of Medical Sciences, University of Delhi, New Delhi 110095, India
| |
Collapse
|
28
|
Wang Z, Wu Z, Tu J, Xu B. Muscle food and human health: A systematic review from the perspective of external and internal oxidation. Trends Food Sci Technol 2023; 138:85-99. [DOI: 10.1016/j.tifs.2023.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Zgutka K, Tkacz M, Tomasiak P, Tarnowski M. A Role for Advanced Glycation End Products in Molecular Ageing. Int J Mol Sci 2023; 24:9881. [PMID: 37373042 PMCID: PMC10298716 DOI: 10.3390/ijms24129881] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ageing is a composite process that involves numerous changes at the cellular, tissue, organ and whole-body levels. These changes result in decreased functioning of the organism and the development of certain conditions, which ultimately lead to an increased risk of death. Advanced glycation end products (AGEs) are a family of compounds with a diverse chemical nature. They are the products of non-enzymatic reactions between reducing sugars and proteins, lipids or nucleic acids and are synthesised in high amounts in both physiological and pathological conditions. Accumulation of these molecules increases the level of damage to tissue/organs structures (immune elements, connective tissue, brain, pancreatic beta cells, nephrons, and muscles), which consequently triggers the development of age-related diseases, such as diabetes mellitus, neurodegeneration, and cardiovascular and kidney disorders. Irrespective of the role of AGEs in the initiation or progression of chronic disorders, a reduction in their levels would certainly provide health benefits. In this review, we provide an overview of the role of AGEs in these areas. Moreover, we provide examples of lifestyle interventions, such as caloric restriction or physical activities, that may modulate AGE formation and accumulation and help to promote healthy ageing.
Collapse
Affiliation(s)
- Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
30
|
Csiha S, Molnár I, Halmi S, Hutkai D, Lőrincz H, Somodi S, Katkó M, Harangi M, Paragh G, Nagy EV, Berta E, Bodor M. Advanced glycation end products and their soluble receptor (sRAGE) in patients with Hashimoto's thyroiditis on levothyroxine substitution. Front Endocrinol (Lausanne) 2023; 14:1187725. [PMID: 37305044 PMCID: PMC10250717 DOI: 10.3389/fendo.2023.1187725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Background Advanced glycation end products (AGEs) are heterogenous group of irreversible chemical moieties originated from non-enzymatic glycation and oxidation of proteins, nucleic acids, and lipids. The engagement of AGEs with their chief cellular receptor (RAGE) activates a myriad of signaling pathways contributing to the progression of chronic diseases like autoimmune thyroiditis, type 2 diabetes mellitus and its complications. Soluble RAGE (sRAGE) prevents AGE-RAGE interaction in a competitive manner. Objective We investigated the association between serum AGE, sRAGE and thyroid function in 73 Hashimoto thyroiditis patients (HT) on levothyroxine substitution, and in 83 age, BMI and gender-matched healthy controls. Methods The serum AGEs levels were determined by autofluorescence on a multi-mode microplate reader, and the serum sRAGE levels by ELISA method. Results Mean AGE level was lower (10.71 vs 11.45 AU/µg protein; p=0.046), while mean sRAGE level was higher (923 vs 755 pg/mL; p<0.0005) in the serum of HT patients than the controls. AGE correlated with age, while sRAGE correlated negatively with BMI in both groups. We found negative correlation between AGE and fT3 levels (r=-0.32; p=0.006) and sRAGE and TSH levels (r=-0.27; p=0.022) in HT patients, while we failed to find association between AGE, sRAGE and parameters of thyroid function in the control group. Median AGE/sRAGE ratio was lower in HT patients than in controls (2.4, IQR 1.9 - 3.1 vs 3.3, IQR 2.3 - 4.1 AU/pg; p < 0.001). In HT patients, the AGE/sRAGE ratio correlated positively with BMI and correlated negatively with fT3. Conclusion According to our results in HT patients lower TSH and higher fT3 levels within the reference range is accompanied by a favorable AGE/RAGE balance. Further investigations are needed to confirm these results.
Collapse
Affiliation(s)
- Sára Csiha
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - István Molnár
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Halmi
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Dávid Hutkai
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Hajnalka Lőrincz
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Somodi
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mónika Katkó
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mariann Harangi
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - György Paragh
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre V. Nagy
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Berta
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Bodor
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
31
|
Rodrigues WD, Cardoso FN, Baviera AM, dos Santos AG. In Vitro Antiglycation Potential of Erva-Baleeira ( Varronia curassavica Jacq.). Antioxidants (Basel) 2023; 12:522. [PMID: 36830081 PMCID: PMC9952575 DOI: 10.3390/antiox12020522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Varronia curassavica Jacq. (Boraginaceae) is traditionally used in the treatment of inflammatory processes. The ethanolic extract of its leaves (EEVc) showed anti-inflammatory properties and low toxicity. Medicinal plants have aroused interest for their antiglycation activities. The formation and accumulation of advanced glycation end products (AGEs) are associated with several chronic diseases. The objective of this study was to evaluate the antiglycation potential of EEVc and two isolated compounds. METHODS The compounds brickellin and cordialin A were obtained by chromatographic methods and identified by spectrometric techniques. Analysis of fluorescent AGEs, biomarkers of amino acid residue oxidation, protein carbonyl groups and crosslink formation were performed in samples obtained from an in vitro model system of protein glycation with methylglyoxal. RESULTS EEVc, brickellin and cordialin A significantly reduced the in vitro formation of AGEs, and reduced the damage caused by oxidative damage to the protein. CONCLUSIONS According to the results, EEVc, brickellin and cordialin A are potential candidates against AGEs formation, which opens the way to expand the therapeutic arsenal for many pathologies resulting from glycoxidative stress.
Collapse
Affiliation(s)
- Winner Duque Rodrigues
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, Araraquara 14800-903, Brazil
| | - Felipe Nunes Cardoso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara 14800-903, Brazil
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara 14800-903, Brazil
| | - André Gonzaga dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, Araraquara 14800-903, Brazil
| |
Collapse
|
32
|
Far from being a simple question: The complexity between in vitro and in vivo responses from nutrients and bioactive compounds with antioxidant potential. Food Chem 2023; 402:134351. [DOI: 10.1016/j.foodchem.2022.134351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
|
33
|
Abstract
Breast cancer progression is accompanied by profound extracellular matrix (ECM) remodeling. A greater abundance of aligned fibrillar collagen is characteristic of invasive and aggressive breast cancers and has been associated with elevated activity of collagen crosslinking enzymes, such as lysyl oxidase (LOX) and lysyl hydroxylases (LH) and the formation of more mature collagen matrix crosslinks. Aligned collagen fibers can facilitate metastatic dissemination of tumor cells, and LOX inhibitors have been used to inhibit tumor progression and metastasis in experimental models. Thus, a better understanding of how matrix crosslinking alters tumor cell phenotypes, and behaviors would improve our ability to effectively treat aggressive metastatic breast cancer. Herein described is an experimental approach to glycate and crosslink a collagen-I/basement membrane extract ECM to study the impact of ECM crosslinking on mammary tumor progression in vivo. Moreover, glycation of collagen by sugars to form advanced glycation end products naturally occurs during aging, extending the potential relevance of this approach to research on mechanisms of aging involved in disease progression.
Collapse
Affiliation(s)
- Jason J Northey
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
- Departments of Radiation Oncology and Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, USA
| |
Collapse
|
34
|
Schalkwijk CG, Micali LR, Wouters K. Advanced glycation endproducts in diabetes-related macrovascular complications: focus on methylglyoxal. Trends Endocrinol Metab 2023; 34:49-60. [PMID: 36446668 DOI: 10.1016/j.tem.2022.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022]
Abstract
Diabetes is associated with vascular injury and the onset of macrovascular complications. Advanced glycation endproducts (AGEs) and the AGE precursor methylglyoxal (MGO) have been identified as key players in establishing the relationship between diabetes and vascular injury. While most research has focused on the link between AGEs and vascular injury, less is known about the effects of MGO on vasculature. In this review, we focus on the mechanisms linking AGEs and MGO to the development of atherosclerosis. AGEs and MGO are involved in many stages of atherosclerosis progression. However, more research is needed to determine the exact mechanisms underlying these effects. Nevertheless, AGEs and MGO could represent valid therapeutic targets for the macrovascular complications of diabetes.
Collapse
Affiliation(s)
- Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, MUMC+, Maastricht, The Netherlands
| | | | - Kristiaan Wouters
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, MUMC+, Maastricht, The Netherlands.
| |
Collapse
|
35
|
Yan Y, Hemmler D, Schmitt-Kopplin P. HILIC-MS for Untargeted Profiling of the Free Glycation Product Diversity. Metabolites 2022; 12:metabo12121179. [PMID: 36557217 PMCID: PMC9783660 DOI: 10.3390/metabo12121179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Glycation products produced by the non-enzymatic reaction between reducing carbohydrates and amino compounds have received increasing attention in both food- and health-related research. Although liquid chromatography mass spectrometry (LC-MS) methods for analyzing glycation products already exist, only a few common advanced glycation end products (AGEs) are usually covered by quantitative methods. Untargeted methods for comprehensively analyzing glycation products are still lacking. The aim of this study was to establish a method for simultaneously characterizing a wide range of free glycation products using the untargeted metabolomics approach. In this study, Maillard model systems consisting of a multitude of heterogeneous free glycation products were chosen for systematic method optimization, rather than using a limited number of standard compounds. Three types of hydrophilic interaction liquid chromatography (HILIC) columns (zwitterionic, bare silica, and amide) were tested due to their good retention for polar compounds. The zwitterionic columns showed better performance than the other two types of columns in terms of the detected feature numbers and detected free glycation products. Two zwitterionic columns were selected for further mobile phase optimization. For both columns, the neutral mobile phase provided better peak separation, whereas the acidic condition provided a higher quality of chromatographic peak shapes. The ZIC-cHILIC column operating under acidic conditions offered the best potential to discover glycation products in terms of providing good peak shapes and maintaining comparable compound coverage. Finally, the optimized HILIC-MS method can detect 70% of free glycation product features despite interference from the complex endogenous metabolites from biological matrices, which showed great application potential for glycation research and can help discover new biologically important glycation products.
Collapse
Affiliation(s)
- Yingfei Yan
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Correspondence: (Y.Y.); (P.S.-K.)
| | - Daniel Hemmler
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
- Correspondence: (Y.Y.); (P.S.-K.)
| |
Collapse
|
36
|
Zheng W, Li H, Go Y, Chan XH(F, Huang Q, Wu J. Research Advances on the Damage Mechanism of Skin Glycation and Related Inhibitors. Nutrients 2022; 14:4588. [PMID: 36364850 PMCID: PMC9655929 DOI: 10.3390/nu14214588] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Our skin is an organ with the largest contact area between the human body and the external environment. Skin aging is affected directly by both endogenous factors and exogenous factors (e.g., UV exposure). Skin saccharification, a non-enzymatic reaction between proteins, e.g., dermal collagen and naturally occurring reducing sugars, is one of the basic root causes of endogenous skin aging. During the reaction, a series of complicated glycation products produced at different reaction stages and pathways are usually collectively referred to as advanced glycation end products (AGEs). AGEs cause cellular dysfunction through the modification of intracellular molecules and accumulate in tissues with aging. AGEs are also associated with a variety of age-related diseases, such as diabetes, cardiovascular disease, renal failure (uremia), and Alzheimer's disease. AGEs accumulate in the skin with age and are amplified through exogenous factors, e.g., ultraviolet radiation, resulting in wrinkles, loss of elasticity, dull yellowing, and other skin problems. This article focuses on the damage mechanism of glucose and its glycation products on the skin by summarizing the biochemical characteristics, compositions, as well as processes of the production and elimination of AGEs. One of the important parts of this article would be to summarize the current AGEs inhibitors to gain insight into the anti-glycation mechanism of the skin and the development of promising natural products with anti-glycation effects.
Collapse
Affiliation(s)
- Wenge Zheng
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing 210009, China
| | - Huijuan Li
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing 210009, China
| | - Yuyo Go
- Royal Victoria Hospital, BT12 6BA Belfast, Northern Ireland, UK
| | | | - Qing Huang
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing 210009, China
| | - Jianxin Wu
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
37
|
Handa N, Kuda T, Yamamoto M, Takahashi H, Kimura B. In vitro anti-oxidant, anti-glycation, and bile acid-lowering capacity of chickpea milk fermented with Lactiplantibacillus pentosus Himuka-SU5 and Lactococcus lactis subsp. lactis Amami-SU1. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
St-Jules DE, Fouque D. A Novel Approach for Managing Protein-Energy Wasting in People With Kidney Failure Undergoing Maintenance Hemodialysis: Rationale and Call for Trials. Am J Kidney Dis 2022; 80:277-284. [PMID: 34974032 DOI: 10.1053/j.ajkd.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/28/2021] [Indexed: 01/27/2023]
Abstract
Protein-energy wasting (PEW) is a unique presentation of protein-energy malnutrition in people with kidney disease that is characterized by body protein catabolism exceeding anabolism. PEW is especially common in patients undergoing maintenance hemodialysis (HD) treatment. Dietary guidelines for managing PEW in HD patients primarily focus on protein adequacy and typically promote the intake of animal-based protein foods. Although intake of protein and essential amino acids is important for protein synthesis, the emphasis on protein adequacy largely fails to address-and may actually exacerbate-many of the root causes of PEW. This perspective examines the dietary determinants of PEW in people undergoing HD treatment, with an emphasis on upstream disease-related factors that reduce dietary protein utilization and impair dietary intakes. From this, we present a theoretical diet model for managing PEW that includes etiology-based dietary strategies to address barriers to intake and treat disease-related factors, as well as supportive dietary strategies to promote adequate energy and protein intakes. Given the complexity of diet-disease interactions in the pathogenesis of PEW, and its ongoing burden in HD patients, interventional trials are urgently needed to evaluate alternative diet therapy approaches for PEW in this population.
Collapse
Affiliation(s)
| | - Denis Fouque
- CarMeN Laboratory, INSERM U1060, Université Claude Bernard Lyon 1, Villeurbanne, and Department of Nephrology, Nutrition, and Dialysis, Centre Hopitalier Lyon Sud, Pierre-Benite, France.
| |
Collapse
|
39
|
Rochín-Hernández LS, Rochín-Hernández LJ, Flores-Cotera LB. Endophytes, a Potential Source of Bioactive Compounds to Curtail the Formation–Accumulation of Advanced Glycation End Products: A Review. Molecules 2022; 27:molecules27144469. [PMID: 35889349 PMCID: PMC9322667 DOI: 10.3390/molecules27144469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
Endophytes, microorganisms that live in the internal tissues and organs of the plants, are known to produce numerous bioactive compounds, including, at times, some phytochemicals of their host plant. For such reason, endophytes have been quoted as a potential source for discovering bioactive compounds, particularly, of medical interest. Currently, many non-communicable diseases are threatening global human health, noticeably: diabetes, neurodegenerative diseases, cancer, and other ailment related to chronic inflammation and ageing. Intriguingly, the pathogenesis and development of these diseases have been linked to an excessive formation and accumulation of advanced glycation end products (AGEs). AGEs are a heterogeneous group of compounds that can alter the conformation, function, and lifetime of proteins. Therefore, compounds that prevent the formation and consequent accumulation of AGEs (AntiAGEs compounds) could be useful to delay the progress of some chronic diseases, and/or harmful effects of undue AGEs accumulation. Despite the remarkable ability of endophytes to produce bioactive compounds, most of the natural antiAGEs compounds reported in the literature are derived from plants. Accordingly, this work covers 26 plant antiAGEs compounds and some derivatives that have been reported as endophytic metabolites, and discusses the importance, possible advantages, and challenges of using endophytes as a potential source of antiAGEs compounds.
Collapse
Affiliation(s)
- Lory Sthephany Rochín-Hernández
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México City 07360, Mexico;
| | - Lory Jhenifer Rochín-Hernández
- Department of Biomedicine and Molecular Biology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México City 07360, Mexico;
| | - Luis Bernardo Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México City 07360, Mexico;
- Correspondence: ; Tel.: +55-13499526
| |
Collapse
|
40
|
Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells 2022; 11:cells11081312. [PMID: 35455991 PMCID: PMC9029922 DOI: 10.3390/cells11081312] [Citation(s) in RCA: 287] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
Advanced glycation end-products (AGEs) constitute a non-homogenous, chemically diverse group of compounds formed either exogeneously or endogeneously on the course of various pathways in the human body. In general, they are formed non-enzymatically by condensation between carbonyl groups of reducing sugars and free amine groups of nucleic acids, proteins, or lipids, followed by further rearrangements yielding stable, irreversible end-products. In the last decades, AGEs have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes and diseases, such as diabetes, cancer, cardiovascular, neurodegenerative diseases, and even infection with the SARS-CoV-2 virus. They are recognized by several cellular receptors and trigger many signaling pathways related to inflammation and oxidative stress. Despite many experimental research outcomes published recently, the complexity of their engagement in human physiology and pathophysiological states requires further elucidation. This review focuses on the receptors of AGEs, especially on the structural aspects of receptor-ligand interaction, and the diseases in which AGEs are involved. It also aims to present AGE classification in subgroups and to describe the basic processes leading to both exogeneous and endogeneous AGE formation.
Collapse
|
41
|
Ban I, Sugawa H, Nagai R. Protein Modification with Ribose Generates Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine. Int J Mol Sci 2022; 23:ijms23031224. [PMID: 35163152 PMCID: PMC8835445 DOI: 10.3390/ijms23031224] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 12/28/2022] Open
Abstract
Advanced glycation end products (AGEs) are associated with diabetes and its complications. AGEs are formed by the non-enzymatic reactions of proteins and reducing sugars, such as glucose and ribose. Ribose is widely used in glycation research as it generates AGEs more rapidly than glucose. This study analyzed the AGE structures generated from ribose-modified protein by liquid chromatography-quadrupole time-of-flight mass spectrometry. Among these AGEs, Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine (MG-H1) was the most abundant in ribose-glycated bovine serum albumin (ribated-BSA) among others, such as Nε-(carboxymethyl) lysine, Nε-(carboxyethyl) lysine, and Nω-(carboxymethyl) arginine. Surprisingly, MG-H1 was produced by ribated-BSA in a time-dependent manner, whereas methylglyoxal levels (MG) were under the detectable level. In addition, Trapa bispinosa Roxb. hot water extract (TBE) possesses several anti-oxidative compounds, such as ellagic acid, and has been reported to inhibit the formation of MG-H1 in vivo. Thus, we evaluated the inhibitory effects of TBE on MG-H1 formation using ribose- or MG-modified proteins. TBE inhibited MG-H1 formation in gelatin incubated with ribose and ribated-BSA, but not in MG-modified gelatin. Furthermore, MG-H1 formation was inhibited by diethylenetriaminepentaacetic acid. These results demonstrated that ribose reacts with proteins to generate Amadori compounds and form MG-H1 via oxidation.
Collapse
|
42
|
AGEs and renal sodium handling: association with hypertension. Hypertens Res 2022; 45:741-743. [PMID: 35046513 DOI: 10.1038/s41440-021-00847-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022]
|
43
|
Analysis of 19 urinary biomarkers of oxidative stress, nitrative stress, metabolic disorders, and inflammation using liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 2022; 414:2103-2116. [PMID: 35013809 PMCID: PMC8747998 DOI: 10.1007/s00216-021-03844-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 01/23/2023]
Abstract
Environmental chemical exposures have been associated with cancer, diabetes, hormonal and immunological disorders, and cardiovascular diseases. Some direct effects of chemical exposure that are precursors to adverse health outcomes, including oxidative stress, nitrative stress, hormonal imbalance, neutrophilia, and eosinophilia, can be assessed through the analysis of biomarkers in urine. In this study, we describe a novel methodology for the determination of 19 biomarkers of health effects: malondialdehyde (MDA), 8-isoprostaglandin-F2α (8-PGF2α), 11-β-prostaglandin-F2α (11-PGF2α), 15-prostaglandin-F2α (15-PGF2α), 8-iso-15-prostaglandin-F2α (8,15-PGF2α), 8-hydroxy-2′-deoxyguanosine (8-OHdG), 8-hydroxyguanosine (8-HdG), 8-hydroxyguanine (8-HG), dityrosine (diY), allantoin (Alla), and two metabolic products of 4-hydroxynonenal (HNE), namely 4-hydroxy-2-nonenal glutathione (HNE-GSH) and 4-hydroxy-2-nonenal mercapturic acid (HNE-MA) (in total, 12 oxidative stress biomarkers, OSBs); 8-nitroguanosine (8-NdG), 8-nitroguanine (8-NG), and 3-nitrotyrosine (NY) (3 nitrative stress biomarkers, NSBs); chlorotyrosine (CY) and bromotyrosine (BY) (2 inflammatory biomarkers); and the advanced glycation end-products (AGEs) Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL) (2 metabolic disorder biomarkers). Since these biomarkers are trigged by a variety of environmental insults and produced by different biomolecular pathways, their selective and sensitive determination in urine would help broadly elucidate the pathogenesis of diseases mediated by environmental factors.
Collapse
|
44
|
Gorisse L, Jaisson S, Piétrement C, Gillery P. Carbamylated Proteins in Renal Disease: Aggravating Factors or Just Biomarkers? Int J Mol Sci 2022; 23:574. [PMID: 35008998 PMCID: PMC8745352 DOI: 10.3390/ijms23010574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Carbamylation is a nonenzymatic post-translational modification resulting from the reaction between cyanate, a urea by-product, and proteins. In vivo and in vitro studies have demonstrated that carbamylation modifies protein structures and functions, triggering unfavourable molecular and cellular responses. An enhanced formation of carbamylation-derived products (CDPs) is observed in pathological contexts, especially during chronic kidney disease (CKD), because of increased blood urea. Significantly, studies have reported a positive correlation between serum CDPs and the evolutive state of renal failure. Further, serum concentrations of carbamylated proteins are characterized as strong predictors of mortality in end-stage renal disease patients. Over time, it is likely that these modified compounds become aggravating factors and promote long-term complications, including cardiovascular disorders and inflammation or immune system dysfunctions. These poor clinical outcomes have led researchers to consider strategies to prevent or slow down CDP formation. Even if growing evidence suggests the involvement of carbamylation in the pathophysiology of CKD, the real relevance of carbamylation is still unclear: is it a causal phenomenon, a metabolic consequence or just a biological feature? In this review, we discuss how carbamylation, a consequence of renal function decline, may become a causal phenomenon of kidney disease progression and how CDPs may be used as biomarkers.
Collapse
Affiliation(s)
- Laëtitia Gorisse
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
| | - Stéphane Jaisson
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
- Biochemistry Department, University Hospital of Reims, 51092 Reims, France
| | - Christine Piétrement
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
- Pediatrics Department, University Hospital of Reims, 51092 Reims, France
| | - Philippe Gillery
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
- Biochemistry Department, University Hospital of Reims, 51092 Reims, France
| |
Collapse
|
45
|
Wang Y, Chen Y, Jia Y, Xue Z, Chen Z, Zhang M, Panichayupakaranant P, Yang S, Chen H. Chrysophyllum cainito. L alleviates diabetic and complications by playing antioxidant, antiglycation, hypoglycemic roles and the chemical profile analysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114569. [PMID: 34454054 DOI: 10.1016/j.jep.2021.114569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chrysophyllum cainito L. (C. cainito) is a traditional folk medicine in tropical area which can be an alternative agent for diabetes mellitus. Although the antioxidant and antidiabetic activity of the extracts are reported, little is known on the antiglycation activity and effects on diabetic complications. AIM OF THE STUDY This work was aimed to investigate the chemical profile, antidiabetic, antioxidant activities of C. cainito. Especially, the antiglycation potential as well as the relationships between components and activities were evaluated. MATERIALS AND METHODS The content of the primary components (polyphenols, flavonoids, steroids, and triterpenes), antioxidant, and hypoglycemic effects of ethanolic extracts from C. cainito leaves (CCE-1, 2, 3, 4) and stems (CSE-1, 2, 3, 4) were analyzed and detected. The chemical profiles of CCE-2 were characterized by HPLC-Q-TOF-MS/MS. The antiglycation and protection against oxidative stress effects were determined by in vitro assays. Relationship between bioactivities and components was analyzed by principal component analysis (PCA), heatmap analysis, and Pearson correlation analysis. RESULTS The composition was diverse between leaves and stem extracts with different activities. CCE-2 possessed the highest DPPH scavenging activity. CSE-2 displayed the highest ABTS scavenging activity and ferric reducing power. While CCE-3 showed the most effective inhibition on α-amylase and α-glucosidase activity (IC50 4.103 ± 0.332 μg/mL and 0.180 ± 0.006 mg/mL, respectively). PCA analysis showed that the most important variables in PC1 (60.7%) were total polyphenol and antioxidant activities. The hypoglycemic activity and contents of steroids showed important correlation. Advanced glycation end products formation was effectively inhibited by CCE-2 with myricetin 3-O-rhamnoside as the main constituent. CCE-3 displayed the highest protection effect against L02 cell line oxidation damage. CONCLUSIONS C. cainito leaves might be a promising candidate for antioxidant, hypoglycemic and antiglycation dietary supplement or potential agent against diabetes associated chronic diseases.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yue Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin, 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand
| | - Shuyu Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
46
|
Liang Z, Chen X, Yang Z, Lu J, Huang J, Liu Y, Chen L, Xian H, Mo J, Huang X, Chen S, Yang J. Pyrraline formation prevented by sodium chloride encapsulated by binary blends of different starches and gum Arabic in aqueous model systems and cookies. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhili Liang
- School of Food Science Guangdong Food and Drug Vocational College Guangzhou 510520 China
| | - Xu Chen
- Engineering Research Center of Health Food Design & Nutrition Regulation School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Zhao Yang
- School of Food Science Guangdong Food and Drug Vocational College Guangzhou 510520 China
| | - Jihuan Lu
- School of Food Science Guangdong Food and Drug Vocational College Guangzhou 510520 China
| | - Jiacheng Huang
- School of Food Science Guangdong Food and Drug Vocational College Guangzhou 510520 China
| | - Yingyi Liu
- School of Food Science Guangdong Food and Drug Vocational College Guangzhou 510520 China
| | - Lin Chen
- School of Food Science Guangdong Food and Drug Vocational College Guangzhou 510520 China
| | - Huiyi Xian
- School of Food Science Guangdong Food and Drug Vocational College Guangzhou 510520 China
| | - Jiajie Mo
- School of Food Science Guangdong Food and Drug Vocational College Guangzhou 510520 China
| | - Xiaosi Huang
- School of Food Science Guangdong Food and Drug Vocational College Guangzhou 510520 China
| | - Shaofu Chen
- School of Food Science Guangdong Food and Drug Vocational College Guangzhou 510520 China
| | - Jiabiao Yang
- School of Food Science Guangdong Food and Drug Vocational College Guangzhou 510520 China
| |
Collapse
|
47
|
Yuan X, Nie C, Liu H, Ma Q, Peng B, Zhang M, Chen Z, Li J. Comparison of metabolic fate, target organs, and microbiota interactions of free and bound dietary advanced glycation end products. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34698575 DOI: 10.1080/10408398.2021.1991265] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Increased intake of Western diets and ultra-processed foods is accompanied by increased intake of advanced glycation end products (AGEs). AGEs can be generated exogenously in the thermal processing of food and endogenously in the human body, which associated with various chronic diseases. In food, AGEs can be divided into free and bound forms, which differ in their bioavailability, digestion, absorption, gut microbial interactions and untargeted metabolites. We summarized the measurements and contents of free and bound AGE in foods. Moreover, the ingestion, digestion, absorption, excretion, gut microbiota interactions, and metabolites and metabolic pathways between free and bound AGEs based on animal and human studies were compared. Bound AGEs were predominant in most of the selected foods, while beer and soy sauce were rich in free AGEs. Only 10%-30% of AGEs were absorbed into the systemic circulation when orally administered. The excretion of ingested free and bound AGEs was approximately 90% and 60%, respectively. Dietary free CML has a detrimental effect on gut microbiota composition, while bound AGEs have both detrimental and beneficial impacts. Free and bound dietary AGEs changed amino acid metabolism, energy metabolism and carbohydrate metabolism. And besides, bound dietary AGEs altered vitamin metabolism, and glycerolipid metabolism.
Collapse
Affiliation(s)
- Xiaojin Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qingyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bo Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
48
|
Ciminera AK, Shuck SC, Termini J. Elevated glucose increases genomic instability by inhibiting nucleotide excision repair. Life Sci Alliance 2021; 4:4/10/e202101159. [PMID: 34426491 PMCID: PMC8385305 DOI: 10.26508/lsa.202101159] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Exposure to chronic, elevated glucose inhibits nucleotide excision repair, which leads to accumulation of DNA glycation adducts, increased DNA strand breaks, and activation of the DNA damage response. We investigated potential mechanisms by which elevated glucose may promote genomic instability. Gene expression studies, protein measurements, mass spectroscopic analyses, and functional assays revealed that elevated glucose inhibited the nucleotide excision repair (NER) pathway, promoted DNA strand breaks, and increased levels of the DNA glycation adduct N2-(1-carboxyethyl)-2ʹ-deoxyguanosine (CEdG). Glycation stress in NER-competent cells yielded single-strand breaks accompanied by ATR activation, γH2AX induction, and enhanced non-homologous end-joining and homology-directed repair. In NER-deficient cells, glycation stress activated ATM/ATR/H2AX, consistent with double-strand break formation. Elevated glucose inhibited DNA repair by attenuating hypoxia-inducible factor-1α–mediated transcription of NER genes via enhanced 2-ketoglutarate–dependent prolyl hydroxylase (PHD) activity. PHD inhibition enhanced transcription of NER genes and facilitated CEdG repair. These results are consistent with a role for hyperglycemia in promoting genomic instability as a potential mechanism for increasing cancer risk in metabolic disease. Because of the pleiotropic functions of many NER genes beyond DNA repair, these results may have broader implications for cellular pathophysiology.
Collapse
Affiliation(s)
- Alexandra K Ciminera
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, USA.,Irell and Manella Graduate School of Biomedical Sciences, City of Hope, Duarte, CA, USA
| | - Sarah C Shuck
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, USA
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, USA
| |
Collapse
|
49
|
Serin Y, Akbulut G, Uğur H, Yaman M. Recent developments in in-vitro assessment of advanced glycation end products. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Chilelli NC, Faggian A, Favaretto F, Milan G, Compagnin C, Dassie F, Bettini S, Roverso M, Seraglia R, Lapolla A, Vettor R. In vitro chronic glycation induces AGEs accumulation reducing insulin-stimulated glucose uptake and increasing GLP1R in adipocytes. Am J Physiol Endocrinol Metab 2021; 320:E976-E988. [PMID: 33779307 DOI: 10.1152/ajpendo.00156.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular AGEs accumulation increases RAGE and GLP1R and reduces glucose uptake in adipocytes.
Collapse
Affiliation(s)
| | - Alessia Faggian
- Department of Medicine, University of Padua, Internal Medicine 3, Padua, Italy
| | - Francesca Favaretto
- Department of Medicine, University of Padua, Internal Medicine 3, Padua, Italy
| | - Gabriella Milan
- Department of Medicine, University of Padua, Internal Medicine 3, Padua, Italy
| | - Chiara Compagnin
- Department of Medicine, University of Padua, Internal Medicine 3, Padua, Italy
| | - Francesca Dassie
- Department of Medicine, University of Padua, Internal Medicine 3, Padua, Italy
| | - Silvia Bettini
- Department of Medicine, University of Padua, Internal Medicine 3, Padua, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Roberta Seraglia
- Consiglio Nazionale delle Ricerche-Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (CNR-ICMATE), Padua, Italy
| | - Annunziata Lapolla
- Department of Medicine, University of Padua, Diabetology and Dietetics, Padua, Italy
| | - Roberto Vettor
- Department of Medicine, University of Padua, Internal Medicine 3, Padua, Italy
| |
Collapse
|