1
|
Wang J, Li S, Xu H, Xue J, Wan X, Wu W, Huang J, Zhang H, Qin Z, Wang Y. The roles and mechanisms of CDGSH iron-sulfur domain 1 in kainic acid-induced mitochondrial iron overload, dysfunction and neuronal damage. Biomed Pharmacother 2025; 187:118067. [PMID: 40280034 DOI: 10.1016/j.biopha.2025.118067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/25/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Maintaining mitochondrial function plays a crucial role in preventing and treating neurodegenerative diseases. CDGSH iron-sulfur domain 1 (CISD1), a NEET family protein localized on the mitochondrial outer membrane, regulates mitochondrial iron transport. However, the precise mechanism by which CISD1 modulates mitochondrial Fe2 + remains unclear. In this study, we examine the link between aberrant iron metabolism and mitochondrial dysfunction using in vivo and in vitro excitotoxicity models. Our study also clarifies how CISD1 modulates KA-mediated excitotoxic neuronal damage. Overexpression of CISD1 reverses KA-induced mitochondrial iron overload and dysfunction. KA significantly downregulate the mitochondrial protein deacetylase SIRT1. SRT1460 (SIRT1-specific agonist) mitigates mitochondrial iron overload and restore CISD1 expression levels. Altogether, CISD1 protects against excitotoxic injury by mitigating mitochondrial iron overload, thereby providing a potential therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Shuo Li
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Haidong Xu
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Jie Xue
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Xiaorui Wan
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Weilong Wu
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Jiani Huang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Huiling Zhang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Zhenghong Qin
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yan Wang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Geng X, Li M, Zhang L, Cai Y, Chen X, Mu X, Wang J, Liu B. P5CS deacetylation mediated by SIRT2 facilitates tumor growth by enhancing mitochondrial respiration in hepatocellular carcinoma. Oncogene 2025:10.1038/s41388-025-03456-3. [PMID: 40425834 DOI: 10.1038/s41388-025-03456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 05/05/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Cancer cells typically exhibit enhanced mitochondrial metabolism to fulfill their energy and biosynthetic demands for growth. The mitochondrial response to fluctuations in cellular energy demand is essential for cellular adaptation and proper organ function. The mitochondrial delta-1-pyrroline-5-carboxylate synthase (P5CS) encoded by the ALDH18A1 gene, the key enzyme for proline synthesis, is frequently up-regulated during tumor development. However, the regulatory mechanisms governing P5CS activity in the occurrence and development of hepatocellular carcinoma (HCC) remain largely unknown. In this study, we observe that P5CS is highly expressed in HCC tissues, and elevated levels of P5CS expression are associated with poor prognosis in HCC patients. Notably, the knockdown of P5CS inhibits the proliferation, migratory and invasive capabilities of HCC cells by reducing mitochondrial respiration. Furthermore, we demonstrate that SIRT2 interacts with P5CS and mediates the deacetylation of P5CS at lysines K311 and K347, thereby activating its enzymatic activity. Activated P5CS significantly enhances mitochondrial respiration, which supports the proliferation and tumorigenesis of HCC cells. In addition, SIRT2 knockdown inhibits the proliferation, migratory and invasive capabilities of HCC cells. These observations suggest that SIRT2-mediated P5CS deacetylation is a crucial signaling event through which cancer cells sustain mitochondrial respiration and promote HCC progression. This finding offers the potential for targeting SIRT2-mediated P5CS deacetylation as a therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xiaofang Geng
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| | - Mengyao Li
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Lu Zhang
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yihan Cai
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xin Chen
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xiayue Mu
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Jie Wang
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| | - Bowen Liu
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| |
Collapse
|
3
|
Su Y, Sun J, Li X, Huang F, Kong Y, Chen Z, Zhang J, Qin D, Chen X, Wang Z, Pei Y, Gong M, Yang K, Xu M, Dong Y, He Q, Zhang ZN, Sheng Z, Deng Q, Wang H, Wang G, Hu P, Le R, Gao S, Li W. CD47-blocking antibody confers metabolic benefits against obesity. Cell Rep Med 2025; 6:102089. [PMID: 40267910 DOI: 10.1016/j.xcrm.2025.102089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/22/2024] [Accepted: 03/27/2025] [Indexed: 04/25/2025]
Abstract
CD47-blocking antibody is a well-known potential antibody drug for tumor immunotherapy. However, it is unclear whether CD47-blocking antibody can protect against metabolic disorders. We report that high-fat diet (HFD)-induced obesity increases CD47 expression, while exercise downregulates it in skeletal muscle. Administration of CD47-blocking antibody in mice prevents HFD-induced weight gain and glucose intolerance, enhances exercise capacity, and improves body composition and skeletal muscle mitochondrial function. Mechanistically, the protective effects conferred by CD47-blocking antibody are mediated through activation of AMP-activated protein kinase (AMPK) in skeletal muscle. Consistently, muscle-specific CD47-knockout mice show similar metabolic improvements, indicating a direct muscle-specific role of CD47 in regulating AMPK activation in vivo. Furthermore, the CD47-blocking antibody reduces the phosphorylation of heat shock protein 90α (HSP90α) to activate AMPK in skeletal muscle. In conclusion, CD47-blocking antibody confers metabolic benefits by activating the AMPK pathway in skeletal muscle.
Collapse
Affiliation(s)
- Yajuan Su
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266071, China
| | - Jingyu Sun
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China
| | - Xiaobo Li
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266071, China
| | - Feier Huang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China
| | - Yunhui Kong
- Institute of Modern Biology, Nanjing University, Nanjing 210023, China
| | - Zian Chen
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China
| | - Jingzhi Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China
| | - Duran Qin
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China
| | - Xiangyi Chen
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China
| | - Zhaoyue Wang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China
| | - Yu Pei
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Solna, Sweden
| | - Mengting Gong
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China
| | - Kaijiang Yang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China
| | - Minglu Xu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China
| | - Yu Dong
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China
| | - Qing He
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China
| | - Zhen-Ning Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China
| | - Zhejin Sheng
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Solna, Sweden
| | - Hong Wang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China
| | - Gaowei Wang
- Institute of Modern Biology, Nanjing University, Nanjing 210023, China
| | - Ping Hu
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai TenthPeople's Hospital Affiliated to Tongji University, Shanghai 200031, China; Guangzhou Laboratory, No. 9 XingDaoHuan Road, Guanghzou International Bio lsland, Guangzhou 510005, China
| | - Rongrong Le
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China.
| | - Shaorong Gao
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266071, China.
| | - Weida Li
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Sports and Health Research Center, Tongji University Department of Physical Education, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266071, China.
| |
Collapse
|
4
|
Xu G, Schell J, Quan S, Gao Y, Wei SJ, Pan M, Han X, Li G, Zhou D, Jiang H, Dong FF, Munkácsy E, Horikoshi N, Gius D. Mitochondrial ACSS1-K635 acetylation knock-in mice exhibit altered liver lipid metabolism on a ketogenic diet. Free Radic Biol Med 2025; 232:260-268. [PMID: 40074187 DOI: 10.1016/j.freeradbiomed.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/14/2025]
Abstract
Acetyl-CoA Synthetase Short Chain Family Member-1 (ACSS1) catalyzes the ligation of acetate and coenzyme A to generate acetyl-CoA in the mitochondria to produce ATP through the tricarboxylic acid (TCA) cycle. We recently generated an ACSS1-acetylation (Ac) mimic knock-in mouse, where lysine 635 was mutated to glutamine (K635Q), which structurally and biochemically mimics an acetylated lysine. ACSS1 enzymatic activity is regulated, at least in part, through the acetylation of lysine 635 in mice (lysine 642 in humans), a Sirtuin 3 deacetylation target. We challenged our Acss1K635Q knock-in mice with a three-week ketogenic diet. While both wild-type and Acss1K635Q knock-in mice were in ketosis with similar blood glucose levels, the Acss1K635Q mice exhibited elevated blood acetate and liver acetyl-CoA. In addition, and importantly, compared to wild-type mice, the liver in the Acss1K635Q mice displayed a much more predominant liver steatosis morphology and accumulation of lipid drops, as measured by H&E and Oil Red O staining. RNAseq analysis identified that genes related to mitochondrial respiratory chain complexes and oxidative stress were significantly overexpressed in the Acss1K635Q mice on a KD. Finally, lipidomics analysis revealed very different lipid profiles for these groups, including a dramatic increase in triacylglycerides (TAGs), phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and cardiolipins in the Acss1K635Q liver.
Collapse
Affiliation(s)
- Guogang Xu
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA
| | - Joseph Schell
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA
| | - Songhua Quan
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yucheng Gao
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sung-Jen Wei
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA
| | - Guiming Li
- Center for Innovative Drug Discovery, Department of Biochemistry and Structural Biology, UT Health San Antonio, TX, USA
| | - Daohong Zhou
- Center for Innovative Drug Discovery, Department of Biochemistry and Structural Biology, UT Health San Antonio, TX, USA
| | - Haiyan Jiang
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA
| | - Felix F Dong
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA
| | - Erin Munkácsy
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA
| | - David Gius
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA.
| |
Collapse
|
5
|
Darwesh AM, Fang L, Altamimi TR, Jamieson KL, Bassiouni W, Valencia R, Huang A, Wang F, Zhang H, Ahmed M, Gopal K, Zhang Y, Michelakis ED, Ussher JR, Edin ML, Zeldin DC, Barakat K, Oudit GY, Kassiri Z, Lopaschuk GD, Seubert JM. Cardioprotective effect of 19,20-epoxydocosapentaenoic acid (19,20-EDP) in ischaemic injury involves direct activation of mitochondrial sirtuin 3. Cardiovasc Res 2025; 121:267-282. [PMID: 39658136 PMCID: PMC12012443 DOI: 10.1093/cvr/cvae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 12/12/2024] Open
Abstract
AIMS Although current clinical therapies following myocardial infarction (MI) have improved patient outcomes, morbidity, and mortality rates, secondary to ischaemic and ischaemia reperfusion (IR) injury remains high. Maintaining mitochondrial quality is essential to limit myocardial damage following cardiac ischaemia and IR injury. The mitochondrial deacetylase sirtuin 3 (SIRT3) plays a pivotal role in regulating mitochondrial function and cardiac energy metabolism. In the current study, we hypothesize that 19,20-epoxydocosapentaenoic acid (19,20-EDP) attenuates cardiac IR injury via stimulating mitochondrial SIRT3. METHODS AND RESULTS Ex vivo models of isolated heart perfusions were performed in C57BL/6 mice to assess the effect of 19,20-EDP on cardiac function and energy metabolism following IR injury. In vivo permanent occlusion of the left anterior descending coronary artery was performed to induce MI; mice were administered 19,20-EDP with or without the SIRT3 selective inhibitor 3-TYP. Mitochondrial SIRT3 targets and respiration were assessed in human left ventricular tissues obtained from individuals with ischaemic heart disease (IHD) and compared to non-failing controls (NFCs). Binding affinity of 19,20-EDP to human SIRT3 was assessed using molecular modelling and fluorescence thermal shift assay. Results demonstrated that hearts treated with 19,20-EDP had improved post-ischaemic cardiac function, better glucose oxidation rates, and enhanced cardiac efficiency. The cardioprotective effects were associated with enhanced mitochondrial SIRT3 activity. Interestingly, treatment with 19,20-EDP markedly improved mitochondrial respiration and SIRT3 activity in human left ventricle (LV) fibres with IHD compared to NFC. Moreover, 19,20-EDP was found to bind to the human SIRT3 protein enhancing the NAD+-complex stabilization leading to improved SIRT3 activity. Importantly, the beneficial effects of 19,20-EDP were abolished by SIRT3 inhibition or using the S149A mutant SIRT3. CONCLUSION These data demonstrate that 19,20-EDP-mediated cardioprotective mechanisms against ischaemia and IR injury involve mitochondrial SIRT3, resulting in improved cardiac efficiency.
Collapse
Affiliation(s)
- Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2-35 Medical Sciences Building, Edmonton, AB, Canada T6G 2H1
| | - Liye Fang
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 7-55 Medical Sciences Building, Edmonton, AB, Canada T6G 2H7
| | - Tariq R Altamimi
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - K Lockhart Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2-35 Medical Sciences Building, Edmonton, AB, Canada T6G 2H1
| | - Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 7-55 Medical Sciences Building, Edmonton, AB, Canada T6G 2H7
| | - Robert Valencia
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 7-55 Medical Sciences Building, Edmonton, AB, Canada T6G 2H7
| | - Andy Huang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2-35 Medical Sciences Building, Edmonton, AB, Canada T6G 2H1
| | - Faqi Wang
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Hao Zhang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Marawan Ahmed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2-35 Medical Sciences Building, Edmonton, AB, Canada T6G 2H1
- Quantitative Solutions, API, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2-35 Medical Sciences Building, Edmonton, AB, Canada T6G 2H1
| | - Yongneng Zhang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Evangelos D Michelakis
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2-35 Medical Sciences Building, Edmonton, AB, Canada T6G 2H1
| | - Matthew L Edin
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
| | - Darryl C Zeldin
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2-35 Medical Sciences Building, Edmonton, AB, Canada T6G 2H1
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, AB, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Gary D Lopaschuk
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2-35 Medical Sciences Building, Edmonton, AB, Canada T6G 2H1
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 7-55 Medical Sciences Building, Edmonton, AB, Canada T6G 2H7
| |
Collapse
|
6
|
Feldman-Trabelsi S, Touitou N, Nagar R, Schwartz Z, Michelson A, Shaki S, Avivi MY, Lerrer B, Snir S, Cohen HY. The mammalian longevity associated acetylome. Nat Commun 2025; 16:3749. [PMID: 40263264 PMCID: PMC12015450 DOI: 10.1038/s41467-025-58762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 04/01/2025] [Indexed: 04/24/2025] Open
Abstract
Despite extensive studies at the genomic, transcriptomic and metabolomic levels, the underlying mechanisms regulating longevity are incompletely understood. Post-translational protein acetylation is suggested to regulate aspects of longevity. To further explore the role of acetylation, we develop the PHARAOH computational tool based on the 100-fold differences in longevity within the mammalian class. Analyzing acetylome and proteome data across 107 mammalian species identifies 482 and 695 significant longevity-associated acetylated lysine residues in mice and humans, respectively. These sites include acetylated lysines in short-lived mammals that are replaced by permanent acetylation or deacetylation mimickers, glutamine or arginine, respectively, in long-lived mammals. Conversely, glutamine or arginine residues in short-lived mammals are replaced by reversibly acetylated lysine in long-lived mammals. Pathway analyses highlight the involvement of mitochondrial translation, cell cycle, fatty acid oxidation, transsulfuration, DNA repair and others in longevity. A validation assay shows that substituting lysine 386 with arginine in mouse cystathionine beta synthase, to attain the human sequence, increases the pro-longevity activity of this enzyme. Likewise, replacing the human ubiquitin-specific peptidase 10 acetylated lysine 714 with arginine as in short-lived mammals, reduces its anti-neoplastic function. Overall, in this work we propose a link between the conservation of protein acetylation and mammalian longevity.
Collapse
Affiliation(s)
- S Feldman-Trabelsi
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel
| | - N Touitou
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel
| | - R Nagar
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Z Schwartz
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel
| | - A Michelson
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel
| | - S Shaki
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel
| | - M Y Avivi
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel
| | - B Lerrer
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel
| | - S Snir
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - H Y Cohen
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
- The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
7
|
Aryal B, Kwakye J, Ariyo OW, Ghareeb AFA, Milfort MC, Fuller AL, Khatiwada S, Rekaya R, Aggrey SE. Major Oxidative and Antioxidant Mechanisms During Heat Stress-Induced Oxidative Stress in Chickens. Antioxidants (Basel) 2025; 14:471. [PMID: 40298812 PMCID: PMC12023971 DOI: 10.3390/antiox14040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Heat stress (HS) is one of the most important stressors in chickens, and its adverse effects are primarily caused by disturbing the redox homeostasis. An increase in electron leakage from the mitochondrial electron transport chain is the major source of free radical production under HS, which triggers other enzymatic systems to generate more radicals. As a defense mechanism, cells have enzymatic and non-enzymatic antioxidant systems that work cooperatively against free radicals. The generation of free radicals, particularly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), under HS condition outweighs the cellular antioxidant capacity, resulting in oxidative damage to macromolecules, including lipids, carbohydrates, proteins, and DNA. Understanding these detrimental oxidative processes and protective defense mechanisms is important in developing mitigation strategies against HS. This review summarizes the current understanding of major oxidative and antioxidant systems and their molecular mechanisms in generating or neutralizing the ROS/RNS. Importantly, this review explores the potential mechanisms that lead to the development of oxidative stress in heat-stressed chickens, highlighting their unique behavioral and physiological responses against thermal stress. Further, we summarize the major findings associated with these oxidative and antioxidant mechanisms in chickens.
Collapse
Affiliation(s)
- Bikash Aryal
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Josephine Kwakye
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Oluwatomide W. Ariyo
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Ahmed F. A. Ghareeb
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
- Boehringer Ingelheim Animal Health (BIAH), Gainesville, GA 30501, USA
| | - Marie C. Milfort
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Alberta L. Fuller
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Saroj Khatiwada
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, The University of Georgia, Athens, GA 30602, USA;
| | - Samuel E. Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| |
Collapse
|
8
|
El Wakil A, Devos P, Abdelmegeed H, Kamel A. Mitochondria in cancer: a comprehensive review, bibliometric analysis, and future perspectives. Discov Oncol 2025; 16:517. [PMID: 40214834 PMCID: PMC11992316 DOI: 10.1007/s12672-025-02139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/13/2025] [Indexed: 04/14/2025] Open
Abstract
INTRODUCTION Mitochondria are essential organelles for many aspects of cellular homeostasis. They play an indispensable role in the development and progression of diseases, particularly cancer which is a major cause of death worldwide. We analyzed the scientific research output on mitochondria and cancer via PubMed and Web of Science over the period 1990-2023. METHODS Bibliometric analysis was performed by extracting data linking mitochondria to cancer pathogenesis over the period 1990-2023 from the PubMed database which has a precise and specific search engine. Only articles and reviews were considered. Since PubMed does not support analyses by countries or institutions, we utilized InCites, an analytical tool developed and marketed by Clarivate Analytics. We also used the VOSviewer software developed by the Centre for Science and Technology Studies (Bibliometric Department of Leiden University, Leiden, Netherlands), which enables us to graphically represent links between countries, authors or keywords in cluster form. Finally, we used iCite, a tool developed by the NIH (USA) to access a dashboard of bibliometrics for papers associated with a portfolio. This module can therefore be used to measure whether the research carried out is still basic, translational or clinical. RESULTS In total, 169,555 publications were identified in PubMed relating to 'mitochondria', of which 34,949 (20.61%) concerned 'mitochondria' and 'dysfunction' and 22,406 (13.21%) regarded 'mitochondria' and 'cancer'. Hence, not all mitochondrial dysfunctions may lead to cancer or enhance its progression. Qualitatively, the disciplines of journals were classified into 166 categories among which cancer specialty accounts for only 4.7% of publications. Quantitatively, our analysis showed that cancer/neoplasms in the liver (2569 articles) were placed in the first position. USA occupied the first position among countries contributing the highest number of publications (5695 articles), whereas Egypt came in the thirty-eight position with 84 publications (0.46%). Importantly, USA is the first-ranked country having both the top 1% and 10% impact indicators with 207 and 1459 articles, respectively. By crossing the query 'liver neoplasms' (155,678) with the query 'mitochondria' (169,555), we identified 1336 articles in PubMed over the study period. Among these publications, research areas were classified into 65 categories with the highest percentage of documents included in biochemistry and molecular biology (28.92%), followed by oncology (23.31%). CONCLUSIONS This study underscores the crucial yet underrepresented role of mitochondria in cancer research. Despite their significance in cancer pathogenesis, the proportion of related publications remains relatively low. Our findings highlight the need for further research to deepen our understanding of mitochondrial mechanisms in cancer, which could pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, 21526, Egypt.
| | - Patrick Devos
- Université Lille, Lillometrics, 59000, Lille, France
- CHU Lille, Direction de la Recherche et de l'Innovation, 59000, Lille, France
| | - Heba Abdelmegeed
- Department of Chemistry of Natural Compounds, National Research Centre, Giza, Egypt
| | - Alaa Kamel
- Department of Zoology, Faulty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Li P, Fan Z, Huang Y, Luo L, Wu X. Mitochondrial dynamics at the intersection of macrophage polarization and metabolism. Front Immunol 2025; 16:1520814. [PMID: 40196123 PMCID: PMC11973336 DOI: 10.3389/fimmu.2025.1520814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Macrophages are vital sentinels in innate immunity, and their functions cannot be performed without internal metabolic reprogramming. Mitochondrial dynamics, especially mitochondrial fusion and fission, contributes to the maintenance of mitochondrial homeostasis. The link between mitochondrial dynamics and macrophages in the past has focused on the immune function of macrophages. We innovatively summarize and propose a link between mitochondrial dynamics and macrophage metabolism. Among them, fusion-related FAM73b, MTCH2, SLP-2 (Stomatin-like protein 2), and mtSIRT, and fission-related Fis1 and MTP18 may be the link between mitochondrial dynamics and macrophage metabolism association. Furthermore, post-translational modifications (PTMs) of mtSIRT play prominent roles in mitochondrial dynamics-macrophage metabolism connection, such as deacetylates and hypersuccinylation. MicroRNAs such as miR-150, miR-15b, and miR-125b are also possible entry points. The metabolic reprogramming of macrophages through the regulation of mitochondrial dynamics helps improve their adaptability and resistance to adverse environments and provides therapeutic possibilities for various diseases.
Collapse
Affiliation(s)
- Pan Li
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, China
| | - Zhengbo Fan
- People’s Government of Huangshui Town, Shizhu Tujia Autonomous County, Chongqing, China
| | - Yanlan Huang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Liang Luo
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiaoyan Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
10
|
Zhou MM, Cole PA. Targeting lysine acetylation readers and writers. Nat Rev Drug Discov 2025; 24:112-133. [PMID: 39572658 PMCID: PMC11798720 DOI: 10.1038/s41573-024-01080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 02/06/2025]
Abstract
Lysine acetylation is a major post-translational modification in histones and other proteins that is catalysed by the 'writer' lysine acetyltransferases (KATs) and mediates interactions with bromodomains (BrDs) and other 'reader' proteins. KATs and BrDs play key roles in regulating gene expression, cell growth, chromatin structure, and epigenetics and are often dysregulated in disease states, including cancer. There have been accelerating efforts to identify potent and selective small molecules that can target individual KATs and BrDs with the goal of developing new therapeutics, and some of these agents are in clinical trials. Here, we summarize the different families of KATs and BrDs, discuss their functions and structures, and highlight key advances in the design and development of chemical agents that show promise in blocking the action of these chromatin proteins for disease treatment.
Collapse
Affiliation(s)
- Ming-Ming Zhou
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Chen X, Zhang J. Understanding Post-Translational Modifications in Porcine Reproductive and Respiratory Syndrome Virus Infection. Vet Sci 2024; 11:654. [PMID: 39728994 DOI: 10.3390/vetsci11120654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious virus affecting pigs with significant impacts to the swine industry worldwide. This review provides a comprehensive understanding of post-translational modifications (PTMs) associated with PRRSV infection. We discuss the various types of PTMs, including phosphorylation, ubiquitination, SUMoylation, acetylation, glycosylation, palmitoylation, and lactylation, that occur during PRRSV infection. We emphasize how these modifications affect the function and activity of viral proteins, thereby influencing virus replication, assembly, and egress. Additionally, we delve into the host cellular responses triggered by PRRSV, particularly the PTMs that regulate host signaling pathways and immune responses. Furthermore, we summarize the current understandings of how PTMs facilitate the ability of virus to evade the host immune system, enabling it to establish persistent infections. Finally, we address the implications of these modifications in the development of novel antiviral strategies and the potential for exploiting PTMs as therapeutic targets. This review highlights the significance of PTMs in shaping viral pathogenicity and host antiviral mechanisms and provides valuable insights for future research aimed at developing effective interventions against PRRSV infections.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China
| | - Jianlong Zhang
- Pingliang Vocational and Technical College, Pingliang 744000, China
| |
Collapse
|
12
|
Beloborodova NV, Fedotcheva NI. Influence of the Microbial Metabolite Acetyl Phosphate on Mitochondrial Functions Under Conditions of Exogenous Acetylation and Alkalization. Metabolites 2024; 14:703. [PMID: 39728484 DOI: 10.3390/metabo14120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Acetyl phosphate (AcP) is a microbial intermediate involved in the central bacterial metabolism. In bacteria, it also functions as a donor of acetyl and phosphoryl groups in the nonenzymatic protein acetylation and signal transduction. In host, AcP was detected as an intermediate of the pyruvate dehydrogenase complex, and its appearance in the blood was considered as an indication of mitochondrial breakdown. In vitro experiments showed that AcP is a powerful agent of nonenzymatic acetylation of proteins. The influence of AcP on isolated mitochondria has not been previously studied. METHODS In this work, we tested the influence of AcP on the opening of the mitochondrial permeability transition pore (mPTP), respiration, and succinate dehydrogenase (SDH) activity under neutral and alkaline conditions stimulating the nonenzymatic acetylation using polarographic, cation-selective, and spectrophotometric methods. RESULTS It was found that AcP slowed down the opening of the mPTP by calcium ions and decreased the efficiency of oxidative phosphorylation and the activity of SDH. These effects were observed only at neutral pH, whereas alkaline pH by itself caused a decrease in these functions to a much greater extent than AcP. AcP at a concentration of 0.5-1 mM decreased the respiratory control and the swelling rate by 20-30%, while alkalization decreased them twofold, thereby masking the effect of AcP. Presumably, the acetylation of adenine nucleotide translocase involved in both the opening of mPTP and oxidative phosphorylation underlies these changes. The intermediate electron carrier phenazine methosulfate (PMS), removing SDH inhibition at the ubiquinone-binding site, strongly activated SDH under alkaline conditions and, partially, in the presence of AcP. It can be assumed that AcP weakly inhibits the oxidation of succinate, while alkalization slows down the electron transfer from the substrate to the acceptor. CONCLUSIONS The results show that both AcP and alkalization, by promoting nonmetabolic and nonenzymatic acetylation from the outside, retard mitochondrial functions.
Collapse
Affiliation(s)
- Natalia V Beloborodova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Petrovka St., 25-2, Moscow 107031, Russia
| | - Nadezhda I Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya St., 3, Pushchino 142290, Russia
| |
Collapse
|
13
|
Rajakumar A, Nguyen S, Ford N, Ogundipe G, Lopez-Nowak E, Kondrachuk O, Gupta MK. Acetylation-Mediated Post-Translational Modification of Pyruvate Dehydrogenase Plays a Critical Role in the Regulation of the Cellular Acetylome During Metabolic Stress. Metabolites 2024; 14:701. [PMID: 39728482 DOI: 10.3390/metabo14120701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Background: Cardiac diseases remain one of the leading causes of death globally, often linked to ischemic conditions that can affect cellular homeostasis and metabolism, which can lead to the development of cardiovascular dysfunction. Considering the effect of ischemic cardiomyopathy on the global population, it is vital to understand the impact of ischemia on cardiac cells and how ischemic conditions change different cellular functions through post-translational modification of cellular proteins. Methods: To understand the cellular function and fine-tuning during stress, we established an ischemia model using neonatal rat ventricular cardiomyocytes. Further, the level of cellular acetylation was determined by Western blotting and affinity chromatography coupled with liquid chromatography-mass spectroscopy. Results: Our study found that the level of cellular acetylation significantly reduced during ischemic conditions compared to normoxic conditions. Further, in mass spectroscopy data, 179 acetylation sites were identified in the proteins in ischemic cardiomyocytes. Among them, acetylation at 121 proteins was downregulated, and 26 proteins were upregulated compared to the control groups. Differentially, acetylated proteins are mainly involved in cellular metabolism, sarcomere structure, and motor activity. Additionally, a protein enrichment study identified that the ischemic condition impacted two major biological pathways: the acetyl-CoA biosynthesis process from pyruvate and the tricarboxylic acid cycle by deacetylation of the associated proteins. Moreover, most differential acetylation was found in the protein pyruvate dehydrogenase complex. Conclusions: Understanding the differential acetylation of cellular protein during ischemia may help to protect against the harmful effect of ischemia on cellular metabolism and cytoskeleton organization. Additionally, our study can help to understand the fine-tuning of proteins at different sites during ischemia.
Collapse
Affiliation(s)
- Aishwarya Rajakumar
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sarah Nguyen
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Nicole Ford
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Gbenga Ogundipe
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Ethan Lopez-Nowak
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Olena Kondrachuk
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Manish K Gupta
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
14
|
Wu X, Zheng X, Ye G. WGCNA combined with machine learning to explore potential biomarkers and treatment strategies for acute liver failure, with experimental validation. ILIVER 2024; 3:100133. [DOI: 10.1016/j.iliver.2024.100133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
|
15
|
Tiwari A, Myeong J, Hashemiaghdam A, Stunault MI, Zhang H, Niu X, Laramie MA, Sponagel J, Shriver LP, Patti GJ, Klyachko VA, Ashrafi G. Mitochondrial pyruvate transport regulates presynaptic metabolism and neurotransmission. SCIENCE ADVANCES 2024; 10:eadp7423. [PMID: 39546604 PMCID: PMC11567002 DOI: 10.1126/sciadv.adp7423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Glucose has long been considered the primary fuel source for the brain. However, glucose levels fluctuate in the brain during sleep or circuit activity, posing major metabolic stress. Here, we demonstrate that the mammalian brain uses pyruvate as a fuel source, and pyruvate can support neuronal viability in the absence of glucose. Nerve terminals are sites of metabolic vulnerability, and we show that mitochondrial pyruvate uptake is a critical step in oxidative ATP production in hippocampal terminals. We find that the mitochondrial pyruvate carrier is post-translationally modified by lysine acetylation, which, in turn, modulates mitochondrial pyruvate uptake. Our data reveal that the mitochondrial pyruvate carrier regulates distinct steps in neurotransmission, namely, the spatiotemporal pattern of synaptic vesicle release and the efficiency of vesicle retrieval-functions that have profound implications for synaptic plasticity. In summary, we identify pyruvate as a potent neuronal fuel and mitochondrial pyruvate uptake as a critical node for the metabolic control of neurotransmission in hippocampal terminals.
Collapse
Affiliation(s)
- Anupama Tiwari
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Arsalan Hashemiaghdam
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marion I. Stunault
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hao Zhang
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiangfeng Niu
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Marissa A. Laramie
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jasmin Sponagel
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leah P. Shriver
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary J. Patti
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Vitaly A. Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
16
|
Zhang J, Lei J, Liu X, Zhang N, Wu L, Li Y. LC-MS simultaneous profiling of acyl-CoA and acyl-carnitine in dynamic metabolic status. Anal Chim Acta 2024; 1329:343235. [PMID: 39396298 DOI: 10.1016/j.aca.2024.343235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Affiliation(s)
- Jiangang Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xudong Liu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Nan Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
17
|
Mattingly ML, Anglin DA, Ruple BA, Scarpelli MC, Bergamasco JG, Godwin JS, Mobley CB, Frugé AD, Libardi CA, Roberts MD. Acute and Chronic Resistance Training, Acute Endurance Exercise, nor Physiologically Plausible Lactate In Vitro Affect Skeletal Muscle Lactylation. Int J Mol Sci 2024; 25:12216. [PMID: 39596281 PMCID: PMC11594461 DOI: 10.3390/ijms252212216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
We examined changes in skeletal muscle protein lactylation and acetylation in response to acute resistance exercise, chronic resistance training (RT), and a single endurance cycling bout. Additionally, we performed in vitro experiments to determine if different sodium lactate treatments affect myotube protein lactylation and acetylation. The acute and chronic RT study (12 college-aged participants) consisted of 10 weeks of unilateral leg extensor RT with vastus lateralis (VL) biopsies taken at baseline, 24 h following the first RT bout, and the morning of the last day of the RT bout. For the acute cycling study (9 college-aged participants), VL biopsies were obtained before, 2 h after, and 8 h after 60 min of cycling. For in vitro experiments, C2C12 myotubes were treated with varying levels of sodium lactate, including LOW (1 mM for 24 h), HIGH (10 mM for 24 h), and PULSE (10 mM for 30 min followed by 1 mM for 23.5-h). Neither acute nor chronic RT significantly affected nuclear or cytoplasmic protein lactylation. However, cytoplasmic protein acetylation was significantly reduced following one RT bout (-15%, p = 0.002) and chronic RT (-16%, p = 0.006). Cycling did not acutely alter post-exercise global protein lactylation or acetylation patterns. Lastly, varying 24 h lactate treatments did not alter nuclear or cytoplasmic protein lactylation or acetylation, cytoplasmic protein synthesis levels, or myotube diameters. These findings continue to support the idea that exercise induces more dynamic changes in skeletal muscle protein acetylation, but not lactylation. However, further human research with more sampling timepoints and a lactylomics approach are needed to determine if, at all, different exercise modalities affect skeletal muscle protein lactylation.
Collapse
Affiliation(s)
| | | | - Bradley A. Ruple
- Geriatric Research Education and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT 84148, USA
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Maira C. Scarpelli
- MUSCULAB—Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos—UFSCar, São Carlos 13565-905, Brazil; (M.C.S.)
| | - Joao G. Bergamasco
- MUSCULAB—Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos—UFSCar, São Carlos 13565-905, Brazil; (M.C.S.)
| | | | | | - Andrew D. Frugé
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
- College of Nursing, Auburn University, Auburn, AL 36849, USA
| | - Cleiton A. Libardi
- MUSCULAB—Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos—UFSCar, São Carlos 13565-905, Brazil; (M.C.S.)
| | | |
Collapse
|
18
|
Kumar A, Choudhary A, Munshi A. Epigenetic reprogramming of mtDNA and its etiology in mitochondrial diseases. J Physiol Biochem 2024; 80:727-741. [PMID: 38865050 DOI: 10.1007/s13105-024-01032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Mitochondrial functionality and its regulation are tightly controlled through a balanced crosstalk between the nuclear and mitochondrial DNA interactions. Epigenetic signatures like methylation, hydroxymethylation and miRNAs have been reported in mitochondria. In addition, epigenetic signatures encoded by nuclear DNA are also imported to mitochondria and regulate the gene expression dynamics of the mitochondrial genome. Alteration in the interplay of these epigenetic modifications results in the pathogenesis of various disorders like neurodegenerative, cardiovascular, metabolic disorders, cancer, aging and senescence. These modifications result in higher ROS production, increased mitochondrial copy number and disruption in the replication process. In addition, various miRNAs are associated with regulating and expressing important mitochondrial gene families like COX, OXPHOS, ND and DNMT. Epigenetic changes are reversible and therefore therapeutic interventions like changing the target modifications can be utilized to repair or prevent mitochondrial insufficiency by reversing the changed gene expression. Identifying these mitochondrial-specific epigenetic signatures has the potential for early diagnosis and treatment responses for many diseases caused by mitochondrial dysfunction. In the present review, different mitoepigenetic modifications have been discussed in association with the development of various diseases by focusing on alteration in gene expression and dysregulation of specific signaling pathways. However, this area is still in its infancy and future research is warranted to draw better conclusions.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
19
|
Schwab SK, Harris PS, Michel C, McGinnis CD, Nahomi RB, Assiri MA, Reisdorph R, Henriksen K, Orlicky DJ, Levi M, Rosenberg A, Nagaraj RH, Fritz KS. Quantifying Protein Acetylation in Diabetic Nephropathy from Formalin-Fixed Paraffin-Embedded Tissue. Proteomics Clin Appl 2024; 18:e202400018. [PMID: 38923810 DOI: 10.1002/prca.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of chronic kidney disease and end-stage renal disease. One potential mechanism underlying cellular dysfunction contributing to kidney disease is aberrant protein post-translational modifications. Lysine acetylation is associated with cellular metabolic flux and is thought to be altered in patients with diabetes and dysfunctional renal metabolism. EXPERIMENTAL DESIGN A novel extraction and LC-MS/MS approach was adapted to quantify sites of lysine acetylation from formalin-fixed paraffin-embedded (FFPE) kidney tissue and from patients with DKD and non-diabetic donors (n = 5 and n = 7, respectively). RESULTS Analysis of FFPE tissues identified 840 total proteins, with 225 of those significantly changing in patients with DKD. Acetylomic analysis quantified 289 acetylated peptides, with 69 of those significantly changing. Pathways impacted in DKD patients revealed numerous metabolic pathways, specifically mitochondrial function, oxidative phosphorylation, and sirtuin signaling. Differential protein acetylation in DKD patients impacted sirtuin signaling, valine, leucine, and isoleucine degradation, lactate metabolism, oxidative phosphorylation, and ketogenesis. CONCLUSIONS AND CLINICAL RELEVANCE A quantitative acetylomics platform was developed for protein biomarker discovery in formalin-fixed and paraffin-embedded biopsies of kidney transplant patients suffering from DKD.
Collapse
Affiliation(s)
- Stefanie K Schwab
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Peter S Harris
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cole Michel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Courtney D McGinnis
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rooban B Nahomi
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mohammed A Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Richard Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kammi Henriksen
- Department of Pathology, University of Chicago Medical Center, Chicago, Illinois, USA
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| | - Avi Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ram H Nagaraj
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristofer S Fritz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
20
|
Hu Y, Zheng Y, Liu C, You Y, Wu Y, Wang P, Wu Y, Ba H, Lu J, Yuan Y, Liu P, Mao Y. Mitochondrial MOF regulates energy metabolism in heart failure via ATP5B hyperacetylation. Cell Rep 2024; 43:114839. [PMID: 39392752 DOI: 10.1016/j.celrep.2024.114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024] Open
Abstract
Lysine acetylation is a conserved post-translational modification involved in energy metabolism in mitochondria and heart function. This study investigates the role of mitochondria-localized lysine acetyltransferase MOF (males absent on the first) in heart failure (HF). We find that MOF is upregulated in mitochondria during HF, and overexpression of mitochondria-targeted MOF (mtMOF) in mouse models results in mitochondria dysfunction, cardiac remodeling, and HF. Furthermore, sirtuin 3 (SIRT3) knockout aggravates mtMOF-induced damages, underscoring the role of MOF-catalyzed hyperacetylation in HF. Quantitative lysine acetylome analysis identifies ATP5B as a substrate of MOF. We demonstrate that the acetylation of ATP5B at K201, co-regulated by MOF and SIRT3, impairs mitochondrial respiration and energy metabolism both in vitro and in vivo. These findings suggest that the role of MOF in HF could be attributed to its regulation of ATP5B acetylation. Overall, our results highlight the disruptive impact of mitochondrial MOF on cardiac function and emphasize the significance of enzyme-catalyzed acetylation in mitochondria.
Collapse
Affiliation(s)
- Yuehuai Hu
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongjia Zheng
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Cui Liu
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuyu You
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Wu
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Panxia Wang
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yiyang Wu
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongjun Ba
- Department of Pediatric Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Lu
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanqiu Yuan
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Peiqing Liu
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yang Mao
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
21
|
Baumgardt SL, Fang J, Fu X, Liu Y, Xia Z, Zhao M, Chen L, Mishra R, Gunasekaran M, Saha P, Forbess JM, Bosnjak ZJ, Camara AKS, Kersten JR, Thorp EB, Kaushal S, Ge ZD. Genetic deletion or pharmacologic inhibition of histone deacetylase 6 protects the heart against ischaemia/reperfusion injury by limiting tumour necrosis factor alpha-induced mitochondrial injury in experimental diabetes. Cardiovasc Res 2024; 120:1456-1471. [PMID: 39001869 PMCID: PMC11472425 DOI: 10.1093/cvr/cvae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/01/2023] [Accepted: 04/06/2024] [Indexed: 07/15/2024] Open
Abstract
AIMS The histone deacetylase 6 (HDAC6) inhibitor, tubastatin A (TubA), reduces myocardial ischaemia/reperfusion injury (MIRI) in type 1 diabetic rats. It remains unclear whether HDAC6 regulates MIRI in type 2 diabetic animals. Diabetes augments the activity of HDAC6 and the generation of tumour necrosis factor alpha (TNF-α) and impairs mitochondrial complex I (mCI). Here, we examined how HDAC6 regulates TNF-α production, mCI activity, mitochondria, and cardiac function in type 1 and type 2 diabetic mice undergoing MIRI. METHODS AND RESULTS HDAC6 knockout, streptozotocin-induced type 1 diabetic, and obese type 2 diabetic db/db mice underwent MIRI in vivo or ex vivo in a Langendorff-perfused system. We found that MIRI and diabetes additively augmented myocardial HDAC6 activity and generation of TNF-α, along with cardiac mitochondrial fission, low bioactivity of mCI, and low production of adenosine triphosphate. Importantly, genetic disruption of HDAC6 or TubA decreased TNF-α levels, mitochondrial fission, and myocardial mitochondrial nicotinamide adenine dinucleotide levels in ischaemic/reperfused diabetic mice, concomitant with augmented mCI activity, decreased infarct size, and improved cardiac function. Moreover, HDAC6 knockout or TubA treatment decreased left ventricular dilation and improved cardiac systolic function 28 days after MIRI. H9c2 cardiomyocytes with and without HDAC6 knockdown were subjected to hypoxia/reoxygenation injury in the presence of high glucose. Hypoxia/reoxygenation augmented HDAC6 activity and TNF-α levels and decreased mCI activity. These negative effects were blocked by HDAC6 knockdown. CONCLUSION HDAC6 is an essential negative regulator of MIRI in diabetes. Genetic deletion or pharmacologic inhibition of HDAC6 protects the heart from MIRI by limiting TNF-α-induced mitochondrial injury in experimental diabetes.
Collapse
MESH Headings
- Animals
- Myocardial Reperfusion Injury/enzymology
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/genetics
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/drug effects
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/drug therapy
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Histone Deacetylase 6/metabolism
- Histone Deacetylase 6/antagonists & inhibitors
- Histone Deacetylase 6/genetics
- Histone Deacetylase Inhibitors/pharmacology
- Mice, Knockout
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Mice, Inbred C57BL
- Hydroxamic Acids/pharmacology
- Mitochondrial Dynamics/drug effects
- Male
- Electron Transport Complex I/metabolism
- Electron Transport Complex I/genetics
- Isolated Heart Preparation
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/pathology
- Signal Transduction
- Mice
- Myocardial Infarction/enzymology
- Myocardial Infarction/pathology
- Myocardial Infarction/metabolism
- Myocardial Infarction/prevention & control
- Myocardial Infarction/genetics
- Myocardial Infarction/physiopathology
- Ventricular Function, Left/drug effects
- Indoles
Collapse
Affiliation(s)
- Shelley L Baumgardt
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
| | - Xuebin Fu
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Yanan Liu
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, The People’s Republic of China
| | - Ming Zhao
- The Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, IL 60611, USA
| | - Ling Chen
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Rachana Mishra
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Muthukumar Gunasekaran
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Progyaparamita Saha
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Joseph M Forbess
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Zeljko J Bosnjak
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
| | - Judy R Kersten
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
| | - Edward B Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, IL 60611, USA
| | - Sunjay Kaushal
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Zhi-Dong Ge
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, IL 60611, USA
| |
Collapse
|
22
|
Xie J, Yu Z, Zhu Y, Zheng M, Zhu Y. Functions of Coenzyme A and Acyl-CoA in Post-Translational Modification and Human Disease. FRONT BIOSCI-LANDMRK 2024; 29:331. [PMID: 39344325 DOI: 10.31083/j.fbl2909331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 10/01/2024]
Abstract
Coenzyme A (CoA) is synthesized from pantothenate, L-cysteine and adenosine triphosphate (ATP), and plays a vital role in diverse physiological processes. Protein acylation is a common post-translational modification (PTM) that modifies protein structure, function and interactions. It occurs via the transfer of acyl groups from acyl-CoAs to various amino acids by acyltransferase. The characteristics and effects of acylation vary according to the origin, structure, and location of the acyl group. Acetyl-CoA, formyl-CoA, lactoyl-CoA, and malonyl-CoA are typical acyl group donors. The major acyl donor, acyl-CoA, enables modifications that impart distinct biological functions to both histone and non-histone proteins. These modifications are crucial for regulating gene expression, organizing chromatin, managing metabolism, and modulating the immune response. Moreover, CoA and acyl-CoA play significant roles in the development and progression of neurodegenerative diseases, cancer, cardiovascular diseases, and other health conditions. The goal of this review was to systematically describe the types of commonly utilized acyl-CoAs, their functions in protein PTM, and their roles in the progression of human diseases.
Collapse
Affiliation(s)
- Jumin Xie
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Zhang Yu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Ying Zhu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Mei Zheng
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Yanfang Zhu
- Department of Critical Care Medicine, Huangshi Hospital of TCM (Infectious Disease Hospital), 435003 Huangshi, Hubei, China
| |
Collapse
|
23
|
Zhang LY, Zhang SY, Wen R, Zhang TN, Yang N. Role of histone deacetylases and their inhibitors in neurological diseases. Pharmacol Res 2024; 208:107410. [PMID: 39276955 DOI: 10.1016/j.phrs.2024.107410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Histone deacetylases (HDACs) are zinc-dependent deacetylases that remove acetyl groups from lysine residues of histones or form protein complexes with other proteins for transcriptional repression, changing chromatin structure tightness, and inhibiting gene expression. Recent in vivo and in vitro studies have amply demonstrated the critical role of HDACs in the cell biology of the nervous system during both physiological and pathological processes and have provided new insights into the conduct of research on neurological disease targets. In addition, in vitro and in vivo studies on HDAC inhibitors show promise for the treatment of various diseases. This review summarizes the regulatory mechanisms of HDAC and the important role of its downstream targets in nervous system diseases, and summarizes the therapeutic mechanisms and efficacy of HDAC inhibitors in various nervous system diseases. Additionally, the current pharmacological situation, problems, and developmental prospects of HDAC inhibitors are described. A better understanding of the pathogenic mechanisms of HDACs in the nervous system may reveal new targets for therapeutic interventions in diseases and help to relieve healthcare pressure through preventive measures.
Collapse
Affiliation(s)
- Li-Ying Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Sen-Yu Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
24
|
Stacpoole PW, Dirain CO. The pyruvate dehydrogenase complex at the epigenetic crossroads of acetylation and lactylation. Mol Genet Metab 2024; 143:108540. [PMID: 39067348 DOI: 10.1016/j.ymgme.2024.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
The pyruvate dehydrogenase complex (PDC) is remarkable for its size and structure as well as for its physiological and pathological importance. Its canonical location is in the mitochondrial matrix, where it primes the tricarboxylic acid (TCA) cycle by decarboxylating glycolytically-derived pyruvate to acetyl-CoA. Less well appreciated is its role in helping to shape the epigenetic landscape, from early development throughout mammalian life by its ability to "moonlight" in the nucleus, with major repercussions for human healthspan and lifespan. The PDC's influence on two crucial modifiers of the epigenome, acetylation and lactylation, is the focus of this brief review.
Collapse
Affiliation(s)
- Peter W Stacpoole
- University of Florida, College of Medicine Department of Medicine, Department of Biochemistry & Molecular Biology, Gainesville, FL, United States.
| | - Carolyn O Dirain
- University of Florida, College of Medicine Department of Medicine, Gainesville, FL, United States
| |
Collapse
|
25
|
Wang JX, Zhang YY, Qian YC, Qian YF, Jin AH, Wang M, Luo Y, Qiao F, Zhang ML, Chen LQ, Du ZY. Inhibition of mitochondrial citrate shuttle alleviates metabolic syndromes induced by high-fat diet. Am J Physiol Cell Physiol 2024; 327:C737-C749. [PMID: 39069827 DOI: 10.1152/ajpcell.00194.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 07/30/2024]
Abstract
The mitochondrial citrate shuttle, which relies on the solute carrier family 25 member 1 (SLC25A1), plays a pivotal role in transporting citrate from the mitochondria to the cytoplasm. This shuttle supports glycolysis, lipid biosynthesis, and protein acetylation. Previous research has primarily focused on SLC25A1 in pathological models, particularly high-fat diet (HFD)-induced obesity. However, the impact of SLC25A1 inhibition on nutrient metabolism under HFD remains unclear. To address this gap, we used zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) to evaluate the effects of inhibiting Slc25a1. In zebrafish, we administered Slc25a1-specific inhibitors (CTPI-2) for 4 wk, whereas Nile tilapia received intraperitoneal injections of dsRNA to knock down slc25a1b for 7 days. Inhibition of the mitochondrial citrate shuttle effectively protected zebrafish from HFD-induced obesity, hepatic steatosis, and insulin resistance. Of note, glucose tolerance was unaffected. Inhibition of Slc25a1 altered hepatic protein acetylation patterns, with decreased cytoplasmic acetylation and increased mitochondrial acetylation. Under HFD conditions, Slc25a1 inhibition promoted fatty acid oxidation and reduced hepatic triglyceride (TAG) accumulation by deacetylating carnitine palmitoyltransferase 1a (Cpt1a). In addition, Slc25a1 inhibition triggered acetylation-induced inactivation of Pdhe1α, leading to a reduction in glucose oxidative catabolism. This was accompanied by enhanced glucose uptake and storage in zebrafish livers. Furthermore, Slc25a1 inhibition under HFD conditions activated the SIRT1/PGC1α pathway, promoting mitochondrial proliferation and enhancing oxidative phosphorylation for energy production. Our findings provide new insights into the role of nonhistone protein acetylation via the mitochondrial citrate shuttle in the development of hepatic lipid deposition and hyperglycemia caused by HFD.NEW & NOTEWORTHY The mitochondrial citrate shuttle is a crucial physiological process for maintaining metabolic homeostasis. In the present study, we found that inhibition of mitochondrial citrate shuttle (Slc25a1) could alleviate metabolic syndromes induced by high-fat diet (HFD) through remodeling hepatic protein acetylation modification. Briefly, Slc25a1 inhibition reduces hepatic triglyceride deposition by deacetylating Cpt1a and reduces glucose oxidative catabolism by acetylating Pdhe1α. Our study provides new insights into the treatment of diet-induced metabolic syndromes.
Collapse
Affiliation(s)
- Jun-Xian Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yan-Yu Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yu-Cheng Qian
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yi-Fan Qian
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - An-Hui Jin
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Mai Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Li SL, Zhou H, Liu J, Yang J, Jiang L, Yuan HM, Wang MH, Yang KS, Xiang M. Restoration of HMGCS2-mediated ketogenesis alleviates tacrolimus-induced hepatic lipid metabolism disorder. Acta Pharmacol Sin 2024; 45:1898-1911. [PMID: 38760545 PMCID: PMC11335741 DOI: 10.1038/s41401-024-01300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Tacrolimus, one of the macrolide calcineurin inhibitors, is the most frequently used immunosuppressant after transplantation. Long-term administration of tacrolimus leads to dyslipidemia and affects liver lipid metabolism. In this study, we investigated the mode of action and underlying mechanisms of this adverse reaction. Mice were administered tacrolimus (2.5 mg·kg-1·d-1, i.g.) for 10 weeks, then euthanized; the blood samples and liver tissues were collected for analyses. We showed that tacrolimus administration induced significant dyslipidemia and lipid deposition in mouse liver. Dyslipidemia was also observed in heart or kidney transplantation patients treated with tacrolimus. We demonstrated that tacrolimus did not directly induce de novo synthesis of fatty acids, but markedly decreased fatty acid oxidation (FAO) in AML12 cells. Furthermore, we showed that tacrolimus dramatically decreased the expression of HMGCS2, the rate-limiting enzyme of ketogenesis, with decreased ketogenesis in AML12 cells, which was responsible for lipid deposition in normal hepatocytes. Moreover, we revealed that tacrolimus inhibited forkhead box protein O1 (FoxO1) nuclear translocation by promoting FKBP51-FoxO1 complex formation, thus reducing FoxO1 binding to the HMGCS2 promoter and its transcription ability in AML12 cells. The loss of HMGCS2 induced by tacrolimus caused decreased ketogenesis and increased acetyl-CoA accumulation, which promoted mitochondrial protein acetylation, thereby resulting in FAO function inhibition. Liver-specific HMGCS2 overexpression via tail intravenous injection of AAV8-TBG-HMGCS2 construct reversed tacrolimus-induced mitochondrial protein acetylation and FAO inhibition, thus removing the lipid deposition in hepatocytes. Collectively, this study demonstrates a novel mechanism of liver lipid deposition and hyperlipidemia induced by long-term administration of tacrolimus, resulted from the loss of HMGCS2-mediated ketogenesis and subsequent FAO inhibition, providing an alternative target for reversing tacrolimus-induced adverse reaction.
Collapse
Affiliation(s)
- Sen-Lin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Jiang
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Min Yuan
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng-Heng Wang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke-Shan Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
27
|
Song D, Zhou X, Yu Q, Li R, Dai Q, Zeng M. ML335 inhibits TWIK2 channel-mediated potassium efflux and attenuates mitochondrial damage in MSU crystal-induced inflammation. J Transl Med 2024; 22:785. [PMID: 39175013 PMCID: PMC11342740 DOI: 10.1186/s12967-024-05303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/22/2023] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Activation of the NLRP3 inflammasome is critical in the inflammatory response to gout. Potassium ion (K+) efflux mediated by the TWIK2 channel is an important upstream mechanism for NLRP3 inflammasome activation. Therefore, the TWIK2 channel may be a promising therapeutic target for MSU crystal-induced inflammation. In the present study, we investigated the effect of ML335, a known K2P channel modulator, on MSU crystal-induced inflammatory responses and its underlying molecular mechanisms. METHODS By molecular docking, we calculated the binding energies and inhibition constants of five K2P channel modulators (Hydroxychloroquine, Fluoxetine, DCPIB, ML365 and ML335) with TWIK2. Intracellular potassium ion concentration and mitochondrial function were assessed by flow cytometry. The interaction between MARCH5 and SIRT3 was demonstrated by immunoprecipitation and Western blotting assay. MSU suspensions were injected into mouse paw and peritoneal cavity to induce acute gout model. RESULTS ML335 has the highest binding energy and the lowest inhibition constant with TWIK2 in the five calculated K2P channel modulators. In comparison, among these five compounds, ML335 efficiently inhibited the release of IL-1β from MSU crystal-treated BMDMs. ML335 decreased MSU crystal-induced K+ efflux mainly dependent on TWIK2 channel. More importantly, ML335 can effectively inhibit the expression of the mitochondrial E3 ubiquitin ligase MARCH5 induced by MSU crystals, and MARCH5 can interact with the SIRT3 protein. ML335 blocked MSU crystal-induced ubiquitination of SIRT3 protein by MARCH5. In addition, ML335 improved mitochondrial dynamics homeostasis and mitochondrial function by inhibiting MARCH5 protein expression. ML335 attenuated the inflammatory response induced by MSU crystals in vivo and in vitro. CONCLUSION Inhibition of TWIK2-mediated K+ efflux by ML335 alleviated mitochondrial injury via suppressing March5 expression, suggesting that ML335 may be an effective candidate for the future treatment of gout.
Collapse
Affiliation(s)
- Dianze Song
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College and Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637001, Sichuan, China
| | - Xiaoqin Zhou
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College and Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637001, Sichuan, China
| | - Qingqing Yu
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College and Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637001, Sichuan, China
| | - Renjie Li
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College and Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637001, Sichuan, China
| | - Qian Dai
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College and Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637001, Sichuan, China.
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, 637001, Sichuan, China.
| | - Mei Zeng
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College and Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637001, Sichuan, China.
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, 637001, Sichuan, China.
- North Sichuan Medical College Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, 637001, Sichuan, China.
| |
Collapse
|
28
|
Manna PR, Molehin D, Ahmed AU, Yang S, Reddy PH. Acetylation of Steroidogenic Acute Regulatory Protein Sensitizes 17β-Estradiol Regulation in Hormone-Sensitive Breast Cancer Cells. Int J Mol Sci 2024; 25:8732. [PMID: 39201419 PMCID: PMC11354777 DOI: 10.3390/ijms25168732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
An imbalance in estrogen signaling is a critical event in breast tumorigenesis. The majority of breast cancers (BCs) are hormone-sensitive; they majorly express the estrogen receptor (ER+) and are activated by 17β-estradiol (E2). The steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in steroid biosynthesis. The dysregulation of the epigenetic machinery, modulating E2 levels, is a primary occurrence for promoting breast tumorigenesis. StAR expression, concomitant with E2 synthesis, was reported to be aberrantly high in human and mouse hormone-dependent BC cells compared with their non-cancerous counterparts. However, the mechanism of action of StAR remains poorly understood. We discovered StAR as an acetylated protein and have identified a number of lysine (K) residues that are putatively acetylated in malignant and non-malignant breast cells, using LC-MS/MS (liquid chromatography-tandem mass spectrometry), suggesting they differently influence E2 synthesis in mammary tissue. The treatment of hormone-sensitive MCF7 cells with a variety of histone deacetylase inhibitors (HDACIs), at therapeutically and clinically relevant doses, identified a few additional StAR acetylated lysine residues. Among a total of fourteen StAR acetylomes undergoing acetylation and deacetylation, K111 and K253 were frequently recognized either endogenously or in response to HDACIs. Site-directed mutagenesis studies of these two StAR acetylomes, pertaining to K111Q and K253Q acetylation mimetic states, resulted in increases in E2 levels in ER+ MCF7 and triple negative MB-231 BC cells, compared with their values seen with human StAR. Conversely, these cells carrying K111R and K253R deacetylation mutants diminished E2 biosynthesis. These findings provide novel and mechanistic insights into intra-tumoral E2 regulation by elucidating the functional importance of this uncovered StAR post-translational modification (PTM), involving acetylation and deacetylation events, underscoring the potential of StAR as a therapeutic target for hormone-sensitive BC.
Collapse
Affiliation(s)
- Pulak R. Manna
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Deborah Molehin
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA;
| | - Ahsen U. Ahmed
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA;
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - P. Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
29
|
Qin C, Graf LG, Striska K, Janetzky M, Geist N, Specht R, Schulze S, Palm GJ, Girbardt B, Dörre B, Berndt L, Kemnitz S, Doerr M, Bornscheuer UT, Delcea M, Lammers M. Acetyl-CoA synthetase activity is enzymatically regulated by lysine acetylation using acetyl-CoA or acetyl-phosphate as donor molecule. Nat Commun 2024; 15:6002. [PMID: 39019872 PMCID: PMC11255334 DOI: 10.1038/s41467-024-49952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
The AMP-forming acetyl-CoA synthetase is regulated by lysine acetylation both in bacteria and eukaryotes. However, the underlying mechanism is poorly understood. The Bacillus subtilis acetyltransferase AcuA and the AMP-forming acetyl-CoA synthetase AcsA form an AcuA•AcsA complex, dissociating upon lysine acetylation of AcsA by AcuA. Crystal structures of AcsA from Chloroflexota bacterium in the apo form and in complex with acetyl-adenosine-5'-monophosphate (acetyl-AMP) support the flexible C-terminal domain adopting different conformations. AlphaFold2 predictions suggest binding of AcuA stabilizes AcsA in an undescribed conformation. We show the AcuA•AcsA complex dissociates upon acetyl-coenzyme A (acetyl-CoA) dependent acetylation of AcsA by AcuA. We discover an intrinsic phosphotransacetylase activity enabling AcuA•AcsA generating acetyl-CoA from acetyl-phosphate (AcP) and coenzyme A (CoA) used by AcuA to acetylate and inactivate AcsA. Here, we provide mechanistic insights into the regulation of AMP-forming acetyl-CoA synthetases by lysine acetylation and discover an intrinsic phosphotransacetylase allowing modulation of its activity based on AcP and CoA levels.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Leonie G Graf
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Kilian Striska
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Markus Janetzky
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Norman Geist
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Robin Specht
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Sabrina Schulze
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Gottfried J Palm
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Britta Girbardt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Babett Dörre
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Leona Berndt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Stefan Kemnitz
- Department for High Performance Computing, University Computing Center, University of Greifswald, 17489, Greifswald, Germany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
30
|
Zhang Y, Xu W, Peng C, Ren S, Zhang C. Intricate effects of post-translational modifications in liver cancer: mechanisms to clinical applications. J Transl Med 2024; 22:651. [PMID: 38997696 PMCID: PMC11245821 DOI: 10.1186/s12967-024-05455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Liver cancer is a significant global health challenge, with hepatocellular carcinoma (HCC) being the most prevalent form, characterized by high incidence and mortality rates. Despite advances in targeted therapies and immunotherapies, the prognosis for advanced liver cancer remains poor. This underscores the urgent need for a deeper understanding of the molecular mechanisms underlying HCC to enable early detection and the development of novel therapeutic strategies. Post-translational modifications (PTMs) are crucial regulatory mechanisms in cellular biology, affecting protein functionality, interactions, and localization. These modifications, including phosphorylation, acetylation, methylation, ubiquitination, and glycosylation, occur after protein synthesis and play vital roles in various cellular processes. Recent advances in proteomics and molecular biology have highlighted the complex networks of PTMs, emphasizing their critical role in maintaining cellular homeostasis and disease pathogenesis. Dysregulation of PTMs has been associated with several malignant cellular processes in HCC, such as altered cell proliferation, migration, immune evasion, and metabolic reprogramming, contributing to tumor growth and metastasis. This review aims to provide a comprehensive understanding of the pathological mechanisms and clinical implications of various PTMs in liver cancer. By exploring the multifaceted interactions of PTMs and their impact on liver cancer progression, we highlight the potential of PTMs as biomarkers and therapeutic targets. The significance of this review lies in its potential to inform the development of novel therapeutic approaches and improve prognostic tools for early intervention in the fight against liver cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weihao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shenli Ren
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
31
|
Chen J, Qi D, Hu H, Wang X, Lin W. Unconventional posttranslational modification in innate immunity. Cell Mol Life Sci 2024; 81:290. [PMID: 38970666 PMCID: PMC11335215 DOI: 10.1007/s00018-024-05319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Pattern recognition receptors (PRRs) play a crucial role in innate immunity, and a complex network tightly controls their signaling cascades to maintain immune homeostasis. Within the modification network, posttranslational modifications (PTMs) are at the core of signaling cascades. Conventional PTMs, which include phosphorylation and ubiquitination, have been extensively studied. The regulatory role of unconventional PTMs, involving unanchored ubiquitination, ISGylation, SUMOylation, NEDDylation, methylation, acetylation, palmitoylation, glycosylation, and myristylation, in the modulation of innate immune signaling pathways has been increasingly investigated. This comprehensive review delves into the emerging field of unconventional PTMs and highlights their pivotal role in innate immunity.
Collapse
Affiliation(s)
- Jiaxi Chen
- The Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Dejun Qi
- The Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Haorui Hu
- The Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xiaojian Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Wenlong Lin
- The Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
32
|
Amar D, Gay NR, Jimenez-Morales D, Jean Beltran PM, Ramaker ME, Raja AN, Zhao B, Sun Y, Marwaha S, Gaul DA, Hershman SG, Ferrasse A, Xia A, Lanza I, Fernández FM, Montgomery SB, Hevener AL, Ashley EA, Walsh MJ, Sparks LM, Burant CF, Rector RS, Thyfault J, Wheeler MT, Goodpaster BH, Coen PM, Schenk S, Bodine SC, Lindholm ME. The mitochondrial multi-omic response to exercise training across rat tissues. Cell Metab 2024; 36:1411-1429.e10. [PMID: 38701776 PMCID: PMC11152996 DOI: 10.1016/j.cmet.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/27/2023] [Accepted: 12/15/2023] [Indexed: 05/05/2024]
Abstract
Mitochondria have diverse functions critical to whole-body metabolic homeostasis. Endurance training alters mitochondrial activity, but systematic characterization of these adaptations is lacking. Here, the Molecular Transducers of Physical Activity Consortium mapped the temporal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats trained for 1, 2, 4, or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart, and skeletal muscle. The colon showed non-linear response dynamics, whereas mitochondrial pathways were downregulated in brown adipose and adrenal tissues. Protein acetylation increased in the liver, with a shift in lipid metabolism, whereas oxidative proteins increased in striated muscles. Exercise-upregulated networks were downregulated in human diabetes and cirrhosis. Knockdown of the central network protein 17-beta-hydroxysteroid dehydrogenase 10 (HSD17B10) elevated oxygen consumption, indicative of metabolic stress. We provide a multi-omic, multi-tissue, temporal atlas of the mitochondrial response to exercise training and identify candidates linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- David Amar
- Stanford University, Stanford, CA, USA; Insitro, San Francisco, CA, USA
| | | | | | | | | | | | | | - Yifei Sun
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - David A Gaul
- Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Ashley Xia
- National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | - Martin J Walsh
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lauren M Sparks
- Translational Research Institute AdventHealth, Orlando, FL, USA
| | | | | | - John Thyfault
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | - Paul M Coen
- Translational Research Institute AdventHealth, Orlando, FL, USA
| | - Simon Schenk
- University of California, San Diego, La Jolla, CA, USA
| | - Sue C Bodine
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | |
Collapse
|
33
|
Kim YK, Won KC, Sussel L. Glucose metabolism partially regulates β-cell function through epigenomic changes. J Diabetes Investig 2024; 15:649-655. [PMID: 38436511 PMCID: PMC11143420 DOI: 10.1111/jdi.14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
The β-cell relies predominantly on glucose utilization to generate adenosine triphosphate, which is crucial for both cell viability and insulin secretion. The β-cell has evolved remarkable metabolic flexibility to productively respond to shifts in environmental conditions and changes in glucose availability. Although these adaptive responses are important for maintaining optimal cellular function, there is emerging evidence that the resulting changes in cellular metabolites can impact the epigenome, causing transient and lasting alterations in gene expression. This review explores the intricate interplay between metabolism and the epigenome, providing valuable insights into the molecular mechanisms leading to β-cell dysfunction in diabetes. Understanding these mechanisms will be critical for developing targeted therapeutic strategies to preserve and enhance β-cell function, offering potential avenues for interventions to improve glycemic control in individuals with diabetes.
Collapse
Affiliation(s)
- Yong Kyung Kim
- Barbara Davis Center for DiabetesUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Kyu Chang Won
- Department of Internal MedicineYeungnam University College of MedicineDaeguKorea
| | - Lori Sussel
- Barbara Davis Center for DiabetesUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
34
|
Mailloux RJ. The emerging importance of the α-keto acid dehydrogenase complexes in serving as intracellular and intercellular signaling platforms for the regulation of metabolism. Redox Biol 2024; 72:103155. [PMID: 38615490 PMCID: PMC11021975 DOI: 10.1016/j.redox.2024.103155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
The α-keto acid dehydrogenase complex (KDHc) class of mitochondrial enzymes is composed of four members: pyruvate dehydrogenase (PDHc), α-ketoglutarate dehydrogenase (KGDHc), branched-chain keto acid dehydrogenase (BCKDHc), and 2-oxoadipate dehydrogenase (OADHc). These enzyme complexes occupy critical metabolic intersections that connect monosaccharide, amino acid, and fatty acid metabolism to Krebs cycle flux and oxidative phosphorylation (OxPhos). This feature also imbues KDHc enzymes with the heightened capacity to serve as platforms for propagation of intracellular and intercellular signaling. KDHc enzymes serve as a source and sink for mitochondrial hydrogen peroxide (mtH2O2), a vital second messenger used to trigger oxidative eustress pathways. Notably, deactivation of KDHc enzymes through reversible oxidation by mtH2O2 and other electrophiles modulates the availability of several Krebs cycle intermediates and related metabolites which serve as powerful intracellular and intercellular messengers. The KDHc enzymes also play important roles in the modulation of mitochondrial metabolism and epigenetic programming in the nucleus through the provision of various acyl-CoAs, which are used to acylate proteinaceous lysine residues. Intriguingly, nucleosomal control by acylation is also achieved through PDHc and KGDHc localization to the nuclear lumen. In this review, I discuss emerging concepts in the signaling roles fulfilled by the KDHc complexes. I highlight their vital function in serving as mitochondrial redox sensors and how this function can be used by cells to regulate the availability of critical metabolites required in cell signaling. Coupled with this, I describe in detail how defects in KDHc function can cause disease states through the disruption of cell redox homeodynamics and the deregulation of metabolic signaling. Finally, I propose that the intracellular and intercellular signaling functions of the KDHc enzymes are controlled through the reversible redox modification of the vicinal lipoic acid thiols in the E2 subunit of the complexes.
Collapse
Affiliation(s)
- Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
35
|
Chen YX, Yang H, Wang DS, Chen TT, Qi XL, Tao L, Chen Y, Shen XC. Gastrodin alleviates mitochondrial dysfunction by regulating SIRT3-mediated TFAM acetylation in vascular dementia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155369. [PMID: 38547618 DOI: 10.1016/j.phymed.2024.155369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/03/2023] [Accepted: 01/15/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Mitochondrial dysfunction is key to the pathogenesis of vascular dementia (VaD). Sirtuin-3 (SIRT3), an essential member of the sirtuins family, has been proven to be a critical sirtuin in regulating mitochondrial function. The phenolic glucoside gastrodin (GAS), a bioactive ingredient from Gastrodiae Rhizome (known in Chinese as Tian ma) demonstrates significant neuroprotective properties against central nervous system disorders; however, the precise mechanisms through which GAS modulates VaD remain elusive. PURPOSE This study aims to investigate whether GAS confers a protective role against VaD, and to figure out the underlying molecular mechanisms. METHODS A bilateral common carotid artery occlusion (BCCAO)-mediated chronic cerebral hypoperfusion (CCH) VaD rat model and a hypoxia model using HT22 cells were employed to investigate pharmacological properties of GAS in mitigating mitochondrial dysfunction. A SIRT3 agonist resveratrol (RES), a SIRT3 inhibitor 3-TYP and SIRT3-knockdown in vitro were used to explore the mechanism of GAS in association with SIRT3. The ability of SIRT3 to bind and deacetylate mitochondrial transcription factor A (TFAM) was detected by immunoprecipitation assay, and TFAM acetylation sites were further validated using mass spectrometry. RESULTS GAS increased SIRT3 expression and ameliorated mitochondrial structure, mitochondrial respiration, mitochondrial dynamics along with upregulated TFAM, mitigating oxidative stress and senescence. Comparable results were noted with the SIRT3 agonist RES, indicating an impactful neuroprotection played by SIRT3. Specifically, the attenuation of SIRT3 expression through knockdown techniques or exposure to the SIRT3 inhibitor 3-TYP in HT22 cells markedly abrogated GAS-mediated mitochondrial rescuing function. Furthermore, our findings elucidate a novel facet: SIRT3 interacted with and deacetylated TFAM at the K5, K7, and K8 sites. Decreased SIRT3 is accompanied by hyper-acetylated TFAM. CONCLUSION The present results were the first to demonstrate that the SIRT3/TFAM pathway is a protective target for reversing mitochondrial dysfunction in VaD. The findings suggest that GAS-mediated modulation of the SIRT3/TFAM pathway, a novel mechanism, could ameliorate CCH-induced VaD, offering a potentially beneficial therapeutic strategy for VaD.
Collapse
Affiliation(s)
- Yong-Xin Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Hong Yang
- The Maternal and Child Health Care Hospital of Guizhou Medical University, Guiyang 550003, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Da-Song Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Ting-Ting Chen
- The Maternal and Child Health Care Hospital of Guizhou Medical University, Guiyang 550003, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Xiao-Lan Qi
- The Key Laboratory of Medical Molecular Biology, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China.
| | - Xiang-Chun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China.
| |
Collapse
|
36
|
Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Romero Domínguez JM, Talaverón-Rey M, Reche-López D, Suárez-Rivero JM, Álvarez-Córdoba M, Romero-González A, López-Cabrera A, Oliveira MCD, Rodríguez-Sacristan A, Sánchez-Alcázar JA. Polydatin and Nicotinamide Rescue the Cellular Phenotype of Mitochondrial Diseases by Mitochondrial Unfolded Protein Response (mtUPR) Activation. Biomolecules 2024; 14:598. [PMID: 38786005 PMCID: PMC11118892 DOI: 10.3390/biom14050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Primary mitochondrial diseases result from mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) genes, encoding proteins crucial for mitochondrial structure or function. Given that few disease-specific therapies are available for mitochondrial diseases, novel treatments to reverse mitochondrial dysfunction are necessary. In this work, we explored new therapeutic options in mitochondrial diseases using fibroblasts and induced neurons derived from patients with mutations in the GFM1 gene. This gene encodes the essential mitochondrial translation elongation factor G1 involved in mitochondrial protein synthesis. Due to the severe mitochondrial defect, mutant GFM1 fibroblasts cannot survive in galactose medium, making them an ideal screening model to test the effectiveness of pharmacological compounds. We found that the combination of polydatin and nicotinamide enabled the survival of mutant GFM1 fibroblasts in stress medium. We also demonstrated that polydatin and nicotinamide upregulated the mitochondrial Unfolded Protein Response (mtUPR), especially the SIRT3 pathway. Activation of mtUPR partially restored mitochondrial protein synthesis and expression, as well as improved cellular bioenergetics. Furthermore, we confirmed the positive effect of the treatment in GFM1 mutant induced neurons obtained by direct reprogramming from patient fibroblasts. Overall, we provide compelling evidence that mtUPR activation is a promising therapeutic strategy for GFM1 mutations.
Collapse
Affiliation(s)
- Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - José Manuel Romero Domínguez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Juan Miguel Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Alejandra López-Cabrera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Marta Castro De Oliveira
- Neuropediatria, Neurolinkia, C. Jardín de la Isla, 8, Local 4 y 5, 41014 Sevilla, Spain;
- FEA Pediatría, Centro Universitario Hospitalar de Faro, R. Leão Penedo, 8000-386 Faro, Portugal
| | - Andrés Rodríguez-Sacristan
- Neuropediatría, Servicio de Pediatría, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain;
- Departamento de Farmacología, Radiología y Pediatría, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
| | - José Antonio Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| |
Collapse
|
37
|
Li G, Yao Q, Liu P, Zhang H, Liu Y, Li S, Shi Y, Li Z, Zhu W. Critical roles and clinical perspectives of RNA methylation in cancer. MedComm (Beijing) 2024; 5:e559. [PMID: 38721006 PMCID: PMC11077291 DOI: 10.1002/mco2.559] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 01/06/2025] Open
Abstract
RNA modification, especially RNA methylation, is a critical posttranscriptional process influencing cellular functions and disease progression, accounting for over 60% of all RNA modifications. It plays a significant role in RNA metabolism, affecting RNA processing, stability, and translation, thereby modulating gene expression and cell functions essential for proliferation, survival, and metastasis. Increasing studies have revealed the disruption in RNA metabolism mediated by RNA methylation has been implicated in various aspects of cancer progression, particularly in metabolic reprogramming and immunity. This disruption of RNA methylation has profound implications for tumor growth, metastasis, and therapy response. Herein, we elucidate the fundamental characteristics of RNA methylation and their impact on RNA metabolism and gene expression. We highlight the intricate relationship between RNA methylation, cancer metabolic reprogramming, and immunity, using the well-characterized phenomenon of cancer metabolic reprogramming as a framework to discuss RNA methylation's specific roles and mechanisms in cancer progression. Furthermore, we explore the potential of targeting RNA methylation regulators as a novel approach for cancer therapy. By underscoring the complex mechanisms by which RNA methylation contributes to cancer progression, this review provides a foundation for developing new prognostic markers and therapeutic strategies aimed at modulating RNA methylation in cancer treatment.
Collapse
Affiliation(s)
- Ganglei Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Qinfan Yao
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Peixi Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Hongfei Zhang
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yingjun Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Sichen Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yuan Shi
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Zongze Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Wei Zhu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| |
Collapse
|
38
|
Paluch KV, Platz KR, Rudisel EJ, Erdmann RR, Laurin TR, Dittenhafer-Reed KE. The role of lysine acetylation in the function of mitochondrial ribosomal protein L12. Proteins 2024; 92:583-592. [PMID: 38146092 DOI: 10.1002/prot.26654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
Mitochondria play a central role in energy production and cellular metabolism. Mitochondria contain their own small genome (mitochondrial DNA, mtDNA) that carries the genetic instructions for proteins required for ATP synthesis. The mitochondrial proteome, including the mitochondrial transcriptional machinery, is subject to post-translational modifications (PTMs), including acetylation and phosphorylation. We set out to determine whether PTMs of proteins associated with mtDNA may provide a potential mechanism for the regulation of mitochondrial gene expression. Here, we focus on mitochondrial ribosomal protein L12 (MRPL12), which is thought to stabilize mitochondrial RNA polymerase (POLRMT) and promote transcription. Numerous acetylation sites of MRPL12 were identified by mass spectrometry. We employed amino acid mimics of the acetylated (lysine to glutamine mutants) and deacetylated (lysine to arginine mutants) versions of MRPL12 to interrogate the role of lysine acetylation in transcription initiation in vitro and mitochondrial gene expression in HeLa cells. MRPL12 acetyl and deacetyl protein mimics were purified and assessed for their ability to impact mtDNA promoter binding of POLRMT. We analyzed mtDNA content and mitochondrial transcript levels in HeLa cells upon overexpression of acetyl and deacetyl mimics of MRPL12. Our results suggest that MRPL12 single-site acetyl mimics do not change the mtDNA promoter binding ability of POLRMT or mtDNA content in HeLa cells. Individual acetyl mimics may have modest effects on mitochondrial transcript levels. We found that the mitochondrial deacetylase, Sirtuin 3, is capable of deacetylating MRPL12 in vitro, suggesting a potential role for dynamic acetylation controlling MRPL12 function in a role outside of the regulation of gene expression.
Collapse
Affiliation(s)
- Katelynn V Paluch
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | - Karlie R Platz
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | - Emma J Rudisel
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | - Ryan R Erdmann
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | - Taylor R Laurin
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | | |
Collapse
|
39
|
Abstract
Sirtuins (SIRTs) are putative regulators of lifespan in model organisms. Since the initial discovery that SIRTs could promote longevity in nematodes and flies, the identification of additional properties of these proteins has led to understanding of their roles as exquisite sensors that link metabolic activity to oxidative states. SIRTs have major roles in biological processes that are important in kidney development and physiological functions, including mitochondrial metabolism, oxidative stress, autophagy, DNA repair and inflammation. Furthermore, altered SIRT activity has been implicated in the pathophysiology and progression of acute and chronic kidney diseases, including acute kidney injury, diabetic kidney disease, chronic kidney disease, polycystic kidney disease, autoimmune diseases and renal ageing. The renoprotective roles of SIRTs in these diseases make them attractive therapeutic targets. A number of SIRT-activating compounds have shown beneficial effects in kidney disease models; however, further research is needed to identify novel SIRT-targeting strategies with the potential to treat and/or prevent the progression of kidney diseases and increase the average human healthspan.
Collapse
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
| |
Collapse
|
40
|
Zhang Y, Wang Y, Dou H, Wang S, Qu D, Peng X, Zou N, Yang L. Caffeine improves mitochondrial dysfunction in the white matter of neonatal rats with hypoxia-ischemia through deacetylation: a proteomic analysis of lysine acetylation. Front Mol Neurosci 2024; 17:1394886. [PMID: 38745725 PMCID: PMC11091324 DOI: 10.3389/fnmol.2024.1394886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Aims White matter damage (WMD) is linked to both cerebral palsy and cognitive deficits in infants born prematurely. The focus of this study was to examine how caffeine influences the acetylation of proteins within the neonatal white matter and to evaluate its effectiveness in treating white matter damage caused by hypoxia-ischemia. Main methods We employed a method combining affinity enrichment with advanced liquid chromatography and mass spectrometry to profile acetylation in proteins from the white matter of neonatal rats grouped into control (Sham), hypoxic-ischemic (HI), and caffeine-treated (Caffeine) groups. Key findings Our findings included 1,999 sites of lysine acetylation across 1,123 proteins, with quantifiable changes noted in 1,342 sites within 689 proteins. Analysis of these patterns identified recurring sequences adjacent to the acetylation sites, notably YKacN, FkacN, and G * * * GkacS. Investigation into the biological roles of these proteins through Gene Ontology analysis indicated their involvement in a variety of cellular processes, predominantly within mitochondrial locations. Further analysis indicated that the acetylation of tau (Mapt), a protein associated with microtubules, was elevated in the HI condition; however, caffeine treatment appeared to mitigate this over-modification, thus potentially aiding in reducing oxidative stress, inflammation in the nervous system, and improving mitochondrial health. Caffeine inhibited acetylated Mapt through sirtuin 2 (SITR2), promoted Mapt nuclear translocation, and improved mitochondrial dysfunction, which was subsequently weakened by the SIRT2 inhibitor, AK-7. Significance Caffeine-induced changes in lysine acetylation may play a key role in improving mitochondrial dysfunction and inhibiting oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Yajun Zhang
- Department of Anesthesiology, Dalian Women and Children's Medical Group, Dalian, Liaoning, China
| | - Yuqian Wang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Haiping Dou
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shanshan Wang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Danyang Qu
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xin Peng
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ning Zou
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liu Yang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
41
|
Jeffrey MP, Saleem L, MacPherson CW, Tompkins TA, Clarke ST, Green-Johnson JM. A Lacticaseibacillus rhamnosus secretome induces immunoregulatory transcriptional, functional and immunometabolic signatures in human THP-1 monocytes. Sci Rep 2024; 14:8379. [PMID: 38600116 PMCID: PMC11006683 DOI: 10.1038/s41598-024-56420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
Macrophage responses to activation are fluid and dynamic in their ability to respond appropriately to challenges, a role integral to host defence. While bacteria can influence macrophage differentiation and polarization into pro-inflammatory and alternatively activated phenotypes through direct interactions, many questions surround indirect communication mechanisms mediated through secretomes derived from gut bacteria, such as lactobacilli. We examined effects of secretome-mediated conditioning on THP-1 human monocytes, focusing on the ability of the Lacticaseibacillus rhamnosus R0011 secretome (LrS) to drive macrophage differentiation and polarization and prime immune responses to subsequent challenge with lipopolysaccharide (LPS). Genome-wide transcriptional profiling revealed increased M2-associated gene transcription in response to LrS conditioning in THP-1 cells. Cytokine and chemokine profiling confirmed these results, indicating increased M2-associated chemokine and cytokine production (IL-1Ra, IL-10). These cells had increased cell-surface marker expression of CD11b, CD86, and CX3CR1, coupled with reduced expression of the M1 macrophage-associated marker CD64. Mitochondrial substrate utilization assays indicated diminished reliance on glycolytic substrates, coupled with increased utilization of citric acid cycle intermediates, characteristics of functional M2 activity. LPS challenge of LrS-conditioned THP-1s revealed heightened responsiveness, indicative of innate immune priming. Resting stage THP-1 macrophages co-conditioned with LrS and retinoic acid also displayed an immunoregulatory phenotype with expression of CD83, CD11c and CD103 and production of regulatory cytokines. Secretome-mediated conditioning of macrophages into an immunoregulatory phenotype is an uncharacterized and potentially important route through which lactic acid bacteria and the gut microbiota may train and shape innate immunity at the gut-mucosal interface.
Collapse
Affiliation(s)
- Michael P Jeffrey
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Tech University, Oshawa, ON, L1G 0C5, Canada
| | - Lin Saleem
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Tech University, Oshawa, ON, L1G 0C5, Canada
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada
| | - Chad W MacPherson
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | | | - Sandra T Clarke
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Tech University, Oshawa, ON, L1G 0C5, Canada
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada
| | - Julia M Green-Johnson
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Tech University, Oshawa, ON, L1G 0C5, Canada.
| |
Collapse
|
42
|
Zhang A, Pan Y, Wang H, Ding R, Zou T, Guo D, Shen Y, Ji P, Huang W, Wen Q, Wang Q, Hu H, Wu J, Xiang M, Ye B. Excessive processing and acetylation of OPA1 aggravate age-related hearing loss via the dysregulation of mitochondrial dynamics. Aging Cell 2024; 23:e14091. [PMID: 38267829 PMCID: PMC11019136 DOI: 10.1111/acel.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
The pathogenesis of age-related hearing loss (ARHL) remains unclear. OPA1 is the sole fusion protein currently known to be situated in the inner mitochondrial membrane, which is pivotal for maintaining normal mitochondrial function. While it has already been demonstrated that mutations in OPA1 may lead to hereditary deafness, its involvement in the occurrence and development of ARHL has not been previously explored. In our study, we constructed D-gal-induced senescent HEI-OC1 cells and the cochlea of C57BL/6J mice with a mutated SUMOylation site of SIRT3 using CRISPR/Cas9 technology. We found enhanced L-OPA1 processing mediated by activated OMA1, and increased OPA1 acetylation resulting from reductions in SIRT3 levels in senescent HEI-OC1 cells. Consequently, the fusion function of OPA1 was inhibited, leading to mitochondrial fission and pyroptosis in hair cells, ultimately exacerbating the aging process of hair cells. Our results suggest that the dysregulation of mitochondrial dynamics in cochlear hair cells in aged mice can be ameliorated by activating the SIRT3/OPA1 signaling. This has the potential to alleviate the senescence of cochlear hair cells and reduce hearing loss in mice. Our study highlights the significant roles played by the quantities of long and short chains and the acetylation activity of OPA1 in the occurrence and development of ARHL. This finding offers new perspectives and potential targets for the prevention and treatment of ARHL.
Collapse
Affiliation(s)
- Andi Zhang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi Pan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hao Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rui Ding
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tianyuan Zou
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dongye Guo
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peilin Ji
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weiyi Huang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qing Wen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haixia Hu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jichang Wu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Audiology & Speech‐Language Pathology, College of Health Science and TechnologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Audiology & Speech‐Language Pathology, College of Health Science and TechnologyShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
43
|
Nie Y, Zhang Y, Liu S, Xu Z, Xia C, Du L, Yin X, Wang J. Downregulation of Sirt3 contributes to β-cell dedifferentiation via FoxO1 in type 2 diabetic mellitus. Acta Diabetol 2024; 61:485-494. [PMID: 38150004 DOI: 10.1007/s00592-023-02221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
AIMS FoxO1 is an important factor in the β-cell differentiation in type 2 diabetes mellitus (T2DM). Sirt3 is found to be involved in FoxO1 function. This study investigated the role of Sirt3 in the β-cell dedifferentiation and its mechanism. METHODS Twelve-week-old db/db mice and INS1 cells transfected with Sirt3-specific short hairpin RNA (shSirt3) were used to evaluate the dedifferentiation of β-cell. Insulin levels were measured by enzyme linked immunosorbent assay. The proteins of Sirt3, T-FoxO1, Ac-FoxO1 and differentiation indexes such as NGN3, OCT4, MAFA were determined by western blot or immunofluorescence staining. The combination of Sirt3 and FoxO1 was determined by the co-immunoprecipitation assay. The transcriptional activity of FoxO1 was detected by dual luciferase reporter assay. RESULTS Both the in vivo and in vitro results showed that Sirt3 was decreased along with β-cell dedifferentiation and decreased function of insulin secretion under high glucose conditions. When Sirt3 was knocked down in INS1 cells, increased β-cell dedifferentiation and lowered insulin secretion were observed. This effect was closely related to the amount loss and the decreased deacetylation of FoxO1, which resulted in a reduction in transcriptional activity. CONCLUSION Downregulation of Sirt3 contributes to β-cell dedifferentiation in high glucose via FoxO1. Intervention of Sirt3 may be an effective approach to prevent β-cell failure in T2DM.
Collapse
Affiliation(s)
- Yaxing Nie
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Yunye Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Shuqing Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Zhi Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Chunya Xia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Jianyun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
44
|
Tiwari A, Myeong J, Hashemiaghdam A, Zhang H, Niu X, Laramie MA, Stunault MI, Sponagel J, Patti G, Shriver L, Klyachko V, Ashrafi G. Mitochondrial pyruvate transport regulates presynaptic metabolism and neurotransmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.586011. [PMID: 38562794 PMCID: PMC10983914 DOI: 10.1101/2024.03.20.586011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Glucose has long been considered the primary fuel source for the brain. However, glucose levels fluctuate in the brain during sleep, intense circuit activity, or dietary restrictions, posing significant metabolic stress. Here, we demonstrate that the mammalian brain utilizes pyruvate as a fuel source, and pyruvate can support neuronal viability in the absence of glucose. Nerve terminals are sites of metabolic vulnerability within a neuron and we show that mitochondrial pyruvate uptake is a critical step in oxidative ATP production in hippocampal terminals. We find that the mitochondrial pyruvate carrier is post-translationally modified by lysine acetylation which in turn modulates mitochondrial pyruvate uptake. Importantly, our data reveal that the mitochondrial pyruvate carrier regulates distinct steps in synaptic transmission, namely, the spatiotemporal pattern of synaptic vesicle release and the efficiency of vesicle retrieval, functions that have profound implications for synaptic plasticity. In summary, we identify pyruvate as a potent neuronal fuel and mitochondrial pyruvate uptake as a critical node for the metabolic control of synaptic transmission in hippocampal terminals.
Collapse
Affiliation(s)
- Anupama Tiwari
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Arsalan Hashemiaghdam
- Department of Cell Biology and Physiology, Washington University in St. Louis
- Present address: Tufts Medical Center, Boston, MA
| | - Hao Zhang
- Department of Chemistry, Department of Medicine, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis
| | - Xianfeng Niu
- Department of Chemistry, Department of Medicine, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis
| | - Marissa A Laramie
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Marion I Stunault
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Jasmin Sponagel
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Gary Patti
- Department of Chemistry, Department of Medicine, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis
| | - Leah Shriver
- Department of Chemistry, Department of Medicine, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis
| | - Vitaly Klyachko
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University in St. Louis
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University in St. Louis
- Lead Contact
| |
Collapse
|
45
|
Zhao X, Hu Y, Zhao J, Liu Y, Ma X, Chen H, Xing Y. Role of protein Post-translational modifications in enterovirus infection. Front Microbiol 2024; 15:1341599. [PMID: 38596371 PMCID: PMC11002909 DOI: 10.3389/fmicb.2024.1341599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 04/11/2024] Open
Abstract
Enteroviruses (EVs) are the main cause of a number of neurological diseases. Growing evidence has revealed that successful infection with enteroviruses is highly dependent on the host machinery, therefore, host proteins play a pivotal role in viral infections. Both host and viral proteins can undergo post-translational modification (PTM) which can regulate protein activity, stability, solubility and interactions with other proteins; thereby influencing various biological processes, including cell metabolism, metabolic, signaling pathways, cell death, and cancer development. During viral infection, both host and viral proteins regulate the viral life cycle through various PTMs and different mechanisms, including the regulation of host cell entry, viral protein synthesis, genome replication, and the antiviral immune response. Therefore, protein PTMs play important roles in EV infections. Here, we review the role of various host- and virus-associated PTMs during enterovirus infection.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Department of Pathogen Biology, School of Medicine, Qinghai University, Qinghai, China
| | - Yibo Hu
- Department of Orthopaedic Trauma, The Affiliated Hospital of Qinghai University, Qinghai, China
| | - Jun Zhao
- Department of Pathogen Biology, School of Medicine, Qinghai University, Qinghai, China
| | - Yan Liu
- Department of Immunology, School of Medicine, Qinghai, China
| | - Xueman Ma
- Department of Traditional Chinese Medicine, School of Medicine, Qinghai University, Qinghai, China
| | - Hongru Chen
- Department of Public Health, School of Medicine, Qinghai University, Qinghai, China
| | - Yonghua Xing
- Department of Genetics, School of Medicine, Qinghai University, Qinghai, China
| |
Collapse
|
46
|
Choudhury C, Gill MK, McAleese CE, Butcher NJ, Ngo ST, Steyn FJ, Minchin RF. The Arylamine N-Acetyltransferases as Therapeutic Targets in Metabolic Diseases Associated with Mitochondrial Dysfunction. Pharmacol Rev 2024; 76:300-320. [PMID: 38351074 DOI: 10.1124/pharmrev.123.000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024] Open
Abstract
In humans, there are two arylamine N-acetyltransferase genes that encode functional enzymes (NAT1 and NAT2) as well as one pseudogene, all of which are located together on chromosome 8. Although they were first identified by their role in the acetylation of drugs and other xenobiotics, recent studies have shown strong associations for both enzymes in a variety of diseases, including cancer, cardiovascular disease, and diabetes. There is growing evidence that this association may be causal. Consistently, NAT1 and NAT2 are shown to be required for healthy mitochondria. This review discusses the current literature on the role of both NAT1 and NAT2 in mitochondrial bioenergetics. It will attempt to relate our understanding of the evolution of the two genes with biologic function and then present evidence that several major metabolic diseases are influenced by NAT1 and NAT2. Finally, it will discuss current and future approaches to inhibit or enhance NAT1 and NAT2 activity/expression using small-molecule drugs. SIGNIFICANCE STATEMENT: The arylamine N-acetyltransferases (NATs) NAT1 and NAT2 share common features in their associations with mitochondrial bioenergetics. This review discusses mitochondrial function as it relates to health and disease, and the importance of NAT in mitochondrial function and dysfunction. It also compares NAT1 and NAT2 to highlight their functional similarities and differences. Both NAT1 and NAT2 are potential drug targets for diseases where mitochondrial dysfunction is a hallmark of onset and progression.
Collapse
Affiliation(s)
- Chandra Choudhury
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Melinder K Gill
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Courtney E McAleese
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Neville J Butcher
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Shyuan T Ngo
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Frederik J Steyn
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| |
Collapse
|
47
|
Wang X, Zhang D, Zhu Y, Li D, Shen L, Wang Q, Gao Y, Li X, Yu M. Protein lysine acetylation played an important role in NH 3-induced AEC2 damage and pulmonary fibrosis in piglets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168303. [PMID: 37939958 DOI: 10.1016/j.scitotenv.2023.168303] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Gaseous ammonia (NH3), as a main air pollutant in pig farms and surrounding areas, directly affects animal and human health. The lung, as an important organ for gas exchange in the respiratory system, is damaged after NH3 exposure, but the underlying mechanism needs to be further explored. In this study, seven weeks old piglets were exposed to 50 ppm NH3 for 30 days, and displayed pulmonary fibrosis. Then, the toxicological mechanism of NH3-induced pulmonary fibrosis was explored from the aspects of whole genome wide protein expression and post-translational modification. Totally, 404 differentially expressed proteins (DEPs) and 136 differentially lysine acetylated proteins (DAPs) were identified. The expression or lysine acetylation levels of proteins involved in mitochondrial energy metabolism including fatty acid oxidation (CPT1A, ACADVL, ACADS, HADHA, and HADHB), TCA cycle (IDH2 and MDH2), and oxidative phosphorylation (NDUFB7, NDUFV1, ATP5PB, ATP5F1A, COX5A, and COX5B) were significantly changed after NH3 exposure, which suggested that NH3 disrupted mitochondrial energy metabolism in the lung of piglets. Next, we found that type 2 alveolar epithelial cells (AEC2) damaged after NH3 exposure in vivo and in vitro. Integrin-linked kinase (ILK) was enriched in focal adhesion pathway, and showed significantly up-regulated acetylation levels at K191 (FC = 2.99) and K209 sites (FC = 1.52) after NH3 exposure. We illustrated that ILK-K191 hyper-acetylation inhibited AEC2 proliferation and induced AEC2 apoptosis by down-regulating pAKT-S473 in vitro. In conclusion, for the first time, our study revealed that protein acetylation played an important role in the process of NH3-induced pulmonary fibrosis in piglets. Our findings provided valuable insights into toxicological harm of NH3 to human health.
Collapse
Affiliation(s)
- Xiaotong Wang
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Zhang
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaxue Zhu
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Daojie Li
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Shen
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiankun Wang
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Gao
- College of Engineering, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoping Li
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mei Yu
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
48
|
Wei Y, Wei H, Tian C, Wu Q, Li D, Huang C, Zhang G, Chen R, Wang N, Li Y, Li B, Chu XM. The Transcriptome Analysis of Circular RNAs Between the Doxorubicin- Induced Cardiomyocytes and Bone Marrow Mesenchymal Stem Cells- Derived Exosomes Treated Ones. Comb Chem High Throughput Screen 2024; 27:1056-1070. [PMID: 38305398 DOI: 10.2174/0113862073261891231115072310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 02/03/2024]
Abstract
AIM To analyze the sequencing results of circular RNAs (circRNAs) in cardiomyocytes between the doxorubicin (DOX)-injured group and exosomes treatment group. Moreover, to offer potential circRNAs possibly secreted by exosomes mediating the therapeutic effect on DOX-induced cardiotoxicity for further study. METHODS The DOX-injured group (DOX group) of cardiomyocytes was treated with DOX, while an exosomes-treated group of injured cardiomyocytes were cocultured with bone marrow mesenchymal stem cells (BMSC)-derived exosomes (BEC group). The high-throughput sequencing of circRNAs was conducted after the extraction of RNA from cardiomyocytes. The differential expression of circRNA was analyzed after identifying the number, expression, and conservative of circRNAs. Then, the target genes of differentially expressed circRNAs were predicted based on the targetscan and Miranda database. Next, the GO and KEGG enrichment analyses of target genes of circRNAs were performed. The crucial signaling pathways participating in the therapeutic process were identified. Finally, a real-time quantitative polymerase chain reaction experiment was conducted to verify the results obtained by sequencing. RESULTS Thirty-two circRNAs are differentially expressed between the two groups, of which twenty-three circRNAs were elevated in the exosomes-treated group (BEC group). The GO analysis shows that target genes of differentially expressed circRNAs are mainly enriched in the intracellular signalactivity, regulation of nucleic acid-templated transcription, Golgi-related activity, and GTPase activator activity. The KEGG analysis displays that they were involved in the autophagy biological process and NOD-like receptor signaling pathway. The verification experiment suggested that mmu_circ_0000425 (ID: 116324210) was both decreased in the DOX group and elevated in BEC group, which was consistent with the result of sequencing. CONCLUSION mmu_circ_0000425 in exosomes derived from bone marrow mesenchymal stem cells (BMSC) may have a therapeutic role in alleviating doxorubicin-induced cardiotoxicity (DIC).
Collapse
Affiliation(s)
- Yanhuan Wei
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Emergency Medicine, Rizhao People's Hospital, Rizhao, China
| | - Haixia Wei
- Qingdao Chengyang People's Hospital, Qingdao, China
| | - Chao Tian
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Qinchao Wu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Huang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoliang Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruolan Chen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ni Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics, Basic Medicine School, Qingdao University, Qingdao, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
49
|
Diniz F, Ngo NYN, Colon-Leyva M, Edgington-Giordano F, Hilliard S, Zwezdaryk K, Liu J, El-Dahr SS, Tortelote GG. Acetyl-CoA is a key molecule for nephron progenitor cell pool maintenance. Nat Commun 2023; 14:7733. [PMID: 38007516 PMCID: PMC10676360 DOI: 10.1038/s41467-023-43513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/10/2023] [Indexed: 11/27/2023] Open
Abstract
Nephron endowment at birth impacts long-term renal and cardiovascular health, and it is contingent on the nephron progenitor cell (NPC) pool. Glycolysis modulation is essential for determining NPC fate, but the underlying mechanism is unclear. Combining RNA sequencing and quantitative proteomics we identify 267 genes commonly targeted by Wnt activation or glycolysis inhibition in NPCs. Several of the impacted pathways converge at Acetyl-CoA, a co-product of glucose metabolism. Notably, glycolysis inhibition downregulates key genes of the Mevalonate/cholesterol pathway and stimulates NPC differentiation. Sodium acetate supplementation rescues glycolysis inhibition effects and favors NPC maintenance without hindering nephrogenesis. Six2Cre-mediated removal of ATP-citrate lyase (Acly), an enzyme that converts citrate to acetyl-CoA, leads to NPC pool depletion, glomeruli count reduction, and increases Wnt4 expression at birth. Sodium acetate supplementation counters the effects of Acly deletion on cap-mesenchyme. Our findings show a pivotal role of acetyl-CoA metabolism in kidney development and uncover new avenues for manipulating nephrogenesis and preventing adult kidney disease.
Collapse
Affiliation(s)
- Fabiola Diniz
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Nguyen Yen Nhi Ngo
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Mariel Colon-Leyva
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Francesca Edgington-Giordano
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Sylvia Hilliard
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Kevin Zwezdaryk
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jiao Liu
- Department of Human Genetics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Samir S El-Dahr
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Giovane G Tortelote
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
50
|
Platz KR, Rudisel EJ, Paluch KV, Laurin TR, Dittenhafer-Reed KE. Assessing the Role of Post-Translational Modifications of Mitochondrial RNA Polymerase. Int J Mol Sci 2023; 24:16050. [PMID: 38003238 PMCID: PMC10671485 DOI: 10.3390/ijms242216050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The mitochondrial proteome is subject to abundant post-translational modifications, including lysine acetylation and phosphorylation of serine, threonine, and tyrosine. The biological function of the majority of these protein modifications is unknown. Proteins required for the transcription and translation of mitochondrial DNA (mtDNA) are subject to modification. This suggests that reversible post-translational modifications may serve as a regulatory mechanism for mitochondrial gene transcription, akin to mechanisms controlling nuclear gene expression. We set out to determine whether acetylation or phosphorylation controls the function of mitochondrial RNA polymerase (POLRMT). Mass spectrometry was used to identify post-translational modifications on POLRMT. We analyzed three POLRMT modification sites (lysine 402, threonine 315, threonine 993) found in distinct structural regions. Amino acid point mutants that mimic the modified and unmodified forms of POLRMT were employed to measure the effect of acetylation or phosphorylation on the promoter binding ability of POLRMT in vitro. We found a slight decrease in binding affinity for the phosphomimic at threonine 315. We did not identify large changes in viability, mtDNA content, or mitochondrial transcript level upon overexpression of POLRMT modification mimics in HeLa cells. Our results suggest minimal biological impact of the POLRMT post-translational modifications studied in our system.
Collapse
|