1
|
Li C, Zhang Y, Zhang Z, Zhang Y, Song Y, Wang L, Yuan C, Hao G, Sun N, Li H, Zhang Z, He Y, Wang S. Discovery and biological evaluation of carborane-containing derivatives as TEAD auto palmitoylation inhibitors. Bioorg Med Chem Lett 2025; 121:130155. [PMID: 40010443 DOI: 10.1016/j.bmcl.2025.130155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Transcriptional enhanced associate domain (TEAD) proteins are key downstream effectors of the Hippo signaling pathway that play a crucial role in various cell processes including tissue development, regeneration, cell proliferation and cancer. TEADs contain a hydrophobic auto-palmitoylation pocket that can bind palmitic acid and stabilize TEADs from being degraded. Inhibitors targeting this palmitoylation pocket typically consist of hydrophobic pharmacophores. Carboranes is a cage-shaped molecule exhibiting superior hydrophobicity compared to adamantane or phenyl groups. Herein, we incorporated carborane into known TEAD inhibitors for better interaction with the hydrophobic palmitate pocket. Compounds 1f and 1l are identified as TEAD transcription inhibitors with strong anti-proliferation and anti-migration activities toward prostate cancer cell lines. They also significantly reduced TEAD-regulated downstream gene expressions.
Collapse
Affiliation(s)
- Chaofan Li
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yingshuang Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ziyin Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yirong Zhang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yuxuan Song
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Linyuan Wang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Changxian Yuan
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Guanxiang Hao
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Nan Sun
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hongjing Li
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Zhiguang Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Sinan Wang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
2
|
Haripriya E, Hemalatha K, Matada GSP, Pal R, Das PK, Ashadul Sk MD, Mounika S, Viji MP, Aayishamma I, Jayashree KR. Advancements of anticancer agents by targeting the Hippo signalling pathway: biological activity, selectivity, docking analysis, and structure-activity relationship. Mol Divers 2025; 29:2829-2862. [PMID: 39436581 DOI: 10.1007/s11030-024-11009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
The Hippo signalling pathway is prominent and governs cell proliferation and stem cell activity, acting as a growth regulator and tumour suppressor. Defects in Hippo signalling and hyperactivation of its downstream effector's Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) play roles in cancer development, implying that pharmacological inhibition of YAP and TAZ activity could be an effective cancer treatment strategy. Conversely, YAP and TAZ can also have beneficial effects in promoting tissue repair and regeneration following damage, therefore their activation may be therapeutically effective in certain instances. Recently, a complex network of intracellular and extracellular signalling mechanisms that affect YAP and TAZ activity has been uncovered. The YAP/TAZ-TEAD interaction leads to tumour development and the protein structure of YAP/TAZ-TEAD includes three interfaces and one hydrophobic pocket. There are clinical and preclinical trial drugs available to inhibit the hippo signalling pathway, but these drugs have moderate to severe side effects, so researchers are in search of novel, potent, and selective hippo signalling pathway inhibitors. In this review, we have discussed the hippo pathway in detail, including its structure, activation, and role in cancer. We have also provided the various inhibitors under clinical and preclinical trials, and advancement of small molecules their detailed docking analysis, structure-activity relationship, and biological activity. We anticipate that the current study will be a helpful resource for researchers.
Collapse
Affiliation(s)
- E Haripriya
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K Hemalatha
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M D Ashadul Sk
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - S Mounika
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M P Viji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - I Aayishamma
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K R Jayashree
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| |
Collapse
|
3
|
Mukherjee S, Warden EA, Zhang J. YAP/TAZ: An Epitome of Tumorigenesis. Cancer Lett 2025:217806. [PMID: 40381686 DOI: 10.1016/j.canlet.2025.217806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/13/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Mounting evidence has demonstrated that the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), are the main effectors of the Hippo signal transduction pathway that is involved in multiple layered events in tumorigenesis. The role of YAP/TAZ in cancer development is critical in a context dependent manner. Overexpression of YAP/TAZ induces cell proliferation and is elevated in various cancers and many other malignancies. On the other hand, studies have shown YAP binds p73 to activate PML transcription in response to DNA damage and generate a DNA-damage-induced feedback loop. Intriguingly, at the genomic level, YAP/TAZ genes are rarely mutated in cancer, except in specific tumors. The central role of YAP/TAZ in driving tumorigenesis is attributed through diverse mechanisms, such as regulatory kinases, cellular mechano-transduction, epigenetic modification/alterations, post-translational modifications, protein -protein interaction and nucleo-cytoplasmic export import. The complex interplay among feedback loops and crosstalk between various signaling pathways portrays the dynamic nature of YAP/TAZ. Thus, a comprehensive understanding of how posttranslational modifications and nucleo-cytoplasmic traffic of YAP/TAZ dynamically regulate and control each other holds great promise for selectively targeting YAP/TAZ import and export for drug therapy.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Emily A Warden
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Jianmin Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA.
| |
Collapse
|
4
|
Meinhardt G, Waldhäusl H, Lackner AI, Wächter J, Maxian T, Höbler AL, Vondra S, Kunihs V, Saleh L, Haslinger P, Kiraly P, Szilagyi A, Than NG, Pollheimer J, Haider S, Knöfler M. The multifaceted roles of the transcriptional coactivator TAZ in extravillous trophoblast development of the human placenta. Proc Natl Acad Sci U S A 2025; 122:e2426385122. [PMID: 40228123 PMCID: PMC12037006 DOI: 10.1073/pnas.2426385122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/07/2025] [Indexed: 04/16/2025] Open
Abstract
Insights into the molecular processes that drive early development of the human placenta is crucial for our understanding of pregnancy complications such as preeclampsia and fetal growth restriction, since defects in maturation of its epithelial cell, the trophoblast, have been detected in the severe forms of these diseases. However, key regulators specifying the differentiated trophoblast subtypes of the placenta are only slowly emerging. By using diverse trophoblast cell models, we herein show that the transcriptional coactivator of HIPPO signaling, TAZ, plays a pivotal role in the development of invasive extravillous trophoblasts (EVTs), cells that are essential for decidual vessel remodeling and adaption of maternal blood flow to the placenta. Ribonucleic acid sequencing (RNA-seq) or protein analyses upon TAZ gene silencing or CRISPR-Cas9-mediated knockout in differentiating trophoblast stem cells, organoids, primary EVTs, choriocarcinoma cells, or villous explant cultures unraveled that the coactivator promoted expression of genes associated with EVT identity, motility, and survival. Accordingly, depletion or chemical inhibition of TAZ, interacting with TEA domain family member 1 (TEAD1), impaired EVT differentiation, invasion, and migration and triggered apoptosis in the different trophoblast models. Notably, the coactivator also suppressed cell cycle genes and regulators of trophoblast self-renewal and prevented EVTs from cell fusion in organoids and primary cultures. Moreover, TAZ promoted human leukocyte antigen G (HLA-G) surface expression and increased NUAK1 kinase in EVTs thereby maintaining its own expression. In summary, the transcriptional coactivator TAZ plays a multifaceted role in the development of the EVT cell lineage by controlling different biological processes that initiate and preserve differentiation.
Collapse
Affiliation(s)
- Gudrun Meinhardt
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Hanna Waldhäusl
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Andreas I. Lackner
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Jasmin Wächter
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Theresa Maxian
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Anna-Lena Höbler
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Sigrid Vondra
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Victoria Kunihs
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Leila Saleh
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Peter Haslinger
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Peter Kiraly
- Systems Biology of Reproduction Lendulet Group, Institute of Molecular Life Sciences, Hungarian Research Network (HUN-REN) Research Centre for Natural Sciences, Budapest1117, Hungary
| | - Andras Szilagyi
- Systems Biology of Reproduction Lendulet Group, Institute of Molecular Life Sciences, Hungarian Research Network (HUN-REN) Research Centre for Natural Sciences, Budapest1117, Hungary
| | - Nandor G. Than
- Systems Biology of Reproduction Lendulet Group, Institute of Molecular Life Sciences, Hungarian Research Network (HUN-REN) Research Centre for Natural Sciences, Budapest1117, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest1126, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest1088, Hungary
| | - Jürgen Pollheimer
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Sandra Haider
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Martin Knöfler
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| |
Collapse
|
5
|
Xu X, Wang S, Zhou H, Tan Q, Lang Z, Zhu Y, Yuan H, Wu Z, Zhu L, Hu K, Li W, Zhou D, Wu M, Wu X. Transcriptome-wide association study of alternative polyadenylation identifies susceptibility genes in non-small cell lung cancer. Oncogene 2025:10.1038/s41388-025-03338-8. [PMID: 40205015 DOI: 10.1038/s41388-025-03338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/09/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025]
Abstract
Alternative polyadenylation (APA) plays a crucial role in cancer development and prognosis. However, the molecular characteristics of APA related to non-small cell lung cancer (NSCLC) susceptibility remain understudied, especially in East Asian populations. In this study, we constructed an atlas of APA-regulated 3' untranslated region (3'UTR) and profiled its genetic regulation in 747 lung tissue samples (including tumors and paired normal tissues) from 417 NSCLC Chinese patients. We verified a significant global shortening of 3'UTRs in tumor samples compared to normal samples and underscored the value of APA-regulation as a prognostic marker. The 3'UTR APA quantitative trait loci (3'aQTL) was identified by regressing the percentage of distal poly(A) site usage index (PDUI) value on genetic variants. We found that a significant proportion 3'aQTLs are independent of genetic regulation of expression and are specific in Chinese. We also conducted a 3'UTR APA transcriptome-wide association study (3'aTWAS) by integrating the APA regulation atlas with a genome-wide association study (GWAS) for NSCLC involving 7035 cases and 185,413 cancer-free controls. We identified NSCLC-associated genes, highlighting TUBB, TEAD3, and PPP1R10. Combining the consistent results from colocalization analysis, differential APA analysis, and survival analysis, we provide novel evidence for the role TUBB APA regulation in NSCLC and identified potential upstream regulators. Overall, our study profiled the APA regulation and highlighted the substantial role of APA in NSCLC carcinogenesis and prognosis in East Asian populations.
Collapse
Affiliation(s)
- Xiaohang Xu
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, China
| | - Sicong Wang
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, China
| | - Hanyi Zhou
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qilong Tan
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, China
| | - Zeyong Lang
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Zhu
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Huadi Yuan
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zixiang Wu
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Zhu
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kejia Hu
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenyuan Li
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, China
| | - Dan Zhou
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, China
| | - Ming Wu
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xifeng Wu
- Center of Clinical Big Data and Analytics of the Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- School of Medicine and Health Science, George Washington University, Washington, DC, USA.
- Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
6
|
Dalal K, McAnany C, Weilert M, McKinney MC, Krueger S, Zeitlinger J. Interpreting regulatory mechanisms of Hippo signaling through a deep learning sequence model. CELL GENOMICS 2025; 5:100821. [PMID: 40174587 PMCID: PMC12008814 DOI: 10.1016/j.xgen.2025.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/23/2024] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Abstract
Signaling pathway components are well studied, but how they mediate cell-type-specific transcription responses is an unresolved problem. Using the Hippo pathway in mouse trophoblast stem cells as a model, we show that the DNA binding of signaling effectors is driven by cell-type-specific sequence rules that can be learned genome wide by deep learning models. Through model interpretation and experimental validation, we show that motifs for the cell-type-specific transcription factor TFAP2C enhance TEAD4/YAP1 binding in a nucleosome-range and distance-dependent manner, driving synergistic enhancer activation. We also discovered that Tead double motifs are widespread, highly active canonical response elements. Molecular dynamics simulations suggest that TEAD4 binds them cooperatively through surprisingly labile protein-protein interactions that depend on the DNA template. These results show that the response to signaling pathways is encoded in the cis-regulatory sequences and that interpreting the rules reveals insights into the mechanisms by which signaling effectors influence cell-type-specific enhancer activity.
Collapse
Affiliation(s)
- Khyati Dalal
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Charles McAnany
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Melanie Weilert
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Sabrina Krueger
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
7
|
Küchler M, Ehmke M, Jaquet K, Wohlmuth P, Feldhege JM, Reese T, Hartmann T, Drexler R, Huber T, Burmester T, Oldhafer KJ. Transcription enhanced associate domain factor 1 (TEAD1) predicts liver regeneration outcome of ALPPS-treated patients. HPB (Oxford) 2025; 27:470-479. [PMID: 39870556 DOI: 10.1016/j.hpb.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND The two-stage surgical technique of associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) enables extensive liver resection and promotes future liver remnant regeneration (FLR), in part by inhibiting the Hippo signalling pathway. Its main effector, Yes-associated protein (YAP), has low intrinsic transcriptional activity and requires the transcription enhanced associated domain factor (TEAD) family members as cofactors for target gene transcription. We evaluated the intracellular localization and expression of TEAD1-4, hypothesized to regulate the activity of YAP and, consequently, liver regeneration. METHODS The intracellular localization of TEAD1-4 was characterized in tumor-free liver (TFL) tissue samples from 44 ALPPS patients obtained during the two stages of ALPPS surgery. Expression levels were correlated with clinical and pathological data as well as liver regeneration metrics. RESULTS TEAD family members are simultaneously expressed in individual hepatocytes and show relations with liver regeneration, clinical outcome and outcome parameters when comparing TFL tissue obtained at different stages of ALPPS surgery. Furthermore, differences in TEAD expression and localization within hepatocytes appeared to be independent of global factors. CONCLUSION TEAD1-4 expression correlates with liver regeneration outcomes. Specifically, cytoplasmic and nuclear expression scores of TEAD1 serve as predictive markers for clinical outcomes following ALPPS.
Collapse
Affiliation(s)
- Mirco Küchler
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany.
| | - Mareike Ehmke
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Kai Jaquet
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Peter Wohlmuth
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Johannes M Feldhege
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Tim Reese
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of HPB Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Thilo Hartmann
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Richard Drexler
- Division of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tessa Huber
- Department of Gynecology and Obstetrics, University Hospital Zurich, Switzerland
| | - Thorsten Burmester
- Division of Molecular Animal Physiology, Department of Biology, University Hamburg, Germany
| | - Karl J Oldhafer
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of HPB Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany.
| |
Collapse
|
8
|
Katayama Y, Yamada T, Tanimura K, Kawachi H, Ishida M, Matsui Y, Hirai S, Nakamura R, Morimoto K, Furuya N, Arai S, Goto Y, Sakata Y, Nishino K, Tsuchiya M, Tamiya A, Saito G, Muto S, Takeda T, Date K, Fujisaka Y, Watanabe S, Fujimoto D, Uehara H, Horinaka M, Sakai T, Yano S, Tokuda S, Takayama K. YAP Regulates HER3 Signaling-Driven Adaptive Resistance to RET Inhibitors in RET-Aberrant Cancers. Clin Cancer Res 2025; 31:1127-1141. [PMID: 39495173 DOI: 10.1158/1078-0432.ccr-24-1762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
PURPOSE Rearranged during transfection (RET) aberrations represent a targetable oncogene in several tumor types, with RET inhibitors displaying marked efficacy. However, some patients with RET-aberrant cancer are insensitive to RET tyrosine kinase inhibitors (TKI). Recently, drug-tolerant mechanisms have attracted attention as targets for initial therapies to overcome drug resistance. The underlying mechanisms of drug-tolerant cell emergence treated with RET-TKIs derived from RET-aberrant cancer cells remain unknown. This study investigated the role of YAP-mediated HER3 signaling in the underlying mechanisms of adaptive resistance to RET-TKIs in RET-aberrant cancer cells. EXPERIMENTAL DESIGN Four RET-aberrant cancer cell lines were used to assess sensitivity to the RET-TKIs selpercatinib and pralsetinib and to elucidate the molecular mechanisms underlying adaptive resistance using RNA sequencing, phospho-receptor tyrosine kinase antibody arrays, chromatin immunoprecipitation assay, and luciferase reporter assays. Clinical specimens from patients with RET fusion-positive lung cancer were analyzed for pretreatment YAP expression and correlated with treatment outcomes. RESULTS In high YAP-expressing RET-aberrant cancer cells, YAP-mediated HER3 signaling activation maintained cell survival and induced the emergence of cells tolerant to the RET-TKIs selpercatinib and pralsetinib. The pan-ErBB inhibitor afatinib and YAP/tea domain inhibitors verteporfin and K-975 sensitized YAP-expressing RET-aberrant cancer cells to the RET-TKIs selpercatinib and pralsetinib. Pretreatment YAP expression in clinical specimens obtained from patients with RET fusion-positive lung cancer was associated with poor RET-TKI treatment outcomes. CONCLUSIONS The YAP-HER3 axis is crucial for the survival and adaptive resistance of high YAP-expressing RET-aberrant cancer cells treated with RET-TKIs. Combining YAP/HER3 inhibition with RET-TKIs represents a highly potent strategy for initial treatment. See related commentary by Ortiz-Cuaran and Leonce, p. 958.
Collapse
Affiliation(s)
- Yuki Katayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiko Tanimura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hayato Kawachi
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Ishida
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Matsui
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Soichi Hirai
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryota Nakamura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoki Furuya
- Division of Respiratory Medicine, Department of Internal Medicine, St Marianna University School of Medicine, Kawasaki, Japan
| | - Sachiko Arai
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Yasuhiro Goto
- Department of Respiratory Medicine and Allergies, Fujita Health University, Toyoake, Japan
| | - Yoshihiko Sakata
- Division of Respiratory Medicine, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Kazumi Nishino
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Michiko Tsuchiya
- Department of Respiratory Medicine, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Akihiro Tamiya
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Japan
| | - Go Saito
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Muto
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Takayuki Takeda
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Koji Date
- Department of Pulmonary Medicine, Kyoto Chubu Medical Center, Nantan, Japan
| | - Yasuhito Fujisaka
- Department of Respiratory Medicine and Thoracic Oncology, Clinical Research Center, Osaka Medical and Pharmaceutical University Hospital, Takatsuki, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Daichi Fujimoto
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Japan
| | - Hisanori Uehara
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Seiji Yano
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- Department of Respiratory Medicine, Kanazawa Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shinsaku Tokuda
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
9
|
Hopkinson M, Pitsillides AA. Extracellular matrix: Dystroglycan interactions-Roles for the dystrophin-associated glycoprotein complex in skeletal tissue dynamics. Int J Exp Pathol 2025; 106:e12525. [PMID: 39923120 PMCID: PMC11807010 DOI: 10.1111/iep.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 02/10/2025] Open
Abstract
Contributions made by the dystrophin-associated glycoprotein complex (DGC) to cell-cell and cell-extracellular matrix (ECM) interactions are vital in development, homeostasis and pathobiology. This review explores how DGC functions may extend to skeletal pathophysiology by appraising the known roles of its major ECM ligands, and likely associated DGC signalling pathways, in regulating cartilage and bone cell behaviour and emergent skeletal phenotypes. These considerations will be contextualised by highlighting the potential of studies into the role of the DGC in isolated chondrocytes, osteoblasts and osteoclasts, and by fuller deliberation of skeletal phenotypes that may emerge in very young mice lacking vital, yet diverse core elements of the DGC. Our review points to roles for individual DGC components-including the glycosylation of dystroglycan itself-beyond the establishment of membrane stability which clearly accounts for severe muscle phenotypes in muscular dystrophy. It implies that the short stature, low bone mineral density, poor bone health and greater fracture risk in these patients, which has been attributed due to primary deficiencies in muscle-evoked skeletal loading, may instead arise due to primary roles for the DGC in controlling skeletal tissue (re)modelling.
Collapse
Affiliation(s)
- Mark Hopkinson
- Skeletal Biology Group, Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| |
Collapse
|
10
|
Saadh MJ, Ahmed HH, Kareem RA, Bishoyi AK, Roopashree R, Shit D, Arya R, Sharma A, Khaitov K, Sameer HN, Yaseen A, Athab ZH, Adil M. Molecular mechanisms of Hippo pathway in tumorigenesis: therapeutic implications. Mol Biol Rep 2025; 52:267. [PMID: 40014178 DOI: 10.1007/s11033-025-10372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
The Hippo signaling pathway is a pivotal regulator of tissue homeostasis, organ size, and cell proliferation. Its dysregulation is profoundly implicated in various forms of cancer, making it a highly promising target for therapeutic intervention. This review extensively evaluates the mechanisms underlying the dysregulation of the Hippo pathway in cancer cells and the molecular processes linking these alterations to tumorigenesis. Under normal physiological conditions, the Hippo pathway is a guardian, ensuring controlled cellular proliferation and programmed cell death. However, numerous mutations and epigenetic modifications can disrupt this equilibrium in cancer cells, leading to unchecked cell proliferation, enhanced survival, and metastatic capabilities. The pathway's interaction with other critical signaling networks, including Wnt/β-catenin, PI3K/Akt, TGF-β/SMAD, and EGFR pathways, further amplifies its oncogenic potential. Central to these disruptions is the activation of YAP and TAZ transcriptional coactivators, which drive the expression of genes that promote oncogenesis. This review delves into the molecular mechanisms responsible for the dysregulation of the Hippo pathway in cancer, elucidating how these disruptions contribute to tumorigenesis. We also explore potential therapeutic strategies, including inhibitors targeting YAP/TAZ activity and modulators of upstream signaling components. Despite significant advancements in understanding the Hippo pathway's role in cancer, numerous questions remain unresolved. Continued research is imperative to unravel the complex interactions within this pathway and to develop innovative and effective therapies for clinical application. In conclusion, the comprehensive understanding of the Hippo pathway's regulatory mechanisms offers significant potential for advancing cancer therapies, regenerative medicine, and treatments for chronic diseases. The translation of these insights into clinical practice will necessitate collaborative efforts from researchers, clinicians, and pharmaceutical developers to bring novel and effective therapies to patients, ultimately improving clinical outcomes and advancing the field of oncology.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Ashok Kumar Bishoyi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Kakhramon Khaitov
- Department of Dermatovenerology, Pediatric Dermatovenerology and AIDS, Tashkent Pediatric Medical Institute, Bogishamol Street 223, Tashkent, 100140, Uzbekistan
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
11
|
Joung J, Heo Y, Kim Y, Kim J, Choi H, Jeon T, Jang Y, Kim EJ, Lee SH, Suh JM, Elledge SJ, Kim MS, Kang C. Cell enlargement modulated by GATA4 and YAP instructs the senescence-associated secretory phenotype. Nat Commun 2025; 16:1696. [PMID: 39962062 PMCID: PMC11833096 DOI: 10.1038/s41467-025-56929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Dynamic changes in cell size are associated with development and pathological conditions, including aging. Although cell enlargement is a prominent morphological feature of cellular senescence, its functional implications are unknown; moreover, how senescent cells maintain their enlargement state is less understood. Here we show that an extensive remodeling of actin cytoskeleton is necessary for establishing senescence-associated cell enlargement and pro-inflammatory senescence-associated secretory phenotype (SASP). This remodeling is attributed to a balancing act between the SASP regulator GATA4 and the mechanosensor YAP on the expression of the Rho family of GTPase RHOU. Genetic or pharmacological interventions that reduce cell enlargement attenuate SASP with minimal effect on senescence growth arrest. Mechanistically, actin cytoskeleton remodeling couples cell enlargement to the nuclear localization of GATA4 and NF-κB via the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. RhoU protein accumulates in mouse adipose tissue under senescence-inducing conditions. Furthermore, RHOU expression correlates with SASP expression in adipose tissue during human aging. Thus, our study highlights an unexpected instructive role of cell enlargement in modulating the SASP and reveals a mechanical branch in the senescence regulatory network.
Collapse
Affiliation(s)
- Joae Joung
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Yekang Heo
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Yeonju Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Jaejin Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Haebeen Choi
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Taerang Jeon
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Yeji Jang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Eun-Jung Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Sang Heon Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, South Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, South Korea
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Mi-Sung Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea.
| | - Chanhee Kang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
12
|
Huang Y, Ouyang X, Tan J, Meng Z, Ma X, Yan Y. The physiological and pathogenic roles of yes-associated protein/transcriptional co-activator with PDZ-binding motif in bone or skeletal motor system-related cells. Cytojournal 2025; 22:13. [PMID: 40134564 PMCID: PMC11932947 DOI: 10.25259/cytojournal_237_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/02/2025] [Indexed: 03/27/2025] Open
Abstract
Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are the primary downstream effectors of the Hippo signaling pathway. This pathway plays a crucial role in regulating organ size, maintaining tissue homeostasis, and controlling cellular processes such as fate determination and tissue development. This review provides an overview of the current understanding of how the transcriptional regulators YAP and TAZ contribute to the physiological and pathological processes in tissues and cells associated with the skeletal motor system. The underlying molecular mechanisms and mechanical transduction were reviewed.
Collapse
Affiliation(s)
- Yao Huang
- Department of Spinal Surgery, Orthopaedic Research Center, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Xueqian Ouyang
- Department of Spinal Surgery, Orthopaedic Research Center, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Jinghua Tan
- Department of Spinal Surgery, Orthopaedic Research Center, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Zhenyu Meng
- Department of Spinal Surgery, Orthopaedic Research Center, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Xiuwen Ma
- Department of Spinal Surgery, Orthopaedic Research Center, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Yiguo Yan
- Department of Spinal Surgery, Orthopaedic Research Center, The First Affiliated Hospital of the University of South China, Hengyang, China
| |
Collapse
|
13
|
Li M, Tian Y, Si L, Fu H, Lai T, Guo R. OTUD4-mediated inhibition of YAP1 signaling pathway in ovarian cancer: Implications for macrophage polarization and recruitment. Int Immunopharmacol 2025; 147:114011. [PMID: 39778277 DOI: 10.1016/j.intimp.2024.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Ovarian cancer is a malignancy gynecologic oncology with high incidence and high mortality rate. M2-like tumor-associated macrophages promote cancer cell migration and metastasis. Ovarian tumor family deubiquitinase 4 (OTUD4) belongs to deubiquitinating enzyme family. The roles of OTUD4 in tumor microenvironments in ovarian cancer remains unknow. In this work, OTUD4 was overexpressed or knocked down in high-grade serous ovarian cancer cells OVCAR8 and CAOV3. Ovarian cells were co-cultured with THP-1 macrophages to simulate the tumor microenvironment. We found that OTUD4-expressed ovarian cells inhibited macrophage chemotaxis and M2 polarization. Besides, in ovarian tumor-bearing mouse model, OTUD4 suppressed tumor metastasis and remodeling tumor-associated macrophages phenotype (pro-tumor M2 to anti-tumor M1). In mechanism, OTUD4 protein bound to YAP1 protein, and downregulation of OTUD4 enhanced K63 ubiquitination and nuclear translocation of YAP1, thus increasing CCL2 transcription and subsequent macrophage recruitment. OTUD4 might inhibit CCL2 expression to regulate tumor-associated macrophages in ovarian tumor microenvironment. Those findings present a potential therapeutic strategy for ovarian cancer.
Collapse
Affiliation(s)
- Mingyue Li
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, Zhengzhou, Henan Province, China
| | - Yanpeng Tian
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, Zhengzhou, Henan Province, China
| | - Lulu Si
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, Zhengzhou, Henan Province, China
| | - Hanlin Fu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, Zhengzhou, Henan Province, China
| | - Tianjiao Lai
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, Zhengzhou, Henan Province, China
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, Zhengzhou, Henan Province, China.
| |
Collapse
|
14
|
Perry CH, Lavado A, Thulabandu V, Ramirez C, Paré J, Dixit R, Mishra A, Yang J, Yu J, Cao X. TEAD switches interacting partners along neural progenitor lineage progression to execute distinct functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.19.629472. [PMID: 39868115 PMCID: PMC11760702 DOI: 10.1101/2024.12.19.629472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The TEAD family of transcription factors are best known as the DNA-binding factor in the Hippo pathway, where they act by interacting with transcriptional coactivators YAP and TAZ (YAP/TAZ). Despite the importance of the Hippo pathway, the in vivo functions of TEAD in mammals have not been well established. By comparing mouse mutants lacking TEAD1 and TEAD2 (TEAD1/2) to those lacking YAP/TAZ, we found that TEAD1/2 have both YAP/TAZ-dependent and -independent functions during ventral telencephalon development. TEAD1/2 loss and YAP/TAZ loss similarly disrupt neuroepithelial apical junctions. However, the impacts of their losses on progenitor lineage progression are essentially opposite: Whereas YAP/TAZ loss depletes early progenitors and increases later progenitors-consistent with their established function in promoting progenitor self-renewal and proliferation, TEAD1/2 loss expands early progenitors and reduces late progenitors, indicating that TEAD1/2 promote lineage progression. We further show that TEAD1/2 promote neural progenitor lineage progression by, at least in part, inhibiting Notch signaling and by cooperating with Insulinoma-associated 1 (INSM1). Orthologs of TEAD and INSM1 have been shown to cooperatively regulate neuronal cell fate decisions in worms and flies. Our study reveals a remarkable evolutionary conservation of the function of this transcription factor complex during metazoan neural development.
Collapse
Affiliation(s)
- Charles H Perry
- Department of Developmental Neurobiology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- These authors contributed equally
| | - Alfonso Lavado
- Department of Developmental Neurobiology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- These authors contributed equally
| | - Venkata Thulabandu
- Department of Developmental Neurobiology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cody Ramirez
- Department of Developmental Neurobiology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joshua Paré
- Department of Developmental Neurobiology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rajiv Dixit
- Department of Developmental Neurobiology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Akhilesh Mishra
- Department of Computational Biology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Present address: Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Jiyuan Yang
- Department of Computational Biology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiyang Yu
- Department of Computational Biology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xinwei Cao
- Department of Developmental Neurobiology; Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
15
|
Tran M, Jiao B, Du H, Zhou D, Yechoor V, Wang Y. TEAD1 Prevents Necroptosis and Inflammation in Cisplatin-Induced Acute Kidney Injury Through Maintaining Mitochondrial Function. Int J Biol Sci 2025; 21:565-578. [PMID: 39781453 PMCID: PMC11705647 DOI: 10.7150/ijbs.104335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025] Open
Abstract
Cisplatin is widely used for the treatment of solid tumors and its antitumor effects are well established. However, a known complication of cisplatin administration is acute kidney injury (AKI). In this study, we examined the role of TEA domain family member 1 (TEAD1) in the pathogenesis of cisplatin-induced AKI. TEAD1 expression was upregulated in tubular epithelial cells of kidneys with cisplatin-induced AKI. TEAD1 floxed mice (TEAD1CON) mice treated with cisplatin developed tubular cell damage and impaired kidney function. In contrast, proximal tubule specific TEAD1 knockout (TEAD1PKO) mice treated with cisplatin had enhanced tubular cell damage and kidney dysfunction. Additionally, TEAD1PKO mice treated with cisplatin had augmented necroptotic cell death and inflammatory response compared to TEAD1CON mice with cisplatin. Knockdown of TEAD1 in mouse tubular epithelial cells showed increased intracellular ROS levels, reduced ATP production and impaired mitochondrial bioenergetics compared to control cells treated with cisplatin. Mechanistically, TEAD1 interacts with peroxisomal proliferator-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis, to promote mitochondrial function. Taken together, our results indicate TEAD1 plays an important role in the pathogenesis of cisplatin-induced AKI through regulation of necroptosis and inflammation, which is associated with mitochondrial metabolism. Therefore, TEAD1 may represent a novel therapeutic target for cisplatin-induced AKI.
Collapse
Affiliation(s)
- Melanie Tran
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Baihai Jiao
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Hao Du
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Vijay Yechoor
- Department of Medicine, University of Pittsburg, Pittsburg, PA, USA
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
- Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
16
|
Hu C, Francisco J, Del Re DP, Sadoshima J. Decoding the Impact of the Hippo Pathway on Different Cell Types in Heart Failure. Circ J 2024; 89:6-15. [PMID: 38644191 DOI: 10.1253/circj.cj-24-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The evolutionarily conserved Hippo pathway plays a pivotal role in governing a variety of biological processes. Heart failure (HF) is a major global health problem with a significant risk of mortality. This review provides a contemporary understanding of the Hippo pathway in regulating different cell types during HF. Through a systematic analysis of each component's regulatory mechanisms within the Hippo pathway, we elucidate their specific effects on cardiomyocytes, fibroblasts, endothelial cells, and macrophages in response to various cardiac injuries. Insights gleaned from both in vitro and in vivo studies highlight the therapeutic promise of targeting the Hippo pathway to address cardiovascular diseases, particularly HF.
Collapse
Affiliation(s)
- Chengchen Hu
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Jamie Francisco
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| |
Collapse
|
17
|
Chen S, Tu S, Huang Y, Lin H, Wang Y, Dai X. LncRNA MKLN1-AS promotes glioma tumorigenesis and growth via activating the Hippo pathway through miR-126-5p/TEAD1 axis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03646-y. [PMID: 39680098 DOI: 10.1007/s00210-024-03646-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/17/2024] [Indexed: 12/17/2024]
Abstract
The involvement of long non-coding RNAs (lncRNAs) in glioma carcinogenesis has gradually been identified. Herein, we aimed to explore the function and mechanism of lncRNA muskelin 1 antisense RNA (MKLN1-AS) in glioma cell oncogenic properties. Quantitative real-time polymerase chain reaction was utilized to test the expression of MKLN1-AS, miR-126-5p, and TEAD1 (TEA Domain Transcription Factor 1) mRNA expression. Oncogenic properties of glioma cells were characterized using 5-ethynyl-2'-deoxyuridine, flow cytometry, wound healing, transwell, and tube formation assays, respectively. Levels of TEAD1 protein, mobility-related proteins, and Hippo pathway-related proteins were examined by Western blotting. The binding between miR-126-5p and MKLN1-AS or TEAD1 was confirmed by using dual-luciferase reporter and pull-down assays. The murine xenograft model was established for in vivo analysis. Levels of MKLN1-AS in glioma tissues and cell lines were higher, functionally, MKLN1-AS deficiency could suppress glioma cell proliferation, migration, invasion, and angiogenesis, and induce apoptosis in vitro, as well as impede tumor growth in vivo. Mechanistically, miR-126-5p was targeted by MKLN1-AS, miR-126-5p directly targeted TEAD1. The suppressing effects of MKLN1-AS deficiency on glioma cell oncogenic properties were abolished by TEAD1 overexpression or miR-126-5p inhibition. Besides, MKLN1-AS/miR-126-5p mediates the activation of Hippo pathway by TEAD1. MKLN1-AS knockdown weakened glioma cell oncogenic phenotypes and growth via TEAD1-Hippo pathway through miR-126-5p, indicating a new therapeutic target for glioma molecular therapy.
Collapse
Affiliation(s)
- Shouren Chen
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, 59 Shengli West Road, Zhangzhou, Fujian, 363000, P.R. China
| | - Songjie Tu
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, 59 Shengli West Road, Zhangzhou, Fujian, 363000, P.R. China
| | - Yan Huang
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, 59 Shengli West Road, Zhangzhou, Fujian, 363000, P.R. China
| | - Hong Lin
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, 59 Shengli West Road, Zhangzhou, Fujian, 363000, P.R. China
| | - Yuzhe Wang
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, 59 Shengli West Road, Zhangzhou, Fujian, 363000, P.R. China
| | - Xuejun Dai
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, 59 Shengli West Road, Zhangzhou, Fujian, 363000, P.R. China.
| |
Collapse
|
18
|
Koroleva OA, Kurkin AV, Shtil AA. The Hippo pathway as an antitumor target: time to focus on. Expert Opin Investig Drugs 2024; 33:1177-1185. [PMID: 39592955 DOI: 10.1080/13543784.2024.2432395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
INTRODUCTION The Hippo signaling governs the expression of genes critically important for cell proliferation and survival. The components of this pathway are considered antitumor drug targets. However, the design of Hippo inhibitors is a challenge given the complexity of the network and redundancy of its elements. AREAS COVERED We review the current state-of-the-art in the structure of the Hippo pathway, the microenvironment-induced extracellular cues, the strategies to design pharmacological instruments for inactivation of the Hippo signaling using small molecular weight modulators, as well as the results of initial clinical trials. EXPERT OPINION One special characteristic of the Hippo signaling is the adverse role of phosphorylation: opposite to classical kinase cascades that activate the transcription factors, the Hippo kinases retain their partners in a transcriptionally inactive state. Therefore, approaches for pharmacological or genetic inhibition of Hippo protein kinases are counterproductive. The developing alternatives such as disruption of protein-protein interactions or PROTAC techniques are straightforward for preventing the Hippo signaling in cancer therapy.
Collapse
Affiliation(s)
- Olga A Koroleva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander V Kurkin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander A Shtil
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
- Institute of Carcinogenesis, Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| |
Collapse
|
19
|
Sedighi S, Liu T, O’Meally R, Cole RN, O’Rourke B, Foster DB. Inhibition of Cardiac p38 Highlights the Role of the Phosphoproteome in Heart Failure Progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624554. [PMID: 39605458 PMCID: PMC11601511 DOI: 10.1101/2024.11.20.624554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Heart failure (HF) is a complex condition characterized by the inability of the heart to pump sufficient oxygen to the organs to meet their metabolic needs. Among the altered signal transduction pathways associated with HF pathogenesis, the p38 mitogen-activated protein kinase (p38 MAPK) pathway-activated in response to stress- has attracted considerable attention for its potential role in HF progression and cardiac hypertrophy. However, the exact mechanisms by which p38 MAPK influences HF remain unclear. Addressing knowledge gaps may provide insight on why p38 inhibition has yielded inconsistent outcomes in clinical trials. Here we investigate the effects of p38 MAPK inhibition via SB203580 on cardiac remodeling in a guinea pig model of HF and sudden cardiac death. Using a well-established HF model with ascending aortic constriction and daily isoproterenol (ACi) administration, we assessed proteomic changes across three groups: sham-operated controls, untreated ACi, and ACi treated with SB203580 (ACiSB). Cardiac function was evaluated by M-mode echocardiography, while proteome and phosphoproteome profiles were analyzed using multiplexed tandem mass tag labeling and LC-MS/MS. Our findings demonstrate that chronic SB203580 treatment offers protection against progressive decline in cardiac function in HF. The proteomic data indicate that SB203580-treatment exerts broad protection of the cardiac phosphoproteome, beyond inhibiting maladaptive p38-dependent phosphorylation, extending to PKA and AMPK networks among others, ultimately protecting the phosphorylation status of critical myofibrillar and Ca2+-handling proteins. Though SB203580 had a more restricted impact on widespread protein changes in HF, its biosignature was consistent with preserved mitochondrial energetics as well as reduced oxidative and inflammatory stress.
Collapse
Affiliation(s)
- Sogol Sedighi
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ting Liu
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert O’Meally
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert N. Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Brian O’Rourke
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - D. Brian Foster
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Jafarinia H, Shi L, Wolfenson H, Carlier A. YAP phosphorylation within integrin adhesions: Insights from a computational model. Biophys J 2024; 123:3658-3668. [PMID: 39233443 PMCID: PMC11560305 DOI: 10.1016/j.bpj.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024] Open
Abstract
Mechanical and biochemical cues intricately activate Yes-associated protein (YAP), which is pivotal for the cellular responses to these stimuli. Recent findings reveal an unexplored role of YAP in influencing the apoptotic process. It has been shown that, on soft matrices, YAP is recruited to small adhesions, phosphorylated at Y357, and translocated into the nucleus triggering apoptosis. Interestingly, YAP Y357 phosphorylation is significantly reduced in larger mature focal adhesions on stiff matrices. Building upon these novel insights, we have developed a stochastic model to delve deeper into the complex dynamics of YAP phosphorylation within integrin adhesions. Our findings emphasize several key points: firstly, increasing the cytosolic diffusion rate of YAP correlates with higher levels of phosphorylated YAP (pYAP); secondly, increasing the number of binding sites and distributing them across the membrane surface, mimicking smaller adhesions, leads to higher pYAP levels, particularly at lower diffusion rates. Moreover, we show that the binding and release rate of YAP to adhesions as well as adhesion lifetimes significantly influence the size effect of adhesion-induced YAP phosphorylation. The results highlight the complex and dynamic interplay between adhesion lifetime, the rate of pYAP unbinding from adhesions, and dephosphorylation rates, collectively shaping overall pYAP levels. In summary, our work advances the understanding of YAP mechanotransduction and opens avenues for experimental validation.
Collapse
Affiliation(s)
- Hamidreza Jafarinia
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, the Netherlands
| | - Lidan Shi
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
21
|
Kopyeva I, Goldner EC, Hoye JW, Yang S, Regier MC, Bradford JC, Vera KR, Bretherton RC, Robinson JL, DeForest CA. Stepwise Stiffening/Softening of and Cell Recovery from Reversibly Formulated Hydrogel Interpenetrating Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404880. [PMID: 39240007 PMCID: PMC11530321 DOI: 10.1002/adma.202404880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Indexed: 09/07/2024]
Abstract
Biomechanical contributions of the extracellular matrix underpin cell growth and proliferation, differentiation, signal transduction, and other fate decisions. As such, biomaterials whose mechanics can be spatiotemporally altered- particularly in a reversible manner- are extremely valuable for studying these mechanobiological phenomena. Herein, a poly(ethylene glycol) (PEG)-based hydrogel model consisting of two interpenetrating step-growth networks is introduced that are independently formed via largely orthogonal bioorthogonal chemistries and sequentially degraded with distinct recombinant sortases, affording reversibly tunable stiffness ranges that span healthy and diseased soft tissues (e.g., 500 Pa-6 kPa) alongside terminal cell recovery for pooled and/or single-cell analysis in a near "biologically invisible" manner. Spatiotemporal control of gelation within the primary supporting network is achieved via mask-based and two-photon lithography; these stiffened patterned regions can be subsequently returned to the original soft state following sortase-based secondary network degradation. Using this approach, the effects of 4D-triggered network mechanical changes on human mesenchymal stem cell morphology and Hippo signaling, as well as Caco-2 colorectal cancer cell mechanomemory using transcriptomics and metabolic assays are investigated. This platform is expected to be of broad utility for studying and directing mechanobiological phenomena, patterned cell fate, and disease resolution in softer matrices.
Collapse
Affiliation(s)
- Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
| | - Ethan C. Goldner
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Jack W. Hoye
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Shiyu Yang
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Mary C. Regier
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - John C. Bradford
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Kaitlyn R. Vera
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ross C. Bretherton
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Jennifer L. Robinson
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
- Department of Orthopedic Surgery and Sports Medicine, University of Washington, Seattle WA 98105, USA
- Department of Mechanical Engineering, University of Washington, Seattle WA 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
22
|
Zhu R, Liu X, Zhang X, Zhong Z, Qi S, Jin R, Gu Y, Wang Y, Ling C, Chen K, Ye D, Yu FX. Gene therapy for diffuse pleural mesotheliomas in preclinical models by concurrent expression of NF2 and SuperHippo. Cell Rep Med 2024; 5:101763. [PMID: 39368484 PMCID: PMC11513813 DOI: 10.1016/j.xcrm.2024.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/03/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Diffuse pleural mesothelioma (DPM) is a lethal cancer with a poor prognosis and limited treatment options. The Hippo signaling pathway genes, such as NF2 and LATS1/2, are frequently mutated in DPM, indicating a tumor suppressor role in the development of DPM. Here, we show that in DPM cell lines lacking NF2 and in mice with a conditional Nf2 knockout, downregulation of WWC proteins, another family of Hippo pathway regulators, accelerates DPM progression. Conversely, the expression of SuperHippo, a WWC-derived minigene, effectively enhances Hippo signaling and suppresses DPM development. Moreover, the adeno-associated virus serotype 6 (AAV6) has been engineered to deliver both NF2 and SuperHippo genes into mesothelial cells, which substantially impedes tumor growth in xenograft and genetic DPM models and prolongs the median survival of mice. These findings serve as a proof of concept for the potential use of gene therapy targeting the Hippo pathway to treat DPM.
Collapse
Affiliation(s)
- Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xincheng Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xu Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Sixian Qi
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ruxin Jin
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuan Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chen Ling
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Kang Chen
- Department of Obstetrics and Gynecology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Dan Ye
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
23
|
Mohammadpour S, Torshizi Esfahani A, Sarpash S, Vakili F, Zafarjafarzadeh N, Mashaollahi A, Pardakhtchi A, Nazemalhosseini-Mojarad E. Hippo Signaling Pathway in Colorectal Cancer: Modulation by Various Signals and Therapeutic Potential. Anal Cell Pathol (Amst) 2024; 2024:5767535. [PMID: 39431199 PMCID: PMC11489006 DOI: 10.1155/2024/5767535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/07/2024] [Accepted: 08/19/2024] [Indexed: 10/22/2024] Open
Abstract
Colorectal cancer (CRC) stands as a significant global health issue, marked by elevated occurrence and mortality statistics. Despite the availability of various treatments, including chemotherapy, radiotherapy, and targeted therapy, CRC cells often exhibit resistance to these interventions. As a result, it is imperative to identify the disease at an earlier stage and enhance the response to treatment by acquiring a deeper comprehension of the processes driving tumor formation, aggressiveness, metastasis, and resistance to therapy. The Hippo pathway plays a critical role in facilitating the initiation of tumorigenesis and frequently experiences disruption within CRC because of genetic mutations and modified expression in its fundamental constituents. Targeting upstream regulators or core Hippo pathway components may provide innovative therapeutic strategies for modulating Hippo signaling dysfunction in CRC. To advance novel therapeutic techniques for CRC, it is imperative to grasp the involvement of the Hippo pathway in CRC and its interaction with alternate signaling pathways, noncoding RNAs, gut microbiota, and the immune microenvironment. This review seeks to illuminate the function and control of the Hippo pathway in CRC, ultimately aiming to unearth innovative therapeutic methodologies for addressing this ailment.
Collapse
Affiliation(s)
- Somayeh Mohammadpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Torshizi Esfahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - SeyedKasra Sarpash
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Vakili
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nikta Zafarjafarzadeh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhesam Mashaollahi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Pardakhtchi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Wang S, Shao D, Gao X, Zhao P, Kong F, Deng J, Yang L, Shang W, Sun Y, Fu Z. TEAD transcription factor family emerges as a promising therapeutic target for oral squamous cell carcinoma. Front Immunol 2024; 15:1480701. [PMID: 39430767 PMCID: PMC11486717 DOI: 10.3389/fimmu.2024.1480701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
The treatment of oral squamous cell carcinoma (OSCC) remains a significant difficulty, as there has been no improvement in survival rates over the past fifty years. Hence, exploration and confirmation of new dependable treatment targets and biomarkers is imperative for OSCC therapy. TEAD transcription factors are crucial for integrating and coordinating multiple signaling pathways that are essential for embryonic development, organ formation, and tissue homeostasis. In addition, by attaching to coactivators, TEAD modifies the expression of genes such as Cyr61, Myc, and connective tissue growth factor, hence facilitating tumor progression. Therefore, TEAD is regarded as an effective predictive biomarker due to its significant connection with clinical parameters in several malignant tumors, including OSCC. The efficacy of existing drugs that specifically target TEAD has demonstrated encouraging outcomes, indicating its potential as an optimal target for OSCC treatment. This review provides an overview of current targeted therapy strategies for OSCC by highlighting the transcription mechanism and involvement of TEAD in oncogenic signaling pathways. Finally, the feasibility of utilizing TEAD as an innovative approach to address OSCC and its potential clinical applications were analyzed and discussed.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
- Department of Stomatology, Medical College of Qingdao Huanghai University, Qingdao, China
| | - Dan Shao
- Department of Oral and Maxillofacial Surgery, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiaoyan Gao
- Department of Quality Inspection, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, China
| | - Peng Zhao
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Fanzhi Kong
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Jiawei Deng
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Lianzhu Yang
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Wei Shang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Sun
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Zhiguang Fu
- Department of Tumor Radiotherapy, Air Force Medical Center, People's Liberation Army of China (PLA), Beijing, China
| |
Collapse
|
25
|
Branch B, Yuan Y, Cascone M, Raimondi F, Iglesias-Bartolome R. An improved TEAD dominant-negative protein inhibitor to study Hippo YAP1/TAZ-dependent transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.03.615022. [PMID: 39502361 PMCID: PMC11537315 DOI: 10.1101/2024.10.03.615022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Hippo signaling is one of the top pathways altered in human cancer, and intensive focus has been devoted to developing therapies targeting Hippo-dependent transcription mediated by YAP1 and TAZ interaction with TEAD proteins. However, a significant challenge in evaluating the efficacy of these approaches is the lack of models that can precisely characterize the consequences of TEAD inhibition. To address this gap, our laboratory developed a strategy that utilizes a fluorescently traceable, dominant-negative protein named TEADi. TEADi specifically blocks the nuclear interactions of TEAD with YAP1 and TAZ, enabling precise dissection of Hippo TEAD-dependent and independent effects on cell fate. In this study, we aimed to enhance TEADi effectiveness by altering post-transcriptional modification sites within its TEAD-binding domains (TBDs). We demonstrate that a D93E mutation in the YAP1 TBD significantly increases TEADi inhibitory capacity. Additionally, we find that TBDs derived from VGLL4 and YAP1 are insufficient to block TAZ-induced TEAD activity, revealing crucial differences in YAP1 and TAZ displacement mechanisms by dominant-negative TBDs. Structural differences in YAP1 and TAZ TBDs were also identified, which may contribute to the distinct binding of these proteins to TEAD. Our findings expand our understanding of TEAD regulation and highlight the potential of an optimized TEADi as a more potent, specific, and versatile tool for studying TEAD-transcriptional activity.
Collapse
Affiliation(s)
- Briana Branch
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
- Department of Cellular, Molecular, Developmental Biology and Biophysics Graduate Program, Johns Hopkins University, Baltimore, Maryland, United States
| | - Yao Yuan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | | | | | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
26
|
Leconte M, Bonne G, Bertrand AT. Recent insights in striated muscle laminopathies. Curr Opin Neurol 2024; 37:509-514. [PMID: 38989655 DOI: 10.1097/wco.0000000000001297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW To highlight recent insights in different aspects of striated muscle laminopathies (SMLs) related to LMNA mutations. RECENT FINDINGS Clinical and genetic studies allow better patient management and diagnosis, with confirmation of ventricular tachyarrhythmias (VTA) risk prediction score to help with ICD implantation and development of models to help with classification of LMNA variants of uncertain significance. From a pathophysiology perspective, characterization of lamin interactomes in different contexts revealed new lamin A/C partners. Expression or function modulation of these partners evidenced them as potential therapeutic targets. After a positive phase 2, the first phase 3 clinical trial, testing a p38 inhibitor targeting the life-threatening cardiac disease of SML, has been recently stopped, thus highlighting the need for new therapeutic approaches together with new animal and cell models. SUMMARY Since the first LMNA mutation report in 1999, lamin A/C structure and functions have been actively explored to understand the SML pathophysiology. The latest discoveries of partners and altered pathways, highlight the importance of lamin A/C at the nuclear periphery and in the nucleoplasm. Modulation of altered pathways allowed some benefits, especially for cardiac involvement. However, additional studies are still needed to fully assess treatment efficacy and safety.
Collapse
Affiliation(s)
- Marine Leconte
- Sorbonne Université, Inserm, Institut de Myologie, Centre de recherche en Myologie, Paris, France
| | | | | |
Collapse
|
27
|
Mesrouze Y, Chène P. Study of the TEAD-binding domain of the VGLL1, VGLL2 and VGLL3 proteins from vertebrates. Arch Biochem Biophys 2024; 760:110136. [PMID: 39182750 DOI: 10.1016/j.abb.2024.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The TEAD transcription factors are the final effectors of the Hippo pathway, and to exert their transcriptional activity they need to interact with other proteins. The three paralogous vestigial-like proteins VGLL1, VGLL2 and VGLL3 bind to TEAD via a conserved short linear sequence, the Tondu motif. The TEAD-binding domain of human VGLL2 contains in addition an Ω-loop, which is also present in Vg (vestigial) from arthropods and the YAP proteins, another family of TEAD interactors. In this report, using the available structural data, we study the amino acid sequence of the TEAD-binding domain of more than 2400 putative VGLL proteins from vertebrates. This analysis shows a strong link between sequence conservation and functional role for the residues from the Tondu motif. It also reveals that one protein sequence containing both a Tondu motif and an Ω-loop is present in most (if not all) vertebrate species. This suggests that there is a selective pressure to keep a VGLL paralog with a functional Ω-loop in vertebrates. Finally, this study identifies, particularly in mammals, variants of VGLL2 and VGLL3 with an altered TEAD-binding domain suggesting that they may have a different biological function than their homologs.
Collapse
Affiliation(s)
- Yannick Mesrouze
- Disease Area Oncology, Novartis Institutes for Biomedical Research, CH-4056, Basel, Switzerland
| | - Patrick Chène
- Disease Area Oncology, Novartis Institutes for Biomedical Research, CH-4056, Basel, Switzerland.
| |
Collapse
|
28
|
Chen H, Gridnev A, Schlamowitz N, Hu W, Dey K, Zheng G, Misra JR. Targeted degradation of specific TEAD paralogs by small molecule degraders. Heliyon 2024; 10:e37829. [PMID: 39328531 PMCID: PMC11425103 DOI: 10.1016/j.heliyon.2024.e37829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
The transcription factors, TEAD1-4 together with their co-activator YAP/TAZ function as key downstream effectors of the Hippo pathway. Hyperactivation of TEAD-YAP/TAZ activity is observed in many human cancers. TEAD1-4 possess distinct physiological and pathological functions, with conserved sequences and structures. Targeting specific isoforms within TEAD1-4 can serve as valuable chemical probes for investigating TEAD-related functions in both development and diseases. We report the TEAD-targeting proteolysis targeting chimera (PROTAC), HC278, which achieves effective and specific targeting of TEAD1 and TEAD3 at low nanomolar doses while weakly degrading TEAD2 and TEAD4 at higher doses. Proteomic analysis of >6000 proteins confirmed their highly selective TEAD1 and TEAD3 degradation. Consistently, HC278 can suppress the proliferation of YAP-dependent NCI-H226 mesothelioma cells. Mechanistic exploration revealed that both CRBN and proteasome systems are involved in the TEAD degradation induced by HC278. Moreover, RNA-seq and Gene Set Enrichment Analysis (GSEA) revealed that the YAP signature genes such as CTGF, CYR61, and ANKRD1 are significantly downregulated by HC278 treatment. Overall, HC278 serves as a valuable chemical tool for unraveling the intricate biological roles of TEAD1 and TEAD3 and holds the potential as a lead compound for developing targeted therapy for TEAD1/3-driven pathologies.
Collapse
Affiliation(s)
- Hui Chen
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Artem Gridnev
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, 11794, USA
- Graduate School of Biomedical Sciences, Oregon Health & Sciences University, Portland, OR, USA
| | - Netanya Schlamowitz
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, 11794, USA
- Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wanyi Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Kuntala Dey
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Jyoti R. Misra
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, 11794, USA
| |
Collapse
|
29
|
Zhou C, Sun C, Zhou W, Tian T, Schultz DC, Wu T, Yu M, Wu L, Pi L, Li C. Development of Novel Indole-Based Covalent Inhibitors of TEAD as Potential Antiliver Cancer Agents. J Med Chem 2024; 67:16270-16295. [PMID: 39270302 DOI: 10.1021/acs.jmedchem.4c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Abnormal activation of the YAP transcriptional signaling pathway drives proliferation in many hepatocellular carcinoma (HCC) and hepatoblastoma (HB) cases. Current treatment options often face resistance and toxicity, highlighting the need for alternative therapies. This article reports the discovery of a hit compound C-3 from docking-based virtual screening targeting TEAD lipid binding pocket, which inhibited TEAD-mediated transcription. Optimization led to the identification of a potent and covalent inhibitor CV-4-26 that exhibited great antitumor activity in HCC and HB cell lines in vitro, xenografted human HCC, and murine HB in vivo. These outcomes signify the potential of a highly promising therapeutic candidate for addressing a subset of HCC and HB cancers. In the cases of current treatment challenges due to high upregulation of YAP-TEAD activity, these findings offer a targeted alternative for more effective interventions against liver cancer.
Collapse
Affiliation(s)
- Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Chunbao Sun
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Wei Zhou
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Tian Tian
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Daniel C Schultz
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Mu Yu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, United States
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, United States
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
- UF Institute of Genetics, University of Florida, Gainesville, Florida 32610, United States
| | - Liya Pi
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
30
|
Jafarinia H, Khalilimeybodi A, Barrasa-Fano J, Fraley SI, Rangamani P, Carlier A. Insights gained from computational modeling of YAP/TAZ signaling for cellular mechanotransduction. NPJ Syst Biol Appl 2024; 10:90. [PMID: 39147782 PMCID: PMC11327324 DOI: 10.1038/s41540-024-00414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024] Open
Abstract
YAP/TAZ signaling pathway is regulated by a multiplicity of feedback loops, crosstalk with other pathways, and both mechanical and biochemical stimuli. Computational modeling serves as a powerful tool to unravel how these different factors can regulate YAP/TAZ, emphasizing biophysical modeling as an indispensable tool for deciphering mechanotransduction and its regulation of cell fate. We provide a critical review of the current state-of-the-art of computational models focused on YAP/TAZ signaling.
Collapse
Affiliation(s)
- Hamidreza Jafarinia
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands
| | - Ali Khalilimeybodi
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093-0411, USA
| | - Jorge Barrasa-Fano
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Stephanie I Fraley
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093-0411, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093-0411, USA.
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
31
|
Chen M, Liu Y, Zuo M, Guo C, Du Y, Xu H, Liu B, Li M, Xiao W, Yu G. NEDD8 enhances Hippo signaling by mediating YAP1 neddylation. J Biol Chem 2024; 300:107512. [PMID: 38960037 PMCID: PMC11327456 DOI: 10.1016/j.jbc.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024] Open
Abstract
The Hippo-YAP signaling pathway plays a central role in many biological processes such as regulating cell fate, organ size, and tissue growth, and its key components are spatiotemporally expressed and posttranslationally modified during these processes. Neddylation is a posttranslational modification that involves the covalent attachment of NEDD8 to target proteins by NEDD8-specific E1-E2-E3 enzymes. Whether neddylation is involved in Hippo-YAP signaling remains poorly understood. Here, we provide evidence supporting the critical role of NEDD8 in facilitating the Hippo-YAP signaling pathway by mediating neddylation of the transcriptional coactivator yes-associated protein 1 (YAP1). Overexpression of NEDD8 induces YAP1 neddylation and enhances YAP1 transactivity, but inhibition of neddylation suppresses YAP1 transactivity and attenuates YAP1 nuclear accumulation. Furthermore, inhibition of YAP1 signaling promotes MLN4924-induced ovarian granulosa cells apoptosis and disruption of nedd8 in zebrafish results in downregulation of yap1-activated genes and upregulation of yap1-repressed genes. Further assays show that the xiap ligase promotes nedd8 conjugates to yap1 and that yap1 neddylation. In addition, we identify lysine 159 as a major neddylation site on YAP1. These findings reveal a novel mechanism for neddylation in the regulation of Hippo-YAP signaling.
Collapse
Affiliation(s)
- Mengjuan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Yuqing Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Mingzhong Zuo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Chaohui Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Yongkun Du
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Bianzhi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, People's Republic of China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Guangqing Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China.
| |
Collapse
|
32
|
Franzén L, Olsson Lindvall M, Hühn M, Ptasinski V, Setyo L, Keith BP, Collin A, Oag S, Volckaert T, Borde A, Lundeberg J, Lindgren J, Belfield G, Jackson S, Ollerstam A, Stamou M, Ståhl PL, Hornberg JJ. Mapping spatially resolved transcriptomes in human and mouse pulmonary fibrosis. Nat Genet 2024; 56:1725-1736. [PMID: 38951642 PMCID: PMC11319205 DOI: 10.1038/s41588-024-01819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis and limited treatment options. Efforts to identify effective treatments are thwarted by limited understanding of IPF pathogenesis and poor translatability of available preclinical models. Here we generated spatially resolved transcriptome maps of human IPF (n = 4) and bleomycin-induced mouse pulmonary fibrosis (n = 6) to address these limitations. We uncovered distinct fibrotic niches in the IPF lung, characterized by aberrant alveolar epithelial cells in a microenvironment dominated by transforming growth factor beta signaling alongside predicted regulators, such as TP53 and APOE. We also identified a clear divergence between the arrested alveolar regeneration in the IPF fibrotic niches and the active tissue repair in the acutely fibrotic mouse lung. Our study offers in-depth insights into the IPF transcriptional landscape and proposes alveolar regeneration as a promising therapeutic strategy for IPF.
Collapse
Affiliation(s)
- Lovisa Franzén
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Martina Olsson Lindvall
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael Hühn
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Victoria Ptasinski
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Laura Setyo
- Pathology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Benjamin P Keith
- Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Astrid Collin
- Animal Science and Technology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Steven Oag
- Animal Science and Technology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Thomas Volckaert
- Bioscience In Vivo, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Annika Borde
- Bioscience In Vivo, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Joakim Lundeberg
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Julia Lindgren
- Translational Genomics, Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Graham Belfield
- Translational Genomics, Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sonya Jackson
- Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Ollerstam
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Marianna Stamou
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Patrik L Ståhl
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden.
| | - Jorrit J Hornberg
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
33
|
Ren Y, Zhou L, Li X, Zhu X, Zhang Z, Sun X, Xue X, Dai C. Taz/Tead1 Promotes Alternative Macrophage Activation and Kidney Fibrosis via Transcriptional Upregulation of Smad3. J Immunol Res 2024; 2024:9512251. [PMID: 39108258 PMCID: PMC11303051 DOI: 10.1155/2024/9512251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024] Open
Abstract
Macrophage alternative activation is involved in kidney fibrosis. Previous researches have documented that the transcriptional regulators Yes-associated protein (Yap)/transcriptional coactivator with PDZ-binding motif (Taz) are linked to organ fibrosis. However, limited knowledge exists regarding the function and mechanisms of their downstream molecules in regulating macrophage activation and kidney fibrosis. In this paper, we observed that the Hippo pathway was suppressed in macrophages derived from fibrotic kidneys in mice. Knockout of Taz or Tead1 in macrophages inhibited the alternative activation of macrophages and reduced kidney fibrosis. Additionally, by using bone marrow-derived macrophages (BMDMs), we investigated that knockout of Taz or Tead1 in macrophages impeded both cell proliferation and migration. Moreover, deletion of Tead1 reduces p-Smad3 and Smad3 abundance in macrophages. And chromatin immunoprecipitation (ChIP) assays showed that Tead1 could directly bind to the promoter region of Smad3. Collectively, these results indicate that Tead1 knockout in macrophages could reduce TGFβ1-induced phosphorylation Smad3 via transcriptional downregulation of Smad3, thus suppressing macrophage alternative activation and IRI-induced kidney fibrosis.
Collapse
Affiliation(s)
- Yizhi Ren
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Lu Zhou
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Xinyuan Li
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Xingwen Zhu
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Zhiheng Zhang
- School of StomatologyXuzhou Medical University, No. 209 Tongshan Road, Xuzhou 221000, Jiangsu, China
| | - Xiaoli Sun
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Xian Xue
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Chunsun Dai
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| |
Collapse
|
34
|
Gupta SRR, Singh S, Rustagi V, Pahuja M, Mangangcha IR, Rinchui M, Jha SK, Singh A, Singh IK. Prognostic role of TEAD4 in TNBC: in-silico inhibition of the TEAD4-YAP interaction by flufenamic acid analogs. In Silico Pharmacol 2024; 12:64. [PMID: 39035099 PMCID: PMC11255177 DOI: 10.1007/s40203-024-00239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses a significant global health challenge due to its highly aggressive nature and invasive characteristics. Dysregulation of the Hippo pathway, a key regulator of various biological processes, is observed in TNBC, and its inhibition holds promise for impeding cancer growth. This in-silico analysis investigates the role of Transcriptional Enhanced Associate Domain 4 (TEAD4) in TNBC and its interaction with Yes Associated Protein (YAP) in cancer progression. Our results demonstrate that TEAD4 upregulation is linked to poor prognosis in TNBC, emphasizing its critical role in the disease. Moreover, we identify CID44521006, an analog of Flufenamic acid, as a potential therapeutic compound capable of disrupting the TEAD4-YAP interaction by binding to the YAP-binding domain of TEAD4. These findings underscore the significance of TEAD4 in TNBC and propose CID44521006 as a promising candidate for therapeutic intervention. The study contributes valuable insights to advance treatment options for TNBC, offering a potential avenue for the development of targeted therapies against this aggressive form of breast cancer. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00239-8.
Collapse
Affiliation(s)
- Shradheya R. R. Gupta
- Molecular Biology Research Laboratory, Department of Zoology, & DBC I4 Centre, Deshbandhu College, University of Delhi, New Delhi, 110019 India
| | - Shivani Singh
- Molecular Biology Research Laboratory, Department of Zoology, & DBC I4 Centre, Deshbandhu College, University of Delhi, New Delhi, 110019 India
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, 201310 India
| | - Vanshika Rustagi
- Molecular Biology Research Laboratory, Department of Zoology, & DBC I4 Centre, Deshbandhu College, University of Delhi, New Delhi, 110019 India
| | - Monika Pahuja
- Extramural Wing, Indian Council of Medical Research, New Delhi, 110029 India
| | - Irengbam Rocky Mangangcha
- Molecular Biology Research Laboratory, Department of Zoology, & DBC I4 Centre, Deshbandhu College, University of Delhi, New Delhi, 110019 India
| | - Moses Rinchui
- Molecular Biology Research Laboratory, Department of Zoology, & DBC I4 Centre, Deshbandhu College, University of Delhi, New Delhi, 110019 India
| | - Saurabh K. Jha
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, 110008 India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021 India
| | - Indrakant K. Singh
- Molecular Biology Research Laboratory, Department of Zoology, & DBC I4 Centre, Deshbandhu College, University of Delhi, New Delhi, 110019 India
- Delhi School of Public Health, Institute of Eminence, University of Delhi, Delhi, 110007 India
| |
Collapse
|
35
|
Ye Z, Zhu S, Li G, Lu J, Huang S, Du J, Shao Y, Ji Z, Li P. Early matrix softening contributes to vascular smooth muscle cell phenotype switching and aortic dissection through down-regulation of microRNA-143/145. J Mol Cell Cardiol 2024; 192:1-12. [PMID: 38718921 DOI: 10.1016/j.yjmcc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Thoracic aortic dissection (TAD) is characterized by extracellular matrix (ECM) dysregulation. Aberrations in the ECM stiffness can lead to changes in cellular functions. However, the mechanism by which ECM softening regulates vascular smooth muscle cell (VSMCs) phenotype switching remains unclear. To understand this mechanism, we cultured VSMCs in a soft extracellular matrix and discovered that the expression of microRNA (miR)-143/145, mediated by activation of the AKT signalling pathway, decreased significantly. Furthermore, overexpression of miR-143/145 reduced BAPN-induced aortic softening, switching the VSMC synthetic phenotype and the incidence of TAD in mice. Additionally, high-throughput sequencing of immunoprecipitated RNA indicated that the TEA domain transcription factor 1 (TEAD1) is a common target gene of miR-143/145, which was subsequently verified using a luciferase reporter assay. TEAD1 is upregulated in soft ECM hydrogels in vitro, whereas the switch to a synthetic phenotype in VSMCs decreases after TEAD1 knockdown. Finally, we verified that miR-143/145 levels are associated with disease severity and prognosis in patients with thoracic aortic dissection. ECM softening, as a result of promoting the VSMCs switch to a synthetic phenotype by downregulating miR-143/145, is an early trigger of TAD and provides a therapeutic target for this fatal disease. miR-143/145 plays a role in the early detection of aortic dissection and its severity and prognosis, which can offer information for future risk stratification of patients with dissection.
Collapse
Affiliation(s)
- Zhaofei Ye
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Shuolin Zhu
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Guoqi Li
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Jie Lu
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Shan Huang
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Yihui Shao
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China.
| | - Zhili Ji
- Beijing Chaoyang Hospital of Capital Medical University, China.
| | - Ping Li
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China.
| |
Collapse
|
36
|
Lin M, Zheng X, Yan J, Huang F, Chen Y, Ding R, Wan J, Zhang L, Wang C, Pan J, Cao X, Fu K, Lou Y, Feng XH, Ji J, Zhao B, Lan F, Shen L, He X, Qiu Y, Jin J. The RNF214-TEAD-YAP signaling axis promotes hepatocellular carcinoma progression via TEAD ubiquitylation. Nat Commun 2024; 15:4995. [PMID: 38862474 PMCID: PMC11167002 DOI: 10.1038/s41467-024-49045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
RNF214 is an understudied ubiquitin ligase with little knowledge of its biological functions or protein substrates. Here we show that the TEAD transcription factors in the Hippo pathway are substrates of RNF214. RNF214 induces non-proteolytic ubiquitylation at a conserved lysine residue of TEADs, enhances interactions between TEADs and YAP, and promotes transactivation of the downstream genes of the Hippo signaling. Moreover, YAP and TAZ could bind polyubiquitin chains, implying the underlying mechanisms by which RNF214 regulates the Hippo pathway. Furthermore, RNF214 is overexpressed in hepatocellular carcinoma (HCC) and inversely correlates with differentiation status and patient survival. Consistently, RNF214 promotes tumor cell proliferation, migration, and invasion, and HCC tumorigenesis in mice. Collectively, our data reveal RNF214 as a critical component in the Hippo pathway by forming a signaling axis of RNF214-TEAD-YAP and suggest that RNF214 is an oncogene of HCC and could be a potential drug target of HCC therapy.
Collapse
Affiliation(s)
- Mengjia Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaoyun Zheng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Fei Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yilin Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Ran Ding
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jinkai Wan
- International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenliang Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jinchang Pan
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaolei Cao
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Kaiyi Fu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China
| | - Junfang Ji
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China
| | - Bin Zhao
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China
| | - Fei Lan
- International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Shen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Orthopedics Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Xianglei He
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, 3100014, Zhejiang, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| | - Jianping Jin
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China.
| |
Collapse
|
37
|
Kim JY, Quan T. Emerging Perspectives of YAP/TAZ in Human Skin Epidermal and Dermal Aging. Ann Dermatol 2024; 36:135-144. [PMID: 38816974 PMCID: PMC11148314 DOI: 10.5021/ad.23.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 02/18/2024] [Indexed: 06/01/2024] Open
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the Hippo signaling pathway, which plays a central role in tissue homeostasis, organ development, and regeneration. While the dysregulation of YAP/TAZ has been linked to various human diseases, their involvement in the aging of human skin has only recently begun to manifest. In the skin, the YAP/TAZ effectors emerge as central regulators in maintaining homeostasis of epidermal stem cells and dermal extracellular matrix, and thus intimately linked to skin aging processes. This review underscores recent molecular breakthroughs highlighting how age-related decline of YAP/TAZ activity impacts human epidermal and dermal aging. Gaining insight into the evolving roles of YAP/TAZ in human skin aging presents a promising avenue for the development of innovative therapeutic approaches aimed at enhancing skin health and addressing age-related skin conditions.
Collapse
Affiliation(s)
- Jun Young Kim
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Innis SM, Cabot RA. Chromatin profiling and state predictions reveal insights into epigenetic regulation during early porcine development. Epigenetics Chromatin 2024; 17:16. [PMID: 38773546 PMCID: PMC11106951 DOI: 10.1186/s13072-024-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/16/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Given their physiological similarities to humans, pigs are increasingly used as model organisms in human-oriented biomedical studies. Additionally, their value to animal agriculture across the globe has led to the development of numerous studies to investigate how to improve livestock welfare and production efficiency. As such, pigs are uniquely poised as compelling models that can yield findings with potential implications in both human and animal contexts. Despite this, many gaps remain in our knowledge about the foundational mechanisms that govern gene expression in swine across different developmental stages, particularly in early development. To address some of these gaps, we profiled the histone marks H3K4me3, H3K27ac, and H3K27me3 and the SWI/SNF central ATPase BRG1 in two porcine cell lines representing discrete early developmental time points and used the resulting information to construct predicted chromatin state maps for these cells. We combined this approach with analysis of publicly available RNA-seq data to examine the relationship between epigenetic status and gene expression in these cell types. RESULTS In porcine fetal fibroblast (PFF) and trophectoderm cells (PTr2), we saw expected patterns of enrichment for each of the profiled epigenetic features relative to specific genomic regions. H3K4me3 was primarily enriched at and around global gene promoters, H3K27ac was enriched in promoter and intergenic regions, H3K27me3 had broad stretches of enrichment across the genome and narrower enrichment patterns in and around the promoter regions of some genes, and BRG1 primarily had detectable enrichment at and around promoter regions and in intergenic stretches, with many instances of H3K27ac co-enrichment. We used this information to perform genome-wide chromatin state predictions for 10 different states using ChromHMM. Using the predicted chromatin state maps, we identified a subset of genomic regions marked by broad H3K4me3 enrichment, and annotation of these regions revealed that they were highly associated with essential developmental processes and consisted largely of expressed genes. We then compared the identities of the genes marked by these regions to genes identified as cell-type-specific using transcriptome data and saw that a subset of broad H3K4me3-marked genes was also specifically expressed in either PFF or PTr2 cells. CONCLUSIONS These findings enhance our understanding of the epigenetic landscape present in early swine development and provide insight into how variabilities in chromatin state are linked to cell identity. Furthermore, this data captures foundational epigenetic details in two valuable porcine cell lines and contributes to the growing body of knowledge surrounding the epigenetic landscape in this species.
Collapse
Affiliation(s)
- Sarah M Innis
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Ryan A Cabot
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
39
|
Li H, Ge Z, Lin K, He W, Chu Q, Zheng M, Zhang S, Xu T. Design, Synthesis, and Bioevaluation of Transcriptional Enhanced Assocciated Domain (TEAD) PROTAC Degraders. ACS Med Chem Lett 2024; 15:631-639. [PMID: 38746898 PMCID: PMC11089546 DOI: 10.1021/acsmedchemlett.4c00029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/11/2025] Open
Abstract
Dysregulation of the Hippo pathway has been observed in various cancers. The transcription factor TEAD, together with its coactivators YAP/TAZ, plays a crucial role in regulating the transcriptional output of the Hippo pathway. Recently, extensive research has focused on small molecule inhibitors targeting TEAD, but studies on TEAD degraders are comparatively rare. In this study, we designed and synthesized a series of TEAD PROTACs by connecting a pan-TEAD inhibitor with the CRBN ligand thalidomide. A representative compound, 27, exhibited potent antiproliferative activity against NF2-deficient NCI-H226 cells. It dose-dependently induced TEAD degradation dependent on CRBN and proteasome system and decreased key YAP target genes CYR61 and CTGF expressions in NCI-H226 cells. Further degradation selectivity studies revealed that 27 exhibited more potent activity against TEAD2 compared to those of the other three family members in Flag-TEADs transfected 293T cells. Therefore, 27 may serve as a valuable tool for advancing biological studies related to TEAD2.
Collapse
Affiliation(s)
- Huajie Li
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou, 310024, China
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University
of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiming Ge
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou, 310024, China
- University
of Chinese Academy of Sciences, Beijing, 100049, China
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Kexin Lin
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing, 210023, China
| | - Wei He
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- Nanchang
University, Nanchang, 330031, China
| | - Qinyu Chu
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou, 310024, China
- University
of Chinese Academy of Sciences, Beijing, 100049, China
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Mingyue Zheng
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou, 310024, China
- University
of Chinese Academy of Sciences, Beijing, 100049, China
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing, 210023, China
- Nanchang
University, Nanchang, 330031, China
| | - Sulin Zhang
- University
of Chinese Academy of Sciences, Beijing, 100049, China
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Tianfeng Xu
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou, 310024, China
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University
of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
40
|
Isaac R, Bandyopadhyay G, Rohm TV, Kang S, Wang J, Pokhrel N, Sakane S, Zapata R, Libster AM, Vinik Y, Berhan A, Kisseleva T, Borok Z, Zick Y, Telese F, Webster NJG, Olefsky JM. TM7SF3 controls TEAD1 splicing to prevent MASH-induced liver fibrosis. Cell Metab 2024; 36:1030-1043.e7. [PMID: 38670107 PMCID: PMC11113091 DOI: 10.1016/j.cmet.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
The mechanisms of hepatic stellate cell (HSC) activation and the development of liver fibrosis are not fully understood. Here, we show that deletion of a nuclear seven transmembrane protein, TM7SF3, accelerates HSC activation in liver organoids, primary human HSCs, and in vivo in metabolic-dysfunction-associated steatohepatitis (MASH) mice, leading to activation of the fibrogenic program and HSC proliferation. Thus, TM7SF3 knockdown promotes alternative splicing of the Hippo pathway transcription factor, TEAD1, by inhibiting the splicing factor heterogeneous nuclear ribonucleoprotein U (hnRNPU). This results in the exclusion of the inhibitory exon 5, generating a more active form of TEAD1 and triggering HSC activation. Furthermore, inhibiting TEAD1 alternative splicing with a specific antisense oligomer (ASO) deactivates HSCs in vitro and reduces MASH diet-induced liver fibrosis. In conclusion, by inhibiting TEAD1 alternative splicing, TM7SF3 plays a pivotal role in mitigating HSC activation and the progression of MASH-related fibrosis.
Collapse
Affiliation(s)
- Roi Isaac
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Gautam Bandyopadhyay
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Theresa V Rohm
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sion Kang
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jinyue Wang
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Narayan Pokhrel
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Sadatsugu Sakane
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Surgery, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Rizaldy Zapata
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Avraham M Libster
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Yaron Vinik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Asres Berhan
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yehiel Zick
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Francesca Telese
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas J G Webster
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, San Diego, CA, USA
| | - Jerrold M Olefsky
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
41
|
Kumar A, BharathwajChetty B, Manickasamy MK, Unnikrishnan J, Alqahtani MS, Abbas M, Almubarak HA, Sethi G, Kunnumakkara AB. Natural compounds targeting YAP/TAZ axis in cancer: Current state of art and challenges. Pharmacol Res 2024; 203:107167. [PMID: 38599470 DOI: 10.1016/j.phrs.2024.107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer has become a burgeoning global healthcare concern marked by its exponential growth and significant economic ramifications. Though advancements in the treatment modalities have increased the overall survival and quality of life, there are no definite treatments for the advanced stages of this malady. Hence, understanding the diseases etiologies and the underlying molecular complexities, will usher in the development of innovative therapeutics. Recently, YAP/TAZ transcriptional regulation has been of immense interest due to their role in development, tissue homeostasis and oncogenic transformations. YAP/TAZ axis functions as coactivators within the Hippo signaling cascade, exerting pivotal influence on processes such as proliferation, regeneration, development, and tissue renewal. In cancer, YAP is overexpressed in multiple tumor types and is associated with cancer stem cell attributes, chemoresistance, and metastasis. Activation of YAP/TAZ mirrors the cellular "social" behavior, encompassing factors such as cell adhesion and the mechanical signals transmitted to the cell from tissue structure and the surrounding extracellular matrix. Therefore, it presents a significant vulnerability in the clogs of tumors that could provide a wide window of therapeutic effectiveness. Natural compounds have been utilized extensively as successful interventions in the management of diverse chronic illnesses, including cancer. Owing to their capacity to influence multiple genes and pathways, natural compounds exhibit significant potential either as adjuvant therapy or in combination with conventional treatment options. In this review, we delineate the signaling nexus of YAP/TAZ axis, and present natural compounds as an alternate strategy to target cancer.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
42
|
Yang X, Delsante M, Daneshpajouhnejad P, Fenaroli P, Mandell KP, Wang X, Takahashi S, Halushka MK, Kopp JB, Levi M, Rosenberg AZ. Bile Acid Receptor Agonist Reverses Transforming Growth Factor-β1-Mediated Fibrogenesis in Human Induced Pluripotent Stem Cells-Derived Kidney Organoids. J Transl Med 2024; 104:100336. [PMID: 38266922 DOI: 10.1016/j.labinv.2024.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Chronic kidney disease progresses through the replacement of functional tissue compartments with fibrosis, a maladaptive repair process. Shifting kidney repair toward a physiologically intact architecture, rather than fibrosis, is key to blocking chronic kidney disease progression. Much research into the mechanisms of fibrosis is performed in rodent models with less attention to the human genetic context. Recently, human induced pluripotent stem cell (iPSC)-derived organoids have shown promise in overcoming the limitation. In this study, we developed a fibrosis model that uses human iPSC-based 3-dimensional renal organoids, in which exogenous transforming growth factor-β1 (TGF-β1) induced the production of extracellular matrix. TGF-β1-treated organoids showed tubulocentric collagen 1α1 production by regulating downstream transcriptional regulators, Farnesoid X receptor, phosphorylated mothers against decapentaplegic homolog 3 (p-SMAD3), and transcriptional coactivator with PDZ-binding motif (TAZ). Increased nuclear TAZ expression was confirmed in the tubular epithelium in human kidney biopsies with tubular injury and early fibrosis. A dual bile acid receptor agonist (INT-767) increased Farnesoid X receptor and reduced p-SMAD3 and TAZ, attenuating TGF-β1-induced fibrosis in kidney organoids. Finally, we show that TAZ interacted with TEA-domain transcription factors and p-SMAD3 with TAZ and TEA-domain transcription factor 4 coregulating collagen 1α1 gene transcription. In summary, we establish a novel, readily manipulable fibrogenesis model and posit a role for bile acid receptor agonism early in renal parenchymal fibrosis.
Collapse
Affiliation(s)
- Xiaoping Yang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Marco Delsante
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland; Scuola di Specializione in Nefrologia, University of Parma, Parma, Italy
| | | | - Paride Fenaroli
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland; Scuola di Specializione in Nefrologia, University of Parma, Parma, Italy
| | | | - Xiaoxin Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Shogo Takahashi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
43
|
Castillo C, Grieco M, D'Amone S, Lolli MG, Ursini O, Cortese B. Hypoxia effects on glioblastoma progression through YAP/TAZ pathway regulation. Cancer Lett 2024; 588:216792. [PMID: 38453044 DOI: 10.1016/j.canlet.2024.216792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
The resistance of glioblastomas (GBM) to standard therapies poses a clinical challenge with limited survival despite interventions. The tumor microenvironment (TME) orchestrates GBM progression, comprising stromal and immune cells and is characterized by extensive hypoxic regions. Hypoxia activates the hypoxia-inducible factor 1 alpha (HIF-1α) pathway, interacting with the Hippo pathway (YAP/TAZ) in crucial cellular processes. We discuss here the related signaling crosstalk between YAP/TAZ and regions of hypoxia in the TME with particular attention on the MST1/2 and LATS1/2-regulated YAP/TAZ activation, impacting cell proliferation, invasion, and stemness. Moreover, the hypoxia-YAP/TAZ axis influence on angiogenesis, stem cells, and metabolic regulators is defined. By reviewing extracellular matrix alterations activation of YAP/TAZ, modulation of signaling pathways we also discuss the significance of spatial constraints and epigenetic modifications contribution to GBM progression, with potential therapeutic targets in YAP/TAZ-mediated gene regulation. Comprehensive understanding of the hypoxia-Hippo pathway-TME interplay offers insights for novel therapeutic strategies, aiming to provide new directions for treatment.
Collapse
Affiliation(s)
- Carolina Castillo
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Maddalena Grieco
- National Research Council- Institute of Nanotechnology (CNR Nanotec), C/o Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Stefania D'Amone
- National Research Council- Institute of Nanotechnology (CNR Nanotec), C/o Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Maria Grazia Lolli
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Ornella Ursini
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Barbara Cortese
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
44
|
Pfeifer M, Brammeld JS, Price S, Pilling J, Bhavsar D, Farcas A, Bateson J, Sundarrajan A, Miragaia RJ, Guan N, Arnold S, Tariq L, Grondine M, Talbot S, Guerriero ML, O'Neill DJ, Young J, Company C, Dunn S, Thorpe H, Martin MJ, Maratea K, Barrell D, Ahdesmaki M, Mettetal JT, Brownell J, McDermott U. Genome-wide CRISPR screens identify the YAP/TEAD axis as a driver of persister cells in EGFR mutant lung cancer. Commun Biol 2024; 7:497. [PMID: 38658677 PMCID: PMC11043391 DOI: 10.1038/s42003-024-06190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Most lung cancer patients with metastatic cancer eventually relapse with drug-resistant disease following treatment and EGFR mutant lung cancer is no exception. Genome-wide CRISPR screens, to either knock out or overexpress all protein-coding genes in cancer cell lines, revealed the landscape of pathways that cause resistance to the EGFR inhibitors osimertinib or gefitinib in EGFR mutant lung cancer. Among the most recurrent resistance genes were those that regulate the Hippo pathway. Following osimertinib treatment a subpopulation of cancer cells are able to survive and over time develop stable resistance. These 'persister' cells can exploit non-genetic (transcriptional) programs that enable cancer cells to survive drug treatment. Using genetic and pharmacologic tools we identified Hippo signalling as an important non-genetic mechanism of cell survival following osimertinib treatment. Further, we show that combinatorial targeting of the Hippo pathway and EGFR is highly effective in EGFR mutant lung cancer cells and patient-derived organoids, suggesting a new therapeutic strategy for EGFR mutant lung cancer patients.
Collapse
Affiliation(s)
- Matthias Pfeifer
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
- Leibniz-Institute of Virology (LIV) and University hospital Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Stacey Price
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - James Pilling
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Deepa Bhavsar
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Anca Farcas
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | | | - Anjana Sundarrajan
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Ricardo J Miragaia
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Nin Guan
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Stephanie Arnold
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Laiba Tariq
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Michael Grondine
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Sarah Talbot
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Maria Lisa Guerriero
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Daniel J O'Neill
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Jamie Young
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Carlos Company
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Shanade Dunn
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Hannah Thorpe
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Matthew J Martin
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Kimberly Maratea
- Clinical Pharmacology & Safety, BioPharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Daniel Barrell
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Miika Ahdesmaki
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Jerome T Mettetal
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - James Brownell
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Ultan McDermott
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK.
| |
Collapse
|
45
|
Kopyeva I, Goldner EC, Hoye JW, Yang S, Regier MC, Vera KR, Bretherton RC, DeForest CA. Stepwise Stiffening/Softening of and Cell Recovery from Reversibly Formulated Hydrogel Double Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588191. [PMID: 38645065 PMCID: PMC11030224 DOI: 10.1101/2024.04.04.588191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Biomechanical contributions of the ECM underpin cell growth and proliferation, differentiation, signal transduction, and other fate decisions. As such, biomaterials whose mechanics can be spatiotemporally altered - particularly in a reversible manner - are extremely valuable for studying these mechanobiological phenomena. Herein, we introduce a poly(ethylene glycol) (PEG)-based hydrogel model consisting of two interpenetrating step-growth networks that are independently formed via largely orthogonal bioorthogonal chemistries and sequentially degraded with distinct bacterial transpeptidases, affording reversibly tunable stiffness ranges that span healthy and diseased soft tissues (e.g., 500 Pa - 6 kPa) alongside terminal cell recovery for pooled and/or single-cell analysis in a near "biologically invisible" manner. Spatiotemporal control of gelation within the primary supporting network was achieved via mask-based and two-photon lithography; these stiffened patterned regions could be subsequently returned to the original soft state following sortase-based secondary network degradation. Using this approach, we investigated the effects of 4D-triggered network mechanical changes on human mesenchymal stem cell (hMSC) morphology and Hippo signaling, as well as Caco-2 colorectal cancer cell mechanomemory at the global transcriptome level via RNAseq. We expect this platform to be of broad utility for studying and directing mechanobiological phenomena, patterned cell fate, as well as disease resolution in softer matrices.
Collapse
Affiliation(s)
- Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
| | - Ethan C. Goldner
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Jack W. Hoye
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Shiyu Yang
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Mary C. Regier
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Kaitlyn R. Vera
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ross C. Bretherton
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
46
|
Ogimoto T, Ozasa H, Tsuji T, Funazo T, Yamazoe M, Hashimoto K, Yoshida H, Hosoya K, Ajimizu H, Nomizo T, Yoshida H, Hamaji M, Menju T, Yoshizawa A, Date H, Hirai T. Combination Therapy with EGFR Tyrosine Kinase Inhibitors and TEAD Inhibitor Increases Tumor Suppression Effects in EGFR Mutation-positive Lung Cancer. Mol Cancer Ther 2024; 23:564-576. [PMID: 38052760 DOI: 10.1158/1535-7163.mct-23-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/14/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
EGFR-tyrosine kinase inhibitors (TKI) are the first-line therapies for EGFR mutation-positive lung cancer. EGFR-TKIs have favorable therapeutic effects. However, a large proportion of patients with EGFR mutation-positive lung cancer subsequently relapse. Some cancer cells survive the initial treatment with EGFR-TKIs, and this initial survival may be associated with subsequent recurrence. Therefore, we aimed to overcome the initial survival against EGFR-TKIs. We hypothesized that yes-associated protein 1 (YAP1) is involved in the initial survival against EGFR-TKIs, and we confirmed the combined effect of EGFR-TKIs and a YAP1-TEAD pathway inhibitor. The KTOR27 (EGFR kinase domain duplication) lung cancer cell lines established from a patient with EGFR mutation-positive lung cancer and commercially available PC-9 and HCC827 (EGFR exon 19 deletions) lung cancer cell lines were used. These cells were used to evaluate the in vitro and in vivo effects of VT104, a TEAD inhibitor. In addition, YAP1 involvement was investigated in pathologic specimens. YAP1 was activated by short-term EGFR-TKI treatment in EGFR mutation-positive lung cancer cells. In addition, inhibiting YAP1 function using siRNA increased the sensitivity to EGFR-TKIs. Combination therapy with VT104 and EGFR-TKIs showed better tumor-suppressive effects than EGFR-TKIs alone, in vitro and in vivo. Moreover, the combined effect of VT104 and EGFR-TKIs was observed regardless of the localization status of YAP1 before EGFR-TKI exposure. These results suggest that combination therapy with the TEAD inhibitor and EGFR-TKIs may improve the prognosis of patients with EGFR mutation-positive lung cancer.
Collapse
Affiliation(s)
- Tatsuya Ogimoto
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Ozasa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Tsuji
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Anatomy and Molecular Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Tomoko Funazo
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masatoshi Yamazoe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kentaro Hashimoto
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Yoshida
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazutaka Hosoya
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hitomi Ajimizu
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Nomizo
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hironori Yoshida
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masatsugu Hamaji
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshi Menju
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
47
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
48
|
Liu Y, Chen S, Zhang E, Xu Y, Deng X, Hu Z, Nie S, Lin Y, Huang Y. Exploring the potential of VGLL3 methylation as a prognostic indicator for intracranial aneurysm with gender-specific considerations. Biosci Rep 2024; 44:BSR20231374. [PMID: 38348744 PMCID: PMC10912501 DOI: 10.1042/bsr20231374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
DNA methylation is widely recognized to play a role in intracranial aneurysm (IA) pathogenesis. We investigated the levels of methylation of vestigial-like 3 (VGLL3) in IA and explored its potential as a prognostic indicator. A total of 48 patients with IA and 48 healthy controls were included in the present study. Methylation levels of CpG sites were assessed using bisulfite pyrosequencing, and levels of VGLL3, TEAD, and YAP in the blood were measured by real-time quantitative polymerase chain reaction testing. VGLL3 methylation was significantly higher in controls than in IA patients (P=0.001), and this phenomenon was more pronounced in females (P<0.001). Compared with the control group, the expression levels of VGLL3 and TEAD in the blood of IA patients were significantly increased, while YAP was significantly decreased. VGLL3 methylation was positively correlated with HDL (P=0.003) and female Lpa concentration (r = 0.426, P=0.03), and was also negatively correlated with age (P=0.003), APOE (P=0.005), and VGLL3 mRNA expression (P<0.001). Methylation and mRNA expression of VGLL3 may serve as indicators of IA risk in females (AUC = 0.810 and 0.809). VGLL3 methylation may participate in the pathogenesis of IA by regulating the expression of the VGLL3/TEAD/YAP pathway, and its gene methylation and expression levels have IA risk prediction value.
Collapse
Affiliation(s)
- Yuchun Liu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
- Laboratory of Neurological Diseases and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Siqi Chen
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
- Laboratory of Neurological Diseases and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang 315010, China
| | - Enhao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
- Laboratory of Neurological Diseases and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang 315010, China
| | - Yinbin Xu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
- Laboratory of Neurological Diseases and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang 315010, China
| | - Xinpeng Deng
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
- Laboratory of Neurological Diseases and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang 315010, China
| | - Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
- Laboratory of Neurological Diseases and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang 315010, China
| | - Sheng Nie
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
- Laboratory of Neurological Diseases and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Yinglu Lin
- Department of Neurology, The Second People’s Hospital of Pingyang County, Wenzhou, Zhejiang 325400, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
- Laboratory of Neurological Diseases and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang 315010, China
| |
Collapse
|
49
|
Le Moal E, Liu Y, Collerette-Tremblay J, Dumontier S, Fabre P, Molina T, Dort J, Orfi Z, Denault N, Boutin J, Michaud J, Giguère H, Desroches A, Trân K, Ellezam B, Vézina F, Bedard S, Raynaud C, Balg F, Sarret P, Boudreault PL, Scott MS, Denault JB, Marsault E, Feige JN, Auger-Messier M, Dumont NA, Bentzinger CF. Apelin stimulation of the vascular skeletal muscle stem cell niche enhances endogenous repair in dystrophic mice. Sci Transl Med 2024; 16:eabn8529. [PMID: 38507466 DOI: 10.1126/scitranslmed.abn8529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Impaired skeletal muscle stem cell (MuSC) function has long been suspected to contribute to the pathogenesis of muscular dystrophy (MD). Here, we showed that defects in the endothelial cell (EC) compartment of the vascular stem cell niche in mouse models of Duchenne MD, laminin α2-related MD, and collagen VI-related myopathy were associated with inefficient mobilization of MuSCs after tissue damage. Using chemoinformatic analysis, we identified the 13-amino acid form of the peptide hormone apelin (AP-13) as a candidate for systemic stimulation of skeletal muscle ECs. Systemic administration of AP-13 using osmotic pumps generated a pro-proliferative EC-rich niche that supported MuSC function through angiocrine factors and markedly improved tissue regeneration and muscle strength in all three dystrophic mouse models. Moreover, EC-specific knockout of the apelin receptor led to regenerative defects that phenocopied key pathological features of MD, including vascular defects, fibrosis, muscle fiber necrosis, impaired MuSC function, and reduced force generation. Together, these studies provide in vivo proof of concept that enhancing endogenous skeletal muscle repair by targeting the vascular niche is a viable therapeutic avenue for MD and characterized AP-13 as a candidate for further study for the systemic treatment of MuSC dysfunction.
Collapse
Affiliation(s)
- Emmeran Le Moal
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Yuguo Liu
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jasmin Collerette-Tremblay
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Simon Dumontier
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Paul Fabre
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Thomas Molina
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Junio Dort
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Zakaria Orfi
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Nicolas Denault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Joël Boutin
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Joris Michaud
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Hugo Giguère
- Département de Médecine-Service de Cardiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Alexandre Desroches
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Kien Trân
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Benjamin Ellezam
- CHU Sainte-Justine Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - François Vézina
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Sonia Bedard
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Catherine Raynaud
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Frederic Balg
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pierre-Luc Boudreault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Michelle S Scott
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Bernard Denault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Eric Marsault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Mannix Auger-Messier
- Département de Médecine-Service de Cardiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - C Florian Bentzinger
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
50
|
Liu S, Chen H, Xie H, Liu X, Zhang M. Substrate Stiffness Modulates Stemness and Differentiation of Rabbit Corneal Endothelium Through the Paxillin-YAP Pathway. Invest Ophthalmol Vis Sci 2024; 65:15. [PMID: 38466286 DOI: 10.1167/iovs.65.3.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Purpose To explore the role of substrate stiffness and the mechanism beneath corneal endothelial cells' (CECs') stemness maintenance and differentiation. Methods CECs were divided into central zone (8 mm trephined boundary) and peripheral zone (8 mm trephined edge with attached limbal). Two zones were analyzed by hematoxylin-eosin staining and scanning electron microscopy for anatomic structure. The elastic modulus of Descemet's membrane (DM) was analyzed by atomic force microscopy. Compressed type I collagen gels with different stiffness were constructed as an in vitro model system to test the role of stiffness on phenotype using cultured rabbit CECs. Cell morphology, expression and intracellular distribution of Yes-associated protein (YAP), differentiation (ZO-1, Na+/K+-ATPase), stemness (FOXD3, CD34, Sox2, Oct3/4), and endothelial-mesenchymal transition (EnMT) markers were analyzed by immunofluorescence, quantitative RT-PCR, and Western blot. Results The results showed that the peripheral area of rabbit and human DM is softer than the central area ex vivo. Using the biomimetic extracellular matrix collagen gels in vitro model, we then demonstrated that soft substrate weakens the differentiation and EnMT in the culture of CECs. It was further proved by the inhibitor experiment that soft substrate enhances stemness maintenance via inhibition of paxillin-YAP signaling, which was activated on a stiff substrate. Conclusions Our findings confirm that substrate stiffness modulates the stemness maintenance and differentiation of CECs and suggest a potential strategy for CEC-based corneal tissue engineering.
Collapse
Affiliation(s)
- Shuting Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Chen
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Huatao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|